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Preface

The book Basic System Analysis presents a comprehensive treatment of signals
and linear systems for the undergraduate level study. It is a rich subject with
diverse applications such as signal processing, control systems, and communica-
tion systems. It provides an integrated treatment of continuous-time and discrete-
time forms of signals and systems. These two forms are treated side by side. Even
though continuous-time and discrete-time theory havemanymathematical properties
common between them, the physical processes that are modeled by continuous-time
systems are very much different from the discrete-time systems counterpart.

I have written this book with the material I have collected during my long experi-
ence of teaching signals and systems to the undergraduate level students in national
level reputed institutions. The book in the present form is written to meet the require-
ments of undergraduate syllabus of Indian Universities in general and B.Tech. EEE
branch of Uttar Pradesh Technological University in particular. The organization of
the chapters is as follows.

Chapter 1 deals with the representation of signals and systems. It motivates the
reader as to what signals and systems are and how they are related to other areas
such as communication systems, control systems, and digital signal processing. In
this chapter, various terminologies related to signals and systems are defined. Further,
mathematical description, representation, and classifications of signals and systems
are explained.

Chapter 2 deals with the Fourier representation of continuous-time signals.
Continuous-time periodic signals are represented by trigonometric Fourier series,
polar Fourier series, and exponential Fourier series.

It is not possible to find Fourier series representation of non-periodic signals. In
Chap. 3, Fourier transform is introduced which can represent periodic as well as non-
periodic signals. In this chapter, the Fourier transform for continuous-time signal is
explained.

The Laplace transform is a very powerful tool in the analysis of continuous-time
signals and systems. In Chap. 4, the Laplace transform method is explained and its
properties derived. The use of Laplace transform to solve differential equation is
described.
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Chapter 5 is devoted to the z-transform and its application to discrete-time signals
and systems. The properties of z-transform and techniques for inversion are intro-
duced in this chapter. The use of z-transform for solving difference equation is
explained.

Chapter 6 is devoted to state space modeling and analysis of continuous-time and
discrete-time systems. Formation of vector matrix differential/difference equation is
also explained in this chapter.

In Chap. 7, application of MATLAB and Python programs to solve problems is
discussed.

The notable features of this book include the following:

1. The syllabus content of signals and systems for undergraduate level has been
covered.

2. The organization of the chapter is sequential in nature.
3. Large number of numerical examples have been worked out.
4. Learning objectives and summary are given in each chapter.
5. For the students to practice, short and long questions with answers are given at

the end of each chapter.
6. In this edition, a new chapter titled “Application of MATLAB and PYTHON

Programs” has been included. Here many applications to real-life practical
systems and exposure to computational tools are discussed by solving numerical
problems. Some useful special computational concepts are also presented which
will be useful to readers.

I take this opportunity to thank Shri Sunil Saxena, Managing Director, Ane Books
Pvt. Ltd, India, for coming forward to publish the book. I would like to express our
sincere thanks to Shri A. Rathinam, General Manager (South), Ane Books Pvt. Ltd.,
who took the initiatives to publish the book in a short span of time. I would like to
express my sincere thanks to Mr. V. Ashok who has done a wonderful job to key
the voluminous book like this in a very short time and beautifully too. I would also
like to thank my wife Dr. S. Manimegalai, M.B.B.S., M.D., who was the source of
inspiration while preparing this book.

Tiruchirappalli, India Dr. S. Palani
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Chapter 1
Representation of Signals and Systems

Chapter Objectives

• To define various terminologies related to signals and systems.
• To classify signals and systems.
• To give mathematical description and representation of signals and systems.
• To perform basic operations on CT signals.
• To classify CT signals as periodic and non-periodic, odd and even and power
and energy signals.

• To classify systems as linear and non-linear, time invariant and time varying,
static and dynamic, causal and non-casual, stable and unstable, invertible
and non-invertible.

• To find the force–voltage and force–current electric analogous circuit for
mechanical system.

• To find the time response of first- and second-order systems.

1.1 Introduction

The concepts of signals and systems play a very important role in many areas of
science and technology. These concepts are very extensively applied in the field
of circuit analysis and design, long-distance communication, power system genera-
tion and distribution, electron devices, electrical machines, biomedical engineering,
aeronautics, process control, speech, and image processing to mention a few. Signals
represent some independent variables which contain some information about
the behavior of some natural phenomenon.Voltages and currents in electrical and
electronic circuits, electromagnetic radiowaves, human speech, and sounds produced
by animals are some of the examples of signals. When these signals are operated
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2 1 Representation of Signals and Systems

on some objects, they give out signals in the same or modified form. These
objects are called systems.A system is, therefore, defined as the interconnection of
objects with a definite relationship between objects and attributes. Signals appearing
at various stages of the system are attributes. R, L , C components, spring, dash-
pots, mass, etc. are the objects. The electrical and electronic circuits comprising of
R, L , C components and amplifiers, the transmitter and receiver in a communica-
tion system, the petrol and diesel engines in an automobile, chemical plants, nuclear
reactor, human beings, animals, a government establishment, etc. are all examples
of systems.

1.2 Terminologies Related to Signals and Systems

Before we give mathematical descriptions and representations of various terminolo-
gies related to signals and systems, the following terminologies which are very fre-
quently used are defined as follows:

1.2.1 Signal

A signal is defined as a physical phenomenon which carries some information or
data. The signals are usually functions of independent variable time. There are some
cases where the signals are not functions of time. The electrical charge distributed
in a body is a signal which is a function of space and not time.

1.2.2 System

A system is defined as the set of interconnected objects with a definite relationship
between objects and attributes. The interconnected components provide desired func-
tion. Objects are parts or components of a system. For example, switches, springs,
masses, dash-pots, etc. in a mechanical system and inductors, capacitors, and resis-
tors in an electrical system are the objects. The displacement of mass, spring, and
dash-pot and the current flow and the voltage across the inductor, capacitor, and
resistor are the attributes. There is a definite relationship between the objects and
attributes. The voltages across R, L , C series components can be expressed as
vR = i R, vL = L di

dt , and vC = 1
C

∫
idt . If this series circuit is excited by the voltage

source ei (t), the ei (t) is the input attribute or the input signal. If the voltage across any
of the objects R, L , and C is taken then such an attribute is called the output signal.
The block diagram representation of input and output (voltage across the resistor)
signals and the system is shown in Fig. 1.1.
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Fig. 1.1 Block diagram
representation of signals and
systems

ei(t) vR(t)SYSTEM
(R, L, C) 

Input signal
or excitation

Output signal

1.3 Continuous- and Discrete-Time Signals

Signals are broadly classified as follows:

1. Continuous-time signal (CT signal).
2. Discrete-time signal (DT signal).

The signal that is specified for every value of time t is called continuous-time signal
and is denoted by x(t). On the other hand, the signal that is specified at discrete
value of time is called discrete-time signal. The discrete-time signal is represented
as a sequence of numbers and is denoted by x[n]where n is an integer. Here time t is
divided into n discrete time intervals. The continuous-time signal (CT) and discrete-
time signal (DT) are represented in Figs. 1.2 and 1.3 respectively.

It is to be noted that in continuous-time signal representation the independent
variable t which has unit as sec is put in the parenthesis (·) and in discrete-time signal
the independent variable n which is an integer is put inside the square parenthesis
[·]. Accordingly, the dependent variables of the continuous-time signal/system are

Fig. 1.2 CT signal x(t)

0 tt

Fig. 1.3 DT signal x[n]

1

1.51.5

0.50.5 0.5

00

nn 32101234
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denoted as x(t), g(t), u(t), etc. Similarly the dependent variables of discrete-time
signals/systems are denoted as x[n], g[n], u[n], etc.

A discrete-time signal x[n] is represented by the following two methods:

1.

x[n] =
{(

1
a

)n
n ≥ 0

0 n < 0
(1.1)

Substituting various values of n where n ≥ 0 in Eq. (1.1) the sequence for x[n]
which is denoted by x{n} is written as follows:

x{n} =
{

1,
1

a
,
1

a2
, . . . ,

1

an

}

2. The sequence is also represented as given below:

x{n} = {3, 2, 5, 4, 6, 8, 2}
↑

The arrow indicates the value of x[n] at n = 0which is 5 in this case. The numbers
to the left of the arrow indicate to the negative sequence n = −1,−2, etc. The
numbers to the right of the arrow correspond to n = 1, 2, 3, 4, etc. Thus, for the
above sequence x[−1] = 2, x[−2] = 3, x[0] = 5, x[1] = 4, x[2] = 6, x[3] = 8,
and x[4] = 2. If no arrow is marked for a sequence, the sequence starts from the
first term in the extreme left. Consider the sequence

x{n} = {5, 3, 4, 2}

Here x[0] = 5, x[1] = 3, x[2] = 4, and x[3] = 2. There is no negative sequence
here.

1.4 Basic Continuous-Time Signals

Basic continuous-time signals play a very important role in signals and systems
analysis. The following are the basic continuous-time signals which serve as a basis
to represent other signals. The basic continuous-time signals are

1. Unit impulse function.
2. Unit step function.
3. Unit ramp function.
4. Unit parabolic function.
5. Unit rectangular pulse (or gate) function.
6. Unit area triangular function.
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7. Unit signum function.
8. Unit Sinc function.
9. Sinusoidal signal.
10. Real exponential signal.
11. Complex exponential signal.

The mathematical description and graphical representation of the above signals are
discussed below. Similar to continuous-time signals, basic discrete-time signals are
also available. The descriptions of these signals will immediately follow this.

1.4.1 Unit Impulse Function

The unit impulse function is also known as Dirac delta function which is repre-
sented in Fig. 1.4. The unit impulse function is denoted as δ(t) and its mathematical
description is given below:

δ(t) =
{
0 t �= 0

1 t = 0
(1.2)

1.4.1.1 Importance of Impulse Function

1. By applying impulse signal to a system one can get the impulse response of
the system. From impulse response, it is possible to get the transfer function of
the system.

2. For a linear time invariant system, if the area under the impulse response curve is
finite, then the system is said to be stable.

3. Form the impulse response of the system, one can easily get the step response
and ramp response by integrating it once and twice respectively.

4. Impulse signal is easy to generate and apply to any system.

Fig. 1.4 Unit impulse
function

x(t)

(t)

tt 0
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Fig. 1.5 Unit step function u(t)

t0

1

1.4.2 Unit Step Function

The unit step function is shown in Fig. 1.5. The function is defined as follows:

u(t) =
{
1 t ≥ 0

0 t < 0
(1.3)

The step function is denoted by u(t). Any causal signal which begins at t = 0 (which
has a value of zero for t < 0) ismultiplied by the signal by u(t). For example, a causal
exponentially decaying signal e−at (t ≥ 0) is represented as x(t) = e−at u(t).
Similarly e−at (t < 0) is represented as x(t) = e−at u(−t).

1.4.2.1 Importance of Step Function

1. Step function is easy to generate and apply to the system.
2. By differentiating the step response impulse response can be obtained. By inte-

grating the step response, ramp response can be obtained.
3. Step signal is considered as a white noise which is drastic. If the system response

is satisfactory for a step signal, it is likely to give satisfactory response to other
types of signals.

4. Application of step signal is equivalent to the application of numerous sinusoidal
signals with a wide range of frequencies.

1.4.3 Unit Ramp Function

The unit ramp function is represented in Fig. 1.6. It is defined by the following
mathematical equation:

r(t) =
{

t t ≥ 0

0 t < 0
(1.4)



1.4 Basic Continuous-Time Signals 7

Fig. 1.6 Unit ramp function r(t)

2

1

0 1 2 t

For a causal signal (t ≥ 0), the ramp function can also be expressed as

r(t) = t u(t) (1.5)

1.4.3.1 Relationships Between Impulse, Step, and Ramp Signals

1. Integrating the unit step signal u(t) we get

∫
u(t)dt =

∫
dt = t (1.6)

By integrating the unit step function, unit ramp function is obtained. In the reverse
process, by differentiating a ramp function, a step function is obtained.

2. The continuous-time unit step function is the running integral of the unit impulse
function which is expressed as

u(t) =
∫ t

−∞
δ(τ )dτ

du(t)

dt
= δ(t) (1.7)

3. By differentiating the ramp function twice, the impulse function is obtained

r(t) = t
dr(t)

dt
= 1 = u(t) (1.8)
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d2r(t)

dt2
= du(t)

dt
= δ(t) (1.9)

Thus, the impulse function is obtained by differentiating the ramp function twice.
By the reverse process, by integrating the impulse function twice, the ramp func-
tion is obtained which is mathematically expressed as follows:

r(t) =
∫ ∫

δ(t) dt (1.10)

The relationships between the impulse, step, and ramp signals are represented
below:

δ(t)
integrate−→ u(t)

integrate−→ r(t)

r(t)
differentiate−→ u(t)

differentiate−→ δ(t)

1.4.4 Unit Parabolic Function

The unit parabolic function x(t) is represented in Fig. 1.7. The mathematical expres-
sion is given below:

x(t) = 1

2
t2 t ≥ 0 (1.11)

If the parabolic function is differentiated, unit ramp function is obtained. Thus

dx(t)

dt
= t t ≥ 0

Fig. 1.7 Unit parabolic
function

x(t)

2

1
2

0 1 2 t
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1.4.5 Unit Rectangular Pulse (or Gate) Function

The unit area rectangular pulse which is also called gate function is represented in
Fig. 1.8. Mathematically it is described as follows:

x(t) =
{(

1
a

)
for |t | ≤ a

2

0 otherwise
(1.12)

The above equation is also written in the following form:

x(t) = 1

a
− a

2
≤ t ≤ a

2

The function is written as x(t) = rect(t).

1.4.6 Unit Area Triangular Function

The unit area triangular function is represented in Fig. 1.9. It is symbolically written
as x(t) = tri(t). It is defined as

tri(t) =
{
[1 − |t |] |t | ≤ 1

0 |t | > 1
(1.13)

The above equation can be written in the following form also:

tri(t) = [1 + t] − 1 ≤ t ≤ 0

= [1 − t] 0 ≤ t ≤ 1

Fig. 1.8 Unit area
rectangular pulse (or gate)
function

x(t) = rect(t)

1
a

0 tt a
2

a
2
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Fig. 1.9 Unit area triangular
function

x(t) = tri(t) 

t0 11t

1

1.4.7 Unit Signum Function

The signum function is written in the abbreviated form as sgn(t). It represents the
characteristics of an ideal relay. This is shown in Fig. 1.10. It is defined by the
following equations:

sgn(t) =

⎧
⎪⎨

⎪⎩

1 t > 0

0 t = 0

−1 t < 0

(1.14)

1.4.8 Unit Sinc Function

The unit sinc function is represented in Fig. 1.11. It is defined as

sinc(t) = sin π t

π t
− ∞ < t < ∞. (1.15)

Fig. 1.10 Representation of
unit signum function

x(t) = sgn(t)

t0t

1

1
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tt 4 3 2 1 0 1

1

2 3 4

sinc(t)

Fig. 1.11 Representation of unit sinc function

1.4.9 Sinusoidal Signal

The sinusoidal signal is represented in Fig. 1.12. It is defined as

x(t) = A sin(ωt − φ) (1.16)

where A = peak amplitude, ω = radian frequency, φ = phase shift.

1.4.10 Real Exponential Signal

Let
x(t) = est (1.17)

t

x(t) = Asin( t )

A

Fig. 1.12 Representation of sinusoidal signal
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tt

x(t) = e t

> 0 < 0

(a) (b)

0 tt

x(t) = e t

0

Fig. 1.13 Representation of real exponential signals. a Growing exponential; b Decaying
exponential

where s = σ + jω is a complex number. The signal x(t) in Eq. (1.17) is called
general complex exponential. Equation (1.17) is written in the following form:

x(t) = e(σ+ jω)t

= eσ t e jωt

= eσ t (cosωt + j sinωt) (1.18)

If ω = 0,

x(t) = eσ t (1.19)

Equation (1.19) is real exponential. The plot of x(t) with respect to t for σ > 0 and
σ < 0 is shown in Fig. 1.13a and b respectively. For σ > 0, the signal is exponentially
growing and for σ < 0, it is exponentially decaying.

1.4.11 Complex Exponential Signal

The signal x(t) in Eq. (1.18) is the general complex exponential which has real
part as eσ t cosωt and the imaginary part eσ t sinωt . For σ = 0, the signal x(t) is a
sinusoid. For σ > 0, x(t) is a sinusoid which is exponentially building and is shown
in Fig. 1.14a. For σ < 0, the signal x(t) = e−σ t (cosωt + j sinωt) is exponentially
decaying and is shown in Fig. 1.14b.
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tt tt

x(t)

0

x(t)

0

> 0

(a) (b)

< 0

Fig. 1.14 Complex exponential signals. a Exponentially growing (σ > 0); b Exponentially decay-
ing (σ < 0)

1.5 Basic Operations on Continuous-Time Signals

The basic operations performed on continuous-time signals are given below:

1. Addition of CT signals.
2. Multiplications of CT signals.
3. Amplitude scaling of CT signals.
4. Time scaling of CT signals.
5. Time shifting of CT signals.
6. Reflection or folding of CT signals.
7. Inverted CT signal.

1.5.1 Addition of CT Signals

Consider the signals x1(t) and x2(t) which are shown in Fig. 1.15a and b. The ampli-
tude of these two signals at each instant of time is added to get their sum. The
following table is prepared.

From Table1.1, x(t) = x1(t) + x2(t) is plotted and is shown in Fig. 1.15c.

1.5.2 Multiplication of CT Signals

Consider the two signals x1(t) and x2(t) shown in Fig. 1.15a and b respectively. These
signals x1(t) and x2(t) are multiplied to get x(t)

x(t) = x1(t) × x2(t)
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tt

x1(t)

1

(a) (b)

0 1 2

2

12 tt

x2(t)

0 1

1

2

3

13 2

2

tt

x(t) = x1(t) x2(t)

0

(c)

1

1

2

3

21

1

23

Fig. 1.15 Addition of two CT signals (Contd.) Addition of two CT signals

Table 1.1 Sum of two signals x1(t) and x2(t)

t −3 −2 −1 0 1 2

x1(t) 0 1 2 2 0 0

x2(t) 1 −2 −2 1 3 0

x(t) = x1(t) +
x2(t)

1 −1 0 3 3 0

The functions x1(t) and x2(t) at different time intervals are determined from figure
and multiplied. Table1.2 is prepared to get x(t) at different time intervals. Table1.2
is transformed to plot x(t) = x1(t) × x2(t) which is shown in Fig. 1.16.
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Table 1.2 Product of two signals x1(t) and x2(t)

t −3 −2 −1 0 1 2

x1(t) 0 1 2 2 0 0

x2(t) 1 −2 −2 1 3 0

x(t) = x1(t) ×
x2(t)

0 −2 −4 2 0 0

Fig. 1.16 Multiplications of
two CT signals

x(t) x1(t) x2(t)

tt

2

0 1
12

2

4

1.5.3 Amplitude Scaling of Signals

Consider the signals x(t) sketched and shown in Fig. 1.17a. This signal when mul-
tiplied by a factor A is expressed as Ax(t). At any time t , the amplitude of x(t) is
multiplied by A. This type of signal transformation is called amplitude scaling. The
signal 3x(t) is shown in Fig. 1.17b. At any instant t , x(t) is multiplied by a factor 3.

Consider the signal x(t)
2 . At any time t , the amplitude of x(t) shown in Fig. 1.17a

is divided by the factor 2. The above transformation is plotted in Fig. 1.17c.

1.5.4 Time Scaling of CT Signals

The compression or expansion of a signal in time is known as time scaling. Consider
the signal x(t) shown in Fig. 1.18a. The signal is time compressed and shown in
Fig. 1.18b as x(4t). For any given magnitude of x(t), the time is divided by the
factor 4. The time expanded signal x( t

4 ) is shown in Fig. 1.18c. Here, for any given
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(b)

(a) x(t)

t0 1

1

2

2

123 tt

3x(t)

0 1 2

3

6

123

x(t)

tt 123 0 1

1

2
(c)

2

0.5

Fig. 1.17 Amplitude scaling. a x(t); b 3x(t) and c
x(t)

2

magnitude of x(t), the time is multiplied by the factor 4. In general, for any given
amplitude of x(t), x(at) is time compressed by a factor a and x( t

a ) is time expanded
by a factor a.

1.5.5 Time Shifting of CT Signals

Consider the signal x(t) = u(t), the unit step function. The step function is shown
in Fig. 1.19a as u(t). The transformation t = t − t0 where t0 is any arbitrary constant
amounts to shifting u(t) to the right by t0 unit if t0 is positive and is denoted as
u(t − t0). If t0 is negative, the function is shifted to the left by t0 unit and is denoted as
u(t + t0). The right shifted u(t − t0) is shown in Fig. 1.19b and left shifted u(t + t0)
is shown in Fig. 1.19c. The signal u(−t) is shown in Fig. 1.19d and is obtained by
folding u(t) shown in Fig. 1.19a. u(−t) = 1 for t < 0. If we fold across the vertical
axis, the signal to the right of the vertical axis is transformed to its left and vice versa.
That is why it is called folded signal. The signal u(−t − t0) is obtained by shifting
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x(t)

0

(a) (b)

3

23 tt

x(t/4)

0

(c)

3

812 tt

x(4t)

0

3

3/4 2/4 tt

Fig. 1.18 Time scaling of CT signals

the signal u(−t) to the left by t0 unit as shown in Fig. 1.19e. The signal u(−t + t0) is
obtained by shifting the signal u(−t) to the right by t0 unit and is shown in Fig. 1.19f.

Summary of Shifting of CT Signal

1. It x(t) is given, then x(t + t0) is plotted by shifting x(t) to the left by t0.
2. It x(t) is given, then x(t − t0) is plotted by shifting x(t) to the right by t0.
3. It x(−t) is given, then x(−t − t0) is plotted by shifting x(−t) to the left by

t0.
4. It x(−t) is given, then x(−t + t0) is plotted by shifting x(−t) to the right by

t0.
5. In general for x(t + t0) and x(−t − t0) the time shift is made to the left of

x(t) and x(−t) respectively by t0. For x(t − t0) and x(−t + t0) the time shift
is made to the right of x(t) and x(−t) respectively by t0.

1.5.6 Signal Reflection or Folding

Consider the signal x(t) shown in Fig. 1.20a. The signal x(−t) is obtained by putting
amirror along the vertical axis. The signal to the right of the vertical axis gets reflected
to the left and vice versa. Alternatively, if we make a folding across the vertical axis,
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u(t)
(a) (b) (c)
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0 t

u(t t0)

t

1

0

u(t t0)
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1

0 t0 t0

(d) (e)

t

1

0 tt

u( t t0)

t

1

0

u( t)

t0

(f)

t

u( t t0)

t

1

0 t0

Fig. 1.19 Representation of time shifting CT signals

the signal in the right of the vertical axis is printed in the left and vice versa. The
signal so obtained is x(−t).

1.5.7 Inverted CT Signal

Consider theCTsignal x(t) shown inFig. 1.21a.The inverted signal−x(t) is obtained
by inverting its amplitude. By this the signal above the horizontal axis (time axis)
comes below the axis and vice versa. Alternatively, if a mirror is put along the
horizontal axis, the signal above the axis gets reflected below the axis and vice versa.
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(a) (b)

t

x(t)

t03 2

4

t

x( t)

t02 3

4

Fig. 1.20 CT signal reflection or folding

x(t)

t

2

1
2

3

x(t)

t t2

2

1

3

(a) (b)

Fig. 1.21 Inverted CT signal

1.5.8 Multiple Transformation

The transformation, namely, amplitude scaling, time reversal, time shifting, time
scaling, etc. when applied simultaneously, the sequence of operation is important. If
not followed correctly, it would give erroneous results.

Consider the following signal:

y(t) = Ax

(−t − t0
a

)
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The sequence of transformation is as follows:

1. y(t) is written in the following form:

y(t) = Ax

(

− t

a
− t0

a

)

2. Plot x(t).
3. Plot Ax(t) using amplitude scaling.
4. Plot Ax(−t) using time reversal.
5. Plot Ax(−t − t0

a ) by shifting Ax(−t) to the left by t0
a (time shifting).

6. Plot Ax(− t
a − t0

a ) by time expansion.

The following examples illustrate the above sequence of operation.

Example 1.1 Consider the signal y(t) = 5x(−3t + 1) where x(t) is shown in
Fig. 1.2a. Plot y(t) and −y(t).

Solution

1. The given signal x(t) is represented in Fig. 1.22a.
2. The signal x(t) is amplitude scaled and plotted in Fig. 1.22b.
3. 5x(−t) is obtained by folding 5x(t) in Fig. 1.22b and is plotted in Fig. 1.22c.
4. 5x(−t) is time shifted by one unit to the right and 5x(−t + 1) is obtained and

shown in Fig. 1.22d.
5. 5x(−t + 1) is time compressed by a factor 3 and 5x(−3t + 1) is obtained. This

is shown in Fig. 1.22e.
6. 5x(−3t + 1) amplitude inverted to get−5x(−3t + 1). This is shown in Fig. 1.22f.

Example 1.2 For a signal x(t) shown in Fig. 1.23a, sketch

(a) x(3t + 2)

(b) x

(−t

2
− 1

)

(Anna University, June 2007)

Solution To plot x(3t + 2)

1. x(t) is represented in Fig. 1.23a. x(t) is moved to the left by t = 2 and is shown
in Fig. 1.23b.

2. By time compression by a factor 3, from Fig. 1.23b, x(3t + 2) is obtained and is
shown in Fig. 1.23c.

Solution To plot x(−( t
2 ) − 1)

1. By folding x(t) represented in Fig. 1.23a, x(−t) is obtained and is shown in
Fig. 1.23d.
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x(t)

tt 2

2

10

(a)

(c)

(b)

(d)

5x(t)

tt 2

10

Amplitude scaling
10

5x( t)

tt 1

10

Time reversal
0 2

5x( t 1)

t

10

Time shifting
0 3

(e) (f)
y(t) = 5x( 3t 1)

y(t) = 5x( 3t 1)t

10

10

Time scaling
(compression)

Amplitude inverted
10

0
1

t

Fig. 1.22 Basic operations on CT signal

2. x(−t − 1) is obtained by shifting x(−t) by t = 1 to the left. x(−t − 1) is sketched
as shown in Fig. 1.23e.

3. By time expansion, the time of the signal x(−t − 1) is multiplied by the factor 2,
and x(− t

2 − 1) is obtained. This is shown in Fig. 1.23f.



22 1 Representation of Signals and Systems

x(t)

tt 1 1 0

1
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1
2

1
2

(a)

(b)
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x(t 2)

tt 03 2.5 2 1.5 1

2

1

x(3t 2)

tt 1 0

1

2

5
6

2
3

3
6

1
3

Fig. 1.23 a Plot of x(t). bTime shifted x(t). c Time compressed x(t). d Folded x(t). e Time shifted
x(−t). f Time expansion of x(−t − 1) to get x(− t

2 − 1)
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x( t)

tt 1 0

1

2

11
2

1
2

x( t 1)

tt 02 1 1

2

1

1
2

1
2

x( 1)

tt 04 3

2

1

12

t
2

(a)

(b)

(c)

Fig. 1.23 (continued)

Example 1.3 The rectangular signal x(t) is shown in Fig. 1.24a. Sketch the follow-
ing signals:

(a) x(t − 3)

(b) 2x(t)

(c) −3x(t)

(d) x(t − 2) + 3x(t)
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x(t) = rect(t)

tt 1 1

1

(a) (b)

0

x(t 3) = rect[t 3]

tt 0 2 4

2x(t) = 2rect[t]

tt 1 1

2

0 3x(t) = 3rect[t]

tt 1

3

10
(c) (d)

x(t 2) 

tt

1

1 30

3x(t) 

tt 1 10

3

(e) (f)

x(t 2) 3x[t]

tt 1

1

0 2 3

3

1

(g)

Fig. 1.24 a x(t) = rect(t) signal and bRepresentation of x(t − 3) = rect[t − 3]. c Representation
of 2x(t) = 2 rect[t] and d Representation of−3x(t) = −3rect[t]. e Representation of x(t − 2) and
f Representation of 3x(t). g Representation of x(t − 2) + 3x(t)
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Solution

(a) To represent the signal x(t − 3)
x(t − 3) is obtained by time shifting x(t) by 3 unit of time towards right. This
is shown in Fig. 1.24b.

(b) To represent the signal 2x(t) = 2 rect[t]
This is amplitude scaled signal. The amplitude of x(t) = rect[t] is multiplied by
the factor 2 and is shown in Fig. 1.24c.

(c) To represent the signal −3x(t) = −3rect[t]
The signal x(t) is amplitude inverted and multiplied by a factor 3. This is shown
in Fig. 1.24d.

(d) To represent the signal x(t − 2) + 3x(t)
The time delayed x(t − 2) is obtained by shifting x(t) to the right by a factor
2. This is represented in Fig. 1.24e. The signal x(t) is amplitude multiplied by a
factor 3 and 3x(t) is obtained. This is shown in Fig. 1.24f. By adding the signals
shown in Fig. 1.24e and f, x(t − 2) + 3x(t) is obtained and is represented in
Fig. 1.24g.

Example 1.4 Consider the triangular wave form x(t) shown in Fig. 1.25a. Sketch
the following wave forms:

(a) x(2t + 3)

(b) x

(
t + 3

2

)

(c) x

(
t

2
− 3

)

(d) x(−2t + 3)

(e) x(−2t − 3)

Solution

(a) To sketch x(2t + 3)
Figure1.25a shows x(t) = tri(t). By time shifting by t = 3 towards left, x(t + 3)
is obtained and this is sketched in Fig. 1.25b. x(t + 3) is time compressed by a
factor of 2 to get x(2t + 3). This is sketched in Fig. 1.25c.

(b) To sketch x
( t+3

2

)

The signal x
(

t+3
2

)
is written as x

(
t
2 + 1.5

)
. The signal x(t) is time shifted to

the left by 1.5 unit to get x(t + 1.5). This is sketched in Fig. 1.25d. x(t + 1.5)
is time expanded by a factor 2 to get x

(
t
2 + 1.5

)
which is nothing but x

(
t+3
2

)
.

This is sketched in Fig. 1.25e.
(c) To sketch x

( t
2 − 3

)

x(t − 3) is obtained from x(t) by time shifting the signal x(t) to the right by 3
unit and is shown in Fig. 1.25f. By time expansion of x(t − 3) by a factor 2,
x
(

t
2 − 3

)
is obtained and sketched as shown in Fig. 1.25g.
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x(t) = tri(t)

tt 1 0 1

1

(a)

x(t 3)

t 234 0

(b) (c)

1

x(2t 3)

t 1.5 12 0

1

x(t 3)

t 15 3 0

(e)

1
2

(d)
x(t 1.5)

t 1.5 .52.5 0

1

x(t 3)

t0

x(  3)

t0

11

2 3 4 4 6 8

(f) (g)
2
t

Fig. 1.25 a x(t) = tri(t). b x(t + 3); c x(2t + 3). d x(t + 1.5); e x
( t+3

2

)
. f x(t − 3); g x

( t
2 − 3

)
.

h x(−t); (i) x(−t + 3); j x(−2t + 3). k x(−t − 3); l x(−2t − 3)
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x( t)

t 1 t0

1

1

x( t 3)

t0

1

2 3 4

(i)(h)

x( 2t 3)

t0

1

1 5.1 2

(j)

(l)
x( 2t 3)

t 1.5 12 0

1

x( t 3)

t 234 0

(k)

1

Fig. 1.25 (continued)

(d) To sketch the signal x(−2t + 3)
Signal x(−t) is obtained by folding x(t) and it is shown in Fig. 1.25h. x(−t) is
time shifted to the right by 3 unit to get x(−t + 3). This is shown in Fig. 1.25i.
The signal x(−t + 3) is time compressed by a factor 2 to get x(−2t + 3). This
is sketched in Fig. 1.25j.

(e) To sketch the signal x(−2t − 3)
x(−t) is shown in Fig. 1.25h. From Fig. 1.25h, x(−t) is time shifted towards
left by 3 units to get x(−t − 3). This is shown in Fig. 1.25k. x(t − 3) is time
compressed by a factor 2 to get x(−2t − 3). This is sketched in Fig. 1.25l.

Example 1.5 A continuous-time signal x(t) is shown in Fig. 1.26a. Sketch and label
carefully each of the following signals:
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(a) x(t − 1)

(b) x(2 − t)

(c) x(t)

[

δ

(

t + 3

2

)

− δ

(

t − 3

2

)]

(d) x(2t + 1)

(Anna University, April 2008)

Solution

(a) To sketch x(t − 1)
x(t − 1) is the time delayed signal of x(t) by one unit. x(t) is shifted to the right
by t = 1 and it is sketched as shown in Fig. 1.26b.

(b) To sketch x(2 − t)
The folded signal of x(t) is x(−t) and is shown in Fig. 1.26c. x(−t) is right
shifted by 2 unit to get x(2 − t) and is shown in Fig. 1.26d.

(c) To sketch x(t)[δ(t + 3
2 ) − δ(t − 3

2 )]
δ(t + 3

2 ) and δ(t − 3
2 ) are shown in Fig. 1.26e, which occur as unit impulses at

t = − 3
2 and t = 3

2 respectively. At t = − 3
2 , x(t) = − 1

2 and δ(t + 3
2 ) = 1. Using

the property of impulse x(t)δ(t − t0) = x(t0)δ(t − t0), we get x(t)δ(t + 3
2 ) =

− 1
2 . Similarly at t = 3

2 , x(t) = 1
2 and −δ(t − 3

2 ) = −1. Hence, x(t)δ(t − 3
2 ) =

− 1
2 . This is sketched as shown in Fig. 1.26f.

(d) To sketch x(2t + 1)
From Fig. 1.26a, x(t + 1) is derived by shifting x(t) to the left by t = 1. This is
shown in Fig. 1.26g. By time compression of x(t + 1) by a factor 2, x(2t + 1)
is obtained and sketched as shown in Fig. 1.26h.

Example 1.6 Represent the signal x(t) = 5u(4 − t).

Solution

1. The unit step signal when its amplitude is multiplied by a factor 5, it becomes
5u(t). When this is time reversed, it becomes 5u(−t) and is shown in Fig. 1.27a.

2. 5u(−t) is time shifted to the right by t = 4 and is sketched as 5u(4 − t) in
Fig. 1.27b.

Example 1.7 Sketch the signal x(t) = [u(t) − u(t − a)] where a > 0.

Solution

1. The unit step signal u(t) is shown in Fig. 1.28a.
2. The unit step signal with a time delay a and amplitude inverted is shown in

Fig. 1.28b.
3. If the above two step signals are added, a pulse signal is obtained and is sketched

as shown in Fig. 1.28c which gives u(t) − u(t − a). The above signal is defined
as

x(t) = 1 0 ≤ t ≤ a
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x(t) 

tt 1

1

2 0 1

1

2

2

x(t 1) 

tt
1

1

0 1

1

2 3

2

x( t) 

tt 0

(c)

(a)

(b)

(d)
x(2 t) 

t0 1 2

1

2

3 41 2

2

1

2 1

1 1

Fig. 1.26 a x(t) plot. b x(t − 1) plot. c x(−t) and d x(2 − t). e δ(t + 3
2 ), −δ(t − 3

2 ) and f
x(t)[δ(t + 3

2 ) − δ(t − 3
2 )]. g x(t + 1) and h x(2t + 1)
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Fig. 1.26 (continued)
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Fig. 1.27 Time shifted step signal
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Fig. 1.28 Pulse signal from two step signals
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Fig. 1.29 Product of triangular and time delayed step signals
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Fig. 1.30 Product of rectangular and time advanced impulse

Example 1.8 Consider the signal x(t) shown in Fig. 1.29a. Sketch the signal
x(t)u(1 − t).

Solution

1. The signal x(t) is shown in Fig. 1.29a. The signal u(1 − t) is shown in Fig. 1.29b.
2. The signal x(t) is multiplied by the factor 1 for the intervals −2 ≤ t ≤ 0 and

0 ≤ t ≤ 1. During these time intervals, the slopes of the straight lines of the
triangles are +1 and −1 respectively. Hence, x(t) is retained as it is. At t = 1,
x(t) = 1 and u(1 − t) = 1. Hence, x(t)u(1 − t) = 1.

3. For t > 1, u(1 − t) = 0 and hence x(t)u(1 − t) = 0. This is sketched in
Fig. 1.29c.

Example 1.9 Consider the signal rect(t). Sketch the signal rect(t) δ(t + 1
2 ).

Solution

1. The rectangular pulse rect(t) is shown in Fig. 1.30a.
2. The time advanced impulse δ(t + 1

2 ) is defined as follows:

δ

(

t + 1

2

)

= 1 if t = −1

2
= 0 otherwise

This is sketched in Fig. 1.30b.
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3. At t = − 1
2 , the magnitude of rect(t) = 1. Hence, using the property x(t) δ(t +

t0) = x(t0), we sketch x(t)δ(t + t0) as an impulse at t = − 1
2 which is shown in

Fig. 1.30c.

Example 1.10
x(t) = 10e−3t+4

Determine x(t + 2), x(−t + 2), and x( t
4 − 5).

Solution
x(t) = 10e−3t+4

1. For t = t + 2,
x(t + 2) = 10e−3(t+2)+4

x(t + 2) = 10e−3t−2

2. For t = −t + 2,
x(−t + 2) = 10e−3(−t+2)+4

x(−t + 2) = 10e3t−2

3. For t = ( t
4 − 5),

x

(
t

4
− 5

)

= 10e−3( t
4 −5)+4

x

(
t

4
− 5

)

= 10e− 3
4 t+19

Example 1.11 Decompose the signal x(t) shown in Fig. 1.31a in terms of basic
signals such as delta, step, and ramp.

(Anna University, December 2007)

Solution

1. The given signal x(t) is shown in Fig. 1.31a.
2. The signals u(t) + u(t − 1) − 3u(t − 2) are shown in Fig. 1.31b and their sum is

shown in Fig. 1.31c.
3. The signals r(t − 3) and r(t − 4) are shown in Fig. 1.31d.
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Fig. 1.31 Composite signal expressed in terms of basic signals

4. Signals in Fig. 1.31c and d are summed up and they are shown in Fig. 1.31e which
is nothing but x(t). Hence

x(t) = u(t) − u(t − 1) − 3u(t − 2) + r(t − 3) − r(t − 4) + u(t − 3)

or

x(t) = u(t) + u(t − 1) − 3u(t − 2) + (t − 4)[u(t − 3) − u(t − 4)] + u(t − 3)

Example 1.12 Sketch the signals

(a) x(t) = −4sgn 3t (b) x(t) = 5sinc 10t
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Fig. 1.32 Representation of signum and sinc functions

Solution

(a) x(t) = −4sgn3t
The signal sgn t is shown in Fig. 1.32a. The signum function is inverted and
multiplied by a factor 4. The time compression by a factor 3 does not apply in
this case as the signal remains constant for −∞ < t < ∞. The signal is shown
in Fig. 1.32b.

(b) x(t) = 5sinc10t
The signal sinc t is sketched in Fig. 1.32c. The sinc function amplitude is multi-
plied by the factor 5 and the time is compressed by the factor 10. x(t) = 5 sin 10t
is represented in Fig. 1.32d.

1.6 Classification of Signals

Signals which are classified in the broad category of continuous- and discrete-time
signals are further classified as follows:

1. Deterministic and non-deterministic (random) signals.
2. Periodic and non-periodic (aperiodic) signals.
3. Odd and even signals.
4. Power and energy signals.
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1.6.1 Deterministic and Non-deterministic Continuous
Signals

Deterministic signals are signals which are characterizedmathematically. The ampli-
tude of such signals at any time interval t can be determined at all time t . Consider
the signals described by the following equations:

x(t) = A

x(t) = A sinωt

The above signals represent a step signal and a sinusoidal signal respectively and
they are shown in Fig. 1.33a and b. At any instant of time t the amplitude of the step
signal which is deterministic can be easily determined. On the other hand consider
the sinusoidal signal polluted with noise shown in Fig. 1.33b. The magnitude of such
a signal cannot be easily determined since the noise variation is random.

1.6.2 Periodic and Non-periodic Continuous Signals

Consider the continuous-time signal described by the following equation:

x(t + nT0) = x(t) for all t (1.20)

where n is any integer value. A continuous-time signal x(t) is said to be periodic
with period T0 if it repeats itself in a minimum positive interval. The minimum
positive interval over which a function repeats is called fundamental period T0.
The fundamental frequency f is expressed as

f0 = 1

T0
(1.21)

x(t) x(t)

t

t

0

)b()a(

A

Fig. 1.33 Continuous. a Deterministic signal; b Random signal
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x(t)

t

(a) (b)

A

A

T0T0

Fig. 1.34 Examples of periodic signals. a Rectangular wave; b Sine wave

x(t) x(t)

0

A

Ae at

t tt

(a) (b)

T0

Fig. 1.35 Non-periodic signals. a Rectangular; b Exponential decay

where f0 is expressed in cycles per sec. The fundamental radian frequency is
expressed as

ω0 = 2π f0

= 2π

T0
(1.22)

Hereω is expressed in rad./s. The periodic rectangular wave and sine wave are shown
in Fig. 1.34a and b respectively.

Any continuous-time signal which is not periodic is said to be non-periodic or ape-
riodic signal. Figure1.35a represents a non-periodic rectangular wave and Fig. 1.35b
represents an exponential decay. The non-periodic signal does not repeat itself with
respect to time.
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1.6.3 Fundamental Period of Two Periodic Signals

Consider the periodic signal of two periodic functionswith two different fundamental
periods as given below:

x(t) = A1 sin

(

2π
t

T1

)

+ A2 sin

(

2π
t

T2

)

(1.23)

where T1 and T2 are the fundamental periods of two sine waves. The fundamental
period of the composite signal x(t) is given by the shortest time by which these
signals have an integer number. If each of these two signals repeats exactly an integer
number of times in some minimum time interval, then they will repeat exactly an
integer number of times again in the next time interval. This is calculated as the least
common multiple [LCM] of the two fundamental periods. Thus, the fundamental
period of a periodic signal which is composed of more than one periodic signal
is obtained by taking least common multiple of the fundamental periods of all the
signals. The fundamental frequency of the sum of the signals is the greatest common
divisor of the two frequencies. It is to be remembered that if any of the composite
signal is non-periodic, then the overall function is also non-periodic.

Instead of sum of two functions, if a signal is a product of two functions, the
method of finding the fundamental period remains the same. Consider the following
composite signal:

x(t) = A sin

(

2π
t

T1

)

sin

(

2π
t

T2

)

(1.24)

The fundamental periods of the two sine functions are T1 and T2. The fundamental
period of x(t) is calculated as the least common multiple of T1 and T2. The sum of
product of two or more periodic signals is periodic iff (if and only if) the ratio of their
fundamental periods is rational. The following steps are followed to determine this:

1. Determine the fundamental period of the individual signal in the sum or product.
2. Find the ratio of the fundamental period of the first signal with the fundamental

period of every other signal.
3. If these ratios are rational, then the sum or the product of the composite signal is

periodic.
4. The fundamental period of the composite signal is determined by taking the least

common multiple of the fundamental period. Alternatively, the greatest common
divisor of the fundamental frequency of each signal gives the fundamental fre-
quency of the composite signal.

For example if T1, T2, and T3 are the fundamental periods of three signals which are
the sums of the composite signal then the ratio T1

T2
and T1

T3
should be an integermultiple

or rational. T1
T2

= 5
3 is an integer or rational number. On the other hand T1

T2
= 5

3.17 is
not an integer number and it is not rational.

Sinusoidal and complex exponentials are examples of continuous-time periodic
signals. Consider the following sinusoidal signal:
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x(t) = A sin(ω0t + θ) (1.25)

x(t + T0) = A sin(ω0(t + T0) + θ)

= A sin(ω0t + ω0T0 + θ) (1.26)

A sine function repeats itself when its total argument is increased or decreased by
any integer multiple of 2π radians. Thus, in Eq. (1.32) if we put ω0T0 = 2π ,

x(t + T0) = A sin(ω0t + θ) = x(t)

In other words the fundamental period of a sine function is

T0 = 2π

ω0
(1.27)

Now consider the complex exponential

x(t) = e jω0t

x(t + T0) = e jω0(t+T0) (1.28)

= e jω0t e jω0T0 (1.29)

If we put e jω0T0 = 1, Eq. (1.35) becomes

x(t + T0) = e jω0t = x(t)

Thus, the condition for the complex exponential to be periodic is that

e jω0T0 = 1

or ω0T0 = 2π [e j2π = cos 2π + j sin 2π = 1]

T0 = 2π

ω0
(1.30)

Example 1.13 Test the periodicity of the following signals:

(a) x(t) = 3 cos
(
5t + π

6

)

(b) x(t) = e j10t

(c) x(t) = tan(5t + θ)

(d) x(t) = 1

(Anna University, May 2006)
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Solution

(a) x(t) = 3 cos
(
5t + π

6

)

ω0 = 5 rad./s.

Using Eq. (1.33), we get

T0 = 2π

ω0
= 2π

5
s.

The given signal is periodic with the fundamental period T0 = 2π
5 s.

(b) x(t) = e j10t

ω0 = 10 rad./s.

Using Eq. (1.36), we get

T0 = 2π

ω0

= 2π

10
= 0.2π s.

The given signal is periodic with the fundamental period

T0 = 0.2π s.

(c) x(t) = tan(5t + θ)

x(t + T0) = tan(5(t + T0) + θ)

= tan(5t + 5T0 + θ)

The tangent function repeats itself for every π rad. of its total argument. Thus,
if 5T0 = π ,

x(t + T0) = tan(5t + θ)

= x(t)

Hence

T0 = π

5
s.

(d) x(t) is a d.c. signal and it does not repeat itself. Hence, it is not periodic.
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Example 1.14 If x1(t) and x2(t) are periodic signals of period T1 and T2, show that
the sum x(t) = x1(t) + x2(t) is a periodic signal if T1/T2 = n/m which is a rational
number.

Solution For the signals x1(t) and x2(t) to be periodic, the following equations hold
good:

x1(t) = x1(t + mT1)

x2(t) = x2(t + nT2)

Now,

x(t) = x1(t) + x2(t)

x(t + T ) = x1(t + T ) + x2(t + T )

= x1(t + mT1) + x2(t + nT2)

From the above equations, we get

T = mT1 = nT2

T1

T2
= n

m
= a rational number.

Example 1.15 If x1(t) and x2(t) are the periodic signals with fundamental periods
T1 and T2 respectively, show that the product x(t) = x1(t)x2(t) will be periodic if

T1
T2

is a rational number.

Solution For the periodic signals x1(t) and x2(t), the following equations are
written:

x1(t) = x1(t + T1) = x1(t + mT1)

x2(t) = x2(t + T2) = x2(t + nT2)

x(t) = x1(t + mT1)x2(t + nT2)

Also
x(t + T ) = x1(t + T )x2(t + T )

From the above two equations, we get

T = mT1 = nT2

T1

T2
= n

m
= a rational number

Example 1.16 Test whether the following signals are periodic. If periodic determine
the fundamental period and frequency.
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(a) x(t) = e j (π t−2)

(b) x(t) = cos2 t

(c) x(t) = Ev cos 4π t

(d) x(t) = e( jπ−2)t

Solution

(a) x(t) = e j (π t−2)

x(t) = e j (π t−2)

= e− j2e jπ t

The signal is a complex exponential with e− j2 being a constant. Comparing this
with standard complex exponential, we get

e jπ t = e jω0t

ω0 = π

T0 = 2π

ω0
= 2π

π

T0 = 2 s.

f0 = 1

T0
= 1

2
f0 = 0.5Hz.

The signal is a periodic one with fundamental period T0 = 2 s. and fundamental
frequency f0 = 0.5Hz.

(b) x(t) = cos2 t

cos2 t = 1

2
[1 + cos 2t]

= 1

2
+ 1

2
cos 2t

= x1(t) + x2(t)

where

x1(t) = 1

2
which is a d.c. signal

and

x2(t) = 1

2
cos 2t

For x1(t), the fundamental radian frequency
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ω0 = 2

T0 = 2π

ω0
= 2π

2
= π s.

The fundamental frequency f0 = 1
T0

= 1
π
Hz.

(c) x(t) = Ev cos 4π t
The even function of x(t) is

Evx(t) = 1

2
[x(t) + x(−t)]

= 1

2
[cos 4π t + cos(−4π t)]

= cos 4π t

ω0 = 4π

T0 = 2π

ω0
= 2π

4π
= 0.5 s.

f0 = 1

T0
= 1

0.5
= 2Hz

(d) x(t) = e( jπ−2)t

x(t) = e( jπ−2)t

= e−2t e jπ t

The function e jπ t is periodic with fundamental period 2s. as seen in problem (a).
However the function e−2t is non-periodic and becomes zero at t → ∞. Hence,
the composite signal x(t) is aperiodic.

Example 1.17 Consider the following continuous-time signal:

x(t) = 2 cos 3π t + 7 cos 9t

Find the periodicity of the signal.

(Anna University, May 2005)

Solution
x(t) = x1(t) + x2(t)

where

x1(t) = 2 cos 3π t

x2(t) = 7 cos 9t

If T1 is the fundamental period of x1(t),



1.6 Classification of Signals 43

ω1 = 3π

T1 = 2π

ω1
= 2π

3π
= 2

3
(rational)

x2(t) = 7 cos 9t

ω2 = 9

T2 = 2π

ω2
= 2π

9
(not rational)

T1

T2
= 2

3

9

2π
= 3

π
(not rational)

The signal x(t) is not periodic.

Example 1.18 Find the fundamental period and frequency of the following signals:

(a) x(t) = 5 sin 24π t + 7 sin 36π t

(b) x(t) = 5 cosπ t sin 3π t

Solution

(a) Method 1:

x(t) = 5 sin 24π t + 7 sin 36π t

= x1(t) + x2(t)

where

x1(t) = 5 sin 24π t

x2(t) = 7 sin 36π t

Let T1 and T2 be the fundamental periods of x1(t) and x2(t) respectively.

ω1 = 24π

T1 = 2π

ω1
= 2π

24π
= 1

12
(rational)

ω2 = 36π

T2 = 2π

ω2
= 2π

36π
= 1

18
(rational)

T1

T2
= 1

12
× 18 = 3

2
(rational)

The composite signal is a periodic signal. Since T1 and T2 are rational, x(t) is
periodic. The fundamental period is obtained as follows. From the ratio of T1

T2
,
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2T1 = 3T2 = T0

T0 = 2

12
= 1

6
s.

or

T0 = 3

18
= 1

6
s.

f0 = 1

T0
= 6 Hz.

T0 = 1

6
s.

f0 = 6 Hz.

Method 2:
In thismethod, the least commonmultiple (LCM) for T1 and T2 is obtainedwhich
gives T0. In case, T1 and T2 are fractions, they are made integers by multiplying
by a least number. For T1 and T2 thus obtained, LCM is found. T0 is obtained by
dividing by the same number which was chosen to make T1 and T2 as integers.
In the above example,

(1)

T1 = 1

12
and T2 = 1

18

By multiplying T1 and T2 by 36, T1 = 3 and T2 = 2.
(2) The LCM for the new T1 and T2 is easily obtained as 6.
(3) T0 is obtained by dividing LCM by 36.

T0 = LCM

36
= 6

36
= 1

6
s.

T0 = 1

6
s.

f0 = 6Hz.

(b)

x(t) = 5 cosπ t sin 3π t = x1(t)x2(t)

where

x1(t) = 5 cosπ t

x2(t) = sin π t



1.6 Classification of Signals 45

Let T1 and T2 be the fundamental periods of x1(t) and x2(t) respectively. The
following equations are obtained for T1 and T2.

ω1 = π

T1 = 2π

ω1
= 2π

π
= 2 s. (rational)

ω2 = 3π

T2 = 2π

ω2
= 2π

3π
= 2

3
s. (rational).

T1

T2
= 2 × 3

2
= 3 (rational).

The composite signal x(t) is periodic and the fundamental period T0 is given by

T0 = T1 = 3T2 = 2 s.

T0 = 2 s.

f0 = 0.5Hz

The same results are obtained by finding LCM for T1 and T2. By multiplying T1

and T2 by 3, they are made integers. The new T1 = 6 and T2 = 2. The LCM for
this is 6. Hence, T0 = LC M

3 = 6
3 = 2 s. and f0 = 1

T0
= 0.5Hz.

Example 1.19 Find whether the following signal is periodic. If periodic, determine
the fundamental period and frequency. Also determine the fundamental period of
each function in the composite signal in the time of the fundamental period.

x(t) = sin(2π t − π) − 5 cos
(
3π t + π

4

)
− 8 cos

(
5π t − π

8

)

Solution
x(t) = x1(t) + x2(t) + x3(t)

where

x1(t) = sin(2π t − π)

x2(t) = −5 cos
(
3π t + π

4

)

x3(t) = −8 cos
(
5π t + π

8

)

Let T1, T2, and T3 be the fundamental periods of x1(t), x2(t), and x3(t) respectively.
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ω1 = 2π

T1 = 2π

ω1
= 2π

2π
= 1 s. (rational)

ω2 = 3π

T2 = 2π

ω2
= 2π

3π
= 2

3
s. (rational)

ω3 = 5π

T3 = 2π

ω3
= 2π

5π
= 2

5
s. (rational)

T1

T2
= 1 × 3

2
= 3

2
s. (rational)

T1

T3
= 1 × 5

2
= 5

2
s. (rational)

Hence, the composite signal x(t) is periodic. The fundamental period is obtained by
taking LCM of T1, T2, and T3 as explained below:

(1)

T1 = 1; T2 = 2

3
; T3 = 2

5

Multiply by 15 to make them integers. The new periods are obtained as T1 =
15, T2 = 10, and T3 = 6.

(2) The LCM is obtained as

5 15, 10, 6
3 3, 2, 6
2 1, 2, 2

1, 1, 1

The LCM = 5 × 3 × 2 = 30.
(3)

T0 = LCM

15
= 30

15
= 2 s.

T0 = 2 s.

f0 = 1

T0
= 0.5Hz.

The fundamental period of x1(t) during T0 = 2 s. is

T01 = T0

T1
= 2

1
= 2
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The fundamental period of x2(t) during T0 = 2 s. is

T02 = T0

T2
= 2

2
× 3 = 3

The fundamental period of x3(t) during T0 = 2 s. is

T03 = T0

T3
= 2

2
× 5 = 5

1.6.4 Odd and Even Functions of Continuous-Time Signals

One of the properties of signals is their symmetry when the time is reversed. They
are classified as even and odd signals. A continuous-time signal x(t) is said to be an
even signal if it satisfies the following condition:

x(−t) = x(t) for all t (1.31)

It is identical under folding about the origin. A signal x(t) is said to be an odd signal
if it satisfies the condition,

x(−t) = −x(t) for all t (1.32)

An odd signal must necessarily be zero at t = 0.While even signals are symmetric
about the vertical axis odd signals are anti-symmetric (asymmetric) about the time
origin. Consider the following signal:

x(t) = A cosωt

x(−t) = A cos(−ωt)

= A cosωt = x(t)

The above even signal is shown in Fig. 1.36.
Consider the following signal:

x(t) = A sinωt

x(−t) = A sin(−ωt)

= −A sinωt

= −x(t)

The above odd signal is shown in Fig. 1.37. The odd function is zero at t = 0 as
shown in Fig. 1.37.
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x(t) = Acos (t) 

t

A

A

Fig. 1.36 Representation of an even (symmetric) function

x(t) = Asin (t) 

A

A

0 t

Fig. 1.37 Representing of an odd (anti-symmetric) function

1.6.4.1 Even and Odd Components of a Signal

Acontinuous-time signal x(t) can be expressed in terms of odd and even components.
Let xe(t) and x0(t) represent the even and odd components of x(t). We may write
x(t) as

x(t) = xe(t) + x0(t) (1.33)

Putting t = −t in Eq. (1.39) we get

x(−t) = xe(−t) + x0(−t) (1.34)

For an even function xe(−t) = xe(t) and for an odd function x0(−t) = −x0(t).
Equation (1.34) is written as
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x(−t) = xe(t) − x0(t) (1.35)

Adding Eqs. (1.33) and (1.35) the following equation is obtained:

xe(t) = 1

2
[x(t) + x(−t)] (1.36)

Subtracting Eq. (1.35) from Eq. (1.33), we get

x0(t) = 1

2
[x(t) − x(−t)] (1.37)

Example 1.20 Show that the even function has its odd part zero.

Solution From Eq. (1.42) the even function of x(t) can be written as

xe(t) = 1

2
[x(t) + x(−t)]

For an even function x(−t) = x(t). Hence, the above equation can be written as

xe(t) = 1

2
[x(t) + x(t)] = x(t)

From Eq. (1.43) the odd function of x(t) can be written as

x0(t) = 1

2
[x(t) − x(−t)]

= 1

2
[x(t) − x(t)] = 0

Thus, it is proved that for an even function the odd part is zero.

Example 1.21 Show that the odd function has its even part zero.

Solution Let x(t) be an odd function. For an odd function, x(−t) = −x(t). The
even function of x(t) can be written as

xe(t) = 1

2
[x(t) + x(−t)]

= 1

2
[x(t) − x(t)]

= 0

x0(t) = 1

2
[x(t) − x(−t)]

= 1

2
[x(t) + x(t)] = x(t)

Thus, for an odd function x(t), the even part of x(t) = 0.
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Example 1.22 Show that the product of two even signals is an even signal.

Solution Let x1(t) and x2(t) be the two even signals. Let x(t) be the product of these
two signals.

x(t) = x1(t)x2(t)

For an even function, x(−t) = x(t); and x1(−t) = x1(t) and x2(−t) = x2(t). The
above equation is written as follows. Substituting t = −t we get

x(−t) = x1(−t)x2(−t)

= x1(t)x2(t) = x(t)

Thus, x(t) = x(−t) which is even.

Example 1.23 Show that the product of two odd signals is an even signal.

Solution Let x1(t) and x2(t) be two odd signals. For the odd signals, x1(−t) =
−x1(t) and x2(t) = −x2(t). Let x(t) be the product of x1(t) and x2(t).

x(t) = x1(t)x2(t)

Putting t = −t in the above equation, we get

x(−t) = x1(−t)x2(−t)

= x1(t)x2(t) = x(t)

Thus, it is proved that x(t) = x(−t). The product of two odd signals is an even signal.

Example 1.24 Prove that the product of an odd and an even signal is an odd signal.

Solution Let x1(t) be an odd signal and x2(t) be an even signal. Then x1(−t) =
−x1(t) and x2(−t) = x2(t). Let x(t) be the product of x1(t) and x2(t).

x(t) = x1(t)x2(t)

Putting t = −t in the above equation, we get

x(−t) = x1(−t)x2(−t)

= −x1(t)x2(t) = −x(t)

Thus, x(t) = −x(−t) which is odd. The product of an odd and an even signal is an
odd signal.

Example 1.25 Show that the sum of the two even functions is an even function and
the sum of the two odd functions is an odd function.
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Solution Let x(t) be expressed as the sum of two functions x1(t) and x2(t).

x(t) = x1(t) + x2(t)

Substituting t = −t in the above equation, we get

x(−t) = x1(−t) + x2(−t) (a)

If x1(t) and x2(t) are even functions, the above equation is written as

x(−t) = x1(t) + x2(t)

= x(t)

This shows that x(t) which is the sum of two even functions is an even function. If
x1(t) and x2(t) are odd functions, equation (a) can be written as

x(−t) = x1(−t) + x2(−t)

= −(x1(t) + x2(t))

= −x(t)

Thus, x(t) which is the sum of two odd functions is an odd function.

Example 1.26 Find whether the following signals are odd or even. Find the odd and
even components.

(a) x(t) = t2 − 5t + 10

(b) x(t) = t4 + 4t2 + 6

(c) x(t) = t3 + 3t

(d) x(t) = 10 sin
(
10π t + π

4

)

(e) x(t) = e j10t

Solution

(a) x(t) = t2 − 5t + 10
Put t = −t

x(−t) = t2 + 5t + 10

�= x(t)

�= −x(t)

The function is neither even nor odd.
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xe(t) = 1

2
[x(t) + x(−t)]

= 1

2
[t2 − 5t + 10 + t2 + 5t + 10]

xe(t) = (t2 + 10)

x0(t) = 1

2
[x(t) − x(−t)]

= 1

2
[t2 − 5t + 10 − t2 − 5t − 10]

x0(t) = −5t

(b) x(t) = t4 + 4t2 + 6
Put t = −t

x(−t) = t4 + 4t2 + 6 = x(t)

x(t) = x(−t)

The function is even. The odd part should be zero which can be verified as

x0(t) = 1

2
[x(t) − x(−t)]

= 1

2
[t4 + 4t2 + 6 − t4 − 4t2 − 6]

= 0

xe(t) = x(t) = t4 + 4t2 + 6

(c) x(t) = t3 + 3t
Put t = −t

x(−t) = −(t3 + 3t) = −x(t)

The function is odd. The even component is zero.

x0(t) = t3 + 3t

xe(t) = 0
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(d) x(t) = 10 sin
(
10π t + π

4

)

Put t = −t

x(−t) = 10 sin
(
−10π t + π

4

)

= −10 sin
(
10π t − π

4

)

= −10
[
sin 10π t cos

π

4
− cos 10π t sin

π

4

]

= −10√
2

[sin 10π t − cos 10π t]

�= x(t)

�= −x(t)

The above signal is neither even nor odd.

x(t) = 10
[
sin 10π t cos

π

4
+ cos 10π t sin

π

4

]

= 10√
2
[sin 10π t + cos 10π t]

xe(t) = 1

2
[x(t) + x(−t)]

= 10

2
√
2
[sin 10π t + cos 10π t − sin 10π t + cos 10π t]

xe(t) = 10√
2
cos 10π t

x0(t) = 1

2
[x(t) − x(−t)]

= 10

2
√
2
[sin 10π t + cos 10π t + sin 10π t − cos 10π t]

x0(t) = 10√
2
sin 10π t
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(e) x(t) = e j10t

x(−t) = e− j10t

x(t) �= x(−t)

x(t) �= −x(−t)

The signal is neither odd nor even.

xe(t) = 1

2
[x(t) − x(−t)] = 1

2
[e j10t + e− j10t ]

xe(t) = cos 10t

x0(t) = 1

2
[x(t) − x(−t)] = 1

2
[e j10t − e− j10t ]

x0(t) = j sin 10t

Note: In all the above cases x0(t) passes through the origin at t = 0.

Example 1.27 Sketch the even and odd components of a step signal shown in
Fig. 1.38a.

Solution The step function is shown in Fig. 1.38a. x(−t) is shown in Fig. 1.38b.
In Fig. 1.38c, the sum of x(t) and x(−t) is represented. The even function xe(t) =
1
2 [x(t) + x(−t)] is shown in Fig. 1.38d. In Fig. 1.38e, −x(−t) is represented. The
odd function x0(t) = 1

2 [x(t) − x(−t)] is represented in Fig. 1.38f.

Example 1.28 Sketch the even and odd components of the pulse signal shown in
Fig. 1.39a.

Solution x(t) is shown in Fig. 1.39a. In Fig. 1.39b, x(−t) is represented. The sum of
x(t) + x(−t) is shown in Fig. 1.39c. The even component of x(t) which is xe(t) =
1
2 [x(t) + x(−t)] is shown in Fig. 1.39d. In Fig. 1.39e, −x(−t) is shown. The odd
component of x(t) which is x0(t) = 1

2 [x(t) − x(−t)] is represented in Fig. 1.39f.

Example 1.29 Sketch the even and odd components of the triangular wave shown
in Fig. 1.40a.

Solution Figure1.40a represents the x(t)which is a triangular wave. x(−t) is repre-
sented in Fig. 1.40b. x(t) + x(−t) is represented in Fig. 1.40c. From this figure, the
even component is obtained by dividing the amplitude by 2 and xe(t) is shown
in Fig. 1.40d. In Fig. 1.40e, −x(−t) is represented which is obtained by invert-
ing Fig. 1.40b. Adding Fig. 1.40a and e, [x(t) − x(−t)] is obtained and repre-
sented in Fig. 1.40f. By dividing the amplitude of Fig. 1.40f by 2, x0(t) which is
1
2 [x(t) − x(−t)] is obtained and sketched as shown in Fig. 1.40g.
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Fig. 1.38 Even and odd components of a step function

Example 1.30 Sketch the even and odd components of exponential signal x(t) =
10e−2t .

Solution x(t) = 10e−2t is sketched and shown in Fig. 1.41a. Figure1.41a is time
reversed to get x(−t) and is sketched in Fig. 1.41b. The sum of x(t) and x(−t)
is sketched as shown in Fig. 1.41c. The amplitude of Fig. 1.41c is reduced by a
factor 2. This gives xe(t) = 1

2 [x(t) + x(−t)] and is shown in Fig. 1.41d. Figure1.41a
is inverted and time reversed to get −x(−t) which is sketched in Fig. 1.41e. The
sum of Fig. 1.41a and e gives [x(t) − x(−t)] and this is sketched and shown in
Fig. 1.41f. The amplitude of Fig. 1.41f is reduced by a factor 2 which gives odd
signal x0(t) = 1

2 [x(t) − x(−t)]. This is shown in Fig. 1.41g.

Example 1.31 Sketch the even and odd parts of the signal shown in Fig. 1.42a.

Solution x(t) is graphically represented in Fig. 1.42a. By time folding of Fig. 1.42a,
x(−t) is obtained and is shown in Fig. 1.42b. These figures are graphically added
to get x(t) + x(−t) and represented in Fig. 1.42c. To get the even signal of x(t),
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Fig. 1.39 Even and odd components of a pulse signal

the amplitude of the signal is divided by a factor 2 and is represented in Fig. 1.42d.
The signal x(t) is time folded and inverted to get −x(−t). This is represented in
Fig. 1.42e. Figure1.42a and e is graphically added to get x(t) − x(−t) which is
represented in Fig. 1.42f. The amplitude of the signal in Fig. 1.42f is divided by a
factor 2 which gives x0(t) of x(t). This is represented in Fig. 1.42g.

Note the even component xe(t) in Fig. 1.42d. It is symmetrical with respect to the
vertical axis and when time folded identical mirror images are obtained. Similarly,
the odd component x0(t) represented in Fig. 1.42g passes through the origin at t = 0
and it is also anti-symmetry.

Example 1.32 Find the even and odd component of the following signal:

x(t) = cos t + sin t + cos t sin t

(Anna University, May 2007)
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Fig. 1.40 Even and odd components of a triangular wave

Solution
x(t) = cos t + sin t + cos t sin t

Put t = −t

x(−t) = cos(−t) + sin(−t) + cos(−t) sin(−t) = cos t − sin t − cos t sin t

xe(t) = 1

2
[x(t) + x(−t)]

= 1

2
[cos t + sin t + cos t sin t + cos t − sin t − cos t sin t]

xe(t) = cos t
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Fig. 1.41 Representation of even and odd function of exponential decay
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Fig. 1.42 Representation of even and odd signals of Example1.40
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The odd component of x(t) is obtained as follows:

x0(t) = 1

2
[x(t) − x(−t)]

= 1

2
[cos t + sin t + cos t sin t − cos t + sin t + cos t sin t]

x0(t) = sin t[1 + cos t]

1.6.5 Energy and Power of Continuous-Time Signals

Consider the electric circuit shown in Fig. 1.43 in which a resistor R is connected
across the voltage source v(t). The current flowing through the resistor is i(t). The
instantaneous power consumed by the resistor is given by

P = i2(t)R

= v2(t)

R
(1.38)

If we assume R = 1 ohm, the power is expressed as normalized power which is given
by

P = v2(t) (1.39)

The average power consumption by the circuit over the time t1 ≤ t ≤ t2 is given by
the following equation:

P = 1

(t2 − t1)

∫

t1

t2

v2(t) dt (1.40)

The average energy consumption which is the product of power and time given as

E =
∫

t1

t2

P dt =
∫

t1

t2

v2(t) dt (1.41)

Fig. 1.43 Electric circuit
with a resistor

v(t)

i(t)

R
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Similar to voltages and currents, many other physical variables such as force, temper-
ature, pressure, and charge are available for other types of systems. As a convention,
similar terminologies for power and energy of continuous signal x(t) and discrete
signal x[n] are defined and used. However, the “power” and “energy” defined here are
not related to physical power and energy. Thus, if x(t) represents a continuous-time
signal, then the average power over an infinite time interval T is defined as

P = Lt
T →∞

1

2T

∫

−T

T

|x(t)|2 dt (1.42)

The expression for the total energy is expressed as

E = Lt
T →∞

∫

−T

T

|x(t)|2 dt (1.43)

If the energy signal does not converge, such signals have infinite energy. On the other
hand if E converges then the signal has finite energy. From Eqs. (1.42) and (1.43),
the following inferences are drawn and given in Table1.3.

Example 1.33 Find the power, RMS value, and energy of the following signals:

(a) x(t) = A u(t)

(b) x(t) = e−3t u(t)

Solution

(a) x(t) = A u(t)

P = Lt
T →∞

1

2T

∫

−T

T

A2dt

For x(t) = A u(t), the signal starts at t = 0.

Table 1.3 Comparison of power and energy signals

Energy signal Power signal

1. The total energy is obtained using 1. The average power is obtained using

E = Lt
T →∞

∫

−T

T |x(t)|2 dt P = Lt
T →∞

1
2T

∫

−T

T |x(t)|2 dt

2. For the energy signal 0 < E < ∞, 2. For the power signal 0 < P < ∞,

the average power P = 0 the energy E should be ∞
3. Non-periodic signals are 3. Periodic signals are power signals. However

energy signals all power signals need not be periodic

4. Energy signals are not time limited 4. Power signals exist over infinite time
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P = Lt
T →∞

1

2T
A2
∫

0

T

dt = A2

2T

[
t
]T
0

= Lt
T →∞

A2 T

2T
= A2

2

P = A2

2
W

RMS value of power is

PRMS = √
P = A√

2

PRMS = A√
2

Since power is finite, energy E is infinite.
(b) x(t) = e−3t u(t)

For this signal t varies from 0 to ∞.

E = Lt
T →∞

∫ T

0

(e−3t )2dt

= Lt
T →∞

∫ T

0

e−6t dt

= Lt
T →∞

(−1)

6

[
e−6t

]T
0

= 1

6
Lt

T →∞
[
1 − e−6T

]

E = 1

6
J

Since E is finite, power P = 0.

Example 1.34 Find the power and energy of the following signals:

(a) x(t) = A cos(ω0t + φ)

(b) x(t) = A sin(ω0t + φ)
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Solution

(a) x(t) = A cos(ω0 t + φ)

Since the signal is periodic, it is necessarily a power signal and its energy E = ∞.
The power of the signal is determined as follows:

P = Lt
T →∞

1

2T

∫

−T

T

A2 cos2(ω0t + φ)dt

But,

cos2(ω0t + φ) = 1 + cos 2(ω0t + φ)

2

P = Lt
T →∞

A2

4T

∫ T

−T

[1 + cos 2(ω0t + φ)]dt

Now consider the integral

∫ T

−T

cos 2(ω0t + φ)dt

= 1

2ω0
[sin 2(ω0t + φ)]T

−T

= 1

2ω0
[sin 2(ω0T + φ) − sin 2(−ω0T + φ)]

= 1

2ω0
[sin 2φ − sin 2φ] [∵ ω0T = 2π ]

= 0

P = A2

4
Lt

T →∞
1

T

[
t
]T
−T

= A2

4
Lt

T →∞
1

T
2T

P = A2

2
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(b) x(t) = A sin(ω0 t + φ)

P = Lt
T →∞

1

2T

∫ T

−T

A2 sin2(ω0t + φ)dt

= Lt
T →∞

A2

2T

∫ T

−T

[1 − cos 2(ω0t + φ)]
2

dt

= Lt
T →∞

A2

4T

⎡

⎣
∫

−T

T

dt −
∫

−T

T

cos 2(ω0t + φ)

⎤

⎦ dt

Since
∫ T

−T
cos 2(ω0t + φ)dt = 0

P = Lt
T →∞

A2

4T

[
t
]T
−T

P = A2

2

Since P is finite, E = ∞.

Example 1.35 Find the power and energy of the following signals:

x(t) = 5 cos(10t + φ) + 10 sin(5t + φ)

Solution

x(t) = 5 cos(10t + φ) + 10 sin(5t + φ) = x1(t) + x2(t)

where

x1(t) = 5 cos(10t + φ)

x2(t) = 10 sin(5t + φ)

Let P1 and P2 be the powers of x1(t) and x2(t) respectively.

P1 = A2

2
= 25

2
= 12.5

P2 = A2

2
= 100

2
= 50



1.6 Classification of Signals 65

The average power

P = P1 + P2

= 12.5 + 50

P = 62.5 W

Since the power is finite energy E = ∞.

Example 1.36 Find the power and energy of the following signal:

x(t) = 5t − 10 < t < 10

Solution Energy of the signal E is

E =
∫ 10

−10
(5t)2dt = 25

[
t3

3

]10

−10

= 25

3
× 2000

E = 50000

3
J

Power of the signal P is

P = 1

20

∫

−10

10

(5t)2dt

= 50000

3 × 20

P = 2500

3
W

Example 1.37 Find the energy and power of the signal:

x(t) = u(t) − u(10 − t)
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(a) (b)x(t)

u(t)

u(10 t)

0

1

10
t

1

t

x(t) = u(t) u(10 t)

0

1

10t

1

t

Fig. 1.44 Representation of x(t) = u(t) − u(10 − t)

Solution The signalsu(t) and−u(10 − t) are represented inFig. 1.44a. InFig. 1.44b,
x(t) = u(t) − u(10 − t) is sketched. From Fig. 1.44b, the following equation for
power is written:

P = Lt
T →∞

1

2T

⎡

⎣
∫

−T

0

(−1)2dt +
∫

10

T

(1)2dt

⎤

⎦

= Lt
T →∞

1

2T

{[
t
]0
−T + [t]T10

}

= 1

2
Lt

T →∞
1

T
[T + T − 10]

= 1

2
Lt

T →∞

[

2 − 10

T

]

= 1

P = 1 W

If the power is finite, the energy E = ∞.

Example 1.38 Determine the power and RMS value of the signal.

x(t) = e jat cosω0t

(Anna University, 2007)
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Solution

P = Lt
T →∞

1

2T

∫

−T

T

|e jat cosω0t |2dt

e jat = cos at + j sin at

|e jat | =
√
cos2 at + sin2 at = 1

P = Lt
T →∞

1

2T

∫

−T

T

cos2 ω0tdt

= Lt
T →∞

1

4T

∫

−T

T

(1 + cos 2ω0t)dt

Since
∫

−T

T cos 2ω0tdt = 0, as provided in Example1.24,

P = Lt
T →∞

1

4T

∫

−T

T

dt = 1

4T
2T

P = 0.5 W

RMS value of power is

PRMS = 1√
2

= 0.707

Example 1.39 Find the power and energy of the following signals:

(a) x(t) = 10e j2π t u(t)

(b) x(t) = e j (2t+π/4)

(Anna University, April 2007)

Solution

(a) x(t) = 10e j2π t u(t)

P = Lt
T →∞

1

2T

∫

0

T

|10e j2π t |2dt [x(t) = 0 for t < 0]



68 1 Representation of Signals and Systems

= 100

2
Lt

T →∞
1

T

∫

0

T

dt |e j2π t | = 1

= 50
1

T
[T ] = 50

P = 50 W

Since power is finite, E = ∞.
(b) x(t) = e j (2t+π/4)

|x(t)| = ∣∣e j (2t+π/4)
∣
∣ = 1

P = Lt
T →∞

1

2T

∫

−T

T

dt = 1

2T
2T = 1

P = 1

since power is finite, E = ∞.

Example 1.40 Find the energy of the following signal:

x(t) = 5 tri

(
t

2

)

Solution The triangular signal x(t) = tri(t) is shown in Fig. 1.45a. By ampli-
tude multiplication and time expansion, x(t) = 5 tri

(
t
2

)
is obtained and shown in

Fig. 1.45b. For Fig. 1.45b the following equation is written:

x(t) = 5

2
t + c − 2 ≤ t ≤ 0

(a) x(t) tri(t)

tt 1 10

1
(b) x(t) 5tri(  )

tt 2 20

5
2
t

Fig. 1.45 Representation of triangular signals of Example1.40
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c is obtained as 5.

x(t) = −5

2
t + c 0 ≤ t ≤ 2

c is obtained as 5.
Let E1 be the energy for the time interval −2 ≤ t ≤ 0 and E2 energy for the time

interval 0 ≤ t ≤ 2.

E1 =
∫

−2

0 (5

2
t + 5

)2

dt

=
[
25

12
t3 + 25t + 25

2
t2
]0

−2

= 50

3

E2 =
∫

0

2 (

−5

2
t + 5

)2

dt

=
∫

0

2 (25

4
t2 + 25t − 25t

)

dt

=
[
25

4

t3

3
+ 25t − 25

2
t2
]2

0

= 50

3

E = E1 + E2 = 50

3
+ 50

3

E = 100

3
J

Since energy is finite, the average power P = 0.

Example 1.41 Find the energy of the signal:

x(t) = tri

(
t − 2

10

)

Solution

x(t) = tri

(
t − 2

10

)

= tri(0.1t − 0.2)
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(a) x(t)  tri(t)

tt 1 10

1
(b) x(t)  tri(t .2)

tt .8 1.2.20

1
(c)

tt .8 1220

1
x(t)  tri(   .2)10

t

Fig. 1.46 Representation of x(t) = tri( t
10 − 0.2)

Figure1.46a shows x(t) = tri(t). The time shifted signal x(t) = tri(t − 0.2) is
shown in Fig. 1.46b. The time shift is 0.2 towards right. By time elongation by factor
10, x(t) = tri( t

10 − 0.2) is obtained and is shown in Fig. 1.46c. For Fig. 1.46c the
following equations are written:

x(t) = 1

10
t + c − 8 ≤ t ≤ 2

For t = 2, x(t) = 1

1 = 2

10
+ c

c = 0.8

x(t) = 0.1t + 0.8

x(t) = − 1

10
t + c 2 ≤ t ≤ 12

For t = 2, x(t) = 1

1 = −2

10
+ c

c = 1.2

x(t) = −0.1t + 1.2

Energy of the signal is given as

E =
∫

−8

2

(0.1t + 0.8)2dt +
∫

2

12

(−0.1t + 1.2)2dt

= E1 + E2

where

E1 =
∫

−8

2

(0.1t + 0.8)2dt
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and

E2 =
∫

2

12

(−0.1t + 1.2)2dt

E1 = 1

100

∫

−8

2

(t + 8)2dt = 1

100

∫

−8

2

(t2 + 16t + 64)dt

= 1

100

[
t3

3
+ 8t2 + 64t

]2

−8

= 10

3

E2 =
∫ 12

2

1

100
(12 − t)2dt

= 1

100

∫ 12

2
(t2 − 24t + 144)dt

= 1

100

[
t3

3
− 12t2 + 144t

]12

2

= 10

3

E = E1 + E2 = 10

3
+ 10

3
= 20

3

E = 20

3
J

Since the energy is finite, the average power is zero.

Example 1.42 Find the energy of the following signal:

x(t) = 2 rect

(
t

2

)

Solution The rectangular or unit gate function is represented in Fig. 1.47a. It is
defined as

x(t) = 1 − 1 ≤ t ≤ 1

= 0 otherwise
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(a) x(t) rect(t)

tt 0

1

11

(b) x(t) 2rect(   )

tt 0

2

22

t
2

Fig. 1.47 Representation of rectangular function

The rectangular signal with amplitude scaling and time elongation is shown in
Fig. 1.47b. From Fig. 1.47b, the equation for energy is written as follows:

E =
∫ 2

−2
(2)2dt = 4

[
t
]2
−2 = 16

E = 16 J

Since the energy is finite, the average power = 0.

Example 1.43 A trapezoidal pulse x(t) is defined by

x(t) =

⎧
⎪⎨

⎪⎩

(5 − t) 4 ≤ t ≤ 5

1 − 4 ≤ t ≤ 4

(t + 5) − 5 ≤ t ≤ −4

(a) Determine total energy of x(t).
(b) Sketch x(2t − 3).
(c) If y(t) = dx(t)

dt , determine the total energy of y(t).

(Anna University, December 2007)

Solution

(a) To determine the total energy of x(t).
The given trapezoid pulse x(t) is represented in Fig. 1.48a. The total energy of
the signal is determined as described below:
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(a) x(t)

t45 4 50

1

(b) x(2t 3)

t1 401
2

7
2

(c) y(t) = 

t45

1

4 5

1

dx(t)
dt

Fig. 1.48 Example1.53

E =
∫ −4

−5
(t + 5)2dt +

∫ 4

−4
(1)2dt +

∫ 5

4
(5 − t)2dt

=
∫ −4

−5
(t2 + 10t + 25)dt +

∫ 4

−4
dt +

∫ 5

4
(t2 − 10t + 25)dt

=
[

t3

3
+ 5t2 + 25t

]−4

−5

+
[

t

]4

−4

+
[

t3

3
− 5t2 + 25t

]5

4

= −64

3
+ 80 − 100 + 125

3
− 125 + 125 + 8 + 125

3
− 125

+125 − 64

3
+ 80 − 100

= 1

3
+ 8 + 1

3

E = 26

3
J
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(b) To sketch x(2t − 3)
x(t) in Fig. 1.48a is right shifted by t0 = 3 and time compressed by a factor 2.
x(2t − 3) is shown in Fig. 1.48b.

(c) To determine the total energy for y(t) = dx
dt .

x(t) = 5 + t −5 ≤ t ≤ −4

y(t) = dx(t)

dt
= 1 −5 ≤ t ≤ −4

x(t) = 1 −4 ≤ t ≤ 4

y(t) = dx(t)

dt
= 0 −4 ≤ t ≤ 4

x(t) = 5 − t 4 ≤ t ≤ 5

y(t) = dx(t)

dt
= −1 4 ≤ t ≤ 5

The sketch of the above equations is shown in Fig. 1.48c. From this figure, the
total energy is calculated as follows:

E =
∫ −4

−5
(1)2dt +

∫ 5

4
(−1)2dt = [t]−4

−5 + [t]54 = 1 + 1

E = 2 J

1.7 System

A system is an interconnection of objects with a definite relationship with the objects
and attributes. Consider a simple R, L , C series electric circuit. The components
(objects) R, L, and C when connected together form the system. The current flow in
the series circuit and the voltages across the elements R, L, and C are the attributes. If
i is the current flowing in the circuit, the voltage across the resistor R is i R. Thus, the
object R and the attribute i have a definite relationship between them. The voltages
across any of these objects R, L, and C can be taken as the output. Thus, the system
when excited by a signal, processes and produces signals as outputs in the same
form or in a modified form. Electrical motors, communication systems, automotive
vehicles, human body, government, stock markets, etc. are examples of systems. The
block diagram representation of a system is shown in Fig. 1.49.
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x(t) or x[n]

Excitation
or Input

y(t) or y[n]

Response
or Output

SYSTEM
with

Functional relationship

Fig. 1.49 Block diagram representation of system

In Fig. 1.49 the system is excited by the output signal x(t) or x[n]. It is being
processed by the functional relationship of the system and the response is obtained as
y(t) or y[n]. The functional relationship includes differential equation or difference
equation or the system transfer function which is H(s) for CT system and H(z) for
DT system.

1.8 Linear Time Invariant Continuous (LTIC) Time System

The block diagram of a continuous-time system is shown in Fig. 1.50a. x(t) is the
input signal which is continuous. The system with the functional relationship H(s)
produces the output y(t) which is also continuous. The system dynamics or the
functional relationship is written in the form of differential equation connecting x(t)
and y(t). If the Laplace transforms of x(t) and y(t) are X (s) and Y (s) respectively,
the system functional relationship is written as

Y (s)

X (s)
= H(s) (1.44)

H(s) is called system function or system transfer function.
Consider the electric network shown in Fig. 1.50b. The following dynamic equa-

tion is written for Fig. 1.50b:

e(t) = Ri(t) + L
di(t)

dt
+ 1

C

∫
i(t)dt (1.45)

e0(t) = 1

C

∫
i(t)dt (1.46)

In the continuous-time system shown in Fig. 1.50b, e(t) is represented by x(t) and
e0(t) is represented by y(t). The system dynamic equations are given in Eqs. (1.45)
and (1.46).
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i(t) R L

Cx(t) = e(t) e0(t) = y(t)

x(t)

(a)

(b)

X(s)

y(t)

Y(s)
H(s)

Fig. 1.50 a Block diagram of CT system. b R-L-C series electric circuit

1.9 Properties (Classification) of Continuous-Time System

The continuous-time system possesses the following properties and it is classified
accordingly.

1. Linear and non-linear systems.
2. Time invariant and time varying systems.
3. Causal and non-causal systems.
4. Static and dynamic systems (systems without and with memory).
5. Stable and unstable systems.
6. Invertible and non-invertible systems.

The above properties of LTIC time system are defined, described and illustrated with
examples below.

1.9.1 Linear and Non-linear Systems

For a linear system if an input x1(t) produces an output y1(t) and another input x2(t)
when applied separately produces an output y2(t), then when both inputs x(t) =
[x1(t) + x2(t)] are applied to the system simultaneously will produce an output
y(t) = y1(t) + y2(t). Thus,

x1(t) = y1(t)

x2(t) = y2(t)
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[x1(t) + x2(t)] = [y1(t) + y2(t)] (1.47)

Equation (1.47) obeys theAdditivity property of superposition theorem. Further, the
linear system should also satisfy the homogeneity or scaling property of superposi-
tion theorem. According to this property, if

a1x1(t) = a1y1(t)

a2x2(t) = a2y2(t)

then

[a1x1(t) + a2x2(t)] = [a1y1(t) + a2y2(t)] (1.48)

Thus, for a continuous system to be linear, the weighted sum of several inputs
produces the weighted sum of outputs. In other words, it should satisfy the
homogeneity and additivity properties of superposition theorem. If the above
conditions are not satisfied the system is said to be non-linear.

STEP-BY-STEP PROCEDURE TO TEST LINEARITY

1. Let

y1(t) = f (x1(t))

y2(t) = f (x2(t))

Find the weighted sum of the output

y3(t) = a1y1(t) + a2y2(t)

y3(t) = a1 f (x1(t)) + a2 f (x2(t))

2. For the linear combination of input [a1x1(t) + a2x2(t)] find the output for the
weighted sum of the input.

y4(t) = f [a1x1(t) + a2x2(t)]

3. If
y3(t) = y4(t)

the system is linear, otherwise the system is non-linear. The following examples
illustrate the method of testing the linearity of continuous-time systems.

Example 1.44 Consider the following input–output equation of a certain system.

y(t) = [2x(t)]2

Determine whether the system is linear or non-linear.



78 1 Representation of Signals and Systems

Solution

y(t) = [2x(t)]2
= 4x2(t)

y1(t) = 4x2
1 (t)

y2(t) = 4x2
2 (t)

y3(t) = a1y1(t) + a2y2(t)

= 4a1x2
1 (t) + 4a2x2

2 (t)

y4(t) = 4[a1x1(t) + a2x2(t)]2
= 4[a2

1x2
1 (t) + a2

2x2
2 (t) + 2a1a2x1(t)x2(t)]

y3(t) �= y4(t)

Hence, the system is non-linear.

Example 1.45 Consider the following systems. Determine whether each of them is
linear.

(a) y(t) = 5x(t) sin 10t

(b) y(t) = 3x(t) + 5

(c) y(t) = t2x(t + 1)

(d) y(t) = Evx(t)

(e) y(t) = x(t2)

(f) y(t) =
∫ t

−∞
10x(τ )dτ

(g) y(t) = e−2x(t)

(h) y(t) = x(t − 7) − x(5 − t)

Solution

(a) y(t) = 5x(t) sin 10t

y1(t) = 5x1(t) sin 10t

y2(t) = 5x2(t) sin 10t

y3(t) = a1y1(t) + a2y2(t)

= 5 sin 10t (a1x1(t) + a2x2(t))

y4(t) = 5 sin 10t (a1x1(t) + a2x2(t))

y3(t) = y4(t)

The system is Linear.
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(b) y(t) = 3x(t) + 5

y1(t) = 3x1(t) + 5

y2(t) = 3x2(t) + 5

y3(t) = a1y1(t) + a2y2(t)

= 3(a1x1(t) + a2x2(t)) + 5(a1 + a2)

y4(t) = 3(a1x1(t) + a2x2(t)) + 5

y3(t) �= y4(t)

The system is Non-linear.

(c) y(t) = t2x(t + 1)

y1(t) = t2x1(t + 1)

y2(t) = t2x2(t + 1)

y3(t) = a1y1(t) + a2y2(t)

= t2[a1x1(t + 1) + a2x2(t + 1)]
y4(t) = t2[a1x1(t + 1) + a2x2(t + 1)]
y3(t) = y4(t)

The system is Linear.

(d) y(t) = Evx(t)

y(t) = 1

2
[x(t) + x(−t)]

y1(t) = 1

2
[x1(t) + x1(−t)]

y2(t) = 1

2
[x2(t) + x2(−t)]

y3(t) = a1y1(t) + a2y2(t)

= 1

2
[a1x1(t) + a2x2(t) + a1x1(−t) + a2x2(−t)]

y4(t) = 1

2
[a1(x1(t) + x1(−t)) + a2(x2(t) + x2(−t))]

= 1

2
[a1x1(t) + a2x2(t) + a1x1(−t) + a2x2(−t)]

y3(t) = y4(t)
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The system is Linear.

(e) y(t) = x(t2)

y1(t) = x1(t
2)

y2(t) = x2(t
2)

y3(t) = a1y1(t) + a2y2(t)

= a1x1(t
2) + a2x2(t

2)

y4(t) = a1x1(t
2) + a2x2(t

2)

y3(t) = y4(t)

The system is Linear.

(f) y(t) = 10
∫ t

−∞ x(τ)dτ

y1(t) = 10
∫ t

−∞
x1(τ )dτ

y2(t) = 10
∫ t

−∞
x2(τ )dτ

y3(t) = a1y1(t) + a2y2(t)

= 10

[

a1

∫ t

−∞
x1(τ )dτ + a2

∫ t

−∞
x2(τ )dτ

]

y4(t) = 10

[∫ t

−∞
{a1x1(τ ) + a2x2(τ )} dτ

]

= 10

[{∫ t

−∞
a1x1(τ )dτ +

∫ t

−∞
a2x2(τ )dτ

}]

y3(t) = y4(t)

The system is Linear.

(g) y(t) = e−2x(t)
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y1(t) = e−2x1(t)

y2(t) = e−2x2(t)

y3(t) = a1y1(t) + a2y2(t)

= a1e−2x1(t) + a2e−2x2(t)

y4(t) = e−2(a1x1(t)+a2x2(t))

= e−2a1x1(t)e−2a2x2(t)

y3(t) �= y4(t)

The system is Non-linear.

(h) y(t) = x(t − 7) − x(5 − t)

y1(t) = x1(t − 7) − x1(5 − t)

y2(t) = x2(t − 7) − x2(5 − t)

y3(t) = a1y1(t) + a2y2(t)

= a1[x1(t − 7) − x1(5 − t)] + a2[x2(t − 7) − x2(5 − t)]
y4(t) = a1[x1(t − 7) − x1(5 − t)] + a2[x2(t − 7) − x2(5 − t)]
y3(t) = y4(t)

The system is Linear.

Linearity Test for the System Described by Differential Equation

Step 1. Write down the system differential equation with responses y1(t) and y2(t)
for the inputs x1(t) and x2(t) respectively.

Step 2. Multiply the y1(t) response equation with a1 and y2(t) response equation
with a2 and add them.

Step 3. Write down the differential equation for the sumof the inputs x(t) = a1x1(t)
+a2x2(t).

Step 4. If y(t) = a1y1(t) + a2y2(t) obtained in Steps 2 and 3 are same, the given
differential equation is linear. Otherwise the differential equation is non-
linear.

The following examples illustrate the above method.

Example 1.46 Determine whether the following differential equations are linear or
non-linear:
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(a)
dy(t)

dt
+ 10y(t) = 2x(t)

(b)
dy(t)

dt
+ 10 sin y(t) = 2x(t)

(c) y(t)
dy(t)

dt
+ 10y(t) = 2x(t)

Solution (a) The weighted sum of the response due to each input signal is

d

dt
[a1y1(t)] + 10a1y1(t) = 2a1x1(t)

d

dt
[a2y2(t)] + 10a2y2(t) = 2a2x2(t)

Adding the above two equations, we get

d

dt
[a1y1(t) + a2y2(t)] + 10[a1y1(t) + a2y2(t)] = 2[a1x1(t) + a2x2(t)] (a)

The response of the system due to weighted sum of input is given as

a1
dy1(t)

dt
+ a2

dy2(t)

dt
+ 10[a1y1(t) + a2y2(t)] = 2[a1x1(t) + a2x2(t)]

d

dt
[a1y1(t) + a2y2(t)] + 10[a1y1(t) + a2y2(t)] = 2[a1x1(t) + a2x2(t)] (b)

Equations (a) and (b) are same. Hence, the given system is linear.

The system is Linear.

(b) d y(t)
dt + 10 sin y(t) = 2x(t)

dy(t)

dt
+ 10 sin y(t) = 2x(t)

The weighted sum of responses due to a1x1(t) and a2x2(t) are

d

dt
[a1y1(t)] + 10 sin a1y(t) = 2a1x1(t)

d

dt
[a2y2(t)] + 10 sin a2y2(t) = 2a2x2(t)

The weighted sum of the responses is obtained by adding the above two
equations.
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d

dt
[a1y1(t) + a2y2(t)] + 10 sin a1y1(t) + 10 sin a2y2(t) = 2[a1x1(t) + a2x2(t)] (a)

The output response due to weighted sum of inputs x(t) = a1x1(t) + a2x2(t) is

a1
d

dt
y1(t) + a2

d

dt
y2(t) + 10a1 sin y1(t) + 10a2 sin y2(t) = 2[a1x1(t) + a2x2(t)]

d

dt
[a1y1(t) + a2y2(t) + 10[a1 sin y1(t) + a2 sin y2(t)] = 2[a1x1(t) + a2x2(t)]

(b)
Equations (a) and (b) are not the same. Hence, it is not linear.

The system is Non-linear.

(c) y(t) d y(t)
dt + 10 y(t) = 2x(t)

y(t)
dy(t)

dt
+ 10y(t) = 2x(t)

The weighted responses due to inputs a1x1(t) and a2x2(t) are

a1y1(t)
d

dt
[a1y1(t)] + 10a1y1(t) = 2a1x1(t)

a2y2(t)
d

dt
[a2y2(t)] + 10a2y2(t) = 2a2x2(t)

The sum of the weighted response due to x(t) = a1x1(t) + a2x2(t) is obtained
by adding the above two equations.

a21 y1(t)
d

dt
[y1(t)] + a22 y2(t)

d

dt
[y2(t)] + 10[a1y1(t) + a2y2(t)]=2[a1x1(t) + a2x2(t)]

(a)
The response due to weighted sum of inputs x(t) = a1x1(t) + a2x2(t) is

a1y1(t)
d

dt
y1(t) + 10a1y1(t) + a2y2(t)

d

dt
y2(t) + 10a2y2(t) = 2[a1x1(t) + a2x2(t)]

a1y1(t)
d

dt
y1(t) + a2y2(t)

d

dt
y2(t) + 10[a1y1(t) + a2y2(t)] = 2[a1x1(t) + a2x2(t)]

(b)
Equations (a) and (b) are not equal. Hence, the system is not linear.

The system is Non-linear.
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1.9.2 Time Invariant and Time Varying Systems

Acontinuous-time system is said to be time invariant if the parameters of the sys-
tem do not change with time. The characteristics of such system are fixed over a
time. The input–output of a certain continuous-time system is shown in Fig. 1.51a
and b respectively. If the input is delayed by t0 seconds, the characteristic of the
output response remains the same but delayed by t0 seconds. This is illustrated in
Fig. 1.51c and d respectively. This property is also illustrated in Fig. 1.51e and f in
block diagram form. In Fig. 1.51e the output y(t) of the system H is delayed by
t0 seconds to get y(t − t0) as the delayed output. The delayed output y(t − t0) of
system H can also be obtained by delaying the input x(t) as x(t − t0). This is illus-
trated in Fig. 1.51f. This time delay the system commutes only if the system is time

x(t)

R

0 t

x(t t0)

R

0 t

y(t)

R

0 t

t0

y(t t0)

R

0 tt0

x(t)
H

y(t)

(a)

(c)

(b)

(d)

(e)

(f)

Delay
y(t t0)

x(t)
Delay

x(t t0)
H

y(t t0)

Fig. 1.51 Time invariancy property
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invariant. The above property will not apply if the system is time varying which can
be easily proved. Thus, to identify the time invariant system, the steps given below
are followed:

Step 1. For the delayed input x(t − t0) obtain the output y(t, t0).
Step 2. Obtain the expression for the delayed output y(t − t0) by substituting t =

(t − t0).
Step 3. If y(t, t0) = y(t − t0), then the system is time invariant. Otherwise it is a

time varying system.

The following examples illustrate the method of identifying time invariancy.

Example 1.47 Check whether the following systems are time invariant or not:

(a) y(t) = t x(t)

(b) y(t) = cos x(t)

(c) y(t) = x(t) cos x(t)

(d) y(t) = e−2x(t)

(e)
d2

dt
y(t) + 2

d

dt
y(t) + 5y(t) = x(t)

(f)
d2

dt
y(t) + 2t

d

dt
y(t) + 5y(t) = x(t)

(g) y(t) =
[

dx(t)

dt

]2

Solution

(a) y(t) = t x(t)

1. For the delayed input x(t − t0), the output y(t, t0) is obtained as

y(t, t0) = t x(t − t0)

2. The delayed output y(t − t0) is obtained by substituting t = t − t0 in the
given equation

y(t − t0) = (t − t0)x(t − t0)

3. y(t − t0) �= y(t, t0)
4.

The system is Time Varying.

(b) y(t) = cos x(t)

1. y(t, t0) = cos x(t − t0) [Delayed input]
2. y(t − t0) = cos x(t − t0) [Delayed output]
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3. y(t − t0) = y(t, t0)
4.

The system is Time Invariant.

(c) y(t) = x(t) cos x(t)

1. y(t, t0) = x(t − t0) cos x(t − t0) [Delayed input]
2. y(t − t0) = x(t − t0) cos x(t − t0) [Delayed output]
3. y(t − t0) = y(t, t0)
4.

The system is Time Invariant.

(d) y(t) = e−2x(t)

1. The output due to delayed input is

y(t, t0) = e−2x(t−t0)

2. The delayed output is obtained by putting t = t − t0

y(t − t0) = e−2x(t−t0)

3. y(t − t0) = y(t, t0)
4.

The system is Time Invariant.

(e) d2

dt y(t) + 2 d
dt y(t) + 5 y(t) = x(t)

The coefficients of the given differential equation are 1, 2 and 5 and they are
constants. They do not vary with time. Hence

The system is Time Invariant.

(f) d2

dt2 y(t) + 2t d
dt y(t) + 5 y(t) = x(t)

The coefficient of dy(t)
dt is 2t and it varies with respect to time. Hence

The system is Time Varying.

(g) y(t) = [ d
dt x(t)

]2

1. For the delayed input x(t − t0) the output is obtained as
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y(t, t0) =
[

d

dt
x(t − t0)

]2

2. The delayed output is obtained by putting t = t − t0 in the given equation

y(t − t0) =
[

d

dt
x(t − t0)

]2

3. y(t − t0) = y(t, t0)
4.

The system is Time Invariant.

1.9.3 Static and Dynamic Systems (Memoryless and System
with Memory)

Consider the R-C series electrical circuit shown in Fig. 1.52a. The charge in the
capacitor is determined by the current that has flown through it. By this mecha-
nism the capacitor remembers about something about its past. Similarly consider the
mechanical system in Fig. 1.52b. The stored energy in themechanical spring depends
on the past history of the applied force. The present response of these systems which
have energy storing elements depends not only on the present excitation but also
on the past excitation which are remembered by these elements. Such systems are
called dynamic systems or systems with memory.

Consider the electrical network shown in Fig. 1.52a in which only a resistor is
connected. The current flowing through the resistor depends on the present value
of the excitation. The response does not depend on the excitation at any other time.

x(t)

x(t) y(t)

(a)

(b)

R
M

K

y(t)C

Fig. 1.52 Dynamic systems
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Such systems which have no energy storing elements are called static systems or
systems without memory.

Adynamic system is, therefore, defined as a system inwhich the output signal
at any specified time depends on the values of the input signals at the specific
time at other time also.

A static system is defined as a system in which the output signal at any
specified time depends on the present value of the input signal alone.

The following examples illustrate the method of identifying static and dynamic
systems.

Example 1.48 Determine whether the following systems are static or dynamic:

(a) y(t) = x(t + 1) + 5

(b) y(t) = x(t2)

(c) y(t) = x(t) sin 2t

(d) y(t) = x(t − 3) + x(3 − t)

(e) y(t) = x

(
t

4

)

(f) y(t) =
∫ t

−∞
x(τ )dτ

(g)
dy(t)

dt
+ 5y(t) = 2x(t)

(h) y(t) = 2x(t) + 3

(i) y(t) = e−2x(t)

Solution

(a) y(t) = x(t + 1) + 5
y(0) = x(1) + 5

The system response depends on the future input x(t + 1). Hence

The system is Dynamic.

(b) y(t) = x(t2)
For t = 1,

y(1) = x(1)

For t = 2,
y(1) = x(4)
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The response depends on the future input. Hence

The system is Dynamic.

(c) y(t) = x(t) sin 2t
The system response depends on the present value of the input x(t) and due to
sin 2t , only its magnitude varies from −1 to +1. Hence

The system is Static.

(d) y(t) = x(t − 3) + x(3 − t)
For t = 0,

y(0) = x(−3) + x(3)

For t = 3,
y(3) = x(0) + x(0)

For t = −3,
y(−3) = x(−6) + x(6)

The system response depends on past and future values of input. Hence

The system is Dynamic.

(e) y(t) = x
( t
4

)

y(0) = x(0)

y(1) = x

(
1

4

)

y(−1) = x

(

−1

4

)

The system response depends on present, future, and past values of input. Hence

The system is Dynamic.

(f) y(t) = ∫ t
−∞ x(τ)dτ

By integrating the input, the output is retained and stored in a memory from time
t to the infinite past. Hence

The system is Dynamic.
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(g) d y(t)
dt + 5 y(t) = 2x(t)

The input–output is described by a first-order differential equation. It requires an
energy storing element which remembers the past history of the input applied.
Hence

The system is Dynamic.

(h) y(t) = 2x(t) + 3
The output always depends on the present input. Hence

The system is Static.

(i) y(t) = e−2x(t)

The output always depends on the present input only. Hence

The system is Static.

1.9.4 Causal and Non-causal Systems

Consider a continuous-time system excited by the signal x(t). If the response (out-
put) depends on the present and past values of the input x(t), the system is said
to be causal. In a causal signal, the output cannot start before the input is applied.
Hence, the causal system is also called non-anticipative system. On the other hand,
if the system acts on the knowledge of future input, before it is being applied such
systems are called anticipative or non-causal systems. Real-time systems are all
causal systems.

Consider the system described by the following input–output equation

y(t) = x(t − 3) + x(t + 3) (1.49)

For the input shown in Fig. 1.53a, the output y(t) is sketched and shown in Fig. 1.53b.
The output y(t) at time t is given by the sum of the input values at (t − 3) which
is 3 seconds before and at (t + 3) which is 3 seconds after. This is illustrated in
Fig. 1.53b. Here the system responds to the future input x(t + 3) and it is non-causal
system and cannot be realizable in real time. The following examples illustrate the
method of identifying causal and non-causal systems.

Example 1.49 Consider the continuous-time systems described below by their
input–output equations. Identify whether they are causal or non-causal.
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x(t)

0

1

2

(a)
(b)

Present
input

t

y(t)

x(t 3)

0

Past input1

33 55 t

x(t 3)
Future input

Fig. 1.53 A non-causal system

(a) y(t) = x

(
t

4

)

(b) y(t) = x(t) sin(1 + t)

(c) y(t) = x(t2)

(d) y(t) = x(
√

t)

(e) y(t) = x(t + 1)

(f) y(t) = x(t − 1)

(g) y(t) = d

dt
x(t)

(h) y(t) =
∫ t+4

t−4
x(τ )dτ

Solution

(a) y(t) = x
( t
4

)

y(0) = x(0)

y(−4) = x(−1)

The output depends on future value of input which is evident from y(−4) =
x(−1). Hence

The system is Non-causal.

(b) y(t) = x(t) sin(1 + t)

y(0) = x(0) sin(1)

y(1) = x(1) sin(2)

y(−1) = x(−1) sin(0)

Thus, at all time, the output depends on the present input only. Hence
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The system is Causal.

(c) y(t) = x(t2)

y(0) = x(0)

y(1) = x(1)

y(2) = x(4)

The system output depends on the present input as seen from y(0) = x(0) and
y(1) = x(1). The system output y(t) at t = 2, which is y(2) = x(4) depends on
the future input x(t). Hence

The system is Non-causal.

(d) y(t) = x(
√
t)

At t = 0.64

y(0.64) = x(0.8)

The output depends on the future input. Hence

The system is Non-causal.

(e) y(t) = x(t + 1)
For t = 0,

y(0) = x(1)

The system output depends on the future input. Hence

The system is Non-causal.

(f) y(t) = x(t − 1)

y(0) = x(−1)

y(1) = x(0)

y(2) = x(1)

The output depends on the past values of the input. Hence

The system is Causal.
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(g) y(t) = d
dt x(t)

y(0) = d

dt
x(0)

y(1) = d

dt
x(1)

The output depends on the present input. Hence

The system is Causal.

(h) y(t) = ∫ t+4
t−4 x(τ)dτ

y(t) =
[
x(τ )

]t+4

t−4

= x(t + 4) − x(t − 4)

For t = 0,

y(0) = x(4) − x(−4)

The output y(0) depends on future input x(4). Hence

The system is Non-causal.

1.9.5 Stable and Unstable Systems

Consider a cone which is resting on its base as shown in Fig. 1.54a. The cone at this
position when given a small disturbance will stay in the same position with a small
displacement which is the new equilibrium state. Now this position of the cone is
said to be in stable state. On the other hand, consider the cone resting on its tip.When
the cone is given a small displacement (say an impulse) the contact of the tip with
the resting surface is lost and it rolls over the surface. The output position (resting
on the tip) is never reached. This state of the cone is said to be unstable.

Consider a linear time invariant continuous-time system which is excited by an
impulse as shown in block diagram of Fig. 1.55a. The output response of the system
is shown in Fig. 1.55b and c. In Fig. 1.55b the area under the impulse response curve
is finite. It can bemathematically proved that such systemswhose area of the impulse
response curve is finite are said to be stable. On the other hand, consider Fig. 1.55c.
The area under this impulse curve is infinite. Systems which possess such an impulse
curve are said to be unstable.
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Fig. 1.54 Stable and unstable systems
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Fig. 1.55 Impulse response of stable and unstable systems

A linear time invariant continuous-time system is said to be Bounded Input,
Bounded Output (BIBO) stable, if for any bounded input, it produces bounded
output. This also implies that for BIBO stability, the area under the impulse
response (output) curve should be finite.

The BIBO stability concept is mathematically expressed as follows. Let the input–
output of a linear time invariant system be expressed as

y(t) = f [x(t)] for all t (1.50)

If |x(t)| is bounded, |y(t)| should also be bounded for the system to be stable.

|y(t)| ≤ My < ∞ for all t (1.51)

|x(t)| ≤ Mx < ∞ for all t (1.52)
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where |Mx | and |My| represent positive values. It can be easily established that the
necessary and sufficient condition for the LTIC time system to be stable is

y(t) =
∫ ∞

−∞
|x(t)|dt < ∞ (1.53)

The following examples illustrate the method of finding the stability of LTIC time
system.

Example 1.50 Determinewhether the systems described by the following equations
are BIBO stable.

(a) y(t) = t x(t)

(b) y(t) = e−2|t |

(c) y(t) = x(t) sin t

(d) y(t) = te2t u(t)

(e) y(t) = e4t u(t − 3)

(f) y(t) = e−2t sin 2t u(t)

Solution

(a) y(t) = t x(t)
If x(t) is bounded, y(t) varies with respect to time and becomes unbounded.
Hence

The system is BIBO Unstable.

(b) y(t) = e−2|t|
Here

x(t) = e−2t 0 ≤ t < ∞
= e2t − ∞ < t < 0

y(t) =
∫ ∞

−∞
x(t)

=
∫ 0

−∞
e2t dt +

∫ ∞

0
e−2t dt

=
[
1

2
e2t

]0

−∞
−
[
1

2
e−2t

]∞

0

= 1

2
[1 + 1] = 1 < ∞

The output is bounded and the system is stable.
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The system is BIBO Stable.

(c) y(t) = x(t) sin t
It x(t) is bounded, y(t) is also bounded because sin t will take a maximum value
of +1 and −1. Hence, y(t) is bounded.

The system is BIBO Stable.

(d) y(t) = te2t u(t)
Here the output varies linearly as t and also exponentially increasing due to e2t .
Hence, |y(t)| = ∞ and the system is BIBO unstable. Mathematically this can
be proved as follows. For a causal system, |y(t)| can be written as

|y(t)| =
∫ ∞

0
te2t dt

The following integration formula is used to evaluate the above integral:

∫ ∞

0
teat dt = 1

a2

[
eat {at − 1}

]∞
0

|y(t)| = 1

4

[
e2t {2t − 1}

]∞
0

= 1

4
[e∞{2∞ − 1} + 1]

= ∞

The system is BIBO Unstable.

(e) y(t) = e4t u(t − 3)
Theoutput response is exponentially increasing as t increaseswith a timedelay of
t = 3. Hence, the system is unstable. This is mathematically proved as follows:

|y(t)| =
∫ ∞

−∞
|x(t)|dt

=
∫ ∞

3
e4t dt

= 1

4

[
e4t
]∞
3

= ∞ − 1

4
e12

= ∞
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The system is BIBO Unstable.

(f) y(t) = e−2t sin 2t u(t)
The output response is a function of exponential decay and a sinusoid. The
sinusoid will have a maximum value of +1 and −1. As t increases, y(t) will
exponentially decrease and the output is bounded. The result can be mathemat-
ically obtained as follows. For a causal signal u(t)

|y(t)| =
∫ ∞

0
e−2t sin 2t dt

Using the formula,

∫ ∞

0
eat sin bt dt =

[
eat {a sin bt − b cos at}]∞0

a2 + b2

we get

|y(t)| = 2

22 + 22

[
e−2t {sin 2t − cos 2t}

]∞
0

= 1

4
< ∞

The system is BIBO Stable.

1.9.6 Invertibility and Inverse System

Consider the system H which is excited with x(t). The system produces the output
y(t). This signal is applied as the input to the inverse system H−1 which produces the
output x(t). The block diagram representation of the system and the inverse system
is shown in Fig. 1.56a. From Fig. 1.56a, the inverse system is defined as follows.

A system is said to be invertible if the distinct inputs give distinct output.
Consider the system shown in Fig. 1.56b. The input–output relationship of system

1 is described as

d

dt
y(t) = x(t)

Consider system 2, the input–output of this system is described by

d

dt
y(t) = x(t)
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x(t) y(t) w(t) = x(t)
System H

System 1 System 2

 Inverse system 
H 1

X(s) Y(s) W(s) = X(s)
 s s

 1

(a)

(b)

Fig. 1.56 Representation of inverse system

When these two systems are cascaded, the output response of the interconnected
system is same as the excitation of the system itself. The system which makes
this possible is called inverse system. Here unique excitation produces unique
response.

Example 1.51 Consider the systems described by the equations given below:

(a) The impulse h(t) is given as

h(t) = δ(t) − 3e−3t u(t) + 4e−4t u(t)

(b)
dy(t)

dt
+ 5y(t) = d2x(t)

dt2
+ 2

dx(t)

dt
− 8x(t)

Determine the inverse systems for the above. Are these systems both causal and
stable?

Solution

(a) h(t) = δ(t) − 3e−3t u(t) + 4e−4t u(t)
Taking Laplace transform on both sides, we get

H(s) = 1 − 3

s + 3
+ 4

s + 4
= (s2 + 8s + 12)

(s + 3)(s + 4)

The inverse of the above system is

H−1(s) = 1

H(s)
= (s + 3)(s + 4)

s2 + 8s + 12

H−1(s) = (s + 3)(s + 4)

(s + 2)(s + 6)
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The poles of H−1 are at s = −2 and s = −6.Hence, the inverse systems is stable.
The region of convergence (ROC) is to the right of rightmost pole s = −2.Hence,
it is causal.

The inverse system is both Causal and Stable.

(b) d y(t)
dt + 5 y(t) = d2x(t)

dt2 + 2 dx(t)
dt − 8x(t)

Taking Laplace transform on both sides of the above equation, we get

(s + 5)Y (s) = (s2 + 2s − 8)X (s)

H(s) = Y (s)

X (s)
= (s2 + 2s − 8)

(s + 5)
= (s − 2)(s + 4)

(s + 5)

The inverse system is

H−1(s) = 1

H(s)
= (s + 5)

(s − 2)(s + 4)

H−1(s) = (s + 5)

(s − 2)(s + 4)

The poles of the inverse systems are at s = 2 and s = −4. The pole at s = 2 will
make the system unstable if the system is causal. For the system to be stable the
ROC should form a strip between s = 2 and s = −4 in which case it includes
the jω axis. In this case, the system has to be non-causal.

The system is not both Causal and Stable.

Example 1.52 Determine whether the given system is memoryless, time invariant,
linear, causal, and stable. Justify your answers.

y(t) = (cos 3t) x(t)

(Anna University, December 2006)

Solution

y(0) = x(0)

y(1) = cos 3x(1)

y(−1) = cos 1x(−1)
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1. The output depends only on the present input. Hence, the system is memoryless
(static). Since the output does not depend on the future input, it is causal.

2. The output due to the delayed input is

y(t, t0) = cos 3t x(t − t0)

The delayed output is obtained by substituting t = (t − t0) in the given equation

y(t − t0) = cos 3(t − t0)x(t − t0)

y(t − t0) �= y(t, t0)

The system is therefore time varying.
3. To test the linearity of the system, consider the given equation

y(t) = (cos 3t)x(t)

y1(t) = (cos 3t)x1(t)

y2(t) = (cos 3t)x2(t)

y3(t) = a1y1(t) + a2y2(t) = cos 3t[a1x1(t) + a2x2(t)]

The output due to the weighted sum of input is

y4(t) = (cos 3t)[a1x1(t) + a2x2(t)]
y3(t) = y4(t)

The system is Linear.

4.
|y(t)| = cos 3t |x(t)|

If x(t) is bounded |y(t)| is also bounded. Hence, the system is stable.

The system is

(a) Static, (b) Time Variant, (c) Linear, (d) Causal, and (e) Stable.

Example 1.53 Verify whether the system given by

y(t) = x(t2)

is causal, instantaneous, linear, and shift invariant.

(Anna University, May 2006)
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Solution

1.

y(t) = x(t2)

y(2) = x(4)

The output depends on the future input. Hence, the system is not causal.
2. Since the output depends on the present and future inputs, it requires memory. It

is, therefore, not instantaneous.
3. The response due to the delayed input is

y(t, t0) = x[(t2 − t0)]

The delayed output is obtained by putting t = t − t0 in the given equation

y(t − t0) = x[(t − t0)
2]

y(t, t0) �= y(t − t0)

Hence, the system is shift variant.
4.

y(t) = x(t2)

y1(t) = x1(t
2)

y2(t) = x2(t
2)

y3(t) = a1y1(t) + a2y2(t)

= a1x1(t
2) + a2x2(t

2)

y4(t) = f [a1x1(t) + a2x2(t)]
= a1x1(t

2) + a2x2(t
2)

y3(t) = y4(t)

The system is linear.

The system is

(a) Non-causal, (b) Not Instantaneous, (c) Shift Variant, and (d) Linear.

Example 1.54 Determine whether the system described by the following equation
is static, linear, time variant, and causal.

y(t) = Ev[x(t)]
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Solution

1. y(t) = Ev[x(t)]

y(t) = Ev[x(t)]
= 1

2
[x(t) + x(−t)]

y(−1) = 1

2
[x(−1) + x(1)]

The output depends on the present value of x(−1) and also the future value of
x(1). Hence, the system is non-causal. Since x(1) requires memory, the system
is dynamic.

2.

y(t) = 1

2
[x(t) + x(−t)]

The output due to the delayed input is

y(t, t0) = 1

2
[x(t − t0) + x(−t − t0)]

The delayed output is obtained by putting t = t − t0

y(t − t0) = 1

2
[x(t − t0) + x(−t + t0)]

y(t, t0) �= y(t − t0)

Hence, the system is time variant.
3.

y(t) = 1

2
[x(t) + x(−t)]

y1(t) = 1

2
[x1(t) + x1(−t)]

y2(t) = 1

2
[x2(t) + x2(−t)]

y3(t) = a1y1(t) + a2y2(t)

= 1

2
[a1x1(t) + a1x1(−t) + a2x2(t) + a2x2(−t)]

y4(t) = f [a1x1(t) + a2x2(t)]
= 1

2
[a1{x1(t) + x1(−t)} + a2{x2(t) + x2(−t)}]

y3(t) = y4(t)

The system is linear.
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The system is

(a) Dynamic, (b) Non-causal, (c) Time Variant, and (d) Linear.

Example 1.55 Determine whether the following system is static, time invariant,
linear, causal, and stable.

3
dy(t)

dt
+ 5t y(t) = x(t)

Solution

1. The system is described by differential equation. Hence, it is dynamic.
2. In the given differential equation, the coefficient of y(t) is 5t which is a function

of time t . Hence, the system is time varying.
3. The differential equations of the input a1x1 and a2x2 are written as follows:

3
d

dt
[a1y1(t)] + 5t a1y1(t) = a1x1(t)

3
d

dt
[a2y2(t)] + 5t a2y2(t) = a2x2(t)

Adding the above two equations, we get

3
d

dt
[a1y1(t) + a2y2(t)] + 5t[a1y1(t) + a2y2(t)] = a1x1(t) + a2x2(t)

3
d

dt
y3(t) + 5t y3(t) = a1x1(t) + a2x2(t)

where

y3(t) = a1y1(t) + a2y2(t)

The differential equation for the weighted sum of input is written as

3
d

dt
[a1y1(t) + a2y2(t)] + 5t[a1y1(t) + a2y2(t)] = a1x1(t) + a2x2(t)

3
d

dt
y4(t) + 5t y4(t) = a1x1(t) + a2x2(t)

where

y4(t) = a1y1(t) + a2y2(t)

y3(t) = y4(t)

Hence, the system is linear.
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4. From the given differential equation it is obvious that y(t) depends on the present
input only. Hence, the system is causal.
The system is described by first-order differential equation with varying coef-
ficient. As long as x(t) is bounded, y(t) is also bounded. If x(t) is an impulse,
y(t) exponentially decays and the area under the impulse response curve becomes
finite. Hence, the system is stable.

The system is

(a) Dynamic, (b) Time Varying, (c) Linear, (d) Causal, and (e) Stable.

Example 1.56 Check whether the system having the input–output relation

y(t) =
∫ t

−∞
x(τ )dτ

is linear and time invariant.

(Anna University, April 2004)

Solution

1. y(t) = ∫ t
−∞ x(τ)dτ

a1y1(t) =
∫ t

−∞
a1x1(τ )dτ

a2y2(t) =
∫ t

−∞
a2x2(τ )dτ

The weighted sum of the output is

y3(t) = a1y1(t) + a2y2(t)

=
∫ t

−∞
a1x1(τ )dτ + a2

∫ t

−∞
a2x2(τ )dτ

The output due to the weighted sum of input is

y4(t) =
∫ t

−∞
[a1x1(τ ) + a2x2(τ )]dτ

y3(t) = y4(t)

The system is linear.
2. The output due to the input is

y(t, t0) =
∫ t

−∞
x(τ − t0)dτ
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The delayed output due to the input is

y(t − t0) =
∫ t

−∞
x(τ − t0)dτ

y(t, t0) = y(t − t0)

The system is time invariant.

The system is both

(a) Linear and (b) Time Invariant.

Example 1.57 A certain is described by the following input–output equation

y(t) = x(t + 1) + x(t2)

Determine whether the system is static, causal, time invariant, linear, and stable.

Solution

1. y(t) = x(t + 1) + x(t2)

y(0) = x(1) + x(0)

The output depends on the present input x(0) and also the future input x(1). To
store the future input it requires memory, and hence it is dynamic system. Since
the output depends on future input it is non-causal.

2. If the input is delayed by t0, the output is

y(t, t0) = x(t − t0 + 1) + x(t2 − t0)

The delayed output due to the input is

y(t − t0) = x(t − t0 + 1) + x(t − t0)
2

y(t, t0) �= y(t − t0)

The system is time variant.
3. The weighted sum of the output due to input is

a1y1(t) = a1[x1(t + 1) + x1(t
2)]

a2y2(t) = a2[x2(t + 1) + x2(t
2)]

y3(t) = a1y1(t) + a2y2(t)

= a1[x1(t + 1) + x1(t
2)] + a2[x2(t + 1) + x2(t

2)]
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The output due to the weighted sum of input is

y4(t) = a1[x1(t + 1) + x1(t
2)] + a2[x2(t + 1) + x2(t

2)]
y3(t) = y4(t)

The system is linear.
4. If the system, input x(t) is bounded, then the output y(t) is also bounded. Hence,

the system is stable.

The system is

(a) Dynamic, (b) Non-causal, (c) Time Variant, (d) Linear, and (e) Stable.

Example 1.58 The input–output relationship of a certain system is given by the
following equation:

y(t) = x(t − 5) − x(2 − t)

Determine whether the above system is linear and causal.

Solution

1. y(t) = x(t − 5) − x(2 − t)

y(t) = x(t − 7) − x(2 − t)

The weighted sum of the output due to the input is given as

y3(t) = a1y1(t) + a2y2(t)

a1y1(t) = a1[x1(t − 7) − x1(2 − t)]
a2y2(t) = a2[x2(t − 7) − x2(2 − t)]

y3(t) = a1[x1(t − 7) − x1(2 − t)] + a2[x2(t − 7) − x2(2 − t)]

The output due to the weighted sum of input is

y4(t) = a1[x1(t − 7) − x1(2 − t)] + a2[x2(t − 7) − x2(2 − t)]
y3(t) = y4(t)

The system is linear.
2.

y(t) = x(t − 7) − x(2 − t)

y(0) = x(−7) − x(2)

The output depends on the past input x(−7) and also depends on the future input
x(2). Hence, it is non-causal.
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The system is

(a) Linear and (b) Non-causal.

1.10 Modeling of Mechanical Systems

Mechanical systems are of two kinds. They are

1. Translational system.
2. Rotational system.

In translational system we have three passive components connected and they are
mass, spring, and dash-pot. Lever arrangement is connected to change the power
level. Force is the input given to the system and linear displacement or velocity
is taken as the output. Mass and spring are energy storage elements and dash-pot
dissipates energy. The two energy storage elements are analogous to inductor and
capacitor in electrical network. In rotational mechanical system, we have three pas-
sive components, namely, inertia, spring, and rotational dash-pot. Torque is the input
given to such systems and angular velocity or angular acceleration is taken as the
output. Gear arrangement is used to change the power level. We give below the
notations used to identify the mechanical systems and the variables.
Mechanical Translational System

(a) M = Mass, (kg)
(b) B = Viscous friction coefficient of dash-pot, (N/m/s.)
(c) K = Spring stiffness constant, (N/m)
(d) f (t) = Applied force, (N)
(e) x(t) = Linear displacement, (m)
(f) v(t) = dx(t)

dt = Linear velocity, (m/s)
(g) a = dv(t)

dt = Linear acceleration, (m/s2)

Mechanical Rotational System

(a) J = Moment of inertia, (kg-m2)
(b) B = Rotational friction coefficient of dash-pot, (N-m/(rad/s.))
(c) K = Spring stiffness constant, (N-m/rad.)
(d) T (t) = Applied force, (N-m)
(e) θ(t) = Angular displacement, (rad.)
(f) ω(t) = dθ(t)

dt = Angular velocity, (rad/s.)
(g) dω(t)

dt = Angular acceleration, (rad/s2)
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1.10.1 Dynamic Equations of Mechanical Translational
System

In mechanical translational system, mass M , spring K , and dash-pot B are the three
elements connected. Mass stores kinetic energy, spring stores potential energy, and
the dash-pot dissipates energy and provides damping to the system. To write the
dynamic equation of mechanical system, the free body diagram is made use of. In
the free body diagram, various forces acting on a particular element are represented.
The sum of the forces acting in one direction is equated to the sum of the forces
acting in the opposite direction. The free body diagram of all the elements is written,
and then the simultaneous equations so obtained are solved to get the input/output
relationship. We give below the free body diagram of mass M , spring K , and
dash-pot B.

Mass M
The mechanical system consisting of mass M is shown in Fig. 1.57a. The applied

force f (t) acts towards right. The displacement x(t) is in the direction of the applied
force. The opposing force developed by mass M is proportional to acceleration d2x(t)

dt2

and the proportionality constant is M and hence the opposing force M d2x(t)
dt2 acts in

the direction opposite to the direction of the applied force f (t). This is shown in
Fig. 1.57b.

From Fig. 1.57b, equating the sum of the forces acting towards the right to the
sum of the forces acting towards the left, we get

f (t) = M
d2x(t)

dt2

Spring K ,
The spring K connected to a reference frame is shown in Fig. 1.58a and its free

body diagram is shown in Fig. 1.58b. The opposing force developed by the spring is
proportional to the displacement x(t) and the proportionality constant is K . It acts
in the direction opposite to the applied force. Equating the right-hand direction force
to the left-hand direction force, we get the following equation:

f (t) = K x(t)

Dash-pot B
The dash-pot B connected to the reference frame is shown in Fig. 1.59a and the

free body diagram is shown in Fig. 1.59b. The opposing force developed by the dash-
pot is proportional to the velocity dx(t)

dt and the proportionality constant is B. From
Fig. 1.59b the following equation is written:

f (t) = B
dx(t)

dt
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M M

Reference frame

M

x(t)(a) (b)

d 2x(t)

d t2
f(t) f(t)

Fig. 1.57 Mechanical system with mass M

K x (t) 

x(t)(a) (b)

f(t)

K

f(t)
K

Fig. 1.58 Free body diagram of a spring

B

B Bx(t)(a) (b)

d  x(t)
d tf(t) f(t)

Fig. 1.59 Free body diagram of a dash-pot

While drawing the free body diagram, the following points are to be observed:

1. Eachmass is to be given an independent displacement x(t) irrespective of whether
one end of it is connected to the reference frame or to the end of any other element.
Thus, if there are four masses in a particular mechanical system, the displacement
of these masses should be x1(t), x2(t), x3(t), and x4(t).

2. In the case of the spring and dash-pot, it is necessary to identify the variables
with which the two ends of the spring or the dash-pot move. If one end of the
spring (say) is connected to the mass M , whose displacement is x1(t), then that
end of the spring moves with a displacement x1(t). The other end of the spring,
if it is connected to the reference frame, its displacement is zero. On the other
hand, if it is not connected to the reference frame, then it is necessary to give a
new displacement say x2(t) for that end. Now the opposing force generated by the
spring is proportional to the difference in displacement with the proportionality
constant K . The same is true for the dash-pot also. This is illustrated in Fig. 1.60a.

In Fig. 1.60a one end of the spring K is connected to the mass M . This end moves
with the displacement x(t). Its free body diagram is also shown with various forces
acting. Now consider the spring whose one end is connected to the mass M which
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M

K
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B K

M
M

x(t)
(a)

d 2 x(t)

K x(t)

dt2f(t)

f(t)

f(t)

M

A

M

(b)

Md 2x1(t)

K (x1 x2)

dt2 f(t)

d  x2(t)

 x2(t)  x1(t)

K (x2 x1)

d t
B

Fig. 1.60 a Mechanical system component spring connected to the reference frame; b Spring not
connected to the reference frame

moves with a displacement of x1(t). The other end of the spring K is connected to
the dash-pot B. This end is neither connected to any mass nor to the reference frame.
This end is identified as point A. A new variable x2(t) is given for the end A. When
we write the free body diagram for the mass M , the opposing force due to mass M
is M d2x(t)

dt2 . The opposing force generated by the spring is proportional to the final
displacement minus initial displacement. Final displacement is the displacement of
the point under consideration which is x1(t) here. The initial displacement is the
displacement of the other end of the spring which is denoted as x2(t).

Now at point A, the opposing forces due to the spring and dash-pot act to the left.
At point A, the final displacement is x2(t). Therefore, the initial displacement for the
spring now is x1(t). For the dash-pot B, the final velocity is dx2(t)

dt . Since its other end
is connected to the reference frame, the initial velocity is zero. The opposing forces
acting at point A are shown in the free body diagram. For the system represented in
Fig. 1.60b following equation is written:

M
d2x(t)

dt2
+ K x(t) = f (t)

For the system represented in Fig. 1.60b the following equation is written:
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d  x2
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Fig. 1.61 a Mechanical system for Example1.59. b Free body diagram for Example1.59

M
d2x1(t)

dt2
+ K (x1 − x2) = f (t)

B
d2x2(t)

dt2
+ K (x2 − x1) = 0

By taking Laplace transform, one can obtain the transfer function model of the above
twomechanical systems. The rotationalmechanical systemmodel is obtained exactly
by similar approach. The following examples illustrate the method of obtaining
transfer function model of mechanical system.

Example 1.59 For the mechanical system shown in Fig. 1.61 obtain the transfer
function X1

F (s).

Solution

1. The displacements of the masses M1 and M2 are identified as x1(t) and x2(t).
2. The two ends of the elements K1, K2, B1, B2, and B3 are either connected to

the masses or to the reference frame. This enables us for complete description of
the system.

3. The input variable is f (t) and the output variable is x1(t). By solving the simul-
taneous equation, the third variable x2(t) has to be eliminated. By taking Laplace
transform, the transfer function X1

F (s) is obtained.
4. From free body diagram, the following equations are obtained:

M1
d2x1(t)

dt2
+ B1

dx1(t)

dt
+ B3

d

dt
(x1 − x2) + K1x1(t) = f (t)
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Taking Laplace transform on both sides ω we get

[M1s
2 + (B1 + B3)s + K1]X1(s) − B3s X2(s) = F(s)

M2
d2x2(t)

dt2
+ B2

dx2(t)

dt
+ B3

d

dt
(x2 − x1) + K2x2(t) = 0

Taking Laplace transform on both sides, we get

[M2s2 + (B2 + B3)s + K2]X2(s) = B3s X1(s)

X2(s) = B3s X1(s)

[M2s2 + (B2 + B3)s + K2]
Substituting for X2(s), we obtain

[M1s2 + (B1 + B3)s + K1]X1(s) − B2
3 s2X1(s)

M2s2 + (B2 + B3)s + K2
= F(s)

X1(s)

F(s)
=[M2s2 + (B2 + B3)s + K2]

/

[M1M2s4 + (M2(B1 + B3) + M1(B2 + B3))s
3

+ (M2K1 + B1B2 + B1B3 + B2B3 + +M1K2)s
2

+ (B2 + B3)K1 + (B1 + B3)K2)s + K1K2]

Example 1.60 Consider the mechanical system shown in Fig. 1.62a. Determine
X2
F (s).

Solution Consider the free body diagram shown in Fig. 1.62b. The following equa-
tions are written:

M1
d2x1(t)

dt2
+ B

d

dt
(x1 − x2) + K1x1 = f (t)

Taking Laplace transform on both sides, we get

[M1s
2 + Bs + K1]X1(s) − Bs X2(s) = F(s)

M2
d2x2(t)

dt2
+ B

d

dt
(x2 − x1) + K2x2 = 0

(M2s2 + Bs + K2)X2(s) = Bs X1(s)

Substituting for X1(s), we get

[

(M1s
2 + Bs + K1)

(M2s2 + Bs + K2)

Bs
− Bs

]

X2(s) = F(s)
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Fig. 1.62 a Mechanical system for Example1.60. b Free body diagram for Example1.60

X2

F
(s) =Bs

/

[M1M2s4 + (M1 + M2)Bs3

+ (M1K2 + M2K1)s
2 + (K1 + K2)Bs + K1K2]

Example 1.61 For the electromechanical system shown in Fig. 1.63a determine
X
E (s). The solenoid parameters are

– Assume back emf effect is negligible.
– Force constant Ks N/amp.
– Coil inductance L Henry.
– Coil resistance R ohms.
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(a)

(b)

B
K

M

E

R, L, KS

A

i(t)

x1(t)

x(t)

M d 2 x
d t2

B d  x1(t)
d t

MKS i(t)
K (x x1)

K (x1 x)

A

Fig. 1.63 a Electromechanical system for Example1.61. b Free body diagram for Example1.61

Solution The free body diagram for the given mechanical system is shown in
Fig. 1.63b and the following equations are written from there.

E = L
di

dt
+ Ri

Taking Laplace transform on both sides, we get

E(s) = (R + Ls)I (s)

I (s) = E(s)

(R + Ls)

The electromechanical force generated by the solenoid is Ksi(t). Thus

Ksi(t) = M
d2x

dt2
+ K (x − x1)

Ks I (s) = (Ms2 + K )X (s) − K X1(s)

At point A, the following equation is written:
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Fig. 1.64 a Mechanical Rotational System. b Free body diagram for Example1.62

B
d

dt
(x1) + K (x1 − x) = 0

(Bs + K )X1(s) = K X (s)

Substituting for X1(s) and I (s), we get

Ks E(s)

(R + Ls)
= (Ms2 + K )X (s) − K

Bs + K
X (s)

X (s)

E(s)
= Ks(Bs + K )

s(R + Ls)(M Bs2 + M K s + BK )

Example 1.62 For the mechanical rotational system shown in Fig. 1.64a derive the
T.F. θ2

T (s).

Solution The free body diagram for the rotational system is drawn exactly in similar
way as was done for translational system. Here each inertia is to be identified with
an angular displacement. From the free body diagram the following equations are
written:

J1
d2θ1

dt2
+ K (θ1 − θ2) = T (t)

Taking Laplace transform on both sides, we get

(J1s2 + K )θ1(s) − K θ2(s) = T (s)

J2
d2θ2

dt2
+ K (θ2 − θ1) + B

dθ2

dt
= 0



116 1 Representation of Signals and Systems

Taking Laplace transform on both sides, we get

(J2s2 + Bs + K )θ2(s) = K θ1(s)

Substituting for θ1(s), we get

[

(J1s2 + K )
(J2s2 + Bs + K )

K
− K

]

θ2(s) = T (s)

Re-arranging the terms and simplifying, we get

θ2

T
(s) = K

s(J1 J2s3 + J1Bs2 + K (J1 + J2)s + BK )

1.11 Electrical Analogue

An electric circuit which is analogous to a system from another discipline is called
electric circuit analogs. Thus, the mechanical systems discussed above can be con-
veniently converted into its electric circuit equivalent and different variables in the
mechanical system can be analyzed in terms of electric circuit variables. Analogs
can be obtained by comparing the equations describing the mechanical system with
those describing the electric circuit. When the equations of motion of mechanical
system are compared with the mesh equations of electric circuit, the analogy is called
force–voltage analogy or series analog. Similarly when the equations of motion of
mechanical system are compared with the nodal equations of the electric circuit,
the analogy is called force–current (torque–current for rotational system) or parallel
analog.

1.11.1 Force–Voltage Analogy (F–V analogy)

Consider the mechanical system shown in Fig. 1.65a. For Fig. 1.65a, the following
equation is written:

M
dv(t)

dt
+ Bv(t) + K

∫
v(t)dt = f (t) (1.54)

where v(t) = dx(t)
dt = velocity of mass M .

Now consider the electric circuit shown in Fig. 1.65b. For this the following equa-
tion is written:
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M

B
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R

C

L

(t)

i(t)

e(t)

(a) (b)

f(t)

Fig. 1.65 Force–voltage analogy of mechanical system

L
di(t)

dt
+ Ri(t) + 1

C

∫
i(t)dt = e(t) (1.55)

Equations (1.54) and (1.55) are identical and therefore the following analog is
derived: Using the above table, the steps given below are followed to obtain the

Mechanical system Electric circuit (Series analog)
1. Applied force, f (t) Voltage source e(t)
2. Velocity v(t) Mesh current i(t)
3. Mass M Inductance L
4. Dash-pot B Resistance R
5. Spring K Reciprocal of capacitance C

force–voltage analogous electric circuit (loop or series circuit):

1. For the given mechanical system, each mass is identified with its velocity.
This corresponds to a single current flowing through the inductor. For exam-
ple, if there are five masses in a mechanical system, they move with velocity
v1(t), v2(t), v3(t), v4(t), and v5(t). Correspondingly, in the electric circuit, there
will be five inductances and single current i1(t), i2(t), i3(t), i4(t), and i5(t) will
flow through these inductances.

2. Identify the source voltages which are equivalent to applied forces.
3. Corresponding to velocity differences applied across the mechanical elements,

current differences will flow through the corresponding electrical components
which are identified as per the table given above.

4. Thus, by inspection of mechanical system, its electrical analog is drawn.
5. Just to verify whether the analog circuit drawn is correct, write down the equation

describing the motion of the given mechanical system. Also write down the mesh
equation of the electric circuit drawn. See both are identical.
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1.11.2 Force–Current Analogy (F–I Analogy)

Consider the electric circuit with the current source i(t), inductance L , resistance R,
and capacitance C connected to the node which is at a potential e(t). For Fig. 1.66
the following equation is written:

i1 + i2 + i3 = i(t)
1

L

∫
e(t)dt + e(t)

R
+ C

de(t)

dt
= i(t) (1.56)

Equations (1.54) and (1.56) are identical and therefore the following analogy is
derived.

Mechanical system Electric circuit (Parallel analog)
1. Applied force f (t) Source current i(t)
2. Velocity v(t) Nodal voltage e(t)
3. Mass M Capacitance C
4. Dash-pot B Reciprocal of resistance R
5. Spring K Reciprocal of inductance L

Using the above table, the following steps are followed to obtain the force–current
analogous electric circuit (nodal or parallel circuit).

1. For the given mechanical system, each mass is identified with its velocity. This is
equivalent to a nodal voltage to which one end of the capacitance is connected.
There should be as many nodes in the electric circuit as there are masses in
mechanical system. Further, in addition, other nodes are created if any of the
elements in mechanical system are neither connected to any mass nor to the
reference frame.

2. Identify source currents which are equivalent to applied forces.
3. Corresponding to velocity differences applied across themechanical elements, the

electrical components are connected between the two nodes representing these
velocity differences.

4. By inspection, the electrical analogous circuit is drawn.

Fig. 1.66 Electric circuit
with a current source

RL

i1
i2

i3

C

e(t)

i(t)
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Fig. 1.67 a Mechanical notational system. b and c Electrical analogous circuit for Example 1.63

5. Just by writing the equations of motion of mechanical system and the nodal
electric circuit, it is verified they are identical. Thus the analog is verified.

The following examples illustrate the method of obtaining electrical analogous
circuits.

Example 1.63 Consider the mechanical rotational system shown in Fig. 1.67. Draw
the torque–voltage and torque–current electrical analogous circuits and verify by
writing mesh and nodal equations.

(Anna University, December 2009)
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Solution Torque–Voltage Analogy

1. There are two inertias in the mechanical rotational system. They are given angular
velocity ω1 and ω2. Corresponding to these displacements single branch currents
i1 and i2 are opened.

2. To the source voltage e(t) → T (t), the inductance L1 → J1, resistance R1 → B1

are connected in series. The current flow is i1 → ω1.
3. In the branch where the current flow is i2 → ω2 the inductance L2 → J2, resis-

tance R2 → B2, and the capacitance C2 → 1
K2

are connected in series.

4. A branch current (i1 − i2) → (ω1 − ω2) is opened and a capacitor C1 → 1
K1

is
connected in this branch since the velocity difference across K1 is (ω1 − ω2). The
torque–voltage analogous electric circuit is shown in Fig. 1.67b.

Verification
For the mechanical circuit, for the elements connected to the inertia J1, the following
equation is written:

J1
dω1

dt
+ B1ω1 + K1

∫
(ω1 − ω2)dt = T (t) (1.57)

For the elements connected to the inertia J2, the following equation is written:

J2
dω2

dt
+ B2ω2 + K1

∫
ω2dt + K1

∫
(ω2 − ω1)dt = 0 (1.58)

Nowconsider T–Vanalogous electric circuit. For themeshwhere i1 current is flowing
the following equation is written:

L1
di1
dt

+ R1i1 + 1

C1

∫
(i1 − i2)dt = e(t) (1.59)

For the mesh where i2 current is flowing the following equation is written:

L2
di2
dt

+ R2i2 + 1

C2

∫
i2dt + 1

C2

∫
(i2 − i1)dt = 0 (1.60)

Equation (1.57) is identical to Eq. (1.59) and Eq. (1.58) is identical to Eq. (1.60).
Hence the analogous circuit drawn just by inspection of the given mechanical system
is correct.
Torque–Current Analogy

1. There are two velocities ω1 and ω2 with which the inertias J1 and J2 rotate. Cor-
responding to these angular velocities nodes with e1 and e2 voltages are marked.

2. To the e1 node, current source i(t) → T (t), capacitance C1 → J1, resistance
R1 → 1/B1 are connected.



1.11 Electrical Analogue 121

3. Inertia J2, dash-pot B2 and inductance K2 all rotate at ω2. Therefore, C2 → J2,
R2 → 1/B2 and L2 → 1/K2 are connected to the e2 node. Their other ends are
connected to the common point.

4. The spring K1 rotates with a velocity (ω1 − ω2). Therefore, the inductance L1 →
1/K1 is connected in between e1 and e2 nodes. The complete T–I analogous circuit
is shown in Fig. 1.67c.

Verification

1. At e1 node the following equation is written:

C1
de1
dt

+ e1
R1

+ 1

L1

∫
(e1 − e2)dt = i(t) (1.61)

2. At e2 node the following equation is written:

C2
de2
dt

+ e2
R2

+ 1

L2

∫
e2dt + 1

L1

∫
(e2 − e1)dt = 0 (1.62)

Equations (1.57) and (1.61) are identical. Similarly Eqs. (1.58) and (1.62) are
identical. Therefore the T–I diagram shown in Fig. 1.67c is correct.

Example 1.64 Draw the force–voltage and force–current electrical analogous cir-
cuits and verify by writing mesh and node equation for the mechanical system shown
in Fig. 1.68a.

(Anna University, December 2009)

Solution Force–Voltage Analogy

1. Mass M1 moves with velocity v1 andmass M2 moves with velocity v2. Single cur-
rents i1 → v1 and i2 → v2 are opened out. i1 flows through the series combination
of L1 → M1, R1 → B1 and the source voltage e(t) → f (t).

2. Mass M2, dash-pot B2, and spring K2 all move with velocity v2. Hence, the mesh
current i2 → v2 flows through the series combination of L2 → M2, R2 → B2,
and C2 → 1/K2.

3. The velocity difference across K1 and B12 is (v1 − v2). Hence, frommesh currents
i1 and i2, a branch is created in which the current (i1 − i2) flows and the elements
C1 → 1/K1 and R12 → B12 are connected in series. This completes the F–V
analogous circuit and is shown in Fig. 1.68b.

Verification
For the mechanical system, for mass M1, the following equation is written:

M1
dv1

dt
+ B1v1 + B12(v1 − v2) + K1

∫
(v1 − v2)dt = f (t) (1.63)
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Fig. 1.68 a Electrical analogous circuits for Example1.64. b F–V analogy. c F–I analogy
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For mass M2, the following equation is written:

M2
dv2

dt
+ B2v2+ K2

∫
v2dt + B12(v2 − v1)

+ K1

∫
(v2 − v1)dt = 0 (1.64)

For the F–V electric circuit, the following equation is written for the mesh where i1
current flows:

L1
di1
dt

+ R1i1 + R12(i1 − i2) + 1

C1

∫
(i1 − i2)dt = e(t) (1.65)

For the mesh where i2 current flows, the following equation is written:

L2
di2
dt

+ R2i2+ 1

C2

∫
i2dt + R12(i2 − i1)

+ 1

C1

∫
(i2 − i1)dt = 0 (1.66)

Equation (1.63) is identical to Eq. (1.65) and Eq. (1.64) is identical to Eq. (1.66).
Hence F–V electric circuit drawn just by inspection of the mechanical system is
correct. Now let us consider F–I analogous circuit shown in Fig. 1.68c. At node e1,
the following equation is written:

C1
de1
dt

+ e1
R1

+ e1 − e2
R12

+ 1

L1

∫
(e1 − e2)dt = i(t) (1.67)

At node e2, the following equation is written:

C2
de2
dt

+ 1

R2
e2 + 1

L2

∫
e2dt + 1

R12
(e2 − e1) + 1

L1

∫
(e2 − e1)dt = 0 (1.68)

Equations (1.63) and (1.64) are identical to Eqs. (1.67) and (1.68) respectively. Hence
the F–I analog circuit represented in Fig. 1.68c is correct.

Example 1.65 Derive the transfer functions of the systems shown in Fig. 1.69 and
show these systems are analogous.

(Anna University, December 2004)

Solution For the mechanical system, at point A the following equation is written:

B
d

dt
(x0 − xi ) + K x0 = 0
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Fig. 1.69 Mechanical system and electric circuit for Example1.65

Taking Laplace transform on both sides and arranging the like terms, we get the TF
as

(Bs + K )x0(s) = Bs Xi (s)

Xi

X0
(s) = Bs

Bs + K
(1.69)

For the electric circuit, the following equations are written:

1

C

∫
idt + i R = e0

i R = e0

Taking Laplace transform on both sides of the above equations and dividing one by
the other, we get the TF of the network as

E0

Ei
(s) = R

(R + 1
Cs )

E0

Ei
(s) = Rs

(Rs + 1
C )

(1.70)

Comparison of Eqs. (1.69) and (1.70) shows the electric circuit drawn is F–V anal-
ogous circuit. Here E0 which is proportional to i is again proportional to velocity
v0 · R → B and C → 1/K . Ei is the source voltage which is equivalent to xi →
force. Hence the electric circuit shown is analogous to mechanical system.
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Example 1.66 Obtain the analogous electrical network for the mechanical system
shown in Fig. 1.70a.

(Anna University, December 2007)

Solution Force–Voltage Analogy

1. Single currents corresponding to the velocities v1, v2, and v3 are created as i1, i2,
and i3 respectively. In themeshwhere i1 current flows, L1 → M1 and e(t) → f (t)
are connected in series.

2. A branch is created in which the current flow is (i1 − i2) → (v1 − v2). In this
branch a resistor R1 → B1 is connected.

3. In the branch where i2 → v2 flows, L2 → M2 is connected.
4. From i2 and i3 current branches, a branch with current (i2 − i3) → (v2 − v3) is

created. In this branch the series combination of R2 → B2 and C1 → 1/K1 is
connected.

5. In the branchwhere i3 → v3 flows, L3 → M3 andC2 → 1/K2 series combination
is connected. This completes the F–V analogous electric circuit.

Verification by equations, F–V Analogy
For the mechanical system, for mass M1, the following equation is written:

M1
dv1

dt
+ B1(v1 − v2) = f (t) (1.71)

For mass M2, the following equation is written:

M2
dv2

dt
+ B2(v2 − v3) + B1(v2 − v1) + K1

∫
(v2 − v3)dt = 0 (1.72)

For mass M3, the following equation is written:.

M3
dv3

dt
+ B2(v3 − v2) + K1

∫
(v3 − v2)dt + K2

∫
v3dt = 0 (1.73)

Now consider the F–V analogous circuit shown in Fig. 1.70b. For the mesh where i1
current flows, the following equation is written:

L1
di1
dt

+ R1(i1 − i2) = e(t) (1.74)

For the mesh where i2 current flows, the following equation is written:

L2
di2
dt

+ R2(i2 − i3) + R1(i2 − i1) + 1

C1

∫
(i2 − i3)dt = 0 (1.75)
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K2

K1 B2

B1

f(t)

(a)

(b)

M3

M2

M1

v3
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i3 3

L1 M1 L2 M2 L3 M3

R1 B1
R2 B2

C1

(i1 i2) (i2 i3)

K1

1

C2 K2

1

f(t)

e(t)  1

Fig. 1.70 a Mechanical System for Example1.67. b F–V analogous circuit for Example1.66.
c F–I analogous circuit for Example1.66
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Fig. 1.70 (continued)

For the mesh where i3 current flows, the following equation is written:

L3
di3
dt

+ R2(i3 − i2) + 1

C1

∫
(i3 − i2)dt + 1

C2

∫
i3dt = 0 (1.76)

Equations (1.71), (1.72), and (1.73) are respectively analogous to Eqs. (1.74), (1.75),
and (1.76) and hence the circuit shown in Fig. 1.70b represents the F–V analogy of
the given mechanical system.
Verification by equations, F–I Analogy
Nowconsider the F–I analogous circuit shown in Fig. 1.70c. At node e1, the following
equation is written:

C1
de1
dt

+ 1

R1
(e1 − e2) = i(t) (1.77)

At node e2, the following equation is written:

C2
de2
dt

+ (e2 − e3)

R2
+ (e2 − e1)

R1
+ 1

L1

∫
(v2 − v3)dt = 0 (1.78)

At node e3, the following equation is written:

C3
de3
dt

+ (e3 − e2)

R2
+ 1

L1

∫
(e3 − e2)dt + 1

L2

∫
e3dt = 0 (1.79)

Equations (1.71), (1.72), and (1.73) of the given mechanical system are analogous
to the Eqs. (1.77), (1.78), and (1.79) of F–I analogous electric circuit.
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1.12 Analysis of First- and Second-Order Linear Systems

When the control system is excited by the input r(t), the output c(t) which is
expressed as a function of time t is known as time response of the system.When time
t tends to infinity, the output response reaches the steady state. Such a response is
called the steady-state response. The dynamic behavior of continuous-time system
is described by differential equation. The functional relationship between the output
and the input of a linear time invariant system is described by transfer function which
is defined as the ratio of the Laplace transform of the output variable to the Laplace
transform of the input variable with all initial conditions being zero. On the other
hand the dynamic behavior of a discrete time system is described by the difference
equation. The system function here is represented by means of z-transform whereas
for a continuous system it is represented by Laplace transform. The system func-
tion of linear continuous-time system as well as discrete-time system is expressed
in terms of poles and zeros. The values of s at which the transfer function becomes
infinity are called poles of Linear Time Invariant Continuous system (LTIC). The
poles are also known as the factors of the denominator polynomial. Similarly the
values of s at which the transfer function becomes zero are called zeros of the trans-
fer function of the systems. They are also the factors of the numerator polynomial
of the transfer function. On similar line the transfer function and poles and zeros of
discrete-time system are defined in the z-plane. For system performance analysis,
the transfer function is represented in the form of a block. A complex control system
when interconnected by numerous blocks can be ultimately reduced to a single block
with the system required output and the input. This is done bywhat is known as block
diagram reduction technique.

1.13 First-Order Continuous-Time System

1.13.1 System Modeling

Consider the following first-order differential equation with input r(t) and output
c(t):

dc(t)

dt
+ ac(t) = Kr(t) (1.80)

Taking Laplace transform on both sides, we get
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Fig. 1.71 Block diagram
representation of first-order
system

R(s) C(s)K

(s a)
G(s) 

(s + a)C(s) = k R(s)
C(s)

R(s)
= G(s)

= K

(s + a)
(1.81)

Equation (1.81) gives the transfer function of a first-order system. This is represented
in block diagram and is shown in Fig. 1.71.

1.13.2 Time Response of First-Order System

1.13.2.1 Impulse Response of First-Order System

The impulse input is defined as

δ(t) =
{
1, t = 0

0, otherwise

Here r(t) = δ(t)

R(s) = 1

From Eq. (1.81), for impulse input it is written as

C(s) = K

(s + a)
(1.82)

The impulse response of a first-order system is obtained by taking inverse Laplace
transform. Thus

c(t) = K e−at .

The impulse response curve is plotted and is shown in Fig. 1.72.
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Fig. 1.72 Impulse response
of a first-order system

t0

K
c(t)

1.13.2.2 Step Response of First-Order System

The unit step input is defined as follows:

r(t) =

⎧
⎪⎨

⎪⎩

u(t),

1, t ≥ 0

0, t ≤ 0

The Laplace transform of unit step input is

R(s) = 1

s

Substituting the above in Eq. (1.81), we get

C(s) = K

s(s + a)
(1.83)

The above equation is put into partial fraction as given below:

C(s) = A1

s
+ A2

s + a

= K

a

[
1

s
− 1

s + a

]

Taking inverse Laplace transform, we get

c(t) = K

a
[1 − e−at ] (1.84)

The transient response curve of Eq. (1.84) is shown in Fig. 1.73.
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Fig. 1.73 Step response of first-order system

Note: The time response for ramp input r(t) = t can be obtained by integrating
Eq. (1.84) and is given below:

c(t) = K

a2

[−1 + at + e−at
]

(1.85)

1.13.3 Time Domain Specifications

The following time domain specifications are defined for a first-order system:

(a) Time constant T .
(b) Rise time tr .
(c) Settling time ts .
(d) Time delay td .

1.13.3.1 Time Constant

The time constant T is defined as the time taken for the step response to reach 63.2%
of its final value for the first time. From Fig. 1.73, the time constant T is obtained as

T = 1

a
(1.86)
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It is to be noted here that the tangential line of the exponential curve has the slope at
t = 0 as K . Thus, if the time constant T is small, the response is fast and vice versa.

1.13.3.2 Rise Time tr

The rise time tr is defined as the time taken for the response to go from 10% to 90%
of its final value K T . From Eq. (1.84), at t = T1, let the output be 10% and t = T2

the output be 90%. Thus

0.1
K

a
= K

a
[1 − e−aT1 ]

0.9
K

a
= K

a
[1 − e−aT2 ]

Dividing the second equation by the first equation, we get

a = (1 − e−aT2)

(1 − e−aT1)

Taking loge on both sides, we get

2.2 = a(T2 − T1)

Substituting tr = (T2 − T1), the rise time is obtained as

tr = 2.2T (1.87)

1.13.3.3 Time Delay td

Time delay td is defined as the time taken for the response c(t) to reach 50% of
its final value for the first time. From Eq. (1.84), for 50% output, we may write the
following equation with t = td :

0.5 = 1 − e− td
T

e− td
T = 0.5

Taking ln on both sides, we get

td = 0.693T (1.88)
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1.13.3.4 Settling Time ts

Settling time ts is defined as the time taken for the response c(t) to reach and stay
within 2% of its final value for the first time. From Eq. (1.84) for 98% output, we
may write the following equation with t = ts :

0.98 = 1 − e
−ts
T

Taking ln on both sides, we get

ts = 3.91T (1.89)

For 5% error tolerance

ts = 3T

For 7% error tolerance

ts = 2.66T

It is to be noted that error tolerancemay be given as 5%, 7%, etc., and the correspond-
ing settling time is determined. Unless otherwise the error tolerance is specified it is
always taken as 2% error.
Summary of Time Domain Specifications of First-Order System

1. Time constant T = 1
a

2. Rise time tr = 2.2T
3. Time delay td = 0.693T
4. Settling time ts = 3.91T

Example 1.67 Consider the following T.F. of a certain first-order system.

G(s) = 10

(s + 10)

Derive an expression for the response of the system for r(t) = 5u(t). Find the time
constant, settling time, time delay, and rise time.
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Solution

C(s)

R(s)
= G(s) = 10

(s + 10)

R(s) = 5

s

C(s) = 50

s(s + 10)
= 5

[
1

s
− 1

s + 10

]

Taking inverse Laplace transform, we get

c(t) = 5[1 − e−10t ]

Time constant T = 1

10
= 0.1 s

Settling time ts = 3.91T = 0.391 s

Rise time tr = 2.2T = 0.22 s

Time delay td = 0.693T = 0.0693 s

T = 0.1 s

ts = 0.391 s

tr = 0.22 s

td = 0.0693 s

Example 1.68 A glass bulb thermometer reads 98.2% of its final value of temper-
ature 1min after immersing it in hot water. Determine the time constant, rise time,
time delay, and settling time for 5% error tolerance.

Solution The mercury thermometer is a first-order system. From Eq. (1.84), for
98.2% output, the time taken is 60 s.

K

a

[
1 − e

−60
T

]
= 0.982

K

a
4T = 60 s

T = 15 s

Rise time

tr = 2.2T

= 2.2 × 15

= 33 s
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Time delay

td = 0.693T

= 0.693 × 15

= 10.4 s

For 5% error tolerance, the settling time is

ts = 3T

= 3 × 15

= 45 s

T = 15 s

tr = 33 s

td = 10.4 s

ts = 45 s

1.14 Second-Order System Modeling

For model development of a general second-order system, consider the electrical
motor represented in block diagram form as shown in Fig. 1.74a. The system param-
eters are as follows:

J = Moment of inertia of motor not or in Kg.m2

B = Motor frictional coefficient in N-m/rad/s

K = Error detector constant in N-m/rad error

Torque developed by the motor is

Td(t) = K e(t) = K (r(t) − c(t))

This torque is to overcome the torque opposed by J and B under no load condition.
Thus

Tu(t) = J
d2c(t)

dt2
+ B

dc(t)

dt
Tu(t) = Td(t)

J
d2c(t)

dt2
+ B

dc(t)

dt
= K (r(t) − c(t)) (1.90)
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Error

Error detector

MOTOR
J, B

r(t) e(t) c(t)

R(s)

(b)

(a)

(c)

E(s) C(s)

C(s)n
2

(s2 2 ns n
2)

R(s)

G(s) 
n

2

s(s 2 n)

Fig. 1.74 a Block diagram representation of a second-order systems. Second-order system repre-
sentation. b open-loop form, c closed-loop form

Taking Laplace transform on both sides and expressing the ratio of the output variable
to the input variable, we get the following equation:

C(s)

R(s)
= K

(Js2 + Bs + K )
(1.91)

The denominator of Eq. (1.91) is a second-degree polynomial in s and therefore
Eq. (1.91) describes the dynamics of a second-order system. Equation (1.91) can be
written as

C(s)

R(s)
= K/J

(s2 + B
J s + K

J )
(1.92)
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Equation (1.92) can be written in a generalized form as given below:

C(s)

R(s)
= ω2

n

(s2 + 2ζωns + ω2
n)

(1.93)

where

ωn =
√

K

J
= Natural frequency of oscillation

ζ = B

2
√

K J
= Damping factor

Thus, natural frequency of oscillation and damping factor are the two parameters
of a generalized second-order system. The systems may be electrical, mechanical,
thermal, hydraulic, biological, or in any form. Equation (1.93) is represented in block
diagram form as shown in Fig. 1.74b and c which are in open-loop and closed-loop
forms respectively. Equation (1.93) is also called standard equation for a second-order
system.

Thenatural frequencyωn is definedas the frequencyof oscillation of a second-
order systemwithout damping. If the damping is provided to the system, the system
time response contains damped oscillations with exponential decay. Now consider
Eq. (1.93) which can be written as follows:

C(s)

R(s)
= ω2

n

(s + a1)(s + a2)
(1.94)

where a1 and a2 are the pole locations of Eq. (1.93) and they are expressed in terms
of ζ and ωn . For 0 ≤ ζ ≤ 1.

a1 = −ζωn + jωn

√
1 − ζ 2

a2 = −ζωn − jωn

√
1 − ζ 2 (1.95)

In the above case the system is said to be under-damped and the pole locations are
as shown in Fig. 1.75.

From Fig. 1.75, ωd = ωn

√
1 − ζ 2 is called damped frequency of oscillation. For

ζ = 1, the system is said to be critically damped and the pole locations are shown in
Fig. 1.76, which are repeated poles at s = −ωn .

If ζ > 1, the system is said to be over-damped. In this case, the poles are at

a1 = −ζωn + ωn

√
ζ 2 − 1

a2 = −ζωn − ωn

√
ζ 2 − 1 (1.96)

The pole locations are shown in Fig. 1.77.
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n j d

n j d

d n  1 2
tan 1 1 2

n

j

s-plane
n

Fig. 1.75 Pole location in the s-plane for complex conjugate poles for 0 ≤ ζ ≤ 1 (under-damped)

n

s-plane

Fig. 1.76 Pole location of a critically damped system (ζ = 1)

a1 n n   2 1)

a2 n n   2 1)

j

0

Fig. 1.77 Pole location of an over-damped system (ζ > 1)
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1.15 Time Response of a Second-Order System

1.15.1 Impulse Response

Consider Eq. (1.93),
C(s)

R(s)
= ω2

n

(s2 + 2ζωns + ω2
n)

For an impulse input,
R(s) = 1

The above equation is written as

C(s) = ω2
n

(s2 + 2ζωns + ω2
n)

(1.97)

The impulse response for the following cases are determined:

1. Under-damped case (ζ < 1).
2. Over-damped case (ζ > 1).
3. Critically damped case (ζ = 1).

1.15.1.1 Under-damped Case (ζ < 1)

For ζ < 1, the second-degree denominator polynomial of equation (1.97) is written
as follows:

C(s) = ω2
n

(s + ζωn + jωd)(s + ζωn − jωd)

where

ωd = ωn

√
1 − ζ 2 = Damped frequency of oscillation

Putting the above equation into partial fraction, we get

C(s) = A1

s + ζωn + jωd
+ A2

s + ζωn − jωd

= A1(s + ζωn − jωd) + A2(s + ζωn + jωd)

(s2 + 2ζωns + ω2
n)

ω2
n = A1(s + ζωn − jωd) + A2(s + ζωn + jωd)
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Put

s = −ζωn + jωd

ω2
n = A2(2 jωd)

A2 = ωn

j2
√
1 − ζ 2

A1 = Conjugate of A2

= −ωn

j2
√
1 − ζ 2

C(s) = ωn

j2
√
1 − ζ 2

[ −1

(s + ζωn + jωd)
+ 1

(s + ζωn − jωd)

]
1

j2
√
5

Taking inverse Laplace transform, we get

c(t) = ωn

j2
√
1 − ζ 2

[−e−(ζωn+ jωd )t + e−(ζωn− jωd )t
]

= ωn√
1 − ζ 2

e−ζωn t

[
e jωd t − e− jωd t

2 j

]

c(t) = ωn√
1 − ζ 2

e−ζωn t sinωn

√
1 − ζ 2t (1.98)

1.15.1.2 Critically Damped Case (ζ = 1)

Equation (1.97) for ζ = 1 is written as

C(s) = ω2
n

s2 + 2ωns + ω2
n

= ω2
n

(s + ωn)2

Taking inverse Laplace transform, we get

c(t) = ω2
nte−ωn t (1.99)
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1.15.1.3 Over-damped Case (ζ > 1)

Equation (1.97) for ζ > 1 is written as

C(s) = ω2
n

(s + ζωn + ωn

√
ζ 2 − 1)(s + ζωn − ωn

√
ζ 2 − 1)

= A1

(s + ζωn + ωn

√
ζ 2 − 1)

+ A2

(s + ζωn − ωn

√
ζ 2 − 1)

ω2
n = A1(s + ζωn − ωn

√
ζ 2 − 1) + A2(s + ζωn + ωn

√
ζ 2 − 1)

Put s = −ζωn − ωn

√
ζ 2 − 1

ω2
n = A1(−2ωn

√
ζ 2 − 1); A1 = −ωn

2
√

ζ 2 − 1

Put s = −ζωn + ωn

√
ζ 2 − 1

ω2
n = A2(2ωn

√
ζ 2 − 1); A2 = ωn

2
√

ζ 2 − 1

C(s) = ωn

2
√

ζ 2 − 1

[
−1

(s + ζωn + ωn

√
ζ 2 − 1)

+ 1

(s + ζωn − ωn

√
ζ 2 − 1)

]

Taking inverse Laplace transform, we get

c(t) = ωn

2
√

ζ 2 − 1
e−ζωn t

[
−e−ωn

√
ζ 2−1t + eωn

√
ζ 2−1t

]
(1.100)

The time response curves of Eqs. (1.98), (1.99), and (1.100) are shown in Fig. 1.78.

Example 1.69 Find the unit impulse response of the second-order system whose
T.F. is

G(s) = 9

(s2 + 4s + 9)

(Anna University, May 2005)

Solution
(s2 + 4s + 9) = (s + 2 + j

√
5)(s + 2 − j

√
5)

For an impulse input R(s) = 1. Hence
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t
0

c(t)

<1

>1

1

Fig. 1.78 Impulse response curves of a second-order system

C(s) = 9

(s + 2 + j
√
5)(s + 2 − j

√
5)

= A1

(s + 2 + j
√
5)

+ A2

(s + 2 − j
√
5)

9 = A1(s + 2 − j
√
5) + A2(s + 2 + j

√
5)

Put s = −2 − j
√
5

9 = A1(−2 − j
√
5 − j

√
5) + 0

A1 = −9

j2
√
5

A2 = 9

j2
√
5

C(s) = 9

[ −1

(s + 2 + j
√
5)

+ 1

(s + 2 − j
√
5)

]
1

j2
√
5

Taking inverse Laplace transform, we get

c(t) = 9√
5

[−e−(2+ j
√
5)t + e−(2− j

√
5)t ]

2 j

c(t) = 4e−2t sin
√
5t
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1.15.1.4 Importance of Impulse Response

1. If the area under the impulse response curve is finite, then the system is said to
be Bounded Input, Bounded Output (BIBO) stable.

2. From impulse response, by taking inverse Laplace transform the system transfer
function is obtained.

3. If impulse response is known, step response can be obtained by integrating it.

1.15.2 Step Response

Step response of a system is important for the following reasons:

1. It is easy to generate step signal and test the system in the laboratory.
2. The step signal is sufficiently drastic and if satisfactory step response is obtained,

then the system is likely to give satisfactory performance for other types of inputs.
3. From step response impulse response can be obtained by differentiating it and

useful information may be derived. Similarly from step response, ramp response
can be obtained by integrating it.

4. The application of step input is equivalent to the application of numerous sinu-
soidal signals with a wide range of frequencies.

1.15.3 Step Response of a Second-Order System

Consider Eq. (1.83).

C(s)

R(s)
= ω2

n

(s2 + 2ζωns + ω2
n)

For a step input of height R, the Laplace transform

R(s) = R

s

Substituting this in the above equation, we get

C(s) = Rω2
n

s(s2 + 2ζωns + ω2
n)

(1.101)
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1.15.3.1 Under-damped Response (ζ < 1)

For ζ < 1, Eq. (1.101) is written in the following form:

C(s) = Rω2
n

s(s + ζωn + jωd)(s + ζωn − jωd)

C(s) = A1

s
+ A2

(s + ζωn + jωd)
+ A3

(s + ζωn − jωd)
(1.102a)

Analytical Method of Determining the Residues A1, A2, and A3

Rω2
n = A1(s

2 + 2ζωns + ω2
n) + A2s(s + ζωn − jωd) + A3s(s + ζωn + jωd)

Putting s = 0 in the above equation, we get

Rω2
n = A1ω

2
n

A1 = R

Putting s = (−ζωn − jωd), we get

Rω2
n = A2(−ζωn − jωd)(− jωd − jωd)

A2 = R

j2
√
1 − ζ 2(ζ + j

√
1 − ζ 2)

= R∠−φ − π
2

2
√
1 − ζ 2

where tan φ =
√

1−ζ 2

ζ

A3 = A∗
2 = R∠φ + π

2

2
√
1 − ζ 2

Graphical Method of Determining the Residues
The residues of Eq. (1.102a) can also be determined as explained below. The poles
are located along with their residues as shown in Fig. 1.79.
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n j d

n j d

tan 1 2

n

n

j

s-plane

d

A3

A2

A1

Fig. 1.79 Poles and residue locations of Eq. (1.102a)

A1 = Rω2
n

ωn∠φωn∠−φ
= R

A3 = Rω2
n

ωn∠π − φ2ωd∠π
2

= R∠π
2 + φ

2
√
1 − ζ 2

A2 = A∗
3 = R∠−( π

2 + φ)

2
√
1 − ζ 2

The residues determined by analytical method are the same as obtained by graphical
method. However, the graphical method is simpler and quicker. Substituting the
above residues in Eq. (1.102a), we get

C(s) = R

[

1 + 1

2
√
1 − ζ 2

{
e− j ( π

2 +φ)

(s + ζωn + jωd)
+ e j ( π

2 +φ)

(s + ζωn − jωd)

}]
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Taking inverse Laplace transform, we get

c(t) = R

[

1 + e−ζωn t

2
√
1 − ζ 2

{
e− j ( π

2 +φ+ωd t) + e j ( π
2 +φ+ωd t)

}
]

= R

[

1 + e−ζωn t

√
1 − ζ 2

cos
(π

2
+ φ + ωd t

)
]

c(t) = R

[

1 − e−ζωn t

√
1 − ζ 2

sin(ωn

√
1 − ζ 2t + φ)

]

(1.102)

where φ is in radians and ωn = rad/s.

1.15.3.2 Critically Damped Response (ζ = 1)

For ζ = 1,
s2 + 2ζωns + ω2

n = (s + ωn)
2

Equation (1.21) can be written as

C(s) = R

s(s + ωn)2

= A1

s
+ A2

(s + ωn)2
+ A3

(s + ωn)

R = A1(s + ωn)
2 + A2s + A3s(s + ωn)

Put s = 0

A1 = R

ω2
n

Put s = −ωn

A2 = −R

ωn

Equating the coefficients of s2 terms, we get

0 = A1 + A3

A3 = −R

ω2
n

C(s) = R

ω2
n

[
1

s
− ωn

(s + ωn)2
− 1

s + ωn

]
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Taking inverse Laplace transform, we get

c(t) = R

ω2
n

[
1 − tωne−ωn t − e−ωn t

]
(1.103)

1.15.3.3 Over-damped Response (ζ > 1)

For over-damped case, the time response of a second system for step input can be
derived following the method described above. The time response is given below:

c(t) = R

[

1 + e−ωn(ζ+
√

ζ 2−1)t

2{ζ 2 − 1 + ζ
√

ζ 2 − 1} + e−ωn(ζ−
√

ζ 2−1)t

2{ζ 2 − 1 − ζ
√

ζ 2 − 1}

]

(1.104)

Using Eqs. (1.103), (1.104), and (1.105), the transient response curves are plotted as
shown in Fig. 1.80.

The pole locations in the s-plane and the transient response curves are shown in
Fig. 1.81.

0.4

0.6

0.8

2

1

t

R

c(t)

Fig. 1.80 Transient response curves of a second-order system



148 1 Representation of Signals and Systems
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Fig. 1.81 Pole locations and transient response of a second-order system
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1.15.4 Time Domain Specifications of a Second-Order System

The performance of a second-order system is measured by the following specifica-
tions.

1. Peak over-shoot Mp and % peak over-shoot % Mp.
2. Time at which the peak over-shoot occurs is peak time tp.
3. Time constant T .
4. Rise time tr .
5. Settling time ts .
6. Time delay td .

Expressions for the above specifications are derived in terms of the second-order
system parameters ζ and ωn . The transient response curve is shown in Fig. 1.82.

1.15.4.1 Peak Over-Shoot Mp

Peak over-shoot is defined as the amount by which the transient response waveform
over-shoots the steady value or the final value.

ttstp

Mp

trtd

Cfinal R

Cmax

0.5R

Tolerance errorc(t)

Fig. 1.82 Time domain specifications of a second-order system
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The peak over-shoot is denoted by MP . It is expressed as

MP = Cmax − Cfinal

The percentage over-shoot is expressed as

% MP = (Cmax − Cfinal)

Cfinal
× 100

Peak over-shoot can be expressed in terms of the system parameters ζ and ωn . This
occurs for the under-damped system response. Consider Eq. (1.103).

c(t) = R

[

1 − e−ζωn t

√
1 − ζ 2

sin(ωn

√
1 − ζ 2t + φ)

]

Cmax is obtained by differentiating c(t) with respect to t which gives tp, the time at
which the maxima occurs and substituting in Eq. (1.103).

dc(t)

dt
= R

[

1 − e−ζωn t

√
1 − ζ 2

ωn

√
1 − ζ 2

× cos(ωn

√
1 − ζ 2t + φ)

+e−ζωn t (ζωn) sin(ωn

√
1 − ζ 2t + φ)

√
1 − ζ 2

]

= 0
√
1 − ζ 2 cos(ωn

√
1 − ζ 2t + φ) = ζ sin(ωn

√
1 − ζ 2t + φ)

tan φ = tan(ωn

√
1 − ζ 2t + φ)

ωn

√
1 − ζ 2t = nπ where n = 0, 1, 2, . . .

For n = 1 maxima occurs and t = tp

tp = π

ωd

Cmax = R

⎡

⎣1 −
e −ζπ√

1−ζ 2

√
1 − ζ 2

sin(π + φ)

⎤

⎦ = R

[

1 + e
−ζπ√
1−ζ2

]
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MP = Cmax − Cfinal

= R + Re
−ζπ√
1−ζ2 − R

MP = Re
−ζπ√
1−ζ2 (1.105)

% MP = MP

R
× 100

% MP = e
−ζπ√
1−ζ2 × 100 (1.106)

1.15.4.2 Peak Time t p

The peak time tp is defined as the time at which the first maximum of transient
response waveform occurs. It is expressed as

tp = π

ωn

√
1 − ζ 2

(1.107)

1.15.4.3 Settling Time ts

The settling time ts is defined as the time required for the transient response to reach
and stay within the prescribed percentage error. The expression for the settling time
of a second-order system is derived as follows.

Let

± e−m × 100 where m = 1, 2, 3 . . . (1.108)

be the prescribed error within which the system transient response settles down.
Equation (1.105) represents the error and can be written as follows:

% MP = e
−ζπn
√
1 − ζ 2

× 100 (1.109)

where n = 0, 1, 2, . . .. For odd values of n over-shoots occur and for even values of
n under-shoots occur. For any error, Eqs. (1.107) and (1.108) are same. Thus,
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e−m = e
− ζπn√

1−ζ2

n = m
√
1 − ζ 2

ζπ
(1.110)

From Eq. (1.106), for any peak value of the response tp can be written as follows:

tp = nπ

ωn

√
1 − ζ 2

(1.111)

For the given error e−m , tp = ts . Substituting this in Eq. (1.111) and also for n from
Eq. (1.110), we get the following expression for the settling time:

ts = m
√
1 − ζ 2π

ζπωn

√
1 − ζ 2

ts = m

ζωn

ts = mT (1.112)

In Eq. (1.112), T = 1
ζωn

is called the time constant of the system.
Normally the permissible error prescribed for the settling time is 2%. In this case

e−m = 0.02

loge e−m = loge(0.02)

= −3.91

−m = −3.91

m = 3.91

ts = 3.91T
(1.113)

For 5% error, m = 3 and

ts = 3T

For 7% error, m = 2.66

ts = 2.66T
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1.15.4.4 Time Constant T

Time constant is defined as the time taken for the transient response to reach 62.3%
of its final value for the first time. From Eq. (1.112) it can be obtained as

T = 1

ζωn
(1.114)

1.15.4.5 Rise Time tr

Rise time tr is defined as the time taken for the transient response to go from 10%
to 90% of the final value. Sometimes, the rise time is also defined as the time taken
for the transient response to reach the final value for the first time. The expression
for the rise time is derived as follows using the second definition stated above. For
c(t) = R, Eq. (1.102) is written as follows:

R = R

[

1 − e−ζωn t

√
1 − ζ 2

sin(ωd t + φ)

]

(1.115)

Equation (1.115) gives the solution as

sin(ωd t + φ) = 0

= sin nπ where n = 0, 1, 2 . . .

ωd t + φ = nπ = π for n = 1

Substituting t = tr in the above equation, we get

tr = (π − φ)

ωn

√
1 − ζ 2

(1.116)

In Eq. (1.116) it is to be noted that φ is in radians.

1.15.4.6 Time Delay td

Time delay is defined as the time taken for the transient response to reach 50% of
the final value for the first time. The expression for the time delay is given by the
following empirical formula:

td = (1 + 0.7ζ )

ωn
(1.117)
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Summary of Time Domain Specifications of Second-Order System

1. Time constant T = 1
ζωn

2. Rise time tr = (π−φ)

ωn

√
1−ζ 2

3. Time delay td = (1+0.7ζ )
ωn

4. Settling time ts = mT

5. % Peak over-shoot % Mp = e
−ζπ√
1−ζ2 × 100

6. Time at which the peak over-shoot occurs tp = π
ωd

Example 1.70 Obtain the impulse and step responses of the following unity feed-
back control system with open-loop transfer function

G(s) = 6

s(s + 5)
.

(Anna University, December 2009)

Solution The given system is represented in block diagram form as shown in
Fig. 1.83. From Fig. 1.83, the following equation is derived:

C(s)

R(s)
= G(s)

1 + G(s)

= 6

s2 + 5s + 6

C(s)

R(s)
= 6

(s + 2)(s + 3)

For unit step input R(s) = 1

s
.

R(s) C(s)
G(s) 

s(s 5)
6

Fig. 1.83 System block diagram for Example1.70
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C(s) = 6

s(s + 2)(s + 3)
= A1

s
+ A2

s + 2
+ A3

s + 3
6 = A1(s + 2)(s + 3) + A2s(s + 3) + A3s(s + 2)

For s = 0
A1 = 1

For s = −2
A2 = −3

For s = −3
A3 = +2

C(s) = 1

s
− 3

s + 2
+ 2

s + 3

Taking inverse Laplace transform, we get

c(t) = 1 − 3e−2t + 2e−3t

The impulse response is obtained by differentiating the step response. If we denote
impulse response as h(t), then

h(t) = dc(t)

dt

h(t) = 6[e−2t − e−3t ]

Alternatively, the impulse response is obtained from first principle.

C(s)

R(s)
= 6

(s + 2)(s + 3)

For an impulse R(s) = 1

C(s) = H(s) = 6

(s + 2)(s + 3)

= 6

[
1

s + 2
− 1

s + 3

]

h(t) = 6[e−2t − e−3t ]
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It is to be noted that the poles of the closed-loop transfer function lie on the −ve real
axis of the s-plane and hence the system is over-damped.

Example 1.71 A certain unity negative feedback control system has an open-loop
transfer function.

G(s) = 10

s(s + 2)

Find the rise time, percentage over-shoot, peak time, and settling time for a step input
of 12 units.

(Anna University, December 2009)

Solution

G(s) = 10

s(s + 2)
C(s)

R(s)
= G(s)

1 + G(s)
= 10

s2 + 2s + 10

Comparing the above equation with the following standard second-order equation.

C(s)

R(s)
= ω2

n

s2 + 2ζωns + ω2
n

ωn = √
10

2ζωn = 2

ζ = 0.3162

Given R = 12 units. Using Eq. (1.105),

over-shoot Mp = Re
−ζπ
√
1 − ζ 2

= 12e
−0.3162π√
1−0.31622

Mp = 4.2 units

% over-shoot = Mp

R
× 100

= 4.2

12
× 100

% Mp = 35%
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Using Eq. (1.111), the peak time is obtained.

tp = π

ωn

√
1 − ζ 2

= π√
10
√

(1 − 0.31622)

tp = 1.05 s

The rise time is obtained using Eq. (1.116)

tr = (π − φ)

ωn

√
1 − ζ 2

ωn

√
1 − ζ 2 = √

10
√
1 − 0.31622

= 3

cosφ = ζ

φ = cos−1 0.3162

= 1.25 rad

tr = (π − 1.25)

3

tr = 0.63 s

The settling time is obtained using Eq. (1.113). Here 2% error tolerance is taken.
Hence, m = 3.91.

Time constant, T = 1

ζωn

= 1

0.3162
√
10

T = 1 s

ts = mT

ts = 3.91 s
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Answers:
Mp = 4.2 units

% Mp = 35%

tp = 1.05 s

tr = 0.63 s

T = 1 s

ts = 3.91 s

Example 1.72 Figure1.84 shows a unity feedback system. Calculate ζ andωn when
K = 0. Also calculate K when ζ = 0.6.

(Anna University, December 2009)

Solution The given block diagram is reduced and represented as shown in Fig. 1.85.
From Fig. 1.85, the following equation is written:

C(s)

R(s)
= 64

s2 + (K + 4)s + 64

Compare this with the following standard second order by

C(s)

R(s)
= ω2

n

(s2 + 2ζωns + ω2
n)

R(s) C(s)

s(s 4)

1

Ks

64

Fig. 1.84 Block diagram of Example1.72

R(s) C(s)
s(s K 4)

64

Fig. 1.85 Reduced block diagram of Fig. 1.84
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For K = 0;

ωn = √
64 = 8

2ζωn = 4

ζ = 0.25

For ζ = 0.6;

2ζωn = K + 4

K = 2 × 0.6 × 8 − 4

K = 5.6

Answers:
For K = 0; ζ = 0.25

ωn = 8

For ζ = 0.6; K = 5.6

Summary

1. Signals are broadly classified as continuous-time (CT) and discrete-time (DT)
signals. They are further classified as deterministic and stochastic, periodic and
non-periodic, odd and even, and energy and power signals.

2. Basic CT signal includes impulse, step, ramp, parabolic, rectangular pulse, tri-
angular pulse, signum function, sinc function, sinusoid, and real and complex
exponentials.

3. Basic operations on CT signals include addition, multiplication, amplitude scal-
ing, time scaling, time shifting, reflection or folding, and amplitude inverted
signals.

4. In time shifting of CT signal, for x(t + t0) and x(−t − t0) the time shift is made
to the left of x(t) and x(−t) respectively by t0. For x(t − t0) and x(−t + t0) the
time shift is made to the right of the x(t) and x(−t) respectively by t0.

5. To plot CT signal, the operation performed is in the following sequence. The
signal is folded (if necessary), time shifted, time scaled, amplitude scaled and
inverted.

6. Signals are classified as even signals andodd signals. Even signals are symmetric
about the vertical axis whereas odd signals are anti-symmetric about the time
origin. Odd signals pass through the origin. The product of two even signals or
two odd signals is an even signal. The product of an even and an odd signal is
an odd signal.

7. A CT signal which repeats itself for every T seconds or a DT signal for every
N sequence is called a periodic signal. If the signal is not periodic it is called an
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aperiodic or non-periodic signal. The necessary condition for the composite of
two ormore signals to be periodic is that the individual signal should be periodic.

8. A signal is an energy signal iff the total energy of the signal satisfies the condi-
tion 0 < E < ∞. A signal is called a power signal iff the average power of the
signal satisfies the condition 0 < P < ∞. If the energy of a signal is finite, the
average power is zero. If the power of the signal is finite, the signal has infinite
energy. All periodic signals are power signals. However, all power signals need
not be periodic. Signals which are deterministic and non-periodic are usually
energy signals. Some signals are neither energy signal nor power signal.

9. The system is broadly classified as continuous- and discrete-time system.
10. The CT and DT systems are further classified based on the property of causality,

linearity, time invariancy, invertibility, memory, and stability.
11. The definitions of the above properties are given which are same for both CT

and DT systems. Illustrative examples are given to explain these properties.
12. For the first-order and second-order system, the transfer functions are derived

and their impulse and step responses are determined.
13. From step responses of first- and second-order systems, the time domain specifi-

cations are defined and analytical expressions for these specifications are derived
in terms of system parameters.

14. Poles and zeros of continuous- and discrete-time systems are defined and they
are located in the complex s-plane and z-plane respectively.

Exercise

I. Short Answer Type Questions

1. How are signals classified?
Signals are generally classified as CT and DT signals. They are further classified
as deterministic and non-deterministic, odd and even, periodic and non-periodic,
and power and energy signals.

2. What are odd and even signals?
A continuous CT signal is said to be an even signal if it satisfies the condition
x(−t) = x(t) for all t . It is said to be an odd signal if x(−t) = −x(t) for all t .

3. How even and odd components of a signal are mathematically expressed for
CT and DT signals?

xe(t) = 1

2
[x(t) + x(−t)]

x0(t) = 1

2
[x(t) − x(−t)]
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4. What are periodic and non-periodic signals?
A continuous-time signal is said to be a periodic signal if it repeats itself for
every T sec. It satisfies the condition x(t) = x(t + T ) for all t . A signal which
is not periodic is said to be non-periodic.

5. What is the fundamental period of a periodic signal? What is fundamental
frequency?
A CT signal is said to be periodic if it satisfies the condition x(t) = x(t + T ). If
this condition is satisfied for T = T0, it is also satisfied for T = 2T0, 3T0, . . ..
The smallest value of T that satisfies the above condition is called fundamental
period. The fundamental frequency f0 = 1

T0
Hz. It is also expressed as ω0 =

2π
T0

rad/s.
6. What are power and energy signals?

For a CT signal, the total energy is defined as

E = Lt
T →∞

∫ T

−T
|x(t)|2dt

and the average power is defined as

P = Lt
T →∞

1

2T

∫ T

−T
|x(t)|2dt

The square root of P is called root mean square (RMS) value of x(t).
7. What is the condition that the signal x(t) = eat u(t) to be energy signal?

For the signal x(t) = eat u(t) to be energy signal a < 0.
8. Is the unit step signal an energy signal?

The unit step has an average power P = 1
2 . It is a power signal.

9. Determine the power and RMS value of the signal x(t) = e jat cosω0 t?
Average power P = 1

2 and RMS power PRMS = 1√
2
.

10. What is the periodicity of x(t) = e j100π t+30◦
?

The periodicity of the signal x(t) is T = 1
50 s.

11. Find the equivalence of the following functions (a) δ(at); (b) δ(−t); (c) tδ(t);
(d) sin tδ(t); (e) cos δ(t); (f) x(t)δ(t − t0)?

(a) δ(at) = 1

a
δ(t)

(b) δ(−t) = δ(t)

(c) tδ(t) = 0

(d) sin tδ(t) = 0

(e) cos tδ(t) = δ(t)

(f) x(t)δ(t − t0) = x(t0)
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12. How do you represent an everlasting exponential e−at for t ≥ 0 and t < 0?
The everlasting exponential e−at is expressed as e−at u(t) for t ≥ 0 and e−at u(−t)
for t < 0.

13. Find the value of t2+5
t2+6δ(t − 2).

(t2 + 5)

(t2 + 6)
δ(t − 2) = 0.9 δ(t − 2)

14. Find the odd and even components of e j2t .

xe(t) = cos 2t

x0(t) = sin 2t

15. What are the properties of systems?
Systems are generally classified as continuous- and discrete-time systems. Fur-
ther classifications of these systems are done based on their properties which
include (a) linear and non-linear, (b) time invariant and time variant, (c) static
and dynamic, (d) causal and non-causal, (e) stable and unstable and (f) Invertible
and non-invertible.

16. Define system. What is linear system?
A system is defined as the interconnection of objects with a definite relationship
between objects and attributes.
A system is said to be linear if the weighted sum of several inputs produce
weighted sum of outputs. In other words, the system should satisfy the homo-
geneity and additivity of super position theorem if it is to be linear. Otherwise it
is a non-linear system.

17. What is time invariant and time varying system?
A system is said to be time invariant if the output due to the delayed input is same
as the delayed output due to the input. If the continuous-time system is described
by the differential equation its coefficients should be time independent for the
system to be time invariant. In the case of discrete-time system, the coefficients
of the difference equation describing the system should be time independent
(constant) for the system to be time invariants. If the above conditions are not
satisfied the system (CT as well as DT) is said to be time variant.

18. What are static and dynamic systems?
If the output of the system depends only on the present input, the system is said
to be static or instantaneous. If the output of the system depends on the past and
future input, the system is not static and it is called dynamic system. Static system
does not requirememory and so it is calledmemoryless system. Dynamic system
requires memory, and hence it is called system with memory. Systems which are
described by differential and difference equations are dynamic systems.
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19. What are causal and non-causal systems?
If the system output depends on present and on past inputs, it is called causal
system. If the system output depends on future input it is called non-causal
system.

20. What are stable and unstable systems?
If the input is bounded and output is also bounded, the system is called BIBO
stable system. If the input is bounded and the output is unbounded, the system
is unstable. System whose impulse response curve has finite area is also called
stable systems.

21. What are invertible and non-invertible systems?
A system is said to be invertible if the distinct inputs give distinct outputs.

22. State the condition for a discrete-time LTI system to be causal and stable.
(Anna University, 2008)
A discrete-time LTI system is said to be causal and stable if the poles of the
transfer function all lie in the left half s-plane and the Region of Convergence
(ROC) is to the right of the rightmost pole.

23. Check whether the system having the input–output relation

y(t) =
∫ t

−∞
x(τ)dτ

is linear and time invariant. (Anna University, 2004)
The system is linear. (See Example2.2(f)) By differentiating the above equation,
we get

dy(t)

dt
= x(t)

The coefficient of the differential equation is time independent and is constant.
Hence, it is a time invariant system.

24. Check whether the system classified by

y( y) = ex(t)

is time invariant or not? (Anna University, 2007)

y(t, t0) = ex(t−t0)

y(t − t0) = ex(t−t0)

y(t, t0) = y(t − t0)

The system is time invariant.
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25. Determinewhether the systemdescribedby the following input–output rela-
tionship is linear and causal.

y(t) = x(−t)

(Anna University, 2007)
The system is linear and non-causal.

26. Is the system y(t) = cos t x(t − 5) time invariant?

y(t, t0) = cos t x(t − t0 − 5)

y(t − t0) = cos(t − t0)x(t − t0 − 5)

y(t, t0) �= y(t − t0)

The system is not time invariant.
27. What do you understand by transient response of a system?

The study of different variables in the system as a function of time when the
input/disturbance is applied is called transient response of the system.

28. What are first- and second-order systems?
A system described by the first-order differential equation is called a first-order
system. The system dynamics when described by a second-order differential
equation is called a second-order system.

29. What is a standard second-order system equation?
Any second-order system whether it is mechanical, electrical, hydraulic, pneu-
matic, or chemical process can be modeled by a second-order dynamic equation
in terms of damping factor ζ and natural frequency of oscillation ωn . Such a
system has the following T.F.:

C(s)

R(s)
= ω2

n

(s2 + 2ζωns + ω2
n)

30. What are the time domain specifications of a first-order system?
The time domain specifications of a first-order system are

(a) Time constant T ,
(b) Rise time tr ,
(c) Time delay td , and
(d) Settling time ts .

31. What are the time domain specifications of a second-order system?
The time domain specifications of a second-order system are

(a) Time constant T ,
(b) Rise time tr ,
(c) Time delay td ,
(d) Settling time ts ,
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(e) Peak over-shoot Mp, and
(f) The time at which the peak over-shoot occurs tp (peak time).

32. How second-order system is identified according to the nature of damping?
The second-order system is identified according to the damping as follows:

(a) Under-damped for ζ < 1.
(b) Critically damped for ζ = 1.
(c) Over-damped for ζ > 1.

33. How location of poles are identified in the s-plane according to the +ve
damping?
For under-damped system, the poles are complex conjugate in the left half s-
plane (LHP). For critical damping, the two poles are identical in magnitude and
located on the negative real axis. For over-damped system, the two poles are
located on the negative real axis at two different points.

34. What do you understand by negative damping?
Negative damping makes the system unstable. For a second-order system, the
one pole lies in RHP of the s-plane.

35. What is damped frequency of oscillation of a second-order system?
The natural frequency and damped frequency of oscillation are related as

ωd = ωn

√
1 − ζ 2

The damped frequency of oscillation for a stable system will always be less than
the natural frequency of oscillation ωn .

36. How system function is defined for a CT system?
For a continuous-time system, the system function is defined as the ratio of the
Laplace transform of the output variable to the Laplace transform of the input
variable.

II. Long Answer Type Questions

1. A triangular pulse signal x(t) is shown inFig. 1.77a. Sketch the following signals.
(a) x(4t); (b) x(4t + 3); (c) x(−3t + 2); (d) x( t

3 + 2); (e) x(3t − 2); (f) x(4t +
3) + x(2t).

2. Sketch the following CT functions. (a) x(t) = 8u(5 − t); (b) x(t) = 3δ(t + 2);
(c) x(t) = ramp(t + 1); (d) x(t) = 5rect (t+1)

4 ; (e) x(t) = −tri t−1
4 ; (f) x(t) =

u(t) − u(t − 5); (g) x(t) = u(t) − u(t + 5); (h) x(t) = −ramp(t)u(t − 3); (i)
x(t) = u(t)(t + 1

3 )ramp( 13 − t); (j) x(t) = rect(t + 2) − rect(t − 2).
3. Determine whether each of the following CT signals are periodic. If periodic

determine the fundamental period (Figs. 1.86 and 1.87).
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(a) x(t)

t1 110

1

(b) x(4t)

t1
4

0

1

1
4

(c) x(4t 3)

t3
4

0

1

1
2

t
3

9 6 3

(e) x(  2)

t0

1

1

(d) x( 3t 2)

t1
3

0 2
3

1

(g) x(4t 3) x(2t)

t1
2

01
2

3
4

1

1

(f) x(3t 2)

t1
3

0 2
3

Fig. 1.86 Basic signal operations as applied to a triangular CT signal

(a) x(t) = e j2t

(b) x(t) = e(−2+ j3)t

(c) x(t) = sin
(
60π t + π

4

)

(d) x(t) = cos
(
60π t − π

4

)
− sin 20π t

(e) x(t) = sin
(
8π t + π

3

)
+ 5 cos

(
π t

3
+ π

2

)

+ 6 cos
(
7π t − π

2

)

(f) x(t) = 30 sin
(
8π t + π

3

)
cos
(
2π t + π

2

)
sin
(
5π t − π

2

)

(a) Periodic with period T0 = π sec. (b) Not periodic. (c) Periodic. T0 = 1
30 s.

(d) Periodic T0 = 1
10 s. (e) Periodic T0 = 6s. (f) Periodic T0 = 2 s.

4. Sketch the even and odd parts of the following signals shown in Fig. 1.88a and b.
5. Consider the CT signal x(t) = δ(t + 4) − δ(t − 4). Sketch

∫
x(t)dt and find

the energy of the signal (Fig. 1.89).
Energy E = 8.

6. Find the energy of the following CT signal. (a) x(t) = tri3t ; (b) x(t) = 2tri( t
2 );

(c) x(t) = rect10t ; (d) 2 rect( t
10 ); (e) sin(2π t).

(a) E = 2
9 ; (b) E = 16

3 ; (c) E = 1
5 ; (d) E = 80; (e) E = 1

2 .
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8u(5 t)

t0 5

8

(a) (b) 3 (t 2)

tt 02

3

(c) ramp(t 1)

t0

1

1

5rect(     )

t0 35

1

1

5

(d)

4
t 1

u(t ) ramp (  t)

t0

(i)

u(t) u(t 5)

t0 5

1

(f)

rect(t 2) rect(t 2)

t1

1

1

1

3
3

(j)

ramp(t)u(t 3)

t
43

(h)

u(t) u(t 5)

t

(g)

tri(     )

t
53 0 1

(e) 4
t 1

5

1

1
3

1
3

1
3

1
3

1
3

Fig. 1.87 Basic signal operations as applied to a CT signal x(t) = 8u(5 − t)



168 1 Representation of Signals and Systems

x(t)

t0 2

2

xe(t)

t0 22

1

x0(t)

t2
2

1

1

x(t)

t0 1 2

1

(a)

(c)
(d)

(f)
(e)

(b)

2

xe(t)

t

1
2

0 1 21

2

x0(t)

1
2

0 1 2
1

1
2

Fig. 1.88 Even and odd signals of CT signals

Fig. 1.89 Basic signal
operation as applied to CT
rectangular signal

t0 44

[ (t 4) (t 4)]dt
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Fig. 1.90 Triangular wave

t

x(t)

0

1

21 3 4 5 6

7. What is the average power of the triangular wave shown in Fig. 1.90?
Average power P = 1

3 W.
8.

y(t) = d
dt

[e−2t x(t)]

(a) The system response requires memory. Hence, it is dynamic.
(b) The output depends on the present input only. Hence, it is causal.
(c) The output due to the delayed input is not the same as the delayed output.

Hence, it is time variant.
(d) The weighted sum of the output is the same as output due to weighted sum

of the input. Hence, the system is linear.
(e) Since d

dt (e
−2t x(t)) is bounded y(t) is also bounded, and hence the system

is stable.

9.
y(t) = x(t) + 10x(t − 5) t ≥ 0

(a) The output response depends on present and past inputs. Hence, it is
dynamic.

(b) The output does not depend on the future input. Hence, it is causal.
(c) The output due to the delayed input is same as the delayed output. Hence,

the system is time invariant.
(d) The weighted sum of the output is the same as output due to the weighted

sum of the input. Hence, it is linear.
(e) As long as the input x(t) is bounded, x(t − 5) is also bounded. Hence, y(t)

is bounded. The system is stable.

10.
y(t) = x(10t)

(a) The system response depends on present, past, and future inputs. Hence, it
is dynamic.

(b) Since the output depends on the future input, it is non-causal.
(c) The output due to the delayed input is not the same as the delayed output.

Hence, the system is time variant.
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(d) The weighted sum of the output is the same as output due to the weighted
sum of the input. Hence, it is linear.

(e) If the input is bounded, the output is also bounded. The system is stable.

11.

y(t) = x
(

t
10

)

The output depends on present, past, and future inputs.

(a) The system is dynamic.
(b) The system is non-causal.
(c) The output due to the delayed input is not the same as the delayed output.

The system is time variant.
(d) Theweighted sumof theoutputwill be the sameas output due to theweighted

sum of the input. The system is linear.
(e) If the input x( t

10 ) is bounded, the output is also bounded. The system is
stable.

12.

y(t) = d
dt

x(t − 4)

(a) The system requires memory and so it is dynamic.
(b) The output depends on present and past inputs. Hence, it is causal.
(c) The output due to the delayed input is same as the delayed output. The

system is time invariant.
(d) The weighted sum of the output is the same as output due to the weighted

sum of the input. The system is linear.
(e) If the input is bounded, the output is also bounded. The system is stable.

13. Consider the system shown in Fig.1.91. Derive expressions for the impulse
response and unit step response of the system. Also determine T , tr , td , ts
for step input.
Ans:

C(s)

R(s)
= 10

s + 12

R(s) C(s)
G(s) 

(s 2)

10

Fig. 1.91 First-order system for Question 13
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R(s) C(s)
G(s) 

s(s 4)

13

Fig. 1.92 Second-order system for question 14

Impulse response, h(t) = 10e−2t u(t)

Unit step response, c(t) = 10

12

[
1 − e−12t

]
u(t)

Time constant, T = 1

12
s.

Rise time, tr = 2.2

12
= 0.1833 s.

Time delay, td = 0.693

12
= 0.05775 s.

Settling time for 2% error tolerance, ts = 3.91

12
= 0.3258 s.

14. Consider the second-order system shown in Fig.1.92. The system is sub-
jected to unit step input. Derive the expression for the output variable.
Determine the time domain specifications T , ts, td , Mp, and tp. What is the
resonant peak Mr and resonant frequency ωr in the frequency domain?
Ans:

c(t) = [1 − 1.2e−2t sin(3t + 0.98)
]

Rise time, tt = 0.72 s

Time constant, T = 0.5 s

Settling time, ts = 1.955 s

Time delay, td = 0.3857 s

Peak time, tp = 1.05 s

% over-shoot %, Mp = 12.3%

Resonant peak, Mr = 1.0828

Resonant frequency, ωr = 2.23 rad/s

15. Explain why system is tested for impulse and step inputs.
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M1

K1 K2

f(t)

K3

B1 B2

v1

M2

v2

(a)

(b)

(c)

i1

L1 M1

R1 B1 R2 B2

L2 i2
M2

(i1 i2)

C2 K2

1

C1 K1

1

C3 K3

1
f(t)

e(t)  1

e1
e2

L1

K1

1

C2

B1

1

K2

1

L3

K3

1

B2

1f(t)

l(t) C1

M1

R1 R2

L2

M2

Fig. 1.93 a Mechanical translational system. b F–V analogous circuit. c F–I analogous circuit

16. Consider the mechanical system shown in Fig.1.93a. Draw the F–V and
F–I analogous circuits and verify by writing down the dynamic equations
describing the given system and the electric circuit so drawn.
For the mechanical system, the following equations are written:

M1
dv1

dt
+ B1v1 + K2

∫
(v1 − v2)dt + K1

∫
v1(t) = f (t)

M2
dv2

dt
+ B2v2 + K3

∫
v2dt + K2

∫
(v2 − v1)d(t) = 0
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For F–V analog circuit, the equations are

L1
di1
dt

+ i1R1 + 1

C2

∫
(i1 − i2)dt + 1

C1

∫
i1dt = e(t)

L2
di2
dt

+ i2R2 + 1

C3

∫
i2dt + 1

C2

∫
(i2 − i1)dt = 0

For F–I analog circuit, the equations are

C1
de1
dt

+ e1
R1

+ 1

L2

∫
(e1 − e2)dt + 1

L1

∫
e1dt = e(t)

C2
de2
dt

+ e2
R2

+ 1

L3

∫
e2dt + 1

L2

∫
(e2 − e1)dt = 0



Chapter 2
Fourier Series Analysis
of Continuous-Time Signals

Chapter Objectives

• To represent the periodic continuous-time signal by trigonometric Fourier
series.

• To represent the CT signal by polar Fourier series.
• To determine the exponential Fourier series and Fourier spectra.
• To establish the properties of Fourier series.
• To establish Parseval’s theorem and Dirichlet conditions.

2.1 Introduction

Sinusoidal input signals are often used to study the response of the system which
gives useful informations. If a linear time invariant system is excited by a complex
sinusoid, then the output response is also a complex sinusoid of the same frequency
as the input. However, the amplitude of such a sinusoid is different from the input
amplitude and also has a phase shift. The study of input–output if the input frequency
is varied in the range 0 ≤ ω ≤ ∞ is termed as the frequency response of the sys-
tem. The frequency response gives the steady-state response of the system which is
the function of sinusoid’s frequency. The frequency response is usually represented
in graph by its magnitude and phase as a function of frequency. Several methods
have been suggested in literature such as polar plot, Bode plot, and Nichols plot.
Each method has its own merits. If the system is excited by the signal which is a
weighted superposition of the complex sinusoids, then the system output is also a
weighted superposition of the system response to each complex sinusoid. Thus, any
arbitrary excitation signal x(t) can be expressed as a linear combination of complex
sinusoids. The output is obtained by summing up the responses to the individual
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complex sinusoids using superposition. However, expressing any arbitrary real func-
tion as a linear combination of complex sinusoids is a matter of concern. Baron
Jean Baptiste Joseph Fourier (1768–1830), a French mathematician, represented
an arbitrary signal x(t) in the form of a linear combination of complex sinusoids
and is called as Fourier Series. In a Fourier series representation of a periodical
signal, the higher frequency sines and cosines have frequencies that are integer mul-
tiples of the fundamental frequency. These multiples are called harmonic numbers.
The study of signals using sinusoids has widespread applications in every branch of
science and engineering. This great mathematical poem which finds wide applica-
tions in modern communication, signal processing, antenna design, and several other
fields was not shown much enthusiasm by the scientific world during its inception.
Fourier could not get the results published for the lack of mathematical rigor. The
vehement opposition came from his fellow country men and great mathematical wiz-
ards Lagrange and Laplace. However, 15 years later, after several tireless attempts,
Fourier successfully published the results in the form of text which is a classic now.

Fourier, born on 21-03-1768 in France, was the son of a tailor. Being orphaned at
the age of eight, Fourier was educated in a local military college where he showed
his brilliance in mathematics. When the French revolution broke out, many intel-
lectuals decided to leave France to save themselves from the growing barbarism.
Fourier escaped guillotine twice. Napoleon Bonaparte, a soldier scientist, captured
power in France after the historical French revolution and stopped prosecution of
intellectuals. The French ruler, who himself was a great scientist, appointed Fourier
chair of mathematics academy in which he served with distinction when he was
just 26years of age. He was honored as the Baron of the empire by Napoleon in
1809. When Napoleon was exiled by King Louis XVIII, Fourier was identified as a
Bonapartist and was treated with all disgrace. Napoleon came back to power within
a year of his exile from Elba. However he was defeated by the English captain
Nelson in the Battle of Waterloo and the great warrior scientist died in 1821 at St.
Helena Island where he was exiled for the second time. Fourier should have again
become an orphan but for the help of his former student who was now a prefect of
Paris. He was appointed as the statistical bureau of the Seine, and subsequently in
1827 elected to the powerful position of Secretary of the Paris Academy of Science.

While carrying out investigations on propagation of heat in solid bodies, Fourier
was able to establish the Fourier series and Fourier integral. In 1807, when he was
40years of age, Fourier published his results. He claimed that any arbitrary function
can always be expressed as a sumof sinusoids. For the lack of rigor and generality, the
judges who included the great French mathematicians Lagrange, Laplace, Legendre,
Monge, and Lacroix criticized Fourier’s work for the lack of rigor but appreciated
the novelty and importance of the work. Fourier could not defend the criticisms since
the necessary tools were not available to him at that time. However in the year 1829,
Dirichlet proved most of the claims of Fourier by putting a few restrictions (Dirichlet
conditions).
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Fifteen years after the paper was rejected mainly due to the vehement opposition
given by Lagrange and to some extent by Laplace, Fourier published his results in
expanded form as a text which has now become a classic in the area of mathematics,
science, and engineering applications. The great mathematician who laid the foun-
dation for the signal representation and analysis died on 16-05-1830, when he was
63years old.

2.2 Periodic Signal Representation by Fourier Series

A continuous-time signal x(t) is said to be periodic if there is a positive non-zero
value of T for which

x(t + T ) = x(t) for all t (2.1)

The fundamental period T0 of x(t) is the smallest positive value of T for which
Eq. (2.1) is satisfied. 1

T0
is called fundamental frequency f0 and ω0 = 2π

T0
is called

fundamental radian frequency. The real sinusoidal signal

x(t) = cos(ω0t + φ) (2.2)

and the complex exponential signal

x(t) = e jω0t (2.3)

have been proved in Chap.1 as periodic signals as Eq. (2.1) is applicable in the above
cases.The prerequisite for the representation of any arbitrary continuous signal
x(t) in Fourier series is that it should be periodic. Non-periodic signals cannot
be represented by Fourier series but can be represented by Fourier transform
which is discussed later.

2.3 Different Forms of Fourier Series Representation

Any arbitrary real or complex x(t) signal which is periodic with fundamental period
T0 can be expressed as a sum of a sinusoid of period T0 and its harmonics. They are
represented in the following forms of Fourier series:

1. Trigonometric Fourier series.
2. Complex exponential Fourier series.
3. Polar or harmonic form Fourier series.

The above Fourier series representations are described below with illustrated exam-
ples.
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2.3.1 Trigonometric Fourier Series

Consider any arbitrary continuous-time signal x(t). This arbitrary signal can be split
up as sines and cosines of fundamental frequency ω0 and all of its harmonics are
expressed as given below:

x(t) = a0 +
∞∑

n=1

an cos nω0t + bn sin nω0t (2.4)

Equation (2.4) is the Fourier series representation of an arbitrary signal x(t) in
trigonometric form.

In Eq. (2.4), a0 corresponds to the zeroth harmonic or DC. The expression for the
constant term a0 and the amplitudes of the harmonic can be derived as

a0 = 1

T0

∫

T0

x(t) dt (2.5)

an = 2

T0

∫

T0

x(t) cos nω0t dt (2.6)

bn = 2

T0

∫

T0

x(t) sin nω0t dt (2.7)

In Eqs. (2.5), (2.6) and (2.7)

T0 = 1

f0
= 2π

ω0

T0 = Fundamental period of x(t) in seconds;
f0 = Fundamental frequency in Hz;

ω0 = Radian frequency in rad/second.

For the detailed derivation of the above equations, one may refer to standard
textbooks. Equation (2.4) is valid iff x(t) is periodic.

To Prove the periodicity of x(t)

The periodicity x(t) is proved if x(t) = x(t + T0). Substituting (t + T0) in place of
t in Eq. (2.4), the following equation is obtained:
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x(t + T0) = a0 +
∞∑

n=1

an cos nω0(t + T0) +
∞∑

n=1

bn sin nω0(t + T0)

= a0 +
∞∑

n=1

an cos(nω0t + nω0T0) +
∞∑

n=1

bn sin(nω0t + nω0T0)

x(t + T0) = a0 +
∞∑

n=1

an cos(nω0t + 2πn) +
∞∑

n=1

bn sin(nω0t + 2πn)

= a0 +
∞∑

n=1

an cos(nω0t) +
∞∑

n=1

bn sin nω0t

x(t + T0) = x(t) (2.8)

Thus, it is established, if x(t) is periodic, at t = T0 every sinusoid starts and repeats
the same over the next T0 seconds and so on. The following points are to be noted
while the coefficients a0, an , and bn are determined. It can be proved that

1. If the periodical signal x(t) is symmetrical with respect to the time axis, then the
coefficient a0 = 0.

2. If the periodical signal x(t) represents an even function, only cosine terms in FS
exist and therefore bn = 0.

3. If the periodical signal x(t) represents an odd function, only sine terms in FS exist
and therefore an = 0.

2.3.2 Complex Exponential Fourier Series

By using Euler’s identity, the complex sinusoids can always be expressed in terms of
exponentials. Thus, the trigonometric Fourier series of Eq. (2.4) can be represented
as

x(t) =
∞∑

n=−∞
Dne

jω0nt (2.9)

where

Dn = 1

T0

∫

T0

x(t)e− jω0ntdt (2.10)
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Equation (2.9) represents exponential Fourier series and Dn is the coefficient of the
exponential Fourier series. For detailed derivation of Eq. (2.10) one may refer to
standard textbooks. It is to be noticed here that Eq. (2.9) is in a compact form and it
ismuchmore convenient to handle compared to trigonometric Fourier series. Further,
determination of the coefficients Dn using Eq. (2.10) is much easier compared to a0,
an , and bn in Eq. (2.4). For these reasons many authors prefer exponential Fourier
series representation of signals. The coefficients Dn are related to trigonometric
Fourier series coefficients an and bn as

D0 = a0

Dn = 1

2
(an − jbn) (2.11)

D∗
n = conjugate of Dn

= 1

2
(an + jbn)

2.3.3 Polar or Harmonic Form Fourier Series

The results derived in Sects. 2.31 and 2.32 are applicable whether x(t) is real or
complex. When x(t) is real, the coefficients of trigonometric Fourier series an and
bn are real. In such cases, Eq. (2.4) can be expressed in a compact form as

x(t) = C0 +
∞∑

n=1

Cn cos(nω0t − θn) (2.12)

where Cn and θn are related to an and bn as

C0 = a0

Cn =
√
a2n + b2n (2.13)

θn = tan−1

(
bn
an

)

Equation (2.12) is also called as compact form Fourier series or cosine form
Fourier series.

The coefficients of compact form Fourier series and exponential form Fourier
series are related as
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Table 2.1 Different form of FS representation their coefficients and their equivalence

FS form Coefficients Equivalence

1. Trigonometric a0 = 1
T0

∫

T0

x(t)dt a0 = C0 = D0

x(t) = a0 +
∞∑
n=1

an cos nω0t

+ bn sin nω0t

an = 2
T0

∫

T0

x(t) cos nω0t dt an − jbn = Cne jθn = 2Dn

bn = 2
T0

∫

T0

x(t) sin nω0t dt an + jbn = Cne− jθn = 2D∗
n

2. Exponential

x(t) =
∞∑

n=−∞
Dne jnω0t Dn = 1

T0

∫

T0

x(t)e− jnω0t dt Cn = 2 |Dn | n ≥ 1

3. Polar or compact cosine C0 = a0 θn = ∠Dn

x(t) =
C0 +

∞∑
n=1

Cn cos(nω0t − θn)

Cn = √
a2n + b2n

θn = tan−1
(
bn
an

)

D0 =C0

|Dn| = ∣∣D∗
n

∣∣ = 1

2
Cn (2.14)

∠Dn = θn; ∠D∗
n = −θn

For detailed derivations of Eqs. (2.13) and (2.14) onemay refer to standard textbooks.
Table2.1 gives the different form of Fourier series representation, their coefficients
and their equivalence.

The following examples illustrate the method of determining the Fourier series
(FS) in the above three forms.

Example 2.1 Find the trigonometric Fourier series for the periodic signal shown in
Fig. 2.1.

Solution 1. From Fig. 2.1, it is evident that the wave form is symmetrical with
respect to the time axis t . Hence a0 = 0.

2. By folding x(t) across the vertical axis, it is observed that x(t) = x(−t) which
shows that the function of the signal is even. Hence bn = 0.

3. From Fig. 2.1, it is easily obtained that the fundamental period T0 = 4 seconds
and the fundamental radian frequency ω0 = 2π

T0
= π

2 radians per second. From
Eq. (2.4) the trigonometric Fourier series is written as

x(t) = a0 +
∞∑

n=1

[an cos nω0t + bn sin nω0t]
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x(t)

t

T0

5 3 1 0

1

1 3 5 7

Fig. 2.1 A rectangular wave of Example 2.1

But

x(t) = 1 for − 1 ≤ t ≤ 1

= −1 for 1 ≤ t ≤ 3

Substituting a0 = 0 and bn = 0, and ω0 = π
2

x(t) =
∞∑

n=1

an cos
nπ

2
t

an = 2

T0

3∫

−1

x(t) cos
(nπ

2
t
)
dt

= 1

2

⎡

⎣
1∫

−1

cos
nπ

2
t +

3∫

1

(−1) cos
nπ

2
t dt

⎤

⎦

= 1

2

[{
2

nπ
sin

nπ

2
t

}1

−1

−
{

2

nπ
sin

nπ

2
t

}3

1

]

= 1

nπ

[
sin

nπ

2
+ sin

nπ

2
+ sin

nπ

2
+ sin

nπ

2

]

= 4

nπ
sin

nπ

2
= 0 for n = even

= 4

nπ
for n = 1, 5, 9, 13, . . .
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x(t)

t

T0

3 2 1

1

1

1

32

Fig. 2.2 Saw tooth wave form

= − 4

nπ
for n = 3, 7, 11, 15, . . .

x(t) =
∞∑

n=1

an cos
nπ

2
t

x(t) = 4

π

[
cos

π

2
t − 1

3
cos

3π

2
t + 1

5
cos

5π

2
t − 1

7
cos

7π

2
t

]

Example 2.2 For the periodic signal shown in Fig. 2.2, determine the trigonometric
Fourier series.

Solution 1. From Fig. 2.2, T0 = 2 seconds and ω0 = 2π
T0

= π . The signal is sym-
metrical with respect to time axis and hence a0 = 0. Also, from Fig. 2.2, it is
evident that x(t) = −x(−t) and therefore the signal is an odd signal and an = 0.
The Fourier series for such a signal is therefore

x(t) =
∞∑

n=1

bn sin nω0t

2. The coefficient bn is determined as follows:

x(t) = t − 1 ≤ t ≤ 1

bn = 2

T0

∫ 1

−1
t sin nω0t dt

=
∫ 1

−1
t sin nπ t dt



184 2 Fourier Series Analysis of Continuous-Time Signals

x(t)

t4 2 2 4 6 80

1

Fig. 2.3 Saw tooth signal of Example 2.3

The above integral is solved using the infinite integral

∫
udv = uv −

∫
vdu

Let u = t , du = dt

dv =
∫

sin nπ t dt; v = − 1

nπ
cos nπ t

bn =
[
− t

nπ
cos nπ t

]1

−1

+ 1

n2π2

[
sin nπ t

]1
−1

= − 2

nπ
cos nπ + 1

n2π2
[sin nπ + sin nπ ]

since sin nπ = 0,

bn = − 2

nπ
cos nπ

x(t) =
∞∑

n=1

bn sin nπ t

x(t) = 2

π

[
sin π t − 1

2
sin 2π t + 1

3
sin 3π t + · · ·

]

Example 2.3 Find the trigonometric Fourier series for the signal shown in Fig. 2.3.

(Anna University, December 2006)

Solution 1. From Fig. 2.3, T0 = 2π andω0 = 2π
T0

= 1. The signal is neither odd nor
even. Further, it is not symmetricalwith respect to the time axis. So the coefficients
a0, an , and bn are to be evaluated.
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2.

x(t) = t

2π
0 ≤ t ≤ 2π

(
for a ramp signal the slope is

1

2π

)

a0 = 1

T0

∫ 2π

0

t

2π
dt = 1

4π2

[
t2

2

]2π

0

a0 = 1

2

an = 2

T0

∫ 2π

0

t

2π
cos nt dt

= 1

2π2

∫ 2π

0
t cos nt dt

Let u = t ; du = dt

dv =
∫

cos nt dt; v = sin nt

n

an = uv −
∫

vdu

= 1

2π2

[
t sin nt

n
+ cos nt

n2

]2π

0

= 1

2π2
[0 + 0 + 1 − 1]

an = 0

(This is due to half wave symmetry).

bn = 2

T0

∫ 2π

0

t

2π
sin nt dt

= 1

2π2

[
− t cos nt

n
+ sin nt

n2

]2π

0

[using u-v method]

= 1

2π2

[
−2π

n
cos 2πn

]
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x(t)

t2 2 3 40

1

T0

Fig. 2.4 A full wave rectifier

bn = − 1

nπ

x(t) = 1

2
−

∞∑

n=1

1

nπ
sin nt

Example 2.4 Determine the trigonometric Fourier series representation of a full
wave rectified signal.

(Anna University, April 2005)

Solution 1. The full wave rectified signal is shown in Fig. 2.4. Here T0 = π and
ω0 = 2π

T0
= 2.

2. The signal is not symmetrical with respect to time axis. Therefore, a0 is calculated
as follows:

a0 = 1

T0

∫ π

0
x(t)dt

where
x(t) = sin t 0 ≤ t ≤ π

a0 = 1

π

∫ π

0
sin t dt

= 1

π

[
− cos t

]π

0
= 2

π

a0 = 2

π
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3.
x(t) = x(−t)

The given signal represents an even function and therefore

bn = 0

4.

an = 2

π

∫ π

0
sin t cos nω0t dt

= 2

π

∫ π

0
sin t cos 2nt dt

Using the property,

sin A cos B = 1

2
[sin(A + B) + sin(A − B)]

the above integral is written as

an = 1

π

∫ π

0
sin(2n + 1)t dt+ 1

π

∫ π

0
sin(1 − 2n)t dt

= 1

π

[
−cos(2n + 1)t

(2n + 1)

]π

0

+ 1

π

[
−cos(1 − 2n)t

(1 − 2n)

]π

0

= 1

π

[
−cos(2n + 1)π + 1

(2n + 1)

]
+ 1

π

[
−cos(1 − 2n)π + 1

(1 − 2n)

]

= 1

π

[
1 − (−1)2n+1

(2n + 1)
+ 1 − (−1)1−2n

(1 − 2n)

]

= 1

π

[
2

(2n + 1)
+ 2

(1 − 2n)

]

= 2

π

[
1 − 2n + 2n + 1

(1 − 4n2)

]

an = 4

π(1 − 4n2)

x(t) = 2

π
+ 4

π

∞∑

n=1

1

(1 − 4n2)
cos 2nt

Example 2.5 Obtain the Fourier series expression of a half wave sine wave.

(Anna University, December 2007)
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x(t)

t2 2 3 40

A

T0 2

Fig. 2.5 A half wave rectified sine wave

Solution 1. T0 = 2π and ω0 = 2π
T0

= 2π
2π = 1 (Fig. 2.5)

x(t) = A sin t 0 ≤ t ≤ π

= 0 π ≤ t ≤ 2π

a0 = 1

2π

∫ π

0
A sin t dt

= A

2π

[
− cos t

]π

0
= A

π

a0 = A

π

2.

an = 2

2π

∫ π

0
A sin t cos nt dt

= A

2π

[∫ π

0
sin(1 + n)t dt+

∫ π

0
sin(1 − n)t dt

]

= A

2π

[
−cos(1 + n)t

(1 + n)
− cos(1 − n)t

(1 − n)

]π

0

= A

2π

[
1 − cos(1 + n)π

(1 + n)
+ 1 − cos(1 − n)π

(1 − n)

]

= A

2π

[
2

(1 + n)
+ 2

(1 − n)

]
= 2A

π(1 − n2)

an = 2A

π(1 − n2)
n �= 1
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Since for n = 1, an = ∞, a1 is calculated as follows.
For n = 1,

a1 = 1

2π

∫ π

0
A sin t cos t dt

= A

2π

∫ π

0
sin 2t dt

= A

4π

[− cos 2t
]π

0 = 0

a1 = 0

3.

bn = 2

2π

∫ π

0
A sin t sin nt dt

= A

2π

[∫ π

0
{cos(1 − n)t − cos(1 + n)t} dt

]

= A

2π

[
sin(1 − n)t

(1 − n)
− sin(1 + n)t

(1 + n)

]π

0

= A

2π

[
sin(1 − n)π − sin 0

(1 − n)
− sin(1 + n)π + sin 0

(1 + n)

]

bn = 0 n �= 1

For n = 1, b1 = ∞ and therefore b1 is calculated as follows:

b1 = 2

2π

∫ π

0
A sin t sin t dt

= A

π

∫ π

0
A sin2 t dt

= A

2π

[∫ π

0
(1 − cos 2t)dt

]
= A

2π

[
t − sin 2t

2

]π

0

b1 = A

2
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x(t) = A

π
+ A

2
sin t +

∞∑

n=2

2A

π(1 − n2)
cos nt

Example 2.6 Determine the Fourier series representation of the signal x(t) = t2 for
all values of “t” which exists in the interval (−1, 1).

(Anna University, May 2007)

Solution 1. For the given signal T0 = 2 and ω0 = 2π
T0

= π .

a0 = 1

2

∫ 1

−1
t2dt =1

2

[
t3

3

]1

−1

= 1

3

a0 = 1

3

2.

an = 2

2

∫ 1

−1
t2 cos nπ t dt

=
∫ 1

−1
t2 cos nπ t dt

Applying
∫
udv = uv − ∫

vdu twice for the above equation, we get

an =
[
t2
sin nπ t

nπ
+ 2t

n2π2
cos nπ t − 2

n3π3
sin nπ t

]1

−1

=
[
sin nπ

nπ
+ 2

n2π2
cos nπ − 2

n3π3
sin nπ + sin nπ

nπ

+ 2

n2π2
cos nπ − 2

n3π3
sin nπ

]

sin nπ = 0 for all n

an = 4

n2π2
cos nπ

an = 4

n2π2
(−1)n

3. From Fig. 2.6, it is evident that x(t) is an even function and therefore bn = 0.



2.4 Properties of Fourier Series 191

x(t)

t2 t2

t2 13 1 2 30

T0 2

Fig. 2.6 Representation of x(t) = t2

4.

x(t) = 1

3
+ 4

π2

∞∑

n=1

(−1)n

n2
cos nπ t

x(t) = 1

3
+ 4

π2

[
− cosπ t + 1

4
cos 2π t − 1

9
cos 3π t + . . .

]

2.4 Properties of Fourier Series

2.4.1 Linearity

Let x1(t) and x2(t) be two periodic signals with the same period T0. Let Dn1 and
Dn2 be the Fourier series coefficients in complex exponential form. Let x(t) be the
composite signals of x1(t) and x2(t) which are related as

x(t) = Ax1(t) + Bx2(t) (2.15)

where A and B are constants.
From Eq. (2.10)

Dn1 = 1

T0

∫

T0

x1(t)e
− jnω0t dt (2.16)

Dn2 = 1

T0

∫

T0

x2(t)e
− jnω0t dt (2.17)
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Let Dn be the Fourier series coefficient of x(t)

Dn = 1

T0

∫

T0

x(t)e− jnω0t dt (2.18)

= 1

T0

∫

T0

[Ax1(t) + Bx2(t)]e
− jnω0t dt (2.19)

= 1

T0

∫

T0

Ax1(t)e
− jnω0t dt + 1

T0

∫

T0

Bx2(t)e
− jnω0t dt (2.20)

Dn = ADn1 + BDn2 (2.21)

The Fourier series coefficient of the composite signal x(t) is the linear com-
bination of individual signal.

2.4.2 Time Shifting Property

According to time shifting property, if the periodic signal x(t) with fundamental
period T0 is time shifted, the periodicity remains the same and the FS coefficient
is multiplied by the factor e− jnw0 t0 .

Proof Let x(t) be time shifted by t0. Now the time shifted signal is x(t − t0). The
Fourier series coefficient of x(t) is

Dn = 1

T0

∫

T0

x(t)e− jnω0t dt (2.22)

Let Dn0 be the FS coefficient for the time shifted signal.

Dn0 = 1

T0

∫

T0

x(t − t0)e
− jnω0t dt (2.23)

Substitute τ = (t − t0) in the above equation

Dn0 = 1

T0

∫

T0

x(τ )e− jnω0(τ+t0)dτ

= e− jnω0t0
1

T0

∫

T0

x(τ )e− jnω0τdτ (2.24)
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Dn0 = e− jnω0t0Dn (2.25)

2.4.3 Time Reversal Property

According to time reversal property, if the signal x(t) is time reversed, the
periodicity remains the same with the time reversal in the FS coefficient.

Proof Let x(t) be the signal with period T0 and the FS coefficient Dn . If x(t) is time
reversed, the signal becomes x(−t). Let D−n be the FS coefficient of x(−t).

Dn = 1

T0

∫

T0

x(−t)e− jnω0t dt (2.26)

Let us substitute τ = −t

Dn = 1

T0

∫

T0

x(τ )e− j (−n)ω0τ (−dτ) (2.27)

= − 1

T0

∫

T0

x(τ )e− j (−n)ω0τdτ (2.28)

Dn = −D−n

2.4.4 Time Scaling Property

According to time scaling property if x(t) is periodic with fundamental period
T0, then x(at) where a is any positive real number, and is also periodic but with
a fundamental period of T0

a .

Proof Let Ds be the FS coefficient of x(at).

Ds = 1

T0

∫

T0

x(at)e− jnω0t dt (2.29)

Let at = τ

Ds = 1

aT0

∫

T0

x(τ )e− jnω0
τ
a dτ
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Ds = 1

a
Dn/a (2.30)

2.4.5 Multiplication Property

According to multiplication property, if x1(t) and x2(t) are the two signals
having the periodicity T0, then the Fourier coefficient of the product of these
two signals is given by

Dn =
∞∑

l=−∞
Al Bn−l

where Al and Bl are the FS coefficients of x1(t) and x2(t) respectively.

Proof Let

x(t) = x1(t) × x2(t)

Dn = 1

T0

∫

T0

x(t)e− jnω0t dt

Dn = 1

T0

∫

To

[x1(t) × x2(t)] e
− jnω0t dt

= 1

T0

∫

T0

[ ∞∑

l=−∞
Ale

jlω0t

]
x2(t)e

− jnω0t dt

=
∞∑

l=−∞
Al

1

T0

∫

T0

x2(t)e
− j (n−l)ω0t dt

Dn =
∞∑

l=−∞
Al Bn−l (2.31)

2.4.6 Conjugation Property

According to this property, the FS coefficients have conjugate symmetric
property

D−n = D∗
n
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Proof

x(t) =
∞∑

n=−∞
Dne

jnω0t

x∗(t) =
[ ∞∑

n=−∞
Dnejnω0t

]∗

=
∞∑

n=−∞
D∗

ne
− jnω0t

Let l = −n,

x∗(t) =
∞∑

l=−∞
D∗

−l e
jlω0t (2.32)

Thus during conjugation, FS coefficient becomes conjugate and time reversed.

2.4.7 Differentiation Property

If a periodical signal x(t) is differentiated, the FS coefficient is multiplied by
the factor jnω0.

Proof

x(t) =
∞∑

n=−∞
Dne

jω0nt

dx(t)

dt
=

∞∑

n=−∞
jω0nDne

jω0nt

=
∞∑

n=−∞
D1

ne
jω0nt (2.33)

where D1
n = jω0nDn . Thus, when the signal x(t) is differentiated, its FS coefficient

is multiplied by the factor jω0n.
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2.4.8 Integration Property

According to the integration property, the FS coefficient of x(t) when x(t) is
integrated becomes

1
jω0n

Dn

Proof

x(t) =
∞∑

n=−∞
Dne

jnω0t

Integrating both sides we get

t∫

−∞
x(t) =

t∫

−∞

∞∑

n=−∞
Dne

jnω0t dt

=
∞∑

n=−∞

Dne jnω0t

jω0n

=
∞∑

n=−∞
D1

ne
jnω0t (2.34)

where D1
n = 1

jω0n
Dn . Thus, when the signal x(t) is integrated, its FS coefficient is

divided by the factor jω0n.

2.4.9 Parseval’s Theorem

According to Parseval’s theorem, the total average power in a periodic signal
is the sum of the average powers in all its components which is the sum of the
squared value of FS coefficients.

Proof The average power in a periodic signal is given by

P = 1

T0

∫

T0

|x(t)|2 dt
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P = 1

T0

∫

T0

x(t) [x(t)]∗ dt

= 1

T0

∫

T0

x(t)

[ ∞∑

n=−∞
Dne

jω0nt

]∗
dt

=
∞∑

n=−∞
D∗

n

1

T0

∫

T0

x(t)e− jω0ntdt =
∞∑

n=−∞
D∗

n Dn

P =
∞∑

n=−∞
|Dn|2 (2.35a)

For a real x(t), |D−n| = |Dn|

P = D2
0 + 2

∞∑

n=1

|Dn|2 (2.35b)

For a trigonometric Fourier series,

P = C2
0 + 1

2

∞∑

n=1

C2
n (2.35c)

Example 2.7 Find the Fourier series representation for the signal

x(t) = 3 cos
(π

2
t + π

4

)

and hence find the power.

(Anna University, April 2008)

Solution

x(t) = 3 cos
(π

2
t + π

4

)

= 3

2

[
e j (π/2t+π/4) + e− j ( π

2 t+π/4)
]

= 3

2
e jπ/4e

j (π/2)t + 3

2
e− jπ/4e− jπ/2t

Compare this with complex exponential Fourier series
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x(t) =
∞∑

n=−∞
Dne

jnω0t where ω0 = π

2

=
∞∑

n=−∞
Dne

jn π
2 t

= D−1e
− j π

2 t + D1e
j π
2 t

D1 = 3

2
e j π

4 = 3

2

[
cos

π

4
+ j sin

π

4

]

D1 = 3

2
√
2
(1 + j); |D1| = 3

2

D−1 = 3

2
√
2
(1 − j); |D−1| = 3

2

P =
∞∑

n=−∞
|Dn|2 = D2

−1 + D2
1 =

(
3

2

)2

+
(
3

2

)2

= 9

2

Example 2.8 Find the Fourier series of the following signals. Also find the power
using Fourier series coefficients.

(a) x(t) = 2 cos 3t + 3 sin 2t

(b) x(t) = cos2 t

Solution (a) x(t) = 2 cos 3t + 3 sin 2t

1.

ω01 = 3; T01 = 2π

ω01
= 2π

3

ω02 = 2; T02 = 2π

ω02
= 2π

2
= π

T01
T02

= 2π

3π
= 2

3
T0 = 3T01 = 2T02 = 2π

ω0 = 2π

T0
= 2π

2π
= 1

2. Using Euler’s Formula, x(t) can be expressed as
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x(t) = (e j3t + e− j3t ) + 3

j2
(e j2t − e− j2t )

= e− j3t + j
3

2
e− j2t + e j3t − j

3

2
e j2t

x(t) can also be expressed in complex exponential form as

x(t) =
∞∑

n=−∞
Dne

jnω0t

=
∞∑

n=−∞
Dne

jnt

Equating the two equations for x(t), we get

e− j3t + j
3

2
e− j2t + e j3t − j

3

2
e j2t =

∞∑

n=−∞
Dne

jnt

Putting n = ±3

D3 = 1 and D−3 = 1

Putting n = ±2

D2 = − j
3

2
and D−2 = j

3

2

All other Dn = 0.

Power P = |D−3|2 + |D−2|2 + |D3|2 + |D2|2

= 12 +
(
3

2

)2

+ 12 +
(
3

2

)2

= 13

2

(b) x(t) = cos2 t

x(t) = cos2 t

= 1

2
[1 + cos 2t]

ω0 = 2

x(t) = 1

2
+ 1

2

[
e j2t + e− j2t

]

2
=

∞∑

n=−∞
Dne

j2nt

For n = 0,
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x(t) cos t

t10 0

1

10

. . .

/2 /2

Fig. 2.7 Signal of Example 2.9

D0 = 1

2

For n = ±1,

D1 = 1

4
and D−1 = 1

4

Power P = D2
0 + D2

−1 + D2
1 = 1

4
+ 1

16
+ 1

16
= 3

8

Example 2.9 Find the exponential Fourier series for the signal shown in Fig. 2.7.

(Anna University, December 2007)

Solution

x(t) = cos t

T0 = 10

ω0 = 2π

T0
= 0.2π

Dn = 1

T0

T0∫

0

x(t)e− jω0ntdt

= 1

10

π/2∫

−π/2

cos t e− jω0ntdt

= 1

20

π/2∫

−π/2

(e jt + e− j t )e− j0.2nπ t dt
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= 1

20

⎡

⎢⎣
π/2∫

−π/2

e j (1−.2nπ)t dt +
π/2∫

−π/2

e− j (1+.2nπ)t dt

⎤

⎥⎦

= 1

20

{
1

j (1 − .2nπ)

[
e j (1−.2nπ)t

]π/2

−π/2 − 1

j (1 + .2nπ)

[
e− j (1+.2nπ)t

]π/2

−π/2

}

= 1

20

{
1

j (1 − .2nπ)

[
e j π

2 (1−.2nπ) − e− jπ/2(1−.2nπ)
]

− 1

j (1 + .2nπ)

[
e− jπ/2(1+.2nπ) − e− jπ/2(1+.2nπ)

]}

= 1

10

[
1

(1 − .2nπ)
sin

π

2
(1 − .2nπ) + 1

(1 + .2nπ)
sin

π

2
(1 + .2nπ)

]

= 1

10(1 − .04n2π2)

[
(1 + .2nπ) cos 0.1nπ2 + (1 − .2nπ) cos(0.1nπ2)

]

Dn = 0.2 cos 0.1nπ2

(1 − 0.04n2π2)

x(t) =
∞∑

n=−∞
Dne

j0.2πnt

Example 2.10 Consider the wave form shown in Fig. 2.8. Determine the complex
exponential Fourier series.

x(t)

t3 2 1

1

1

0 1 2 3 4

Fig. 2.8 Signal of Example 2.10
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Solution 1. From Fig. 2.8, T0 = 2 and ω0 = 2π
T0

= 2π
2 = π .

2.

Dn = 1

T0

T0∫

0

x(t)e− jnω0t dt

= 1

2

1∫

0

e− jnπ t dt − 1

2

2∫

1

e− jnπ t dt

= 1

2

1

(− jnπ)

[
e− jnπ t

]1
0 − 1

2(− jnπ)

[
e− jnπ t

]2
1

= 1

2(− jnπ)

[
e− jnπ − 1 − e− jnπ2 + e− jnπ

]

= 1

−2nπ j

[
2e− jnπ − 2

] [
∵ e− jnπ2 = 1

]

= 1

jnπ

[
1 − e− jnπ

]

= 1

jnπ
[1 − cos nπ ]

Dn = 2

jnπ

where n is an odd number.
3.

x(t) =
∞∑

n=−∞
Dne

jnπ t

x(t) = 2

jπ

∞∑

m=−∞

1

2m + 1
e j (2m+1)π t

where m is any integer which will be equivalent to n being odd integer.

Example 2.11 Let

x(t) =
{
t 0 ≤ t ≤ 1

2 − t 1 ≤ t ≤ 2

be a periodic signal with fundamental period T0 = 2 and Fourier coefficients ak .
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dx(t)
dt

t

1

1

x(t)

t

1

(a)

(b)

3 2 1 0 1

1

2

2

3

3

4

4

5

5

4

4 3 2 1 0

5

Fig. 2.9 a A triangular wave and b Derivative of triangular wave

(a) Determine the value of a0.
(b) Determine the Fourier series representation of dx(t)

dt .
(c) Use the result of part (b) and the differentiation property of FS to help determine

the Fourier series coefficients of x(t).

(Anna University, May 2008)

Solution (a)

x(t) =
{
t 0 ≤ t ≤ 1

2 − t 1 ≤ t ≤ 2

The above equation represents a triangle in the given time interval and the peri-
odical signal with period T0 = 2 is shown in Fig. 2.9.

ω0 = 2π

T0
= π

The Fourier series coefficient a0 is determined as follows:
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a0 = 1

T0

T0∫

0

x(t)dt

= 1

2

1∫

0

t dt +
2∫

1

(2 − t)dt

= 1

2

[
t2

2

]1

0

+
[
2t − t2

2

]2

1

= 1

4
+ 1

2

[
4 − 2 − 2 + 1

2

]

a0 = 1

2

(b) Differentiating the given x(t) we get

dx(t)

dt
=

{
1 0 ≤ t ≤ 1

−1 1 ≤ t ≤ 2

This is the square wave and is shown in Fig. 2.9b. Figures2.8 and 2.9b are
the rectangular waves with the amplitude and periodicity. The exponential FS
coefficient of Fig. 2.8 has been determined as

Dn = 2

jnπ
where n is an odd integer

= 2

j (2m + 1)π
where m is any integer

dx(t)

dt
= ẋ(t) = 2

jπ

∞∑

m=−∞

1

(2m + 1)
e j (2m+1)π t

(c) x(t) in the Fourier exponential form can be written as follows:

x(t) =
∞∑

n=−∞
Dne

jnω0t

dx(t)

dt
=

∞∑

n=−∞
( jnω0)Dne

jnω0t

From the result derived in part (b),
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x(t)

t

2

0 1 9 10 1111 10 9 1

Fig. 2.10 Signal of Example 2.12

jnω0Dn = 2

jnπ

Dn = −2

n2π2

where n is an odd integer.

x(t) = D0 +
∞∑

n=−∞
Dne

jnπ t

D0 = a0 = 1

2
n = 2m + 1 where m is any integer

x(t) = 1

2
− 2

π2

∞∑

m=−∞

1

(2m + 1)2
e j (2m+1)π t

Example 2.12 For the signal shown in Fig. 2.10. Determine the exponential Fourier
series.

Solution

T0 = 10

ω0 = 2π

10
= π

5

Dn = 1

T0

1∫

−1

2e− jω0ntdt = 2

10

1∫

−1

e− j π
5 ntdt



206 2 Fourier Series Analysis of Continuous-Time Signals

1 2 33 2 1 0

1

x(t)

t

Fig. 2.11 Periodic train of impulses

= −1

5

5

π jn

[
e− j πn

5 t
]1

−1

= − 1

jπn

[
e− j πn

5 − e+ j nπ
5

]

Dn = 2

πn
sin

πn

5
for all n but n �= 0

For n = 0,

D0 = Lt
n→0

2

5

sin πn
5

πn
5

D0 = 2

5
= 0.4

x(t) = 0.4 + 2

π

∞∑

n=−∞

1

n
sin

π

5
ne

− jπnt
5

Example 2.13 Determine the exponential and trigonometric Fourier series of a train
of impulse with periodicity T0 = 1. Verify the exponential and trigonometric coeffi-
cients relationship (Fig. 2.11).

Solution
T0 = 1 and ω0 = 2π

To determine the exponential FS coefficients

Dn = 1

T0

T0∫

0

δ(t) e− jnω0t dt = 1

T0

∫ 1/2

−1/2
δ(t) e− j2πntdt

Over this interval, Dn = 1
T0
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Dn = 1

T0
= 1

D0 = 1

x(t) =
∞∑

n=−∞
Dne

jnω0t

x(t) =
∞∑

n=−∞
e j2πnt

To determine the trigonometric Fourier series

a0 = 1

T

∫ T0

0
δ(t) dt

a0 = 1

T0
= 1

Since the train of impulses is an even signal bn = 0.

an = 2

T0

∫ T0

0
δ(t) cos nω0t dt

= 2

T0
= 2

x(t) = a0 +
∞∑

n=1

an cos nω0t

x(t) = 1 +
∞∑

n=1

2 cos 2πnt

a0 = D0 = 1

Dn = an
2

= 2

2
= 1

Thus, the relationships between trigonometric and exponential Fourier series coeffi-
cients are verified.

Example 2.14 For the periodic signal x(t) = e−t with a period T0 = 1 second, find
the Fourier series in
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x(t)

e t

3 2 1 0 1

1

2 3 t

Fig. 2.12 Exponentially decaying periodic signal

(a) Exponential form,
(b) Trigonometric form,
(c) Polar form, and
(d) Verify the relationships of FS coefficients.

Solution (a) Exponential Fourier series

T0 = 1

ω0 = 2π

T0
= 2π

Dn = 1

T0

∫ T0

0
x(t)e− jnω0t dt

=
∫ 1

0
e−t e− jn2π t dt

=
∫ 1

0
e−(1+ j2πn)t dt

= − 1

(1 + j2πn)

[
e−(1+ j2πn)t

]1
0

= 1

(1 + j2πn)

[
1 − e−(1+ j2πn)

]

= 1

(1 + j2πn)

[
1 − e−1] [

∵ e− j2πn = 1
]

Dn = 0.632

(1 + j2πn)
; |Dn| = 0.632√

1 + 4π2n2

D0 = 0.632
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x(t) =
∞∑

n=−∞
Dne

jnω0t

x(t) = 0.632
∞∑

n=−∞

1√
(1 + 4π2n2)

e j2πnt

(b) Trigonometric Fourier series

a0 = 1

T0

∫ T0

0
x(t)dt

=
∫ 1

0
e−t dt

= −
[
e−t

]1
0

= (1 − e−1)

a0 = 0.632

an = 2

T0

∫ T0

0
x(t) cosω0nt dt

= 2
∫ 1

0
e−t cos 2πnt dt

Using the property

∫ b

a
eat cos bt dt =

[
eat (a cos bt + b sin bt)

(a2 + b2)

]b

a

an = 2

(1 + 4π2n2)

[
− cos 2πnt (e−t ) + e−t2πn sin 2πn

]1
0

= 2

(1 + 4π2n2)

[
e−1 {− cos 2πn + 2πn sin 2πn} + 1

]

= 2

(1 + 4π2n2)
[1 − e−1]
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an = 1.264

(1 + 4π2n2)

bn = 2

T0

To∫

0

x(t) sinω0nt dt

= 2

1∫

0

e−t sin 2πnt dt

Using the property

∫ b

a
eat sin bt dt = 1

(a2 + b2)

{
eat [a sin bt − b cos bt]

}b

a

we get,

bn = 2(
1 + 4π2n2

)
{
e−t [− sin 2πnt − 2πn cos 2πnt]

}1

0

= 2(
1 + 4π2n2

)
[−e−1(sin 2πn + 2πn cos 2πn) + 2πn

]

= 4πn(
1 + 4π2n2

) (1 − e−1)

bn = 2.53πn

1 + 4π2n2

x(t) = a0 +
∞∑

n=1

an cosω0nt +
∞∑

n=1

bn sinω0nt

x(t) = 0.632 + 1.264
∞∑

n=1

n(
1 + 4π2n2

) cos 2πnt

+ 2.53π
∞∑

n=1

n(
1 + 4π2n2

) sin 2πnt
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(c) Polar form Fourier series (cosine form FS)

x(t) = C0 +
∞∑

n=1

Cn cos(ω0nt − θn)

C0 = a0

Cn =
√
a2n + b2n

θn = tan−1

(
bn
an

)

C0 = 0.632

Cn =
√

(1.6 + 6.4π2n2)

(1 + 4π2n2)
;

Cn = 1.265√
1 + 4π2n2

θn = tan−1 2.53πn

1.264
= tan−1 2πn = 0

x(t) = 0.632 +
∞∑

n=1

√
1.6 + 6.4π2n2

(1 + 4π2n2)
cos[2πnt]

x(t) = 0.632 +
∞∑

n=1

1.265√
(1 + 4π2n2)

cos 2πnt

(d) 1. a0 = C0 = D0 = 0.632
2.

|Dn| = Cn

2
= 1.265

2
√
1 + 4π2n2

= 0.632√
1 + 4π2n2
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3.

Cn =
√
a2n + b2n

=
√

(1.264)2 + 2.532π2n2

(1 + 4π2n2)

=
√
1.6(1 + 4π2n2)

(1 + 4π2n2)

= 1.265√
(1 + 4π2n2

2.5 Existence of Fourier Series—The Dirichlet Conditions

The continuous Fourier series of the signal x(t) is represented in the following form:

x(t) =
∞∑

n=−∞
Dne

j2πnt (2.36)

where

Dn = 1

T0

∫ T0

0
x(t)e− j2πntdt (2.37)

and n represents the harmonic member.
If the integral in Eq. (2.37) diverges, CTFS cannot be found for x(t). If certain con-

straints are put on x(t), Eq. (2.37) converges and the conditions are called Dirichlet
conditions. The Dirichlet conditions are

1. The signal x(t) must be absolutely integrable over the time interval t0 < t <

t0 + T0. The above condition implies that

∫ t0+T0

t0

|x (t)| dt < ∞ (2.38)

2. The signal x(t) must have a finite number of maxima and minima in the time
interval t0 < t < t0 + T0.

3. The signal x(t) must have finite number of discontinuities in the time interval
t0 < t < t0 + T0.
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2.6 Convergence of Continuous-Time Fourier Series

The arbitrary signal x(t) can be expressed by FS in Eq. (2.4) if it is periodic. It does
not mean that every periodic signal can be expressed by FS. When the series uses
a fixed number of terms, then it guarantees convergence. If the energy difference
between the signal x(t) and the corresponding finite term series approaches zero as
the number of terms approaches infinity, such a series is said to be convergent in the
mean. The Fourier series of x(t) converges in the mean if it has a finite energy over
one period. This can be expressed as

E =
∫

T0

|x(t)|2dt < ∞ (2.39)

When condition (2.39) is satisfied, the Fourier series converges in the mean and also
guarantees that the Fourier coefficients are finite.

2.7 Fourier Series Spectrum

The plot of Fourier series coefficients with respect to ω is called Fourier series
spectrum. In exponential Fourier series and in polar Fourier series, the Fourier series,
the FS coefficients Dn and Cn are complex. Thus, these coefficients have magnitude
and angle. Thus, the plots of Dn versus ω and ∠Dn verses ω are called exponential
Fourier spectra. Similarly the plots of |Cn| versus ω and ∠Cn versus ω are called
trigonometric Fourier spectra. The following examples illustrate the above methods.

Example 2.15 For Example 2.14, plot the exponential Fourier spectra for the peri-
odic signal x(t) shown in Fig. 2.12.

Solution The exponential Fourier series coefficient of Fig. 2.12 has been derived as

Dn = 0.632

1 + j2πn
= 0.632√

1 + 4π2n2
∠ − tan−1 2πn

For n = 0,

D0 = 0.632∠0◦

For n = ±1,

D1 = D−1 = 0.1∠ ∓ 81◦

D2 = D−2 = 0.05∠ ∓ 85.5◦

D3 = D−3 = 3.35 × 10−2∠ ∓ 87◦
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.1.1

.05.05
.0335.0335

.025.025 .02.02 .0168.0168 .0144.0144

88.7˚

88.7˚

87.7˚

87.7˚

87˚

87˚

85.5˚

85.5˚

81˚

81˚

1 2 3 4 5 6 747 6 5 3 2 1

0.632

0

Dn
(a)

(b)

n

1 2 3 4 5 6 747 6 5 3 2 1 0

Dn

n

n

n

88.5˚

88.5˚

88.2˚

88.2˚

Fig. 2.13 Frequency spectra of Example 2.15. a Magnitude spectrum and b Phase angle spectrum

D4 = D−4 = 2.5 × 10−2∠ ∓ 87.7◦

D5 = D−5 = 2 × 10−2∠ ∓ 88.2◦

D6 = D−6 = 1.68 × 10−2∠ ∓ 88.5◦

D7 = D−7 = 1.44 × 10−2∠ ∓ 88.7◦

The magnitude spectrum of Dn is shown in Fig. 2.13a and the phase spectrum is
Fig. 2.13b. Note: ω = nω0 = 2πn or n = ω

2π which is a function of frequency.

Summary

1. Any arbitrary periodic signal x(t) can be represented in the form of a linear
combination of complex sinusoids. Such a representation is called Fourier series.
The higher frequency sines and cosines have frequencies that are integermultiples
of the fundamental frequency.

2. The Fourier series can be represented in any one of the following forms:

(a) Trigonometry form.
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(b) Complex exponential form.
(c) Polar or harmonic or cosine form.

The coefficients of the above forms have definite relationships between them.
3. The Fourier series possesses the following properties:

(a) Linearity,
(b) Time shifting,
(c) Time reversal,
(d) Time scaling,
(e) Multiplication,
(f) Conjugation,
(g) Differentiation, and
(h) Integration.

4. Parseval’s theorem on Fourier series states that the total average power in a peri-
odic signal is the sum of the average powers in all its components which is the
sum of the squared value of Fourier series coefficients.

5. Dirichlet showed that if x(t) satisfies certain conditions, the Fourier series of x(t)
is guaranteed. These conditions are called Dirichlet conditions.

6. The magnitude and phase angle of Fourier series coefficients plotted versus fre-
quency ω are called Fourier spectra of the signal x(t).

7. The exponential form of Fourier series representation is better preferred compared
to other forms because it is more compact and the system response is also simpler.

Exercises

I. Short Answer Type Questions

1. What is a Fourier series?
Any arbitrary periodic signal x(t) can be expressed as a sum of sinusoids and
all its harmonics. Such an infinite series is known as Fourier series.

2. What are the different forms of representing Fourier series?
The different forms of representing Fourier series are

(a) Trigonometric Fourier series.
(b) Polar (compact or cosine form) Fourier series.
(c) Exponential form Fourier series.

3. Give mathematical expression for trigonometric Fourier series?

x(t) = a0 +
∞∑

n=1

(ancosnω0t + bnsinnω0t)
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where

a0 = 1

T0

∫

T0

x(t)dt

an = 2

T0

∫

T0

x(t)cos nω0tdt

bn = 2

T0

∫

T0

x(t)sin nω0tdt

a0, an , and bn are called the coefficients of trigonometric Fourier series.
4. What is the effect of symmetry in trigonometric Fourier series?

If x(t) has an odd symmetry, an = 0. If x(t) has even symmetry bn = 0. If x(t)
is symmetrical with respect to the time axis, a0 = 0.

5. What is half wave symmetry?
If the periodic signal x(t) when shifted by half the period remains unchanged
except for a sign, the signal is said to be half wave symmetry. Mathematically,
it is expressed as

x

(
t − T0

2

)
= −x(t)

For the signalwith half wave symmetry, all the even numbered harmonics vanish.
6. Give the mathematical expression for the cosine Fourier series.

x(t) = C0 +
∞∑

n=1

Cncosn(nω0t − θn)

where

C0 = a0

Cn =
√
a2n + b2n

θn = tan−1 bn
an

7. Give mathematical expression for the exponential Fourier series?

x(t) =
∞∑

n=−∞
Dne

jω0nt

where

Dn = 1

T0

∫

T0

x(t)e− jω0ntdt
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8. How the coefficients of exponential Fourier series are related to the coeffi-
cients of trigonometric and cosine Fourier series?

D0 = a0 = C0

Dn = 1

2

[
an − jbn

]

|Dn| = 1

2
Cn

9. Why exponential Fourier series is preferred to represent the Fourier series?
The exponential Fourier series is more compact and the system response to
exponential signal is simpler.

10. What do you understand by Fourier spectrum?
The Fourier series expresses a periodic signal x(t) as a sum of sinusoids of
fundamental frequency ω0 and their higher harmonics 2ω0, 3ω0, . . . , nω0. Cor-
responding to these frequencies, the amplitudes and phases are determined. The
plot of these amplitudes versus nwhich is proportional to nω0 is termed as ampli-
tude spectrum. The plot of phase angle θn versus n is called phase spectrum.

11. What do you understand by existence of Fourier series?
For the existence of Fourier series, its coefficients should exist. The existence of
these coefficients is guaranteed iff x(t) is absolutely integrable. In other words

∫

T0

|x(t)| dt < ∞

12. What do you understand by convergence of Fourier series in the mean?
The periodic signal x(t) which has finite energy over one period guarantees the
convergence in the mean of its Fourier series. Mathematically, it is expressed as

∫

T0

|x(t)|2 dt < ∞

13. What are Dirichlet conditions?
Fourier at the time of presenting his papers could not successfully defend the
existence Fourier series which is infinite. He could not also give convincing reply
when there is discontinuities in x(t). The answers to these questions came from
the great mathematician Dirichlet in the form of certain constraints. These
constraints are called Dirichlet conditions and they are

(a) The function x(t) must be absolutely integrable.
(b) The function x(t) should have finite number discontinuities in one period.
(c) The function x(t) should contain only a finite number ofmaxima andminima

in one period.
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14. What do you understand by Parseval’s theorem as applied to Fourier series?
According to Parseval’s theorem, the power of the periodic signal is equal to the
sum of the powers of its Fourier coefficients

P = C2
0 + 1

2

∞∑

n=1

C2
n (For cosine FS)

P =
∞∑

n=−∞
|Dn|2 (Exponential FS)

P = D2
0 + 2

∞∑

n=1

|Dn|2 (x(t) = real)

15. What are differentiating and integrating properties of Fourier series?
If a periodical signal x(t) is differentiated the Fourier series coefficient gets
multiplied by the factor jnω0. Suppose Dn is theFourier series coefficient of x(t).
Then the Fourier series coefficient of dx(t)

dt is jω0nDn . This is the differentiation
property of Fourier series. If the periodic signal x(t) is integrated, then theFourier
series coefficient gets divided by jω0n. If Dn is the coefficient of exponential
Fourier series of x(t), then the Fourier series coefficient of

∫

T0

x(t)dt is 1
jω0n

Dn .

This is called the integration property of Fourier series.

II. Long Answer Type Questions

1. Determine the trigonometric and exponential Fourier series representation
of the signal x(t) shown in Fig. 2.14?

T0 = T ; ω0 = 2π

T0
= 2π

T

x(t)

t

1

0T( T   ) T
2
T

2
T

2 (T   )2 (T   )2( T   )2 2 2

Fig. 2.14 Signal x(t) for Problem 1
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(a) Trigonometric or quadratic Fourier series.

a0 = τ

T
bn = 0 since x(t) is even

an = 2

nπ
sin

(nπτ

T

)

x(t) = τ

T
+ 2

π

∞∑

n=1

1

n
sin

(nπτ

T

)
cosn

2π t

T

(b) Exponential Fourier series.

Dn = τ

2
sin c

(nπτ

T

)

x(t) =
∞∑

n=1

τ

2
sin c

(nπτ

T

)
e jn 2π t

T

2. Consider the following signal:

x(t) = cos
(

1
3
t + 30◦

)
+ sin

(
2
5
t + 60◦

)

Determine (a) whether the signal is periodic, (b) find the fundamental period
and frequency, (c) what harmonics are present in x(t), (d) Determine the
coefficients of exponential Fourier series, and (e) Determine the power of the
signal using Parseval’s theorem.

(a) The signal is periodic.
(b) The fundamental period T0 = 30π and the fundamental radian frequency

ω0 = 1
15 .

(c) Fifth and sixth harmonics are present.
(d)

D5 = 1

4
[√3 + j]; D−5 = 1

4
[√3 − j]

D6 = 1

4
[√3 − j]; D−6 = 1

4
[√3 + j]

(e)

P = |D5|2 + |D−5|2 + |D6|2 + |D−6|2 = 1

4
+ 1

4
+ 1

4
+ 1

4
= 1

3. For the signal shown in Fig. 2.15, determine the coefficients of exponential
Fourier series.
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x(t)

t

2

1

0 1 2 3 4 5 64 3 2 1

Fig. 2.15 Signal x(t) for Problem 3

T0 = 4; ω0 = π

2
; D0 = 3

4

Dn = 1

jnπ

[
1

2
− (−1)n − 1

2
e− j nπ

2

]

4. Find the exponential Fourier series coefficients for the signal shown in
Fig. 2.16a and plot its amplitude and phase spectrum.

0.136

0.068 0.046
0.034

1 2 3 4

1.72

0

Dn(b)

x(t)

et

3 2 1 0 1

1

2 3 t

(a)

n

Fig. 2.16 a x(t) signal and b Amplitude spectrum of Dn



2.7 Fourier Series Spectrum 221

x(t)

t12 1 2 3 40

1

2 1

Fig. 2.17 Signal of Problem 5

T0 = 1; ω0 = 2π

Dn = 1.72√
1 + 4π2n2

θn = 0

The amplitude spectrum is shown in Fig. 2.16b.
5. Consider the signal shown in Fig. 2.17. Determine the exponential Fourier

series coefficients.

D0 = (2π − 1)

4π

Dn = 1

2πn2
[
e− jn − 1

]
.



Chapter 3
Fourier Transform Analysis
of Continuous Time Signals

Chapter Objectives

• Todefine theFourier transform for continuous time signalwhich is aperiodic.
• To derive the properties of Fourier transform and demonstrate with
examples.

• To find the magnitude and phase angle spectrum of Fourier transform.
• To solve the differential equation by partial fraction method using Fourier
transform (FT).

3.1 Introduction

In Chap.2, periodic signals were represented as a sum of everlasting sinusoids or
exponentials. The Fourier seriesmethod of analysis of such periodic signals is indeed
a very powerful tool. However, FS fails when applied to aperiodic signals. To over-
come this major limitation, an aperiodic signal x(t) is expressed as a continuous
sum (integral) of everlasting exponentials. Such a representation is called Fourier
integral which is basically a Fourier series with fundamental frequency tending to
zero. By such representation the aperiodic signal x(t) in the time domain is trans-
formed to X ( jω) in the frequency domain. The transformations from x(t) to X ( jω)

and from X ( jω) to x(t) are called Fourier transform and inverse Fourier transform
respectively. They are also called Fourier transform pairs.
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3.2 Representation of Aperiodic Signal by Fourier
Integral–The Fourier Transform

If an aperiodic signal is viewed as a periodical signal with an infinite period, then it
can be represented by the Fourier series. In such a situation, as the period increases,
the fundamental frequency decreases, and the frequency components become closer.
Now the Fourier series sum becomes integral.

Consider the periodic signal x(t) defined as follows:

x(t) =
{
1, |t | < T1

0, T1 < |t | < T
2

The above signal is represented as a periodic square wave in Fig. 3.1. The exponential
Fourier series coefficients Dn can be determined as

Dn = 2 sin(nω0T1)

(nω0T )
(3.1)

where ω0 = 2π
T . The Fourier series coefficient T Dn is obtained as

T Dn = 2 sin(nω0T1)

(nω0)
(3.2)

For a fixed value of T1, the plot of T Dn represents a sinc function. Equation (3.2) is
plotted for 2ω0, 4ω0 and 8ω0 and they are represented in Fig. 3.2a–c respectively.

FromFig. 3.2, it is evident that as T increases (the fundamental frequencyω0 = 2π
T

decreases) the samples of T Dn become closer and closer. As T becomes very large,
the original periodic square wave becomes a rectangular pulse. As T → ∞, T Dn

becomes continuous.

x(t)

t2T T T 2TT T1 T1
2

T
2

Fig. 3.1 A continuous time periodic square wave
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TDn
T 4T1

T 8T1

T 16T1

2 0

(a)

(b)

(c)

0

0

0

4 0

8 0

2 0

4 0

8 0

TDn

TDn

Fig. 3.2 Fourier series coefficients for different values of T

Let x̄(t) be non-periodic square wave as represented in Fig. 3.3.

x̄(t) = 0 |t | > T1

The periodic signal x(t) formed by repeating x̄(t) with fundamental period T is
shown in Fig. 3.1. If T → ∞

Lt
T →∞

x(t) = x̄(t).
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Fig. 3.3 A continuous time
aperiodic square wave

 1

tT1 T10

x(t)

The Fourier series coefficients of periodical signal are written as (Fig. 3.1)

Dn = 1

T

∫ T/2

−T/2
x(t)e− jnω0t dt (3.3)

The periodical signal x(t) can be expressed in the Fourier series as

x(t) =
∞∑

n=−∞
Dn e jnω0t (3.4)

T x(t) =
∞∑

n=−∞
T Dn e jnω0t (3.5)

Let

X (nω0) = T Dn

=
∫ T/2

−T/2
x(t)e− jnω0t dt

x(t) = 1

T

∞∑
n=−∞

T Dn e jnω0t

= 1

2π

∞∑
n=−∞

X (nω0)e
jnω0tω0 (3.6)

As T → ∞, ω0 = 2π
T → 0 and nω0 = ω which is continuous. Further, the summa-

tion in Equation (3.6) becomes integration. Thus, Equation (3.6) is written as

X ( jω) =
∫ ∞

−∞
x(t)e− jωt dt for all ω (3.7)
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x(t) = 1

2π

∫ ∞

−∞
X ( jω)e jωt dω for all t (3.8)

Equations (3.7) and (3.8) are called Fourier transform pair. Equation (3.7) transforms
the time function x(t) to frequency function X ( jω) and so it is called Fourier trans-
form. Equation (3.8) converts the frequency function to time function, and hence, it
is called inverse Fourier transform. These transformations are also denoted as given
below:

X ( jω) = F[x(t)]
x(t)

FT←→ X ( jω) (3.9)

x(t) = F−1[X ( jω)]
X ( jω)

IFT←→ x(t)

Note: The time function x(t) is always denoted by lower case letter and the
frequency function X( jω) by capital letter. Further, when x(t) is Fourier
transformed, it becomes complex and so it is denoted as X( jω). In some lit-
erature, X( jω) is also represented simply as X(ω).

3.3 Convergence of Fourier Transforms–The Dirichlet
Conditions

As in the case of continuous time periodic signals, the following conditions (Dirichlet
Conditions) are sufficient for the convergence of X ( jω).

1. x(t) is absolutely integrable or square integrable. That is

∫ ∞

−∞
|x(t)| dt < ∞∫ ∞

−∞
|x(t)|2 dt < ∞

2. x(t) should have finite number of maxima and minima within any finite interval.
3. x(t) has a finite number of discontinuities within any finite interval.

However, signals which do not satisfy these conditions can have Fourier trans-
forms if impulse functions are included in the transform.
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3.4 Fourier Spectra

The Fourier transform of X ( jω) of x(t) is in general, complex and can be
expressed as

X ( jω) = |X ( jω)| ∣∣X ( jω)

The plot of |X ( jω)| versus ω is called magnitude spectrum of X ( jω). The plot of∣∣X ( jω) versus ω is called phase spectrum. The amplitude (magnitude) and phase
spectra are together called Fourier spectrum which is nothing but the frequency
response of X ( jω) for the frequency range −∞ < ω < ∞.

3.5 Connection Between the Fourier Transform
and Laplace Transform

By definitions,

X ( jω) =
∫ ∞

−∞
x(t)e− jωt dt (3.10)

and the Laplace transform is given by

X (s) =
∫ ∞

−∞
x(t)e−st dt. (3.11)

FromEquations (3.10) and (3.11), it is observed that the Fourier transform is a special
case of the Laplace transform inwhich s = jω. Substituting s = σ + jω in Equation
(3.11) we get

X (σ + jω) =
∫ ∞

−∞
x(t)e−(σ+ jω)t dt

=
∫ ∞

−∞
[x(t)e−σ t ]e− jωt dt

= F[x(t)e−σ t ]

Thus, the bilateral Laplace transform of x(t) is nothing but the Fourier transform of
x(t)e−σ t .

Note: The statement that Fourier transform can be obtained from Laplace trans-
form by replacing s by jω is true only if x(t) is absolutely integrable. If x(t) is
not absolutely integrable the above statement is erroneous.
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x(t)
(a)

(t)

t0

1

( )
(b) (c)

0

( )

0

1

Fig. 3.4 Representation of δ(t) and its spectra

The following examples illustrate the method of finding the Fourier transform of
non-periodic signals:

Example 3.1 Find the Fourier transform of the following time functions and sketch
their Fourier spectra (amplitude and phase).

(a) x(t) = δ(t)

(b) x(t) = sgn (t)

(c) x(t) = 1 for all t

(d) x(t) = u(t) and x(t) = u(−t)

(e) x(t) = e−at u(t); a > 0

(f) x(t) = e−|a|t ; a > 0

(g) x(t) = eat u(t); a > 0

x(t) = eat u(−t)

Solution

(a) x(t) = δ(t)

X ( jω) =
∫ ∞

−∞
δ(t)e− jωt dt

= 1 [δ(t) = 0 for t �= 0

= 1 for t = 0]

δ(t)
FT←→ 1

Fourier Spectra of δ(t)

δ( jω) = 1 which is independent of frequency. Hence, the amplitude spectrum
is constant at all ω and the phase spectrum is zero at all ω. δ(t) and its Fourier
spectra are shown in Fig. 3.4a–c respectively.
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(b) x(t) = sgn(t)

sgn(t) =

⎧⎪⎨
⎪⎩
1 t > 0

0 t = 0

−1 t < 0

F[sgn(t)] =
∫ ∞

−∞
x(t)e− jωt dt

= −
∫ 0

−∞
e− jωt dt +

∫ ∞

0
e− jωt dt

The first integral on the right side of the above equation is not integrable. x(t) is
multiplied by e−a|t | and the limiting value of a → 0 is considered.

F[e−a|t |sgn(t)] =
∫ 0

−∞
eat e− jωt dt +

∫ ∞

0
e−at e− jωt dt

F[e−a|t |sgn(t)] =
∫ 0

−∞
−e(a− jω)t dt +

∫ ∞

0
e−(a+ jω)t dt

= Lt
a→0

[ −1

a − jω

{
e(a− jω)t

}0
−∞ − 1

(a + jω)

{
e−(a+ jω)t

}∞
0

]

= Lt
a→0

[ −1

(a − jω)
+ 1

a + jω

]
= 1

jω
+ 1

jω
= 2

jω

sgn(t)
FT←→ 2

jω

Fourier Spectra of sgn(t)

X ( jω) = 2

jω

⎧⎪⎪⎨
⎪⎪⎩
2

ω
∠−90◦ ω ≥ 0

2

ω
∠90◦ ω < 0

x(t) = sgn(t), |X ( jω)| = 2
ω
and

∣∣X ( jω) are represented in Fig. 3.5a–c respec-
tively.
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x(t)=sgn(t) x( j )

x( j )

1

0
0

0

/2

/2

tt

1

(a) (b)

(c)

Fig. 3.5 Representation of sgn(t) and its spectra

(c) x(t) = 1; for all t

F−1[δ(ω)] = 1

2π

∫ ∞

−∞
δ(ω)e jωt dω

= 1

2π
δ(ω) =

{
1 ω = 0

0 otherwise

1

2π
FT←→ = δ(ω)

1
FT←→ = 2πδ(ω)

The above result shows that a constant signal x(t) = 1 for all t , when Fourier
transformed becomes an impulse 2π δ(ω). x(t) and X ( jω) are represented in
Fig. 3.6a, b respectively.

(d) x(t) = u(t) and x(t) = u(−t)

x(t) =
{

u(t)

1 t ≥ 0

To find the FT of unit step u(t) by direct integration yields an indeterminate value
as is evident from the following equation because it has a jump discontinuity at
t = 0.
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x(t)
(a) (b)

tt 0

x( j )

2 ( )

0

1

Fig. 3.6 Representation of x(t) = 1 and its FT

X ( jω) =
∫ ∞

0
e− jωt dt = − 1

jω

[
e− jωt

]∞
0

So, the problem is approached by considering u(t) as

u(t) = 1

2
+ 1

2
sgn(t)

Figure3.7 represents 1
2 sgn(t) and u(t)

F[u(t)] = F

[
1

2

]
+ 1

2
F sgn(t)

F

[
1

2

]
= π δ(ω)

F

[
1

2
sgn(t)

]
= 1

jω

F[u(t)] = π δ(ω) + 1

jω

0.5sgn(t)

0.5

0.5

(a) (b) (c)

0

0.5

0t t

x(t)=.5+.5sgn(t)

1

0 t

Fig. 3.7 Representation of u(t) in terms of signum function
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F[u(−t)] = X (− jω)

F[u(−t)] = π δ(ω) − 1

jω

(e) x(t) = e−at u(t); a > 0

X ( jω) =
∫ ∞

0
e−at e− jωt dt =

∫ ∞

0
e−(a+ jω)t dt

= − 1

(a + jω)

[
e−(a+ jω)t

]∞
0

X ( jω) = 1

(a + jω)

|X ( jω)| = 1√
a2 + ω2∣∣X ( jω) = − tan−1 ω

a

The signal x(t), the amplitude spectrum |X ( jω)| and phase spectrum
∣∣X ( jω)

are shown in Fig. 3.8a–c respectively.
(f) x(t) = e−a|t|; a > 0

X ( jω) =
∫ ∞

−∞
x(t)e− jωt dt

=
∫ 0

−∞
eat e− jωt dt +

∫ ∞

0
e−at e− jωt dt

=
∫ 0

−∞
e(a− jω)t dt +

∫ ∞

0
e−(a+ jω)t dt

X ( jω) = 1

(a − jω)

[
e(a− jω)t

]0
−∞ − 1

(a + jω)

[
e−(a+ jω)t

]∞
0

= 1

(a − jω)
+ 1

(a + jω)

X ( jω) = 2a

a2 + ω2
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x(t)

u(t)

(a) (b)
X(j )

1
a

t 00

1

ate

(c)
X( j )

/2

/4

/4

/2

Fig. 3.8 Representation of x(t) = e−at u(t) and its FT spectra

[
e−a|t |] FT←→ 2a

a2 + ω2

Fourier Spectra

|X ( jω)| = 2a

a2 + ω2∣∣X ( jω) = 0

The Fourier phase spectrum is zero at all frequencies. The representation of x(t)
and its Fourier amplitude spectrum are shown in Fig. 3.9a, b respectively.

(g) x(t) = eat u(t); a > 0

X ( jω) =
∫ ∞

0
eat e− jωt dt

=
∫ ∞

0
e(a− jω)t dt

= 1

(a − jω)

[
e(a− jω)t

]∞
0

If the upper limit is applied to the above integral, the Fourier integral does not
converge. Hence, FT does not exist for x(t) = eat u(t).
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0

1

(a) (b)

tt

x(t)

e ateat

0

X( j )

2
a

Fig. 3.9 Representation of e−a|t | and its amplitude spectrum

x(t) = eat u(−t) a > 0

x(−t) = e−at u(t)

From Example 3.1(e), it is derived

F[e−at u(t)] = 1

(a + jω)

F[x(−t)] = X (− jω)

F[eat u(−t)] = 1

a − jω

The above result can be derived from the first principle as explained below:

F[eat u(−t)] =
∫ 0

−∞
eat e− jωt dt

=
∫ 0

−∞
e(a− jω)t dt

= 1

(a − jω)

[
e(a− jω)t

]0
−∞

F[eat u(−t)] = 1

(a − jω)

Example 3.2 Consider the rectangular pulse shown in Fig. 3.10 which is the gate
function. Find the FT and sketch the Fourier spectra.

(Anna University, April, 2004)
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Fig. 3.10 Representation of
gate function

x(t)

t0

1

t T T

Solution

x(t) = 1 |t | ≤ T

X ( jω) =
∫ T

−T
1e− jωt dt = −1

jω

[
e− jωt

]T

−T

=
[
e jωT − e− jωT

]
jω

= 2T sinωT

ωT
= 2T sinc ωT

X ( jω) = 2T sinc ωT

Frequency Spectra of Gate Function

Amplitude Spectrum
At ω = 0,

|X ( jω)| = 2 sinωT

ωT
= 2 sin 0

0
= 2

At ω = ± nπ
T ,

|X ( jω)| = 0, where n = 1, 2, 3, . . .

Phase Spectrum

For sinc ω > 0,
∣∣X ( jω) = 0

For sinc ω < 0,
∣∣X ( jω) = π

The amplitude and phase spectra are shown in Fig. 3.11a, b respectively.

Note: Since π = −π , in Fig.3.11b,
∣
∣X( jω) is marked as π .
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(a)

(b)

2

0

X(j )

X(j )

3
T

3
T

2
T

2
T

2
T

2
T

3
T

3
T

T

T

T

T

Fig. 3.11 Fourier spectra of gate function

x(t)

t0

e

1

t

1

at

eat

Fig. 3.12 Antisymmetry exponential decay pulse

Example 3.3 For the following signal x(t), find the FT and FT spectra

x(t) =

⎧⎪⎨
⎪⎩

e−at t > 0

|1| t = 0

−e+at t < 0

Solution The signal x(t) is sketched as shown in Fig. 3.12.
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X(j )(a) (b) X(j )

0

0

/2

2

Fig. 3.13 a Amplitude spectra and b Phase spectra

X ( jω) =
∫ ∞

−∞
x(t)e− jωt dt

=
∫ 0

−∞
−eat e− jωt dt +

∫ 0+

0−
1e− jωt dt +

∫ ∞

0+
e−at e− jωt dt

= −
∫ 0

−∞
e(a− jω)t dt +

∫ 0+

0−
e− jωt dt +

∫ ∞

0+
e−(a+ jω)t dt

X ( jω) = −1

(a − jω)

[
e(a− jω)t

]0
−∞ + 0 − 1

(a + jω)

[
e−(a+ jω)t

]∞
0+

= −1

(a − jω)
+ 1

(a + jω)

X ( jω) = −2 jω

(a2 + ω2)

Fourier Transform Spectra

|X ( jω)| = 2ω

(a2 + ω2)

∣∣X ( jω) =

⎧⎪⎨
⎪⎩

−π

2
ω > 0

π

2
ω < 0

The frequency spectra for −∞ < ω < ∞ are shown in Fig. 3.13a, b.
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Fig. 3.14 Representation of
triangular pulse

x(t)

t0

4

t 2 2

Example 3.4 Consider the triangular pulse shown in Fig. 3.14. Find the FT and its
amplitude spectrum.

Solution

x(t) =
{

(2t + 4) −2 ≤ t ≤ 0

(4 − 2t) 0 ≤ t ≤ 2

X ( jω) =
∫ 0

−2
(2t + 4)e− jωt dt +

∫ 2

0
(4 − 2t)e− jωt dt = X1( jω) + X2( jω)

X1( jω) =
∫ 0

−2
(2t + 4)e− jωt dt

Let u = 2t + 4; du = 2 dt ; dv = e− jωt dt ; and v = − 1
jω e− jωt

X1( jω) = uv −
∫

v du

=
[
(2t + 4)

(−1

jω

)
e− jωt

]0
−2

+ 2

jω

∫ 0

−2
e− jωt dt

X1( jω) = −4

jω
+ 2

ω2
− 2

ω2
e j2ω

X2( jω) =
∫ 2

0
(4 − 2t)e− jωt dt

Let u = (4 − 2t); du = −2 dt ; dv = e− jωt dt ; and v = − 1
jω e− jωt

X2( jω) = uv −
∫

v du

=
[
(4 − 2t)

(−1

jω

)
e− jωt

]2
0

− 2

jω

∫ 2

0
e− jωt dt
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X( j )

0

8

3 2 2 3

Fig. 3.15 Magnitude spectrum of a triangular wave

X2( jω) = 4

jω
− 2

ω2

[
e− jωt

]2
0

= 4

jω
− 2

ω2

[
e− j2ω − 1

]
X ( jω) = X1( jω) + X2( jω)

= − 4

jω
+ 2

ω2
− 2

ω2
e j2ω + 4

jω
− 2

ω2
e− j2ω + 2

ω2

= 4

ω2
− 4

ω2
cos 2ω

= 4

ω2
[− cos 2ω + 1]

= 8

ω2
sin2 ω

= 8

[
sinω

ω

]2

X ( jω) = 8sinc2 ω

Fourier Spectra

|X ( jω)| = 8sinc2 ω∣∣X ( jω) = 0◦ for all ω

The magnitude spectra is represented in Fig. 3.15.

Note: The FT of rectangular, triangular, and other signals can be easily deter-
mined by following the properties of FT which are discussed below.
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3.6 Properties of Fourier Transform

TheFourier transformpossesses the following properties and using them same results
are easily obtained. These properties are:

1. Linearity
2. Time shifting
3. Conjugation and conjugation symmetry
4. Differentiation
5. Integration
6. Time scaling and time reversal
7. Frequency shifting
8. Duality
9. Time convolution
10. Parseval’s Theorem.

3.6.1 Linearity

If

x1(t)
FT←→ X1( jω)

x2(t)
FT←→ X2( jω)

then

[A x1(t) + B x2(t)] FT←→ [A X1( jω) + B X2( jω)]

Proof Let x(t) = A x1(t) + B x2(t)

X ( jω) =
∫ ∞

−∞
x(t)e− jωt dt =

∫ ∞

−∞
[A x1(t) + B x2(t)]e− jωt dt

= A
∫ ∞

−∞
x1(t)e

− jωt + B
∫ ∞

−∞
x2(t)e

− jωt dt

X ( jω) = A X1( jω) + B X2( jω) (3.12)
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3.6.2 Time Shifting

If

x(t)
FT←→ X ( jω)

then

x(t − t0)
FT←→ e− jωt0 X ( jω)

Proof

F[x(t − t0)] =
∫ ∞

−∞
x(t − t0)e

− jωt dt

Let (t − t0) = p and dt = dp

F[x(t − t0)] =
∫ ∞

−∞
x(p)e− jω(p+t0) dp

= e− jωt0

∫ ∞

−∞
x(p)e− jωp dp

F[x(t − t0)] = e− jωt0 X ( jω) (3.13)

3.6.3 Conjugation and Conjugation Symmetry

If

x(t)
FT←→ X ( jω)

then

x∗(t) FT←→ X∗(− jω)

Proof

F[x∗(t)] = X∗( jω) =
[∫ ∞

−∞
x(t)e− jωt dt

]∗

=
∫ ∞

−∞
x∗(t)e jωt dt
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Replacing ω by (−ω),

X∗(− jω) =
∫ ∞

−∞
x∗(t)e− jωt dt

X∗(− jω) = X ( jω) if x(t) is real x∗(t) = x(t)

Also

X (− jω) = X∗( jω) (3.14)

3.6.4 Differentiation in Time

If

x(t)
FT←→ X ( jω)

then

dx(t)

dt
FT←→ jωX ( jω)

Proof

F[x(t)] = 1

2π

∫ ∞

−∞
X ( jω)e jωt dω

F

[
dx(t)

dt

]
= jω

2π

∫ ∞

0
X ( jω)e jωt dω

= jω X ( jω)

dx(t)

dt
FT←→ jω X ( jω) (3.15)

In general,

F

[
dn x(t)

dtn

]
= ( jω)n X ( jω)
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3.6.5 Differentiation in Frequency

If

F[x(t)] = X ( jω)

then

F[t x(t)] = j
d

dω
X ( jω)

Proof

X ( jω) =
∫ ∞

−∞
x(t)e− jωt dt

d

dω
[X ( jω)] =

∫ ∞

−∞
− j t x(t)e− jωt dt

= − j F[t x(t)]

[t x(t)] FT←→ j
d X ( jω)

dω
(3.16)

3.6.6 Time Integration

If

F[x(t)] = X ( jω)

then

F

[∫ t

−∞
x(τ ) dτ

]
= 1

jω
X ( jω) + π X (0) δ(ω)

Proof Let

y(t) =
∫ t

−∞
x(τ ) dτ

Differentiating the above equation, we get

x(t) = dy(t)

dt



3.6 Properties of Fourier Transform 245

Using differentiation property, we get

X ( jω) = jωY ( jω)

The differentiation in the time domain corresponds to multiplication by jω in fre-
quency domain.

Y ( jω) =
(

1

jω

)
X ( jω)

if the initial condition X (0) = 0.
If X ( jω) �= 0 atω = 0, then y(t) is not integrable and FT does not exist. However,

this problem is overcome by including impulses in the transform. The value atω = 0
is modified by adding π X (0) and the FT is written as

F

[∫ ∞

−∞
x(τ ) dτ

]
FT←→ 1

jω
X ( jω) + π X (0) δ(ω) (3.17)

3.6.7 Time Scaling

If

F[x(t)] = X ( jω)

then

F[x(at)] = 1

|a| X

(
jω

a

)

Proof

F[x(at)] =
∫ ∞

−∞
x(at)e− jωt dt

Let at = p; and dt = 1
a dp, a > 0

F[x(p)] = 1

a

∫ ∞

−∞
x(p)e− jωp

a dp
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F[x(at)] = 1

a
X
(

j
ω

a

)

For a < 0,

F[x(at)] = −1

a
X
(

j
ω

a

)

Hence,

F[x(at)] = 1

|a| X
(

j
ω

a

)
(3.18)

For time reversal,

F[x(−t)] = X (− jω) (3.19)

3.6.8 Frequency Shifting

If

F[x(t)] = X ( jω)

then

F[x(t)e jω0t ] = X [ j (ω − ω0)]

Proof

F[x(t)e jω0t ] =
∫ ∞

−∞
x(t)e jω0t e− jωt dt

=
∫ ∞

−∞
x(t)e− j (ω−ω0)t dt

F[x(t)e jω0t ] = X [ j (ω − ω0)] (3.20)
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3.6.9 Duality

If

F[x(t)] = X ( jω)

then

F[X (t)] = 2πx( jω)

Proof

x(t) = 1

2π

∫ ∞

−∞
X ( jω)e jωt dω

x(−t) = 1

2π

∫ ∞

−∞
X ( jω)e− jωt dω

2πx(−t) =
∫ ∞

−∞
X ( jω)e− jωt dω

= F[X ( jω)]

Changing t to jω, we get

2πx( jω) = F[X (t)] (3.21)

3.6.10 The Convolution

Let

y(t) = x(t) ∗ h(t)

F[y(t)] = Y ( jω) = X ( jω)H( jω)

Proof

y(t) =
∫ ∞

−∞
x(τ )h(t − τ) dτ

F[y(t)] = Y ( jω) =
∫ ∞

−∞

[∫ ∞

−∞
x(τ )h(t − τ) dτ

]
e− jωt dt

Interchanging the order of integration, we get
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Y ( jω) =
∫ ∞

−∞
x(τ )

[∫ ∞

−∞
h(t − τ)e− jωt dt

]
dτ

By time shifting property, the term inside the bracket becomes e− jωτ H( jω).

Y ( jω) =
∫ ∞

−∞
x(τ )e− jωτ H( jω) dτ = H( jω)

∫ ∞

−∞
x(τ )e− jωτ dτ

Y ( jω) = H( jω)X ( jω) (3.22)

3.6.11 Parseval’s Theorem

According to Parseval’s theorem, that the total energy in a signal is obtained by
integrating the energy per unit frequency |X( jω)|2

2π
.

Proof

E =
∫ ∞

−∞
|x(t)|2 dt =

∫ ∞

−∞
x(t)x∗(t) dt

=
∫ ∞

−∞
x(t)

[
1

2π

∫ ∞

−∞
X∗( jω)e− jωt dω

]
dt

E = 1

2π

∫ ∞

−∞
X∗( jω)

[∫ ∞

−∞
x(t)e− jωt dt

]
dω = 1

2π

∫ ∞

−∞
X∗( jω)X ( jω) dω

E = 1

2π

∫ ∞

−∞
|X ( jω)|2 dω

The Fourier transform properties are summarized and given in Table3.1. The basic
Fourier transform pairs are given in Table3.2.

3.7 Fourier Transform of Periodic Signal

Example 3.5 Find the Fourier transform of the following periodic signals:

(a) x(t) = e jω0t

(b) x(t) = e− jω0t

(c) x(t) = cosω0t

(d) x(t) = sinω0t
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Table 3.1 Fourier transform properties
Property Time signal x(t) Fourier transform X ( jω)

1. Linearity x(t) = A x1(t) + B x2(t) X ( jω) = A X1( jω) + B X2( jω)

2. Time shifting x(t − t0) e− jωt0 X ( jω)

3. Conjugation x∗(t) X∗(− jω)

4. Differentiation in time
dn x(t)

dtn ( jω)n X ( jω)

5. Differentiation in frequency t x(t) j
d

dω
X ( jω)

6. Time integration
∫ t

−∞
x(τ ) dτ

1

jω
X ( jω) + π X (0)δ(ω)

7. Time scaling x(at)
1

|a| X
(

j
ω

a

)

8. Time reversal x(−t) X (− jω)

9. Frequency shifting x(t)e jω0 t X [ j (ω − ω0)]

10. Duality X (t) 2πx( jω)

11. Time convolution x(t) ∗ h(t) X ( jω)H( jω)

12. Parseval’s theorem E =
∫ ∞
−∞

|x(t)|2 dt E = 1

2π

∫ ∞
−∞

|X ( jω)|2 dω

Table 3.2 Basic Fourier transform pairs
Signal Fourier transform

1. δ(t) 1

2. u(t)
1

jω
+ πδ(ω)

3. δ(t − t0) e− jωt0

4. te−at u(t)
1

(a + jω)2

5. u(−t) πδ(ω) − 1

jω

6. eat u(−t)
1

(a − jω)

7. e−a|t | 2a

a2 + ω2

8. cosω0t π [δ(ω − ω0) + δ(ω + ω0)]

9. sinω0t − jπ [δ(ω − ω0) − δ(ω + ω0)]

10.
1

(a2 + t2)
e−a|ω|

11. sgn(t)
2

jω

12. 1; for all t 2π δ(ω)
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Solution

(a) x(t) = e jω0 t

Let y(t) = 1

Y ( jω) = 2πδ(ω)

By using the frequency shifting property, we get

X ( jω) = 2πδ(ω − ω0)

(b) x(t) = e− jω0 t

x(t) = e− jω0t

= e− jω0t1

By using the frequency shifting property, we get

X ( jω) = 2πδ(ω + ω0)

(c) x(t) = cos(ω0 t)

x(t) = cos(ω0t)

= 1

2

[
e jω0t + e− jω0t

]

X ( jω) = π [δ(ω + ω0) + δ(ω − ω0)]

The frequency spectrum is shown in Fig. 3.16.
(d) x(t) = sin ω0 t

x(t) = sinω0t

= 1

2 j

[
e jω0t − e− jω0t

]

X ( jω) = − jπ [δ(ω − ω0) − δ(ω + ω0)]

The Fourier spectra of sinω0t are shown in Fig. 3.17.

Example 3.6 Consider the signal x(t) shown in Fig. 3.18a. The rectangular pulse
x̄(t) is shown in Fig. 3.18b. From X̄( jω), determine X ( jω) using shift property.
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X(j )

00 0

Fig. 3.16 FT of cos(ω0t)

X(j )(a)

00 0

(b) X(j )

0

0

/2

/2

Fig. 3.17 Fourier spectra of sinω0t

x(t)(a) (b) x(t)

t t0 02

1

1 1

Fig. 3.18 a Rectangular time-shifted pulse and b Rectangular or gate pulse

Solution In Example 3.2, the FT of x̄(t) has been derived as

X̄( jω) = 2sincω

Using shift property, the FT of x(t) is obtained as

X ( jω) = 2e− jωsincω

Example 3.7 Find the Fourier transform of the signal shown in Fig. 3.19 and plot
its magnitude.

(Anna University, April, 2005)
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Fig. 3.19 x(t) signal of
Example 3.7

x(t)

t0 1

1

1

Solution
Method 1

x(t) =
{
1 −1 ≤ t ≤ 0

−1 0 ≤ t ≤ 1

X ( jω) =
∫ 0

−1
e− jωt dt −

∫ 1

0
e− jωt dt

= −1

jω

{[
e− jωt

]0
−1 − [

e− jωt
]1
0

}

= −1

jω

[
1 − e jω − e− jω + 1

]

X ( jω) = 2

jω
[cosω − 1]

Method 2
Differentiating the signal in Fig. 3.19, dx(t)

dt is obtained and is represented in Fig. 3.20.

Fig. 3.20 Differentiated
signal of Fig. 3.19

dx(t)
dt

t

1

1

1

01

2
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X(j )

8 6 4 2 2 4

4/

6 80

Fig. 3.21 Amplitude spectrum of ω sinc2(ω/2)

Using time shifting property, FT of Fig. 3.20 is written as follows:

F

[
dx(t)

dt

]
= [

e jω − 2 + e− jω
] = 2[cosω − 1]

Using the time integration property ω get

F[x(t)] = X ( jω) = 2

jω
[cosω − 1]

X ( jω) = 2

jω
[cosω − 1]

To Plot the Magnitude Spectrum

|X ( jω)| = 2

ω
[cosω − 1] = 2

ω

[
cos2

ω

2
− sin2

ω

2
− 1

]

= −4

ω
sin2 ω/2 = −ω

[
sinω/2

ω
2

]2

|X ( jω)| =
∣∣∣ω sinc2

ω

2

∣∣∣
The amplitude spectrum of X ( jω) is shown in Fig. 3.21.

Example 3.8 Using Fourier transform properties, find the Fourier transform of the
signal shown in Fig. 3.22a.

(Anna University, December, 2007)



254 3 Fourier Transform Analysis of Continuous Time Signals

x(t)(a)

(b) (c)

t0

A

TT
4

2A

T
2

3T
4

x1(t)

t0

A A

T
2

T
2

x2(t)

t0T
4

T
4

Fig. 3.22 Decomposition of signal

Solution The given signal x(t) represented in Fig. 3.22a can be decomposed as x1(t)
and x2(t) and represented in Fig. 3.22b, c respectively. x(t) can be represented as

x(t) = A

[
x1

(
t − T

2

)
+ x2

(
t − T

2

)]

Thus, the FT of x(t) can be obtained using linearity and time shifting. From
Example 3.2,

X1( jω) = AT sinc
ωT

2

X2( jω) = AT sinc
ωT

4

X ( jω) = [X1( jω) + X2( jω)]e− j ωT
2

X ( jω) = AT

[
sinc

ωT

2
+ sinc

ωT

4

]
e− j ωT

2

Example 3.9 Find the Fourier transform X ( jω) of the signal x(t) represented in
Fig. 3.23a using differentiation property of FT.Verify the same using Fourier integral.
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x(t)(a) (b) x1(t)
x2(t)

dx(t)
dtt t0 0

2

1

2

1
1

1 1

2 2

1

2

Fig. 3.23 Representation of x(t) and dx(t)
dt

Solution
(a) FT Using Differentiation Property

x(t) = 2t − 1 ≤ t ≤ 1

dx(t)

dt
= 2 − 2δ(t − 1) − 2δ(t + 1) − 1 ≤ t ≤ 1

x(t) is represented in Fig. 3.23a and dx(t)
dt is shown in Fig. 3.23b. In Fig. 3.23b,

x1(t) represents the gate function and x2(t) represents impulse functions. From
Example 3.2,

X1( jω) = 4 sincω

X2( jω) = −2
(
e jω + e− jω

)
= −4 cosω

F

[
dx(t)

dt

]
= X1( jω) + X2( jω)

= 4[sincω − cosω]

Using integration property, FT of x(t) is obtained by dividing by jω. Thus,

X ( jω) = 4

jω
[sincω − cosω]

The above result can be obtained using the Fourier integral as explained below.
(b) FT Using Fourier Integral

x(t) = 2t

X ( jω) =
∫ 1

−1
2te− jωt dt
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Let u = 2t ; du = 2dt and dv = ∫
e− jωt dt ; v = −1

jω e− jωt

X ( jω) = uv −
∫

v du =
[−2t

jω
e− jωt

]1
−1

+ j
2

ω

∫
e− jωt dt

=
[−2t

jω
e− jωt + 2

ω2
e− jωt

]1
−1

= 2

[−e− jω

jω
+ 1

ω2
e− jω − 1

jω
e jω − 1

ω2
e jω

]

= 2

[
− 1

jω

(
e jω + e− jω

)− 1

ω2

(
e jω − e− jω

)]

= 4

[
− 1

jω
cosω + 1

jω

sinω

ω

]

X ( jω) = 4

jω
[sincω − cosω]

Example 3.10 Find the Fourier transform of impulse train shown in Fig. 3.24.

x(t)
(a)

06T 5T 4T 3T 2T 2T 3T 4T 5T 6TT T

(b)

0

X(j )

6
T

4
T

2
T

2
T

2
T

4
T

6
T

Fig. 3.24 a Impulse train and b FT of Impulse train
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Solution For Fig. 3.24a,

x(t) =
∞∑

n=−∞
δ(t − nT )

where T is periodic. The Fourier series coefficients are determined as

Dn = 1

T

∫ T/2

−T/2
δ(t)e− jnω0t dt

= 1

T

For a periodical signal,

X ( jω) = 2π

T

∞∑
n=−∞

δ

(
ω − 2πn

T

)

The above expression is represented in Fig. 3.24b.

Example 3.11 For the triangular wave shown in Fig. 3.25, find the Fourier transform
using double-differentiation property.

Solution The triangular signal x(t) is represented in Fig. 3.25a. It is mathematically
expressed as

x(t) =
{
2t + 4 −2 ≤ t < 0

4 − 2t 0 ≤ t ≤ 2

dx(t)

dt
=
{
2 −2 ≤ t < 0

−2 0 ≤ t ≤ 2

dx(t)
dt

∣∣
t=0 varies from +2 to −2. dx(t)

dt is represented in Fig. 3.25b.

d2x(t)

dt2
=

⎧⎪⎨
⎪⎩
2δ(t + 2) t = −2

−4 t = 0

2 δ(t − 2) t = 2

d2x(t)
dt2 is shown in Fig. 3.25c. From Fig. 3.25c, using linearity and time shifting prop-

erties of FT, we get
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(a) (b) dx(t)x(t)
dt

t

t

02

2

2
2

2

2
4

d2x(t)
dt2

(c)

2 2

202

4

t

Fig. 3.25 a Triangular wave; b First derivative and c Second derivative

F

[
d2x(t)

dt2

]
= 2e j2ω − 4 + 2e− j2ω

= 4[cos 2ω − 1]
= −8 sin2 ω

F[x(t)] is obtained by dividing F
[

d2x(t)
dt2

]
by ( jω)2. Thus

X ( jω) = −8

( jω)2
sin2 ω

= 8
[
sin

ω

ω

]2

X ( jω) = 8sinc2 ω
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The same result is obtained in Example 3.4 which is obtained directly using Fourier
integral.

Example 3.12 Find the Fourier transform of

x(t) = 2a

a2 + t2

using the duality property of FT.

Solution
Method 1
From Example 3.1(f), the FT of x(t) = e−a|t | is obtained as

x(t) = e−a|t | FT←→ 2a

a2 + ω2

By the application of the inverse Fourier transform, we get

e−a|t | = 1

2π

∫ ∞

−∞
2a

a2 + ω2
e jωt dω

2πe−a|t | =
∫ ∞

−∞
2a

a2 + ω2
e jωt dω

Replacing t by −t in the above equation, we get

2πe−a|t | =
∫ ∞

−∞
2a

a2 + ω2
e− jωt dω

Interchanging t and ω in the above equation, we get

2πe−a|ω| =
∫ ∞

−∞
2a

(a2 + t2)
e− jωt dt

The right-hand side of the above equation is nothing but the FT of 2a
a2+t2 .

2πe−a|ω| = F

[
2a

(a2 + t2)

]

[
2a

(a2 + t2)

]
FT←→ 2πe−a|ω|



260 3 Fourier Transform Analysis of Continuous Time Signals

X(j )(a)

(c)

(b)

1 0 1 2

2

22

2

2

1 0 1 22

2

2

X(j )

X(j )

Fig. 3.26 Fourier transformed signal

Method 2
The duality property of X (t) = 2πx(−ω). From Example 3.1(f), the FT of e−|t | is
obtained as

e−a|t | FT←→ 2a

a2 + ω2

X (t) = 2a

a2 + t2

x(−ω) = e−a|ω|

X (t)
FT←→ 2πx(−ω)

2a

a2 + t2
FT←→ 2πe−a|ω|

Example 3.13 For the Fourier transforms shown in Fig. 3.26a–c. Find the energy of
the signals using Parseval’s theorem

Solution

(a)

E = 1

2π

∫ ∞

−∞
|X ( jω)|2 dω
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E = 1

2π

{∫ 1

−2
12 dω +

∫ 1

−1
22 dω +

∫ 2

1
12 dω

}

= 1

2π

{[
ω
]−1

−2
+ 4

[
ω
]1

−1
+
[
ω
]2
1

}

= 1

2π
{−1 + 2 + 4 + 4 + 2 − 1}

E = 5

π

(b)

E = 1

2π

{∫ 0

−2
22 dω +

∫ 2

0
(−2)2 dω

}

= 1

2π

{
4
[
ω
]0

−2
+ 4

[
ω
]2
0

}

E = 8

π

(c)

|X ( jω)| =

⎧⎪⎨
⎪⎩
2ω + 4 −2 ≤ ω ≤ −1

2 −1 ≤ ω ≤ 1

(4 − 2ω) 1 ≤ ω < 2

E = 1

2π

{∫ −1

−2
(2ω + 4)2 dω +

∫ 1

−1
(2)2 dω +

∫ 2

1
(4 − 2ω)2 dω

}

= 1

2π

{∫ −1

−2
(4ω2 + 16ω + 16) dω + 4

∫ 1

−1
dω +

∫ 2

1
(4ω2 − 16ω + 16) dω

}

= 1

2π

{[
4

3
ω3 + 8ω2 + 16ω

]−1

−2
+ 4

[
ω
]1
−1

+
[
4

3
ω3 − 8ω2 + 16ω

]2
1

}

= 1

2π

{[
− 4

3
+ 8 − 16 + 32

3
− 32 + 32

]
+ [4 + 4]

+
[
32

3
− 32 + 32 − 4

3
+ 8 − 16

]}

E = 16

3π
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Example 3.14 Find the Fourier transform of the following continuous time func-
tions by applying Fourier transform properties or otherwise.

1. x(t) = δ(t − 2)

2. x(t) = δ(t − 1) − δ(t + 1)

3. x(t) = δ(t + 2) + δ(t − 2)

4. x(t) = u(t + 2) − u(t − 2)

5. x(t) = d

dt
[u(−t − 3) + u(t − 3)]

6. x(t) = e−3t u(t − 1)

7. x(t) = te−at u(t)

8. x(t) = e−a(t−2)u(t − 2)

9. x(t) = e−a|t−2|

10. x(t) = sin
(
2π t + π

4

)
11. x(t) = cos

(
3π t + π

8

)
+ 1

12. x(t) = cos
(
6π t − π

8

)
13. x(t) = x(4t − 8)

14. x(t) = d2

dt2
x(t − 2)

15. x(t) = x(2 − t) + x(−2 − t)

16. x(t) = rect

(
t + 2

4

)

17. x(t) = tri

(
t − 4

10

)

18. x(t) = d

dt

[
5 rect

t

8

]
19. x(t) = δ(t + 2) + 5δ(t + 1) + δ(t − 1) + 5δ(t − 2)

20. x(t) =
{

e j6|t | |t | ≤ π

0 elsewhere

21. x(t) = cos(ω0t + φ)

22. x(t) = sin(ω0t + φ)

23. x(t) =
⎧⎨
⎩
0 |t | > 1
(t + 1)

2
−1 ≤ t ≤ 1
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24. x(t) =
{

t 0 ≤ t < 1

0 elsewhere

25. x(t) =

⎧⎪⎨
⎪⎩

t 0 ≤ t < 1

1 1 ≤ t ≤ 2

0 elsewhere

26. x(t) =

⎧⎪⎨
⎪⎩
1 |t | < 1

2 − |t | 1 < |t | < 2

0 elsewhere

Solution

1. x(t) = δ(t − 2)

The impulse is time shifted by t0 = 2.

F[δ(t − 2)] = e− jωt0 F[δ(t)]
= e− j2ω

F[δ(t − 2)] = e− j2ω

2. x(t) = δ(t − 1) − δ(t + 1)

F[δ(t − 1)] = e− jω

F[δ(t + 1)] = e jω

F[δ(t − 1) + δ(t + 1)] = e− jω − e jω

= −2 j sinω

F[δ(t − 1) − δ(t + 1)] = −2 j sinω

3. x(t) = δ(t + 2) + δ(t − 2)

F[δ(t + 2)] = e j2ω

F[δ(t − 2)] = e− j2ω

F[δ(t + 2) + δ(t − 2)] = e j2ω + e− j2ω

= 2 cos 2ω

X ( jω) = 2 cos 2ω
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4. x(t) = u(t + 2) − u(t − 2)

F[u(t + 2)] = 1

jω
e j2ω

F[u(t − 2)] = 1

jω
e− j2ω

F[u(t + 2) − u(t − 2)] = 1

jω

[
e j2ω − e− j2ω

]
= 2

ω
sin 2ω

X ( jω) = 4sinc 2ω

5. x(t) = d
dt

[u(−t − 3) + u(t − 3)]

x(t) and
dx(t)

dt
are shown in Fig. 3.27a–b respectively.

From Fig. 3.27b,

F

[
dx(t)

dt

]
= e− j3ω − e+ j3ω

= −2 j

[
e j3ω − e− j3ω

]
2 j

F

[
dx(t)

dt

]
= −2 j sin 3ω

u( t 3) u(t 3)

(a)

0 3

1

3

x(t)

t

(b)

3 3 0

1

1

dx(t)

t

dt

Fig. 3.27 a Representation of x(t) and b Representation of
dx(t)

dt
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6. x(t) = e−3t u(t − 1)

Method 1

F
[
e−3t u(t)

] = 1

(3 + jω)

Using time shifting property, we get

F
[
e−3(t−1)u(t − 1)

] = e− jω

(3 + jω)

e3F
[
e−3t u(t − 1)

] = e− jω

(3 + jω)

F
[
e−3t u(t − 1)

] = e−( jω+3)

(3 + jω)

Method 2

Using FT definition, from Fig. 3.28, we get

Rect

(
t

4

)
and rect

(
t

4
+ 0.5

)
are represented in Figs. 3.29a, b respectively

F[x(t)] =
∫ ∞

1
e−3t e− jωt dt

=
∫ ∞

1
e−(3+ jω)t dt

= −1

(3 + jω)

[
e−(3+ jω)t

]∞
1

x(t)

e 3t

0 1

1

t

Fig. 3.28 Representation of x(t) = e−3t u(t − 1)
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F[x(t)] = e−(3+ jω)

jω + 3

7. x(t) = te−at u(t)

F[e−at u(t)] = 1

(a + jω)

Using the FT property of differentiation in frequency, we get

F
[
te−at u(t)

] = j
d

dω

[
1

(a + jω)

]

= j (− j)

(a + jω)2

X ( jω) = 1

(a + jω)2

8. x(t) = e−a(t−2)u(t − 2)

Method 1

x(t)
FT←→ X ( jω)

x(t − t0)
FT←→ X ( jω)e− jωt0

F
[
e−a(t−2)u(t − 2)

] = 1

(a + jω)
e− j2ω

Method 2
Using the definition of FT, we get

X ( jω) =
∫ ∞

2
e−a(t−2)e− jωt dt

= e2a
∫ ∞

2
e−(a+ jω)t dt

= −e2a

(a + jω)

[
e−(a+ jω)t

]∞
2

= +e2a

(a + jω)
e−(a+ jω)2
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X ( jω) = e− j2ω

(a + jω)

9. x(t) = e−a|t−2|

x(t) =
{

e−a(t−2) 0 ≤ t ≤ ∞
ea(t+2) −∞ ≤ t < 0

Let |t − 2| = τ

x(τ ) = e−a|τ |

From Example 3.1(e),

F
[
e−a|τ |] = 2a

a2 + ω2

Using time shifting property,

F
[
e−a|t−2|] = 2a

a2 + ω2
e− j2ω

10. x(t) = sin
(

2π t + π

4

)

. (Anna University, December, 2006)

Let ω0 = 2π and φ = π

4

F[x(t)] = − jπ
[
e jφδ(ω − ω0) − e− jφδ(ω + ω0)

]
(For proof, see Example3.21 below).

X ( jω) = − jπ
[
e

jπ
4 δ(ω − 2π) − e− jπ

4 δ(ω + 2π)
]

11. x(t) = cos
(

3π t + π

8

)

+ 1

F[cos(ωt + φ)] = π
[
e jφδ(ω − ω0) + e− jφδ(ω + ω0)

]
Let ω0 = 3π and φ = π

8

F
[
cos 3π t + π

8

]
= π

[
e j π

8 δ(ω − 3π) + e− j π
8 δ(ω + 3π)

]
F[1] = 2πδ(ω)
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[
cos

(
3π t + π

8

)
+ 1

]
FT←→ π

[
e j π

8 δ(ω − 3π) + e− j π
8 δ(ω + 3π) + 2δ(ω)

]

12. x(t) = cos
(

6π t − π

8

)

Let ω0 = 6π and φ = −π
8

F[cosω0t + φ] = π
[
e jφδ(ω − ω0) + e− jφδ(ω + ω0)

]

F
[
cos

(
6π t − π

8

)]
= π

[
e− j π

8 δ(ω − 6π) + e j π
8 δ(ω + 6π)

]
13. x(t) = x(4t − 8)

By time scaling,

F[x(4t)] = 1

4
X

(
jω

4

)

x(4t) is time shifted by − 8
4 = −2. Hence,

F[x(4t − 8)] = 1

4
X

(
jω

4

)
e− j2ω

14. x(t) = d2

dt2
x(t − 2)

F

[
d2x(t)

dt2

]
= −ω2 X ( jω)

For the time delay t0,

F[x(t − t0)] = e− jωt0 X ( jω)

Here, t0 = 2.

F

[
d2

dt2
x(t − 2)

]
= −ω2e− j2ω X ( jω)

15. x(t) = x(2 − t) + x(−2 − t)

x(t) = x1(t) + x2(t)

where
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x1(t) = x(2 − t)

x2(t) = x(−2 − t)

F[x(−t)] = X (− jω)

Using time shifting property of FT, we get

X1( jω) = F[x(2 − t)] = e− j2ω X (− jω)

X2( jω) = F[x(−2 − t)] = e j2ω X (− jω)

X ( jω) = X1( jω) + X2( jω)

= X (− jω)
[
e− j2ω + e j2ω

]

X ( jω) = 2X (− jω) cos 2ω

16. x(t) = rect
(
t + 2

4

)

x(t) = rect

(
t

4
+ 0.5

)

t (a) (b)

t t2 2.50 0

11

2 1.5

4rect t 
4rect 0.5

Fig. 3.29 a Representation of rect

(
t

4

)
and b Representation of rect

(
t

4
+ 0.5

)

rect

(
t

4

)
FT←→ 2

ω
sin 2ω

rect

(
t

4
+ 0.5

)
FT←→ 2

ω
sin 2ω e+0.5 jω

X ( jω) = 2

ω
sin 2ω e j0.5ω
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17. x(t) = tri
(
t − 4

10

)

tri

(
t − 4

10

)
= tri

(
t

10
− 0.4

)

tri(t) is represented in Fig. 3.30a and tri
(

t
10

)
in Fig. 3.30b.

tri

(
t

10

)
=
{

(1 + 0.1t) − 10 ≤ t ≤ 0

(1 − 0.1t) 0 ≤ t ≤ 10

Let x(t) = tri0.1t .

dx(t)

dt
and

d2x(t)

dt
are represented in Fig. 3.30c.

tri(t)(a) (b)

0

1

11 t

tri(   )

0 10

10

1

10 t

t

d2x(t)
dt2

0.1 0.1

1010

0.1 0.2

t

dx(t)
dt

10

.1

10 t

(c)

Fig. 3.30 a x(t) = tri(t) and b x(t) = tri
( t
10

)
. c Representation of dx(t)

dt and d2x(t)
dt2
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F

[
d2x(t)

dt2

]
= 0.1e j10ω + 0.1e− j10ω − 0.2 [Refer to Example 3.11]
= 0.2[cos 10ω − 1]
= −0.4 sin2 5ω

Using the double integration property of FT, we get

F[tri0.1t] = −0.4

−ω2
sin2 5ω = 0.4

sin2 5ω

ω2

By time shifting, we get

F[tri (0.1t − 0.4)] = 0.4
sin2 5ω

ω2
e− j0.4ω

18. x(t) = d
dt

[

5 rect
(
t
8

)]

Figure3.31a represents 5 rect(t). The time expanded 5 rect
(

t
8

)
is shown in

Fig. 3.31b and its derivative is shown in Fig. 3.31c. From Fig. 3.31c,

X ( jω) = 5e j8ω − 5e− j8ω

X ( jω) = j10 sin 8ω

5rect(t)(a)

0 1

5

1 t

(b)

88 0

5

t

(c)

5

88

5

t

d
dt

t 
85rect

t 
85rect

Fig. 3.31 Representation of rectangular wave and its derivatives
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x(t)

0

1

1 2

5

t

1

2 1

5

Fig. 3.32 Discrete time signal

Fig. 3.33 Representation of
rectangular pulse

y(t)

0

1

t

19. x(t) = δ(t + 2) + 5δ(t + 1) + δ(t − 1) + 5δ(t − 2)

The given x(t) is represented in Fig. 3.32. By applying time shifting property to
each impulse, we get

X ( jω) = e j2ω + 5e jω + e− jω + 5e− j2ω

20. x(t) =
{

e j6t |t| ≤ π

0 elsewhere

The above signal is represented as a product of a rectangular pulse of width 2π
and a complex sinusoid e j6t .

x(t) =
{
1 e j6t |t | ≤ π

0 otherwise

For −π ≤ t ≤ π , the rectangular pulse y(t) is shown in Fig. 3.33. The FT of the
rectangular pulse shown in Fig. 3.33 can be easily derived as

Y ( jω) = 2

ω
sinωπ
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Using frequency shifting property,

y(t)e j6t FT←→= Y ( j (ω − 6))

X ( jω) = F
[
y(t)e j6t

]

X ( jω) = 2 sin((ω − 6)π)

(ω − 6)

21. x(t) = cos(ω0 t + φ)

cos(ω0t + φ) = 1

2

[
e j (ω0t+φ) + e− j (ω0t+φ)

] = 1

2

[
e jφe jω0t + e− jφe− jω0t

]
By frequency shifting property,

F
[
e jω0t

] = 2πδ(ω − ω0)

F
[
e− jω0t

] = 2πδ(ω + ω0)

F[x(t)] = X ( jω) = 2π

2

[
e jφδ(ω − ω0) + e− jφδ(ω + ω0)

]

X ( jω) = π
[
e jφδ(ω − ω0) + e− jφδ(ω + ω0)

]
22. x(t) = sin(ω0 t + φ)

sin(ω0t + φ) = 1

2 j

[
e+ j (ω0t+φ) − e− j (ω0t+φ)

]
= 1

2 j

[
e jφe jω0t − e− jφe− jω0t

]
F[x(t)] = X ( jω) = 2π

2 j

[
e jφδ(ω − ω0) − e− jφδ(ω + ω0)

]

X ( jω) = − jπ
[
e jφδ(ω − ω0) − e− jφδ(ω + ω0)

]

23. x(t) =
⎧

⎨

⎩

0 |t| > 1

(t + 1)

2
−1 ≤ t ≤ 1

Figure3.34a gives x(t) and Fig. 3.34b gives
dx(t)

dt
.
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x(t)(a)

0 1

1

½

1 t

(b)

1

½

1

1

dx(t)
dt

0 t

Fig. 3.34 a Representation of x(t) and b Representation of
dx(t)

dt

F[rect(t)] = sinω

ω

F

[
dx(t)

dt

]
= F

[
rect(t)

2

]
− e− jω

Using the integration property of FT,

X ( jω) = 1

jω

[
sinω

ω
− e− jω

]

24. x(t) =
{

t 0 ≤ t < 1
0 otherwise

x(t) = t ; 0 ≤ t ≤ 1 is shown in Fig. 3.35a dx(t)
dt is shown in Fig. 3.35b. The

Fourier transform of the time-shifted rectangle is 2 sin(ω/2)
ω

e− jω/2 and that of the
negative impulse is −e− jω.

F

[
dx(t)

dt

]
=
[
2
sin(ω/2)

ω
e− jω

2 − e− jω

]

Using the integration property of FT,

F[x(t)] = 1

jω
F

[
dx(t)

dt

]

X ( jω) = 1

jω

[
2 sin(ω/2)

ω
e− jω

2 − e− jω

]
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x(t)(a) (b)

0 1

1

1

1

1t

t

dx(t)
dt

Fig. 3.35 a Representation of x(t) and b Representation of
dx(t)

dt

x(t)(a)

0

1

1 2 t

(b)

1

1

20 t

1

dx(t)
dt

Fig. 3.36 a Representation of x(t) and b Representation of
dx(t)

dt

25. x(t) =

⎧

⎪⎨

⎪⎩

t 0 ≤ t < 1
1 1 ≤ t ≤ 2
0 elsewhere

The signal x(t) shown in Fig. 3.36a when differentiated takes the shape as shown
in Fig. 3.36b. For the square pulse, the FT is

X1( jω) = 2 sin ω
2

ω
e− jω

2

For the negative impulse, the FT is

X2( jω) = −e− j2ω

X1( jω) + X2( jω) =
[
2

ω
sin

ω

2
e− jω

2 − e− j2ω

]

The Fourier transform of the given signal is obtained using the integration prop-
erty.
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X ( jω) = 1

jω
[X1( jω) + X2( jω)]

X ( jω) = 1

jω

[
2

ω
sin

ω

2
e− jω

2 − e− j2ω

]

26. x(t) =

⎧

⎪⎨

⎪⎩

1 |t| < 1
2 − |t| 1 < |t| < 2
0 elsewhere

The given signal x(t) is represented in Fig. 3.37a. The first and second derivatives
are shown in Figs. 3.37b, c respectively. From Fig. 3.37c the FT of the impulses
are obtained using time shifting property.

F

[
d2x(t)

dt2

]
= [

e j2ω − (e jω + e− jω) + e− j2ω] = 2 [cos 2ω − cosω]

Using the integration property of FT

F [x(t)] = 2

( jω)2
F

[
d2x(t)

dt2

]

x( jω) = 2

ω2
[cosω − cos 2ω]

Example 3.15 Let the FT of a signal x(t) be as shown in Fig. 3.38a. Determine the
FT of dx(t)

dt , t x(t) and
∫ t
0 x(t)dt using property.

(Anna University, December, 2005)

Solution

(a)

F

[
dx(t)

dt

]
= jωX ( jω) = |ωX ( jω)|

X ( jω1) = ω1

X ( jω2) = ω2

X ( jω) = ω ω1 ≤ ω ≤ ω2

This is the straight line with slope 1. This is represented in Fig. 3.38b.
(b)

F[t x(t)] = d

dω
X ( jω)



3.7 Fourier Transform of Periodic Signal 277

x(t)(a)

1 1

1

22 t

(c)

1 1

1 1

11

22 t

d2x(t)
dt2

(b)

1

1

2 1

1

2 t

dx(t)
dt

Fig. 3.37 a Representation of signal x(t); b Representation of the signal
dx(t)

dt
and c Representa-

tion of the signal
d2x(t)

dt2

X(j )(a) X(j )

2

2

1 2

1

21 1

1

1

2

(c) (d)
1

1

0

1

d
d

(b)

(X(j )) X(j )

1
1

2
1

Fig. 3.38 a FT of x(t); b FT of
dx(t)

dt
; c FT of t x(t) and d FT of

∫ t

0
x(t)dt
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The rectangular wave in Fig. 3.38a when differentiated with respect to ω it
becomes +ve and −ve impulses of magnitude 1 at ω = ω1 and ω = ω2 respec-
tively. This is shown in Fig. 3.38c.

(c)

F

[∫ t

0
x(t)dt

]
= 1

jω
X ( jω) =

∣∣∣∣ 1ω X ( jω)

∣∣∣∣
At ω = ω1,

X ( jω1) = 1

ω1

At ω = ω2,

X ( jω2) = 1

ω2

For ω1 ≤ ω ≤ ω2, it is a drooping curve. This is represented in Fig. 3.38d.

Example 3.16 Find the magnitude spectrum of FT and plot it where

H( jω) = (1 + 2e− jω)

(1 + 1
2e− jω)

.

(Anna University, April, 2004)

Solution

H( jω) = (1 + 2e− jω)

(1 + 1
2e− jω)

= (1 + 2 cosω) − j2 sinω

(1 + 1
2 cosω) − j

2 sinω

|H( jω)| =
√

(1 + 2 cosω)2 + 4 sin2 ω√
(1 + 1

2 cosω)2 + 1
4 sin

2 ω

=
√
1 + 4 cos2 ω + 4 cosω + 4 sin2 ω√
1 + 1

4 cos
2 ω + cosω + 1

4 sin
2 ω

=
√
5 + 4 cosω√
5
4 + cosω

= 2

|H( jω)| = 2

|H( jω)| is independent of frequency and is shown in Fig. 3.39.
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Fig. 3.39 Magnitude
spectrum of H( jω)

H(j )

0

2

Example 3.17 Using the properties of continuous time Fourier transform determine
the time domain signal x(t), if the frequency domain signal

X ( jω) = j
d

dω

[
e j2ω

(1 + jω
3 )

]
.

(Anna University, December, 2007)

Solution From inspection of X ( jω), the given problem can be solved using differ-
entiation in frequency, time shifting and scaling in the proper order.

First, the time scaling property is applied. Let

X1( jω) = 1

1 + jω

x1(t) = e−t u(t)

F [x1[3t]] = 3e−3t u(3t)

F
[
3e−3t u(3t)

] = 1[
1 + jω

3

]

F−1

⎡
⎣ 1(

1 + jω
3

)
⎤
⎦ = 3e−3t u(t) [∵ u(t) = u(3t)]

According to the time shifting property,

e j2ωY ( jω) = y(t + 2)

F−1

⎡
⎣ e j2ω(

1 + jω
3

)
⎤
⎦ = 3e−3(t+2)u(t + 2)

According to differentiating property,
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j
d

dω
X ( jω) = t x(t).

Applying the above property, we have

F−1

⎡
⎣ j

d

dω

e j2ω(
1 + jω

3

)
⎤
⎦ = 3te−3(t+2)u(t + 2)

∴ X ( jω) = jd

dω

⎡
⎣ e j2ω(

1 + jω
3

)
⎤
⎦

x(t) = 3te−3(t+2)u(t + 2)

Example 3.18 Find the inverse Fourier transform of the following functions:

1. X ( jω) = δ(ω − ω0)

2. X ( jω) = jω

(2 + jω)2

3. X ( jω) =
{
1 |ω| < 2

0 elsewhere

4. X ( jω) = 6

(ω2 + 9)

5. X ( jω) = ( jω + 2)[
( jω)2 + 4 jω + 3

]
6. X ( jω) = ( jω + 1)[

( jω + 2)2( jω + 3)
]

Solution

1. X( jω) = δ(ω − ω0)

The IFT of δ(ω) = 1
2π δ(ω) is frequency shifted by ω0.

F−1 [X ( jω)] = e jω0t 1

2π

F−1 [δ(ω − ω0)] = 1

2π
e jω0t

The above result can also be got from the first principle of inverse Fourier
transform
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F−1 [δ(ω − ω0)] = 1

2π

∫ ∞

−∞
δ(ω − ω0)e

jωt dω

Using the sampling property of the impulse function which exists only atω = ω0,
we get

F−1 [δ(ω − ω0)] = 1

2π
e jω0t

2. X( jω) = jω
(2 + jω)2

F
[
e−2t

] = 1

(2 + jω)

By applying,

F
[
te−2t

] = d

dω

1

(2 + jω)
.

(Applying frequency differentiation).

F
[
te−2t

] = 1

(2 + jω)2

∴ F−1

[
1

(2 + jω)2

]
= te−2t .

By applying time differentiation, namely

dx(t)

dt
= jωX ( jω)

F−1

[
jω

(2 + jω2)

]
= d

dt

(
te−2t

)

3. X( jω) =
{

1 |ω| < 2
0 otherwise

The frequency spectrum of the above function is shown in Fig. 3.40.

Using the definition of inverse FT, we get
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Fig. 3.40 Representation of
X ( jω)

X(j )

0

1

2 2

x(t) = 1

2π

∫ 2

−2
X ( jω)e jωt dω

= 1

2π j t

[
1e jωt

]2
2

= 1

2π j t

[
e j2t − e− j2t

]
= 1

π t
sin 2t

x(t) = 2

π
sinc2t

4. X( jω) = 6
(ω2+9)

X ( jω) = −6

( jω + 3)( jω − 3)

= A1

jω + 3
+ A2

jω − 3

−6 = A1( jω − 3) + A2( jω + 3).

Let jω = −3

A1 = 1

Let jω = 3

A2 = −1

X ( jω) = 1

jω + 3
− 1

jω − 3

x(t) = F−1 [X ( jω)] = e−3t u(t) + e3t u(−t)

x(t) = e−3t u(t) + e3t u(−t)
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5. X( jω) = ( jω+2)

[( jω)2+4 jω+3]

X ( jω) = ( jω + 2)

( jω + 1)( jω + 3)

= A1

( jω + 1)
+ A2

( jω + 3)

( jω + 2) = A1( jω + 3) + A2( jω + 1)

Let jω = −1,

1 = 2A1

A1 = 1

2

Let jω = −3, A2 = 1
2

X ( jω) = 1

2

[
1

jω + 1
+ 1

jω + 3

]

x(t) = 1

2

[
e−t + e−3t

]
u(t)

6. X( jω) = ( jω+1)

( jω+2)2( jω+3)

X ( jω) = A1

( jω + 2)2
+ A2

( jω + 2)
+ A3

( jω + 3)

( jω + 1) = A1( jω + 3) + A2( jω + 2)( jω + 3) + A3( jω + 2)2

Let jω = −2;

−1 = A1

Let jω = −3;

−2 = A3

( jω + 1) = A1( jω + 3) + A2
[
( jω)2 + 5 jω + 6

]+ A3
[
( jω)2 + 4 jω + 4

]
Compare the coefficients of jω on both sides
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1 = A1 + 5A2 + 4A3

= −1 + 5A2 − 8

A2 = 2

X ( jω) = −1

( jω + 2)2
+ 2

( jω + 2)
− 2

( jω + 3)

x(t) = F−1[x( jω)]

x(t) = [−te−2t + 2e−2t − 2e−3t
]

u(t)

Example 3.19 Consider a causal LTI system with frequency response

H( jω) = 1

jω + 3
.

For a particular input x(t), this system is to produce the output

y(t) = e−3t u(t) − e−4t u(t).

Determine x(t).

(Anna University, April, 2008)

Solution

y(t) = e−3t u(t) − e−4t u(t)

Y ( jω) = 1

( jω + 3)
− 1

( jω + 4)
= 1

( jω + 3)( jω + 4)

H( jω) = Y ( jω)

X ( jω)

X ( jω) = Y ( jω)

H( jω)
= ( jω + 3)

( jω + 3)( jω + 4)
= 1

( jω + 4)

x(t) = F−1X ( jω) = e−4t u(t)

x(t) = e−4t u(t)

Example 3.20 Find the Fourier transform of the following signals using the convo-
lution theorem.
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1. x(t) = e−2t u(t) ∗ e−5t u(t)

2. x(t) = d

dt

[
e−2t u(t) ∗ e−5t u(t)

]
3. x(t) = [

e−2t u(t) ∗ e−5t u(t − 5)
]

Determine x(t) in all the above cases.

Solution

1. x(t) = e−2t u(t) ∗ e−5t u(t)

X ( jω) = F
[
e−2t u(t)

]
F
[
e−5t u(t)

]
F
[
e−2t u(t)

] = 1

( jω + 2)

F
[
e−5t u(t)

] = 1

( jω + 5)

X ( jω) = 1

( jω + 2)( jω + 5)

X ( jω) = 1

3

[
1

jω + 2
− 1

( jω + 5)

]

x(t) = F−1[X ( jω)] = 1

3
[e−2t u(t) − e−5t u(t)]

x(t) = 1

3

[
e−2t − e−5t

]
u(t)

2. x(t) = d
dt

[

e−2t u(t) ∗ e−5t u(t)
]

Let

x1(t) = e−2t u(t) ∗ e−5t u(t)

X1( jω) = 1

( jω + 2)( jω + 5)

Using the time differentiation property of FT, we get

x(t) = d x1(t)

dt
X ( jω) = jωX1( jω)
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X ( jω) = jω

( jω + 2)( jω + 5)

Putting into partial fraction, we get

X ( jω) = A1

jω + 2
+ A2

jω + 5

jω = A1( jω + 5) + A2( jω + 2)

Let jω = −2;

A1 = −2

3

Let jω = −5;

A2 = 5

3

X ( jω) = 1

3

[
− 2

jω + 2
+ 5

jω + 5

]

x(t) = F−1 [X ( jω)] = 1

3

[−2e−2t + 5e−5t
]

u(t)

x(t) = 1

3

[−2e−2t + 5e−5t
]

u(t)

3. x(t) = e−2t u(t) ∗ e−5t u(t − 5)

x(t) = x1(t) ∗ x2(t)

X ( jω) = X1( jω)X2( jω)

X1( jω) = 1

( jω + 2)

x2(t) = e−5t u(t − 5) = e−25e−5(t−5)u(t − 5)

X2( jω) = e−25 1

( jω + 5)

X ( jω) = e−25

[
1

( jω + 2)( jω + 5)

]
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X ( jω) = 1

3
e−25

[
1

jω + 2
− 1

jω + 5

]

x(t) = e−25

3

[
e−2t − e−5t

]
u(t)

Example 3.21 Consider the following signals x1(t) and x2(t). Find

y(t) = x1(t) ∗ x2(t).

1.

x1(t) = e−2t u(t)

x2(t) = e3t u(−t)

2.

x1(t) = e2t u(−t)

x2(t) = e4t u(−t)

Solution

1. x1(t) = e−2t u(t) and x2(t) = e3t u(−t)

X1( jω) = 1

( jω + 2)

X2( jω) = − 1

( jω − 3)

x1(t) ∗ x2(t) = X1( jω)X2( jω)

Y ( jω) = 1

( jω + 2)

(−1)

( jω − 3)

Y ( jω) = A1

( jω + 2)
+ A2

( jω − 3)

= 1

5

[
1

jω + 2
− 1

jω − 3

]

y(t) = F−1[Y ( jω)] = 1

5

[
e−2t u(t) + e3t u(−t)

]

y(t) = 1

5

[
e−2t u(t) + e3t u(−t)

]
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2. x1(t) = e2t u(−t) and x2(t) = e4t u(−t)

X1( jω) = −1

( jω − 2)

X2( jω) = −1

( jω − 4)

x1(t) ∗ x2(t) = X1( jω)X2( jω)

Y ( jω) = 1

( jω − 2)( jω − 4)

= A1

( jω − 2)
+ A2

( jω − 4)

= 1

2

[ −1

( jω − 2)
+ 1

( jω − 4)

]

y(t) = F−1[Y ( jω)] = 1

2

[
e2t − e4t

]
u(−t)

y(t) = 1

2

[
e2t − e4t

]
u(−t)

Example 3.22 Find the Fourier transform of the following functions:

1. x(t) = e jω0t u(t)

2. x(t) = cosω0t u(t)

3. x(t) = sinω0t u(t)

4. x(t) = e−at cosω0t u(t); a > 0

5. x(t) = e−at sinω0t u(t); a > 0

6. x(t) = [u(t + 2) − ut − 2] cos 3t

7. x(t) = e−2|t | cos 5t

8. x(t) = e−3|t | sin 2t

Solution

1. x(t) = e jω0 t u(t)

F [u(t)] = 1

jω
+ πδ(ω)
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By using the frequency shifting property, the FT of x(t) is obtained.

F
[
e jω0t u(t)

] = 1

j (ω − ω0)
+ πδ(ω − ω0)

2. x(t) = cos ω0 tu(t)

cosω0t = 1

2

[
e jω0t + e− jω0t

]
cosω0tu(t) = 1

2

[
e jω0t u(t) + e− jω0t u(t)

]
By using the frequency shifting property, F[x(t)] is obtained.

X ( jω) = F[cosω0tu(t)]
= 1

2

[
1

j (ω − ω0)
+ πδ(ω − ω0) + 1

j (ω + ω0)
+ πδ(ω + ω0)

]

X ( jω) = 1

2

[
2ω

j (ω − ω2
0)

+ πδ(ω − ω0) + πδ(ω + ω0)

]

X ( jω) = jω

(ω2
0 − ω2)

+ 1

2
πδ(ω − ω0) + 1

2
πδ(ω + ω0)

3. x(t) = sin ω0 tu(t)

sinω0t = 1

2 j

[
e jω0t − e− jω0t

]
sinω0tu(t) = 1

2 j

[
e jω0t u(t) − e− jω0t u(t)

]
By using the frequency shifting property, F[x(t)] is obtained.

F[x(t)] = 1

2 j

[
1

j (ω − ω0)
+ πδ(ω − ω0) − 1

j (ω + ω0)
− πδ(ω + ω0)

]

X ( jω) =
[

ω0

ω2
0 − ω2

+ π

2 j
δ(ω − ω0) − π

2 j
δ(ω + ω0)

]
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4. x(t) = e−at cos ω0 tu(t)

cosω0t = 1

2

[
e jω0t + e− jω0t

]
X ( jω) =

∫ ∞
0

e−at cosω0T e− jωt dt

= 1

2

∫ ∞
0

e−at e jω0t e− jωt dt + 1

2

∫ ∞
0

e−at e− jω0t e− jωt dt

= 1

2

∫ ∞
0

e−(a− jω0+ jω)t dt + 1

2

∫ ∞
0

e−(a+ jω0+ jω)t dt

= 1

2

[
−1

(a − jω0 + jω)
e−(a− jω0+ jω)t − e−(a+ jω0+ jω)t

(a + jω0 + jω)

]∞

0

= 1

2

[
1

(a + jω) − jω0
+ 1

(a + jω) + jω0

]

= 1

2

[a + jω + jω0 + a + jω − jω0]
(a + jω)2 + ω2

0

X ( jω) = (a + jω)

(a + jω)2 + ω2
0

Note: The property used to solve this problem is called the “Modulation”
property which states that

x(t) cos ω0 t
FT←→ 1

2
[X(ω − ω0) + X(ω + ω0)]

where x(t) is the modulating signal and cos ω0 t is the carrier signal.
5. x(t) = e−at sin ω0 tu(t)

sinω0t = 1

2 j

[
e jω0t − e− jω0t

]

X ( jω) = 1

2 j

∫ ∞

0
e−at e jω0t e− jωt dt − 1

2 j

∫ ∞

0
e−at e− jω0t e− jωt dt

= 1

2 j

∫ ∞

0
e−(a− jω0+ jω) dt − 1

2 j

∫ ∞

0
e−(a+ jω0+ jω)t dt

= 1

2 j

[
−e−(a− jω0+ jω)t

(a − jω0 + jω)
+ e−(a+ jω0+ jω)t

(a + jω0 + jω)

]∞

0

= 1

2 j

[
1

(a + jω) − jω0
− 1

(a + jω) + jω0

]

= 1

2 j

[
a + jω + jω0 − a − jω + jω0

(a + jω)2 + ω2
0

]
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X ( jω) = ω0

[(a + jω)2 + ω2
0]

6. x(t) = [u(t + 2) − u(t − 2)] cos 3t

X1(t) = u(t + 2) − u(t − 2) = 1; |t | < 2

X1( jω) =
∫ 2

−2
e− jωt dt

= − 1

jω

[
e− jωt

]2
−2

= − 1

jω

[
e− j2ω − e j2ω

]
= 2

ω

[
e j2ω − e− j2ω

]
2 j

X1( jω) = 2

ω
sin 2ω

cos 3t = e j3t + e− j3t

2

F[x(t) cosω0t] = 1

2
[X (ω − ω0) + X (ω + ω0)]

F[{u(t + 2) − u(t − 2)} cos 3t] = [sin 2(ω − 3)]
(ω − 3)

+ [sin 2(ω + 3)]
(ω + 3)

X ( jω) =
[
sin 2(ω − 3)

(ω − 3)
+ sin 2(ω + 3)

(ω + 3)

]

7. x(t) = e−2|t| cos 5t

F[e−2|t |] = 4

ω2 + 4
[see Example 3.1(f)]

F[x(t) cosω0t] = 1

2
[X (ω − ω0) + X (ω + ω0)]

In the given problem, ω0 = 5

X ( jω) = 2

[(ω − 5)2 + 4] + 2

[(ω + 5)2 + 4]
x(t) = [u(t + 2) − u(t − 2)] is shown in Fig. 3.41.
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Fig. 3.41 Representation of
x(t) = [u(t + 2) − u(t − 2)]

1

t2 2

x(t)

8. x(t) = e−3|t| sin 2t

F
[
e−3|t |] = 6

(9 + ω2)

x(t) sin ω0t
FT←→ 1

2 j
[X (ω − ω0) − X (ω + ω0)]

F
[
e−3|t | sin 2t

] FT←→ 1

2 j

[
6

[9 + (ω − 2)2] − 1

[9 + (ω + 2)2]
]

x( jω) = − j24

[9 + (ω − 2)2][9 + (ω + 2)2]

Example 3.23 Consider the following differential equation. Determine the fre-
quency response.

d2y(t)

dt2
+ 5

dy(t)

dt
+ 6y(t) = dx(t)

dt
+ 4x(t)

Solution Taking FT on both sides of the above differential equation, we get the
following algebraic equation. In the above equation, ( jω)2 = d2

dt2 ; ( jω) = d
dt are

substituted while Fourier transformed.

( jω)2Y ( jω) + 5( jω)Y ( jω) + 6Y ( jω) = [( jω) + 4]X ( jω)

Y ( jω)

X ( jω)
= H( jω) = ( jω + 4)

[( jω)2 + 5 jω + 6]

H( jω) = ( jω + 4)

( jω + 2)( jω + 3)
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|H( jω)| =
√

(ω2 + 16)√
(ω2 + 4)(ω2 + 9)∣∣H( jω) = tan−1 ω

4
− tan−1 ω

2
− tan−1 ω

3

H( jω) is the ratio of the Fourier transform of the output variable to the Fourier
transform of the input variable. It is called “Sinusoidal Transfer Function”.

Example 3.24 A certain continuous linear time invariant system is described by the
following differential equation.

dy(t)

dt
+ 5y(t) = x(t)

Determine y(t), using FT for the following input signals.

(a) x(t) = e−2t u(t)
(b) x(t) = 10u(t)
(c) x(t) = δ(t).

Solution

(a) x(t) = e−2t u(t)
Taking FT on both sides, we get

( jω + 5)Y ( jω) = X ( jω)

F[e−2t u(t)] = 1

( jω + 2)

Y ( jω) = 1

( jω + 2)( jω + 5)

= 1

3

[
1

jω + 2
− 1

jω + 5

]

y(t) = F−1[Y ( jω)] = 1

3

[
e−2t − e−5t

]
u(t)

y(t) = 1

3

[
e−2t − e−5t

]
u(t)

(b) x(t) = 10u(t)

X ( jω) = F[10u(t)] =
[
10πδ(ω) + 10

jω

]

Y ( jω) = X ( jω)

( jω + 5)
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=
[
πδ(ω) + 1

jω

]
10

( jω + 5)

= 10πδ(ω)

( jω + 5)
+ 10

jω( jω + 5)

= 10πδ(ω)

( jω + 5)
+ 2

jω
− 2

( jω + 5)

Applying the property X ( jω)δ(ω) = X (0)δ(ω) in the above equation, we get

Y ( jω) = 10

5
πδ(ω) + 2

jω
− 2

( jω + 5)

= 2

[
πδ(ω) + 1

jω

]
− 2

( jω + 5)

y(t) = F−1Y ( jω) = 2
[
u(t) − e−5t u(t)

]

y(t) = 2
[
1 − e−5t

]
u(t)

Note

F−1
[

πδ(ω) + 1
jω

]

= u(t).

The above response is called “Step Response” because the input u(t) is a
step signal.

(c) x(t) = δ(t)

X ( jω) = 1

Y ( jω) = 1

jω + 5

y(t) = F−1[Y ( jω)] = e−5t u(t)

y(t) = e−5t u(t)

The above response is called “Impulse Response of the System” because the
input δ(t) is an impulse.

Example 3.25 Consider an LTI system with the differential equation.

d2y(t)

dt2
+ 4

dy(t)

dt
+ 3y(t) = dx(t)

dt
+ 2x(t)

Find the frequency response and impulse response.

(Anna University, December, 2006)
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Solution Taking FT on both sides of the above equation, we get

[( jω)2 + 4 jω + 3]Y ( jω) = ( jω + 2)X ( jω)

H( jω) = Y ( jω)

X ( jω)
= ( jω + 2)

[( jω)2 + 4 jω + 3]
= ( jω + 2)

( jω + 1)( jω + 3)

|H( jω)| =
√

(ω2 + 4)√
(ω2 + 1)(ω2 + 9)

∣∣H( jω) = tan−1 ω

2
− tan−1 ω − tan−1ω

3

The above expressions give the magnitude and phase of the frequency response.
To find the impulse response

x(t) = δ(t)

F[x(t)] = F[δ(t)] = 1

Y ( jω) = ( jω + 2)

( jω + 1)( jω + 3)

= A1

( jω + 1)
+ A2

( jω + 3)

( jω + 2) = A1( jω + 3) + A2( jω + 1)

Let jω = −1;

1 = 2A1 or A1 = 1

2

Let jω = −3;

−1 = −2A2 or A2 = 1

2

Y ( jω) = 1

2

[
1

( jω + 1)
+ 1

( jω + 3)

]



296 3 Fourier Transform Analysis of Continuous Time Signals

Taking inverse FT, we get

y(t) = F−1[Y ( jω)] = 1

2

[
e−t + e−3t

]
u(t)

y(t) = 1

2

[
e−t + e−3t

]
u(t)

Example 3.26 An LTI continuous time system is described by the following differ-
ential equation.

d2y(t)

dt2
+ 2

dy(t)

dt
+ 2y(t) = x(t)

Determine the impulse response of the system using FT and inverse FT.

Solution Taking FT on both sides, we get the following equation:

[
( jω)2 + 2 jω + 2

]
Y ( jω) = X ( jω)

For an impulse input x(t) = δ(t)

X ( jω) = 1

Y ( jω) = 1

( jω)2 + 2 jω + 2

= 1

( jω + 1 + j)( jω + 1 − j)

= A1

( jω + 1 + j)
+ A2

( jω + 1 − j)

1 = A1( jω + 1 − j) + A2( jω + 1 + j)

Let jω = −(1 + j)

1 = A1(−1 − j − 1 − j)

A1 = −1

2 j
; A2 = A∗

1 = 1

2 j

Y ( jω) = 1

2 j

[ −1

jω + (1 + j)
+ 1

jω + (1 − j)

]
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Fig. 3.42 Time response of
R-L circuit

i

x(t)

y(t)

L 5 H

R 10 

Taking inverse FT, we get

y(t) = 1

2 j

[−e−(1+ j)t + e−(1− j)t
]

= e−t

[
e jt − e− j t

2 j

]

y(t) = e−t sin t

Example 3.27 Find the unit step response of the circuit shown in Fig. 3.38. Use
Fourier transform method.

(Anna University, December, 2007)

Solution For the circuit shown in Fig. 3.42 the following equation is written

L
di(t)

dt
+ Ri(t) = x(t)

5
di(t)

dt
+ 10i(t) = x(t)

Taking FT on both sides, we get

[5 jω + 10]I ( jω) = X ( jω)

I ( jω) = 0.2X ( jω)

( jω + 2)

For a step input
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X ( jω) = πδ(ω) + 1

jω

I ( jω) = 0.2πδ(ω)

( jω + 2)
+ 0.2

jω( jω + 2)

Applying the property X ( jω)δ(ω) = X (0) δ(ω) the above equation is written as

I ( jω) = 0.1πδ(ω) + 0.1

[
1

jω
− 1

jω + 2

]

= 0.1

[
πδ(ω) + 1

jω

]
− 0.1

jω + 2

i(t) = 0.1
[
u(t) − e−2t u(t)

]
y(t) = i(t)R

y(t) = [
1 − e−2t

]
u(t).

Summary

1. Periodic signals are represented by Fourier series as a sumof complex sinusoids or
exponentials.However, FS is not applicable to aperiodic signals. Fourier transform
gives spectral representation to aperiodic signal. Thus, FT is applicable to periodic
and non-periodic signals aswell to transform time domain signal x(t) to frequency
domain signal X ( jω). Here the frequency domain representation is continuous.

2. It is possible to transform time domain specifications to frequency domain spec-
ifications and vice versa. The former is called Fourier transform and the latter is
called inverse Fourier transform which are denoted as F[x(t)] and F−1[X ( jω)]
respectively and they are called Fourier transform pair.

3. Fourier transform does not exist for some useful signals. For example for x(t) =
eat u(t) FT does not converge.

4. Fourier and Laplace were contemporaries and great mathematicians who were
encouraged by the French ruler Napoleon Bonaparte. Laplace, by introducing
an exponential decay in the everlasting exponential made many functions con-
verge while FT failed in these cases. Further, Laplace transform is more powerful
especially in getting the solution of differential equations compared to FT.

5. FT is a special case of LT which is obtained in many cases by replacing s by jω.
But this is not always true. For example, in the case of a step signal, this is not
applicable.

6. Fourier transform has many useful properties. By applying these properties, one
can easily get the FT pair of even complex signals. They are powerful tools for
manipulating signals in time and frequency domains.
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Exercises

I. Short Answer Type Questions

1. What do you understand by Fourier transform pair?
When the time function x(t) is transformed to frequency function X ( jω), the
function x(t) is said to be Fourier transformed. When the frequency function
X ( jω) is transformed to x(t) then the function X ( jω) is said to be inverse
Fourier transformed. These transformations are respectively defined as follows:

X ( jω) =
∫ ∞

−∞
x(t)e− jωt dt

x(t) = 1

2π

∫ ∞

−∞
X ( jω)e jωt dω

The above two equations are called FT pair.
2. How Fourier transform is different from Fourier series?

Fourier series is applicable to periodic signals. Fourier transform is applicable
periodic and aperiodic signals as well.

3. How FT is developed from Fourier series?
When the aperiodic signals is considered as a periodic signalwith its fundamental
period tending to infinite, the fundamental frequency decreases and the higher
harmonics become closer. The frequency components form a continuum and
the Fourier series sum becomes Fourier integral which is defined as Fourier
transform.

4. How Parseval’s Energy theorem is defined for the frequency domain
signal?
According to Parseval’s theorem (French mathematician of late eighteenth and
early nineteenth centuries) the energy of the frequency domain is defined as

E = 1

2π

∫ ∞

−∞
|X ( jω)|2 dω

5. What is the connection between Fourier transform and Laplace transform?
The connection between Fourier transform and Laplace transform is that the
Fourier transform is the Laplace transform with s = jω. The Laplace transform
of x(t) = e−at u(t) is X (s) = 1

(s+a)
and its Fourier transform is X ( jω) = 1

( jω+a)
.

However, this is not generally true of signals which are not absolutely integrable.
The Laplace transform of a step signal is X (s) = 1

s . The Fourier transform of
the step signal is X ( jω) = πδ(ω) + 1

jω and not simply 1
jω .

6. What do you understand by frequency response?
If y(t) is the output, x(t) the input and h(t) is the impulse response, then they
are related as
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y(t) = x(t) ∗ h(t)

By using convolution property, we get

Y ( jω) = X ( jω)H( jω)

Y ( jω)

X ( jω)
= H( jω)

The function H( jω) is called the frequency response.
7. What is the condition required for the convergence of Fourier transform?

If the signal x(t) has finite energy or if it is square integrable such that

∫ ∞

−∞
|x(t)|2 dt < ∞

then the Fourier transform X ( jω) converges.
8. What is the Fourier transform of

x(t) = d2

dt2
x(t + 1)

F[x(t)] = ( jω)2e jω X ( jω)

9. What is the FT of x(t) = [δ(t + 5) − δ(t − 5)]?

X ( jω) = 2 j sin 5ω

10. Find the FT of x(t) = 2[u(t + 6) − u(t − 6)]?

X ( jω) = 4

ω
sin 6ω = 24sinc6ω

II. Long Answer Type Questions

1. Consider the following continuous time signal.

x(t) = e−5|t|

Find the FT. Hence determine the FT of t x(t).
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Fig. 3.43 FT of
x(t) = e−5|t | X(j )

05 5

5

Fig. 3.44 Representation of
x(t) for question 3

x(t)

0 1

1

2

1 t

X ( jω) = 10

(25 + ω2)

F
[
te−5|t |] = − j20ω

(25 + ω2)2

2. For the signal X( jω) shown in Fig.3.43, determine x(t)?

x(t) = 5
sin 5t
π t

3. Consider the signal shown in Fig. 3.44. Find X( jω). What is the FT for
x(t − 1)?

X ( jω) = 2
sinω

jω2
+ e− jω

F[x(t − 1)] = 2 sinω

jω2

4. Using Parseval’s theorem evaluate energy in the frequency domain.

x(t) = e−4|t |

p = 1

4
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5.

x(t) = e−2t u(t)

and

h(t) = e−4t u(t)

y(t) = x(t) ∗ h(t)

Using time convolution property find Y( jω) and y(t)?

Y ( jω) = 1

( jω + 2)( jω + 4)

y(t) = 1

2

[
e−2t − e−4t

]
u(t)

6.

x(t) = e−2t u(t)

h(t) = e−2t u(t)

y(t) = x(t) ∗ h(t)

Find Y( jω) and hence y(t)?

Y ( jω) = 1

( jω + 2)2

y(t) = te−2t u(t)

7. A certain LTIC system is described by the following differential equation.

d y(t)
dt

+ 2 y(t) = x(t)

Determine the Frequency response and the Impulse response?

H( jω) = 1

( jω + 2)

h(t) = e−2t u(t)

8. Consider the following differential equation

d2 y(t)
dt2

+ 8
d y(t)
dt

+ 15y(t) = dx(t)
dt

+ 4x(t)
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(a) Find the frequency response.
(b) Find the impulse response.
(c) Find the response y(t) due to the input x(t) = e−3t u(t).

(a) H( jω) = ( jω + 4)

( jω + 3)( jω + 5)

(b) h(t) = 1

2

[
e−3t + e−5t

]
u(t)

(c) y(t) = 1

4

[
2te−3t + e−3t − e−5t

]
u(t).



Chapter 4
The Laplace Transform Method for the
Analysis of Continuous-Time Signals
and Systems

Chapter Objectives

• To develop a new transform method, the Laplace transform (LT) which is
applicable for the analysis of continuous-time signals and systems.

• To determine the range of signals to which the LT is applicable.
• To derive the properties of LT.
• To determine the LT of typical Continuous-Time (CT) signals.
• To develop inverse LT method and illustrate it with examples.
• To solve differential equations with and without initial conditions using LT
and inverse LT and also by classical method.

• To realize the structure of linear time invariant continuous-time systems
using LT.

4.1 Introduction

TheContinuous-TimeFourier Transform (CTFT) is a powerful tool for the analysis of
CT signals and systems. However, the method has its limitation in that some useful
signals do not have CTFT because these signals do not converge. Marquis Pierre
Simon de Laplace (1749–1827), the great French mathematician and Astronomer
and the contemporary of Fourier (1768–1830), Louis de Lagrange and the French
ruler Napoleon, developed a new transform technique which overcame the problem
of convergence in CTFT. Laplace, first presented the transform and its applications to
solve linear differential equations in a paper published in the year 1779 when he was
just 30 years of age. For his excellent contributions to probability theory, astronomy,
special functions and celestial mechanics, Laplace was honored by Napoleon, as a
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policy of honoring and promoting scientists of high caliber, by appointing him as a
minister in the French Government. However, Laplace a born genius, showed more
interest in his research activities and totally neglected the administrative work in the
government. It was no surprise that soon Laplace was sacked from the ministerial
post by his admirer, Napoleon.

The CTFT expresses signals as linear combinations of complex sinusoids. Some
useful signals, when expressed as a combination of complex sinusoids, do not
converge and they do not have Fourier transform (FT). However, Laplace made
a small modification in his transform technique from time domain to frequency
domain by expressing time signals as linear combinations of complex exponen-
tial instead of complex sinusoids. LT is more general since complex sinusoids
are a special case of complex exponentials. Thus, LT can describe functions that
FT cannot describe. Both the FT and LT using mathematical operations, convert
the time signal x(t) to frequency function X ( jω) and X (s) respectively, where
s = σ + jω. By introducing σ in LT method, most of the signals become damped
waves and convergence becomes possible. However, it is to be noted that there exists
a class of signals which do not converge in LT also and, for these signals, LT does not
exist. The LT, even though a very powerful tool in the analysis and design of linear
time invariant signals and systems today, did not catch on until nearly a century later.
We discuss the development of the LT in the following sections.

4.2 Definition and Derivations of the LT

The time signal x(t) is expressed as a linear combination of complex sinusoids of the
form e jωt by the FT. Here jω takes only imaginary value of ω which is associated
with the frequency f as ω = 2π f . Thus, some of the useful time functions such
as x(t) = eat do not coverage as per the FT. By changing the complex sinusoid to
complex exponential of the form est , the FT can be generated and is termed as the
LT and is defined as

L[x(t)] = X (s) =
∫ ∞

−∞
x(t)e−st dt (4.1)

The complex variable s has a real part and an imaginary part and is expressed as

s = σ + jω (4.2)

If the real part σ = 0, then Eq. (4.1) becomes a special case and it becomes the FT.
By substituting s = (σ + jω), Eq. (4.1) can be written as follows:

X (s) =
∫ ∞

−∞
x(t)e−(σ+ jω)t dt =

∫ ∞

−∞
[x(t)e−σ t ]e− jωt dt (4.3)
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In Eq. (4.3), the real exponential convergence factor e−σ t enables some of the time
functions x(t) to converge in the complex s plane. Equation (4.1) is called the two-
sided (or bilateral) LT. The signal x(t) is obtained from X (s) by taking the inverse
LT which is derived as

x(t) = L−1X (s) = 1

2π j

∫ σ+ j∞

σ− j∞
X (s)est ds (4.4)

Equations (4.1) and (4.4) are called two-sided or bilateral LT pair. The symbol
L−1 is used when X (s) is the inverse Laplace transformed. The following notations
are used to represent LT and inverse LT:

X (s) = L[x(t)]

or

x(t)
L←→ X (s)

x(t) = L−1[X (s)]
X (s) = L−1←→ x(t) (4.5)

It is to be noted that the time function is represented by lower case letter and
the s function by upper case letter.

4.2.1 LT of Causal and Non-causal Systems

In Eq. (4.1), the transformation of x(t) to X (s) is done for the following conditions:

• x(t) is anti-causal where t < 0,
• x(t) is an impulse where t = 0,
• x(t) is causal where t > 0.

The unilateral LT is a special case of LT and is defined as follows:

X (s) =
∫ ∞

0
x(t)e−st dt (4.6)

It is to be noted here that Eq. (4.6) is valid only for causal signals and systems.
For non-casual signals and systems the limits if integration have to be changed. The
following two examples illustrate the method to determine the LT for casual and
non-causal signals.

Example 4.1 For the following signal determine the LT,

x(t) = e−at u(t)
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Solution The given signal x(t) is a causal signal. The limit of integration is therefore
from 0 to ∞. Hence

X (s) =
∫ ∞

0
e−at e−st dt

=
∫ ∞

0
e−(s+a)t dt

= − 1

(s + a)

[
e−(s+a)t

]∞
0 = − 1

(s + a)

[
e−(s+a)∞ − e−(s+a)0

]

X (s) = 1

(s + a)

The above integration converges when the upper limit ∞ is applied iff (s + a) > 0
or s > −a. If (s + a) < 0, then e(s+a)∞ does not converge. In such a case LT does
not exist.

Example 4.2 Consider the following signal:

x(t) = e−at u(−t)

Determine the LT.

Solution The given signal x(t) is a non-causal signal. Hence, the limit of integration
is from −∞ to 0.

X (s) =
∫ 0

−∞
x(t)e−st dt =

∫ 0

−∞
e−at e−st dt

=
∫ 0

−∞
e−(s+a)dt

= −1

(s + a)

[
e−(s+a)t

]0
−∞

X (s) = −1

(s + a)

The above integration converges when the lower limit−∞ is applied iff (s + a) < 0
or s < −a. The above two examples illustrate that for the same time signal x(t), the
LT is also same with a change of sign. However, the mode of convergence is different
which is an important thing to note. This will be discussed in detail in the sections
to follow.
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4.3 The Existence of LT

Consider the one-sided LT given below.

X (s) =
∫ ∞

0
x(t)e−st dt

Substituting s = σ + jω in the above equation, we get

X (s) =
∫ ∞

0

[
x(t)e−σ t

]
e− jωt dt

Since |e− jωt | = 1, the above integral can be written as

X (s) =
∫ ∞

0

[
x(t)e−σ t

]
dt (4.7)

The integral in Eq. (4.7) converges if

∫ ∞

0

[
x(t)e−σ t

]
dt < ∞ (4.8)

In other words, the LT of (4.7) exists if the integral of equation (4.8) is finite for some
value of σ > σ0 or Re(s) which is σ should be greater than σ0 which is expressed as

σ > σ0

4.4 The Region of Convergence

One of the limitations of CTFT as mentioned earlier is that some useful functions
whether causal or non-causal do not have FT. By making the complex variable s as
expressed in Eq. (4.2) and defining LT as in Eq. (4.1), it is possible to overcome
this limitation of non-convergence of FT. For example, consider the following causal
signal:

x(t) = Aeat u(t) a > 0 (4.9)

The plot of equation (4.9) as a function of time is shown in Fig. 4.1. From Fig. 4.1,
it is evident that x(t) increases without bound as t increases. It can be easily shown
that FT does not exist for the above x(t). However, the LT exists for the above x(t)
with certain constraint and it is derived as follows. Substituting x(t) = Aeat in (4.1),
the following equation is obtained:
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Fig. 4.1 Plot of
x(t) = Aeat u(t)

t

A

x(t)

X (s) =
∫ ∞

−∞
Aeat e−st u(t)dt (4.10)

For a causal signal (also called right-sided signal), changing the limit of integration,
we get

X (s) =
∫ ∞

0
Aeat e−st dt (4.11)

= A
∫ ∞

0
e−(s−a)t dt (4.12)

= −A

(s − a)

[
e−(s−a)t

]∞
0 (4.13)

X (s) = A

(s − a)
(4.14)

Equation (4.13) converges iff (s − a) > 0. In other words Re s > a. In that case
when the upper limit of t = ∞ is applied, X (s) = 0 andwhen the lower limit of t = 0
is applied, X (s) is finite. Thus, Eq. (4.13) is simplified and given in Eq. (4.14). The
LT of x(t) of (4.9) exists or Eq. (4.13) converges iff σ > a in the complex s-plane.
This is called the region of convergence.

The region of convergence which is denoted as ROC is therefore defined as the
set of values of s of the real part of s for which part the integral of equation (4.1)
converges.

The ROC of x(t) in Eq. (4.9) is illustrated in Fig. 4.2. It is to be noted here that
X (s) in Eq. (4.14) becomes infinity at s = a. Therefore, the points in the s-plane at
which the function X (s) becomes infinity are called poles and are marked by a small
cross ×. Now consider a function X (s) = (s + a). The function X (s) becomes zero
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Fig. 4.2 Pole-zero plot and

ROC of X (s) = A

(s − a)

a

j

σ
0

s-plane

ROC

at s = −a. Therefore, the point in the s-plane at which the function X (s) becomes
zero are called zeros and are marked by a small circle O.

Now consider the following non-causal signal or otherwise called left-sided signal
shown in Fig. 4.3.

x(t) = Ae−at u(−t) (4.15)

The LT of the above signal is obtained from

X (s) =
∫ 0

−∞
x(t)e−st dt

=
∫ 0

−∞
Ae−at e−st dt (4.16)

=
∫ 0

−∞
Ae−(s+a)t dt

= −A

(s + a)

[
e−(s+a)t

]0
−∞ (4.17)

It is evident from Eq. (4.17) that the integral given in Eq. (4.16) will converge
iff (s + a) < 0 when the lower limit of t = −∞ is applied to (4.17). Thus, X (s) is
obtained as

X (s) = − A

(s + a)
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0–t t

x(t)

A

Fig. 4.3 Plot of x(t) = Ae−at u(−t)

j

ROC

Left sided ROC

–a 0
σ

s-plane

Fig. 4.4 ROC of X (s) = A

(s + a)

The ROC for the left-sided signal is Re s < −a. The ROC is shown in Fig. 4.4.
From the above examples illustrated, for the same X (s), different time signals

x(t) exist and therefore the inverse LT is not unique. Hence, it is necessary to specify
the ROC while determining LT and inverse LT. However, for unilateral LT, there
exists one to one correspondence between the LT pair. For the bilateral or two-sided
LT it is essential to specify the ROC to avoid any ambiguity.
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4.4.1 Properties of ROCs for LT

Property 1: The ROC of X (s) consists of parallel strips to the imaginary axis.
Property 2: The ROC of LT does not include any pole of X (s).
Property 3: If x(t) is a finite duration signal, and is absolutely integrable then the

ROC of X (s) is the entire s-plane.
Property 4: For the right-sided (causal) signal if the Re(s) = σ0 and is in ROC, then

for all the values of s for which Re(s) > σ0 is also in ROC.
Property 5: If x(t) is a left-sided (non-causal) signal and if Re(s) = σ0 is in ROC,

then for all the values of s for which Re(s) < σ0 is also in ROC.
Property 6: If x(t) is two-sided signal and if Re(s) = σ0 and is in ROC, then the

ROC of X (s) will consist of a strip in the s-plane which will include
Re(s) = σ0.

The following examples illustrate the above properties of ROC and pole-zero
locations of X (s) in the s-plane.

Example 4.3 Determine the LT of the following signal. Mark the poles and ROC
in the s-plane. x(t) = Ae−at u(t) + Be−bt u(−t) where a > 0, b > 0 and |a| > |b|.
Solution

1. The given signal x(t) consists of causal and anti-causal signals and can be writ-
ten as

x(t) = x1(t) + x2(t)

where

x1(t) = Ae−at u(t)

x2(t) = Be−bt u(−t)

2. X1(s) is found as follows for a right-sided signal.

X1(s) =
∫ ∞

0
Ae−at e−st dt

= A
∫ ∞

0
e−(s+a)t dt

= −A

(s + a)

[
e−(s−a)t

]−∞
0

= A

(s + a)

The ROC is Re(s) > −a.
3. X2(s) is found as follows for a left-sided signal.
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X2(s) =
∫ 0

−∞
Be−bt e−st dt

= B
∫ 0

−∞
e−(s+b)t dt

= −B

(s + b)

[
e−(s+b)t

]0
−∞

= − B

(s + b)
[1 − 0]

= −B

(s + b)

The ROC is Re(s) < −b.
4.

X (s) = X1(s) + X2(s) = A

(s + a)
− B

(s + b)

5. The poles and ROC are marked as shown in Fig. 4.5b. In Fig. 4.5b, |a| > |b|.
Vertical lines passing through−a and−b are drawn. For X1(s), the ROC is right-
sided and for X2(s) the ROC is left-sided. A strip where −a <Re s < −b is
drawn and hatched and the ROC is identified.

6. Consider the case where |b| > |a|. The poles are located as shown in Fig. 4.5c.
Vertical line passing through −a and −b are drawn. For X1(s), the ROC is right-
sided and a strip where Re(s) > −a is drawn and hatched. For X2(s), the ROC
is left-sided. A vertical strip to the left of −b is formed and hatched. It is to be
noted that the ROC s of x1(t) and x2(t) do not overlap and hence x(t) does
not have LT.

Example 4.4 Determine the LT of

x(t) = e−2t u(t) + e−3t u(t)

and sketch the ROC in the s-plane.

(Anna University, May, 2007)

Solution

1. x(t) is completely a right-sided signal and hence the limit of the LT integration
is from t = 0 to t = ∞. Thus, the following equation is written for X (s).

X (s) =
∫ ∞

0
e−2t e−st dt +

∫ ∞

0
e−3t e−st dt

=
∫ ∞

0
e−(s+2)t dt +

∫ ∞

0
e−(s+3)t dt

= 1

(s + 2)
+ 1

(s + 3)
= (2s + 5)

(s + 2)(s + 3)
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0–t t

B

Ax2(t)

x1(t)

(a) (b)

x(t)

σ

j

–a –bROC

s-plane

–a–b

ROC

j

s-plane

Left-sided ROC Right-sided ROC

(c) 

σ

ROC

Fig. 4.5 a Representation of x(t). b ROC and poles of X (s) |a| > |b|. c Poles and ROC of X (s)
for |b| > |a|

X (s) = 2(s + 2.5)

(s + 2)(s + 3)

2. The poles are at s = −2 and s = −3 and a zero is at s = −2.5 and are marked in
Fig. 4.6.

3. For the pole 1
s+2 , the ROC is right-sided to the vertical line passing through

σ = −2. For the pole 1
s+3 , the ROC is also right-sided passing through σ = −3.
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σ

j

–3 –2.5 –2 0

s-plane

Right-sided ROC

ROC

Fig. 4.6 Poles and zeros and ROC of X (s) = 2(s + 2.5)

(s + 2)(s + 3)

If ROC where σ > −2 is satisfied then ROC where σ > −3 is automatically
satisfied. Further, no pole of X (s) will be inside the ROC.

4. A strip to the right of σ = −2 is created and shaded. The strip is enlarged to ∞
in the direction of real and imaginary axis.

5. Thus, the ROC of a causal signal is to the right of the right most pole of X(s).

Example 4.5 Determine the LT of

x(t) = e−2t u(−t) + e−3t u(−t)

Locate the poles and zero of X (s) and also the ROC in the s-plane.

Solution

1. The given signal is fully a left-sided signal and hence the limit of LT integration
is from −∞ to 0. The LT of x(t) is obtained as follows:

X (s) =
∫ 0

−∞
e−2t e−st dt +

∫ 0

−∞
e−3t e−st dt =

∫ 0

−∞
e−(s+2)t dt +

∫ 0

−∞
e−(s+3)t dt

= −1

(s + 2)

[
e−(s+2)t

]0
−∞ − 1

(s + 3)

[
e−(s+3)t

]0
−∞

X (s) = − 1

(s + 2)
− 1

(s + 3)
ROC Re s < −3
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j

–3 –2.5 –2

s-plane

Left-sided ROC

σ

ROC

Fig. 4.7 Poles and zeros and ROC of X (s) = −2(s + 2.5)

(s + 2)(s + 3)

X (s) = −2(s + 2.5)

(s + 2)(s + 3)

2. The poles are at s = −2 and s = −3 and a zero is at s = −2.5 and are marked in
Fig. 4.7.

3. For the pole 1
(s+2) , the ROC is left-sided to the vertical line passing through

σ = −2. For the pole 1
s+3 , the ROC is also left-sided to the vertical line passing

through σ = −3. If ROC where σ = −3 is satisfied then ROC where σ = −2 is
also satisfied. Further, no pole of X (s) will be inside the ROC.

4. A vertical strip to the left of σ = −3 is created and shaded. The strip is enlarged
to ∞ in the direction of real and imaginary axis.

5. Thus, theROCof a non-causal signal is to the left of the leftmost pole of X(s).

Example 4.6 Consider the following signal:

x(t) = e−2t u(−t) + e−3t u(t)

Determine the LT and locate the poles and zeros and the ROC in the s-plane.

Solution

1. The given signal is a combination of left- and right-sided. The integration is
performed as given below:
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σ

j

Left-Right ROC strip

s-plane

–2–3

ROC

Fig. 4.8 Poles and zeros of X (s) = −1

(s + 2)(s + 3)
and the ROC

X (s) =
∫ 0

−∞
e−2t e−st dt +

∫ ∞

0
e−3t e−st dt

=
∫ 0

−∞
e−(s+2)t dt +

∫ ∞

0
e−(s+3)t dt

= 1

(s + 2)

[
e−(s+2)t]0

−∞ − 1

(s + 3)

[
e−(s+3)t]∞

0 = − 1

(s + 2)
+ 1

(s + 3)

X (s) = −1

(s + 2)(s + 3)
ROC − 3 < Re s < −2

2. The pole locations are shown in Fig. 4.8. For the left-sided signal the ROC is Re
s < −2 and for the right-sided signal the ROC is Re s > −3. The resultant ROC
is a strip in between the vertical lines passing through σ = −2 and σ = −3. The
strip is shaded as shown in Fig. 4.8. It is enlarged in the vertical direction. The
poles are at s = −2 and s = −3. There is no zero for this function.

Example 4.7 Determine the LT and locate the poles and zeros and ROC in the
s-plane for the following signal:

x(t) = Au(t)
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t0

A

x(t)

j

Rσ
ROC

Right-sided ROC

x(t) = Au(t)

(a)

(b)

X(s) = 

s-plane

A
s⎯ and ROC

0

Fig. 4.9 Representation of x(t) and ROC

Solution

1. The given signal is right-sided signal. Its LT is obtained as follows:

X (s) =
∫ ∞

0
Ae−st dt

= −A

s

[
e−st

]∞
0

X (s) = A

s
ROC Re s > 0.

2. For the given signal, a pole at the origin exists and it is marked in Fig. 4.9b.
3. The LT converges only if σ > 0. Thus, the ROC is the entire right half of s-plane.

4.5 The Unilateral Laplace Transform

The unilateral LT is a special case of bilateral LT and is defined as

X (s) =
∫ ∞

0
x(t)e−st dt (4.18)

The unilateral LT has the following features:

1. The unilateral LT simplifies the system analysis considerably.
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2. The signals are restricted to causal signals.
3. There is one to one correspondence between LT and inverse LT.
4. In view of the above advantages, Laplace transformmeans unilateral LT as defined

in Eq. (4.18) unless otherwise it is specifically mentioned that the signal is anti-
causal.

Before we go for the determination of LT of some of the commonly used signals,
we give below some of the properties of LT which will be useful to determine X (s)
from x(t) and vice versa in a simplified way.

4.6 Properties of Laplace Transform

4.6.1 Linearity

x1(t)
L←→ X1(s)

x2(t)
L←→ X2(s)

[a1x1(t) + a2x2(t)] L←→[a1X1(s) + a2X2(s)] (4.19)

4.6.2 Time Shifting

Let x(t) be time shifted to the right (time delay) by a real constant t0. The delayed
time function is written as x(t − t0). As per the time shifting property,

x(t)
L←→ X (s)

x(t − t0)
L←→ X (s)e−st0 (4.20)

Proof By definition of LT,

L[x(t − t0)] =
∫ ∞

0
x(t − t0)e

−st dt (4.21)

Let

t − t0 = λ

dt = dλ
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For the integration of equation (4.21), the lower and upper limits are determined as
follows.

When t = 0, λ = −t0 and when t = ∞, then λ = ∞. Thus, Eq. (4.21) is written
as follows:

L[x(t − t0)] =
∫ ∞

−t0

x(λ)e−s(λ+t0)dλ (4.22)

For a causal signal, x(t) = 0 for t < 0 and the lower limit of integration is zero. Now
Eq. (4.22) is written as follows:

L[x(λ)] = e−st0

∫ ∞

0
x(λ)e−sλdλ

= e−st0 X (s)

Thus,

x(t − t0)
L←→ X (s)e−st0 t0 > 0 (4.23)

4.6.3 Frequency Shifting

According to frequency shifting property, if

x(t)
L←→ X (s)

x(t)es0t L←→ X (s − s0)

Proof

L[x(t)es0t ] =
∫ ∞

0
x(t)es0t e−st dt

L[x(t)es0t ] =
∫ ∞

0
x(t)e−(s−s0)t dt

= X (s − s0)

x(t)es0t L←→ X (s − s0) (4.24)
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4.6.4 Time Scaling

The time scaling property states that if

x(t)
L←→ X (s)

x(at)
L←→ 1

|a| X
( s

a

)

Proof

L[x(at)] =
∫ ∞

0
x(at)e−st dt (4.25)

Let
λ = at and dλ = adt

For the lower limit of integration of equation (4.25), when t = 0, λ = 0 and for the
upper limit of integration when t = ∞, then λ = ∞. Hence, Eq. (4.25) is written as
follows:

L[x(at)] =
∫ ∞

0
x(λ)e− λs

a
1

a
dλ

= 1

|a|
∫ ∞

0
x(λ)e− s

a λdλ

= 1

a
X

( s

a

)

x(at)
L←→ 1

a
X

( s

a

)
(4.26)

4.6.5 Frequency Scaling

According to frequency scaling property, if

x(t)
L←→ X (s)

1

a
x

(
t

a

)
L←→ X (as)

Proof According to time scaling property,

x(at)
L←→ 1

a
X

( s

a

)



4.6 Properties of Laplace Transform 323

Let

b = 1

a

x

(
t

b

)
L←→ bX (bs)

Replacing b by a, we get

1

a
x

(
t

a

)
L←→ X (as) (4.27)

4.6.6 Time Differentiation

x(t)
L←→ X (s)

dx(t)

dt
L←→ s X (s) − x(0−)

d2x(t)

dt2
L←→ s2X (s) − sx(0−) − d

dt
x(0−)

Proof

X (s) =
∫ ∞

0
x(t)e−st dt (4.28)

The above integral is evaluated by parts using

∫
udv = uv −

∫
vdu

Let u = x(t) and dv = e−st dt ; du = d
dt x(t)dt and v = − 1

s e−st

∫ ∞

0
x(t)e−st dt =

[−1

s
x(t)e−st

]∞

0

−
∫ ∞

0
−1

s
e−st d

dt
x(t)dt

or

X (s) = 1

s
x(0) + 1

s

∫ ∞

0
e−st d

dt
x(t)dt.

But

L

[
d

dt
(x(t))

]
=

∫ ∞

0

d

dt
(x(t))e−st dt
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∴ L
d

dt
(x(t))

L←→ s X (s) − x(0−) (4.29)

The time differentiation twice is proved as follows:

d2

dt2
(x(t)) = d

dt

(
d

dt
(x(t))

)

Using the property
d

dt
(x(t))

L←→ s X (s) − x(0−)

we get

L

[
d2(x(t))

dt2

]
= sL

[
d

dt
(x(t))

]
− d

dt
(x(0−))

∣∣∣∣
t=0

d2(x(t))

dt2
L←→ s2X (s) − sx(0−) − d

dt
(x(0−))

In general

dn x(t)

dtn

L←→ sn X (s) − sn−1x(0−) − sn−2x(0−) · · · xn−1(0−)

OR
dn x(t)

dtn

L←→ sn X (s) −
n∑

k=1
sn xk−1(0−)

(4.30)

4.6.7 Time Integration

The time integration property states that if

x(t)
L←→ X (s)∫ t

0
x(τ )dτ

L←→ X (s)

s

Proof We define

f (t) =
∫ t

0
x(τ )dτ.
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Differentiating the above equation, we get

d f (t)

dt
= x(t) and x(0−) = 0

if

f (t)
L←→ F(s)

X (s) = L

[
d

dt
f (t)

]
= s F(s) − f (0−) = s F(s) if f (0−) = 0

F(s) = X (s)

s

∫ t

0
x(τ )dτ

L←→ X (s)

s
(4.31)

4.6.8 Time Convolution

The time convolution property states that if

x1(t)
L←→ X1(s)

x2(t)
L←→ X2(s)

x1(t) ∗ x2(t)
L←→ X1(s)X2(s) (4.32)

Proof

L[x1(t) ∗ x2(t)] =
∫ ∞

−∞
e−st

[∫ ∞

−∞
x1(τ )x2(t − τ)dτ

]
dt

=
∫ ∞

−∞
x1(τ )

[∫ ∞

−∞
e−st x2(t − τ)dt

]
dτ

The inner integral is the LT of x2(t − τ) with a time delay τ . Substituting

∫ ∞

−∞
e−st x2(t − τ)dt = X2(s)e

−τ s
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in the above equation, we get

L[x1(t) ∗ x2(t)] =
∫ ∞

−∞
x1(τ )X2(s)e

−τ sdτ

= X2(s)
∫ ∞

−∞
x1(τ )e−τ sdτ

= X2(s)X1(s)

[x1(t) ∗ x2(t)] L←→ X1(s)X2(s)

4.6.9 Complex Frequency Differentiation

According to this property,

− t x(t)
L←→ d

ds
(X (s)) (4.33)

Proof By definition of LT,

X (s) =
∫ ∞

0
x(t)e−st dt

Differentiating both sides with respect to s,

d

ds
(X (s)) = d

ds

∫ ∞

0
x(t)e−st dt

= −
∫ ∞

0
t x(t)e−st dt

= −L[t x(t)]

∴ −t x(t)
L←→ d

ds
(X (s))
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4.6.10 Complex Frequency Shifting

According to this property,

[es0t x(t)] L←→ X (s − s0) (4.34)

L[es0t x(t)] =
∫ ∞

0
es0t x(t)e−st dt where s0is a constant

=
∫ ∞

0
x(t)e−(s−s0t)dt = X (s − s0)

[es0t x(t)] L←→ X (s − s0)

4.6.11 Conjugation Property

According to this property if x(t)
L←→ X (s) then

x∗(t) L←→ X∗(−s) (4.35)

Proof By definition of LT,

L[x∗(t)] =
∫ ∞

0
x∗(t)e−st dt

=
∫ ∞

0
[x(t)e−(−s)t dt]∗

= X∗(−s)

x∗(t) L←→ X∗(−s)

4.6.12 Initial Value Theorem

According to this theorem,

Lt
t→0

x(t) = Lt
s→∞ s X (s) (4.36)
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Proof

L

[
d

dt
x(t)

]
=

∫ ∞

0

d

dt
(x(t))e−st dt = s X (s) − x(0)

Let s → ∞; then

Lt
s→∞

∫ ∞

0

d

dt
(x(t))e−st dt = Lt

s→∞[s X (s) − x(0)]
0 = Lt

s→∞[s X (s) − x(0)]

Since x(0) = Lt
t→0

x(t)

Lt
t→0

x(t) = Lt
s→∞ s X (s)

4.6.13 Final Value Theorem

According to this theorem,

Lt
t→∞ x(t) = Lt

s→0
s X (s) (4.37)

Proof The LT of d
dt (x(t)) could be written as

∫ ∞

0

d

dt
(x(t))e−st dt = [s X (s) − x(0)]

Taking Lt
s→0

on both sides of the above equation, we get

∫ ∞

0

d

dt
(x(t))dt = Lt

s→0
[s X (s) − x(0)]

Lt
t→∞[x(t) − x(0)] = Lt

s→0
[s X (s) − x(0)]

Lt
t→∞ x(t) = Lt

s→0
s X (s)

The above theorem is valid if X (s) has no poles in RHP of s-plane Table 4.1 gives
the summary of properties of LT.

The following examples illustrate the method of determining LT.

Example 4.8 Determine the LT of unit impulse function δ(t) shown in Fig. 4.10.
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Table 4.1 Summary of properties of LT

S.No Property Time function Frequency function

x(t) X (s)

1. Linearity a1x1(t) + a2x2(t) a1X1(s) + a2X2(s)

2. Time shifting x(t − t0) X (s)e−st0

3. Frequency shifting x(t)eat X (s − a)

4. Time scaling x(at)
1

a
X

( s

a

)

5. Frequency scaling
1

a
x

(
t

a

)
X (as)

6. Time differentiation
d

dt
(x(t)) s X (s) − x(0−)

d2

dt2
(x(t)) s2X (s) − sx(0−) − ẋ(0−)

dn

dtn
(x(t)) sn X (s)

− ∑n
k=1 sn x (k−1)(0−)

7. Time integration
∫ t
0 x(τ )dτ

X (s)

s

8. Time convolution x1(t) ∗ x2(t) X1(s)X2(s)

9. Complex frequency
differentiation

−t x(t)
d

ds
(X (s))

tn x(t) (−1)n dn

dsn
X (s)

10. Complex frequency
shifting

e−at x(t) X (s + a)

11. Conjugation x∗(t) X∗(−s)

12. Initial value theorem Lt
t→0

x(t) Lt
s→∞ s X (s)

13. Final value theorem Lt
t→∞ x(t) Lt

s→0
s X (s)

14. Shift theorem x(t − a) X (s)e−as

Fig. 4.10 The unit impulse
(or delta) function

t0

1

x(t)

(t)
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Fig. 4.11 Ramp (or
velocity) function

t

R

1

x(t)

Solution The unit impulse function is represented as

δ(t) = 1 for t = 0

= 0 otherwise

L[δ(t)] =
∫ ∞

0−
δ(t)e−st dt

=
∫ 0+

0−
e−st dt

= 1

δ(t)
L←→ 1 ROC : all s (4.38)

Example 4.9 Determine the LT of a ramp function of slope R which is shown in
Fig. 4.11.

Solution The ramp function of slope R is represented in Fig. 4.11 and it is mathe-
matically expressed as

x(t) = Rt u(t) t ≥ 0

Taking LT, the following equation is written:

L[Rt] =
∫ ∞

0
Rt e−st dt

The above integration is solved by the well-known integration by parts using the
following relationship ∫

udv = uv −
∫

vdu
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Let u = Rt and du = Rdt ; dv = e−st dt and v = ∫
e−st dt = − e−st

s

∴ L[Rt] = R

[
te−st

(−s)

]∞

0

− R
∫ ∞

0

e−st

(−s)
dt

= R[0 − 0] + R

[
e−st

−s2

]∞

0

= R

s2
(4.39)

L(Rt)
L←→ R

s2

ROC: The entire right half s-plane (RHP) except the origin.
The LT of unit ramp (R = 1) is,

L(t) ←→ 1

s2

Example 4.10 Determine the LT of the acceleration function shown in Fig. 4.12.

Solution The acceleration function is expressed by the following equation:

x(t) = 1

2
at2u(t) t ≥ 0.

Taking LT for the above function, we get

L

[
1

2
at2

]
=

∫ ∞

0

1

2
at2e−st dt

Fig. 4.12 Acceleration
function

t

x(t)

1
2
at2 
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The above integration is solved using integration by parts as described below:

u = 1
2at2 and du = at

dv = ∫
e−st dt and v = e−st

(−s)

L

[
1

2
at2

]
= uv −

∫ ∞

0
vdu =

[
1

2
at2

e−st

(−s)

]∞

0

−
∫ ∞

0

ate−st

(−s)
dt

= 0 + 0 + a

s

∫ ∞

0
te−st dt.

The integration in the right-hand side of the equation is nothing but a ramp signal
whose LT is 1

s2 . Hence

L

[
1

2
at2

]
= a

s3
(4.40)

The ROC is the entire RHP except the origin of the s-plane.

Example 4.11 Determine the LT of an exponential decay which is shown in
Fig. 4.13.

Solution The exponential decay is represented by

x(t) = e−at u(t) t ≥ 0.

Fig. 4.13 Exponential decay

t0

1

x(t)

e at
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Taking LT for the above function, we get

L[e−at u(t)] =
∫ ∞

0
e−at e−st dt

=
∫ ∞

0
e−(s+a)t dt

L[e−at u(t)] = − 1

(s + a)

[
e−(s+a)t

]∞
0

= 1

(s + a)
with ROC: Re s > −a

L[e−at u(t)] = 1

(s + a)
(4.41)

Example 4.12 Determine the LT of a sine function which is shown in Fig. 4.14.

Solution A sinusoidal function shown in Fig. 4.14 is mathematically expressed as
follows:

x(t) = A sinω0t u(t) t ≥ 0

The given sinusoidal function is written as follows using Euler’s identity.

sinω0t = 1

2 j
(e jω0t − e− jω0t )

L[A sinω0t] = A

2 j
[L(e jω0t ) − Le− jω0t ]

t

x(t)

A sin 0t

0 2 3

A

A

Fig. 4.14 A sine function
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t

x(t)

A cos 0t

0 3
2

A

A

2
5
2

Fig. 4.15 A cosine function

From Eq. (4.41) the above equation is written as

L[A sinω0t] = A

2 j

[
1

s − jω0
− 1

s + jω0

]
= A

2 j

2 jω0

(s2 + ω2
0)

L[A sinω0t] = Aω0

(s2 + ω2
0)

ROC: Re s > 0. (4.42)

Example 4.13 Determine the LT of a cosine function which is shown in Fig. 4.15.

Solution A cosine function shown in Fig. 4.15 is mathematically expressed as
follows:

x(t) = A cosω0tu(t) t ≤ 0.

Using Euler’s identity, the above equation is written as follows:

A cosω0t = A

2
(e jω0t + e− jω0t )

Taking LT for x(t), the following equation is written

L[A cosω0tu(t)] = A

2
[Le jω0t u(t) + Le− jω0t u(t)]

Using the results obtained in Eq. (4.41), we get

L[A cosω0tu(t)] = A

2

[
1

(s + jω0)
+ 1

(s − jω0)

]

= As

(s2 + ω2
0)
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L[A cosω0tu(t)] = As

(s2 + ω2
0)

ROC: Res > 0. (4.43)

Example 4.14 Determine the LT of hyperbolic sine function

x(t) = sin hω0t.

Solution

sin hω0t = 1

2
[eω0t − e−ω0t ]

L[sin hω0t] = 1

2
L[eω0t ] − 1

2
L[e−ω0t ]

Using the results obtained in (4.41), we get

L[sin hω0t] = 1

2(s − ω0)
− 1

2(s + ω0)

L[sin hω0t] = ω0

s2 − ω2
0

ROC: Re s > ω0. (4.44)

Example 4.15 Determine the Laplace transform of hyperbolic cosine function:

x(t) = cos hω0t.

Solution

cos hω0t = 1

2
[eω0t + e−ω0t ]

Taking LT on both sides, we get

L[cos hω0t] = 1

2
L[eω0t ] + 1

2
L[e−ω0t ]

= 1

2

[
1

s − ω0
+ 1

s + ω0

]

= s

(s2 − ω2
0)

L[cos hω0t] = s

(s2 − ω2
0)

ROC: Re s > ω0. (4.45)
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Example 4.16 Determine the LT of

x(t) = tnu(t).

Solution Using the definition of LT for the given function, we get

L[x(t)] =
∫ ∞

0
tne−st dt

Let

u = tn and du = ntn−1dt

dv =
∫

e−st dt and v = e−st

(−s)

Using the property ∫
udv = uv −

∫
vdu

we get

L[tn] =
[

tn e−st

(−s)

]∞

0

−
∫ ∞

0

e−st

(−s)
ntn−1dt

= 0 + n

s

∫ ∞

0
tn−1e−st dt.

It can be shown that
∫ ∞

0
tn−1e−st dt = (n − 1)

s

∫ ∞

0
tn−2e−st dt.

Thus, L[tn] is written as

L[tn] = n

s

(n − 1)

s

(n − 2)

s
· · · 2

s

1

s

= n(n − 1)(n − 2) . . . 2

sn

1

s
= ∠n

sn+1

L[tn] = ∠n

sn+1
ROC: Re s > 0. (4.46)

Example 4.17 Using the complex shifting property of LT, determine the LT of

x(t) = e−at sinω0t.
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Table 4.2 Laplace transform tables

S.no x(t) X (s)

1 δ(t) 1

2 u(t)
1

s

3 tu(t)
1

s2

4 tnu(t)
∠n

sn+1

5 eat u(t)
1

(s − a)

6 e−at u(t)
1

(s + a)

7 cos at u(t)
s

(s2 + a2)

8 sin at u(t)
a

(s2 + a2)

9 e−bt cos at u(t)
(s + b)

(s + b)2 + a2

10 e−bt sin at u(t)
a

(s + b)2 + a2

11 δ(t − a) e−as

12 u(t − a)
e−as

s

13 t sin at u(t)
2as

(s2 + a2)2

14 sin h at
a

(s2 + a2)

15 cos h at
s

s2 + a2

16 sin(at + θ)
s sin θ + a cos θ

(s2 + a2)

17 cos(at + θ)
s cos θ − a sin θ

(s2 + a2)

Solution
L[sinω0t] = ω0

(s2 + ω2
0)

From Table 4.2, the complex shifting property is

L[e−at x(t)] = X (s + a)

Applying the above property, we get
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L[e−at sinω0t] = ω0

(s + a)2 + ω2
0

(4.47)

ROC: Re s > −a.

Example 4.18 By applying the complex differentiation property, determine the LT
of

x(t) = t sinω0t.

Solution
L[sinω0t] = ω0

(s2 + ω2
0)

According to the complex differentiation property

L[−t x(t)] = d

ds
X (s)

∴ L[sinω0t] = d

ds

ω0

(s2 + ω2
0)

L[t sinω0t] = 2ω0s

(s2 + ω2
0)

2
(4.48)

Example 4.19 Determine the LT of

x(t) = cos at sin bt.

Solution The given x(t) is written in the following form:

x(t) = 1

2
[sin(a + b)t − sin(a − b)t]

L[cos at sin bt] = 1

2
[L sin(a + b)t − L sin(a − b)t]

L[cos at sin bt] = 1

2

[
(a + b)

s2 + (a + b)2
− (a − b)

s2 + (a − b)2

]
(4.49)

Example 4.20 Consider the following time function x(t) = u(t − 3). Determine
the LT using shift theorem.

Solution From Fig. 4.16, for step input the LT is

L[u(t)] = 1

s



4.6 Properties of Laplace Transform 339

Fig. 4.16 x(t) = u(t − 3)

t3

1

x(t)

When the signal is shifted by t = 3, using time shifting property

L[u(t − 3)] = 1

s
e−3s

Table 4.2 gives the LT of some time functions.

Example 4.21 Determine the LT for the following time function:

x(t) = sin(at + θ)

Solution The given x(t) can be expanded and written as follows:

x(t) = sin(at + θ)

= sin at cos θ + cos at sin θ

L[sin(at + θ)] = L[sin at cos θ ] + L[cos at sin θ ]

Substituting for L[sin at] and L[cos at] from Table 4.2, we get

L[sin(at + θ)] = a cos θ

(s2 + a2)
+ s sin θ

(s2 + a2)
(4.50)

Example 4.22 Determine the LT for the following time function:

x(t) = cos(at + θ)

Solution x(t) can be expanded and written as follows:

x(t) = cos at cos θ − sin at sin θ

L[cos(at + θ)] = cos θ L[cos at] − sin θ L[sin at]
= s cos θ

(s2 + a2)
− a sin θ

(s2 + a2)
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L[cos(at + θ)] = (s cos θ − a sin θ)

(s2 + a2)
(4.51)

Example 4.23 Determine the LT for the following time function:

x(t) = δ(t − 2) − δ(t − 5).

Solution The given time function consists of two impulses occurring at t = 2 and
t = 5. By applying shift theorem, we get

L[δ(t − 2)] = e−2s

L[δ(t − 5)] = e−5s

L[δ(t − 2) − δ(t − 5)] = e−2s − e−5s

Example 4.24 Determine the LT for the following time function:

x(t) = u(t − 2) − u(t − 5).

Solution The given time function x(t) consists of two step functions shifted by t = 2
and t = 5. By applying shift theorem, we get

L[u(t − 2)] = e−2s

s

L[u(t − 5)] = e−5s

s

∴ L[u(t − 2) − u(t − 5)] = 1

s
[e−2s − e−5s]

Example 4.25 Consider the following function:

X (s) = (5s + 4)(s + 6)

s(s + 2)(3s + 1)

Find the initial and final values of x(t).
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Solution The initial value is given by

Lt
t→0

x(t) = x(0) = Lt
s→∞ s X (s)

= Lt
s→∞

s(5 + 4
s )(1 + 6

s )

s(1 + 2
s )(3 + 1

s )

= 5 × 1

1 × 3
= 5

3

x(0) = 5

3

The final value of x(t) is given by

x(t)
t→∞

= x(∞) = Lt
s→0

s X (s)

= Lt
s→0

s(5s + 4)(s + 6)

s(s + 2)(3s + 1)

= 4 × 6

2 × 1
= 12

x(∞) = 12

Example 4.26 Consider the pulse shown in Fig. 4.17a. Determine the LT.

Solution

Method 1: The given signal x(t) which is shown in Fig. 4.17a could be split up of
step signals as shown in Fig. 4.17b and c. Thus, the following equation
is written.

x(t) = u(t) − u(t − 3)

(a) (b) (c)

t

x (t)

2

3 t

u (t)

2

t

u(t 3)

2

3

Fig. 4.17 LT of a pulse
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Taking LT on both sides, we get

X (s) = U (s) − U (s)e−3s

= [1 − e−3s]U (s)

But U (s) = 2

s
(for a step input).

∴ X (s) = 2

s
[1 − e−3s]

Method 2: By definition of LT, the following equation is written for Fig. 4.17a.

X (s) =
∫ 3

0
2e−st dt

= 2

(−s)

[
e−st

]3
0

X (s) = 2

s
[1 − e−3s]

Example 4.27 For the wave form shown in Fig. 4.18, determine the LT.

Solution For Fig. 4.18, the following equation is written:

x(t) = 2 sin t 0 ≤ t ≤ π

= 0 t > π

Fig. 4.18 A sine wave

t

2

x(t)
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The LT of the above signal is obtained from the following equation:

X (s) =
∫ π

0
2 sin t e−st dt

Let u = 2 sin t and du = 2 cos tdt ; dv = e−st dt and v = − 1
s e−st . Applying

∫
udv =

uv − ∫
vdu, we get

X (s) =
[
−2

s
sin te−st

]π

0

+
∫ π

0

2

s
cos te−st dt = 0 + 2

s

∫ π

0
cos te−st dt

Let u = cos t and du = − sin tdt; dv = e−st dt and v = − 1
s e−st . Substituting the

above in equation for X (s) we get

X (s) = 2

s

{[
−1

s
cos te−st

]π

0

−
∫ π

0

1

s
sin te−st dt

}

= 2

s

[{
e−πs + 1

} 1

s
− 1

2s
X (s)

]
since

∫ π

0
sin te−st dt = X (s)

2

s X (s)

2
+ 1

2s
X (s) = (e−πs + 1)

s
(s2 + 1)X (s)

2s
= (e−πs + 1)

s

X (s) = 2(e−πs + 1)

(s2 + 1)

Example 4.28 Determine the LT of the saw tooth wave form shown in Fig. 4.19.

(Anna University, April, 2005)

Fig. 4.19 Saw tooth wave
form

t2

3

x(t)
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Solution The saw tooth wave form shown in Fig. 4.19 is expressed as

x(t) = 3

2
t 0 ≤ t ≤ 2

= 0 otherwise

Taking LT for the time function x(t), we get

X (s) =
∫ 2

0

3

2
te−st dt

Let

u = 3

2
t and du = 3

2
dt

dv = e−st dt and v = −1

s
e−st

Using
∫

udv = uv − ∫
vdu, we get

X (s) =
[
3

2
t

(
−1

s

)
e−st

]2

0

+ 3

2

∫ 2

0

1

s
e−st dt

= −3

s
e−2s + 3

2s2
[−1e−st

]2
0

= −3

s
e−2s − 3

2s2
e−2s + 3

2s2

X (s) = 3

2

1

s2
−

(
3

s
+ 3

2s2

)
e−2s

Example 4.29 Consider the triangular wave form shown in Fig. 4.20. Determine
the LT.

Fig. 4.20 Triangular wave
form

t2 4O

3
A

B

x(t)
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Solution For the straight line OA, the slope is 3
2 and passes through the origin.

Hence, the following equation is written:

x1(t) = 3

2
t 0 ≤ t ≤ 2

For the straight line AB, the slope is negative and it is − 3
2 . The following equation

is written

x2(t) = −3

2
t + C

when t = 2, x2(t) = 3. Hence,

3 = −3

2
× 2 + C

or C = 6

x2(t) = −3

2
t + 6 2 ≤ t ≤ 4

From Example 4.29, X1(s) is written as

X1(s) = 3

2s2
−

(
3

s
+ 3

2s2

)
e−2s

Now X2(s) is written as

X2(s) =
∫ 4

2

(
6 − 3

2
t

)
e−st dt

Let

u =
(
6 − 3

2
t

)
and du = −3

2
dt

dv =
∫

e−st dt and v = −1

s
e−st

Using
∫

udv = uv − ∫
vdu, we get
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Fig. 4.21 A rectangular
wave

t2 4

3

3

x(t)

X2(s) =
[(

6 − 3

2
t

)(
−1

s

)
e−st

]4

2

− 3

2s

∫ 4

2
e−st dt

=
[
3

s
e−2s

]
+ 3

2s2
[
e−st

]4
2

= 3

s
e−2s + 3

2s2
e−4s − 3

2s2
e−2s

X (s) = X1(s) + X2(s)

= 3

2s2
−

(
3

s
+ 3

2s2

)
e−2s + 3

s
e−2s + 3

2s2
e−4s − 3

2s2
e−2s

X (s) = 3

2s2
−

(
3

s2
e−2s

)
+ 3

2s2
e−4s

Example 4.30 Consider the rectangular wave form shown in Fig. 4.21. Determine
the LT.

Solution Consider the rectangular wave shown in Fig. 4.21 for the time interval

x1(t) = 3 0 ≤ t ≤ 2.

The LT of x1(t) is found from the equation
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X1(s) =
∫ 2

0
3e−st dt

= −3

s

[
e−st

]2
0

= 3

s
[1 − e−2s]

Consider rectangular wave

x2(t) = −3 2 ≤ t ≤ 4

Using shift theorem X2(s) is obtained as

X2(s) = −X1(s)e
−2s

∴ X (s) = X1(s) + X2(s)

= 3

s
(1 − e−2s) − 3

s
(1 − e−2s)e−2s

= 3

s
(1 − e−2s)(1 − e−2s)

X (s) = 3

s
(1 − e−2s)2

Example 4.31 Consider the wave form shown in Fig. 4.22. Determine the LT.

Solution The mathematical description of the wave form shown in Fig. 4.22 is
written as follows:

x(t) = 3t 2 ≤ t ≤ 3

= 3 3 ≤ t ≤ 5

Fig. 4.22 A triangular pulse
rectangular wave

3 4 52

3

x(t)
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The LT of x(t) is written as

X (s) =
∫ 3

2
3te−st dt +

∫ 5

3
3e−st dt

= X1(s) + X2(s)

where

X2(s) = 3

(−s)

[
e−st

]5
3

= 3

s
[e−3s − e−5s]

X1(s) is determined as follows.
For the triangle x1(t) is written as follows:

x1(t) = 3t + C

When t = 2, x1(t) = 0

0 = 3 × 2 + C or C = −6

x1(t) = (3t − 6)

X1(s) =
∫ 3

2
(3t − 6)e−st dt

Let
u = (3t − 6) and du = 3dt

dv = ∫
e−st dt and v = − 1

s e−st

X1(s) =
[
(3t − 6)

(
−1

s

)
e−st

]3

2

+ 3

s2
[
e−st

]3
2

= −3

s
e−3s + 3

s2
(e−3s − e−2s)

X (s) = X1(s) + X2(s)

= −3

s
e−3s + 3

s2
(e−3s − e−2s) + 3

s
(e−3s − e−5s)

X (s) = −3

s
e−5s + 3

s2
(e−3s − e−2s)



4.7 Laplace Transform of Periodic Signal 349

4.7 Laplace Transform of Periodic Signal

If a signal x(t) is a periodic signal with period T , then the LT of X (s) is given as

X (s) = X1(s)
[
1 + e−T s + e−2T s + . . .

]

= X1(s)

(1 − e−T s)

Here x1(t) is the signal which is repeated for every T .

Example 4.32 Consider the output of a full wave rectifier shown in Fig. 4.23. Deter-
mine the LT.

Solution In Example 4.27, X1(s) is determined as

X1(s) = 2(e−πs + 1)

(s2 + 1)

If X (s) is the LT of the full wave rectifier

X (s) = X1(s) + X1(s)e
−T s + X1(s)e

−2T s + . . .

where T = π

= X1(s) + X1(s)e
−πs + X1(s)e

−2πs + . . .

= X1(s)[1 + e−πs + e−2πs + . . .]
= X1(s)

(1 − e−πs)

= 2(e−πs + 1)

(1 − e−πs)

1

(s2 + 1)

t

x(t)

x1(t) x2(t)

2

2

x3(t)

Fig. 4.23 Full wave rectifier
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t

x(t)

2

3

4 6

Fig. 4.24 Saw tooth wave

X (s) = 2(1 + e−πs)

(1 − e−πs)(1 + s2)

Example 4.33 Consider the saw tooth wave shown in Fig. 4.24. Determine the LT.

Solution The mathematical description of x(t) for 0 ≤ t ≤ 2 is given as x1(t). In
Example 4.28, X1(s) is determined as

X1(s) = 3

2s2
−

(
3

s
+ 3

2s2

)
e−2s

from Fig. 4.24,

X (s) = X1(s)[1 + e−2s + e−4s + . . .]
= X1(s)

(1 − e−2s)

X (s) = 3

2(1 − e−2s)

[
1

s2
−

(
2

s
+ 1

s2

)
e−2s

]

Example 4.34 Consider the rectangular periodic wave shown in Fig. 4.25. Deter-
mine the LT.

Solution The mathematical description of the periodic wave with period 4 is written
as follows:

x(t) = 3 0 ≤ t ≤ 2

= −3 2 ≤ t ≤ 4
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t

x(t)

3

2 4 6 8

Fig. 4.25 A periodic rectangular wave

Let X1(s) be the LT of x(t) for the time 0 ≤ t ≤ 4. X1(s) in Example 4.30 has been
determined as

X1(s) = 3

s
(1 − e−2s)2

X (s) = X1(s)[1 + e−4s + e−8s + . . .]
= X1(s)

(1 − e−4s)

X (s) = 3(1 − e−2s)2

s(1 − e−4s)

4.8 Inverse Laplace Transform

The time signal x(t) is the Inverse LT of X (s). This is represented by the following
mathematical equation:

x(t) = 1

2π j

∫ σ+ j∞

σ− j∞
X (s)est ds (4.52)

Use of Eq. (4.52) to obtain x(t) from X (s) is really a tedious process. The alternative
is to express X (s) in polynomial form both in the numerator and the denominator.
Both these polynomials are factorized as

X (s) = (s + z1)(s + z2) . . . (s + zm)

(s + p1)(s + p2) · · · (s + pn)
(4.53)
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The points in the s-plane at which X (s) = 0 are called zeros. Thus, (s + z1), (s +
z2), . . . , (s + zm) are the zeros of X (s) in Eq. (4.53). Similarly, the points in the
s-plane at which X (s) = ∞ are called poles of X (s) in Eq. (4.53).

The zeros are identified by a small circle O and the poles by a small cross× in the
s-plane. For m < n the degree of the numerator polynomial is less than the degree
of the denominator polynomial. Under this condition X (s) in Eq. (4.53) is written in
the following partial fraction form:

X (s) = A1

s + p1
+ A2

s + p2
+ A3

s + p3
+ · · · + An

s + pn
(4.54)

In Eq. (4.54) A1, A2, . . . , An are called the residues and are determined by any
convenient method. Once the residues are determined, then by using Table 4.2, one
can easily obtain x(t) which is the required inverse LT of X (s).

4.8.1 Graphical Method of Determining the Residues

The residues in Eq. (4.54) are determined by analytical as well as graphical method.
The graphical method has the following advantages:

• It is less time consuming.
• It does not require any graph to be drawn.
• The results are obtained in compact form very quickly even if the poles and zeros
are complex and repeated.

Both analytical and graphical methods are given wherever necessary. The following
simple example illustrates both analytical and graphical methods.

Example 4.35

X (s) = 10(s + 2)(s − 3)

s(s + 4)(s − 5)

Find x(t).

Solution The given X (s) is expressed in partial fraction form as follows:

X (s) = A1

s
+ A2

(s + 4)
+ A3

(s − 5)
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j
s-plane

σ
–4 –2 A1

A3A2

+5+3

Fig. 4.26 Poles and zeros of X (s) (pole zero diagram)

Method 1. Analytical Method

1. The poles and zeros of X (s) are represented in Fig. 4.26. X (s) is expressed in the
following form:

X (s) = A1(s + 4)(s − 5) + A2s(s − 5) + A3s(s + 4)

s(s + 4)(s − 5)

The numerator polynomial of X (s) should be same and therefore the following
equation is written.

10(s + 2)(s − 3) = A1(s + 4)(s − 5) + A2s(s − 5) + A3s(s + 4)

2. Substitute s = 0 in the above equation which will eliminate A2 and A3. Thus,

10(2)(−3) = A1(4)(−5) + 0 + 0

A1 = 60

20
= 3

Substitute s = −4 in X (s). This eliminates A1 and A3. Thus,

10(−4 + 2)(−4 − 3) = 0 − A24(−4 − 5) + 0

10(−2)(−7) = A236

A2 = 140

36
= 35

9

Substitute s = 5 in X (s). This eliminates A1 and A2. Thus,

10(5 + 2)(5 − 3) = 0 + 0 + A3(5)(5 + 4)

A3 = 140

45
= 28

9
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3. With the values of residues obtained in step 2, X (s) is expressed as follows:

X (s) = 3

s
+ 35

9

1

(s + 4)
+ 28

9

1

(s − 5)

4. From the Table 4.2, the inverse Laplace transform is obtained for 1
s ,

1
(s+4) and

1
s−5 .

5. To check whether the residues determined are correct, the following procedure is
followed:

X (s) = 10(s + 2)(s − 3)

s(s + 4)(s − 5)
= 3

s
+ 35

9(s + 4)
+ 28

9(s − 5)

Choose any value of s so that X (s) does not become zero or infinity. Let us choose
s = 1

10(3)(−2)

1(5)(−4)
= 3

1
+ 35

9 × 5
+ 28

9(−4)

3 = 3 + 7

9
− 7

9
= 3

LHS = RHS.

Hence, A1, A2 and A3 determined are correct.

x(t) =
(
3 + 35

9
e−4t + 28

9
e5t

)
u(t)

Method 2. Graphical Method of Determining the Residues

1. According to the graphical method, the residue A at any pole is obtained from

A = Constant term × Directed Vector distances drawn from all zeros to the concerned point

Directed vector distances drawn from all poles to the concerned point

2. For the given problem, refer to the pole zero diagram of Fig. 4.26. From the Figure
we obtain, A1 by drawing vectors from poles and zeros of X (s) to s = 0.

A1 = 10(2)(−3)

4(−5)
= 3

A2 is determined by drawing vectors from poles and zeros of X (s) to s = −4.

A2 = 10(−2)(−7)

(−4)(−9)
= 35

9
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A3 is obtained by drawing vectors from poles and zeros of X (s) to s = 5.

A3 = 10(7)(2)

(5)(9)
= 28

9

It is to be noted that the directed distances drawn from any pole or zero drawn
towards right, a +ve sign is added and for the directed distance drawn towards
left, a −ve sign in each case has to be included.

3. It is seen that the residues determined by analytical method and graphical method
are same. Hence, inverse LT of X (s) is written as

x(t) =
(
3 + 35

9
e−4t + 28

9
e5t

)
u(t)

In the expression for x(t) it is necessary to include u(t) in the right-side of the
equation. This indicates that the inverse LT is right-sided or unilateral. It is also
to be noted that the pole zero diagram of Fig. 4.26 need not be drawn to any scale.
Mere location of poles and zeros with the appropriate values is enough.

Example 4.36 Find the inverse LT of

X (s) = 10e−3s

(s − 2)(s + 2)
.

Solution Consider the function

X1(s) = 10

(s − 2)(s + 2)

Putting this into partial fraction, we get

X1(s) = A1

(s − 2)
+ A2

(s + 2)

= A1(s + 2) + A2(s − 2)

(s − 2)(s + 2)
10 = A1(s + 2) + A2(s − 2)

Substitute s = −2

10 = 0 + A2(−2 − 2)

A2 = −2.5
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Substitute s = 2

10 = A1(2 + 2) + 0

A1 = 2.5

X1(s) = 2.5

[
1

s − 2
− 1

s + 2

]

Taking inverse LT, we get

x1(t) = 2.5[e+2t − e−2t ]u(t)

According to time shifting property of LT

X (s) = X1(s)e
−3s

x(t) = 2.5[e2(t−3) − e−2(t−3)]u(t − 3)

Example 4.37 Find the inverse LT of

X (s) = (s + 1) + 3e−4s

(s + 2)(s + 3)
.

Solution The given function is written in the following form:

X (s) = (s + 1)

(s + 2)(s + 3)
+ 3e−4s

(s + 2)(s + 3)
= X1(s) + X2(s)

X1(s) = (s + 1)

(s + 2)(s + 3)

= A1

(s + 2)
+ A2

(s + 3)

= A1(s + 3) + A2(s + 2)

(s + 2)(s + 3)
(s + 1) = A1(s + 3) + A2(s + 2)

Put s = −3

(−3 + 1) = 0 + A2(−3 + 2)

A2 = 2
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Put s = −2

(−2 + 1) = A1(−2 + 3) + 0

A1 = −1

X1(s) = − 1

s + 2
+ 2

s + 3
x1(t) = (−e−2t + 2e−3t )u(t).

Now consider X2(s) without delay as X3(s)

X3(s) = 3

(s + 2)(s + 3)

= A1

(s + 2)
+ A2

(s + 3)
3 = A1(s + 3) + A2(s + 2)

Put s = −2
3 = A1

Put s = −3
3 = A2(−3 + 2)

A2 = −3

X3(s) = 3

[
1

s + 2
− 1

s + 3

]

X2(s) = X3(s)e
−4s

x3(t) = 3[e−2t − e−3t ]u(t)

x2(t) = 3[e−2(t−4) − e−3(t−4)]u(t − 4)

x(t) = x1(t) + x2(t)

x(t) = [−e−2t + 2e−3t
]

u(t) + 3
[
e−2(t−4) − e−3(t−4)] u(t − 4)

Example 4.38 Find the inverse LT of

(1) X (s) = (s + 1)(s + 3)

(s + 2)(s + 4)

(2) X (s) = (s + 1)(s + 3)e−2s

(s + 2)(s + 4)
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Solution (1)

X (s) = (s + 1)(s + 3)

(s + 2)(s + 4)

Here both numerator polynomial and denominator polynomial have the same
degree and therefore it is an improper function. Now X (s) is written in the
polynomial form as given below:

X (s) = (s2 + 4s + 3)

(s2 + 6s + 8)

By synthetic division, we get

1

s2 + 6s + 8
)

s2 + 4s + 3

s2 + 6s + 8

−2s − 5

∴ X (s) = 1 − (2s + 5)

(s + 2)(s + 4)

Now consider

X1(s) = (2s + 5)

(s + 2)(s + 4)

= A1

(s + 2)
+ A2

(s + 4)
(2s + 5) = A1(s + 4) + A2(s + 2)

Put s = −4

(−8 + 5) = 0 + A2(−4 + 2)

A2 = 3

2

Put s = −2

(−4 + 5) = A1(−2 + 4) + 0

A1 = 1

2

X1(s) = 1

2

[
1

(s + 2)
+ 3

(s + 4)

]

X (s) = 1 − 1

2

[
1

(s + 2)
+ 3

(s + 4)

]
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Taking inverse LT, we get

x(t) = δ(t) − [
0.5e−2t + 1.5e−4t

]
u(t)

(2) Now consider

X (s) = (s + 1)(s + 3)e−2s

(s + 2)(s + 4)

Using the time shifting property the results obtained in the previous example is
modified and written as

x(t) = δ(t − 2) − [
0.5e−2(t−2) + 1.5e−4(t−2)] u(t − 2)

Example 4.39 Find the inverse LT of the following function:

X (s) = 10(s + 4)

s2(s + 2)

Solution The given function X (s) is written in the partial fraction form as follows:

X (s) = A1

s2
+ A2

s
+ A3

s + 2
10(s + 4) = A1(s + 2) + A2s(s + 2) + A3s2

Put s = 0
40 = 2A1 or A1 = 20

Put s = −2

10(−2 + 4) = 0 + 0 + A34

A3 = 20

4
= 5

Comparing the coefficients of s term, we get

10 = (A1 + 2A2)

10 = 20 + 2A2

A2 = −5

X (s) = 20

s2
− 5

s
+ 5

s + 2

x(t) = (20t − 5 + e−2t )u(t)
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Example 4.40 Find the inverse LT of the following function:

X (s) = 2

s(s2 + 2s + 2)

Solution Method 1.

(s2 + 2s + 2) = (s + 1 + j)(s + 1 − j)

X (s) = A1

s
+ A2

s + 1 + j
+ A3

s + 1 − j

2 = A1(s
2 + 2s + 2) + A2s(s + 1 − j) + A3s(s + 1 + j)

Put s = 0
2 = A12 or A1 = 1

Put s = −1 + j

2 = 0 + 0 + A3(−1 + j)(−1 + j + 1 + j)

= A3(−1 + j)2 j

A3 = 1

(−1 + j) j

But (−1 + j) is expressed in polar form as

(−1 + j) = √
2∠135◦

A3 = 1√
2∠135◦ + 90◦

= 0.707∠+135◦

= 0.707e+ j135◦

A2 is the conjugate of A3

A2 = 0.707∠−135◦ = 0.707e− j135◦

X (s) = 1

s
+ 0.707

[
e− j135◦ 1

(s + 1 + j)
+ e+ j135◦

s + 1 − j

]

Taking inverse LT, we get
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σ

A3

A1

A2

–1+ j

–1– j

j

s-plane
–45°

45°

45° 

√2

√2

Fig. 4.27 Pole-zero configuration of Example 4.39

x(t) = 1 + 0.707[e− j135◦
e−(+1+ j)t + e+ j135◦

e−(1− j)t)]
= 1 + 1.414e−t

[
e j (135◦+t) + e− j (135◦+t)

2

]

= 1 + 1.414e−t cos(135◦ + t)

= 1 − 1.414e−t sin(t + 45◦)

x(t) = 1 − 1.414e−t sin
(

t + π

4
rad

)

Method 2. Graphical Method
From the pole-zero configuration of X (s) shown in Fig. 4.27, we get

A1 = 2√
2∠45◦√2∠−45◦ = 1

A2 = 2√
2∠−135◦2∠−90◦ = 0.707∠−135◦

A3 = conjugate of A2

A3 = 0.707∠135◦

Bygraphicalmethod, the residues A1, A2 and A3 are obtainedwith ease. Substituting
these values in X (s) and taking inverse LT, the following result is obtained as in
Method 1
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x(t) = 1 − 1.414e−t sin
(

t + π

4
rad

)

Example 4.41 Find the inverse LT of the following function:

X (s) = (3s2 + 8s + 23)

(s + 3)(s2 + 2s + 10)
.

(Anna University, April, 2005)

Solution
s2 + 2s + 10 = (s + 1 + j3)(s + 1 − j3)

The given X (s) is put into partial fraction as follows:

X (s) = A1

(s + 3)
+ A2

(s + 1 + j3)
+ A3

(s + 1 − j3)

(3s2 + 8s + 23) = A1(s
2 + 2s + 10) + A2(s + 3)(s + 1 − j3)

+A3(s + 3)(s + 1 + j3)

Let s = −3

27 − 24 + 23 = A1(9 − 6 + 10)

A1 = 26

13
= 2

Put s = −1 − j3

3(+1 + j3)2 − 8(1 + j3) + 23 = A2(−1 − j3 + 3)(− j6)

3(−8 + j6) − 8 − 24 j + 23 = A2( j6 − 18 − j18)

(−24 − 8 + 23) + j18 − 24 j = A2(−18 − j12)

−9 − j6 = −A2(18 + j12)

A2 = (3 + j2)

(6 + j4)
= 3.6∠33.7◦

7.2∠33.7◦
= 0.5

A3 = conjugate of A2

= 0.5

X (s) =
[

2

s + 3
+ 0.5

s + 1 + j3
+ 0.5

s + 1 − j3

]

Taking inverse LT, we get
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x(t) = 2e−3t + 0.5
{
e−(1+ j3)t + e−(1− j3)t

}

= 2e−3t + e−t {e− j3t + e j3t }
2

x(t) = 2e−3t + e−t cos 3t

Example 4.42 Find the inverse LT of

X (s) = 3s2 + 8s + 6

(s + 2)(s2 + 2s + 1)
.

(Anna University, December, 2007)

Solution

(s2 + 2s + 1) = (s + 1)2

X (s) = (3s2 + 8s + 6)

(s + 2)(s + 1)2

= A1

(s + 2)
+ A2

(s + 1)2
+ A3

(s + 1)

= A1(s2 + 2s + 1) + A2(s + 2) + A3(s + 1)(s + 2)

(s + 2)(s + 1)2

3s2 + 8s + 6 = A1(s
2 + 2s + 1) + A2(s + 2) + A3(s + 1)(s + 2)

Put s = −2

12 − 16 + 6 = A1(4 − 4 + 1) + 0 + 0

A1 = 2

3s2 + 8s + 6 = (A1 + A3)s
2 + (2A1 + A2 + 3A3)s + (A1 + 2A2 + 2A3)

Comparing the coefficients of s2, we get

3 = A1 + A3

A3 = 3 − A1 = 3 − 2

A3 = 1

Comparing the coefficients of s, we get

8 = 2A1 + A2 + 3A3

= 4 + A2 + 3

A2 = 1
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Substituting the values of A1, A2 and A3 in X (s) we get

X (s) = 2

(s + 2)
+ 1

(s + 1)2
+ 1

(s + 1)

Taking inverse LT of X (s), we get

x(t) = (2e−2t + te−t + e−t )u(t)

Example 4.43 Find the inverse LT of the following function:

X (s) = 10s2

(s + 2)(s2 + 4s + 5)

Solution

Method 1.

(s2 + 4s + 5) = (s + 2 + j)(s + 2 − j)

X (s) = 10s2

(s + 2)(s + 2 + j)(s + 2 − j)

= A1

(s + 2)
+ A2

(s + 2 + j)
+ A3

(s + 2 − j)

10s2 = A1(s
2 + 4s + 5) + A2(s + 2)(s + 2 − j) + A3(s + 2)(s + 2 + j)

Put s = −2

40 = A1(4 − 8 + 5) + 0 + 0

A1 = 40

Put s = −2 − j

10(−2 − j)2 = 0 + A2(−2 − j + 2)(−2 − j + 2 − j) + 0

10(4 − 1 + 4 j) = A2(− j)(−2 j)

−10(3 + 4 j) = 2A2

A2 = −5(3 + 4 j)

= 25∠−126.88
◦ = 25e− j126.88

◦

A3 = conjugate of A2

A3 = 25∠+126.88
◦ = e j126.88

◦

X (s) = 40

(s + 2)
+ 25e− j126.88

◦

(s + 2 + j)
+ 25e j126.88

◦

(s + 2 − j)
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Taking inverse LT, we get

x(t) = 40e−2t + 25
{

e− j126.88
◦
e−(2+ j)t + e j126.88

◦
e−(2− j)t

}

= 40e−2t + e−2t50
{e− j (t+126.88

◦
) + e+ j (126.88

◦ +t)}
2

x(t) = [40e−2t + 50e−2t cos(t + 126.88◦)]

x(t) = [40 − 50 sin(t + 0.644 rad)]e−2t u(t)

Method 2. Graphical Method

The pole zero configuration of X (s) is shown in Fig. 4.28. FromFig. 4.28 the residues
A1, A2 and A3 are obtained as follows:

A1 = 10(−2)(−2)

1∠90◦1∠−90◦ = 40

A3 = 10
√
5∠153.44◦√5∠153.44◦

1∠90◦ 2∠90◦

= 25∠126.88
◦ = 25e j126.88

◦

σ

2 j

2 j

2

A3

A1

A2

j

√5

√5

26.56° 

153.44° 

Fig. 4.28 Pole-zero diagram of X (s) of Example 4.43
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A2 = conjugate of A3

A2 = 25∠−126.88
◦ = 25e− j126.88

◦

The residues A1, A2 and A3 obtained by graphical method are same as obtained by
analytical method. Thus by proceeding as in Method 1, the inverse LT is obtained as

x(t) = [40 − 50 sin(t + 0.644 rad)]e−2t u(t)

4.9 Solving Differential Equation

Laplace transform is a very powerful tool in the analysis of linear time invariant
dynamic system. It provides

• Solutions to LTI dynamic systems described by linear differential equations by
converting the differential equation to algebraic equation.

• For test signals of different kind, solutions are obtained for the differential equa-
tions with and without initial conditions.

• The dynamic systems are represented in terms of transfer functionwhich is nothing
but the ratio of the LT of the output variable to the LT of the input variable.

• The transfer function is made use of to determine the frequency response of the
system.

• The transfer function is also made use of to determine the stability of the system
using the well-known Routh-Hurwitz criterion and Nyquist stability criterion.

• The structure of the dynamic system is realized using the transfer function.

Now we give below the method of solving differential equation using LT.

4.9.1 Solving Differential Equation Without
Initial Conditions

1. If y(t) is the output variable and x(t) is the input variable, convert the differential
equation to algebraic equation which is obtained by simple multiplication of
Laplace complex variable s.

2. These algebraic equations are obtained using the following LT when the initial
conditions are zero.
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L[y(t)] = Y (s)

L

[
dy

dt

]
= sY (s)

L

[
d2y

dt

]
= s2Y (s)

L

[
d3y

dt3

]
= s3Y (s)

...

L

[
dn y

dtn

]
= snY (s)

Similarly for the input x(t), we convert

L[x(t)] = X (s)

L

[
dx

dt

]
= s X (s)

L

[
d2x

dt2

]
= s2X (s)

...

L

[
dn x

dtn

]
= sn X (s)

The following examples illustrate the method of solving differential equation using
LT when the initial conditions are zero for the input as well as the output.

Example 4.44 Consider an LTIC system with the following differential equation
with zero initial conditions for the input and output.

d2y(t)

dt2
+ 4

dy(t)

dt
+ 3y(t) = dx(t)

dt
+ 2x(t)

Find the impulse response of the system.

(Anna University, December, 2006)

Solution Taking LT on both sides of the given differential equation, we get

(s2 + 4s + 3)Y (s) = (s + 2)X (s)
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The transfer function is obtained as

H(s) = Y (s)

X (s)
= (s + 2)

(s2 + 4s + 3)
= (s + 2)

(s + 1)(s + 3)

Y (s) = (s + 2)X (s)

(s + 1)(s + 3)

From Table 4.1, for an impulse input x(t) = δ(t), X (s) = 1. Substituting this in the
above equation, we get

Y (s) = (s + 2)

(s + 1)(s + 3)

= A1

(s + 1)
+ A2

(s + 3)
(s + 2) = A1(s + 3) + A2(s + 1)

Put s = −1

(−1 + 2) = A1(−1 + 3) + 0

A1 = 0.5

Put s = −3

(−3 + 2) = 0 + A2(−3 + 1)

A2 = 0.5

∴ Y (s) = 0.5

(s + 1)
+ 0.5

(s + 3)

Taking inverse LT, we get

y(t) = 0.5
[
e−t + e−3t

]
u(t)

Example 4.45 Using LT, find the impulse response of an LTI system described by
the following differential equation.

d2y(t)

dt2
− dy(t)

dt
− 2y(t) = x(t)

Assume zero initial conditions.

(Anna University, April, 2004)
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Solution Taking LT on both sides of the given differential equation, we get

(s2 − s − 2)Y (s) = X (s)

Y (s) = X (s)

(s2 − s − 2)

= X (s)

(s + 1)(s − 2)

For an impulse X (s) = 1

Y (s) = 1

(s + 1)(s − 2)

= A1

(s + 1)
+ A2

(s − 2)
1 = A1(s − 2) + A2(s + 1)

Put s = −1

A1 = −1

3

Put s = 2

A2 = 1

3

Y (s) = 1

3

[
1

s − 2
− 1

s + 1

]

y(t) = 1

3

[
e2t − e−t

]
u(t)

Example 4.46 Consider the LTI system with the following differential equation
with zero initial conditions.

d2y(t)

dt2
+ 5

dy(t)

dt
+ 6y(t) = x(t)

where x(t) = e−4t u(t). Find an expression for y(t) using LT method.

Solution The given differential equation is written as follows:

d2y

dt2
+ 5

dy

dt
+ 6y = e−4t u(t)
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Taking LT on both sides, we get

(s2 + 5s + 6)Y (s) = 1

(s + 4)

Y (s) = 1

(s + 4)(s2 + 5s + 6)

= 1

(s + 3)(s + 2)(s + 4)

= A1

(s + 3)
+ A2

(s + 2)
+ A3

(s + 4)
1 = A1(s + 2)(s + 4) + A2(s + 3)(s + 4) + A3(s + 3)(s + 2)

Put s = −3

1 = A1(−3 + 2)(−3 + 4)

A1 = −1

Put s = −2

1 = A2(−2 + 3)(−2 + 4)

A2 = 1

2
= 0.5

Put s = −4

1 = A3(−4 + 3)(−4 + 2)

A3 = 1

2
= 0.5

Y (s) = −1

(s + 3)
+ 0.5

(s + 2)
+ 0.5

(s + 4)

y(t) = (−e−3t + 0.5e−2t + 0.5e−4t
)

u(t)

Example 4.47 Consider the following differential equation with zero initial condi-
tions.

d2y(t)

dt
+ 2

dy(t)

dt
+ 2y(t) = dx(t)

dt
+ x(t)

For x(t) = u(t), a unit step input find the response y(t) of the system.
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Solution

Method 1

Taking LT on both sides of the differential equation, we get

(s2 + 2s + 2)Y (s) = (s + 1)X (s)

Y (s) = (s + 1)

(s2 + 2s + 2)
X (s)

For unit step X (s) = 1
s . Substituting this in the above equation, we get

Y (s) = (s + 1)

s(s2 + 2s + 2)

(s2 + 2s + 2) = (s + 1 + j)(s + 1 − j)

∴ Y (s) = (s + 1)

s(s + 1 + j)(s + 1 − j)

= A1

s
+ A2

(s + 1 + j)
+ A3

(s + 1 − j)

(s + 1) = A1(s
2 + 2s + 2) + A2s(s + 1 − j) + A3s(s + 1 + j)

Put s = 0
1 = 2A1 or A1 = 0.5

Put s = −(1 + j)

(−1 − j + 1) = 0 + A2(−1 − j)(−1 − j + 1 − j) + 0

− j = A2(−1 − j)(−2 j)

= A2(2 j − 2) = 2A2( j − 1)

A2 = 0.5 j

1 − j
= 0.5√

2

∠90
◦

∠−45◦

= 0.354∠135
◦ = 0.354e j135

◦

A3 = conjugate of A2

= 0.354e− j135◦

Y (s) = 0.5

s
+ 0.354e j135

◦

s + 1 + j
+ 0.354e− j135

◦

(s + 1 − j)
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y(t) = 0.5 + 0.354e j135
◦
e−(1+ j)t + 0.354e− j135

◦
e−(1− j)t

= 0.5 + 0.708e−t [e j (135
◦ −t) + e− j (135◦−t )]

2
= 0.5 + 0.708e−t cos(135

◦ − t)

= 0.5 − 0.708e−t sin(45
◦ − t)

y(t) =
[
0.5 + 0.708e−t sin

(
t − π

4
rad

)]
u(t)

Method 2

The pole-zero diagram of Y (s) is shown in Fig. 4.29. The residues A1, A2 and A3

are determined as follows:

A1 = 1∠0
◦

√
2∠45◦√2∠−45◦ = 0.5

A2 = 1∠−90
◦

√
2∠225◦2∠−90◦ = 0.354∠135

◦

A3 = conjugate of A2 = 0.354∠−135◦

σ

1 j

1 j

A3

A1

A2

j

√2

√2

45° 

135° 

Fig. 4.29 Pole-zero diagram of Example 4.47
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The residues determined by graphical method is same as determined by analytical
method. Therefore y(t) is written as

y(t) =
[
0.5 + 0.708e−t sin

(
t − π

4
rad

)]
u(t)

4.9.2 Solving Differential Equation with the Initial
Conditions

1. When the initial conditions are specified for the given differential equation, they
have to be accounted for when LT is taken to convert the differential equation to
algebraic equation. Thus,

L

[
dy

dt

]
= sY (s) − y(0−)

L

[
d2y

dt2

]
= s2Y (s) − sy(0−) − ẏ(0−)

L

[
d3y

dt3

]
= s3Y (s) − s2y(0−) − s ẏ(0−) − ÿ(0−)

The initial conditions y(0−), ẏ(0−) and ÿ(0−), are meant that the system initial
conditions are given just before the input is applied to the system.
The initial condition y(0+) indicates that the initial condition is given to the system
after the input is appliedwhich is not realistic. Unless otherwisementioned, y(0−)

means y(0) and y(0) is not y(0+).
2. The zero initial conditions explained in step 1 is applicable to the input also. Thus,

dx

dt
= s X (s) − x(0−)

3. The initial conditions for an input multiplied by u(t) implies that the signals are
zero prior to t = 0.

4. The solution of the differential equation contains two components. The first com-
ponent is the response due to the initial conditions onlywhere the input is assumed
to be absent. The response is called the zero input response. The second com-
ponent is the response due to the input alone and the initial conditions here are
assumed to be zero. Such response is called zero state response.

5. The total response = zero state response+ zero input response.
6. If one is interested to find out the zero initial conditions for verification of the

results, only the zero input response has to be considered andnot the total response.
The total response satisfies the initial conditions at t = 0+.
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The following examples illustrate the method of obtaining total response which is
due to initial conditions and the input.

Example 4.48 A certain system is described by the following differential equation:

d2y(t)

dt2
+ 7

dy(t)

dt
+ 12y(t) = x(t)

Use LT to determine the response of the system to unit step input applied at t = 0.
Assume the initial conditions are y(0−) = −2 and dy(0−)

dt = 0.

(Anna University, May, 2007)

Solution Taking LT on both sides of the given equation, we get

s2Y (s) − sy(0−) − ẏ(0−) + 7Y (s) − 7y(0−) + 12Y (s) = X (s)

(s2 + 7s + 12)Y (s) + 2s + 14 = 1

s

(s2 + 7s + 12)Y (s) = −2s − 14 + 1

s

= (−2s2 − 14s + 1)

s

Y (s) = (−2s2 − 14s + 1)

s(s2 + 7s + 12)

= (−2s2 − 14s + 1)

s(s + 3)(s + 4)

= A1

s
+ A2

(s + 3)
+ A3

(s + 4)

−2s2 − 14s + 1 = A1(s + 3)(s + 4) + A2s(s + 4) + A3s(s + 3)

Put s = 0

1 = A1(12)

A1 = 1

12

Put s = −3

−18 + 42 + 1 = A2(−3)(−3 + 4)

A2 = −25

3
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Put s = −4

−32 + 56 + 1 = A3(−4)(−4 + 3)

A3 = 25

4

Y (s) = 1

12

1

s
− 25

3

1

(s + 3)
+ 25

4

1

(s + 4)

The total response is obtained by taking inverse LT

y(t) =
[
1

12
− 25

3
e−3t + 25

4
e−4t

]
u(t)

Example 4.49 Solve

d2y(t)

dt2
+ 4

dy(t)

dt
+ 4y(t) = dx(t)

dt
+ x(t)

if the initial conditions are y(0+) = 9
4 ; ẏ(0+) = 5, if the input is e−3t u(t).

(Anna University, December, 2007)

Solution Taking LT on both sides of the equation, we get

s2Y (s) − sy(0+) − ẏ(0+) + 4sY (s) − 4y(0+) + 4Y (s) = s X (s) + X (s) − x(0+)

If the initial conditions are given at t = 0+ for the output, then the initial conditions
must be applied to the input also

L

[
d

dt
x(t) + x(t)

]
= s X (s) − x(0+) + X (s)

x(t) = e−3t

X (s) = 1

(s + 3)

Since x(0+) = Lt
t→0

e−3t = 1

(s + 1)X (s) − x(0+) = (s + 1)

s + 3
− 1

= (s + 1 − s − 3)

(s + 3)

= −2

(s + 3)

Alternatively,



376 4 The Laplace Transform Method …

x(t) = e−3t

dx(t)

dt
= −3e−3t

L

[
dx(t)

dt

]
= −3

s + 3

L[x(t)] = 1

(s + 3)

∴ L

[
dx(t)

dt
+ x(t)

]
= 1

s + 3
[−3 + 1]

= −2

(s + 3)

Substituting y(0+) and ẏ(0+) in the given equation we get

(s2 + 4s + 4)Y (s) − 9

4
s − 5 − 9 = −2

(s + 3)

(s2 + 4s + 4)Y (s) = 9

4
s + 14 − 2

(s + 3)

Y (s) = (9s2 + 83s + 160)

4(s + 3)(s2 + 4s + 4)

= (9s2 + 83s + 160)

4(s + 3)(s + 2)2
(a)

= A1

(s + 3)
+ A2

(s + 2)2
+ A3

(s + 2)
(b)

1

4
[9s2 + 83s + 160] = A1(s + 2)2 + A2(s + 3) + A3(s + 2)(s + 3)

Put s = −3

1

4
[81 − 249 + 160] = A1 or A1 = −2
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Put s = −2

1

4
[36 − 166 + 160] = A2 or A2 = 7.5

Compare the coefficients of s2 on both sides

9

4
= A1 + A3 = −2 + A3 or A3 = 4.25

Y (s) = −2

s + 3
+ 7.5

(s + 2)2
+ 4.25

(s + 2)

Taking inverse LT, we get

y(t) = −2e−3t + 7.5te−2t + 4.25e−2t t ≥ 0

To check whether the residues are correctly determined
Choose any value of s such that when substituted in X (s) it does not become zero
or infinitive. Find the value of Y (s) in (a) and (b). If both are same, the residues
determined are correct.

For s = 0;

160

4 × 3 × 4
= −2

3
+ 7.5

4
+ 4.25

2
40

12
= −8 + 22.5 + 25.5

12
= 40

12
LHS = RHS

Hence, the values of A1, A2 and A3 determined are correct.

4.9.3 Zero Input and Zero State Response

As described earlier, the response of the system due to the input x(t) with all initial
conditions are zero is called zero state response. The response of the system due to
the initial conditions with zero input is called zero input response. The total response
of the system is the sum of the zero state response and zero input response. This is
illustrated in the following example.
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Example 4.50 Consider the following differential equation:

d2y(t)

dt2
+ 6

dy(t)

dt
+ 8y(t) = dx(t)

dt
+ 3x(t)

x(t) = u(t)

y(0−) = 1 and ẏ(0−) = 2

Find the zero state, zero input and total response. Verify, from the expression for the
response, the initial conditions given.

Solution Zero State Response

For zero state response the initial conditions are assumed to be zero. Under this
condition, the output is denoted as yi (t).

Taking LT on both sides of the given differential equation, we get

(s2 + 6s + 8)Yi (s) = (s + 3)X (s)

Substituting X (s) = 1
s and (s2 + 6s + 8) = (s + 2)(s + 4), we get

Yi (s) = (s + 3)

s(s + 2)(s + 4)

= A1

s
+ A2

(s + 2)
+ A3

(s + 4)
(s + 3) = A1(s + 2)(s + 4) + A2s(s + 4) + A3s(s + 2)

Put s = 0

3 = A18 or A1 = 3

8

Put s = −2

(−2 + 3) = A2(−2)(−2 + 4)

A2 = −1

4

Put s = −4

(−4 + 3) = A3(−4)(−4 + 2)

A3 = −1

8

Yi (s) = 3

8

1

s
− 1

4

1

(s + 2)
− 1

8

1

(s + 4)
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yi (t) =
(
3

8
− 1

4
e−2t − 1

8
e−4t

)
u(t)

Zero Input Response

Under zero input condition the output is denoted as ys(t). The given differential
equation becomes,

d2ys(t)

dt2
+ 6

dys(t)

dt
+ 8ys(t) = 0

Taking LT with initial conditions, we get

s2Ys(s) − sys(0
−) − ẏs(0

−) + 6Ys(s) − 6ys(0) + 8Ys(s) = 0

(s2 + 6s + 8)Ys(s) = (s + 2 + 6) = (s + 8)

Ys(s) = (s + 8)

(s + 2)(s + 4)

= A1

(s + 2)
+ A2

(s + 4)
(s + 8) = A1(s + 4) + A2(s + 2)

Put s = −2

(−2 + 8) = A1(−2 + 4)

A1 = 3

Put s = −4

(−4 + 8) = A2(−4 + 2)

A2 = −2

Ys(s) = 3

s + 2
− 2

s + 4

ys(t) = (
3e−2t − 2e−4t

)
u(t)
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Total Response

The total response is denoted by the letter y(t).

y(t) = yi (t) + ys(t)

=
(
3

8
− 1

4
e−2t − 1

8
e−4t

)
u(t) + (3e−2t − 2e−4t )u(t)

y(t) =
[
3

8
+ 11

4
e−2t − 17

8
e−4t

]
u(t)

To verify the initial condition, consider the zero input response ys(t)

ys(t) = 3e−2t − 2e−4t

ys(0) = y(0) = 3 − 2 = 1

ẏ(0) = dys(t)

dt

∣∣∣∣
t=0

= −6e−2t + 8e−4t

∣∣∣∣
t=0

= −6 + 8

ẏ(0) = 2

The given initial conditions are satisfied. On the other hand, consider the expression
for the total response

y(t) = 3

8
+ 11

4
e−2t − 17

8
e−4t

y(0) = 3

8
+ 11

4
− 17

8
= 1

ẏ(t) = dy(t)

dt
= −22

4
e−2t + 68

8
e−4t

ẏ(0) = −22

4
+ 68

8
ẏ(0) = 3

The result obtained is erroneous.Therefore, the initial conditions are verified from
zero input response and not the total response.
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4.9.4 Natural and Forced Response Using LT

Consider the differential equation of Example 4.50 which is given below:

d2y(t)

dt2
+ 6

dy(t)

dt
+ 8y(t) = d

dx
x(t) + 3x(t)

Taking LT on both sides of the above equation with zero conditions, we get

(s2 + 6s + 8)Y (s) = (s + 3)X (s)

(s + 2)(s + 4)Y (s) = (s + 3)X (s)

The transfer function is the ratio of Y (s) to X (s) and is written as

Y (s)

X (s)
= (s + 3)

(s + 2)(s + 4)

In the above equation, s2 + 6s + 8 = 0 is called characteristic equation and s = −2
and s = −4 are called characteristic roots or eigen values. In the total response of
y(t), corresponding to these eigen values, the characteristic modes are found. In the
above example the characteristic modes are e−2t and e−4t . In the total response of
the system which is composed of zero input response and zero state response, if we
can lump together all the terms corresponding to the characteristic mode, it is called
natural response yn(t). The remaining non-characteristic mode terms are lumped
together and the response is called forced response and is denoted by y f (t). Thus, in
Example 4.49, the eigen values are s = −2 and s = −4. The characteristic modes
are e−2t and e−4t . Thus,

y(t) = 3

8
+ 11

4
e−2t − 17

8
e−4t

The natural response

yn(t) = 11

4
e−2t − 17

8
e−4t

The forced response

y f (t) = 3

8
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Example 4.51 Find the forced response of the following differential equation:

d2y(t)

dt2
+ 6

dy(t)

dt
+ 8y(t) = dx

dt
+ x(t)

where x(t) = t2.

Solution Taking LT of the given differential equation, we get

(s2 + 6s + 8)Y (s) = (s + 1)X (s)

(s2 + 6s + 8) = (s + 2)(s + 4)

The eigen values are s = −2 and s = −4. The characteristic modes are e−2t and
e−4t . The terms involving these characteristic mode will correspond to the natural
response of the system. The remaining terms will correspond to forced response of
the system. Substituting X (s) = 2

s3 , we get

Y (s) = 2(s + 1)

(s + 2)(s + 4)s3

= A1

(s + 2)
+ A2

(s + 4)
+ A3

s3
+ A4

s2
+ A5

s

2(s + 1) = A1s
3(s + 4) + A2s3(s + 2) + A3(s + 2)(s + 4)

+A4s(s + 2)(s + 4) + A5s2(s + 2)(s + 4)

Put s = 0

2 = 8A3 or A3 = 1

4

Compare the coefficients of s

2 = 6A3 + 8A4

A4 = 1

16

Compare the coefficients of s2

0 = A3 + 6A4 + 8A5

= 1

4
+ 6

16
+ 8A5

A5 = − 10

128
= − 5

64
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The residues A1 and A2 are determined as follows. Put s = −2

2(−2 + 1) = A1(−8)(−2 + 4) + 0 + 0 + 0 + 0

A1 = 1

8

Put s = −4

2(−4 + 1) = A264(−4 + 2)

A2 = 3

64

Y (s) = 1

8

1

(s + 2)
+ 3

64

1

s + 4
+ 1

4

1

s3
+ 1

16

1

s2
− 5

64

1

s

Taking inverse LT, we get

y(t) = 1

8
e−2t + 3

64
e−4t

︸ ︷︷ ︸
Natural response

+ 1

8
t2 + 1

16
t − 5

64︸ ︷︷ ︸
Forced response

The natural responsewhich is due to the characteristicmodes e−2t and e−4t is given by

yn(t) = 1

8
e−2t + 3

64
e−4t t ≥ 0

The forced response is the response which does not contain the characteristic mode.
Thus,

y f (t) = 1

8
t2 + 1

16
t − 5

64
t ≥ 0

4.10 Time Convolution Property of the Laplace Transform

If
x1(t)

L←→ X1(s)

and
x2(t)

L←→ X2(s)
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then
x1(t) ∗ x2(t)

L←→ X1(s)X2(s)

This property of LT is used to determine

y(t) = x1(t) ∗ x2(t)

The following examples illustrate this.

Example 4.52 Using the convolution property of the LT determine y(t) = x1(t) ∗
x2(t) where x1(t) = e−2t u(t) and x2(t) = e−3t u(t).

Solution

X1(s) = L[e−2t u(t)] = 1

(s + 2)

X2(s) = L[e−3t u(t)] = 1

(s + 3)
Y (s) = X1(s)X2(s)

= 1

(s + 2)

1

(s + 3)

= 1

(s + 2)
− 1

(s + 3)

y(t) = [
e−2t − e−3t

]
u(t)

Example 4.53 Given

x1(t) = e−2t u(t)

x2(t) = (1 + e−3t )u(t)

Determine y(t) = x1(t) ∗ x2(t).

Solution

X1(s) = L[x1(t)] = 1

(s + 2)

X2(s) = L[x2(t)] =
[
1

s
+ 1

s + 3

]
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Y (s) = X1(s)X2(s)

= 1

(s + 2)

[
1

s
+ 1

s + 3

]

= (2s + 3)

s(s + 2)(s + 3)

= A1

s
+ A2

s + 2
+ A3

s + 3
(2s + 3) = A1(s + 3)(s + 2) + A2s(s + 3) + A3s(s + 2)

Put s = 0

3 = A1(2)(3)

A1 = 1

2

Put s = −2

(−4 + 3) = A2(−2)(−2 + 3)

A2 = 1

2

Put s = −3

(−6 + 3) = A3(−3)(−3 + 2)

A3 = −1

Y (s) = 1

2s
+ 1

2(s + 2)
− 1

(s + 3)

y(t) =
(
1

2
+ 1

2
e−2t − e−3t

)
u(t)

Example 4.54

x1(t) = ea1t u(t)

x2(t) = ea2t u(−t)

y(t) = x1(t) ∗ x2(t)

Find y(t) by Convolution method.
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Solution

X1(s) = 1

(s − a1)

X2(s) = −1

(s − a2)

Y (s) = X1(s)X2(s)

= −1

(s − a1)(s − a2)

= A1

(s − a1)
+ A2

(s − a2)

−1 = A1(s − a2) + A2(s − a1)

Put s = a1

−1 = A1(a1 − a2)

A1 = 1

a2 − a1

Put s = a2

−1 = A2(a2 − a1)

A2 = −1

(a2 − a1)

Y (s) = 1

(a2 − a1)

[
1

(s − a1)
− 1

(s − a2)

]

y(t) = 1

(a2 − a1)

[
ea1t u(t) + ea2t u(−t)

]

Example 4.55 Given

x1(t) = e3t u(−t)

x2(t) = u(t − 2)

Determine y(t) = x1(t) ∗ x2(t).

Solution

X1(s) = L[x1(t)] = −1

(s − 3)

X2(s) = L[x2(t)] = e−2s

s
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Y (s) = X1(s)X2(s)

= −e−2s

s(s − 3)

= 1

3

[
1

s
− 1

s − 3

]
e−2s

Let

Y1(s) = 1

3

[
1

s
− 1

s − 3

]

y1(t) = L−1[Y1(s)]

= 1

3
[u(t) + e3t u(−t)]

By using the shifting property,

y(t) = y1(t − 2)

y(t) = 1

3

[
u(t − 2) + e3(t−2)u(−t + 2)

]

4.11 Network Analysis Using Laplace Transform

Anelectrical network consists of passive elements like resistors, capacitors and induc-
tors. They are connected in series, parallel and series parallel combinations. The
currents through and voltages across these elements are obtained by solving integro
differential equations using LT technique. Alternatively, the elements in the network
are transformed from time domain and an algebraic equation is obtained which is
expressed in terms of input and output. The commonly used inputs are impulse, step,
ramp, sinusoids, exponentials etc. The desired response is expressed as a function
of time for the given input. When writing the integro differential equation for a
given network, the initial conditions must be taken into account. The energy storing
elements such as inductor and a capacitor have initial conditions. At time t = 0 the
capacitor is initially charged and has the initial voltage vc(0). Similarly, at t = 0,
the current through the inductor is denoted as iL(0). These initial conditions are
expressed vc(0−) vc(0+) and iL(0−) and iL(0+). The input is assumed to start at
t = 0 which is considered as the reference point. The condition just before the input
is applied (t = 0−) is denoted as vc(0−) and the condition just after the input is
applied (t = 0+) is denoted as vc(0+). In many cases vc(0−) and vc(0+) are same but
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not always. Unless otherwise it is specified, vc(0) or iL(0) has to be taken as vc(0−)

or iL(0−) which is more practical.

4.11.1 Mathematical Description of R-L-C-Elements

(a) Resistor
Consider the resistor connected across the voltage source vi (t). The loop equation
for the above circuit is written as follows:

vi (t) =i(t)R (4.57a)

vR(t) =i(t)R

(b) Inductor
Consider the inductor connected across the voltage source vi (t) as shown in
Fig. 4.30b. The loop equation for the above circuit is written as follows:

vi (t) = L
di(t)

dt

vL(t) = L
di(t)

dt

Taking LT on both sides of the above equation, with the initial current i(t) = i(0−),
we get

Vi (s) = Ls I (s) − Li(0−) (4.57b)

(c) Capacitor
For the capacitor circuit shown in Fig. 4.30c the following equation is written.

vi (t) = 1

C

∫
i(t)dt

Taking LT on both sides of the above equation with the capacitor initially charged
with vc(0−), the following equation is obtained

Vi (s) = 1

Cs
I (s) + vc(0

−) (4.57c)

Equation 4.57a, b and c are called integro differential equations. If the initial condi-
tions are zero, these equations can respectively be written as
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Fig. 4.30 a Circuit with a
resistor. b Circuit with an
inductor. c Circuit with a
capacitor

R vR(t)

i(t)

v

(a)

(b)

(c)

i(t)

L vL(t)

i(t)

vi(t)

C

vi(t)
vC(t)

i(t)

Vi (s) = I (s)R

Vi (s) = I (s)Ls

Vi (s) = 1

Cs
I (s) (4.58)

Equation (4.58) is called algebraic equation. These equations can be written in the
frequency domainwith the impedance function for the resistor, inductor and capacitor
respectively as R, Ls and 1

Cs .

4.11.2 Transfer Function and Pole-Zero Location

Consider the R-L-C series circuit shown in Fig. 4.31. vi (t) is the input, v0(t) is
the output and i(t) is the current flowing through the series circuit. For Fig. 4.31 the
following integro differential equation is written.
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Fig. 4.31 R-L-C series
circuit

R

CL

vi(t) v0(t)

i(t)

vi (t) = L
di(t)

dt
+ 1

C

∫
i(t)dt + Ri(t) (4.59)

v0(t) = i(t)R

Taking LT on both sides of the above equations, we get the following algebraic
equation.

Vi (s) = Ls I (s) − Li(0−) + 1

Cs
I (s) + vc(0

−) + RI (s)

V0(s) = RI (s) (4.60)

In Eq. (4.60) if the initial conditions i(0−) and vc(0−) are zero, the following equa-
tions could be written.

Vi (s) =
(

Ls + 1

Cs
+ R

)
I (s)

V0(s) = RI (s)

Dividing one by the other, we get

V0(s)

Vi (s)
= R

Ls + 1
Cs + R

(4.61)

= RCs

LCs2 + RCs + 1

Denoting V0(s)
Vi (s)

= G(s), the above equation can be written in the following form:

G(s) = RCs

LCs2 + RCs + 1
(4.62)

Equation (4.62) is called the transfer function of the given electric circuit.

Transfer function: Transfer function is therefore defined as the ratio of the LT of
the output variable to the LT of the input variable with all the initial conditions
being assumed to be zero.
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In Eq. (4.62) if we put L = 1,C = 1 and R = 2.5, the transfer function is obtained
as

G(s) = 2.5s

(s2 + 2.5s + 1)

= 2.5s

(s + 2)(s + 0.5)
(4.63)

The transfer function G(s) becomes zero at s = 0.

The points at which the transfer function becomes zero in the s-plane are called
zeros and are marked with a circle 0 in the s-plane.

The transfer function G(s) becomes infinity at points s = −2 and s = −0.5 in
the s-plane. These points are called poles of the transfer function and are marked
with a small cross × in the s-plane.

The poles of the transfer function are defined as the points in the s-plane at
which the transfer function becomes infinity.

The zeros of the transfer function are obtained by factorizing the numerator poly-
nomial and putting each factor to zero. The poles of a transfer function are obtained
by factorizing the denominator polynomial and putting each factor to zero. It is to be
noted that the transfer function is not defined if the initial conditions are not zero. The
poles and zeros of equation (4.63) are shown in Fig. 4.32. The s-plane is a complex
plane whose real axis is represented by σ and the imaginary axis by jω.

The following examples illustrate electric circuit analysis using LT method.

Example 4.64 Consider the R.L.C. series circuit shown in Fig. 4.31 with L =
1H, C = 1F and R = 2.5 ohms. Derive an expression for the output voltage v0(t)
if the input is an (a) impulse (b) unit step. Assume zero initial conditions.

σ

j

s-plane

–2 –0.5 0

Fig. 4.32 Pole-zero locations of G(s) = 2.5s

(s + 2)(s + 0.5)
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Solution With zero initial conditions, for the circuit shown inFig. 4.31, the following
equation is obtained.

L
di(t)

dt
+ 1

C

∫
dt + Ri(t) = vi (t)

v0(t) = i(t)R.

Taking LT on both sides and substituting the numerical values for R, L and C we get

V0

Vi
(s) = 2.5s

(s + 2)(s + 0.5)

(a) Impulse Response of the System

For an impulse input Vi (s) = 1

∴ V0(s) = 2.5s

(s + 2)(s + 0.5)

= A1

(s + 2)
+ A2

(s + 0.5)
2.5s = A1(s + 0.5) + A2(s + 2)

Put s = −2

(2.5)(−2) = A1(−2 + 0.5)

A1 = 5

1.5
= 10

3

Put s = −0.5

(2.5)(−0.5) = A2(−0.5 + 2)

A2 = 1.25

1.5
= −5

6

∴ V0(s) = 10

3

1

(s + 2)
− 5

6

1

(s + 0.5)

Taking inverse LT, we get

v0(t) =
(
10

3
e−2t − 5

6
e−0.5t

)
u(t)
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(b) Step Response of the System

V0

Vi
(s) = 2.5s

(s + 2)(s + 0.5)

For unit step input, Vi (s) = 1
s

∴ V0(s) = 2.5s

s(s + 2)(s + 0.5)

= 2.5

(s + 2)(s + 0.5)

= A1

(s + 2)
+ A2

(s + 0.5)
2.5 = A1(s + 0.5) + A2(s + 2)

Put s = −2

2.5 = A1(−2 + 0.5)

A1 = −2.5

1.5
= −5

3

Put s = −0.5

2.5 = A2(−0.5 + 2)

A2 = 2.5

1.5
= 5

3

∴ V0(s) = 5

3

(
− 1

(s + 2)
+ 1

(s + 0.5)

)

v0(t) = 5

3
(−e−2t + e−0.5t )u(t)

Note: For an impulse input Vi (s) = 1 and for a step input Vi (s) = 1
s . By integrating

the impulse response one can get the step response. Similarly by differentiating the
step response, the impulse response can be obtained.

In the above example, consider the step response.
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vC(0) 5 volts

R 3 

C F

xu(t)

L 1HS

1
2

i(t)

Fig. 4.33 R.L.C. series circuit with initial conditions

v0(t) = 5

3
(−e−2t + e−0.5t )u(t)

dv0(t)

dt
= 5

3
(2e−2t − 0.5e−0.5t )u(t)

=
(
10

3
e−2t − 5

6
e−0.5t

)
u(t)

The above response is nothing but the impulse response.

Example 4.65 Consider the R.L.C series circuit shown in Fig. 4.33. The circuit
parameters are R = 3 ohm; L = 1H and C = 1

2 F . The capacitor C is initially
charged with a voltage of vc(0−) = 5 Volts. The initial current i(0−) before the
input is applied is 2 amps. Find the current in the R-L-C circuit if the input is unit
step. Also find the voltages across these elements for the above case.

Solution For the Circuit shown in Fig. 4.33, the loop equations is

L
di

dt
+ Ri + 1

C

∫
i(t)dt = x(t)

Taking LT on both sides of the equation, we get the following transformation term
by term



4.11 Network Analysis Using Laplace Transform 395

L

[
L

di

dt

]
= Ls I (s) − Li(0) = (s I (s) − 2)

L[Ri] = RI (s) = 3I (s)

L

[
1

C

∫
i(t)dt

]
= 1

Cs
I (s) + vc(0−)

s

= 2I (s)

s
+ 5

s

Thus, the differential equation after taking LT is written as

s I (s) − 2 + 3I (s) + 2I (s)

s
+ 5

s
= X (s)

[
s + 3 + 2

s

]
I (s) = 2 − 5

s
+ X (s)

(s2 + 3s + 2)

s
I (s) = 2s − 5 + s X (s)

s

Step Response

For step input X (s) = 1
s

I (s) = (2s − 5) + s 1
s

(s + 1)(s + 2)

= (2s − 4)

(s + 1)(s + 2)

= A1

(s + 1)
+ A2

(s + 2)
(2s − 4) = A1(s + 2) + A2(s + 1)

Put s = −1

(−2 − 4) = A1(−1 + 2)

A1 = −6

Put s = −2

(−4 − 4) = A2(−2 + 1)

A2 = 8

I (s) = −6

(s + 1)
+ 8

s + 2
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Taking inverse LT, we get

i(t) = (−6e−t + 8e−2t )u(t)

The voltage across the resistor is given by

vR(t) = i(t)R

= 3i(t)

vR(t) = (−18e−t + 24e−2t )u(t)

The voltage across the inductor is given by

vL(t) = L
di(t)

dt

= di(t)

dt

vL(t) = (6e−t − 16e−2t )u(t)

The voltage across the capacitor is given by

vc(t) = 1

C

∫
i(t)dt

= 2
∫

(−6e−t + 8e−2t )dt

= 12e−t − 8e−2t + C.

At t = 0, vc(0) = 5
5 = 12 − 8 + C or C = 1

vc(t) = (12e−t − 8e−2t + 1)u(t)

Example 4.66 Consider the R-L-C circuit shown in Fig. 4.34 with the numerical
values given. The initial current through the inductor and the initial voltage across the
capacitor at t = 0+ is zero. Derive an expression for the source current as a function
of time for t ≥ 0 when the switch S is closed.

Solution The expression for i(t) is obtained by writing the algebraic equation rather
than the integro differential equation when the initial conditions are zero.
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10V

i(t)

R 0.5 

L 1 H

S

C F1
4

Fig. 4.34 R-L-C- circuit of Example 4.66

1. The impedance function for the inductor L is taken as Z1(s).

Z1(s) = Ls

= s

2. The impedance function for the capacitor C is taken as Z2(s).

Z2(s) = 1

Cs
= 4

s

3. Z1(s) and Z2(s) are in parallel. Let Z3(s) be impedance of the parallel combina-
tion of Z1(s) and Z2(s). Thus,

Z3(s) = Z1(s)Z2(s)

Z1(s) + Z2(s)

=
4
s s

4
s + s

= 4s

s2 + 4

4. R and Z3(s) are in series. Let Z(s) be the impedance of the series combination
of R and Z3(s). Thus,

Z(s) = R + Z3(s)

Z(s) = 0.5 + 4s

s2 + 4

Z(s) = (0.5s2 + 4s + 2)

s2 + 4
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5.

I (s) = V (s)

Z(s)

For a step input V (s) = V

S
= 10

s

I (s) = 10

s

(s2 + 4)

(0.5s2 + 4s + 2)

= 20(s2 + 4)

s(s2 + 8s + 4)

But (s2 + 8s + 4) = (s + 7.464)(s + 0.536).
6. Putting I (s) into partial fraction, we get

I (s) = A1

s
+ A2

(s + 7.464)
+ A3

(s + 0.536)

20(s2 + 4) = A1(s
2 + 8s + 4) + A2s(s + 0.536) + A3s(s + 7.464)

Put s = 0

80 = 4A1

A1 = 20

Put s = −7.464

(1114.23 + 80) = A2(−7.464)(−7.464 + 0.536)

A2 = 23.1

Put s = −0.536

(5.746 + 80) = A3(−0.536)(−0.536 + 7.464)

A3 = −23.1

I (s) = 20

s
+ 23.1

s + 7.464
− 23.1

s + 0.536

7. Taking inverse LT, we get

i(t) = (
20 + 23.1e−7.464t − 23.1e−0.536t

)
u(t)

Example 4.67 Find the unit step response of the circuit shown in Fig. 4.35.

(Anna University, December, 2007)
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Fig. 4.35 R.L. series circuit

L 5 H

i(t)
y(t)

x(t)

R 10 

Solution

1. Since the initial condition is zero, the total impedance of the circuit is written as

Z(s) = R + Ls

= 10 + 5s

2. The current through the series circuit is

I (s) = X (s)

Z(s)

Since X (s) = 1

s
for unit step

I (s) = 1

s Z(s)
= 1

s(10 + 5s)

3. The output Y (s) = I (s)R

= 10

s(10 + 5s)
= 2

s(s + 2)

= 1

s
− 1

s + 2

4. Taking inverse LT, we get

i(t) = L−1 I (s) = (1 − e−2t )u(t)

Example 4.68 Consider the R-C-Circuit shown in Fig. 4.36. The input x(t) =
u(t) − u(t − 2). Derive an expression for the voltage output across the capacitor
C as a function of time when the switch S is closed at t = 0. Assume zero initial
condition.
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x(t)

2

1

t

C 2 F

t 0

x(t)

(a) (b)

vC(t)

R 5 S

Fig. 4.36 a R.C. circuit and b x(t) = u(t) − u(t − 2)

Solution

1.
x(t) = u(t) − u(t − 2)

X (s) =
[
1

s
− 1

s
e−2s

]

2. Since the initial condition is zero, the impedance of the circuit is written as

Z(s) = R + 1

Cs

= 5 + 1

2s

= (10s + 1)

2s

3. The current in the circuit is

I (s) = X (s)

Z(s)

=
[
1

s
− 1

s
e−2s

]
2s

(10s + 1)

= (1 − e−2s)
2

(10s + 1)

4. The impedance of the capacitor C is

Zc(s) = 1

Cs

= 1

2s
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5. The output voltage across the capacitor C is given by

Vc(s) = I (s)Zc(s)

= (1 − e−2s)
2

(10s + 1)

1

2s

= (1 − e−2s)0.1

s(s + 0.1)

= 0.1

s(s + 0.1)
− 0.1e−2s

s(s + 0.1)

6.

vc(t) = L−1Vc(s)

vc(t) = L−1

[
0.1

s(s + 0.1

]
− L−1

[
0.1e−2s

s(s + 0.1)

]

Now consider 0.1
s(s+0.1) which can be expressed as 1

s − 1
s+0.1 . Thus,

L−1

[
1

s
− 1

s + 0.1

]
= (1 − e−0.1t )u(t)

Using shift theorem, L−1
[

0.1e−2s

s(s+0.1)

]
= (1 − e−0.1(t−2))u(t − 2). Thus,

vc(t) = (1 − e−0.1t )u(t) − (1 − e−0.1(t−2))u(t − 2)

Example 4.69 Consider the R.L. series circuit shown in Fig. 4.37a. At t = 0, the
switch S is closed. Derive an expression for the current in the series circuit as a
function of time. The mathematical description of the input is given by

x(t) = 3

2
t 0 ≤ t ≤ 2

=
(
6 − 3

2
t

)
2 ≤ t ≤ 4

Solution

1. The mathematical description of x(t) is represented as a triangular wave and is
shown in Fig. 4.37b.

2. For Fig. 4.37b, the LT is determined (see Example 4.28) as

X (s) =
[
3

2

1

s2
− 3

s2
e−2s + 3

2s2
e−4s

]
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L 2 H

S

x(t)

i(t)

R 10 

x(t)

2 40

3

t

(a) (b)

Fig. 4.37 a R-L-series circuit; b x(t)

3. For the circuit shown in Fig. 4.37a, the impedance function is

Z(s) = (R + Ls)

= (10 + 2s)

= 2(s + 5)

4. The current through the series circuit is

I (s) = X (s)

Z(s)

=
[
3

2

1

s2
− 3

s2
e−2s + 3

2

1

s2
e−4s

]
1

2(s + 5)

5.

i(t) = L−1 I (s)

= L−1

[
3

4

1

s2(s + 5)
− 3

2s2
e−2s

(s + 5)
+ 3

4s2
e−4s

(s + 5)

]

1

s2(s + 5)
= A1

s2
+ A2

s
+ A3

(s + 5)

1 = A1(s + 5) + A2s(s + 5) + A3s2

Put s = 0

A1 = 1

5

Put s = −5

1 = A325

A3 = 1

25
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Compare the coefficients of s2.

A2 + A3 = 0

A2 = −A3

= − 1

25
6.

L−1
[
3

4

1

s2(s + 5)

]
= 3

4
L−1

[
1

5s2
− 1

25s
+ 1

25(s + 5)

]
= 3

4

[
1

5
t − 1

25
+ 1

25
e−5t

]
u(t)

(a)

L−1

[
−3

2

e−2s

s2(s + 5)

]
= −3

2

[
1

5
(t − 2) − 1

25
+ 1

25
e−5(t−2)

]
u(t − 2) (b)

L−1

[
3

4

e−4s

s2(s + 5)

]
= 3

4

[
1

5
(t − 4) − 1

25
+ 1

25
e−5(t−4)

]
u(t − 4) (c)

7.

i(t) = (a) + (b) + (c)

i =
[
3

4

{
1

5
t − 1

25
+ 1

25
e−5t

}
u(t)

−3

2

{
1

5
(t − 2) − 1

25
+ 1

25
e−5(t−2)

}
u(t − 2)

+3

4

{
1

5
(t − 4) − 1

25
+ 1

25
e−5(t−4)

}
u(t − 4)

]

Example 4.70 Consider the circuit shown in Fig. 4.38. Initially the switch is in
position 1. At t = 0, the switch is moved to position 2. Find the expression for the
current in the inductor L as a function of time t .

Solution

1. When the switch S is in position 1, the current i passing through the inductor at
steady state is decided by the source voltage and resistance R2.

i = 40

10
= 4 amp.

2. When the switch S is in position 2, the following dynamic equation for the R1 −
R2 − L series circuit is written

L
di

dt
+ (R1 + R2)i = 0
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L 2 H

i(t)2

1
S

R2 10 

R1 5 

40V

Fig. 4.38 Circuit of Example 4.70

L 5 H
C 0.05 F

i(t)

R 10 

S

100V

Fig. 4.39 Circuit for Example 4.71

3. Taking LT on both sides of the above equation, we get

sL I (s) − Li(0+) + (R1 + R2)I (s) = 0

Substituting the numerical values, we get

(2s + 15)I (s) = 2 × 4 = 8

I (s) = 8

2s + 15

= 4

s + 7.5

4. Taking inverse LT, we get

i(t) = 4e−7.5t u(t)

Example 4.71 Consider the circuit shown in Fig. 4.39. The switch S is initially
closed. Derive an expression for the current through the inductor as a function of
time when the switch S is suddenly opened at t = 0.
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Solution

1. When the switch S is closed, the current is passing through R, and L and C is
open circuited. Under this condition the initial current is limited by R only. Thus,

i(0) = 100

10
= 10 Amps.

2. The initial charge across the capacitor is zero because the entire voltage is applied
across R only. Therefore, the following Loop equation for L.C. circuit is written
when the switch S is open.

L
di

dt
− Li(0) + 1

C

∫
i(t)dt + vc(0) = 0

3. Taking LT and substituting i(0) = 10 and vc(0) = 0, we get

[
Ls + 1

Cs

]
I (s) = Li(0)

(
5s + 1

0.05s

)
I (s) = 50

(5s2 + 20)I (s) = 50s

(s2 + 4)I (s) = 10s

(s + j2)(s − j2)I (s) = 10s

I (s) = A1

(s + j2)
+ A2

(s − j2)
10s = A1(s − j2) + A2(s + j2)

Put s = − j2
10(− j2) = 4A1(− j)

A1 = 5

A2 = A∗
1 = 5

I (s) = 5

[
1

s + j2
+ 1

s − j2

]

4. Taking inverse LT, we get

i(t) = 5[e− j2t + e j2t ]

i(t) = 10 cos 2t
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Example 4.72 Find the transfer function of LTI system described by the differential
equation

d2y(t)

dt2
+ 3

dy(t)

dt
+ 2y(t) = 2

dx(t)

dt
− 3x(t)

(Anna University, May, 2008)

Solution Taking LT on both sides assuming zero initial conditions, we get

(s2 + 3s + 2)Y (s) = (2s − 3)X (s)

The transfer function is Y (s)
X (s)

Y (s)

X (s)
= (2s − 3)

(s2 + 3s + 2)

Example 4.73 Consider an LTI system with input x(t) = e−t u(t) and impulse
response
h(t) = e−2t u(t)

• Determine the LT of x(t) and h(t).
• Using the convolution property, determine the LT Y (s) of the output y(t).
• From the LT of y(t) as obtained in part (2) determine y(t).
• Verify your result in part (2) by explicitly convolving x(t) and h(t).

(Anna University, May, 2008)

Solution

1.
x(t) = e−t u(t)

From LT table

X (s) = 1

(s + 1)
ROC: Re(s) > −1

h(t) = e−3t u(t)

From LT table

H(s) = 1

(s + 3)
ROC: Re(s) > −3
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2.
Y (s) = X (s)H(s)

Y (s) = 1

(s + 1)(s + 3)

3.

Y (s) = 1

(s + 1)(s + 3)

= A1

(s + 1)
+ A2

(s + 3)
1 = A1(s + 3) + A2(s + 1)

Put s = −1

1 = A1(−1 + 3)

A1 = 1

2

Put s = −3

1 = A2(−3 + 2)

A2 = −1

2

Y (s) = 1

2

[
1

s + 1
− 1

s + 3

]

y(t) = L−1Y (s) = 1

2
[e−t − e−3t ]u(t)

y(t) = 1

2
[e−t − e−3t ]u(t)

4.

x(t) = e−t

x(t − τ) = e−(t−τ)

h(τ ) = e−3τ

Since x(t) and h(t) are casual, the limit of integration varies from 0 to t . Thus,
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y(t) =
∫ t

0
e−(t−τ)e−3τ dτ

= e−t
∫ t

0
e−2τ dτ

= e−t

(−2)

[
e−2τ

]t

0

y(t) = 1

2

[
e−t − e−3t

]
u(t)

Example 4.74 Determine the impulse response h(t) of the system whose input-
output is related by the differential equation where x(t) is the input, y(t) is the
output

d2y(t)

dt2
+ 3

dy(t)

dt
+ 2y(t) = x(t)

with all initial conditions to be zeros.

(Anna University, April, 2004)

Solution

1. Taking LT on both sides of the given differential equation, we get

(s2 + 3s + 2)Y (s) = X (s)

s2 + 3s + 2 = (s + 1)(s + 2)

For an impulse,

X (s) = 1

Y (s) = 1

(s + 1)(s + 2)

2. Putting into partial fraction, we get

Y (s) = A1

(s + 1)
+ A2

(s + 2)
1 = A1(s + 2) + A2(s + 1)

Put s = −1

1 = A1(−1 + 2)

A1 = 1

Put s = −2
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1 = A2(−2 + 1)

A2 = −1

Y (s) = 1

s + 1
− 1

s + 2

3. Taking inverse LT, we get

y(t) = (e−t − e−2t )u(t)

For impulse input y(t) = h(t)

h(t) = (e−t − e−2t )u(t)

Example 4.75 Determine the output response of the systemwhose impulse response

h(t) = e−at u(t)

for the step input.

(Anna University, April, 2004)

Solution

1.
H(s) = L[h(t)] = L[e−at u(t)]

= 1

s + a

H(s) = Y (s)

X (s)

For step input X (s) = 1

s
.

2. Substituting in H(s), we get

Y (s) = 1

s(s + a)

The residues are obtained by intuition

Y (s) =
[
1

s
− 1

s + a

]
1

a

3. Taking inverse LT, we get

y(t) = 1

a
[1 − e−at ]u(t)
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Example 4.76 Consider an LTI system whose response to the input x(t) = (e−t +
e−3t )u(t) is y(t) = (2e−t − 2e−4t )u(t). Find the system’s impulse response.

(Anna University, December, 2007)

Solution

1. The LT of x(t) is X (s)

X (s) = L[e−t + e−3t ] = 1

(s + 1)
+ 1

(s + 3)
= 2(s + 2)

(s + 1)(s + 3)

The LT of y(t) is Y (s)

Y (s) = L[2e−t − 2e−4t ] = 2

[
1

s + 1
− 1

s + 4

]
= 6

(s + 1)(s + 4)

2. The transfer function is

H(s) = Y (s)

X (s)
= 6

(s + 1)(s + 4)

(s + 1)(s + 3)

2(s + 2)

= 3(s + 3)

(s + 2)(s + 4)

3. For an impulse X (s) = 1. Now Y (s) can be put into partial fraction as given
below.

Y (s) = 3(s + 3)

(s + 2)(s + 4)

= A1

(s + 2)
+ A2

(s + 4)
3(s + 3) = A1(s + 4) + A2(s + 2)

Put s = −2

3(−2 + 3) = A1(−2 + 4)

A1 = 3

2

Put s = −4

3(−4 + 3) = A2(−4 + 2)

A2 = 3

2

Y (s) = 3

2

(
1

s + 2
+ 1

s + 4

)
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4. Taking inverse LT of Y (s), we get

y(t) = L−1Y (s)

= 3

2
L

(
1

s + 2
+ 1

s + 4

)

y(t) = 3

2
(e−2t + e−4t )u(t)

Example 4.77 Determine the response of the system with impulse response h(t) =
u(t) for the input x(t) = e−2t u(t).

(Anna University, April, 2004)

Solution Method 1:

1. Taking LT for h(t) and x(t), we get

H(s) = L(u(t)) = 1

s

X (s) = L[e−2t u(t)] = 1

(s + 2)

2.

y(t) = x(t) ∗ h(t)

Y (s) = X (s)H(s)

= 1

s(s + 2)

3. Putting into partial fraction and by intuition the residues are obtained. Thus, Y (s)
is written as

Y (s) = 1

2

(
1

s
− 1

s + 2

)

4. Taking Laplace inverse for Y (s), we get y(t)

y(t) = L−1Y (s)

= L−1 1

2

(
1

s
− 1

s + 2

)

y(t) = 1

2
(1 − e−2t )
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Method 2: y(t) can be derived by using Convolution Integral

1. Both h(t) and x(t) are casual. Hence, the following convolution integral is written
for y(t)

y(t) =
∫ t

0
h(τ )x(t − τ)dτ

=
∫ t

0
e−2(t−τ)dτ

= e−2t
∫ t

0
e2τ dτ

= e−2t

2

[
e2τ

]t

0

= e−2t

2
[e2t − 1]

y(t) = 1

2
[1 − e−2t ]

Example 4.78 Find the output of an LTI systemwith impulse response h(t) = δ(t −
3) for the input x(t) = cos 4t + cos 7t .

(Anna University, April, 2004)

Solution

h(t) = δ(t − 3)

H(s) = e−3s

X (s) = L[cos 4t + cos 7t]
Y (s) = H(s)X (s) = L[cos 4t + cos 7t]e−3s

y(t) = cos 4(t − 3) + cos 7(t − 3)

Example 4.79 Find the initial and final values for

X (s) = (s + 5)

(s2 + 3s + 2)

(Anna University, June, 2007)
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Solution

1. Initial value of x(0). According to initial value theorem

x(0) = Lt
s→∞ s X (s)

= Lt
s→∞

s2 + 5s

s2 + 3s + 2

= Lt
s→∞

1 + 5
s

1 + 3
s + 2

s2

x(0) = 1

2.
(s2 + 3s + 2) = (s + 1)(s + 2)

Here the poles are at s = −1 and s = −2 and are in LHP. No pole of X (s) is in
RHP. Hence, the application of initial value theorem is correct.

3. Final value of x(∞). According to final value theorem,

x(∞) = Lt
s→0

s X (s)

= Lt
s→0

s2 + 5s

s2 + 3s + 2

x(∞) = 0

Example 4.80 Find the step response of the systemwhose impulse response is given
as

h(t) = u(t + 1) − u(t − 1)

(Anna University, June, 2007)

Solution

1. By taking LT for h(t), using time shifting property, we get

H(s) = L[h(t)]
= 1

s
es − 1

s
e−s

= 1

s
[es − e−s]
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2.

H(s) = Y (s)

X (s)
= 1

s
[es − e−s]

For step input X (s) = 1

s

Y (s) = 1

s2
[es − e−s]

= Y1(s)[es − e−s]

where

Y1(s) = 1

s2

3.
y1(t) = L−1Y1(s)

= L−1 1

s2
= t

4.
y(t) = y1(t)[u(t + 1) − u(t − 1)]

y(t) = (t + 1)u(t + 1) − (t − 1)u(t − 1)

Example 4.81 Find the response of the system whose impulse response is

h(t) = e−3t u(t)

x(t) = u(t − 3) − u(t − 5)

(Anna University, June, 2007)

Solution

1. The LT of h(t) is

H(s) = L[e−3t u(t)]
= 1

(s + 3)

2. The LT of the input x(t) is

X (s) = L[u(t − 3) − u(t − 5)]
= 1

s
[e−3s − e−5s]
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3.

H(s) = Y (s)

X (s)
Y (s) = H(s)X (s)

= 1

s(s + 3)
[e−3s − e−5s]

= Y1(s)[e−3s − e−5s]

where Y1(s) = 1

s(s + 3)
.

4. Now Y1(s) can be put into partial fraction as

Y1(s) = 1

3

[
1

s
− 1

s + 3

]

y1(t) = L−1Y1(s)

= 1

3
[1 − e−3t ]

5. The response y(t) is obtained from y1(t) and applying time shifting property

y(t) = 1

3
[1 − e−3(t−3)]u(t − 3) − 1

3
[1 − e−3(t−5)]u(t − 5)

y(t) = 1

3
[1 − e−3(t−3)]u(t − 3) − 1

3
[1 − e−3(t−5)]u(t − 5)

Example 4.82 Draw the wave forms δ(t − 2) and u(t + 2).

Solution

1. The unit sample is shown in Fig. 4.40a. The time delayed signal (right-shifted by
t = 2) is shown by its side.

2. The unit step signal is shown in Fig. 4.40b. The unit step signal is left shifted by
t = −2 and is shown in the figure shown by its side.

Example 4.83 A system has the transfer function

H(s) = (3s − 1)

(s + 3)(s − 2)

Find the impulse response assuming the system is stable and causal.

(Anna University, December, 2007)
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(t)

u(t)

u(t 2)

u(t)

t

(t 2)

t t2 0

t t

1

1

1

2

(a)

(b)

Fig. 4.40 Time shifted unit sample and unit step

Solution

1.

H(s) = (3s − 1)

(s + 3)(s − 2)

= A1

(s + 3)
+ A2

(s − 2)
(3s − 1) = A1(s − 2) + A2(s + 3)

Put s = −3

(−9 − 1) = A1(−3 − 2)

A1 = 2

Put s = 2

(6 − 1) = A2(2 + 3)

A2 = 1

H(s) = 2

(s + 3)
+ 1

(s − 2)

2. The poles of H(s) are at s = 2 and s = −3. If the system is stable, the pole at
s = 2 contributes to the left-sided term to the impulse response and the pole at
s = −3 contributes right-sided term. Thus, we have
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h(t) = 2e−3t u(t) − e2t u(−t)

3. If the system is causal, then both the poles should contribute right-sided term to
the impulse response which is obtained as

h(t) = [2e−3t + e2t ]u(t)

Due to e2t u(t) the system is not stable.
4. Hence the given system cannot be both stable and causal due to the pole at s = 2.

4.12 Connection between Laplace Transform and
Fourier Transform

The bilateral LT of a signal x(t) as defined earlier is written as follows:

X (s) =
∫ ∞

−∞
x(t)e−st dt (4.64)

Substituting s = jω in the above equation, we get

X ( jω) =
∫ ∞

−∞
x(t)e− jωt dt (4.65)

Thus, the FT is a special case of LT which is obtained by putting X (s)|s= jω with the
following constraints:

• x(t) is absolutely integrable.
• ROC of X (s) includes the jω axis.

Many commonly used signals have x(t) = 0 for t ≤ 0 and ROC of the LT includes
the jω axis. Under this condition,

X ( jω) = X (s)|s= jω

Consider the following signals

x(t) = e−2t u(t)

X (s) = 1

(s + 2)
ROC: Re(s) > −2

Put s = jω

X ( jω) = 1

jω + 2
.
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Now by FT method, we get

X ( jω) =
∫ ∞

0
e−2t e− jωt dt

= 1

( jω + 2)

In the above case ROC includes the jω axis.
Now consider the step function u(t). The LT of a step function is

L[u(t)] = 1

s
.

But the FT of u(t) is obtained as

F[u(t)] = πδ(ω) + 1

jω

Thus, the FT of u(t) cannot be obtained from its LT as it is not absolutely integrable.

4.13 Causality of Continuous-Time Invariant System

A linear time invariant continuous time system is said to be causal iff the impulse
response h(t) of the system is zero for t < 0. Thus, the system which possesses
right-sided impulse response is said to be causal. For this, the ROC of the system
transfer function H(s) which is rational, should be in the right half plane and to the
right of the right most pole.

Consider the following impulse response function

h(t) = e−2t u(t)

H(s) = 1

(s + 2)
ROC: Re(s) > −2

The above transfer function is rational because the degree of the denominator poly-
nomial is greater than the degree of the numerator polynomial. The ROC is to the
right of the right most pole s = −2. Hence, the system is causal. The ROC is shown
in Fig. 4.41a. Now consider the following impulse response function

h(t) = e−|t |
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σ
σ11

j

j

(a)

(b)

2

Fig. 4.41 a ROC of h(t) = e−2t (causal); b ROC of h(t) = e−|t | (non-causal)

The above function can be written as

h(t) = e−t t ≥ 0

= et t ≤ 0

H(s) =
∫ 0

−∞
et e−st dt +

∫ ∞

0
e−t e−st dt

= − 1

(s − 1)
+ 1

(s + 1)
= −2

(s − 1)(s + 1)

The transfer function is rational. The ROC is shown in Fig. 4.41b. The right most
pole is at s = 1. The ROC is not to the right of the right most pole. Hence, the system
is not causal.

4.14 Stability of Linear Time Invariant
Continuous System

As already derived a linear time invariant system is said to be stable if the area
under the impulse response h(t) curve is finite (absolutely integrable). The impulse
response of a causal system is absolutely integrable if the response curve decays
exponentially as time increases. Consider the transfer function of an LTIC system.
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H(s) = bnsn + bn−1sn−1 + · · · + b0
ansm + am−1sm−1 + · · · + a0

For a rational function H(s), m > n. The above transfer function can be written in
terms of factors.

H(s) = A1

(s + p1)
+ A2

(s + p2)
+ · · · + An

(s + pm)

The impulse response of H(s) is obtained by taking inverse LT.

h(t) = L−1H(s) = A1e−p1t + A2e−p2t + · · · + Ame−pm t

For h(t) to be absolutely integrable, the following conditions are to be satisfied.

• All the poles of H(s) should lie in the left half of the s-plane.
• No repeated pole should be in the imaginary axis. Under these conditions, the
system is said to be stable.

• The stability is also assessed by ROC. The ROC of H(s) should include jω axis.

Example 4.84 ACertain causal linear time invariant system has the following trans-
fer function. Test whether the system is stable.

(a) H(s) = (s − 4)

(s + 2)(s − 1)

(b) H(s) = (s − 4)

s2(s + 1)

(c) H(s) = (s − 4)

s(s + 1)(s + 4)

(d) H(s) = (s − 4)

(s − 3)(s + 4)
ROC: − 4 < Re(s) < 3

Solution (a) Since the system is causal, the pole s = 1 which lies in RHP makes
the system unstable.

(b) There are two poles repeated at the origin. The system is unstable.
(c) All the poles are in LHP. The system is stable. It is to be noted that the locations

of zeros do not have any influence on the system stability.
(d) This is a non-causal system. ROC strip is enclosing the jω axis. Hence, the

system is stable.
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4.15 The Bilateral Laplace Transform

The unilateral LT is applicable for causal signals and/or systems. However, for non-
causal signals and systems, the LT pair is defined as follows:

L[x(t)] = X (s) =
∫ ∞

−∞
x(t)e−st dt (4.66)

L−1[X (s)] = x(t) = 1

2π j

∫ c+∞

c− j∞
X (s)est ds (4.67)

It is to be noted here that the unilateral LT pair defined earlier is the special case of
bilateral LT.

4.15.1 Representation of Causal and Anti-causal Signals

The signal x(t) shown in Fig. 4.42a is a non-causal signal which has two components.
x(t) can be split up into two components as x(t) = x1(t) + x2(t). The signal x1(t) is
a causal signal (positive time) and is also called as right-sided signal. This is shown
in Fig. 4.42b. The signal x2(t) is called non-causal or anti-causal (negative time)
signal. It is also called left-sided signal. x2(t) is shown in Fig. 4.42c. These signals
are given the following mathematical description.

x1(t) = x(t)u(t) − 0 < t < ∞ (4.68)

x2(t) = x(t)u(−t) − ∞ < t < −0 (4.69)

The LT of x1(t), the causal component is

X1(s) = L[x1(t)] =
∫ ∞

0−
x1(t)e

−st dt (4.70)

x(t)(a) (b) (c)

t t0 t 0 t

x2(t)

t 0

x1(t)

t

Fig. 4.42 a Signal x(t); b Causal signal; c Anti-causal signal
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The LT of x2(t), the non-causal component is

X2(s) = L[x2(t)] =
∫ 0−

−∞
x2(t)e

−st dt (4.71)

It is to be noted that if x(t) has any impulse or its derivatives at the origin they
should be included in the causal signal x1(t)and x2(t) = 0 at the origin.

4.15.2 ROC of Bilateral Laplace Transform

Consider the following signal

x(t) = e−2t u(t) + e3t u(−t)

x1(t) = e−2t u(t)

X1(s) = 1

(s + 2)
ROC: Re s > −2

x2(t) = e3t u(−t)

X2(s) =
∫ −0

−∞
e3t e−st dt

=
∫ −0

−∞
e−(s−3)t dt

= − 1

(s − 3)

[
e−(s−3)t

]0−

−∞

= − 1

(s − 3)
[−e−(s−3)(−∞) + 1]

e−(s−3)(−∞) converges iff (s − 3) < 0 or s < 3. Hence, the ROC of the left-sided
(anti-causal signal) is to the left of the pole at s = 3

X2(s) = − 1

(s − 3)
ROC: Re s < 3

∴ X (s) = X1(s) + X2(s)

X (s) = 1

(s + 2)
− 1

s − 3
ROC: − 2 < Re s < 3

Unless the ROC is mentioned, the inverse LT is not unique. In the above case the
ROC is a strip between −2 < Re s < 3 and is shown in Fig. 4.43.
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Fig. 4.43 ROC of x(t)

ROC

32 0

j s-plane

Example 4.85 Consider the following function:

X (s) = 10

(s + 4)(s − 2)

Find x(t) if the ROC is (a) Re s > 2; (b) Re s < −4; (c) −4 < Re s > 2.

Solution

X (s) = 10

(s + 4)(s − 2)

= A1

(s + 4)
+ A2

s − 2
10 = A1(s − 2) + A2(s + 4)

Put s = −4

10 = A1(−4 − 2)

A1 = −5

3

Put s = 2

10 = A2(2 + 4)

A2 = 5

3

X (s) = 5

3

[ −1

s + 4
+ 1

s − 2

]

(a) ROC > 2.
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j
s-plane

0 2

(a)

4

ROC
ROC > 2

j
s-plane

2

(b)

4

ROC

ROC < 4

j

s-plane

ROC 4 < ROC < 2

2

(c)

4

Fig. 4.44 ROCs of X (s) = 10

(s + 4)(s − 2)
. Example4.85

Figure4.44a represents pole-zero locations for ROC > 2. Figure4.44b represents
pole-zero locations for ROC < −4. Figure4.44c represents pole-zero locations for
−4 < ROC < 2.

Here the ROC is right-sided for both the poles at s = −4 and s = 2. Hence, the
system is causal (Fig. 4.44).
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x(t) = 5

3
[−e−4t + e2t ]u(t)

(b) ROC Re s < −4.
Here the system poles s = −4 and s = 2 are both left-sided since they lie left to the
ROC. Both are non-causal.

X (s) = 5

3

[ −1

(s + 4)
+ 1

s − 2

]

x(t) = 5

3
(e−4t − e2t )u(−t)

(c) ROC −4 < Re s < 2.
Here the pole s = −4 is to the left of the ROC and it is a right-sided signal. It is

therefore causal. The pole s = 2 is to the right of the ROC and hence it is a left-sided
signal. It is non-causal. Hence

x(t) = 5

3

[−e−4t u(t) − e2t u(−t)
]

Example 4.86 The impulse response function of a certain system is

H(s) = 10

s − 5
ROC: Re s < 5

The system is excited by x(t) = e−3t u(t). Derive an expression for the output y(t)
as a function of time.

Solution

H(s) = 10

(s − 5)
ROC: Re s < 5

X (s) = L−1[e−3t u(t)] = 1

(s + 3)
ROC: Re s > −3

Y (s) = H(s)X (s) = 10

(s − 5)(s + 3)
ROC: − 3 < Re s < 5

Putting into partial fraction, we get

Y (s) = A1

s − 5
+ A2

s + 3
10 = A1(s + 3) + A2(s − 5)
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σ

j

3 5

s-plane

ROC

Fig. 4.45 ROC of Y (s) = 10

(s − 5)(s + 3)

Put s = 5

10 = A1(5 + 3)

A1 = 5

4

Put s = −3

10 = A2(−3 − 5)

A2 = −5

4

Hence, Y (s) = 5

4

(
1

s − 5
− 1

s + 3

)
.

The ROC is shown in Fig. 4.45. From the ROC, the pole 1
(s−5) is left-sided (right

to the ROC) and the pole 1
(s+3) is right-sided (left to the ROC). Hence, 1

(s−5) is

non-causal and 1
(s+3) is causal. y(t) is obtained by taking inverse LT.

y(t) = 5

4

(−e5t u(−t) − e−3t u(t)
)

Example 4.87 The impulse response function of a certain system is given by

H(s) = 1

(s + 10)
ROC: Re s > −10

The system is excited by the following input.



4.15 The Bilateral Laplace Transform 427

x(t) = −2e−2t u(−t) − 3e−3t u(t)

Derive an expression for the output y(t) as a function of time.

Solution By taking LT for x(t), we get

X (s) = L[−2e−2t u(−t) − 3e−3t u(t)]
= 2

(s + 2)
− 3

(s + 3)
ROC: − 3 < Re s < −2

= 2s + 6 − 3s − 6

(s + 2)(s + 3)

= −s

(s + 2)(s + 3)

H(s) = 1

(s + 10)
ROC: Re s > −10

Y (s) = −s

(s + 2)(s + 3)(s + 10)
ROC: − 3 < Re s < −2

The ROC of Y (s) is shown in Fig. 4.46. The ROC of H(s) is automatically satisfied
if ROC Re s > −3. Putting Y (s) into partial fraction, we get

Y (s) = A1

(s + 2)
+ A2

(s + 3)
+ A3

(s + 10)
−s = A1(s + 3)(s + 10) + A2(s + 2)(s + 10) + A3(s + 2)(s + 3)

s-plane

j

2 0310

Fig. 4.46 ROC of Example 4.87
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Put s = −2

2 = A1(−2 + 3)(−2 + 10)

A1 = 1

4

Put s = −3

3 = A2(−3 + 2)(−3 + 10)

A2 = −3

7

Put s = −10

10 = A3(−10 + 2)(−10 + 3)

A3 = 5

28

Hence

Y (s) = 1

4

1

(s + 2)
− 3

7

1

(s + 3)
+ 5

28

1

(s + 10)

From Fig. 4.46 it is evident that the pole 1
(s+10) of the system and the pole 1

(s+3) of
the input are right-sided (to the left of ROC) and hence causal. On the other hand,
the pole 1

(s+2) is left-sided (right to the ROC) and hence non-causal. Thus, y(t) is
obtained by taking inverse LT.

y(t) = −1

4
e−2t u(−t) − 3

7
e−3t u(t) + 5

28
e−10t u(t)

Example 4.88 The impulse response of a certain system is given by h(t) = δ(t) +
e−3|t |. The system is excited by the following signal x(t) = e−4t u(t) + e−2t u(−t).
Find the response of the system y(t).

Solution

H(s) = L[h(t)]
= L(δ(t)) + L(e−3|t |)
= 1 + L(e−3|t |)

L(e−3|t |) =
∫ 0−

−∞
e+3t e−st dt +

∫ ∞

0−
e−3t e−st dt

= − 1

(s − 3)
+ 1

s + 3
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H(s) = 1 − 1

(s − 3)
+ 1

(s + 3)
ROC: − 3 < Re s < 3

= (s2 − 15)

(s − 3)(s + 3)

X (s) = L[e−4t u(t) + e−2t u(−t)] = 1

(s + 4)
− 1

s + 2

= −2

(s + 2)(s + 4)
ROC: − 4 < Re s < −2

H(s) = Y (s)

X (s)
Y (s) = H(s)X (s)

= (s2 − 15)(−2)

(s − 3)(s + 3)(s + 2)(s + 4)

= A1

s − 3
+ A2

s + 3
+ A3

s + 2
+ A4

(s + 4)

(15 − s2)2 = A1(s + 3)(s + 2)(s + 4) + A2(s − 3)(s + 2)(s + 4)

+A3(s − 3)(s + 3)(s + 4) + A4(s − 3)(s + 3)(s + 2)

Put s = 3

2(15 − 9) = A1(6)(5)(7)

A1 = 2

35

Put s = −3

2(15 − 9) = A2(−6)(−1)(1)

A2 = 2

Put s = −2

2(15 − 4) = A3(−5)(1)(2)

A3 = −11

5

Put s = −4
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s-plane

j

2 0

ROC

34 3

Fig. 4.47 ROC of Example 4.88

2(15 − 16) = A4(−7)(−1)(−2)

A4 = 1

7

Y (s) = 2

35

1

s − 3
+ 2

s + 3
− 11

5

1

(s + 2)
+ 1

7

1

(s + 4)

The ROC for Y (s) is shown in Fig. 4.47. From Fig. 4.47 the poles 1
(s+4) and

1
(s+3) are

right-sided and hence causal. However, the poles 1
(s+2) and

1
(s−3) are left-sided and

hence non-causal. Taking the ROC into account y(t) is obtained as given below:

y(t) =
[(

2e−3t + 1

7
e−4t

)
u(t) +

(
− 2

35
e3t + 11

5
e−2t

)
u(−t)

]

Example 4.89 Consider the R.L.C. series circuit shown in Fig. 4.48a. The excitation
voltage x(t) = e−3t u(t) + e4t u(−t). Derive the expression for the current in the
series circuit. Assume zero initial conditions.

Solution

1. The impedance of the R.L.C. circuit is,

Z(s) = R + Ls + 1

Cs

= 3 + s + 2

s

= (s2 + 3s + 2)

s
= (s + 1)(s + 2)

s
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ROC

3 2 41

R 3 

C F

L 1H

1
2

i(t)

j

x(t)

s-plane
(a)

(b)

Fig. 4.48 a R.L.C circuit; b ROC of Example 4.89

2. The excitation voltage

x(t) = e−3t u(t) + e4t u(−t)

X (s) = 1

(s + 3)
− 1

(s − 4)

= −7

(s + 3)(s − 4)
ROC: − 3 < Re s < 4

3. The current flowing in the circuit is

I (s) = X (s)

Z(s)

I (s) = −7s

(s + 1)(s + 2)(s + 3)(s − 4)

The corresponding ROC: − 1 < Re s < 4. The above ROC satisfies the previous
ROC also.

I (s) = A1

(s + 1)
+ A2

(s + 2)
+ A3

(s + 3)
+ A4

(s − 4)
−7s = A1(s + 2)(s + 3)(s − 4) + A2(s + 1)(s + 3)(s − 4)

+A3(s + 1)(s + 2)(s − 4) + A4(s + 1)(s + 2)(s + 3)

Put s = −1

7 = A1(−1 + 2)(−1 + 3)(−1 − 4)

A1 = − 7

10
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Put s = −2

14 = A2(−1)(1)(−6)

A2 = 7

3

Put s = −3

21 = A3(−2)(−1)(−7)

A3 = −3

2

Put s = 4

−28 = A4(5)(6)(7)

A4 = − 2

15

I (s) = −7

10

1

(s + 1)
+ 7

3

1

s + 2
− 3

2

1

(s + 3)
− 2

15

1

(s − 4)

The poles 1
s+1 ,

1
s+2 and

1
s+3 are right-sided as seen in ROC of Fig. 4.48b. The pole

1
s−4 is left-sided and hence non-causal. Taking inverse LT for I (s), we get

i(t) =
(−7

10
e−t + 7

3
e−2t − 3

2
e−3t

)
u(t) + 2

15
e4t u(−t)

Summary

1. The LT is a tool to represent any arbitrary signal x(t) in terms of exponential
components.

2. The LT is defined as follows:

X (s) =
∫ ∞

−∞
x(t)e−st dt

The Laplace inverse transform which converts X (s) into x(t) is expressed as

x(t) = 1

2π j

∫ σ+ j∞

σ− j∞
X (s)est ds

The above two equations are called LT pair.
3. Fourier transform is a special case of LT. Fourier transform is obtained by sub-

stituting s = jω in LT in many practical cases even though it is not true always.
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4. The LT of a causal signal and system is called unilateral LT. The LT of non-causal
signal and system is called bilateral LT.

5. The region in the complex s-plane where the LT converges is called the region
of convergence which is written in abbreviated form as ROC. For a causal signal
the ROC exists to the right of the right most pole of the transfer function. For a
non-causal signal the ROC exists to the left of the left most pole of the transfer
function. The ROC will not enclose any pole.

6. The unilateral LT is a special case of bilateral LT. Their properties are discussed
in details.

7. The inverse LT is conveniently obtained using partial fractionmethod.Analytical
as well as graphical methods are used to determine the residues in the partial
fraction.

8. The integro differential equation of LTIC system can be converted into algebraic
equations using LT and the solution is obtained with case.

9. Byknowing the transfer functionusingLTone can easily obtain impulse response
and step response. Using LT, it is also possible to get zero state response, zero
input response, natural response, forced response and total response of the sys-
tem.

10. The solutions of differential and integro-differential equations are obtained using
LT. The initial conditions are applied for zero input. The differential equation
can also be solved using classical method. However, in classical method, the
zero initial conditions are applied for the total response. The classical method is
restricted to a certain class of input and not applicable to any input. In classical
method, the total response is expressed in terms of natural response and forced
response.

11. Using LT, the electrical network which consists of passive elements can be
analyzed.

12. Using time convolution property of LT, it is possible to get the system response
y(t).

13. Using LT it’s possible to obtain the causality and stability of LTIC system.
14. Non-causal signals and/or systems can be analyzed by the bilateral (two-sided)

Laplace transform. Here, the ROC is mostly in the form of a strip. Bilateral
Laplace transform can also be used for linear system analysis.

15. The transfer function of an nth order system can be realized using integrators,
summers, and multipliers. The following form of realization which is a synthesis
problem have been discussed and illustrated with examples.

(a) Direct Form-I
(b) Direct Form-II
(c) Cascade Form
(d) Parallel Form
(e) Transposed Form.



434 4 The Laplace Transform Method …

Exercise

I. Short Answer Type Questions

1. What is Laplace Transform?
The representation of a continuous-time signal x(t) in terms of complex expo-
nential est is termed as Laplace transform. Mathematically, it is expressed as

L[x(t)] = X (s) =
∫ ∞

−∞
x(t)e−st dt

where s is a complex variable expressed as s = σ + jω. Thus, by LT the time
function x(t) is expressed as a frequency function.

2. What do you understand by LT pair?
The LT and inverse LT are called Laplace transform pair. Mathematically, they
are expressed as

X (s) =
∫ ∞

−∞
x(t)e−st dt

x(t) = 1

2π j

∫ σ+∞

σ−∞
X (s)est ds

3. What is bilateral Laplace transform?
The LT to handle non-causal signals and systems is called bilateral LT. It is
mathematically expressed as

X (s) =
∫ ∞

−∞
x(t)e−st dt

4. What is unilateral Laplace transform?
The LT to handle causal signals and systems is called unilateral LT. Mathemat-
ically it is expressed as

X (s) =
∫ ∞

0−
x(t)e−st dt

5. What do you understand by LT of right-sided and left-sided signals?
The LT of a causal signal is called the right-sided LT and is mathematically
described as

X (s) =
∫ ∞

0−
x(t)e−st dt

The LT of a non-causal signal is called the left-sided LT and is mathematically
expressed as
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X (s) =
∫ 0−

−∞
x(t)e−st dt

6. What is the connection between LT and FT?
The FT is a special case of LT which is obtained by putting X (s)|s= jω with
the constraints that x(t) is absolutely integrable and ROC of X (s) includes the
jω axis of the s-plane. Thus, the FT X ( jω) is obtained from LT of X (s) by
substituting s = jω. It is evaluated on the jω axis in the s-plane.

7. What do you understand by Region of convergence?
The region in the s-plane for which the LT integral

X (s) =
∫ ∞

−∞
x(t)e−st dt

converges is called the region of convergence which is written in the abbreviated
form as ROC.

8. How do you identify the ROC of a causal signal?
The ROC of a causal (or right-sided) signal is identified in the s-plane in the
region to the right of the right most pole of the T.F. H(s).

9. How do you identify the ROC of a non-causal (left-sided) signal?
The ROC of a non-causal signal is identified in the s-plane in the region to the
left of the left most pole of the T.F. H(s).

10. How do you identify the ROC of a bilateral Laplace transform?
The region to the right of the right most pole of the causal signal and the region
to the left of the left most pole of the non-causal signal are identified as the ROC
of bilateral LT. ROC should not include any pole. The ROC is a strip. If ROC
does not overlap, LT does not exist.

11. State any three properties of ROC.
The three properties of ROC are

(a) The ROC of LT does not include any pole of X (s).
(b) For the right-sided (causal) signal ROC exists to the right of right most pole

of X (s).
(c) For the left-sided (noncausal) signal ROC exists to the left of left most pole

of X (s).
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12. Identify the ROCs for the following signals and sketch them in the s-plane?

(a) x(t) = e−2t u(t)
(b) x(t) = e−3t u(−t)
(c) x(t) = e−2t u(t) + e3t u(−t)
(d) x(t) = e−2|t |
(e) x(t) = e2|t |

13. Sketch the ROC of the following T.F. of a certain causal system and mark
the poles and zeros.

14. Sketch the ROC of a non-causal system whose T.F. is given as

H(s) = (s + 2)(s − 2)
s(s + 1)(s − 3)

Mark the poles and zeros of H(s).
15. What are initial and final value theorems?

Initial value theorem is used to determine the initial value of x(t) (as t → 0)
from the LT X (s) which is given below.

x(0+) = Lt
s→∞ s X (s)

provided x(t) and dx(t)
dt are both Laplace transformable and X (s) is proper.

The final value theorem is used to determine x(t) as t tends to infinity. This can
be determined from X (s) using final value theorem as given below.

x(∞) = Lt
s→0

s X (s)

provided that x(t) and dx(t)
dt are both Laplace transformable and s X (s) has no

poles in the RHP or on the imaginary axis.
16. Find the initial and final values of x(t) whose LT is given by

X(s) = (s + 5)
(s2 + 3s + 2)

(Anna University, June, 2007)
Initial Value,

x(0+) = Lt
s→∞

s(s + 5)

(s2 + 3s + 2)

= Lt
s→∞

s2(1 + 5/s)

s2(1 + 3
s + 2

s2 )
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x(0+) = 1

Final value

x(∞) = Lt
s→∞

s(s + 5)

(s2 + 3s + 2)

x(∞) = 0

17. Define transfer function.
The transfer function of a linear time invariant continuous system is defined as
the ratio of the LT of the output variable to the LT of the input variable with all
initial conditions being assumed to be zero. Thus,

T.F. H(s) = Laplace transform of zero state response

Laplace transform of input signal

Transfer function does not exist for non-linear and time-varying systems.
18. Define poles and zeros of the transfer function.

The pole of a transfer function is defined as the value of s in the s-plane at which
the T.F. becomes infinity. The poles are represented by a small cross ×. The
poles are the roots of the denominator polynomial of the T.F.
The zero of a transfer function is defined as the value of s in the s-plane at which
the T.F. becomes zero. They are represented by a small circle ‘O’ in the s-plane.
The zeros are the roots of the numerator polynomial of T.F.

19. What do you understand by eigenfunction of a system?
The input for which the system response is also of the same form is called
eigenfunction or characteristic function.

20. What do you understand by causality of an LTIC system?
An LTIC system with rational T.F. is said to be causal if the impulse response
is right-sided. For such a system the ROC is in RHP and to the right of right
most pole. An ROC to the right of the right most pole does not simply guarantee
causality of the system. The ROC should be in RHP also.

21. What do you understand by stability of an LTIC system?
The LTIC system is said to be stable iff the area under the impulse response h(t)
curve is finite. In other words the impulse response h(t) should be absolutely
integrable. In terms ROC, the T.F. of a stable LTIC system includes the jω axis
of the s-plane.
An LTIC system which is causal is said to be stable iff all the poles of the
transfer function H(s) lie in the LHP and no repeated poles are at the origin of
the s-plane.

22. What do youunderstandby impulse response and step response of a system?
The response of the system for the impulse input which is defined as
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δ(t) = 1 t = 0

= 0 elsewhere

is called impulse response of the system. The response of the system for the step
input which is defined as

x(t) = u(t) t ≥ 0

= 0 t < 0

is called step response of the system.
23. What do you understand by zero state response and zero input response?

The system responsewhen the system is in zero state (all the initial conditions are
zero) is called zero state response. Here, the response is made up of characteristic
mode or the eigen values of the system.
The zero input response of the system is the response due to the initial conditions
only. Here the input is made zero. For an LTIC system, the total response is

Total response = zero state response + zero input response

24. What do you understand by natural response and forced response of a
system?
The total response of an LTIC system can be expressed in terms of zero input
component and zero state component. If we lump together all the characteristic
mode terms in the total response, such a response is called natural response. The
remaining part of the total response which consists of non-characteristic mode
terms is called the forced response of the system.

25. Are zero input response and natural response and zero state response and
forced response same?
Zero input response is not the same as the natural response and zero state response
is also not the same as forced response. However, the total response which is
the sum of natural response and forced response and also expressed as the sum
of zero state response and zero input response will be the same. In a few cases,
the natural response will be same as the zero input response and the zero state
response is same as forced response.

26. Comment on the solutions of the differential equations obtained by the
application of LT and by classical method?

(a) In the LT method the initial conditions are applied to zero input response. In
the classical method, the total response cannot be represented into zero state
response and zero input response. Hence, in the classical method, the zero
initial conditions are applied to the total response which begins at t = 0+.

(b) The classical method is restricted to a certain class of inputs, whereas the
LT method is applicable to many commonly used signals.
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27. What do you understand by asymptotic stability of an LTIC system?
An LTIC system is said to be asymptotically stable iff all the roots of the T.F.
which may be simple or repeated lie in LHP. Further, there are no repeated roots
on the imaginary axis. Under such conditions the system remains in a particular
equilibrium state indefinitely in the absence of an external input.

28. What do you understand by marginal stability of the system?
An LTIC system is said to be marginally stable iff there are no roots in the RHP
and some un-repeated roots are on the imaginary axis.

29. What do you understand by zero input stability and zero state stability?
The zero state stability or external stability of the system is obtained when the
input is applied with zero initial conditions. The zero input stability or internal
stability of the system is obtained by applying initial conditions with no external
input.

30. What do you understand by bounded input and bounded output (BIBO)
stability?
An LTIC system is bounded input bounded output stable iff the area under the
impulse response curve is finite. Here all the poles of the T.F. lie in LHP. No
repeated poles are on the imaginary axis. An asymptotically stable system is
BIBO unstable.

31. Find the transfer function of LTI system described by the differential equa-
tion

d2 y(t)
dt2

+ 3
d y(t)
dt

+ 2 y(t) = 2
dx(t)
dt

− 3x(t)

(Anna University, May, 2008)

H(s) = Y (s)

X (s)
= (2s − 3)

(s2 + 3s + 2)

32. Find the LT of x(t) = e−at u(t). (Anna University, December, 2006)

X (s) =
∫ ∞

0
e−(s+a)t dt

X (s) = 1

(s + a)
ROC: Re s > −a

33. Given d y(t)
dt + 6 y(t) = x(t). Find the T.F.

(Anna University, December, 2006)

H(s) = Y (s)

X (s)
= 1

(s + 6)

34. Find the LT of u(t) − u(t − a) where a > 0.
(Anna University, December, 2006)
The LT of u(t) is 1

s . By using the time shifting property of LT,
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L[−u(t − a)] = X (s) = −1

s
e−as ROC: Re s > 0

L[u(t) − u(t − a)] = 1

s
[1 − e−as]

35. Find the LT of x(t) = +e−3t u(t − 10)?

X (s) =
∫ ∞

10
e−3t e−st dt

= 1

(s + 3)
e−10(s+3) ROC: Re s > −3

36. Find the LT of x(t) = δ(t − 5)?

X (s) = e−5s ROC: all s

37. What is the output of a system whose impulse response h(t) = e−at for a
delta input? (Anna University, December, 2005)

Y (s)

X (s)
= H(s) = 1

(s + a)
[X (s) = 1]

Y (s) = 1

(s + a)

y(t) = e−at u(t) ROC: s > −a

38. Find the LT of x(t) = te−at u(t) where a > 0? (Anna University, May, 2005)

L[e−at u(t)] = 1

(s + a)

L[te−at u(t)] = 1

(s + a)2

(using frequency differentiation property).
39. Determine the LT of

x(t) = 2t 0 ≤ t ≤ 1

= 0 otherwise.

(Anna University, May, 2005)
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X (s) =
∫ 1

0
2te−st dt

Integrating by parts, we get

X (s) =
[−2t

s
e−st

]1

0

− 2

s2
[e−st ]10

= 2

s2
[1 − e−s(s + 1)]

40. Determine the output response of the system whose impulse response
h(t) = e−at u(t) for the step input? (Anna University, April, 2004)

h(t) = e−at u(t)

H(s) = 1

(s + a)

Y (s)

X (s)
= 1

(s + a)
X (s) = 1

s

Y (s) = 1

a

[
1

s
− 1

s + a

]

y(t) = 1

a
[1 − e−at ] ROC: Re s > 0

41. Find the LT and sketch the pole-zero plot with ROC for x(t) =
(e−2t + e−3t)u(t). (Anna University, June 2007)

X (s) = 1

(s + 2)
+ 1

(s + 3)

= 2(s + 2.5)

(s + 2)(s + 3)

42. Find the LT of x(t) = δ(t + 1) + δ(t − 1) and its ROC.

X (s) = es + e−s ROC : all s.

43. Find the LT of x(t) = u(t + 1) + u(t − 1) and its ROC.

X (s) = 1

s
[es + e−s] ROC: Re s > 0
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44. Using convolution property determine y(t) = x1(t) ∗ x2(t) where
x1(t) = e−2t u(t) and x2(t) = e−3t u(t)?

X1(s) = 1

(s + 2)
;

X2(s) = 1

(s + 3)
Y (s) = X1(s)X2(s)

= 1

(s + 2)(s + 3)

= 1

(s + 2)
− 1

(s + 3)

y(t) = (e−2t − e−3t )u(t) ROC: Re s > −2

45. Find the zero input response for the following differential equation.

dy(t)

dt
+ 5y(t) = u(t);

y(0−) = 5

Y (s) = 5

s + 5
y(t) = 5e−5t u(t)

46. Find the LT d
dt [δ(t)].

L
d

dt
[δ(t)] = s ROC: all s.

47. Find the LT of x(t) = δ(2t).

X (s) = 1

2
ROC: all s

48. Find the LT of integrated value of δ(t).

X (s) = 1

s

49. Why integrators are preferred to differentiators in structure realization?
Use of differentiators in structure realization enhances noise. That is why dif-
ferentiators are not preferred.
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50. What are the components required in structure realization?
The components required in structure realization are (Figs. 4.49, 4.50, 4.51 and
4.52):

(a) Integrators,
(b) Summers, and
(c) Multipliers.

51. Mention the steps to be followed to realize a transposed structure from
canonic form structure.

(a) Interchange X (s) and Y (s).
(b) Change the directions of arrows.
(c) Replace take off points by summers and vice versa.

II. Long Answer Type Questions

1. Find the LT of x(t) = e−2|t| and ROC.

X (s) = 1

(s + 2)
+ 1

s − 2
ROC: − 2 < Re s < 2

2. Find the LT of x(t) = e2|t| and ROC.
ROC do not overlap and x(t) has no LT X (s).

3. Find the LT of x(t) = (e2t + e−2t)u(t) and the ROC.

X (s) = 1

(s − 2)
+ 1

s + 2
ROC: Re s > 2

4. Find the LT of x(t) = (e2t + e−2t)u(−t) and the ROC.

X (s) = −
(

1

(s + 2)
+ 1

s − 2

)
ROC: Re s < −2

5. Find the LT of x(t) = (e−6t + e−4t)u(t) + (e−3t + e−2t)u(−t)

X (s) = 1

(s + 6)
+ 1

(s + 4)
−

(
1

(s + 3)
+ 1

s + 2

)
ROC: −4 < Re s < −3

6. Find the LT of

x(t) = (e−6t + e−3t)u(t) + (e−4t + e−2t)u(−t)

ROC does not overlap and hence x(t) has no LT X (s).
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2

j(a)

s-plane

3

j(b)

s-plane

2 2

j(e)

s-plane

σσ

2 3

j(c)

s-plane

Re s > 2 CORCOR

ROC ROC

No ROC

Re s < 3

2< Re s <3 2< Re s <2

σ
2 2

j(d)

s-plane

σ

Fig. 4.49 Region of the convergence of different time functions for question 12

Figure4.49a represents ROC for x(t) = e−2t u(t). Figure4.49b represents ROC
for x(t) = e−3t u(−t). Figure4.49c represents ROC for x(t) = e−2t u(t) + e−3t

u(−t). Figure4.49d represents ROC for x(t) = e−2|t |. Figure4.49e represents
no ROC for x(t) = e2|t |.
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3 2 1 2

j
s-planeROC > 1

Fig. 4.50 ROC of a causal systematic T.F. H(s) = 10(s − 2)(s + 2)

s(s + 3)(s − 1)
. Question 13

2 0312

j
s-plane

ROC < 1

Fig. 4.51 ROC of a non-causal system with the T.F. H(s) = (s + 2)(s − 2)

s(s + 1)(s − 3)
. Question 14

22.53

j
s-plane

ROC > 2

σ

Fig. 4.52 Pole zero plot and ROC of X (s) = 2(s + 2.5)

(s + 2)(s + 3)
. Question 41



446 4 The Laplace Transform Method …

7. Find the LT and ROC of

x(t) = e−3t [u(t) − u(t − 4)]

X (s) =
[

1
(s+3) − e−4(s+3)

(s+3)

]
ROC: Re s > −3

8. Find the inverse LT of the following X(s) for all possible combinations of
ROC.

X(s) = 4
(s + 1)(s − 3)

(a) x(t) = (e3t − e−t )u(t) ROC: Re s > 3
(b) x(t) = (e−t − e3t )u(−t) ROC: Re s < −1
(c) x(t) = (e−t u(t) − e3t u(−t) − 1 < Re s < 3

9. Find the inverse LT of X(s)

X(s) = 8(s + 2)
s(s2 + 4s + 8)

ROC: Re s > −2

x(t) = 2
[
1 + √

2 sin
(
2t − π

4

)]
u(t)

10. Find the inverse LT of

X(s) = s2 + 2s + 4)
(s + 2)(s + 4)

ROC: Re s > −2

x(t) = δ(t) + 1
2 [e−2t − e−4t ]u(t)

11. Find the inverse LT of

X(s) = (s2 + 3s + 1)
(s2 + 5s + 6)

ROC: Re s > −2

x(t) = δ(t) − (9e−2t − 11e−3t )u(t)

12. Find the inverse LT of

X(s) = s3 + 8s2 + 21s + 16
(s2 + 7s + 12)

ROC: Re s > −3

x(t) = [ d
dt δ(t) + δ(t) + 4e−4t − 2e−3t ]u(t)
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13. Find the inverse LT of

X(s) = 10se−2s + 5e−4s + 6
(s2 + 13s + 40)

ROC: Re s > −5

x(t) =
[
80

3
e−8(t−2) − 50

3
e−5(t−2)

]
u(t − 2)

+5

3
(e−5(t−4) − e−8(t−4))u(t − 4) + 2[e−5t − e−8t ]u(t)

14. Find the initial and final value of y(t) if its LT Y(s) is given by

Y(s) = (s2 + 2s + 5)
s(s2 + 4s + 6)

Initial value y(0) = 1. Final value y(∞) = 5
6

15.

x1(t) = u(t)

x2(t) = e−2t u(t)

Using convolution property of LT find y(t) = x1(t) ∗ x2(t)

y(t) = 1

2
[1 − e−2t ]u(t)

16. Consider an LTIC system described by the following differential equation

d2 y(t)
dt2

+ d y(t)
dt

− 6 y(t) = X(s)

Determine

(a) the system transfer function.
(b) impulse response of the system if it is causal.
(c) Impulse response of the system if the system is stable.
(d) Impulse response of the system if it is neither causal nor stable.

(a)

H(s) = 1

(s2 + s − 6)
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X(t)

t

3

2 4 6 8 10

Fig. 4.53 A periodic pulse signal

1 H

C

L R1

R2

5

10
10v

S

6
1

i(t)

Fig. 4.54 Electrical circuit

(b)

y(t) = −1

5
[e−3t − e2t ]u(t) ROC: Re s > 2

(c)

y(t) = 1

5
[−e2t u(−t) − e−3t u(t)] ROC: − 3 < Re s < 2

(d)

y(t) = 1

5
[−e2t + e−3t ]u(−t) ROC: Re s < −3

17. Determine the LT of the periodic signal shown in Fig. 4.53.

X (s) = 3

s

1

[1 + e−2s]
18. Consider the electrical circuit shown in Fig. 4.54. Initially the switch S is

closed. Derive an expression for the current through the inductor as soon
as the switch is open. i(t) = [3e−3t − 2e−2t ]u(t)
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2 2

j

Re s < 2

2 2

j

Re s > 2(a) ROC:

Causal and unstable system Non-causal and unstable system

(b) ROC:

σ σ

2 2

j

σ

(c) Non-causal and stable system ROC: 2 < Re s < 2

Fig. 4.55 ROC related to causality and stability

19. Find the Laplace inverse of the following X(s) (Fig. 4.55):

X(s) = (s + 5)
(s + 2)(s + 3)3

ROC: Re s > −2

x(t) = [3e−2t − (t2 + 3t + 3)e−3t ]u(t)

20. Solve the following differential equation:

d2 y(t)
dt2

+ d y(t)
dt

− 2 y(t) = dx(t)
dt

+ x(t)

The initial conditions are y(0−) = 2; d y(0−)

dt = 1. The input is

(a) x(t) = δ(t) an impulse
(b) x(t) = u(t) unit step
(c) x(t) = e−4t u(t) an exponential decay.
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(a) x(t) = [
2
3e−2t + 7

3et
]

u(t) ROC: Re s > 1

(b) x(t) = [− 1
2 + 1

6e−2t + 7
3et

]
u(t) ROC: Re s > 1

(c) y(t) = [
1
2e−2t − 3

10e−4t + 27
15et

]
u(t) ROC: Re s > 1

21. The unit step response of a certain LTIC system y(t) = 10e−5t . Find
(a) the impulse response? (b) the response due to the exponential decay
x(t) = e−3t u(t)?

(a) h(t) = 10δ(t) − 50e−5t u(t) ROC: Re s > −5

(b) y(t) = (25e−5t − 15e−3t )u(t) ROC: Re s > −3

22. The impulse response of a certain system is h1(t) = e−3t u(t) and the impulse
response of another system is h2(t) = e−5t u(t). These two systems are con-
nected in cascade. Find (a) the impulse response of the cascade-connected
system (b). Is the system BIBO stable?

(a) h(t) = 1
2 [e−3t − e−5t ]u(t) ROC: Re s > −3

(b) The system is BIBO stable since the ROC is to the right of right most pole
at s = −3 which includes the jω axis.

23. The impulse response of a certain system is given by h(t) = e−5t .The system
is excited by x(t) = e−3t u(t) + e−2t u(−t). Determine

(a) The system transfer function
(b) Output of the system y(t)
(c) BIBO stability of the system.

(a) H(s) = −1

(s + 2)(s + 3)(s + 5)
ROC: − 3 < Re s < −2

(b) y(t) = (
1
2e−3t − 1

6e−5t
)

u(t) + 1
3e−2t u(−t)

(c) The system is not BIBO stable since the ROC does not include the jω axis.

24. A certain LTIC system is described by the following differential equation

d2 y(t)
dt2

− d y(t)
dt

− 30 y(t) = dx(t)
dt

+ 4x(t)

The system is subjected to the following input.

x(t) = e−3t u(t)
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The initial conditions are y(0+) = 3 and ẏ(0+) = 1. Derive an expression
for the output response as a function of time.

y(t) =
[
35

22
e−5t + 145

99
e6t − 1

18
e−3t

]
u(t) ROC: − 3 < Re s < 6

25. A certain LTIC system is described by the following differential equation:

d2 y(t)
dt2

+ 3
d y(t)
dt

+ 2 y(t) = dx(t)
dt

+ 4x(t)

where x(t) = e−3t u(t). The initial conditions are y(0−) = 2 and ẏ(0−) = 1.
Determine

(a) The characteristic polynomial
(b) The characteristic equation
(c) The eigen values
(d) The zero input response.
(e) The zero state response.
(f) Total response. Use Laplace transform method.

(a) The characteristic polynomial is F(s) = s2 + 3s + 2.
(b) The characteristic equation is λ2 + 3λ + 2 = 0.
(c) The eigen values are λ1 = −1 and λ2 = −2
(d) Zero input response is ys(t) = [5e−t − 3e−2t ]u(t).
(e) Zero state response is

yi (t) =
[
3

2
e−t − 2e−2t + 1

2
e−3t

]
u(t)

(f) Total response is y(t) = yi (t) + ys(t)

y(t) =
[
13

2
e−t − 5e−2t + 1

2
e−3t

]
u(t)

26. An LTIC system has the following T.F

H(s) = (s + 10)
s3 + 5s2 + 3s + 4

Determine the differential equation.

d3y(t)

dt3
+ 5

d2y(t)

dt2
+ 3dy(t)

dt
+ 4y(t) = dx(t)

dt
+ 10x(t)



452 4 The Laplace Transform Method …

27. An LTIC system is described by the following differential equation

d2 y(t)
dt2

+ 4
d y(t)
dt

+ 3 y(t) = dx(t)
dt

+ 4x(t)

The system is in the initial state of y(0−) = 2 and ẏ(0−) = 1. The system is
excited with the input x(t) = e−5t . Determine

(a) The natural response of the system.
(b) The forced response of the system.
(c) Total response of the system. Use Laplace transform method.

(a) The natural response of the system is

yn(t) =
(
31

8
e−t − 7

4
e−3t

)
u(t)

(b) The forced response of the system is

y f (t) =
(

−1

8
e−5t

)
u(t)

(c) The total response of the system is

y(t) =
[
31

8
e−t − 7

4
e−3t − 1

8
e−5t

]
u(t)

28. The impulse response of an LTIC system is given by x(t) = e−2t u(t). Is the
system causal? X (s) = 1

s+2 and rational ROC: Re s > −2 which lies in RHP.
Hence, the system is causal.

29. The impulse response of an LTIC system is given by h(t) = e−2|t|. Is the sys-
tem causal. H(s) = −4

(s−2)(s+2) which is rational ROC is −2 < Re s < 2. The
ROC is not to the right of the right most pole and hence, the system is not causal.

30. Check the stability of an LTIC system whose impulse response is
h(t) = e−2|t| H(s) = −4

(s−2)(s+2) which is rational. The ROC is−2 < Re s < 2.
This includes the imaginary axis. Hence, the system is stable.

31. Consider the following transfer function.

X(s) = 1
(s + 2)(s − 2)

Identify all possible ROCs and in each case find the impulse response, sta-
bility, and causality. Also sketch the ROC. (1) ROC: Re s > +2
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h(t) = 1

4
(e2t − e−2t )u(t)

ROC does not include jω axis. The system is unstable. The system is causal
since ROC is right-sided and in RHP.
(2) ROC: Re s < −2

h(t) = 1

4
[−e2t + e−2t ]u(−t)

ROC does not include jω axis. The system is unstable and non-causal since the
ROC is left-sided.
(3) ROC: − 2 < Re s < 2

h(t) = 1

4
[−e2t u(−t) − e−2t u(t)]

ROC includes the jω axis and the system is stable. The system is non-causal
since ROC is a strip.

32. Find the bilateral LT of
x(t) = e−10|t|

X (s) = −20

(s2 − 100)

33. Find the bilateral LT of

x(t) = etu(t) − e3t u(−t)

X (s) = (2s − 4)

(s − 1)(s − 3)

34. Find the bilateral LT of

X(s) = (s − 5)
(s + 2)(s + 5)

ROC: − 5 < Re s < −2

x(t) = 1

3
[10e−5t u(t) + 7e−2t u(−t)]

35. Find the inverse bilateral LT of

X(s) = (s + 2)
(s − 2)(s − 5)

ROC: 2 < Re s < 5

x(t) = −1

3
[7e5t u(−t) + 4e2t u(t)]
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36. Find the inverse bilateral LT of

X(s) = (s2 − 2s − 3)
(s + 2)(s + 4)(s − 6)

ROC: − 2 < Re s < 6

x(t) =
(−5

16
e−2t + 21

20
e−4t

)
u(t) − 21

80
e6t u(−t)]



Chapter 5
The z-Transform Analysis of Discrete
Time Signals and Systems

Chapter Objectives

• To define the z-transform and the inverse z-transform.
• To find the z-transform and ROC of typical DT signals.
• To find the properties of ROC.
• To find the properties of z-transform.
• To find the inverse z-transform.
• To solve difference equation using the z-transform.
• To establish the relationship between the z-transform, Fourier transform and
the Laplace transform.

• To find the causality and stability of DT system.
• To realize the structure of DT system.

5.1 Introduction

The z-transform is the discrete counterpart of Laplace transform. The Laplace trans-
form converts integro-differential equations into algebraic equations. In the same
way, the z-transform converts difference equations of discrete-time system to alge-
braic equations which simplifies the discrete-time system analysis. There are many
connections between Laplace and z-transforms except for some minor differences.
DTFT represents discrete-time signal in terms of complex sinusoids. When this sort
of representation is generalized and represented in terms of complex exponential, it
is termed as z-transform. This sort of representation has a broader characterization of
system with signals. Further, the DTFT is applicable only for stable system whereas
z-transform can be applied even to unstable systems which means that z-transform
can be used to larger class of systems and signals. It is to be noted that many of the
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properties in DTFT, Laplace transform and z-transform are common except that the
Laplace transform deals with continues time signals and systems.

5.2 The z-Transform

Let zn be an everlasting exponential. Let h(n) be the impulse response of the discrete-
time system. The response of a linear, time invariant discrete-time system to the
everlasting exponential zn is given as H(z)zn . That is, it is the same exponential
within a multiplicative constant. Thus, the system response to the excitation x[n] is
the sum of the system’s responses to all these exponentials. The tool that is used to
represent an arbitrary discrete signal x[n] as a sum of everlasting exponential of the
form zn is called the z-transform.

Let x[n] = zn be the input signal applied to an LTI discrete-time system whose
impulse response is h[n]. The system output y[n] is given by

y[n] = x[n] ∗ h[n]
=

∞∑

k=−∞
h[k]x[n − k]

Substitute x[n] = zn

y[n] =
∞∑

k=−∞
h[k]zn−k = zn

[ ∞∑

k=−∞
h[k]z−k

]

Define the transfer function

H [z] =
∞∑

k=−∞
h[k]z−k (5.1)

Equation (5.1) may be written as

H [zn] = H [z]zn

To represent any arbitrary signals as a weighted superposition of the Eigen function
zn , let us substitute z = re j� into Eq. (5.1)

H [re j�] =
∞∑

n=−∞
h[n][re j�]−n

=
∞∑

n=−∞

(
h[n]r−n

)
e− j�n (5.2)
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Equation (5.2) corresponds to the DTFT of the signal h[n]r−n . The inverse of
H [re j�], by mathematical manipulation of Eq. (5.2) can be obtained as

h[n] = 1

2π j

∮
H(z)zn−1dz (5.3)

More generally Eqs. (5.2) and (5.3) can be written as

X [z] =
∞∑

n=−∞
x[n]z−n (5.4)

x[n] = 1

2π j

∮
X (z)zn−1dz (5.5)

The above equations are called z-transform pair. Equation (5.4) is the z-transform
of x[n] and Eq. (5.5) is called inverse z-transform. In Eq. (5.4) the range of n is
−∞ < n < ∞ and hence it is called bilateral z-transform. If x[n] = 0 for n < 0,
Equation (5.4) can be written as

X [z] =
∞∑

n=0

x[n]z−n (5.6)

Equation (5.6) is called unilateral or right-sided z-transform. Bilateral z-transform
has limited practical applications. Unless otherwise it is specifically mentioned, z-
transform means unilateral. z-transform and inverse z-transform are symbolically
represented as given below:

Z [x[n]] = X [z]
x[n] Z←→ X [z]

z−1[X [z]] = x[n]
X [z] Z−1←→ x[n] (5.7)

5.3 Existence of the z-Transform

Consider the unilateral z-transform given by Eq. (5.6)

X [z] =
∞∑

n=0

x[n]z−n

=
∞∑

n=0

x[n]
zn
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For the existence for X [z],

|X [z]| ≤
∞∑

n=0

|x[n]|
|z|n < ∞ (5.8)

If the signal x[n] is expressed in terms of an exponential signal rn , then if x[n] ≤ rn

for some r , then

|x[n]| ≤ rn (5.9)

Substitute Eq. (5.9) in Eq. (5.8)

|X [z]| ≤
∞∑

n=0

(
r

z

)n

= 1[
1 − r

|z|
] iff |z| > r (5.10)

From Eq. (5.10), it is evident that the z-transform of x[n] which is X (z) exists for
|z| > r and the signal is z-transformable. If the signal x[n] grows faster than the
exponential signal rn for any r0, Eq. (5.10) is not convergence and x[n] is not z-
transformable.

5.4 Connection Between Laplace Transform,
z-Transform and Fourier Transform

Consider the Laplace transform of x(t) which is represented below

X (s) =
∫ ∞

−∞
x(t)e−st dt (5.11)

When s = jω, Equation (5.11) becomes

X ( jω) =
∫ ∞

−∞
x(t)e− jωt dt (5.12)

Equation (5.12) represents the Fourier transform. The Laplace transform reduces
to the Fourier transform on the imaginary axis where s = jω. The relationship
between these two transforms can also be interpreted as follows. The complex vari-
able s can be written as (σ + jω). Equation (5.11) is written as
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X (σ + jω) =
∫ ∞

−∞
x(t)e−(σ+ jω)t dt

=
∫ ∞

−∞

[
x(t)e−σ t

]
e− jωt dt (5.13)

Equation (5.13) can be recognized as the Fourier transform of [x(t)e−σ t ]. Thus, the
Laplace transform of x(t) is the Fourier transform of x(t) after multiplication
by the real exponential e−σ t whichmaybe growing or decaywith respect to time.

The complex variable z can be expressed in polar form as

z = re jω (5.14)

where r is the magnitude of z and ω is the angle of z.
Substitute z = re jω in Eq. (5.6)

X (re jω) =
∞∑

n=−∞
x[n](re jω)−n =

∞∑

n=−∞
{x[n]r−n}e− jωn

= F[x[n]r−n] (5.15)

Thus, X(re jω) is the Fourier transform of the sequence x[n]which is multiplied
by a real exponential r−n which may be growing or decaying with increasing n
depending on whether r is greater or less than unity. If r = 1, then |z| = 1 and
equation becomes

X (e jω) =
∞∑

n=−∞
x[n]e− jωn = F[x[n]]

The z-transform reduces to Fourier transform in the complex z-plane on the con-
tour of a circle with unit radius. The circle which is called unit circle plays the role
in the z-transform similar to the role of the imaginary axis in the s-plane for Laplace
transform. The unit circle in the z-plane is shown in Fig. 5.1.

5.5 The Region of Convergence (ROC)

In Eq. (5.4) which defines the z-transform X (z) the sum may not coverage for all
values of z. The values of z in the complex z-plane for which the sum in the z-
transform equation converges is called the region of convergence which is written
in abbreviated form as ROC. The concept of ROC is illustrated in the following
examples.
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Im

Re

z-plane

Unit circle

z e j

1 1

Fig. 5.1 z-transform reduces to FT on the unit circle

Example 5.1 Consider the following discrete-time signals:

(a) x[n] = anu[n] a < 1

(b) x[n] = −anu(−n − 1) a < 1

(c) x[n] = anu[n] − bnu(−n − 1) b > a and a > b

Find the z-transform and the ROC in the z-plane.

Solution (a) x[n] = anu[n]
The signal x[n] is shown in Fig. 5.2a which is a right-sided signal.

X (z) =
∞∑

n=0

anu[n]z−n

=
∞∑

n=0

anz−n [∵ u[n] = 1 all n ≥ 0]

=
∞∑

n=0

(
a

z

)n

Using the power series we get

X (z) = 1[
1 − a

z

]

where a
z < 1 or |z| > |a|.
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X (z) = z

(z − a)
(5.16)

X (z) = 1

1 − az−1
(5.17)

Fourier transform is represented in the form as shown in Eq. (5.16) to identify
poles and zero and system transfer function. Equation (5.17) form is used when
inverse z-transform is taken and also for structure realization. z−1 is used as
time delay operation. z-transform for the causal real exponential converges iff
|z| > |a|. Thus, the ROC of X (z) is to the exterior of the circle of radius a,
which is shown in Fig. 5.2b in shaded area. The ROC includes the unit circle for
|a| < 1.

(b) x[n] = −an[u[−n − 1]]
The signal x[n] is shown in Fig. 5.3a which is a left-sided signal

Z [−anu[−n − 1]] =
−1∑

n=−∞
−anz−n ∵ [u(−n − 1)] = 1 for all − n

=
−1∑

n=−∞
−

[
a

z

]n
=

∞∑

n=1

−
[ z
a

]n

= −
[
z

a
+ z2

a2
+ z3

a3
+ · · ·

]

= 1 −
[
1 + z

a
+

( z
a

)2 +
( z
a

)3 + · · ·
]

= 1 − 1

1 − z
a

if
∣∣∣
z

a

∣∣∣ < 1

Z [−anu[−n − 1]] = z

(z − a)
ROC |z| < a (5.18)

The z-transforms of x[n] = anu[n]which is causal and that of x[n] = −anu[−n
− 1] which is anti-causal are identical. In the former case the ROC is to the
exterior of the circle passing through the outermost pole and in the letter case
(anti-causal) the ROC is to the interior of the circle passing through the innermost
pole. The ROC is shown in Fig. 5.3b.

(c) x[n] = anu[n] − bnu[−n − 1]
From the results derived in Example 5.1a and b, we can find the z-transform of
x[n] as

X (z) = z

(z − a)
+ z

(z − b)
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anu[n]

n

(b)(a)

0 1

1

2 3 4 5

ROC

zero pole 1a0

Unit circle

a

Im

Re

Fig. 5.2 a x[n] = anu[n] and b ROC: 0 < a < 1

x[n] anu[ n 1]

n

(b)(a)

0

5 4 3 2 1
ROC

zero pole 1a0

Unit circle

z-plane

a

Im

Re

Fig. 5.3 a x[n] = −anu[−n − 1] and b ROC: 0 < a < 1

The right-sided signal anu[n] converges if |z| > a and the left-sided signal
−bnu[−n − 1] converges if |z| < b. The ROC for |a| > |b| and |a| < |b| are
shown in Fig. 5.4a and b respectively. From Fig. 5.4a it is observed that the two
ROCs do not overlap and hence z-transform does not exist for this signal. Now
consider Fig. 5.4b, it is observed that the two ROCs overlap and the overlapping
area is shaded in the form of a ring. The z-transform exists in the case with ROC
as |a| < |z| < |b|.
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(a) (b)

ROC

ROC

z-plane z-plane

b a

|a|>b |b|>a

a
b

Im

Re
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a b

b

a

Im

Re

Fig. 5.4 ROC of a two-sided sequence

5.6 Properties of the ROC

Assuming that X (z) is the rational function of z the properties of theROCare summed
up and given below:

1. The ROC is a concentric ring in the z-plane.
2. The ROC does not contain any pole.
3. If x[n] is a finite sequence in a finite interval N1 ≤ n ≤ N2, then the ROC is the

entire z-plane except z = 0 and z = ∞.
4. If x[n] is a right-sided sequence (causal) then the ROC is the exterior of the circle

|z| = rmax where rmax is the radius of the outermost pole of X (z).
5. If x[n] is a left-sided sequence (non-causal) then the ROC is the interior of the

circle |z| = rmin where rmin is the radius of the innermost pole of X (z).
6. If x[n] is a two-sided sequence then the ROC is given by r1 < |z| < r2 where r1

and r2 are the magnitudes of the two poles of X (z). Here ROC is an annular ring
between the circle |z| = r1 and |z| = r2 which does not include any poles.

The following examples illustrate the method of finding z-transform X (z) for the
discrete-time sequence x[n].
Example 5.2 Find the z-transform and theROC for the sequences x[n] given below:

1. x[n] = {2, −1, 0, 3, 4}
↑

2. x[n] = {1, −2, 3, −1, 2}
↑

3. x[n] = {5, 3, −2, 0, 4, −3}
↑

4. x[n] = δ[n]
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5. x[n] = u[n]
6. x[n] = u[−n]
7. x[n] = a−nu[−n]
8. x[n] = a−nu[−n − 1]
9. x[n] = (−a)nu[−n]

10. x[n] = a|n| for |a| < 1 and |a| > 1

11. x[n] = e jω0nu[n]
12. x[n] = cosω0nu[n]
13. x[n] = sinω0nu[n]
14. x[n] = u[n] − u[n − 6]
15. x[n] =

[
cos

(πn

3
+ π

4

)]
u[n]

(Anna University, May, 2007)

Solution 1. x[n] = {2, −1, 0, 3, 4}

X [z] =
4∑

n=0

x[n]z−n

X [z] = 2 − z−1 + 0 + 3z−3 + 4z−4

X [z] will not converges if |z| = 0. Hence, ROC is |z| > 0.
2. x[n] = {1, −2, 3, −1, 2}

↑

X [z] =
0∑

n=−4

x[n]z−n

X [z] = z4 − 2z3 + 3z2 − z + 2

X [z] will not converges if |z| = ∞. Hence, ROC is |z| < ∞.
3. x[n] = {5, 3, −2, 0, 4, −3}

↑

X [z] =
3∑

n=−2

x[n]z−n

X [z] = 5z2 + 3z − 2 + 0 + 4z−2 − 3z−3
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For |z| = 0 and |z| = ∞, X [z] is infinity. Hence, ROC is 0 < |z| < ∞.
4. x[n] = δ[n]

X [z] =
∞∑

n=−∞
δ[n]z−n

δ[n] = 1 n = 0

= 0 n 	= 0

X [z] = 1 ROC is entire z-plane

5. x[n] = u[n]

X [z] =
∞∑

n=0

z−n

= 1 + 1

z
+ 1

z2
+ · · ·

= 1

1 − 1
z

[By using summation formula]

X [z] = z

(z − 1)

X [z] = 1

(1 − z−1)
ROC: |z| > 1

(5.19)

6. x[n] = u[−n]

X [z] =
0∑

n=−∞
z−n

=
∞∑

n=0

zn

= 1 + z + z2 + · · ·

X [z] = 1

1 − z
ROC: |z| < 1 (5.20)

7. x[n] = a−nu[−n]
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X [z] =
0∑

n=−∞
a−nz−n

=
0∑

n=−∞
(az)−n

=
∞∑

n=0

(az)n

= 1 + (az) + (az)2 + · · ·

X [z] = 1

(1 − az)
ROC: |z| <

1

a
(5.21)

8. x[n] = a−nu[−n − 1]

X [z] =
−1∑

n=−∞
a−nz−n

=
−1∑

n=−∞
(az)−n

=
∞∑

n=1

(az)n

= az + (az)2 + (az)3 + · · ·

X [z] = az[1 + az + (az)2 + · · · ]
= az

1 − az

X [z] = −z(
z − 1

a

) ROC: |z| <
1

a
(5.22)

9. x[n] = (−a)nu[−n]
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X [z] =
0∑

n=−∞
(−a)nz−n

=
0∑

n=−∞

(
z

−a

)−n

=
∞∑

n=0

(
z

−a

)n

= 1 +
(

z

−a

)
+

(
z

−a

)2

+
(

z

−a

)3

+ · · ·

X [z] = a

(z + a)
ROC : |z| < |a| (5.23)

10. x[n] = a|n|; a < 1

x[n] = anu[n] + a−nu[−n − 1]
Z [anu[n]] = z

(z − a)
ROC: |z| > a

Z [a−nu[−n − 1]] = −z(
z − 1

a

) ROC: |z| <
1

a

X [z] = z

(z − a)
− z(

z − 1
a

)

X [z] = (a2 − 1)

a

z

(z − a)
(
z − 1

a

) (5.24)

ROC: a < |z| < 1
a . The ROC is sketched and shown in Fig. 5.5a for a < 1.

x[n] = a|n| a > 1

The ROC is sketched and shown in Fig. 5.5b. In Fig. 5.5b the two ROCs do not
overlap and there is no common ROC. Hence, x[n] does not have X [z].

11. x[n] = e jω0nu[n]

X [z] =
∞∑

n=0

e jω0nz−n

=
∞∑

n=0

(
e jω0

z

)n

=
(

1

1 − e jω0

z

)
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(b)(a)

ROC

Unit circle

z-planez-plane

a
a 1

Im

Re a

Unit circle

Im

Re
a1ROC

ROC

Fig. 5.5 ROC of x[n] = a|n|. a a < 1 and b a > 1

X [z] = z

(z − e jω0)
ROC: |z| > |e jω0 | or |z| > 1 (5.25)

12. x[n] = cosω0nu[n]

x[n] = 1

2
[e jω0n + e− jω0n]

Z [e jω0n] = z

(z − e jω0)

Z [e− jω0n] = z

(z − e− jω0)

X [z] = 1

2

[
z

(z − e jω0)
+ z

(z − e− jω0)

]

= z

2

[
z − e− jω0 + z − e jω0

]
[
z2 − z(e− jω0 + e jω0) + 1

]

X [z] = z

2

[2z − 2 cosω0][
z2 − 2z cosω0 + 1

]

X [z] = (1 − z−1 cosω0)

(1 − z−12 cosω0 + z−2)
ROC: |z| > 1 (5.26)

13. x[n] = sinω0nu[n]
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x[n] = 1

2 j
[e jω0n − e− jω0n]

Z [e jω0nu[n]] = z

(z − e jω0)

Z [e− jω0nu[n]] = z

(z − e− jω0)

X [z] = z

2 j

[
1

(z − e jω0)
− 1

(z − e− jω0)

]

= z

2 j

[
z − e− jω0 − z + e jω0

]
[
z2 − 2z cosω0 + 1

]

= z sinω0

(z2 − 2z cosω0 + 1)

X [z] = z−1 sinω0

(1 − 2z−1 cosω0 + z−2)
ROC: |z| > 1 (5.27)

14. x[n] = u[n] − u[n − 6]

x[n] = {1, 1, 1, 1, 1, 1}
X [z] = 1 + z−1 + z−2 + z−3 + z−4 + z−5

=
[
1 + 1

z
+ 1

z2
+ 1

z3
+ 1

z4
+ 1

z5

]

X [z] = [z5 + z4 + z3 + z2 + z + 1]
[z5] ROC: all z except z 	= 0 (5.28)

The above result can be represented in a compact form as

X [z] =
5∑

n=0

z−n

=
5∑

n=0

(
1

z

)n

The following summation formula is used to simplify this (Fig. 5.6).

n∑

k=m

ak = an+1 − am

(a − 1)

where a = 1
z ; k = 0 and n = 5
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Fig. 5.6 Representation of
x[n] = u[n] − u[n − 6]

x [n] u[n] u[n 6]

n0 1

1

2 3 4 5

X [z] =
(
1
z

)6 − (
1
z

)0
(
1
z − 1

)

X [z] = z

(z − 1)
(1 − z−6)

15. x[n] = [
cos

(
πn
3 + π

4

)]
u[n]

x[n] = 1

2

[
e j( πn

3 + π
4 ) + e− j( πn

3 + π
4 )
]

= 1

2

[
e j π

4 e j πn
3 + e− j π

4 e− j π
4

]

X [z] = 1

2

[
e j π

4
z

(z − e j π
3 )

+ e− j π
4

z

(z − e− j π
3 )

]

X [z] = z

2

[
ze j π

4 − e− j π
12 + ze− j π

4 − e− j π
12
]

z2 − z(e j π
3 + e− j π

3 ) + 1

= z

2

[
2z cos π

4 − 2 cos π
12

]
(
z2 − 2z cos π

3 + 1
)

X [z] = z[0.707z − 0.966]
(z2 − z + 1)

ROC: |z| > 1

5.7 Properties of z-Transform

The transformations of x(t) and x[n] to X (s), and X ( jω) using Laplace transform
and Fourier transform respectively as seen from Chapter 6 and Chapter 8 becomes
easier if the properties of these transforms are directly applied. Similarly if the prop-
erties of z-transform are applied directly to x[n], then X [z] can be easily derived.
Hence, some of the important properties of z-transform which are applied to signals
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and systems are derived and the applications illustrated. The following properties are
derived:

1. Linearity;
2. Time shifting;
3. Time reversal;
4. Multiplication by n;
5. Multiplication by an exponential;
6. Time expansion;
7. Convolution theorem;
8. Initial value theorem;
9. Final value theorem.

5.7.1 Linearity

If

x1[n] Z←→ X1[z] and x2[n] Z←→ X2[z]

then

{a1x1[n] + a2x2[n]} Z←→[a1X1[z] + a2X2[z]] (5.29)

Proof Let

x[n] = a1x1[n] + a2x2[n]
X [z] =

∞∑

n=−∞
[a1x1[n] + a2x2[n]]z−n

=
∞∑

n=−∞
a1x1[n]z−n +

∞∑

n=−∞
a2x2[n]z−n

X [z] = a1x1[z] + a2x2[z]

5.7.2 Time Shifting

If

x[n] Z←→ X [z]

then
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x[n − k] Z←→ z−k X [z]

Proof Let

Z [x[n − k]] =
∞∑

n=−∞
x[n − k]z−n

Substitute (n − k) = m

Z [x[n − k]] =
∞∑

m=−∞
x[m]z−(k+m)

=
∑

z−k x[m]z−m

Z [x[n − k]] = z−k X [z] (5.30)

5.7.3 Time Reversal

If

x[n] Z←→ X [z] ROC: r1 < |z| < r2

then

x[−n] Z←→ X [z−1] ROC:
1

r1
< |z| <

1

r2

Proof Let

Z [x[−n]] =
∞∑

n=−∞
x[−n]z−n

Substitute −n = m

Z [x[−n]] =
−∞∑

n=∞
x[m]zm

=
∞∑

m=−∞
x[m](z−1)m

Z [x[−n]] = X [z−1] (5.31)
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Thus, according to time reversal property, folding the signal in the time domain is
equivalent to replacing z by z−1. Further the ROC of X [z] which is r1 < |z| < r2
becomes r1 < |z−1| < r2 which is 1

r2
< |z| < 1

r1
.

5.7.4 Multiplication by n

If

Z [x[n]] = X [z]

then

Z [nx[n]] = −z
d

dz
X [z]

Proof Let

X [z] =
∞∑

n=−∞
x[n]z−n

Z [nx[n]] =
∞∑

n=−∞
nx[n]z−n

= z
∞∑

n=−∞
nx[n]z−n−1

= z
∞∑

n=−∞
x[n][nz−n−1]

Z [nx[n]] = z
∞∑

n=−∞
−x[n] d

dz
[z−n]

= −z
d

dz

∞∑

n=−∞
x[n]z−n

Z [nx[n]] = −z
d

dz
X [z] (5.32)
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5.7.5 Multiplication by an Exponential

If

Z [x[n]] = X [z]

then

Z [anx[n]] = X [a−1z]

Proof Let

Z [anx[n]] =
∞∑

n=−∞
anx[n]z−n

=
∞∑

n=−∞
x[n][a−1z]−n

Z [anx[n]] = X [a−1z] (5.33)

ROC: r1 < |a−1z| < r2 or ar1 < |z| < ar2. In X [z], z is replaced by z
a .

5.7.6 Time Expansion

If

Z [x[n]] = X [z]

then

Z [xk[n]] = X [zk]

Proof

Z [xk[n]] =
∞∑

n=−∞
x
[n
k

]
z−n

where n is multiple of k. Substitute n
k = l
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Z [xk[n]] =
∞∑

l=−∞
x[l]z−kl

=
∞∑

l=−∞
x[l][zk]−l = X [zk]

Z [xk[n]] = X [zk] (5.34)

5.7.7 Convolution Theorem

If

y[n] = x[n] ∗ h[n]

then

Y [z] = X [z]H [z]

Proof

y[n] =
∞∑

k=−∞
x[k]h[n − k]

Y [Z ] =
∞∑

n=−∞

[ ∞∑

k=−∞
x[k]h[n − k]

]
z−n

=
∞∑

k=−∞
x[k]z−k

∞∑

n=−∞
h[n − k]z−(n−k)

Substitute (n − k) = l

Y [z] =
∞∑

k=−∞
x[k]z−k

∞∑

l=−∞
h[l]z−l

Y [z] = X [z]Y [z] (5.35)
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5.7.8 Initial Value Theorem

If

X [z] = Z [x[n]]

where x[n] is causal, then

x[0] = Lt
z→∞ X [z]

Proof For a causal signal x[n]

X [z] =
∞∑

n=0

x[n]z−n

= x[0] + x[1]z−1 + x[2]z−2 + · · ·

Taking z → ∞ on both sides we get

Lt
z→∞ X [z] = Lt

z→∞[x[0] + x[1]z−1 + x[2]z−2 + · · · ]
= x[0]

x[0] = Lt
z→∞ X [z] (5.36)

5.7.9 Final Value Theorem

If Z [x[n]] = X [z] where x[n] is a causal signal and the ROC of X [z] has no poles
on or outside the unit circle then

x[∞] = Lt
z→1

(z − 1)X [z]

Proof

Z [x[n + 1]] − Z [x[n]] = Lt
k→∞

k∑

n=0

[x[n + 1] − x[n]]z−n

x[∞] = Lt
k→∞

k∑

n=0

[x[n + 1] − x[n]]z−n
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zX [z] − x[0] − X [z] = Lt
k→∞

k∑

n=0

[x[n + 1] − x[n]]z−n

(z − 1)X [z] − x[0] = Lt
k→∞

k∑

n=0

[x[n + 1] − x[n]]z−n

Taking Lt
z→∞ on both sides we get

Lt
z→∞(z − 1)X [z] − x[0]

= Lt
k→∞[x[1] − x[0]] + [x[2] − x[−1]] + [x[3] − x[2]] + · · · + [x[k + 1] − x[k]]

= x[∞] − x[0]

x[∞] = Lt
z→1

(z − 1)X [z] (5.37)

Example 5.3 Find the z-transform of the following sequences and also ROC using
the properties of z-transform:

1. x[n] = δ[n − n0]
2. x[n] = u[n − n0]
3. x[n] = an+1u[n + 1]
4. x[n] = an−1u[n − 1]
5. x[n] =

(
1

2

)n

u[−n]
(AnnaUniversi t y, December, 2007)

6. x[n] = u[n − 6] − u[n − 10]

7. x[n] = nu[n]
8. x[n] = n[u[n] − u[n − 8]]
9. x[n] = an cosω0nu[n]

10. x[n] = an sinω0nu[n]
11. Show that u[n] ∗ u[n − 1] = nu[n]
12. x[n] = n

(
−1

4

)n
u[n] ∗

(
1

6

)−n
u[−n]

13. x[n] =
[(

1

2

)n
−

(
1

4

)n]
u[n]

FindX [z] and plot the poles and zeros. (AnnaUniversi t y, December, 2007)
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14. x[n] = 1 n ≥ 0

= zn n < 0

(AnnaUniversi t y, April, 2005)

15. (a) x[n] =
[(

−1

3

)n
+ 3

(
1

6

)n]
u[n]

(b) x[n] =
[(

−1

3

)n
u[−n] + 3

(
1

6

)n]
u[n]

(c) x[n] =
[(

−1

3

)n
+ 3

(
1

6

)n]
u[−n]

16. (a) x[n] =
[(

1

4

)n
+

(
1

5

)n]
u[n]

(b) x[n] =
[(

1

5

)n
u[n] +

(
1

4

)n
u[−n − 1]

]

(c) x[n] =
(
1

4

)n
u[n] +

(
1

5

)n
u[−n − 1]

17. x[n] = δ[n] + 1

2
δ(n + 1) + δ(n − 3) (AnnaUniversi t y, December, 2006)

18. x[n] = 4n cos

[
2πn

6
+ π

4

]
u[−n − 1].Sketch the pole-zero plot and indicate

the ROC. (AnnaUniversi t y, April, 2008)

19. x[n] = nu[n − 1] (AnnaUniversi t y, December, 2006)

20. x[n] = (4)n n < 0

=
(
1

4

)n
n = 0, 2, 4, . . .

=
(
1

5

)n
n = 1, 3, 5, . . .

Solution 1. x[n] = δ[n − n0]

δ[n] Z←→ 1 ROC: |z| > 0

By applying time shifting property we get

Z [δ[n − n0]] = z−n0 (5.38)

ROC: all z excluding |z| = 0.
2. x[n] = u[n − n0]

u[n] Z←→ z

(z − 1)

By applying time shifting (right shifted) property we get
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Z [u[n − n0]] = z−n0 z

(z − 1)
= z−(n0−1)

(z − 1)

X [z] = z−(n0−1)

(z − 1)
ROC: 1 < |z| < ∞ (5.39)

3. x[n] = an+1u[n + 1]

anu[n] Z←→ z

(z − a)

By applying time shifting (left shifted) property we get

Z [an+1u[n + 1]] = z
z

(z − a)

X [z] = z2

(z − a)
ROC: |a| < |z| < ∞ (5.40)

4. x[n] = an−1u[n − 1]

anu[n] Z←→ z

(z − a)

Applying time shifting (right shifted) property we get

Z [an−1u[n − 1]] = z−1z

(z − a)

X [z] = 1

(z − a)
ROC: a < |z| < ∞ (5.41)

5. x[n] = ( 1
2

)n
u[−n]

u[−n] Z←→ 1

(1 − z)

x[n] =
(
1

2

)n

u[−n]

By using multiplication property (replacing z by ( 12 )
−1z) we get

X [z] = 1

(1 − 2z)
ROC: |z| <

1

2
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Fig. 5.7 x[n] =
u[n − 6] − u[n − 10]

x [n]

n0 1 2 3 4 5 6 7 8 9

6. x[n] = u[n − 6] − u[n − 10]
The signal is represented in Fig. 5.7.

X [z] = z−6 + z−7 + z−8 + z−9 = 1

z6
+ 1

z7
+ 1

z8
+ 1

z9

X [z] = z8 + z2 + z + 1

z9

ROC: all z except z 	= 0. The above result can be simplified using the summation
formula as

X [z] =
9∑

n=6

(
1

z

)n

=
(
1
z

)10 − (
1
z

)6
(
1
z − 1

)

X [z] = z

(z − 1)
[z−6 − z−10]

The above result can be obtained by the time shifting property of the unit step
sequence.

Z [u[n − 6]] = z

(z − 1)
z−6

Z [u[n − 10]] = z

(z − 1)
z−10

X [z] = z

(z − 1)
[z−6 − z−10]

X [z] = (z−5 − z−9)

(z − 1)
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7. x[n] = nu[n]

Z [u[n]] = z

(z − 1)

Applying the differentiation property in z

Z [nu[n]] = −z
dX [z]
dz

Z [nu[n]] = −z
d

dz

[
z

(z − 1)

]

X [z] = z

(z − 1)2
(5.42)

8. x[n] = n[u[n] − u[n − 8]]
By using shift theorem we get

Z [u[n] − u[n − 8]] = z

(z − 1)
[1 − z−8]

= (z − z−7)

(z − 1)

Z [n[u[n] − u[n − 8]]] = −z
d

dz

[z − z−7]
z − 1

X [z] = −z
[(z − 1)(1 + 7z−8) − (z − z−7)]

(z − 1)2

X [z] = (−8z−6 + 7z−7 + z)

(z − 1)2

X [z] = [z8 − 8z + 7]
z7(z − 1)2

9. x[n] = an cosω0nu[n]
For Example 5.2.12 we get

Z [cosω0nu[n]] = [1 − z−1 cosω0]
[1 − 2 cosω0z−1 + z−2]

To apply multiplication property, replace z by | za | or z−1 = | za |−1 = az−1

∴ Z [an cosω0nu[n]] = [1 − az−1 cosω0]
[1 − 2a cosω0z−1 + a2z−2]
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X [z] = [1 − az−1 cosω0]
[1 − 2a cosω0z−1 + a2z−2] (5.43)

10. x[n] = an sinω0nu[n]
For Example 5.2.13 we get

Z [sinω0nu[n]] = z−1 sinω0

[1 − 2 cosω0z−1 + z−2]
To apply multiplication property, as in the previous example, replace z−1 by a
z−1 and z−2 = a2z−2

Z [an sinω0nu[n]] = az−1 sinω0

[1 − 2a cosω0z−1 + a2z−2]

X [z] = [az−1 sinω0]
[1 − 2a cosω0z−1 + a2z−2] (5.44)

11. Show that u[n] ∗ u[n − 1] = nu[n]

Z [u[n]] = z

(z − 1)

Z [u[n − 1]] = 1

(z − 1)
Z [u[n] ∗ u[n − 1]] = Z [u[n]]Z [u[n − 1]]

= z

(z − 1)

1

(z − 1)

= z

(z − 1)2

Multiplying by Z−1 both sides we get

u[n] ∗ u[n − 1] = Z−1

[
z

(z − 1)2

]

u[n] ∗ u[n − 1] = n[u[n]]

12. x[n] = n
(− 1

4

)n
u[n] ∗ (− 1

6

)−n
u[−n]
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x1[n] =
(

−1

4

)n

u[n] Z←→ z(
z + 1

4

)

n

[(
−1

4

)n

u[n]
]

Z←→ −z
d

dz

z(
z + 1

4

) = −z

[
z + 1

4 − z
]

(
z + 1

4

)2

=
[− z

4

]
(
z + 1

4

)2 ROC: |z| >
1

4

x2[n] =
(
1

6

)n

u[n] Z←→ z(
z − 1

6

) ROC: |z| >
1

6

If time reversal property is used. z is to be replaced by z−1

(
1

6

)−n

u[−n] Z←→ z−1

(
z−1 − 1

6

)

X1[z] = − 6

z − 6
ROC: |z| < 6

X [z] = X1[z]X2[z] =
z
46(

z + 1
4

)2
(z − 6)

X [z] = 1.5z(
z + 1

4

)
(z − 6)

ROC:
1

4
< |z| < 6

13. x[n] =
[( 1

2

)n − ( 1
4

)n]
u[n]

Find X [z] and plot the poles and zeros. (Anna University, December, 2007)

x1[n] =
(
1

2

)n

u[n] Z←→ z(
z − 1

2

)

x2[n] =
(
1

4

)n

u[n] Z←→ z(
z − 1

4

)

x[n] = x1[n] − x2[n]
X [z] = X1[z] − X2[z]

= z

(z − 0.5)
− z

(z − 0.25)

X [z] = z0.25

(z − 0.5)(z − 0.25)

The pole-zero plot is shown in Fig. 5.8.
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Fig. 5.8 Pole-zero plot

z-plane
Im

Re.25 .5

14.

x[n] = 1 n ≥ 0

= 3n n < 0

(Anna University, April, 2005)

x[n] = u[n] + 3nu[−n − 1]
= x1[n] + x2[n]

X1[z] = z

(z − 1)
ROC: |z| > 1

x2[n] = (3)nu[−n − 1]

Using time reversal and multiplication properties we get

X2[z] = − z

(z − 3)
ROC: |z| < 3

X [z] = X1(z) + X2(z)

= z

(z − 1)
− z

(z − 3)

X [z] = −2z

(z − 1)(z − 3)
ROC: 1 < z < 3
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15.

(a) x[n] =
(

−1
3

)n

u[n] + 3
(
1
6

)n

u[n]

(b) x[n] =
[(

−1
3

)n

u[−n] + 3
(
1
6

)n]
u[n]

(c) x[n] =
[(

−1
3

)n

+ 3
(
1
6

)n]
u[−n]

(a)

x[n] =
(

−1

3

)n

+ 3

(
1

6

)n

u[n]
= x1[n] + x2[n]

X1[z] = z(
z + 1

3

) ROC: |z| > −1

3

X2[z] = 3
z(

z − 1
6

) ROC: |z| >
1

6

X [z] = X1[z] + X2[z]
= z

[
1(

z + 1
3

) + 3(
z − 1

6

)
]

ROC: |z| >
1

6

(b)

x[n] =
[(

−1

3

)n

u[−n] + 3

(
1

6

)n]
u[n] = x1[n] + x2[n]

x1[n] =
(

−1

3

)n

u[−n]

Applying the properties of time reversal and multiplication we get

X1[z] = 1

(1 + 3z)
See Example 5.3.12; ROC: |z| <

1

3

x2[n] = 3

(
1

6

)n

u[n]

X2[z] = 3z(
z − 1

6

) ROC: |z| >
1

6

X [z] = X1[z] + X2[z]
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X [z] =
[

1

(1 + 3z)
+ 3z(

z − 1
6

)
]

ROC:
1

6
< |z| <

1

3

(c)

x[n] =
[(

−1

3

)n

+ 3

(
1

6

)n]
u[−n]

= x1[n] + x2[n]
X1[z] = 1

(1 + 3z)
ROC: |z| <

1

3

The derivation is given in Example 5.3.15(b)

x2[n] = 3

(
1

6

)n

u[−n]

u[−n] Z←→ 1

(1 − z)

Applying multiplication property we get

Z

(
1

6

)n

u[−n] Z←→ 1

(1 − 6z)
ROC: |z| >

1

6

X [z] =
[

1

(1 + 3z)
+ 3

(1 − 6z)

]
ROC:

1

6
< |z| <

1

3

16. (a)

x[n] =
[(

1
4

)n

+
(
1
5

)n]
u[n]

Applying results of Eq. (5.16) we get

X [z] =
[

z(
z − 1

4

) + z(
z − 1

5

)
]

ROC: |z| >
1

4

(b)

x[n] =
[(

1
5

)n

u[n] +
(
1
4

)n

u[−n − 1]
]
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Fig. 5.9 X [z] and its ROC
of Example5.16b

ROC

1
4

z-plane

Im

Re1
5

(
1

5

)n

u[n] Z←→ z(
z − 1

5

) ROC: |z| >
1

5

(
1

4

)n

u[−n − 1] Z←→ −z(
z − 1

4

) ROC: |z| <
1

4
(
1

5

)n

u[n] +
(
1

4

)n

u[−n − 1] Z←→ z(
z − 1

5

) − z(
z − 1

4

)

X [z] = − z
20(

z − 1
5

) (
z − 1

4

) ROC:
1

5
< |z| <

1

4

The poles and zero and the ROC are marked in Fig. 5.9.
(c)

x[n] =
[(

1
4

)n

u[n] +
(
1
5

)n]
u[−n − 1]

(
1

4

)n

u[n] Z←→ z(
z − 1

4

) ROC: |z| >
1

4
(
1

5

)n

u[−n − 1] Z←→ −z(
z − 1

5

) ROC: |z| <
1

5
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Fig. 5.10 ROC of
Example5.16c

ROC

ROC

Im

Re1
4

1
5

The ROCs of the above two equations are shown in Fig. 5.10 and it is seen
that they do not overlap and thus the given x[n] does not have X [z].

17. x[n] = δ[n] + 1
2δ(n + 1) + δ(n − 3)

δ[n] Z←→ 1
1

2
δ[n + 1] Z←→ 1

2
z

δ[n − 3] Z←→ z−3

X [z] = 1 + 1

2
z + z−3

18. x[n] = 4n cos
[ 2πn

6 + π
4

]
u[−n − 1]

cos

(
2πn

6

)
= cos

πn

3

cos

(
2πn

6
+ π

4

)
= e j( π

4 + πn
3 ) + e− j( π

4 + πn
3 )

2

= 1

2
e j( π

4 )e j( πn
3 ) + 1

2
e− j( π

4 )e− j( πn
3 )

4n cos

(
2πn

6
+ π

n

)
= 1

2
e j( π

4 )
(
4e j π

3
)n + 1

2
e− j π

4
(
4e− j π

3
)n

From Eq. (5.18)
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Fig. 5.11 Poles and zeros
and ROC of Example 5.3.18

5.467

2 j3.464

2 j3.464

ROC

z-plane

Im

Re

4

(
4e j π

3
)n

u[−n − 1] Z←→ −z

(z − 4e j π
3 )

ROC: |z| < 4

(
4e− j π

3
)n

u[−n − 1] Z←→ −z

(z − 4e− j π
3 )

ROC: |z| < 4

X [z] = −1

2
z

[
e j π

4

(z − 4e j π
3 )

+ e− j π
4

(z − 4e− j π
3 )

]

= −1

2
z

[
ze j π

4 − 4e− j π
12 − 4e j π

12 + ze− j π
4

z2 − z4(e j π
3 + e− j π

3 ) + 16

]

= − 1
2 z[

√
2z − 7.73]

(z2 − 4z + 16)

X [z] = −0.707z[z − 5.467]
(z − 2 + j3.464)(z − 2 − j3.464)

ROC: |z| < 4

The pole-zero diagram is shown in Fig. 5.11. TheROC is the interior of the circle.
19. x[n] = nu[n − 1]

Method 1

u[n − 1] Z←→ 1

(z − 1)

Using differential property we get

nu[n − 1] Z←→ −z
d

dz

1

(z − 1)
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z[nu[n − 1]] = z

(z − 1)2

Method 2

nu[n − 1] = (n − 1)u[n − 1] + u[n − 1]
(n − 1)u[n − 1] Z←→ zz−1

(z − 1)2
= 1

(z − 1)2

u[n − 1] Z←→ 1

(z − 1)

nu[n − 1] Z←→ 1

(z − 1)2
+ 1

(z − 1)

Z [nu[n − 1]] = z

(z − 1)2

20.

x[n] =

⎧
⎪⎨

⎪⎩

(4)n n < 0
( 1
4

)n
n = 0, 2, 4, . . .

( 1
5

)n
n = 1, 3, 5, . . .

X [z] =
−1∑

n=−∞
(4)nz−n +

∞∑

n=0

(
1

4

)n

z−n +
∞∑

n=0

(
1

5

)n

z−n

= X1[z] + X2[z] + X3[z]

X1[z] =
−1∑

n=−∞
(4)nz−n

=
−1∑

n=−∞

( z
4

)−n

=
∞∑

n=1

( z
4

)n

= z

4
+

( z
4

)2 + · · ·

= z

4

[
1 + z

4
+

( z
4

)2 + · · ·
]

= z

4

1(
1 − z

4

)

= −z

(z − 4)
ROC: |z| < 4
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X2[z] =
∞∑

n=0

(
1

4

)n

z−n

=
∞∑

n=0

(4z)−n

=
∞∑

p=0

(4z)−2p where n = 2p and p = 0, 1, 2, . . .

X2[z] =
∞∑

p=0

(
16z2

)−p

= 1(
1 − 1

16z2
)

= z2(
z2 − 1

16

) ROC: |z| >
1

4

X3[z] =
∞∑

n=0

(
1

5

)n

z−n

=
∞∑

n=0

(5z)−n

=
∞∑

q=0

(5z)−(2q+1) where n = 2q + 1

= 1

5z

∞∑

q=0

(
25z2

)−q

= 1

5z

1(
1 − 1

25z2
)

= z/5(
z2 − 1

25

) ROC: |z| >
1

5

X [z] =
[
− z

(z − 4)
+ z2(

z2 − 1
16

) + z/5(
z2 − 1

25

)
]

ROC: 1
4 < |z| < 4.
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Example 5.4 Find the initial and final values of the following functions:

(a) X [z] = z

(4z2 − 5z − 1)
ROC: |z| > 1

(b) X [z] = 10z(z − 0.4)

(z − 0.5)(z − 0.3)
ROC: |z| > 0.5

Solution (a) X[z] = z
(4z2−5z−1) Initial Value

x[0] = Lt
z→∞ X [z]

= Lt
z→∞

z

z2
(
4 − 5

z − 1
z2
)

= Lt
z→∞

1

z
(
4 − 5

z − 1
z2
)

x[0] = 0

Final Value

x[∞] = Lt
z→1

(z − 1)

z

Provided all the poles are inside the unit circle and possibly one pole on the unit
circle.

(4z2 − 5z + 1) = 4(z − 1)

(
z − 1

4

)

X [z] = z

4(z − 1)
(
z − 1

4

)

The poles (z − 1) is on the unit circle and z = 1
4 within unit circle. X [z] is valid

to apply final value theorem.

x[∞] = Lt
z→1

(z − 1)

z

z

4(z − 1)
(
z − 1

4

)

x[∞] = 1

3
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(b) X[z] = 10z(z−0.4)
(z−0.5)(z−0.3)

x[0] = Lt
z→∞

10z2
(
1 − 0.4

z

)

z2
(
1 − 0.5

z

) (
1 − 0.3

z

)

x[0] = 10

To find the final value x[∞], the poles of X [z] are all inside the unit circle and
hence is valid to apply final value theorem.

x[∞] = Lt
z→1

10z(z − 1)(z − 0.4)

z(z − 0.5)(z − 0.3)

x[∞] = 0

Example 5.5

X [z] =
[
1 − 1

4 z
−2

]
[
1 + 1

4 z
−2

] [
1 + 5

4 z
−1 + 3

8 z
−2

]

How many different regions of convergence could correspond to X [z]?
(Anna University, May, 2008)

Solution

X [z] = z2
[
z2 − 1

4

]
(
z2 + 1

4

) (
z2 + 5

4 z + 3
8

) = z2
(
z + 1

2

) (
z − 1

2

)
(
z − j

2

) (
z + j

2

) (
z + 3

4

) (
z + 1

2

)

X [z] = z2
[
z − 1

2

]
(
z − j

2

) (
z + j

2

) (
z + 3

4

)

The poles and zeros are located in Fig. 5.12. From Fig. 5.12 circle passing through
|z| = 3

4 and |z| = 1
2 are drawn. X [z] exists from the following ROCs.

1. |z| > 3
4 . ROC is the exterior of the outer most pole z = − 3

4 . The system is causal
and X [z] exits (Fig. 5.12a).

2. |z| < 1
2 . ROC is the interior of the inner most pole ± j

2 . The system is anti-causal
and X [z] exits (Fig. 5.12b).

3. 1
2 < |z| < 3

4 . The ROC is a ring between the two circles of radius r1 = 3
4 and r1 =

1
2 . Here X [z] exits. The system is both causal and anti-causal
(Fig. 5.12c).
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z-planeROC

Im(a)

Re

j
2

j
2

3
4

1
2

(b) (c)

z-plane

Im

Re

j
2

j
2

3
4

ROC

z-plane

Im

Re

j
2

j
2

3
4

ROC

Fig. 5.12 Pole-zero diagram and ROC of X [z]

The unilateral z-transform pairs are given in Table5.1, The properties of z-transform
are given in Table5.2.

5.8 Inverse z-Transform

If X [z] is given then the sequence x[n] is determined. This is called inverse
z-transform. As in the Laplace transform, in inverse z-transform also, the integra-
tion in the complex z-plane using Eq. (5.5) is avoided since it is tedious. Instead the
following methods are used. They are:
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Table 5.1 Unilateral z-transform pairs

No. x[n] X [z]
1 δ[n] 1

2 u[n] z
(z−1)

3 nu[n] z
(z−1)2

4 n2u[n] z(z+1)
(z−1)3

5 anu[n] z
(z−a)

6 an−1u[n − 1] 1
(z−a)

7 nanu[n] az
(z−a)2

8 cosω0nu[n] 1−cosω0z−1

1−2 cosω0z−1+z−2

9 sinω0nu[n] z−1 sinω0
1−2 cosω0z−1+z−2

10 an cosω0nu[n] 1−az−1 cosω0
1−2a cosω0z−1+a2z−2

11 an sinω0nu[n] az−1 sinω0
1−2a cosω0z−1+a2z−2

Table 5.2 z-transform-properties (operations)

Operation x[n] X [z]
Linearity a1x1[n] + a2x2[n] a1X1[z] + a2X2[z]
Multiplication by an anx[n]u[n] X

[ z
a

]

Multiplication by n nx[n]u[n] −z d
dz X [z]

Time shifting x[n − n0] z−n0 X [z]
Multiplication by e jω0n e jω0nx[n] X [e− jω0 z]
Time reversal x[−n] X

[
1
z

]

Accumulation
∑n

k=−∞ x[n] z
(z−1) X [z]

Convolution x1[n] ∗ x2[n] X1[z]X2[z]
Initial value x[0] Lt

z→∞ X [z]
Final value x[∞] Lt

z→1

(z−1)
z X [z] poles of (z − 1)X [z] are

inside the unit circle

Right shifting x[n − m]u[n − m] 1
zm X [z]

x[n − m]u[n] 1
zm X [z] + 1

zm
∑m

n=1 x(−m)zn

x[n − 1]u[n] 1
z X [z] + x[−1]

x[n − 2]u[n] 1
z2
X [z] + 1

z x[−1] + x[−2]
Left shifting x[n + m]u[n] zm X [z] − zm

∑m−1
n=0 x[n]z−n

x[n + 1]u[n] zX [z] − zx(0)

x[n + 2]u[n] z2X [z] − z2x[0] − zx[1]
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1. Partial fraction method;
2. Power series expansion;
3. Residue method.

Of these, the partial fraction method is very easy to apply as was done in determining
inverse Laplace transform.

5.8.1 Partial Fraction Method

If X [z] is a rational function of z then it can be expressed as follows:

X [z] = N [z]
D[z] = K (z − z1)(z − z2) . . . (z − zm)

(z − p1)(z − p2) . . . (z − pn)
(5.45)

where n ≥ m and all the poles are simple.

X [z]
z

= K (z − z1)(z − z2) . . . (z − zm)

z(z − p1)(z − p2) . . . (z − pn)

= A0

z
+ A1

z − p1
+ A2

z − p2
+ . . . + An

z − pn

where

A0 = X [z]|z=0

A1 = (z − p1)
X [z]
z

∣∣∣
z=p1

X [z] = A0 + A1
z

z − p1
+ · · · + Anz

z − pn
(5.46)

Using z-transform pair table, x[n] can be determined. The following examples illus-
trate the above method. For repeated poles, the z-transform pairs given in Table5.3
may be referred to.

Table 5.3 z-transform pairs of repeated poles

X [z] x[n] ROC: |z| > |a|
1.

z

z − a
anu[n]

2.
z

(z − a)2
nan−1u[n]

3.
z

(z − a)3

n(n − 1)an−2

∠2
u[n]

4.
z

(z − a)k

n(n − 1)(n − 2) . . . (n − (k − 2))an−k+1

∠(k − 1)
u[n]
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Example 5.6 Find the inverse z-transform of

X [z] = 1 − 1
3 z

−1

(1 − z−1)(1 + 2z−1)
ROC: |z| > 2

(Anna University, April, 2004)

Solution

X [z] = 1 − 1
3 z

−1

(1 − z−1)(1 + 2z−1)

= z
(
z − 1

3

)

(z − 1)(z + 2)
X [z]
z

= A1

(z − 1)
+ A2

(z + 2)(
z − 1

3

)
= A1(z + 2) + A2(z − 1)

Substitute z = 1

A1 = 2

9

Substitute z = −2

A2 = 7

9

X [z] = 1

9

[
2z

z − 1
+ 7z

z + 2

]

x[n] = 1

9

[
2(1)n + 7(−2)n

]
u[n]

Example 5.7 Find the inverse z-transform of

X [z] = 1

1024

[
1024 − z−10

1 − 1
2 z

−1

]
ROC: |z| > 0

(Anna University, April, 2008)

Solution

X [z] = 1

1024

[
1024 − z−10

1 − 1
2 z

−1

]

= z(
z − 1

2

) − z(
z − 1

2

) z−10

1024
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Taking inverse z-transform we get

x[n] =
(
1

2

)n

u[n] − 1

1024

(
1

2

)n−10

u[n − 10]

=
(
1

2

)n

u[n] − 1

1024

(
1

2

)n (1

2

)−10

u[n − 10]

=
(
1

2

)n

u[n] − 1

1024

(
1

2

)n

1024u[n − 10]

=
(
1

2

)n

u[n] −
(
1

2

)n

u[n − 10]

x[n] =
(
1

2

)n

− 0 0 ≤ n ≤ 9

=
(
1

2

)n

−
(
1

2

)n

= 0 n ≥ 10

x[n] =
(
1

2

)n

0 ≤ n ≤ 9

= 0 otherwise

Example 5.8 Find the inverse z-transform of

X [z] = z2

(1 − az)(z − a)

(Anna University, December, 2007)

Solution

X [z] = z2

(1 − az)(z − a)

X [z]
z

= −z

a
[
z − 1

a

] [z − a]

X [z]
z

= A1(
z − 1

a

) + A2

(z − a)

− z

a
= A1(z − a) + A2

(
z − 1

a

)
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ROC

(a) (b)Im

Re

z-plane z-plane

a>1

1
a

a a 1
a

ROC

Im

Re

a<1

Fig. 5.13 ROC of Example5.8

Substitute z = 1
a

− 1

a2
= A1

(
1

a
− a

)

A1 = −1

a(1 − a2)

Substitute z = a

−1 = A2

(
a − 1

a

)

A2 = a

(1 − a2)

X [z] = 1

(1 − a2)

[
−1

a

z(
z − 1

a

) + az

(z − a)

]

For a > 1, theROC is shown in Fig. 5.13a. For a < 1, theROC is shown in Fig. 5.13b.
For a > 1, the ROC is exterior of the outermost pole. Hence, the function is

casual.

x[n] = 1

(1 − a2)

[−1

a

1

(a)n
+ a(a)n

]
u[n]

x[n] = 1

(1 − a2)

[
−

(
1

a

)n+1

+ (a)n+1

]
u[n]
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For a < 1, the ROC is a < |z| < 1
a and it is a concentric strip. The pole at |z| = 1

a is
anti-causal and z = a is causal.

x[n] = 1

(1 − a2)

[(
1

a

)n+1

u[−n − 1] + (a)n+1u[n]
]

Example 5.9

X [z] = (7z − 23)

(z − 3)(z − 4)

Find x[n]. ROC: |z| > 4.

Solution Method 1: Dividing both sides by z we get

X [z]
z

= (7z − 23)

z(z − 3)(z − 4)

= A1

z
+ A2

(z − 3)
+ A3

(z − 4)
(7z − 23) = A1(z − 3)(z − 4) + A2z(z − 4) + A3z(z − 3)

Substitute z = 0

−23 = 12A1; A1 = −23

12

Substitute z = 3

−2 = A2(3)(−1); A2 = 2

3

Substitute z = 4

5 = 4A3; A3 = 5

4

X [z] = −23

12
+ 2

3

z

(z − 3)
+ 5

4

z

(z − 4)

X [n] =
[
−23

12
δ[n] + 2

3
(3)n + 5

4
(4)n

]
u[n]
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Method 2:

X [z] = (7z − 23)

(z − 3)(z − 4)

= A1

(z − 3)
+ A2

(z − 4)
7z − 23 = A1(z − 4) + A2(z − 3)

Substitute z = 3

−2 = −A1; A1 = 2

Substitute z = 4

5 = A2

X [z] = 2

(z − 3)
+ 5

(z − 4)
2

(z − 3)
Z−1←→ 2(3)n−1u[n − 1]

5

(z − 4)
Z−1←→ 5(4)n−1u[n − 1]

x[n] = [2(3)n−1 + 5(4)n−1]u[n − 1]

The results of the above two methods are the same even though they are expressed
in different forms.

Example 5.10

X [z] = 10z

(z + 2)(z + 4)2
ROC: |z| > 4

Find x[n] using partial fraction method.

Solution This is the case with poles repeated twice

X [z] = 10z

(z + 2)(z + 4)2

X [z]
z

= 10

(z + 2)(z + 4)2
= A1

(z + 2)
+ A2

(z + 4)
+ A3

(z + 4)2

10 = A1(z + 4)2 + A2(z + 2)(z + 4) + A3(z + 2)
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Substitute z = −2

10 = 4A1; A1 = 5

2

Substitute z = −4

10 = −2A3; A3 = −5

Compare the coefficients of free terms

10 = 16A1 + 8A2 + 2A3

= 16
5

2
+ 8A2 − 10

A2 = −5

2

X [z] = 5

2

z

(z + 2)
− 5

2

z

(z + 4)
− 5

(z + 4)2

x[n] =
[
5

2
(−2)n − 5

2
(−4)n − 5n(−4)n

]
u[n]

Example 5.11

X [z] = z(z2 + z − 30)

(z − 2)(z − 4)3
ROC: |z| > 4

Find x[n] using partial fraction method.

Solution This is the case with poles repeated thrice

X [z] = z(z2 + z − 30)

(z − 2)(z − 4)3

X [z]
z

= (z2 + z − 30)

(z − 2)(z − 4)3
= (z − 5)(z + 6)

(z − 2)(z − 4)3

= A1

(z − 2)
+ A2

(z − 4)3
+ A3

(z − 4)2
+ A4

(z − 4)

(z2 + z − 30) = A1(z − 4)3 + A2(z − 2) + A3(z − 2)(z − 4) + A4(z − 2)(z − 4)2

Substitute z = 2

(−3)(8) = −8A1; A1 = 3
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Substitute z = 4

(−1)(10) = 2A2; A2 = −5

(z2 + z − 30) = 3(z3 − 12z2 + 48z − 64) − 5(z − 2) + A3(z
2 − 6z + 8)

+A4(z
3 − 10z2 + 32z − 32)

Compare the coefficients of z2

1 = −36 + A3 − 10A4

A3 − 10A4 = 37

Compare the coefficients of z

1 = 144 − 5 − 6A3 + 32A4

6A3 − 32A4 = 138

Solving the above equation we get

A3 = 7; A4 = −3

X [z] = 3z

(z − 2)
− 5z

(z − 4)3
+ 7z

(z − 4)2
− 3z

(z − 4)
z

(z − 4)3
Z−1←→ n(n − 1)

∠2
(4)n−2u[n] = n(n − 1)

32
(4)nu[n]

z

(z − 4)2
Z−1←→ n(4)n−1u[n] = 1

4
n(4)nu[n]

x[n] =
[
3(2)n +

{
− 5

32
n(n − 1) + 7

4
n − 3

}
(4)n

]
u[n]

The values of A1, A2 and A3 determined are checked for their correctness as follows:

X [z]
z

= (z − 5)(z + 6)

(z − 2)(z − 4)3
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Substitute z = 0

X [z]
z

∣∣∣
z=0

= (−5)(6)

(−2)(−4)3
= −15

64
X [z]
z

= 3

z − 2
− 5

(z − 4)3
+ 7

(z − 4)2
− 3

(z − 4)

Substitute z = 0

X [z]
z

∣∣∣
z=0

= −3

2
+ 5

64
+ 7

16
+ 3

4
= −15

64

Hence the values of A1, A2, A3 and A4 are found to be correct.

Example 5.12

X [z] = z(z + 10)

(z − 1)(z2 − 8z + 20)

Find x[n] using partial fraction method.

Solution This is the case with complex poles

X [z] = z(z + 10)

(z − 1)(z2 − 8z + 20)
X [z]
z

= (z + 10)

(z − 1)(z − 4 + j2)(z − 4 − j2)

= A1

(z − 1)
+ A2

(z − 4 + j2)
+ A3

(z − 4 − j2)

(z + 10) = A1(z
2 − 8z + 20) + A2(z − 1)(z − 4 − j2) + A3(z − 1)(z − 4 + j2)

Substitute z = 1

11 = A1(13); A1 = 11

13

Substitute z = 4 + j2

(14 + j2) = A3(4 + j2 − 4 + j2)(4 + j2 − 1)

A3 = (14 + j2)

j4(3 + j2)
= 14.142∠8.13◦

4
√
13∠123.69◦

= 0.98∠ − 115.56◦ = 0.98e− j115.56◦

A2 = conjugate of A3

= 0.98∠115.56◦ = 0.98e j115.56◦

X [z] = 11

13

z

(z − 1)
+ 0.98e j115.56◦

(z − 4 + j2)
+ 0.98e− j115.56◦

(z − 4 − j2)
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Using z-transform pair we get the following inverse z-transform

x[n] = 11

13
u[n] + [0.98e j115.56◦

(4 − j2)n + 0.98e− j115.56◦
(4 + j2)n]u[n]

115.56◦ = 2 radians

(4 + j2)n = (4.47)ne j0.4636n

(4 − j2)n = (4.47)ne− j0.4636n

x[n] = 11

13
u[n] + [0.98e j2e− j0.4636n(4.47)n + 0.98(4.47)ne− j2e j0.4636n]u[n]

= 11

13
u[n] + 0.98 ∗ (4.47)n[e j (2−.4636n) + e− j (2−.4636n)]u[n]

x[n] =
[
11

13
+ 1.96(4.47)n cos(2 − 0.4636n)

]
u[n]

Example 5.13

X [z] = (5z3 − 29z2 + 8z + 60)

(z2 − 7z + 10)

Find x[n] by partial fraction method.

Solution This is the case with irrational system function. The solution of x[n] will
have forward and backward shifts. Dividing the numerator polynomial by the denom-
inator polynomial we get

5z + 6

z2 − 7z + 10
)
5z3 − 29z2 + 8z + 60

5z3 − 35z2 + 50z

6z2 − 42z + 60

6z2 − 42z + 60

(z2 − 7z + 10) = (z − 2)(z − 5)

X [z] = (5z + 6) + 1

(z − 2)(z − 5)
= X1[z] + X2[z]

where
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X1[z] = (5z + 6)

X2[z] = 1

(z − 2)(z − 5)
X2[z]
z

= 1

z(z − 2)(z − 5)

= A1

z
+ A2

z − 2
+ A3

z − 5
1 = A1(z − 2)(z − 5) + A2z(z − 5) + A3z(z − 2)

Substitute z = 0

A1 = 1

10

Substitute z = 2

1 = A2(2)(−3); A2 = −1

6

Substitute z = 5

1 = A3(5)(3); A3 = 1

15

X [z] = 5z + 6 + 1

10
− 1

6

z

(z − 2)
+ 1

15

z

(z − 5)

x[n] =
[
δ(n + 1) + 6.1δ[n] − 1

6
(2)n + 1

15
(5)n

]
u[n]

Example 5.14 Find the inverse z-transform of

X [z] = (5 + z−2 + 4z−3)

(z2 + 7z + 10)

Solution

X [z] = (5 + z−2 + 4z−3)

(z2 + 7z + 10)
= (5 + z−2 + 4z−3)

z

z

(z + 2)(z + 5)

= [5z−1 + z−3 + 4z−4] z

(z + 2)(z + 5)
z

(z + 2)(z + 5)
= 1

3

[
z

z + 2
− z

z + 5

]

z

(z + 2)(z + 5)
Z−1←→ 1

3

[
(−2)n − (−5)n

]
u[n]
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Now

x[n] = [5z−1 + z−3 + 4z−4]1
3
[(−2)n − (−5)n]u[n]

Using the time shifting property we get

x[n] = 5

3

[
(−2)n−1 − (−5)n−1

]
u[n − 1] + 1

3

[
(−2)n−3 − (−5)n−3

]
u[n − 3]

+ 4

3

[
(−2)n−4 − (−5)n−4] u[n − 4]

Example 5.15 Find the inverse z-transform for the following system functions:

(a) X [z] = 4

(z − 5)
ROC: |z| < 5

(b) X [z] = z(1 − z−1)(1 + 2z−1) ROC: 0 < |z| < ∞

Solution (a) X[z] = 4
(z−5)

X [z] = 4

(z − 5)
= 4z−1 z

z − 5

x[n] = 4z−1[(5)n]u[n]]

x[n] = 4(5)n−1u[n − 1]

(b) X[z] = z(1 − z−1)(1 + 2z−1)

X [z] = z(1 − z−1)(1 + 2z−1)

X [z] = z[1 + 2z−1 − z−1 − 2z−2)

= [z + 1 − 2z−1]
x[n] = {1, 1, −2}

↑

5.8.2 Inverse z-Transform using Power Series Expansion

The z-transform Eq. (5.4)

X [z] =
∞∑

n=−∞
x[n]z−n
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can be expressed in power series form and the coefficients of z|n| give the values of
the sequence. Equation (5.4) can be express as,

X [z] = · · · + x[−3]z3 + x[−2]z2 + x[−1]z + x[0] + x[1]z−1 + x[2]z−2 + x[3]z−3 + · · ·
(5.47)

Equation (5.47) does not give closed form. However if X [z] is not in a simpler form
other than the polynomial in z−1, using power series method x[n] is easily obtained.
If X [z] is rational, the power series is obtained by long division. The following
examples illustrate the above method.

Example 5.16 Using power series expansion, find the inverse z-transform of the
following X [z]:

(a) X [z] = 4z

(z2 − 3z + 2)
ROC: |z| > 2

(b) X [z] = 4z

(z2 − 3z + 2)
ROC: |z| < 1

(c) X [z] = 1

(1 − az−1)
ROC: |z| > |a| and ROC: |z| < |a|

(Anna University, December, 2006)

Solution (a) X[z] = 4z
(z2−3z+2);ROC: |z| > 2

X [z] = 4z

(z2 − 3z + 2)

= 4z

(z − 1)(z − 2)

For ROC: |z| > 2, x[n] is a right-sided sequence where n ≥ 0. Hence, the long
division is done in such a way that X [z] is expressed in power of z−1.

4z−1 + 12z−2 + 28z−3 + · · ·
z2 − 3z + 2

)
4z

4z − 12 + 8z−1

12 − 8z−1

12 − 36z−1 + 24z−2

28z−1 − 24z−2

28z−1 − 84z−2 + 56z−3
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X [z] = 4z−1 + 12z−2 + 28z−3 + · · ·
x[n] = {0, 4, 12, 28, . . .}

↑

(b) X[z] = 4z
(z2−3z+2); ROC: |z| < 1

For ROC: |z| < 1, x[n] sequence is negative where n ≤ 0. The long division is
done in such a way that X [z] is expressed in power of z.

2z + 3z2 + 7

2
z3

2 − 3z + z2
)
4z

4z − 6z2 + 2z3

6z2 − 2z3

6z2 − 9z3 + 3z4

7z3 − 3z4

7z3 − 21

2
z4 + 7

2
z5

X [z] = 2z + 3z2 + 7

2
z3 + · · ·

x[n] =
{

· · · 7
2
, 3, 2, 0

}

↑

(c) X[z] = 1
(1−az−1)

; ROC: |z| > |a|

X [z] = z

(z − a)

The ROC: |z| > a, and it is the exterior of the circle of radius |a|. Hence, x[n] is
a right-sided sequence where n ≥ 0. The long division is done in such that X [z]
is expressed in terms of power of z−1 as shown below:
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1 + az−1 + a2z−2 + a3a−3 + · · ·
z − a)z

z − a

a

a − a2z−1

a2z−1

a2z−1 − a3z−2

a3z−2

a3z−2 − a4z−3

X [z] = 1 + az−1 + a2z−2 + a3z−3 + · · ·

x[n] = {1, a, a2, a3, · · · }
↑

x[n] = anu[n]

For ROC: |z| < |a|, x[n] sequence is left sided

−a−1z − a−2z2 − a−3z3 · · ·
−a + z) z

z − a−1z2

a−1z2

a−1z2 − a−2z3

a−2z3

a−2z3 − a−3z4

X [z] = −a−1z − a−2z2 − a−3z3 + · · ·

x[n] =
{

· · · ,
1

a3
, − 1

a2
, −1

a
, 0

}

↑
x[n] = −anu[−n − 1]

Example 5.17 Determine the inverse z-transform of

X [z] = log(1 − 2z), |z| <
1

2
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by using the power series

log(1 − x) = −
∞∑

n=1

xn

n
, |x | < 1

and by first differentiating X [z] and then using this to recover x[n].
(Anna University, December, 2007)

Solution (a) Using Power Series

X [z] = log(1 − 2z)

= −
∞∑

n=1

1

n
(2z)n

Replace n = −n

X [z] =
−∞∑

n=−1

1

n
(2z)−n =

−∞∑

n=−1

(
1

2

)n 1

n
z−n

By z-transform definition, it is a left-sided signal

X [n] = 1

n

(
1

2

)n

u(−n − 1) n ≤ −1

= 0 n ≥ 0.

(b) Using Differentiation Property

X [z] = log(1 − 2z)
d

dz
X [z] = −2

(1 − 2z)

Multiplying both sides by −z we get

−z
d

dz
X [z] = 2z

(1 − 2z)

= −z

z − 1
2
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−z
d

dz
X [z] Z−1←→ nx[n]
−z

z − 1
2

Z−1←→
(
1

2

)n

u(−n − 1) ROC: |z| <
1

2

nx[n] =
(
1

2

)n

u(−n − 1)

x[n] =
(
1

2

)n 1

n
u(−n − 1)

Example 5.18 Find the inverse z-transform of

(a) X [z] = log(1 + az−1) |z| > |a|
(b) X [z] = log(1 − az−1) |z| > |a|

(Madras University, October, 1998)

Solution (a) The power series expansion for log(1 + x) is

log(1 + x) =
∞∑

n=1

(−1)n+1

n
xn for x < 1

log(1 + az−1) =
∞∑

n=1

(−1)n+1(az−1)n

n
|az−1| < 1 or |z| > |a|

=
∞∑

n=1

(−1)n+1anz−n

n

Since the summation is from n = 1, using time shifting property we get

x[n] = (−1)n+1an

n
u[n − 1]

(b) The power series expansion for log(1 − x) is

log(1 − x) = −
∞∑

n=1

1

n
xn |x | < 1

log(1 − az−1) = −
∞∑

n=1

1

n
(az−1)n
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log(1 + az−1) = −
∞∑

n=1

an

n
z−n

x[n] = −an

n
u[n − 1]

’

5.8.3 Inverse z-Transform using Contour Integration
or the Method of Residue

The inverse z-transform can be obtained from Eq. (5.2) which is given by

x[n] = 1

2π j

∮

c
X [z]zn−1dz (5.48)

The above integral can be evaluated by summing up all the residues of the poles
which are inside the circle c of Eq. (5.48) which can be expressed as

x[n] =
∑

(Residues of X [z]z−n at the poles inside (c)

=
∑

i

(z − zi )X [z]z−n−1
∣∣∣
z=zi

(5.49)

For multiples poles of order k, and z = α, the residue is written as,

Residue = 1

∠(k − 1)
Lt
z→α

{
dk−1

dzk−1
(z − α)k X [z]zn−1

}
(5.50)

Example 5.19 Find the inverse z-transform of the following X [z] using Residue
method

(a) X [z] = (1 + z−1)

(1 + 8z−1 + 15z−2)
|z| > 5

(b) X [z] = z−1

(1 − 10z−1 + 24z−2)
4 < |z| < 6

(c) X [z] = z
(
z − 1

2

)2
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Solution (a) X[z] = (1+z−1)

(1+8z−1+15z−2)
; |z| > 5

X [z] = z(z + 1)

(z2 + 8z + 15)

X [z] = z(z + 1)

(z + 3)(z + 5)

x[n] =
∑

Residue of
z(z + 1)

(z + 3)(z + 5)
zn−1

= Residue of (z + 3)
z(z + 1)

(z + 3)(z + 5)
zn−1

∣∣∣
z=−3

+ Residue of (z + 5)
z(z + 1)zn−1

(z + 3)(z + 5)

∣∣∣
z=−5

x[n] = −(−3)n + 2(−5)n

(b) X[z] = z−1

(1−10z−1+24z−2)
; 4 < |z| < 6

X [z] = z

(z2 − 10z + 24)
= z

(z − 4)(z − 6)

For n ≥ 0

x[n] = Residue of X [z]zn−1
∣∣∣
z=4

= (z − 4)
z(zn−1)

(z − 4)(z − 6)

∣∣∣
z=4

= −1

2
(4)nu[n]

For n < 0

x[n] = −
[
(z − 6)

zzn−1

(z − 4)(z − 6)

]

z=6

= −1

2
(6)nu(−n − 1)

x[n] = −1

2
[(4)nu[n] + (6)nu(−n − 1)]
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(c) X[z] = z
(z− 1

2 )2

x[n] = d

dz

[(
z − 1

2

)2 zzn−1

(
z − 1

2

)
]

z= 1
2

= d

dz
zn
∣∣∣
z=1/2

= nzn−1
∣∣∣
z=1/2

x[n] = 2n

(
1

2

)n

u[n]

5.9 The System Function of DT Systems

Let

1. x[n] = Input of the system;
2. y[n] =Output of the system;
3. h[n] = Impulse response of the system.

The output y[n] can be expressed as the convolution of x[n] with h[n] as

y[n] = x[n] ∗ h[n] (5.51)

By applying convolution property of z-transform we obtain

Y [z] = X [z]H [z] (5.52)

where Y [z], X [z] and H [z] are the z-transforms of y[n], x[n] and h[n] respectively.
Equation (5.52) can be expressed as

H [z] = Y [z]
X [z] (5.53)

In Eq. (5.53), H [z] is referred to as the system function or the transfer function.
System function is defined as the ratio of the z-transforms of the output y[n] and the
input x[n]. The system function completely depends on the system characteristic.
Equations (5.51) and (5.52) are illustrated in Fig. 5.14a and b respectively.
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Fig. 5.14 System impulse
response and system
function

5.10 Causality of DT Systems

An linear time invariant discrete-time system is said to be causal if the impulse
response h[n] = 0 for n < 0 and it is therefore right sided. The ROC of such a
system H [z] is the exterior of a circle. If H [z] is rational then the system is said
to be causal if the ROC lies exterior of the circle passing through the outermost
pole and includes infinity area. A DT system which is linear time invariant with
its system function H [z] rational is said to be causal iff the ROC is the exterior of
a circle which passes through the outermost pole of H [z]. Further, the degree of
the numerator polynomial of H [z] should be less than or equal to the degree of the
denominator polynomial.

5.11 Stability of DT System

As we discussed in Chap. 2, an LTI discrete-time system is said to be BIBO stable if
the impulse response h[n] is summable. This is expressed as

∞∑

n=−∞
|h[n]| < ∞ (5.54)

The corresponding requirement on H [z] is that the ROC of H [z] contains unit circle.
By definition of z-transform

H [z] =
∞∑

n=−∞
h[n]z−n

Let z = e j�

|z| = |e j�|
= 1

|H [e j�]| =
∣∣∣∣∣

∞∑

n=−∞
h[n]e− j�n

∣∣∣∣∣
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≤
∞∑

n=−∞

∣∣h[n]e− j�n
∣∣

=
∞∑

n=−∞
|h[n]| < ∞ (5.55)

From Eq. (5.55) we see that the stability condition given by Eq. (5.54) is satisfied if
z = e j�. Thus implies that H [z] must contain unit circle |z| = 1.

An LTI system is stable iff the ROC of its system function H [z] contains the unit
circle |z| = 1.

5.12 Causality and Stability of DT System

For a causal system whose H [z] is rational the ROC is outside the outermost pole.
For the BIBO stability the ROC should include the unit circle |z| = 1. For the system
to be causal and stable the above requirements are satisfied if all the poles are within
the unit circle in the z-plane.

An LTID systemwith the system function H [z] is said to be both causal and stable
iff all the poles of H [z] lie inside the unit circle.

The above characteristics of LTI discrete-time systems are illustrated in Fig. 5.15
for a causal system.

Example 5.20 The input to the causal LTI system is

x[n] = u[−n − 1] +
(
1

2

)n

u[n]

The z-transform of the output of the system is

Y [z] = − 1
2 z

−1

(
1 − 1

2 z
−1

)
(1 + z−1)

Determine H [z], the z-transform of the impulse response and also determine the
output y[n]. (Anna University, December, 2007)
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h[n]

n0 1 2 3 4

(a)

10

Im

Re

h[n]

n0 1 2 3 4 5

(b)

1

Im

Re

h[n]

n0 1 2 3 4 5

(c)

1

Im

Re

h[n]

n0 1 2 3 4 65 7

(d)

1

Im

Re

Fig. 5.15 Pole location and impulse response of a causal system



5.12 Causality and Stability of DT System 519

h[n]

n0 1 2 3 4 5

(e)

1

Im

Re

h[n]

n0 1 2 3 4 65 7 8

(f)

1

Im

Re

Fig. 5.15 (continued)

Solution

X [z] = − z

(z − 1)
+ z

(z − 0.5)

= −0.5z

(z − 1)(z − 0.5)

Y [z] = − 1
2 z

−1

(
1 − 1

2 z
−1

)
(1 + z−1)

= − 1
2 z

(z − 0.5)(z + 1)

H [z] = Y [z]
X [z]

= (−0.5)z(z − 1)(z − 0.5)

(z − 0.5)(z + 1)(−0.5)z

= (z − 1)

(z + 1)
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H [z]
z

= (z − 1)

z(z + 1)

= A1

z
+ A2

z + 1
(z − 1) = A1(z + 1) + A2z

Substitute z = 0

−1 = A1

Substitute z = −1

−2 = −A2; A2 = 2

H [z] = −1 + 2z

(z + 1)

h[n] = −δ[n] + (−1)n2u[n]

Y [z] = − 1
2 z

(z − 0.5)(z + 1)

Y [z]
z

= − 1
2

(z − 0.5)(z + 1)

= A1

z − 0.5
+ A2

z + 1

−1

2
= A1(z + 1) + A2(z − 0.5)

Substitute z = 0.5

−1

2
= 3

2
A1; A1 = −1

3

Substitute z = −1

−1

2
= −3

2
A2; A2 = 1

3
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Y [z] = 1

3

[
− 1

(z − 0.5)
+ 1

(z + 1)

]

y[n] = 1

3

[
−

(
1

2

)n

+ (−1)n
]
u[n]

Example 5.21 A certain LTI system is described by the following system function:

H [z] =
(
z + 1

2

)

(z − 1)
(
z − 1

2

)

Find the system response to the input x[n] = 4−(n+2)u[n].
Solution

x[n] = 4−(n+2)u[n]
= 1

16
(4)−nu[n]

X [z] = 1

16

z(
z − 1

4

)

Y [z] = H [z]X [z]
= 1

(
z + 1

2

)
z

16(z − 1)
(
z − 1

2

) (
z − 1

4

)

Y [z]
z

=
(
z + 1

2

)

16(z − 1)
(
z − 1

2

) (
z − 1

4

)

= A1

z − 1
+ A2(

z − 1
2

) + A3(
z − 1

4

)

1

16

(
z + 1

2

)
= A1

(
z − 1

2

)(
z − 1

4

)
+ A2(z − 1)

(
z − 1

4

)
+ A3(z − 1)

(
z − 1

2

)

Substitute z = 1

(
1

16

)(
3

2

)
=

(
1

2

)(
3

4

)
A1; A1 = 1

4

Substitute z = 1
2

1

16
= −

(
1

2

)(
1

4

)
A2; A2 = −1

2
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Substitute z = 1
4

1

16

3

4
= −

(
3

4

)(
−1

4

)
A3; A3 = 1

4

Y [z] =
[
1

4

z

(z − 1)
− 1

2

z(
z − 1

2

) + 1

4

z(
z − 1

4

)
]

y[n] =
[
1

4
(1)n − 1

2

(
1

2

)n

+ 1

4

(
1

4

)n]
u[n]

Example 5.22 Given

x[n] = {2, −3, 1}
h[n] = {1, 2, −1}

Find y[n] using z-transform.

Solution

X [z] = (2 − 3z−1 + z−2)

H [z] = 1 + 2z−1 − z−2

Y [z] = X [z]H [z]
= [2 − 3z−1 + z−2][1 + 2z−1 − z−2]
= 2 + z−1 − 7z−2 + 5z−3 − z−4

y[n] = {2, 1, −7, 5, −1}

Example 5.23 Given

x[n] = u[n]
y[n] = (2)nu[n]

Find the system function and the impulse response.
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Solution

x[n] = u[n]
X [z] = z

(z − 1)
|z| > 1

y[n] = (2)nu[n]
Y [z] = z

(z − 2)
|z| > 2

H [z] = Y [z]
X [z] = (z − 1)

(z − 2)
|z| > 2

H [z]
z

= (z − 1)

z(z − 2)

= A1

z
+ A2

(z − 2)
z − 1 = A1(z − 2) + A2z

Substitute z = 0

−1 = A1(−2); A1 = 1

2

Substitute z = 2

1 = 2A2; A2 = 1

2

H [z] = 1

2

[
1 + z

(z − 2)

]

y[n] = 1

2

[
δ(n) + (2)nu[n]]

Example 5.24 Given

y[n] =
(
1

4

)n

u[n]

x[n] =
(
1

2

)n

u[−n − 1]

Find the system function and hence the system impulse response.
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Solution

y[n] =
(
1

4

)n

u[n]

Y [z] = z(
z − 1

4

) |z| >
1

4

x[n] =
(
1

2

)n

u[−n − 1]

X [z] = − z(
z − 1

2

) |z| <
1

2

H [z] = Y [z]
X [z]

H [z] = −(
z − 1

2

)
(
z − 1

4

)

H [z]
z

= −(
z − 1

2

)

z
(
z − 1

4

)

= A1

z
+ A2

z
(
z − 1

4

)

1

2
− z = A1

(
z − 1

4

)
+ A2z

Substitute z = 0

1

2
= −1

4
A1; A1 = −2

Substitute z = 1
4

1

2
= 1

4
A2; A2 = 2

H [z] = 2

[
−1 + z(

z − 1
4

)
]

h[n] = 2

[
−δ[n] +

(
1

4

)n]
u[n]
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Example 5.25 Consider the following system functions:

(a) H [z] = (1 + 4z−1 + z−2)

(2z−1 + 5z−2 + z−3)

(b) H [z] = (z − 1)(z + 2)(
z − 1

2

) (
z − 3

4

) ROC: |z| >
3

4

(c) H [z] = (z − 1)(z + 2)(
z − 1

2

) (
z − 3

4

) ROC: |z| <
1

2

Determine whether these systems are causal or not.

Solution (a) H[z] = (1+4z−1+z−2)

(2z−1+5z−2+z−3)

H [z] = (z3 + 4z2 + z)

(2z2 + 5z + 1)

H [z] is irrational since the degree of the numerator polynomial is greater than
the denominator polynomial.

The System is Non-causal.

(b) H[z] = (z−1)(z+2)
(z− 1

2 )(z− 3
4 )

; ROC: |z| > 3
4

The ROC is the exterior of the circle passing through the outermost pole of H [z].
Hence h[n], the impulse response is right sided.

The System is Causal.

(c) H[z] = (z−1)(z+2)
(z− 1

2 )(z− 3
4 )

ROC : |z| < 1
2

The ROC is the interior of the circle passing through the innermost pole of H [z].
Hence h[n], the impulse response is left sided.

The System is Non-causal.

Example 5.26 Consider the following system function:

H [z] =
(
2 − 13

4 z
−1

)
(
1 − 1

4 z
−1

) (
1 − 3z−1

)

Determine the causality and stability of the system for the following cases.

(a) ROC: |z| > 3;
(b) ROC: |z| < 1

4 ;
(c) ROC: 1

4 < |z| < 3.
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Solution

H [z] =
(
2 − 13

4 z
−1

)
(
1 − 1

4 z
−1

) (
1 − 3z−1

)

= z
(
2z − 13

4

)
(
z − 1

4

)
(z − 3)

(a) ROC: |z| > 3
The ROC is the exterior of the circle passing through the outermost pole of H [z]
which is rational (the denominator and numerator polynomials have same order).
The impulse response h[n] is a right-sided sequence. Hence, H [z] is causal. The
ROC does not contain unit circle. Hence, h[n] is not summable. The system is
unstable. Refer to Fig. 5.16a.

The System is Causal and Unstable.

(b) ROC: |z| < 1
4

The ROC is the interior of the circle passing through the innermost pole of H [z].
The impulse response is a left-sided sequence. H [z] is therefore non-causal.
The ROC does not include the unit circle. The h[n] is growing exponential
negative sequence. The system is unstable. Refer to Fig. 5.16b.

The System is Non-causal and Unstable.

(c) ROC: 1
4 < |z| < 3

The ROC is to the left of the outermost pole and to the right innermost pole.
Hence h[n] will have right and left-sided sequences, which is non-causal. The
ROC includes unit circle, which means that the right and left side sequences of
h[n] will exponentially decay and the system is stable. Refer to Fig. 5.16c.

The System is Non-causal and Stable.

The system cannot be both Causal and Stable.

Example 5.27 Consider the following system function:

H [z] = z(
z − 1

4

) (
z + 1

4

) (
z − 1

2

)

For different possible ROCs, determine the causality, stability, and the impulse
response of the system.
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Unit circle

Im

Re1
4

3

ROC

Im

Re
1
4

3

ROC

1

Unit circle

Im
(b)

(a)

(c)

Re1
4

3

ROC

Fig. 5.16 a Causal and stable system. b Non-causal and unstable system and c Non-causal and
stable system

Solution

H [z] = z(
z − 1

4

) (
z + 1

4

) (
z − 1

2

)

The possible ROCs for H [z] to exist are (a) ROC: |z| > 1
2 , (b) ROC: |z| < 1

4 and (c)
ROC: 1

4 < |z| < 1
2 .
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H [z]
z

= 1(
z − 1

4

) (
z + 1

4

) (
z − 1

2

)

= A1(
z − 1

4

) + A2(
z + 1

4

) + A3(
z − 1

2

)

1 = A1

(
z + 1

4

)(
z − 1

2

)
+ A2

(
z − 1

4

)(
z − 1

2

)
+ A3

(
z − 1

4

)(
z + 1

4

)

Substitute z = 1
4

1 = A1

(
1

4
+ 1

4

)(
1

4
− 1

2

)
; A1 = −8

Substitute z = − 1
4

1 = A2

(
−1

4
− 1

4

)(
−1

4
− 1

2

)
; A2 = 8

3

Substitute z = 1
2

1 = A3

(
1

2
− 1

4

)(
1

2
+ 1

4

)
; A3 = 16

3

H [z] = − 8z(
z − 1

4

) + 8

3

z(
z + 1

4

) + 16

3

z(
z − 1

2

)

(a) ROC: |z| > 1
2

The pole-zero diagram and the ROC are shown in Fig. 5.17a. From Fig. 5.17a
the ROC is the exterior of the outermost pole z = 1

2 . Further, ROC includes unit
circle. Thus h[n] is a right-sided sequence and hence H [z] is causal. Since ROC
includes unit circle and all the poles are within unit circle, the system is stable.
Now,

H [z] = − 8z(
z − 1

4

) + 8

3

z(
z + 1

4

) + 16

3

z(
z − 1

2

)

h[n] =
[
−8

(
1

4

)n

+ 8

3

(
−1

4

)n

+ 16

3

(
1

2

)n]
u[n]

The System is Causal and Stable.
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(b) ROC: |z| < 1
4

For ROC: |z| < 1
4 , the pole-zero diagram is shown in Fig. 5.17b. The ROC is

interior of the circle passing through the innermost pole. Hence, the system is
non-causal. The condition that the ROC does not include unit circle implies
that the system is unstable. The sequence h[n] is left sided. This is obtained as
follows.

H [z] = − 8z(
z − 1

4

) + 8

3

z(
z + 1

4

) + 16

3

z(
z − 1

2

)

h[n] =
[
8

(
1

4

)n

− 8

3

(
−1

4

)n

− 16

3

(
1

2

)n]
u[−n − 1]

The left-sided sequence u[−n − 1] will exponentially increase for n < 0 and
makes the system unstable.

The System is Non-causal and Unstable.

(c) ROC: 1
4 < |z| < 1

2 The pole-zero diagram and ROC of H [z] are shown in
Fig. 5.17c. The ROC is concentric ring for 1

4 < |z| < 1
2 . The h[n] sequences

die to the poles at z = 1
4 and z = − 1

4 are right sided and the sequence due to
the pole z = 1

2 is left sided. Hence the system is non-causal. The ROC does not
include the unit circle and hence the system is unstable. The impulse response
is obtained as follows.

H [z] = − 8z(
z − 1

4

) + 8

3

z(
z + 1

4

) + 16

3

z(
z − 1

2

)

h[n] =
[
−8

(
1

4

)n

+ 8

3

(
−1

4

)n]
u[n] − 16

3

(
1

2

)n

u[−n − 1]

The term − 16
3 (1/2)nu[−n − 1] for n < 0 yields exponentially increasing

sequence.

The System is Non-causal and Unstable.
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z-plane

Unit circle Unit circle

ROC

Im
(b)

(a)

(c)

Re1
4

1
4

1
2

1

z-plane

Im

Re1
4

1
2

ROC

11
4

z-plane

Unit circle

ROC

Im

Re1
4

1
4

1
2

1

Fig. 5.17 a Pole-zero diagram and ROC: |z| > 1
2 of Example 5.27. b Pole zero diagram and ROC:

|z| < 1
4 and c Pole-zero diagram and ROC: 1

4 < |z| < 1
2

5.13 z-Transform Solution of Linear
Difference Equations

As in the case of Laplace transform with differential equation, to get the solution
in time domain z-transform is used to solve difference equation to get the output
sequence as a function of n. By using the time shift property of z-transform, the
difference equation is converted into algebraic equation, taking into account the initial
conditions. by taking z-inverse transform, the time domain solution is obtained.
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5.13.1 Right Shift (Delay)

If

x[n]u[n] Z←→ X [z]

then

x[n − 1]u[n − 1] Z←→ 1

z
X [z]

x[n − 1]u[n] Z←→ 1

z
X [z] + x[−1]

x[n − 2]u[n] Z←→ 1

z2
X [z] + 1

z
x[−1] + x[−2]

In general,

x[n − m]u[n] Z←→ z−m X [z] + z−m
m∑

n=1

x[−n]zn (5.56)

5.13.2 Left Shift (Advance)

If

x[n]u[n] Z←→ X [z]
x[n + 1]u[n] Z←→ zX [z] − zx[0]
x[n + 2]u[n] Z←→ z2X [z] − z2x[0] − zx[1]

In general,

x[n + m]u[n] Z←→ zmx[z] − zm
m−1∑

n=0

x[n]z−n (5.57)

Equations (5.56) and (5.57) are used to convert difference equations with initial
conditions to algebraic equations in z. Application of Eq. (5.56), the delay shift is
more common. The following examples illustrate the above procedure.
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Example 5.28 Consider the following linear constant coefficient difference equa-
tion

y[n] − 3

4
y[n − 1] + 1

8
y[n − 2] = 2x[n − 1]

Determine y[n] when x[n] = δ[n] and y[n] = 0, n < 0.
(Anna University, May and December, 2007)

Solution If y[n] = 0, n = 0 implies the initial conditions are zero. Taking z-
transform on both sides of the given equation we get

[
1 − 3

4
z−1 + 1

8
z−2

]
Y [z] = 2z−1X [z]

For δ[n], X [z] = 1

Y [z] = 2z−1

1 − 3
4 z

−1 + 1
8 z

−2
= 2z

z2 − 3
4 z + 1

8

Y [z]
z

= 2(
z − 1

2

) (
z − 1

4

)

= A1(
z − 1

2

) + A2(
z − 1

4

)

2 = A1

(
z − 1

4

)
+ A2

(
z − 1

2

)

Substitute z = 1
2

2 = A1
1

4
; A1 = 8

Substitute z = 1
4

2 = A2

(
−1

4

)
; A2 = −8

Y [z] = 8

[
z(

z − 1
2

) − z(
z − 1

4

)
]

y[n] = 8

[(
1

2

)n

−
(
1

4

)n]
u[n] ROC: |z| >

1

2
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Example 5.29

y[n + 2] + 1.1y[n + 1] + 0.3y[n] = x[n + 1] + x[n]

where x[n] = (−4)−nu[n]. Find y[n] if the initial condition is zero.

Solution Taking z-transform using left shift property we get

[z2 + 1.1z + 0.3]Y [z] = [z + 1]X [z]
x[n] = (−4)−nu[n]

X [z] = z(
z + 1

4

)

Y [z] = z(z + 1)(
z + 1

4

)
(z2 + 1.1z + 0.3)

= z(z + 1)(
z + 1

4

)
(z + 0.5)(z + 0.6)

Y [z]
z

= (z + 1)(
z + 1

4

)
(z + 0.5)(z + 0.6)

= A1(
z + 1

4

) + A2

(z + 0.5)
+ A3

(z + 0.6)

(z + 1) = A1 (z + 0.5) (z + 0.6) + A2

(
z + 1

4

)
(z + 0.6)

+A3

(
z + 1

4

)
(z + 0.5)

Substitute z = − 1
4

(
−1

4
+ 1

)
= A1

(
−1

4
+ 0.5

)(
−1

4
+ 0.6

)
; A1 = 8.57

Substitute z = −0.5

(−0.5 + 1) = A2

(
−0.5 + 1

4

)
(−0.5 + 0.6); A2 = −20

Substitute z = −0.6

(−0.6 + 1) = A3

(
−0.6 + 1

4

)
(−0.6 + 0.5); A3 = 11.43
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Y [z] = 8.57z(
z + 1

4

) − 20z

(z + 0.5)
+ 11.43

(z + 0.6)

y[n] =
[
8.57

(
−1

4

)n

− 20 (−0.5)n + 11.43(−0.6)n
]
u[n]

Example 5.30 A causal LTI system is described by the difference equation

y[n] = y[n − 1] + y[n − 2] + x[n − 1]

Find (a) System function for this system and (b) Unit impulse response of the system.
(Anna University, April, 2008)

Solution Taking z-transform on both sides of the equation and making use of right
shift property we get

[1 − z−1 − z−2]Y [z] = z−1X [z]

(a)

H [z] = Y [z]
X [z]

H [z] = z−1

(1 − z−1 − z−2)

(b)

H [z] = z

(z−2 − z − 1)
H [z]
z

= 1

(z − 1.618)(z + 0.618)

= A1

(z − 1.618)
+ A2

(z + 1.618)
1 = A1(z + 0.618) + A2(z − 1.618)

Substitute z = 1.618

1 = A1 (1.618 + 0.618) ; A1 = 0.447
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Substitute z = −0.618

1 = A2 (−0.618 − 1.618) ; A2 = −0.447

H [z] = 0.447

[
z

z − 1.618
− z

z + 0.618

]

h[n] = 0.447
[
(1.618)n − (−0.618)n

]
u[n]

Example 5.31 Find the impulse response of the discrete-time system described by
the difference equation

y[n − 2] − 3y[n − 1] + 2y[n] = x[n − 1]

(Anna University, April, 2005)

Solution

[z−2 − 3z−1 + 2]Y [z] = z−1X [z]
H [z] = Y [z]

X [z]
= z−1

(z−2 − 3z−1 + 2)

= z

(2z2 − 3z + 1)
H [z]
z

= 0.5

(z − 1)(z − 0.5)

= 1

(z − 1)
− 1

(z − 0.5)

H [z] = z

z − 1
− z

z − 0.5

h[n] =
[
(1)n −

(
1

2

)n]
u[n]

Example 5.32 Determine the impulse response and frequency response of the sys-
tem described by the difference equation

y[n] −
(
1

6

)
y[n − 1] − 1

6
y[n − 2] = x[n − 1]

(Anna University, May, 2007)
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Solution To obtain Impulse Response

[
1 − 1

6
z−1 − 1

6
z−2

]
Y [z] = z−1X [z]

H [z] = Y [z]
X [z]

= z(
z2 − 1

6 z − 1
6

)

= z(
z − 1

2

) (
z + 1

3

)

H [z]
z

= 1(
z − 1

2

) (
z + 1

3

)

= 6

5

[
1(

z − 1
2

) − 1(
z + 1

3

)
]

H [z] = 6

5

[
z(

z − 1
2

) − 1(
z + 1

3

)
]

h[n] = 6

5

[(
1

2

)n

−
(
1

3

)n]
u[n]

To obtain Frequency Response
Substitute z = e jω in H [z]

H [e jω] = e jω

(
e jω − 1

2

) (
e jω + 1

3

)

This can be expressed in terms of amplitude and phase as follows:

H [e jω] = e jω

(
cosω + j sinω − 1

2

) (
cosω + j sinω + 1

3

)

since |e jω| = 1

|H(e jω)| = 1
[{(

cosω − 1
2

)2 + sin2 ω
} {(

cosω + 1
3

)2 + sin2 ω
}] 1

2
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Since ∠e jω = ω

∠H(e jω) = ω − tan−1 sinω(
cosω − 1

2

) − tan−1 sinω(
cosω + 1

3

)

Example 5.33 A causal system is represented by the difference equation

y[n] + 1

4
y[n − 1] = x[n] + 1

2
x[n − 1]

use z-transform to determine the

(1) System function;
(2) Unit sample response of the system;
(3) Frequency response of the system.

Solution (1)

[
1 + 1

4
z−1

]
Y [z] =

[
1 + 1

2
z−1

]
X [z]

H [z] = Y [z]
X [z]

H [z] =
[
1 + 1

2 z
−1

]
[
1 + 1

4 z
−1

]

(2)

H [z] =
(
z + 1

2

)
(
z + 1

4

)

H [z]
z

=
(
z + 1

2

)

z
(
z + 1

4

) = A1

z
+ A2(

z + 1
4

)
(
z + 1

2

)
= A1

(
z + 1

4

)
+ A2z

Substitute z = 0

A1 = 2

Substitute z = − 1
4
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[
−1

4
+ 1

2

]
= A2

(
−1

4

)
; A2 = −1

H [z] = 2 − z(
z + 1

4

)

h[n] = 2δ[n] −
(
1

4

)n

u[n]

(3)

H [z] =
(
z + 1

2

)
(
z + 1

4

)

H [e jω] =
(
e jω + 1

2

)
(
e jω + 1

4

) =
(
cosω + 1

2

) + j sinω
(
cosω + 1

4

) + j sinω

|H(e jω)| =
[(
cosω + 1

2

)2 + sin2 ω
]1/2

[(
cosω + 1

4

)2 + sinω
]1/2

∠H( jω) = tan−1 sinω(
cosω + 1

2

) − tan−1 sinω(
cosω + 1

4

)

Example 5.34 Find the output of the system whose input-output is related by the
difference equation

y[n] − 5

6
y[n − 1] + 1

6
y[n − 2] = x[n] − 1

2
x[n − 1]

for the step input. Assume initial conditions to be zero.

Solution
[
1 − 5

6
z−1 + 1

6
z−2

]
Y [z] =

[
1 − 1

2
z−1

]
X [z]

Y [z] =
[
1 − 1

2 z
−1

]
[
1 − 5

6 z
−1 + 1

6 z
−2

] X [z]

For unit step input, X [z] = z
z−1
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Y [z] = z2
[
z − 1

2

]

(z − 1)
(
z2 − 5

6 z + 1
6

)

Y [z]
z

= z
[
z − 1

2

]

(z − 1)
(
z − 1

2

) (
z − 1

3

)

= z

(z − 1)
(
z − 1

3

)

= A1

(z − 1)
+ A2(

z − 1
3

)

z = A1

(
z − 1

3

)
+ A2 (z − 1)

Substrate z = 1

1 = A1

(
1 − 1

3

)
; A1 = 3

2

Substrate z = 1
3

1

3
= A2

(
1

3
− 1

)
; A2 = −1

2

Y [z] = 3

2

z

(z − 1)
− 1

2

z(
z − 1

3

)

y[n] =
[
3

2
(1)n − 1

2

(
1

3

)n]
u[n]

Example 5.35 Find the output response of the discrete-time system described by
the following difference equation

y[n] − 3

4
y[n − 1] + 1

8
y[n − 2] = x[n]

the initial conditions are y[−1] = 0 and y = [−2] = 1. The input x[n] = (
1
5

)n
u[n].

Solution Taking z-transform on both sides of the above equation we get
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Y [z] − 3

4
[z−1Y [z] + y[−1]] + 1

8
[z−2Y [z]

+z−1y[−1] + y[−2]] = X [z][
1 − 3

4
z−1 + 1

8
z−2

]
Y [z] = −1

8
+ z(

z − 1
5

)
[
z2 − 3

4 z + 1
8

]

z2
Y [z] = −1

8
+ z(

z − 1
5

)

Y [z]
z

= − z

8
(
z − 1

4

)(
z − 1

2

) + z2(
z − 1

5

)(
z − 1

4

)(
z − 1

2

)

= Y1[z] + Y2[z]
Y1[z] = − z

8
(
z − 1

4

)(
z − 1

2

)

= − A1(
z − 1

4

) + A2(
z − 1

2

)

− z

8
= A1

(
z − 1

2

)
+ A2

(
z − 1

4

)

Substitute z = 1
4

−1

4

1

8
= −A1

1

4
; A1 = 1

8

Substrate z = 1
2

−1

2

1

8
= A2

1

4
; A2 = −1

4

Y1[z] = 1

8
(
z − 1

4

) − 1

4
(
z − 1

2

)

Y2[z] = z2(
z − 1

5

) (
z − 1

4

)(
z − 1

2

)

z2 = A1

(
z − 1

4

)(
z − 1

2

)
+ A2

(
z − 1

5

)(
z − 1

2

)
+ A3

(
z − 1

5

)(
z − 1

4

)

Substitute z = 1
5

1

25
= A1

(
1

5
− 1

4

)(
1

5
− 1

2

)
; A1 = 8

3
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Substitute z = 1
4

1

16
= A2

(
1

4
− 1

5

)(
1

4
− 1

2

)
; A2 = −5

Substitute z = 1
2

1

4
= A3

(
1

2
− 1

5

)(
1

2
− 1

4

)
; A3 = 10

3

Y2[z] = 8

3

1(
z − 1

5

) − 5(
z − 1

4

) + 10

3

1(
z − 1

2

)

Y [z] = z

8
(
z − 1

4

) − z

4
(
z − 1

2

) + 8

3

z(
z − 1

5

) − 5z(
z − 1

4

) + 10

3

z(
z − 1

2

)

= −39

8

z(
z − 1

4

) + 37

12

z(
z − 1

2

) + 8

3

z(
z − 1

5

)

y[n] =
[
−39

8

(
1

4

)n

+ 37

12

(
1

2

)n

+ 8

3

(
1

5

)n]
u[n]

Example 5.36 Consider the following difference equation

y[n] + 2y[n − 1] + 2y[n − 2] = x[n]

The initial conditions are y[−1] = 0 and y = [−2] = 2. Find the step response of
the system.

Solution Taking z-transform on both sides of the above equation we get

X [z] = Y [z] + 2[z−1Y [z] + y[−1]] + 2[z−2Y [z] + z−1y[−1] + y[−2]]
−4 + X [z] = [1 + 2z−1 + 2z−2]Y [z]
−4 + X [z] = (z2 + 2z + 2)

z2
Y [z]

For step input X [z] = z
(z−1)
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z2 + 2z + 2 = (z + 1 + j)(z + 1 − j)
(z + 1 + j)(z + 1 − j)

z2
Y [z] = −4 + z

z − 1

= (4 − 3z)

z − 1
Y [z]
z

= z(4 − 3z)

(z − 1)(z + 1 + j)(z + 1 − j)

= A1

(z − 1)
+ A2

(z + 1 + j)
+ A3

(z + 1 − j)

z[4 − 3z] = A1(z
2 + 2z + 2) + A2(z − 1)(z + 1 − j)

+A3(z − 1)(z + 1 + j)

Substitute z = 1

1 = A15; A1 = 1

5

Substitute z = −1 + j

(−1 + j)(4 − 3 + j3) = A3(−1 + j − 1)(−1 + 1 + j + j)

(−1 + j)(1 + j3) = A3(−2 + j) j2√
2∠135◦√10∠71.56◦ = A3

√
5∠153.43◦√2∠90◦

A3 =
√
2∠135◦√10∠71.56◦

√
5∠153.43◦√2∠90◦

= 1∠−36.87◦ = 1e− j0.643

A2 = conjugate of A3

= 1e j0.643

The exponentials of A1 and A2 are expressed in radians using 57.3◦ = 1 radian.

Y [z] = 1

5

z

(z − 1)
+ e j0.643z

z + 1 + j
+ e− j0.643z

z + 1 − j

Y [z] = 1

5

z

(z − 1)
+ e j0.643z

(z + √
2e j π

4 )
+ e− j0.643z

(z + √
2e− j π

2 )

Taking inverse z-transform we get
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y[n] = 1

5
+ e j0.643(−√

2e j π
4 )n + e− j0.643(−√

2e− j π
4 )n

= 1

5
+ (−√

2)n
[
e j (0.643+ π

4 n) + e− j (0.643+ π
4 n)

]

y[n] =
[
1

5
+ 2(−√

2)n cos
(π

4
n + 0.643

)]
u[n]

Example 5.37 Solve the following difference equation:

y[n] + 6y[n − 1] + 8y[n − 2] = 5x[n − 1] + x[n − 2]

The initial conditions are y[−1] = 1 and y[−2] = 2. The input x[n] = u[n].
Solution Taking z-transform on both sides we get

1 + 6(z−1Y [z] + y[−1]) + 8(z2Y [z] + z−1y[−1] + y[−2]) = [5z−1 + z−2]X [z]
For a causal signal u[n], x[−2], x[−1] are zero.

[1 + 6z−1 + 8z−2]Y [z] + (6 + 8z−1 + 16) = [5z−1 + z−2] z

(z − 1)
(z + 2)(z + 4)

z2
Y [z] = −(22 + 8z−1) + (5z−1 + z−2)

z

(z − 1)

= (−22z2 + 19z + 9)

z(z − 1)

Y [z]
z

= (−22z2 + 19z + 9)

(z − 1)(z + 2)(z + 4)

= A1
(z − 1)

+ A2
(z + 2)

+ A3
(z + 4)

−22z2 + 19z + 9 = A1(z + 2)(z + 4) + A2(z − 1)(z + 4)

+A3(z − 1)(z + 2)

Substitute z = 1

−22 + 19 + 9 = A1(3)(5); A1 = 0.4

Substitute z = −2

−88 − 38 + 9 = A2(−3)(2); A2 = 19.5



544 5 The z-Transform Analysis of Discrete Time Signals and Systems

Substitute z = −4

−352 − 76 + 9 = A3(−5)(−2); A3 = −41.9

Y [z] = 0.4z

(z − 1)
+ 19.5

z

(z + 2)
− 41.9

z

(z + 4)

y[n] = [
0.4 + 19.5(−2)n − 41.9(−4)n

]
u[n]

Example 5.38 Find the response of the LTID system described by the following
difference equation

y[n + 2] + y[n + 1] + 0.24y[n] = x[n + 1] + 2x[n]

where x[n] = ( 12 )
nu[n] and all the initial conditions are zero.

Solution When the initial conditions are zero.

y[n + 2] Z←→ z2Y [z]
y[n + 1] Z←→ zY [z]
x[n + 1] Z←→ zX [z]

(
1

2

)2

u[n] Z←→ z

(z − 0.5)

The given difference equation can be written in the following form after taking z-
transform on both sides.

[z2 + z + 0.24]Y [z] = [z + 2] z

(z − 0.5)

(z2 + z + 0.24) = (z + 0.6)(z + 0.4)
Y [z]
z

= (z + 2)

(z − 0.5)(z + 0.6)(z + 0.4)

= A1

(z − 0.5)
+ A2

(z + 0.6)
+ A3

(z + 0.4)
(z + 2) = A1(z + 0.6)(z + 0.4) + A2(z − 0.5)(z + 0.4)

+A3(z − 0.5)(z + 0.6)

Substitute z = 0.5

2.5 = A1(1.1)(0.9); A1 = 2.525
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Substitute z = −0.6

1.4 = A2(−1.1)(−0.2); A2 = 6.36

Substitute z = −0.4

1.6 = A3(−0.9)(−0.2); A3 = −8.89

Y [z] = 2.525
z

(z − 0.5)
+ 6.36

z

(z + 0.6)
− 8.89

z

(z + 0.4)

y[n] = [
2.525(0.5)n + 6.36(−0.6)n − 8.89(−0.4)n

]
u[n]

Example 5.39 Consider the following difference equation

y[n + 2] − 5y[n + 1] + 6y[n] = x[n + 1] + 4x[n]

The auxiliary conditions are as follows y[0] = 1 and y[1] = 2 and the input x[n] =
u[n]. Solve for y[n].
Solution

y[n + 2] Z←→ z2Y [z] − z2y(0) − zy(1)

= z2Y [z] − z2 − 2z

y[n + 1] Z←→ zY [z] − zy[0]
= zY [z] − z

x[n + 1] Z←→ zX [z] − zx[0]
= zX [z] − z

Taking z-transform on both sides of the above equation and substituting X [z] = z
(z−1)

we get

[z2 − 5z + 6]Y [z] = z2 + 2z − 5z + (z + 4)
z

(z − 1)
− z

(z − 2)(z − 3)Y [z] = z(z − 4)(z − 1) + z(z + 4)

(z − 1)

Y [z]
z

= (z2 − 4z + 8)

(z − 1)(z − 2)(z − 3)

= A1

(z − 1)
+ A2

(z − 2)
+ A3

(z − 3)
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(z−2 − 4z + 8) = A1(z − 2)(z − 3) + A2(z − 1)(z − 3) + A3(z − 1)(z − 2)

Substitute z = 1

1 − 4 + 8 = A1(−1)(−2); A1 = 2.5

Substitute z = 2

4 − 8 + 8 = A2(−1); A2 = −4

Substitute z = 3

9 − 12 + 8 = A3(2)(1); A3 = 2.5

Y [z] = 2.5
z

(z − 1)
− 4

z

(z − 2)
+ 2.5

z

(z − 3)

y[n] = [
2.5 − 4(2)n + 2.5(3)n

]
u[n]

Example 5.40 Solve the following difference equation

y[n + 2] − 9y[n + 1] + 20y[n] = 4x[n + 1] + 2x[n]

The input x[n] = ( 12 )
nu[n]. The initial conditions are y[−1] = 2 and y[−2] = 1.

Solution The given difference equation is in advanced operator formwhich requires
the knowledge of y[1] and y[2]. Therefore, the given equation is converted into delay
operator form as described below and the given initial condition is applied. Replacing
n with (n − 2), the given difference equation is converted as

y[n] − 9y[n − 1] + 20y[n − 2] = 4x[n − 1] + 2x[n − 2]

Since the input is causal, x[−1] = x[−2] = 0. Taking z-transform on both sides of
the above equation we get

Y [z] − 9[z−1Y [z] + y[−1]] + 20[z−2Y [z] + z−1y[−1] + y[−2]]
= 4[z−1X [z] + x[−1] + 2[z−2X [z] + z−1x[−1] + z−2x[−2]]]
= [4z−1 + 2z−2]X [z]
= [1 − 9z−1 + 20z−2]Y [z] − 18 + 40z−1 + 20 = (4z−1 + 2z−2)X [z]
[z2 − 9z + 20]

z2
Y [z] = −(2 + 40z−1) + (4z−1 + 2z−2)X [z]
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Substitute (z2 − 9z + 20) = (z − 4)(z − 5) and X [z] = z
(z−0.5)

Y [z]
z

= (−2z2 − 35z + 22)

(z − 0.5)(z − 4)(z − 5)

= A1

(z − 0.5)
+ A2

(z − 4)
+ A3

(z − 5)

(−2z−2 − 35z + 22) = A1(z − 4)(z − 5) + A2(z − 0.5)(z − 5)

+A3(z − 0.5)(z − 4)

Substitute z = 0.5

−0.5 − 17.5 + 22 = A1(−3.5)(−4.5); A1 = 0.254

Substitute z = 4

−32 − 140 + 22 = A2(3.5)(−1); A2 = 42.86

Substitute z = 5

−50 − 175 + 22 = A3(4.5); A3 = −45.1

Y [z] = 0.254z

(z − 0.5)
+ 42.86z

(z − 4)
− 45.1z

(z − 5)

y[n] = [
0.254(0.5)n + 42.86(4)n − 45.1(5)n

]
u[n]

5.14 Zero-Input and Zero State Response

The total solution of the difference equation is separated into zero input and zero state
components. The response due to the initial conditions alone (in the absence of the
input) is called zero input response. The response due to the input alone (assuming
that the initial conditions are zero) is called zero state response. The total response
is the sum of zero input response and zero state response. This is illustrated in the
following examples.

Example 5.41

y[n] + 5y[n − 1] + 6y[n − 2] = x[n − 1] + 2x[n]
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where x[n] = u[n]. The initial conditions are y[−1] = 1 and y[−2] = 0. Find
(a) Zero input response, (b) Zero state response, and (c) Total response.

Solution (a) Zero-Input Response

y[n] Z←→ Y [z]
y[n − 1] Z←→ z−1Y [z] + y[−1]
y[n − 2] Z←→ z−2Y [z] + z−1y[−1] + y[−2]

Assuming the input is zero, taking z-transformonboth sides of the given equation
we get

Y [z] + 5(z−1Y [z] + y[−1]) + 6(z−2Y [z]
+z−1y[−1] + y[−2]) = 0

(1 + 5z−1 + 6z−2)Y [z] + 5 + 6z−1 = 0
(z + 2)(z + 3)

z2
Y [z] = − (5z + 6)

z
Y [z]
z

= − (5z + 6)

(z + 2)(z + 3)

= A1

(z + 2)
+ A2

(z + 3)
−(5z + 6) = A1(z + 3) + A2(z + 2)

Substitute z = −2

10 − 6 = A1; A1 = 4

Substitute z = −3

15 − 6 = A2(−1); A2 = −9

Y [z] = 4z

(z + 2)
− 9z

(z + 3)

y[n] = [
4(−2)n − 9(−3)n

]
u[n]

The initial condition can be easily checked as explained below. Substitute n =
−1
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y[−1] = 4
1

(−2)
− 9

(
1

−3

)

= −2 + 3 = 1

Substitute n = −2

y[−2] = 4
1

(−2)2
− 9

1

(−3)2

= 1 − 1 = 0

(b) Zero State Response Assuming the zero initial conditions and noting x[−1] =
0, we get

[1 + 5z−1 + 6z−2]Y [z] = z−1X [z] − x[−1] + 2X [z]
[z2 + 5z + 6]

z2
Y [z] = [z−1 + 2]X [z]

= (2z + 1)

z

z

(z − 1)
Y [z]
z

= z(2z + 1)

(z − 1)(z + 2)(z + 3)

= A1

(z − 1)
+ A2

(z + 2)
+ A3

(z + 3)

2z2 + 3 = A1(z + 2)(z + 3) + A2(z − 1)(z + 3)

+A3(z − 1)(z + 2)

Substitute z = 1

2 + 1 = A1(3)(4); A1 = 1

4

Substitute z = −2

8 − 2 = A2(−3); A2 = −2

Substitute z = −3

18 − 3 = A3(−4)(−1); A3 = 15

4

Y [z] = 1

4

z

(z − 1)
− 2z

(z + 2)
+ 15

4

z

(z + 3)
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y[n] =
[
1

4
− 2(−2)n + 15

4
(−3)n

]
u[n]

(c) Total Response

Total response = Zero input response + Zero state response

y[n] = 4(−2)n − 9(−3)n + 1

4
− 2(−2)n + 15

4
(−3)n

y[n] =
[
1

4
+ 2(−2)n − 21

5
(−3)n

]
u[n]

5.15 Natural and Forced Response

In the total response, the response due to the characteristic modes are called forced
response. The terms which include characteristic modes (Eigen values) are called
natural response. In Example 5.41 the Eigen values are λ1 = −2 and λ2 = −3. In
the total response y[n] = 1

4u[n] is free from characteristic modes. Hence, it is the
forced response. This is illustrated in the following example.

Example 5.42 Consider the following difference equation

y[n + 2] − 6y[n + 1] + 8y[n] = x[n]

where x[n] = ( 14 )
nu[n]. The initial conditions are y[0] = 1 and y[1] = 2. Find

(a) Zero state response; (b) Zero input response; (c) Natural response; (d) Forced
response and (e) Total response.

Solution (a) Taking z-transform on both sides we get

X [z] = z2Y [z] − z2y[0] − zy[1] − 6{zY [z] − zy[0]} + 8Y [z]
X [z] = [z2 − 6z + 8]Y [z] − z2 − 2z + 6z

Substituting X [z] = z
(z−0.25) and z2 − 6z + 8 = (z − 2)(z − 4) we get

(z − 2)(z − 4)Y [z] = z2 − 4z + z

(z − 0.25)

z = 2 and z = 4 are the Eigen values. If the initial conditions are zero we get
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Y [z]
z

= 1

(z − 2)(z − 4)(z − 0.25)

= A1

(z − 2)
+ A2

(z − 4)
+ A3

(z − 0.25)
1 = A1(z − 4)(z − 0.25) + A2(z − 2)(z − 0.25) + A3(z − 2)(z − 4)

Substitute z = 2

1 = A1(−2)(1.75); A1 = −2

7

Substitute z = 4

1 = A2(2)(3.75); A2 = 2

15

Substitute z = 0.25

1 = A3(−1.75)(−3.75); A3 = 16

105

Let y0s[n] denote zero state response and y0i [n] denote zero input response.

Y0s[z] = −2

7

z

(z − 2)
+ 2

15

z

(z − 4)
+ 16

105

z

(z − 0.25)

y0s[n] =
[
−2

7
(2)n + 2

15
(4)n + 16

105
(0.25)n

]
u[n]

(b) If we assume the input is zero, X [z] = 0

Y0i [z]
z

= (z − 4)

(z − 2)(z − 4)

Y0i [z] = z

(z − 2)

y0i [n] = (2)nu[n]

(c) The total response y[n] is given by
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y[n] = y0s[n] + y0i [n] =
[
−2

7
(2)n + 2

15
(4)n + 16

105
(0.25)n + (2)n

]
u[n]

=
[
5

7
(2)n + 2

15
(4)n

︸ ︷︷ ︸
+ 16

105
(0.25)n

︸ ︷︷ ︸

]
u[n]

Natural response Forced response

Let us denote yn[n] and y f [n] as the natural and forced responses respectively.
The natural response is the responsewhich is due to the characteristic roots z = 2
and z = 4. The remaining portion of y[n] is the forced response.

y f [n] = 16

105
(0.25)nu[n]

(d) The natural response is

yn[n] =
[
5

7
(2)n + 2

15
(4)n

]
u[n]

The forced response is

y f [n] = 16

105
(0.25)nu[n]

(e) The total response is

y[n] =
[
5

7
(2)n + 2

15
(4)n + 16

105
(0.25)n

]
u[n]

5.16 Difference Equation from System Function

Let the system function H [z] be expressed as

Y [z]
X [z] = H [z] = b0zN + b1zN−1 + · · · + bN−1z + bN

zN + a1zN−1 + · · · + aN−1z + aN

Cross multiplying and operating z on Y [z] and X [z] we get

y[n + N ] + a1y[n + N − 1] + · · · + aN−1y[n + 1] + aN y[n]
= b0x[n + N ] + b1x[n + N − 1] + · · · + bN−1x[n + 1] + bN x[n] (5.58)
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Similar procedure has to be followed if the system frequency response H(e jω) is
given. Here e jω has to be treated as z. The following examples demonstrate the
above methods.

Example 5.43 For the system functions given below determine the difference equa-
tion

(a) H [z] = (1 − z−1)(
1 − 1

2 z
−1 + 1

4 z
−2

)

(b) H [z] = (z − 1)

(z + 1)(z − 2)

(c) H [z] = 1(
1 − 1

4 z
−1

)

(Anna University, December, 2006)

(d) Consider the system consisting of the cascade of two LTI system with frequency
responses

H1(e
jω) = 2 − e jω

(
1 + 1

2e
− jω

)

H2(e
jω) = 1(

1 − 1
2e

− jω + 1
4e

− j2ω
)

Find the difference equation describing the overall system.
(Anna University, April, 2008)

(e) Write a difference equation that characterizes a systemwhose frequency response
is

H(e jω) =
(
1 − 1

2e
− jω + e−3 jω

)
(
1 + 1

2e
− jω + 3

4e
−2 jω

)

(Anna University, May, 2007)

Solution (a) H[z] = (1 − z−1)
(
1 − 1

2
z−1 + 1

4
z−2

)

Y [z]
X [z] =

(
1 − z−1

)
(
1 − 1

2 z
−1 + 1

4 z
−2

)

Y [z] − 1

2
z−1Y [z] + 1

4
z−2Y [z] = X [z] − z−1X [z]
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y[n] − 1

2
y[n − 1] + 1

4
y[n − 2] = x[n] − x[n − 1]

(b) H[z] = (z − 1)
(z + 1)(z − 2)

Y [z]
X [z] = (z − 1)

(z + 1)(z − 2)

= (z − 1)

(z2 − z − 2)

z2Y [z] − zY [z] − 2Y [z] = zX [z] − X [z]

y[n + 2] − y[n + 1] − 2y[n] = x[n + 1] − x[n]

(c) H[z] = Y [z]
X[z] = 1

(
1 − 1

4
z−1

)

[
1 − 1

4
z−1

]
Y [z] = X [z]

y[n] − 1

4
y[n − 1] = x[n]

(d) H1(e jω) = 2−e jω

(1+ 1
2 e

− jω)
and H2(e jω) = 1

(1− 1
2 e

− jω+ 1
4 e

− j2ω)

H1H2(e
jω) = Y ( jω)

X ( jω)
= (2 − e− jω)(

1 + 1
2e

− jω
) (
1 − 1

2e
− jω + 1

4e
− j2ω

)

= (2 − e− jω)(
1 − 1

2e
− jω + 1

4e
− j2ω + 1

2e
− jω − 1

4e
− j2ω + 1

8e
− j3ω

)

Y [e jω]
[
1 + 1

8
e− j3ω

]
= [2 − e− jω]X [e jω]

y[n] + 1

8
y[n − 3] = 2x[n] − x[n − 1]

(e) Y [e jω]
X[e jω] = H(e jω) = (1−e− jω+e−3 jω)

(1+ 1
2 e

− jω+ 3
4 e

−2 jω)
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x[n]

w[n] w[n 1] w[n 2]

y[n]

1
4

1
2

z 1

z 1z 1

Fig. 5.18 Block diagram of Example 5.44

[
1 + 1

2
e− jω + 3

4
e−2 jω

]
Y [e jω] = [

1 − e− jω + e−3 jω] X [e jω]

y[n] + 1

2
y[n − 1] + 3

4
y[n − 2] = x[n] − x[n − 1] + x[n − 3]

Example 5.44 Obtain the difference equation for the block diagram shown in
Fig. 5.18.

Solution From Fig. 5.18, the following equations are written:

w[n] = x[n] − 1

2
y[n]

Replace n by (n − 2)

w[n − 2] = x[n − 2] − 1

2
y[n − 2]

y[n] = 1

4
x[n − 1] + w[n − 2]

= 1

4
x[n − 1] + x[n − 2] − 1

2
y[n − 2]

y[n] + 1

2
y[n − 2] = 1

4
x[n − 1] + x[n − 2]
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Summary

1. The z-transform for discrete-time signals and systems has been developed. This
resembles corresponding treatment of Laplace transform for continuous time
system.

2. A definite connection exists between Laplace transform, Fourier transform and
z-transform. The Laplace transform reduces to Fourier transform on the imagi-
nary axis in the s-plane. Then z-transform reduces to Fourier transform on the
unit circle in the complex z-plane.

3. For the causal signals system (right sided), the z-transform exists if the ROC
is exterior of the circle which passes through the outermost pole of the system
function. For the anti-causal signal and system (left sided) the z-transform exists
if the ROC is interior of the circle which passes through the innermost pole of
the system. For the right- and left-sided signals, the ROC is a ring which does
not include any pole of system function.

4. The application of the properties of z-transform very much simplifies the proce-
dure to determine z-transform and inverse z-transform.

5. For an LTID system to be causal, the system function should be rational and the
ROC is the exterior of the circle which passes through the outermost pole of the
system function H [z].

6. An LTID system is said to be stable if the ROC of the system function H [z]
includes the unit circle.

7. An LTID system is said to be causal and stable if all the poles of the system
function H [z] lie inside the unit circle in the z-plane.

8. Using the properties of z-transform, LTID systems described by constant
coefficient difference equation can be converted into algebraic equations and
easily analyzed. The solution obtained is classified as zero state response, zero
input response, natural response, and forced response.

9. An LTID system structure is realized using adders, multipliers, and unit delay.
System is realized in direct form-I, direct form-II, parallel form, cascade form,
and transposed form.

Exercise

I. Short Answer Type Questions

1. Define z-transform.
The z-transform of a discrete-time signal x[n] is defined as

X [z] =
∞∑

n=−∞
x[n]z−n

where z is a complex variable.
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2. Define z -transform pair.
When the discrete-time signal x[n] is z-transformed it is expressed as

X [z] =
∞∑

n=−∞
x[n]z−n

If we want to recover x[n] form X [z], it is obtained using the following integra-
tion

x[n] = 1

2π j

∮
X [z]zn−1dz

This equation is called as inverse z-transform. The above two equations for
z-transform and inverse z-transform are called z-transform pair.

3. What do you understand by ROC of z -transform?
The range of values of z for which the function X [z] converges is called region
of convergence which is expressed in abbreviated form as ROC.

4. Mention the properties of ROC.

1. The ROC of X [z] is in the form of a ring in the z-plane which is centered
about the origin.

2. The ROC does not include any poles.
3. For the right-sided sequence x[n], the ROC is the exterior of the outermost

pole.
4. For the left-sided sequence x[n], the ROC is the interior of the innermost

pole.
5. If the sequence x[n] is two sided, then the ROC consist of a ring in the

z-plane.

5. What is the scaling property of z -transform?
If

x[n] Z←→ X [z] ROC: R

then

anx[n] ←→ X
[ z
a

]
ROC: aR

By using multiplication property, the z-transform is obtained by replacing z by
z
a with ROC R replaced by aR.

6. What is the convolution property of z -transform?
If

x1[n] Z←→ X1[z] ROC: R1

x2[n] Z←→ X2[z] ROC: R2
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then

x1[n] ∗ x2[n] Z←→ X1[z]X2[z] ROC: R1 ∩ R2

7. What is difference property in the z -transform?
If

x[n] Z←→ X [z] ROC: R

then

nx[n] Z←→−z
dx[z]
dz

ROC: R

8. What are initial and final value theorems?
If x[n] = 0 for n < 0, then

x[0] = Lt
z→∞ X [z]

is called initial value theorem. According to the finial value theorem if X [z] is
the z-transform x[n] and if all the poles of X [z] are inside the unit circle, then
the final value of x[n] = x[∞] is obtained form

x[∞] = Lt
z→1

(z − 1)X [z]

9. What do you understand by the time reversal property of z -transform?

If

x[n] Z←→ X [z] ROC: R

then

x[−n] Z←→ X

[
1

z

]
ROC:

1

R

Thus, the z-transform of the time reversal signal is obtained by replacing z by
its reciprocal and also its ROC by its reciprocal.

10. What do you understand by the causality of an LTID system?
An linear time invariant discrete-time system is said to be causal if the ROC
of the system function H [z] is the exterior of the circle containing all the poles
of H [z].

11. What do you understand by stability of an LTID system?
An LTID system is said to be stable if the ROC of the system function H [z]
includes the unit circle in the z-plane.
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12. When the system is said to be both causal and stable?
An LTID system is said to be both causal and stable if all the poles of the system
function H [z] are inside the unit circle in the z-plane.

13. Define system function.
System function or transfer function H [z] is defined as the ratio of the
z-transform of output sequence y[n] and the input sequence x[n]

H [z] = Y [z]
X [z]

14. What is the z -transform of δ[n − 2]?

δ[n − 2] Z←→ z−2

15. What is the z -transform of u[n] and δ[n]?

u[n] Z←→ z

(z − 1)

δ[n] Z←→ 1

16. Find the z -transform of x[n] = u[n] − u[n − 5].

X [z] = z

(z − 1)
[1 − z−5]

17. Write the relationship between z -transform and Fourier transform. The z-
transform reduces to Fourier transform on the unit circle in the complex z-plane.

18. Write the relationship between z -transform and Laplace transform. The
Laplace transform and z-transform are related as

es = z

X [s] = X [z]
∣∣∣
z=es

19. What is the inverse z -transform of X[ z
a ]?

X
[ z
a

]
Z−1←→ anx[n]

20. Find the system function of the following first-order difference equation
y[n] − 2 y[n − 1] = x[n] + x[n − 1]?
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H [z] = Y [z]
X [z] = [1 + z−1]

[1 − 2z−1]
= [z + 1]

[z − 2]
II. Long Answer Type Questions

1. Find the z-transform of the following sequence.

x[n] = [3n−1 − (−3)n−1]u[n]

X [z] = 2z2

3(z2 − 9)
ROC: |z| > 3.

2. Find the z-transform of

x[n] =
∞∑

n=0

1
3
z−n + 1

4
(−2)nz−n

X [z] = 1

3

1

(1 − z−1)
+ 1

3

1

(1 + 2z−1)
ROC: |z| > 2.

3. Find the z-transform of

x[n] =
∞∑

n=−1

(
1
4

)n+1

z−n

X [z] = z + 1

4

1(
1 − 1

4 z
−1

) ROC: |z| >
1

4
.

4. Find the z-transform of

x[n] =
∞∑

n=1

(
1
4

)−n+1

z−n

X [z] = 1

4
+ 4

(1 − 4z)
ROC: |z| <

1

4
.
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5. Find the z-transform of

x[n] =
(

1
10

)n

u[n − 4]

X [z] = 10−4 z−3

(
z − 1

10

) ROC: |z| >
1

10
.

6. Find the z-transform of

(a) x[n] = 1 0 ≤ n ≤ 9

= 0 otherwi se

(b) y[n] = x[n] − x[n − 1]

(a) X [z] = (1 − z−10)

(1 − z−1)
ROC: |z| > 0

(b) Y [z] = 1 − z−10 ROC: |z| > 0

7. Find the unilateral z-transform and the ROC for the following sequences:

(a) x[n] =
(
1
6

)n

u[n + 6]
(b) x[n] = 3δ[n + 4] + δ[n] + (3)nu[−n]
(c) x[n] =

(
1
4

)|n|

(a) X [z] = 1

(1 − 6z−1)
ROC: |z| > 6

(b) X [z] = 4 ROC: all z

(c) X [z] = 1(
1 − 1

4 z
−1

) ROC: |z| >
1

4

8. By applying properties of z-transform find the z -transform of the following

sequences given x[n] Z←→ z
(z2+2)
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(a) y[n] = x[n − 3]
(b) y[n] = nx[n]
(c) y[n] = x[n + 1] + x[n − 1]
(d) x[n] = 2nx[n]
(e) x[n] = (n − 2)x[n − 1]
(f) x[n] = x[−n]

(a) Y [z] = z−2

(z2 + 2)
ROC: |z| < 2 (Time shifting property)

(b) Y [z] = z[z2 − 2]
(z2 + 2)2

(Differentiation property)

(c) Y [z] = (z2 + 1)

(z2 + 2)
(Time advancing and time delaying)

(d) Y [z] = 2z

(z2 + 8)
(Multiplying property)

(e) Y [z] = −4

(z2 + 2)2
(Time differentiation and time shifting)

(f) Y [z] = z

(1 + 2z2)
(Time reversal)

9. Find the z-transform of

(a) x[n] = 2nu[n − 2]
(b) x[n] =

(
1
4

)n

u[−n]

(a) X [z] = 4z−2

(1 − 2z−1)

(b) X [z] = 1

(1 − 4z)

10. Find the z-transform of

(a) x[n] = (n − 4)u[n − 4]
(b) x[n] = u[n] − u[n − 4]
(c) x[n] = (n − 4)u[n]
(d) x[n] = n[u[n] − u[n − 4]]
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(a) X [z] = z−3

(z − 1)2
ROC: |z| > 1

(b) X [z] = z

(z − 1)
[1 − z−4] ROC: |z| > 1

(c) X [z] = (5z − 4z2)

(z − 1)2
ROC: |z| > 1

(d) X [z] = (z − 3z−2 + 2z−3)

(z − 1)2
ROC: |z| > 1

11. Find the z-transform of the following sequence?

x[n] =
(
1
4

)n

u[n]

=
(

−1
2

)n

u[−n − 1]

X [z] = 3

4

[
z(

z − 1
4

) (
z + 1

2

)
]

ROC:
1

4
< |z| <

1

2

12. Using convolution find y[n] given

x[n] =
(
1
2

)n

u[n]

h[n] =
(
1
3

)n

u[n]
y[n] = x[n] ∗ h[n]

y[n] =
[
3

(
1

2

)n

− 2

(
1

3

)n]
u[n] ROC: |z| <

1

2

13. Using partial function find the inverse z-transform

H[z] = (1 − z−1 + z−2)

(1 − z−1)(1 − 2z−1)(1 − 4z−1)
ROC: 2 < |z| < 4

h[n] =
[
1

3
− 3

2
(2)n

]
u[n] + 3

16
(4)nu[−n − 1]
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14. Find the inverse z-transform of

H[z] = 4z + 1

z − 1
4

using power series expansion?

(a) ROC : |z| >
1
4

(b) ROC : |z| <
1
4

(a) x[n] =
{
4, 2,

1

2
,
1

8
,

1

32
, . . .

}

↑
(b) x[n] = {. . . , 2048, −512, −128, −32, −4}

↑

15. Consider the algebraic expression for the z-transform of x[n]

x[n] =
(
1 − 1

4 z
−2

)

(
1 + 1

4 z
−1

) (
1 − 5

6 z
−1 + 1

6 z
−2

)

How many different ROCs could correspond the X[z]?

(a) ROC: |z| >
1

2

(b) ROC: 0 < |z| <
1

4

(c) ROC:
1

3
< |z| <

1

2

16. Consider the algebraic expression for the z-transform of x[n]

x[n] =
(
1 + z−1 + 4z−2

)

(
1 − 1

4 z
−1

) (
1 − 7

24 z
−1 + 1

48 z
−2

)

ROC: |z| > 1
4 . Find whether the system is causal and stable. X [z] is rational

and the poles are at z = 1
4 , z = 1

6 , and z = 1
8 . Since the ROC is exterior of the

outermost pole the system is causal. The ROC includes unit circle and the poles
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are inside the unit circle. The system is stable. Therefore the system is causal
and stable.

17. A system with impulse response h[n] = 5(3)nu[n − 1] produces on output
y[n] = (−4)nu[n − 1].Determine the input x[n].

x[n] = 1

5

[
(−4)nu[n] − 3(−4)n−1u[n − 1]] ROC: |z| > 4

18. Consider the following difference equation.

y[n] − y[n − 1] − 2 y[n − 2] = x[n] + 2x[n − 1]

The initial conditions are y[−1] = 1 and y[−2] = 2.The input x[n] = u[n].
Find (a) Zero input response, (b) Zero state response, (c) Natural response,
(d) Forced response, and (e) Total response.

(a) y0i [n] = [(−1)n + 4(2)n]u[n]
(b) y0s[n] =

[
−1

6
(−1)n + 8

3
(2)n − 3

2

]
u[n]

(c) yn[n] = −3

2
u[n]

(d) y f [n] =
[
5

6
(−1)n + 20

3
(2)n

]
u[n]

(e) ytotal[n] =
[
−3

2
+ 5

6
(−1)n + 20

3
(2)n

]
u[n]

19. Consider the causal LTID system represented in block diagram shown in
Fig. 5.19. (a) Determine the difference equation relating the output y[n] and
input x[n] and (b) Is the system stable?

(a)

y[n] − 1

4
y[n − 1] + 1

64
y[n − 2] = x[n] − 5x[n − 1] + 7x[n − 2]

(b) The ROC includes unit circle and the poles of system function are within
unit circle. Hence, the system is stable.

20. For eachof the followingdifference equationsdetermine the output response
y[n]?
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y[n]x[n]

5

1

7
1

64

1
4

z 1

z 1

Fig. 5.19 Block diagram of Problem 19

(a) y[n] − 4 y[n − 1] = x[n] wi th y[−1] = 2 and x[n] =
(
1
3

)n

u[n]

(b) y[n] + 1
3
y[n − 1] = x[n] − 1

3
x[n − 1]

wi th y[−1] = 1 and x[n] = u[n]

(a) y[n] =
[
100

11
(4)n − 1

11

(
1

3

)n]
u[n]

(b) y[n] =
[
3

2
− 5

6

(
−1

3

)n]
u[n]



Chapter 6
State Space Modeling and Analysis

Chapter Objectives

• To define the state of a system.
• To represent the mechanical systems and electrical networks by state equa-
tions.

• To convert transfer function model to state space model of continuous-time
system.

• To find the solution of the state equation of continuous-time system.
• To represent the discrete-time system by state equations.

6.1 Introduction

The transfer function (T.F.) model, for quite a long time, was used for the analysis
and design of linear time invariant continuous time systems. However, this model
has many limitations in that it is expressed as a ratio of output to input variables
and thus the internal behavior of the system is hidden. Further, the T.F. method is
valid only for linear systems with initial conditions being zero. It is powerless for
non-linear, time varying and multi-input and multi-output (MIMO) systems. It is
also difficult to handle large-scale complex systems with transfer function model.
Furthermore, system design modeling by T.F. is based on trial and error procedure
which in general will not lead to optimal control systems. All these limitations are
overcome by representing the system in state space model. This is a differential
(or difference) equation model which is expressed in n first-order equations which
are written in a specific format. The model is valid for linear, non-linear, and time
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varying systems and also when initial conditions are not zero. Unlike the T.F. model,
it gives a complete description of the internal behavior of all physical variables in the
system. In this chapter, we first develop state space model of mechanical systems and
electrical networks followed by the conversion of T.F. model to state space model.
The solution of state equation is derived and illustrated by simple examples. Finally,
discrete-time system represented by the difference equation is converted into state
equations.

6.2 The State of a System and State Equation
of Continuous-Time System

For a linear continuous-time system, the state of a system is defined as the min-
imum number of initial conditions that must be specified at any initial time
t0 so that the complete dynamic behavior of the system at any time t > t0 is
determined when the input x(t) is known.

When the input x(t) is applied, the future states of the system, for t > t0 also
change and we can uniquely determine these states. Since the states of the system
vary with respect to time we call these variables as state variables.

The number of state variables depends on the dynamic model selected to describe
the physical systems. For a system described by nth-order differential equation,
there will be n state variables. If these n state variables form the coordinates of a
n-dimensional vector space, it is known as state space. For a continuous-time system
described bynth-order differential equation, if the variableswhich represent the states
are chosen less than n, then the system is not fully represented and information about
the missing states will not be known. Similarly, if the states are chosen more than
n, then some of the states chosen are redundant and they can always be expressed
in terms of other known states. Hence, for an nth-order model of a system, it is
necessary strictly to choose only n appropriate states and they are represented by n
first-order equations together with the input.

6.3 Vector-Matrix Differential Equation
of Continuous-Time System

State variable equations, whether linear or non-linear, are expressed in the time
domain by using compact vector–matrix notations. These equations are called
vector–matrix differential equations. The standard form of representing these state
equations for a continuous-time system is

q̇(t) = Aq(t) + Bx(t) (6.1)

y(t) = Cq(t) + Dx(t) (6.2)
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Fig. 6.1 Block diagram representation of state Eqs. (6.1) and (6.2)

Equation (6.1) is called the state equation and Eq. (6.2) is called output equation.
Equations (6.1) and (6.2) together describe the system dynamics and they are called
vector–matrix differential equations.

In Eqs. (6.1) and (6.2),

q(t) =State vector (n × 1 dimension)
y(t) =Output vector (p × 1 dimension)
x(t) = Input vector (r × 1 dimension)
A =State matrix (n × n dimension)
B = Input matrix (n × r dimension)
C =Output matrix (p × n dimension)
D =Direct transmission matrix (p × r dimension)

A block diagram representation of Eqs. (6.1) and (6.2) is shown in Fig. 6.1.
Depending upon the dimensions of the vector q, x , and y, the appropriate dimen-

sions of the matrices, A, B, and C are chosen. In most of the practical applications,
the direct transmission of input x(t) to the output y(t) is not done, and hence D = 0.
In forming the state Eq. (6.1), it is to be observed that only the first derivative of q(t)
appears on the left side of the equation and no derivative of q(t) appears on the right
side. The right side of the equation contains only the states and input. The following
examples illustrate the method of forming state equations.

6.3.1 State Equations for Mechanical Systems

The dynamic equations of mechanical systems are written from the free body dia-
gram. The physical variables such as displacement, velocity, etc., are chosen as the
states and for each state variable the equation for its first derivative is obtained and
converted in the format of Eq. (6.1).

Example 6.1 For themechanical system shown in Fig. 6.2a, form the state equation.
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f(t)

p
K

M f(t)M

B

(a) (b)

Free Body DiagramMechanical System 

 d 2 p
dt2

d p

K p

dt

M

B 

Fig. 6.2 Mechanical system and its free body diagram

Solution

1. The mechanical system is shown in Fig. 6.2a. Its free body diagram is shown in
Fig. 6.2b.

2. p is the displacement of mass M and f (t) is the force applied. In the free body
diagram, the opposing forces act in the direction opposite to the direction of
motion.

3. From Fig. 6.2b, the following dynamic equations for the given mechanical system
are written:

M
d2 p

dt2
+ B

dp

dt
+ Kp = f (t) (6.3)

4. Let us choose the displacement p, which is the physical variable in themechanical
system as one state variable. Thus,

p = q1(t) (6.4)

5.
dp

dt
= q̇1(t)

Let us choose the velocity dp
dt as the second state variable. Thus,

dp

dt
= q̇1(t) = q2(t) (6.5)

6. Equation (6.3), gives a complete description of the given mechanical system and
it is a second-order system. Therefore, there should be two states and two-state
equations. Equation (6.5) represents one state equation. Similar to that, we should
obtain an equation for q̇2(t).
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7. Now consider Eq. (6.3). By substituting p = q1(t),
dp
dt = q2(t) and f (t) = x(t),

we get
Mq̇2(t) + Bq2(t) + Kq1(t) = x(t)

Solving for q̇2(t), we get

q̇2(t) = − K

M
q1(t) − B

M
q2(t) + 1

M
x(t) (6.6)

8. From Eqs. (6.5) and (6.6), the following vector–matrix differential equation is
formed.

[
q̇1(t)

q̇2(t)

]
= [q̇(t)] =

⎡
⎣ 0 1

− K

M
− B

M

⎤
⎦

︸ ︷︷ ︸
[
q1(t)

q2(t)

]
+

⎡
⎣ 0

1

M

⎤
⎦

︸ ︷︷ ︸
x(t) (6.7)

A B

In Eq. (6.7),

A =
⎡
⎣ 0 1

− K

M
− B

M

⎤
⎦ and B =

⎡
⎣ 0

1

M

⎤
⎦

Note that Amatrix is a square matrix. In the examples to follow, for convenience,
the state variables are denoted as q instead of q(t).

Example 6.2 Consider the mechanical system shown in Fig. 6.3a. From the state
equation, the displacement plus velocity of mass M is taken as the output.

Solution

1. The mechanical system is represented in Fig. 6.3a and its free body diagram in
Fig. 6.3b. The mass M is given a displacement of p2. The point A moves with a
displacement p1.

2. From free body diagram, the following equations are written:

M p̈2 + B( ṗ2 − ṗ1) + K2 p2 = f (t) (6.8)

B( ṗ1 − ṗ2) + K1 p1 = 0 (6.9)

The following state variables are chosen

p2 = q1
ṗ2 = q2
p1 = q3
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M

A
B

M

A

f(t)

f(t)
K1

K1 p1

K2 p2

Mp2

B(p1 p2)

B(p2 p1)

K2

p1

p2

(b)(a)

Fr ee Body DiagramMechani cal System 

˙̇ ˙

˙ ˙

˙

Fig. 6.3 Mechanical system and its free body diagram

The equations for the first derivatives of q1, q2, and q3 are to be obtained.

q̇1 = ṗ2 = q2
Mq̇2 + K1q3 + K2q1 = x(t)

q̇2 = −K2

M
q1 − K1

M
q3 + 1

M
x(t)

Bq̇3 − Bq2 + K1q3 = 0

q̇3 = q2 − K1

B
q3

Thus,

q̇(t) =

⎡
⎢⎢⎢⎢⎣

0 1 0

−K2

M
0 −K1

M

0 1 −K1

B

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸

⎡
⎢⎢⎢⎣
q1

q2

q3

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

0

1

M

0

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
x(t)

A B

The output y is given by
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f(t)
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˙
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Fig. 6.4 Mechanical system and its free body diagrams

y = [1 1 0]︸ ︷︷ ︸
⎡
⎢⎣
q1
q2
q3

⎤
⎥⎦

C

Example 6.3 Consider the mechanical system shown in Fig. 6.4a. Form the state
equation.

Solution

1. Themechanical system is shown in Fig. 6.4a and its free body diagram in Fig. 6.4b.
2. From Fig. 6.4b, the following dynamic equations are written:

M2 p̈2 + B2 ṗ2 + K2 p2 + K1(p2 − p1) = f (t) (6.10)

M1 p̈1 + K1(p1 − p2) = 0 (6.11)
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3. The following state variables are chosen

q1 = p1
q2 = q̇1 = ṗ1
q3 = p2
q4 = q̇3 = ṗ2

4. The first derivatives q̇1 and q̇3 are known. The first derivatives q̇2 and q̇4 are
obtained from Eqs. (6.11) and (6.10) respectively and they are given below:

q̇2 = − K1

M1
q1 + K1

M1
q3 (6.12)

q̇4 = K1

M2
q1 − (K1 + K2)

M2
q3 − B2

M2
q4 + 1

M2
f (t) (6.13)

5. The vector–matrix differential equation is thus obtained as

q̇(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

− K1

M1
0 − K1

M1
0

0 0 0 1
K1

M2
0 − (K1 + K2)

M2
− B2

M2

⎤
⎥⎥⎥⎥⎥⎥⎦
q(t) +

⎡
⎢⎢⎢⎢⎢⎣

0

0

0
1

M2

⎤
⎥⎥⎥⎥⎥⎦ x(t)

Example 6.4 For the mechanical system shown in Fig. 6.5, obtain the state space
model.

Solution

1. A hybridmechanical systemwhich is a combination of translational and rotational
systems is shown in Fig. 6.5. Just by inspection, the following dynamic equations
are written:2.

T (t) = B1(θ̇1 − θ̇2) + K1(θ1 − θ2) (6.14)

Also

T (t) = J θ̈2 + B2θ̇2 + r(M p̈ + B3 ṗ + K2 p) (6.15)

Substituting p = rθ2 in Eq. (6.15), we get

T (t) = (J + r2M)θ̈2 + (B2 + r2B3)θ̇2 + r2K3θ2 (6.16)

3. The following state variables are chosen
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1
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2

J

B1

B3

B2

K1

K3

M

T(t)

p

Fig. 6.5 A hybrid mechanical system

q1 = θ1

q2 = θ2

q3 = θ̇2 = q̇2

4. The derivatives of q1 and q2 are obtained fromEqs. (6.14) and (6.16) and are given
as

q̇1 = −K1

B1
q1 + K1

B1
q2 + q3 + 1

B1
T (t)

q̇2 = q3

q̇3 = −Keq

Jeq
q2 − Beq

Jeq
q3 + 1

Jeq
T (t)

where Jeq = (J + r2M); Beq = (B2 + r2B3) and Keq = r2K3

q̇(t) =

⎡
⎢⎢⎢⎢⎣
−K1

B1

K1

B1
1

0 0 1

0 −Keq

Jeq
− Beq

Jeq

⎤
⎥⎥⎥⎥⎦q(t) +

⎡
⎢⎢⎢⎢⎣

1

B1
0
1

Jeq

⎤
⎥⎥⎥⎥⎦ x(t)
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v(t)

R

i

L

Cvc

Fig. 6.6 R-L-C series circuit

6.3.2 State Equations for Electrical Circuits

The number of independent energy-storing elements in the electrical circuit deter-
mine the number of state variables. The capacitor and inductor are the two energy-
storing elements in electrical circuits. The physical variables namely the current
through the inductor and voltages across the capacitor are chosen as the states vari-
ables. The following steps are followed while forming the state space equations for
electrical circuits.

1. Choose all independent inductor currents and the capacitor voltages as the state
variables.

2. The state variables and their first derivatives are expressed in terms of a set of
loop circuits.

3. Write loop equations and eliminate all variables other than the state variables and
their first derivatives.

The following examples illustrate themethod of forming state equations for electrical
networks.

Example 6.5 Write the state equations for the network shown in Fig. 6.6.

Solution

1. Let i be the current passing through the inductor L and vC be the voltage across
the capacitor C . These variables are chosen as state variables.

q1 = i

q2 = vc

2. The following loop equation is written

L
di

dt
+ Ri + vc = v(t)

q̇1 = − R

L
q1 − 1

L
q2 + 1

L
v(t) (6.17)



6.3 Vector-Matrix Differential Equation of Continuous-Time System 577

v(t)

L

i

ic

i1

R CvC

Fig. 6.7 Electrical circuit of Example6.6

Also

vc = 1

C

∫
i dt

Differentiating both sides, we get

v̇c = 1

C
i

q̇2 = 1

C
q1 (6.18)

3. Equations (6.17) and (6.18) represent the first derivatives of the chosen states.
Hence,

q̇(t) =
⎡
⎢⎣− R

L
− 1

L
1

C
0

⎤
⎥⎦q(t) +

⎡
⎣ 1

L
0

⎤
⎦ v(t)

Example 6.6 For the electrical network shown in Fig. 6.7, form the state equation.

Solution

1. Let i be the current passing through the inductor L and vc be the voltage across
the capacitor C . These variables are taken as the state variables. Thus,

q1 = i

q2 = vc

2. The following loop equation connecting L and C is written

L
di

dt
+ vc = v(t)

q̇1 = − 1

L
q2 + 1

L
v(t) (6.19)
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Fig. 6.8 Electrical network of Example6.7

3. Also

ic = i − i1

C
dvc
dt

= i − vc
R

q̇2 = 1

C
q1 − 1

RC
q2 (6.20)

4. Combining Eqs. (6.19) and (6.20), we get

q̇(t) =
⎡
⎢⎣ 0 − 1

L
1

C
− 1

RC

⎤
⎥⎦q(t) +

⎡
⎣ 1

L
0

⎤
⎦ v(t)

Example 6.7 For the electrical network shown in Fig. 6.8, form the state equations.

Solution

1. There are three energy-storing elements, namely L , C1, and C2, and they are
independently connected and there should be three state variables. The following
state variables are chosen.

q1 = v1
q2 = v2
q3 = i3

2. The first derivative of these variables is obtained as follows. At v1 node,

i1 = i2 + i3
(v − v1)

R1
= C1

dv1
dt

+ i3
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dv1
dt

= − 1

R1C1
v1 − 1

C1
i3 + 1

R1C1
v

q̇1 = − 1

R1C1
q1 − 1

C1
q3 + 1

R1C1
v (6.21)

3. At note v2, the following equation is written

i3 + is = i4 + i5

= C2
dv2
dt

+ v2
R2

Substituting the state variables, we get

q3 + is = C2q̇2 + q2
R2

q̇2 = − 1

R2C2
q2 + 1

C2
q3 + 1

C2
is (6.22)

4. The voltage drop across the inductor L is

L
di3
dt

= v1 − v2

q̇3 = 1

L
q1 − 1

L
q2 (6.23)

5. Combining Eqs. (6.21), (6.22) and (6.23), we get

q̇(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

− 1

R1C1
0 − 1

C1

0 − 1

R2C2

1

C2
1

L
− 1

L
0

⎤
⎥⎥⎥⎥⎥⎥⎦
q(t) +

⎡
⎢⎢⎢⎢⎣

1

R1C1
0

0
1

C2

0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
v(t)

is(t)

⎤
⎥⎥⎥⎥⎦

Substituting the numerical values, we get

q̇(t) =
⎡
⎣−1 0 −4

0 −2 2
0.5 −0.5 0

⎤
⎦q(t) +

⎡
⎣1 0
0 2
0 0

⎤
⎦

⎡
⎣v(t)

is(t)

⎤
⎦

Example 6.8 For the electrical network shown in Fig. 6.9, form the vector–matrix
differential equation.
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Fig. 6.9 Electrical network of Example 6.8

Solution

1. There are four energy-storing elements, namely L1, L2, C1, and C2. Hence,
four state variables, the current through the inductors and the voltages across the
capacitors are chosen. Thus,

q1 = i1
q2 = i3

q3 = v3
q4 = v4

The dimension of A matrix is 4× 4. Since there are two inputs namely v1(t) and
v2(t), the dimension of B matrix is 3× 2.

2. The following loop equation is written connecting v1(t), R1, L1, R2, and C2.

v1(t) = L1
di1
dt

+ i1R1 + (i1 + i3)R2 + v4

q̇1 = − (R1 + R2)

L1
q1 − R2

L1
q2 − 1

L1
q4 + 1

L1
v1(t) (6.24)

3. The following loop equation is written connecting v2(t), L2, C1, R2, and C2.

v2(t) = L2
di3
dt

+ v3 + (i1 + i3)R2 + v4

q̇2 = − R2

L2
q1 − R2

L2
q2 − 1

L2
q3 − 1

L2
q4 + 1

L2
v(t) (6.25)

4. For the capacitance C1, the following equation is written
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Fig. 6.10 Electrical network of Example6.9

C1
dv3
dt

= i3

q̇3 = 1

C1
q2 (6.26)

5. For the capacitance C2, the following equation is written

C2
dv4
dt

= i1 + i3

q̇4 = 1

C2
q1 + 1

C2
q2 (6.27)

6. Combination Eqs. (6.24)–(6.26) and (6.27) the following vector–matrix differen-
tial equation is obtained

q̇(t) =

⎡
⎢⎢⎢⎢⎣
− (R1+R2)

L1
− R2

L1
0 − 1

L1

− R2
L2

− R2
L2

− 1
L2

− 1
L2

0 1
C1

0 0
1
C2

1
C2

0 0

⎤
⎥⎥⎥⎥⎦q(t) +

⎡
⎢⎢⎢⎢⎣

1
L1

0

0 1
L2

0 0

0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
v1(t)

v2(t)

⎤
⎥⎥⎥⎥⎦

Example 6.9 Develop the state model for the electrical network shown in
Fig. 6.10.

(Anna University, April, 2004)

Solution

1. There are two energy-storing elements, L and C . The current i1 through L1 and
voltage vc across C are chosen as the state variables. Thus,

q1 = i1
q2 = vc
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2. The following equation is written connecting R1, R2, and C .

vc + i2R2 = (i1 − i2)R1

i2 = i1
R1

(R1 + R2)
− vc

(R1 + R2)
(6.28)

The following equation is written connecting ei , L , C , and R2.

ei = L
di1
dt

+ vc + i2R2

= L
di1
dt

+ vc + i1
R1R2

R1 + R2
− vcR2

(R1 + R2)

q̇1 = − R1R2

L(R1 + R2)
q1 + 1

L

(
R2

(R1 + R2)
−1

)
q2 + 1

L
ei (6.29)

3. For the capacitor C , the following equation is written

C
dvc
dt

= i2 = i1R1

(R1 + R2)
− vc

(R1 + R2)

q̇2 = − R1

C(R1 + R2)
q1 − 1

C(R1 + R2)
q2 (6.30)

4. Combining Eqs. (6.29) and (6.30), we get

q̇(t) =
⎡
⎣− (R1R2)

L(R1+R2)
1
L

(
R2

R1+R2
− 1

)
R1

C(R1+R2)
− 1

C(R1+R2)

⎤
⎦q(t) +

[
1
L

0

]
ei

Substituting the numerical value, we get

q̇(t) =
[

15
16 − 3

16

3
8

1
8

]
q(t) +

[
0.5

0

]
ei

5. The output

e0 = i2R2

= R1R2

R1 + R2
i1 − vc

R1 + R2

= 1

8
(15q1 − q2)

y = e0 = 1

8
[15− 1]

[
q1
q2

]
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6.4 State Equations from Transfer Function

State equations can be easily obtained from the transfer function of the system.
Consider the first-order system with the following transfer function:

H(s) = 10

(s + a)

The system realization is shown in Fig. 6.11.
From Fig. 6.11, the following equations are derived.

q̇ = −aq + x

y = 10q (6.31)

The output of each integrator ( 1s ) is chosen as one state variable. Thus, for an nth-
order system, n integrators are required. The following methods of realization are
used to determine the state equation. They are

1. The direct form-II.
2. The cascade form.
3. The parallel form.

Example 6.10 Determine the state space model of a continuous-time system whose
transfer function is given by

H(s) = 3s2 + 24s + 44

(s3 + 12s2 + 44s + 48)

Use the following methods:

(a) The direct form-II.
(b) The cascade form.
(c) The parallel form.

Show that the A matrix is not unique for the given system.

Fig. 6.11 First-order T.F.
realization

x

y

1
s

a

q

q
10
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x(t) y(t)

1
s

1
s

1
s

q3

q2

q1

q3

q2

q1

12 3

24

44

44

48

Fig. 6.12 Direct form-II realization of H(s) = 3s2 + 24s + 44

(s3 + 12s2 + 44s + 48)

Solution

(a) The Direct Form-II

H(s) = 3s2 + 24s + 44

(s3 + 12s2 + 44s + 48)

The above equation can be written as

H(s) =
3
s + 24

s2 + 44
s3

1+ 121
s + 44 1

s2 + 48
s3

Here, b0 = 0; b1 = 3; b2 = 24; b3 = 44; a1 = 12; a2 = 44; a3 = 48. The direct
form-II realization of H(s) is shown in Fig. 6.12. From Fig. 6.12, the following
equations are written:

q̇1 = q2
q̇2 = q3
q̇3 = −48q1 − 44q2 − 12q3 + x(t)
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x(t) y(t)

4 6 25.155 2.845

q1

H1(s) H2(s) H3(s)

q1 q2 q3

q2 q3

1
s

1
s

3

1
s

˙ ˙ ˙

Fig. 6.13 The cascade realization of H(s) = 3(s + 5.155)(s + 2.845)

(s + 4)(s + 6)(s + 2)

The state equation for H(s) is therefore written as

q̇(t) =
⎡
⎣ 0 1 0

0 0 1
−48 −44 −12

⎤
⎦

︸ ︷︷ ︸
q(t) +

⎡
⎣0
0
1

⎤
⎦

︸︷︷︸
x(t) (6.32)

A B

Also from Fig. 6.12, the output y(t) is obtained as

y(t) = 44q1 + 24q2 + 3q3
y(t) = [44 24 3︸ ︷︷ ︸]q(t)

C

(b) The Cascade Form

H(s) = 3s2 + 24s + 44

(s3 + 12s2 + 44s + 48)

The above equation can be written as

H(s) = (s + 5.155)

(s + 4)

(s + 2.845)

(s + 6)
3

1

(s + 2)
= H1(s)H2(s)H3(s)

The cascade form realization is shown in Fig. 6.13.
From Fig. 6.13, the following equations are for the first derivatives of the states
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q̇1 = −4q1 + x(t)

q̇2 = −6q2 + q̇1 + 5.155q1
= −6q2 − 4q1 + x(t) + 5.155q1
= 1.155q1 − 6q2 + x(t)

q̇3 = −2q3 + q̇2 + 2.8455q2
= −2q3 + 1.155q̇1 − 6q2 + x(t) + 2.845q2

q̇3 = 1.155q1 − 3.155q2 − 2q3 + x(t)

y(t) = 3q3

The state equations are given below:

q̇(t) =
⎡
⎣ −4 0 0
1.155 −6 0
1.155 −3.155 −2

⎤
⎦ q(t) +

⎡
⎣1
1
1

⎤
⎦ x(t) (6.33)

y(t) = [0 0 3] q(t)

(c) The Parallel Form Realization

H(s) = 3s2 + 24s + 44

(s3 + 12s2 + 44s + 48)

= 3s2 + 24s + 44

(s + 2)(s + 4)(s + 6)

= 1

(s + 2)
+ 1

(s + 4)
+ 1

(s + 6)
= H1(s) + H2(s) + H3(s)

The parallel form realization of H(s) is shown in Fig. 6.14. From Fig. 6.14, the
following equations are written for the first derivatives of the states

q̇1 = −2q1 + x(t)

q̇2 = −4q2 + x(t)

q̇3 = −6q3 + x(t)

y(t) = q1 + q2 + q3

q̇(t) =
⎡
⎣−2 0 0

0 −4 0
0 0 −6

⎤
⎦ q(t) +

⎡
⎣1
1
1

⎤
⎦ x(t) (6.34)

y(t) = [1 1 1]q(t)
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1
s

1
s

1
s

q1

q1

q2

q2

q3

q3

2

4

1

1

1

6

H3(s)

H2(s)

H1(s)

x(t) y(t)

˙

˙

˙

Fig. 6.14 The parallel form realization of H(s)

Equations (6.32), (6.33) and (6.34) give the state space description of the system
T.F. and the system A matrices are not unique. But all of them will give the
same characteristics of the system. In parallel form representation, the eigen
values of the system T.F. form the diagonal elements of the A matrix.

Example 6.11 Consider the following T.F. of a certain system

H(s) = 10(s + 2)

s2(s + 1)2(s + 4)

Determine A, B, and C matrices using parallel form realization.
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1
s

1
s

1
s

q3

q3

q4

q4

q1 q2

1 1

35
4

5

1
s

q5

q5

4

1
s

x(t) y(t)

5
36

80
9

10
3

˙ ˙

˙

Fig. 6.15 The parallel form realization of H(s) for Example 6.11

Solution

H(s) = 10(s + 2)

s2(s + 1)2(s + 4)

= A1

s2
+ A2

s
+ A3

(s + 1)2
+ A4

(s + 1)
+ A5

(s + 4)
(6.35)

The residues A1, A2, A3, A4, and A5 are determined by any one method discussed
in previous chapters and are given below:

A1 = 5; A2 = −35

4
; A3 = 10

3
; A4 = 80

9
; and A5 = − 5

36
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H(s) = −35

4

1

s
+ 5

s2
+ 80

9

1

(s + 1)
+ 10

3

1

(s + 1)2
− 5

36

1

(s + 1)
(6.36)

Equation (6.36) is represented in Fig. 6.15. From Fig. 6.15, the following equations
in terms of state variables

q̇1 = x(t)

q̇2 = q1
q̇3 = −q3 + x(t)

q̇4 = q3 − q4
q̇5 = −4q5 + x(t)

y(t) = −35

4
q1 + 5q2 + 80

9
q3 + 10

3
q4 − 5

36
q5

The above equations are written in vector–matrix differential equation form as

q̇(t) =

⎡
⎢⎢⎢⎢⎣
0 0 0 0 0
1 0 0 0 0
0 0 −1 0 0
0 0 1 −1 0
0 0 0 0 −4

⎤
⎥⎥⎥⎥⎦ q(t) +

⎡
⎢⎢⎢⎢⎣
1
0
1
0
1

⎤
⎥⎥⎥⎥⎦ x(t)

y(t) =
[
−35

4
, 5,

80

9
,
10

3
, − 5

36

]
q(t)

6.4.1 General Case of Representation

The state space description can be done in several ways. However, the state variables
obtained from direct form II are quite convenient since the state equations can be
immediately written just by inspection of the transfer function. Consider the general
N th-order transfer function given below:

H(s) = b0sN + b1sN−1 + b2sN−2 + · · · + bN
sN + a1sN−1 + a2sN−2 + · · · + aN

=
(
b0 + b1

s + b2
s2 + · · · + bN

sN
)

(
1+ a1

s + a2
s2 + · · · + aN

sN
) (6.37)

Equation (6.37) is realized in direct form II structure and is shown in Fig. 6.16. From
Fig. 6.16, the following equation for the state variable is written:
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x(t) y(t)

1
s

1
s

1
s

1
s

qN

q2

q1

q1aN

a1

a2

aN 1

bN

b2

b1

b0

bN 1

qN

qN 1

qN 1

qN 2

˙

˙

˙

˙

Fig. 6.16 Direct form II realization of N th-order LTIC system

q̇1 = q2
q̇2 = q3
q̇3 = q4

...

q̇N−1 = qN
q̇N = −aNq1 − aN−1q2, . . . ,−a2qN−1 − a1qN + x(t) (6.38)
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y(t) = bNq1 + bN−1q2 + · · · + b1qN + b0q̇N
= (bN − b0aN )q1 + (bN−1 − b0aN−1)q2 + · · ·

+(b1 − b0a1)qN + b0x(t) (6.39)

Equations (6.38) and (6.39) can be represented in matrix form as given below:

q̇(t) =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · · · · 1
−aN −aN−1 −aN−2 · · · −a2 −a1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

q1
q2
...

qN−1

qN

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣

0
0
...

0
1

⎤
⎥⎥⎥⎥⎥⎦ x(t)

y(t) = [(bN − b0aN )(bN−1 − b0aN−1) . . . (b1 − b0a1)]q + b0x(t)

= [b̄N b̄N−1 . . . b̄1]q + b0x(t) (6.40)

where b̄N = (bN − b0aN ). The A matrix given in Eq. (6.40) is said to be in phase
variable canonical form.

6.4.2 Step by Step Procedure to Determine A, B and C
Matrices

1. If the system is described by linear differential equation, convert that into T.F.
form. Find the coefficients of numerator polynomial b0, b1, . . . , bN and the coef-
ficients of the denominator polynomials a0, a1, . . . , aN .

2. The elements of A matrix are written in phase variable canonical form. The
elements of the last row are written in the reverse order with a negative sign as
−aN , −aN−1, . . . ,−a2, a1. The elements of B matrix and identified with 0s in
all the rows and 1 in the last row.

3. The elements of C matrix are identified as given in Eq. (6.40). To remember this
in an easier way, the elements of the first column are obtained from the product
b0aN being subtracted from bN , the second column from the product b0aN−1 being
subtracted from bN−1 and so on. This can be easily viewed from Fig. 6.16. For
the state q1, the right side branch gain is bN . The left side branch gain after being
multiplied by b0 is −b0aN . The sum of these two is (bN − b0aN ). Similarly, the
second column of C is obtained which corresponds to the state q2. This is nothing
but (bN−1 − b0aN−1).

Example 6.12 Consider the following differential equation which describes the
dynamics of a continuous-time system

5
d4y

dt4
+ 2

d3y

dt3
+ 4

d2y

dt2
+ 7

dy

dt
+ 8y = 8

dx(t)

dt
+ 7x(t)
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Form the state space equation.

Solution

5
d4y

dt4
+ 2

d3y

dt3
+ 4

d2y

dt2
+ 7

dy

dt
+ 8y = 8

dx(t)

dt
+ 7x(t)

Taking Laplace transform on both sides of the above equation, we get

H(s) = Y (s)

X (s)
= (8s + 7)

5
(
s4 + 2

5 s
3 + 4

5 s
2 + 7

5 s + 8
5

)
where

b0 = 0, b1 = 0, b2 = 0, b3 = 8

5
, b4 = 7

5
, a1 = 2

5
, a2 = 4

5
, a3 = 7

5
, a4 = 8

5
.

The state equation is written in phase variable canonical form as given below:

q̇(t) =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1

− 8
5 − 7

5 − 4
5 − 2

5

⎤
⎥⎥⎦ q(t) +

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦ x(t)

b̄4 = b4 − b0a4 = 7

5

b̄3 = b3 − b0a3 = 8

5
b̄2 = b2 − b0a2 = 0

b̄1 = b1 − b0a1 = 0

y = 1

5
[7 8 0 0]︸ ︷︷ ︸ q

C

Example 6.13 Consider the following T.F. of a certain continuous-time system

H(s) = 7s3 + 11s2 + 14s + 10

s3 + 8s2 + 5s + 4

Form the state equations.

Solution

H(s) = 7s3 + 11s2 + 14s + 10

s3 + 8s2 + 5s + 4

where
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b0 = 7, b1 = 11, b2 = 14, b3 = 10, a1 = 8, a2 = 5, a3 = 4.

q̇(t) =
⎡
⎣ 0 1 0

0 0 1
−4 −5 −8

⎤
⎦ q(t) +

⎡
⎣0
0
1

⎤
⎦ x(t)

b̄3 = (b3 − b0a3) = (10− 28) = −18

b̄2 = (b2 − b0a2) = (14− 35) = −21

b̄1 = (b1 − b0a1) = (11− 56) = −45

y = [−18 − 21 − 45]q + 7x(t)

6.5 Transfer Function of Continuous-Time System
from State Equations

Consider the state Eqs. (6.1) and (6.2)

q̇(t) = Aq(t) + Bx(t)

y(t) = Cq(t) + Dx(t)

Let the initial conditions be zero. Taking Laplace transform on both sides of the
above equations, we get

[s I − A]Q(s) = BX (s)

Pre-multiplying both sides by [s I − A]−1, we get

Q(s) = [s I − A]−1BX (s) (6.41)

Similarly,

Y (s) = CQ(s) + DX (s) = C[s I − A]−1BX (s) + DX (s)

Y (s)

X (s)
= H(s) = C[s I − A]−1B + D (6.42)

[s I − A]−1 is called the state transition matrix (STM). In Eq. (6.42),

[s I − A]−1 = Adjoint [s I − A]
Determinant [s I − A]
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Example 6.14 Consider the following state equations

q̇ =
[−3 1
−2 0

]
q +

[
1
0

]
q(t)

y = [0 1]q(t)

Determine the system function.

Solution

q̇ =
[−3 1
−2 0

]
q +

[
1
0

]
q

y = [0 1]q
(s I − A) =

[
(s + 3) −1

2 s

]

(s I − A)−1 = 1

(s + 1)(s + 2)

[
s 1
−2 (s + 3)

]

(s I − A)−1B = 1

(s + 1)(s + 2)

[
s 1
−2 (s + 3)

] [
1
0

]

= 1

(s + 1)(s + 2)

[
s
−2

]

H(s) = Y (s)

X (s)
= C[s I − A]−1B

= 1

(s + 1)(s + 2)
[0 1]

[
s
−2

]

H(s) = −2

(s + 1)(s + 2)

6.6 Solution of State Equations

The state equations of a linear time invariant system are solved in both time and
frequency domains. In the frequency domain, the Laplace transform method is used.
These two methods are discussed below.
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6.6.1 Laplace Transform Solution of State Equations

Consider the vector–matrix differential equation of (6.1)

q̇ = Aq + Bx(t)

Taking Laplace transform on both sides of the above equation, we get

sQ(s) − q(0) = AQ(s) + BX (s)

(s I − A)Q(s) = q(0) + BX (s) (6.43)

Pre-multiplying both sides of Eq. (6.43) by [s I − A]−1, we get

Q(s) = [s I − A]−1[q(0) + BX (s)]
= φ(s)[q(0) + BX (s)] (6.44)

where

φ(s) = [s I − A]−1 (6.45)

Q(s) = φ(s)q(0) + φ(s)BX (s)

Taking the inverse Laplace transform, we get

q(t) = L−1[φ(s)q(0)] + L−1[φ(s)BX (s)] (6.46)

φ(s) defined in Eq. (6.45) is the STM. In Eq. (6.46) L−1[φ(s)q(0)] gives the zero
input response and L−1[φ(s)BX (s)] gives zero state response.

Example 6.15 A certain system is described by the following state equation:

q̇ = Aq + Bx(t)

where

A =
[−3 1
−2 0

]
; B =

[
1
0

]
; x(t) = u(t)

The initial conditions are q1(0) = 1 and q2(0) = −1. Find STM and hence q(t).
Also find y(t) if C = [0 1].
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Solution

q̇ =
[−3 1
−2 0

]
q +

[
1
0

]
x(t)

(s I − A) =
[
(s + 3) 1

2 s

]

The STM is

φ(s) = [s I − A]−1 = 1

(s + 1)(s + 2)

[
s 1
−2 s + 3

]
Q(s) = [s I − A]−1q(0) + [s I − A]−1BX (s)

(s I − A)−1q(0) = 1

(s + 1)(s + 2)

[
s 1
−2 s + 3

] [
1
−1

]

= 1

(s + 1)(s + 2)

[
(s − 1)
−(s + 5)

]

=

⎡
⎢⎢⎢⎣

(s − 1)

(s + 1)(s + 2)

− (s + 5)

(s + 1)(s + 2)

⎤
⎥⎥⎥⎦

Given x(t) = u(t) and X (s) = 1
s

[s I − A]−1BX (s) = 1

(s + 1)(s + 2)

[
s 1
−2 s + 3

] [
1
0

]
1

s

= 1

s(s + 1)(s + 2)

[
s
−2

]
=

⎡
⎢⎢⎢⎣

1

(s + 1)(s + 2)

− 2

s(s + 1)(s + 2)

⎤
⎥⎥⎥⎦

q(t) = L−1{[s I − A]−1q(0) + [s I − A]−1BX (s)}

= L−1

⎡
⎢⎢⎢⎣

(s − 1)

(s + 1)(s + 2)

(s + 5)

(s + 1)(s + 2)

⎤
⎥⎥⎥⎦ + L−1

⎡
⎢⎢⎢⎣

1

(s + 1)(s + 2)

−2

s(s + 1)(s + 2)

⎤
⎥⎥⎥⎦

= L−1

⎡
⎢⎢⎢⎣
− 2

(s + 1)
+ 3

(s + 2)

− 4

(s + 1)
+ 3

(s + 2)

⎤
⎥⎥⎥⎦ + L−1

⎡
⎢⎢⎢⎣

1

(s + 1)
− 1

(s + 2)

− 1

s
+ 2

(s + 1)
− 1

(s + 2)

⎤
⎥⎥⎥⎦

q(t) =
[

2e−2t − e−t

2e−2t − 2e−t − 1

]
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q1(t) = (2e−2t − e−t )u(t)
q2(t) = (2e−2t − 2e−t − 1)u(t)
y(t) = Cq(t) = 2e−2t − 2et − 1

6.6.2 Time Domain Solution to State Equations

Consider the state equation

q̇ = Aq + Bx(t) (6.47)

Pre-multiplying Eq. (6.47) by e−At on both sides, we get

e−At q̇ = e−At Aq + e−At Bx(t) (6.48)

(e−At q̇ − e−At Aq) = e−At Bx(t)
d

dt
[e−Atq] = e−At Bx(t)

By integrating both sides of the above equation from 0 to t , we get

e−Atq − q(0) =
∫ t

0
e−Aτ Bx(τ )dτ

q(t) = eAtq(0) +
∫ t

0
eA(t−τ)Bx(τ )dτ (6.49)

In Eq. (6.49), eAt is the STM, Eq. (6.49) can be generalized to any initial value t0 and
hence it can be modified as

q(t) = eA(t−t0)q(t0) +
∫ t

t0

eA(t−τ)Bx(τ )dτ

= Free response+ Forced response (6.50)

6.6.3 Determination of eAt—The Cayley–Hamilton Theorem

To determine q(t) which is the solution of the vector–matrix differential Eq. (6.49),
it is necessary to determine the STM eAt . This can be obtained using the Cayley–
Hamilton theorem. According to this theorem, an n × n square matrix A satisfies its
own characteristic equation |λI − A| = 0 where λs are the eigen values of system
matrix A. Let
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F(A) =
n−1∑
k=0

αk Ak

F(λ) =
n−1∑
k=0

αkλk

eAt =
n−1∑
k=0

αk Ak (6.51)

Equation (6.51) should satisfy for all the eigen values of A.

6.6.3.1 Determination of eAt for Distinct Eigen Values of A

If the eigen values of A are distinct, then the following procedure is followed to
evaluate eAt .

1. Determine the eigen values of the matrix A from |λI − A| = 0.
2. For distinct eigen values the following equations are written:

eλ1t = α0 + α1λ1 + α2λ
2
1 + · · · + αn−1λ

n−1
1

eλ2t = α0 + α1λ2 + α2λ
2
2 + · · · + αn−1λ

n−1
2

...

eλn t = α0 + α1λn + α2λ
2
n + · · · + αn−1λ

n−1
n (6.52)

Thus, we will have n simultaneous equations if there are n distinct eigen values.
By solving these simultaneous equations, α0, α1, α2, . . . , αn can be determined.

3. Using the following equation, eAt can be evaluated.

eAt = α0 I + α1A + α2A
2 + · · · + αn−1A

n−1 (6.53)

where I = n × n identity matrix.

6.6.3.2 Determination of eAt for Multiple Eigen Values of A

Let us assume that λ = λi has multiplicity of m. If all the other eigen values are
distinct, then the number of distinct eigen values are (n − m + 1). Corresponding
to these eigen values, we will have (n − m + 1) independent equations. For the rest
(m − 1) we use Cauchy’s residue theorem.

di f (λ)

dλi

∣∣∣∣
λ=λi

= di

dλi

[
n−1∑
k=0

αkλ
k

]
λ=λi

(6.54)
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where i = 1, 2, 3, . . . , (m − 1). The following examples illustrate the method of
evaluating STM and the solution for q(t).

Example 6.16 Consider the following vector–matrix differential equation

q̇ =
[−3 1
−2 0

]
q +

[
1
0

]
x(t)

with the initial conditions

q(0) =
[
1
−1

]
.

Find (a) eAt and (b) q(t) for unit step input signal.

Solution

A =
[−3 1
−2 0

]
|λI − A| = λ2 + 3λ + 2

= (λ + 1)(λ + 2)

λ1 = −1

λ2 = −2

using Eq. (6.52), we get

e−t = α0 − α1

e−2t = α0 − 2α1

solving the above simultaneous equations for α0 and α1, we get

α0 = 2e−t − e−2t

α1 = e−t − e−2t

eAt = α0 I + α1A

=
[
(2e−t − e−2t ) 0

0 (2e−t − e−2t )

]
+ (e−t − e−2t )

[−3 1

−2 0

]

=
[
(−e−t + 2e−2t ) (e−t − e−2t )

2(−e−t + e−2t ) (2e−t − e−2t )

]

q(t) = eAtq(0) +
∫ t

0
eA(t−τ)Bx(τ )dτ



600 6 State Space Modeling and Analysis

Free Response qFR(t)

qFR(t) = eAtq(0) =
[
(−e−t + 2e−2t ) (e−t − e−2t )

2(−e−t + e−2t ) (2e−t − e−2t )

][
1

−1

]

=
[
(3e−2t − 2e−t )

(3e−2t − 4e−t )

]

Forced Response qFO(t)

qFO(t) =
∫ t

0
eA(t−τ)Bx(τ )dτ

=
∫ t

0

[ −e−(t−τ) + 2e−2(t−τ) e−(t−τ) − e−2(t−τ)

2(−e−(t−τ) + e−2(t−τ)) 2e−(t−τ) − e−2(t−τ)

] [
1
0

]
dτ

=
∫ t

0

[{ −e−(t−τ) + 2e−2(t−τ)

2(−e−(t−τ) + e−2(t−τ))

}]
dτ

=
[{ −e−(t−τ) + 2e−2(t−τ)

2(−e−(t−τ) + e−2(t−τ))

}t

0

]

=
[

e−t − e−2t

−1+ 2e−t − e−2t

]

Hence, the total response is

q(t) = qFR(t) + qFO(t)

=
[
3e−2t − 2e−t

3e−2t − 4e−t

]
+

[
e−t − e−2t

2e−t − e−2t − 1

]

q(t) =
[

(2e−2t − e−t )

(2e−2t − 2e−t − 1)

]

The result is same as derived in Example6.15.

Example 6.17 Determine eAt for the following A matrix

A =
⎡
⎣4 1 −2
1 0 2
1 −1 3

⎤
⎦
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Solution

A =
⎡
⎣4 1 −2
1 0 2
1 −1 3

⎤
⎦

F(λ) = |λI − A|
= λ3 − 7λ2 − 9+ 15λ

= (λ − 1)(λ − 3)2

This is the case of repeated eigen values.

λ1 = 1

λ2 = 3

λ3 = 3

et = α0 + α1 + α2

e3t = α0 + 3α1 + 9α2

d

dλ
eλt = d

dλ
(α0 + α1λ + α2λ

2)

For λ = 3

te3t = α1 + 6α2

Solving the above three simultaneous equations, we get

α0 = 1

4
(9et + 6te3t − 5e3t )

α1 = 1

4
(−6et − 8te3t + 6e3t )

α2 = 1

4
(et + 2te3t − e3t )

eAt = α0 I + α1A + α2A
2

= α0

⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦ + α1

⎡
⎣4 1 −2
1 0 2
1 −1 3

⎤
⎦ + α2

⎡
⎣15 6 −12
6 −1 4
6 −2 5

⎤
⎦

eAt =
⎡
⎢⎣

(−te3t + e3t ) (te3t ) (−2te3t )

(te3t ) (2et + te3t − e3t ) −2(et + te3t − e3t )

(te3t ) (et + te3t − e3t ) (−et − 2te3t + 2e3t )

⎤
⎥⎦
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6.7 State Equations of A Discrete-Time System

The discrete-time system is described by difference equation. For a continuous-time
systemwhich is described by an nth-order differential equation, it is converted into n
first-order equations and the descriptions for n state variables are given. Analogous
to continuous-time system, the discrete system described by N th-order difference
equation is converted into N first-order difference equations and the description
for N state variables are given in the form of vector matrix difference equation.
(In difference equation, the order of the equation is denoted by N instead of n to
avoid confusion between order and sequence number).

6.7.1 Canonical Form II Model

Let H(s) be the discrete-time system transfer function which can be expressed as

H(s) = b0zN + b1zN−1 + b2zN−2 + · · · + bN−1z + bN
zN + a1zN−1 + a2sN−2 + · · · + aN−1 + aN

(6.55)

The input x[n] and the output y[n] are related by the following difference equation

(EN + a1E
N−1 + · · · + aN−1E + aN )y[n]

= (b0E
N + b1E

N−1 + · · · + bN−1E + bN )x[n] (6.56)

where

EN y[n] = y[n]
EN−1y[n] = y[n − 1]
EN+1y[n] = y[n + 1]

The direct form II realization of Eqs. (6.55) and (6.56) is represented in Fig. 6.17.
The output of N delay elements are denoted by q1[n], q2[n], . . . , qN [n]. The

output of the first delay is qN [n + 1]. Since there are N delays, N equations can be
written one each at the input point.

q1[n + 1] = q2[n]
q2[n + 1] = q1[n]

...

qN−1[n + 1] = qN [n]
qN [n + 1] = −aNq1[n] − aN−1q2[n] − . . . − a1qN [n] + x[n] (6.57)

y[n] = bNq1[n] − bN−1q2[n] + . . . + b1qN [n] + b0qN+1[n]
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x[n] y[n]qN[n 1]

qm 1[n]

q2[n]

q1

a1

a2

am

aN 1 bN 1

b2

b1

b0

bm

q1[n]aN bN

qN[n]

qN[n 1]

z 1

z 1

z 1

z 1

z 1

Fig. 6.17 Direct form II realization of N th-order discrete-time system

Substituting for qN+1[n] from Eq. (6.57), we get

y[n]=(bN−b0aN )q1[n]+(bN−1−b0aN−1)q2[n]+ · · · +(b1−b0a1)qN [n]+b0x[n]
=b̄Nq1[n] + b̄N−1q2[n] + · · · + b̄1qN + b0x[n] (6.58)

where b̄i = (bi − b0ai ). Equation (6.57) represents the state equations and Eq. (6.58)
represents the output equation. The above equations are written in matrix form as
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⎡
⎢⎢⎢⎢⎢⎢⎢⎣

q1[n + 1]
q2[n + 1]
q3[n + 1]

...

qN−1[n]
qN [n]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
...

...
...

...
...

0 0 0 0 1
−aN −aN−1 −aN−2 −a2 −a1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

q1[n]
q2[n]
q3[n]

...

qN−1[n]
qN [n]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...

0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸︷︷︸
q[n + 1] A q[n] B (6.59)

y[n] = [b̄N b̄N−1 . . . b̄1]︸ ︷︷ ︸+ b0︸︷︷︸ x[n] (6.60)

C D

The general form of state and output equation is therefore written as

q[n + 1] = Aq[n] + Bx[n]
y[n] = Cq[n] + Dx[n] (6.61)

The state equations for a discrete system can be obtained by several methods. How-
ever, we represented here by direct forms I, II and parallel form. The following
analogy between continuous- and discrete-time system are to be noted.

1. In the continuous-time system, the output of each integrator is identified as a state.
In the discrete-time system, the output of each delay element is identified as the
state.

2. In the continuous-time system, the input of each integrator is identified as the
first derivative from which the first-order differential equation is formed. In the
discrete-time system, the input to each delayed element is identified to form the
first-order difference equation.

The following examples, illustrate the method of forming state equations.

Example 6.18 Form the state equations of canonical form II for the following T.F.
of a discrete-time system,

H [z] = 5z4 + 7z3 + 8z2 + 2z + 10

z4 + 6z3 + 7z2 + 4z + 9

Solution

H [z] = 5z4 + 7z3 + 8z2 + 2z + 10

z4 + 6z3 + 7z2 + 4z + 9

= 5+ 7z−1 + 8z−2 + 2z−3 + 10z−4

1+ 6z−1 + 7z−2 + 4z−3 + 9z−4

where b0 = 5; b1 = 7; b2 = 8; b3 = 2; b4 = 10; a1 = 6; a2 = 7; a3 = 4; a4 = 9
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q[n + 1] =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
−9 −4 −7 −6

⎤
⎥⎥⎦ q[n] +

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦ x[n]

b̄4 = b4 − b0a4 = 10− 5× 9 = −35

b̄3 = b3 − b0a3 = 2− 5× 4 = −18

b̄2 = b2 − b0a2 = 8− 5× 7 = −27

b̄1 = b1 − b0a1 = 7− 5× 6 = −23

y[n] = [−35 − 18 − 27 − 23]q[n] + 5x[n]

Example 6.19 Consider the following difference equation

4y[n − 3] + 6y[n − 2] − 5y[n − 1] + y[n] = x[n] + 5x[n − 1]

Form state equations.

Solution

Y [z]
X [z] = H [z] = (1+ 5z−1)

(1− 5z−1 + 6z−2 + 4z−3)

where b0 = 1; b1 = 5; b2 = 0; b3 = 0; a1 = −5; a2 = 6; a3 = 4

q[n + 1] =
⎡
⎣ 0 1 0

0 0 1
−4 −6 5

⎤
⎦ q[n] +

⎡
⎣0
0
1

⎤
⎦ x[n]

b̄3 = b3 − b0a3 = −4

b̄2 = b2 − b0a2 = −6

b̄1 = b1 − b0a1 = 5+ 5 = 10

y[n] = [−4 − 6 10]q[n] + x[n].

6.7.2 Canonical Form I Model

Consider the following system function

Y [z]
X [z] = H [z] = b0 + b1z−1 + b2z−2

1+ a1z−1 + a2z−2

By cross-multiplying the above equation, we get
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x[n] y[n]

a1

a2

b1

b0

b2

q2[n 1]

q1[n 1]

q1[n]

q2[n]

z 1

z 1

Fig. 6.18 Canonical form I structure

[1+ a1z
−1 + a2z

−2]Y [z] = [b0 + b1z
−1 + b2z

−2]X [z]
Y [z] = −a1z

−1Y [z] − a2z
−2Y [z] + b0X [z]

+b1z
−1X [z] + b2z

−2X [z] (6.62)

Equation (6.62) is represented in Fig. 6.18, where the states and the delay elements
are shown.

From Fig. 6.18, the following equations are written in terms of states

y[n] = q1[n] + b0x[n]
q1[n + 1] = −a1y[n] + q2y[n] + b1x[n]

= −a1q1[n] + q2[n] + (b1 − b0a1)x[n] (6.63)

q2[n + 1] = −a2y[n] + b2x[n]
= −a2q1[n] + (b2 − b0a1)x[n] (6.64)

Equations (6.63) and (6.64) can be combined and expressed in matrix form as

q[n + 1] =
[−a1 1
−a2 0

]
q[n] +

[
(b1 − b0a1)
(b2 − b0a2)

]
x[n]

y[n] = [1 0]q[n] + b0x[n]

In general, for an N th-order difference equation,
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q[n + 1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−a1 1 0 0 · · · 0
−a2 0 1 0 · · · 0
−a3 0 0 1 · · · 0

...
...

...
...

...
...

−aN−1 0 0 0 · · · 1
−aN 0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
q[n] +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(b1 − b0a1)
(b2 − b0a2)
(b3 − b0a3)

...

(bN−1 − b0aN−1)

(bN − b0aN )

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
x[n] (6.65)

where b̄i is defined as b̄i = (bi − b0ai )

y[n] = [1 0 0 · · · 0]q[n] + b0x[n] (6.66)

Example 6.20 Form the state equations of canonical form I for the following T.F.
of a discrete-time system

H [z] = 5z4 + 7z3 + 8z2 + 2z + 10

z4 + 6z3 + 7z2 + 4z + 9

Solution

H [z] = 5z4 + 7z3 + 8z2 + 2z + 10

z4 + 6z3 + 7z2 + 4z + 9

= 5+ 7z−1 + 8z−2 + 2z−3 + 10z−4

1+ 6z−1 + 7z−2 + 4z−3 + 9z−4

where b0 = 5; b1 = 7; b2 = 8; b3 = 2; b4 = 10; a1 = 6; a2 = 7; a3 = 4; a4 = 9

b̄1 = b1 − b0a1 = 7− 5× 6 = −23

b̄2 = b2 − b0a2 = 8− 5× 7 = −27

b̄3 = b3 − b0a3 = 2− 5× 4 = −18

b̄4 = b4 − b0a4 = 10− 5× 9 = −35

q[n + 1] =

⎡
⎢⎢⎣
−6 1 0 0
−7 0 1 0
−4 0 0 1
−9 0 0 0

⎤
⎥⎥⎦ q[n] +

⎡
⎢⎢⎣
−23
−27
−18
−35

⎤
⎥⎥⎦ x[n]

y[n] = [1 0 0 0]q[n] + 5x[n]
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x[n]

y[n]

z 1

z 1

z 1

q1[n 1]

q2[n 1]

qN[n 1]

q1

A11

2

N

A2

AN

q2

b0

Fig. 6.19 Diagonal form model

6.7.3 Diagonal Form (Parallel Form) Model

Consider the system transfer function given below:

H [z] = b0zN + b1zN+1 + · · · + bN−1z + bN
zN + a1zN+1 + · · · + aN−1z + aN

(6.67)

= b0 + b1z−1 + · · · + bN−1z−(N−1) + bN z−N

1+ a1z−1 + · · · + aN−1z−(N−1) + aN z−N

= b0 + A1

(z − λ1)
+ · · · + AN

(z − λN )
(6.68)

where λ1, λ2, . . . , λn are the distinct eigen values of H [z]. Equation (6.68) is repre-
sented in Fig. 6.19.



6.7 State Equations of A Discrete-Time System 609

From Fig. 6.19, the following state equations are written

q1[n + 1] = λ1q1[n] + x[n]

q2[n + 1] = λ2q2[n] + x[n]
...

qN [n + 1] = λNqN [n] + x[n] (6.69)

y[n] = A1q1[n] + A2q2[n] + · · · + ANqN [n] + b0x[n] (6.70)

Equations (6.69) and (6.70) can be represented in matrix form as

q[n + 1] =

⎡
⎢⎢⎢⎢⎢⎣

λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
... · · · ...

0 0 0 · · · λN

⎤
⎥⎥⎥⎥⎥⎦ q[n] +

⎡
⎢⎢⎢⎢⎢⎣

1
1
1
...

1

⎤
⎥⎥⎥⎥⎥⎦ x[n] (6.71)

y[n] = [A1 A2 A3 · · · AN ]q[n] + b0x[n] (6.72)

Example 6.21 A certain discrete-time system has the following T.F.

H [z] = z3 + 10z2 + 32z + 29

z3 + 9z2 + 26z + 24

Form the state equation with its A matrix in diagonal form.

Solution Dividing the numerator polynomial with denominator polynomial, we get

1

z3 + 9z2 + 26z + 24
)
z3 + 10z2 + 32z + 29
z3 + 9z2 + 26z + 24

z2 + 6z + 5

H [z] = 1+ (z2 + 6z + 5)

(z3 + 9z2 + 26z + 24)

(z2 + 6z + 5) = (z + 1)(z + 5)

(z3 + 9z2 + 26z + 24) = (z + 2)(z + 3)(z + 4)

H [z] = 1+ (z + 1)(z + 5)

(z + 2)(z + 3)(z + 4)
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Re
012345

Im

A3 A2 A1

Fig. 6.20 Pole-zero diagram

(z + 1)(z + 5)

(z + 2)(z + 3)(z + 4)
= A1

(z + 2)
+ A2

(z + 3)
+ A3

(z + 4)

The pole-zero locations are shown in Fig. 6.20.

A1 = −3× 1

2× 1
= −3

2

A2 = 2× 2

1× 1
= 4

A3 = −3× 1

2× 1
= −3

2

H [z] = 1− 3

2

1

(z + 2)
+ 4

(z + 3)
− 3

2

1

(z + 4)

The eigen values are λ1 = −2; λ2 = −3; and λ3 = −4

q[n + 1] =
⎡
⎣−2 0 0

0 −3 0
0 0 −4

⎤
⎦ q[n] +

⎡
⎣1
1
1

⎤
⎦ x[n]

y[n] =
[
−3

2
4 − 3

2

]
q[n] + x[n]

Example 6.22 Find the state variable matrices A, B, C and D for the equation

y[n] − 3y[n − 1] − 2y[n − 2] = x[n] + 5x[n − 1] + 6x[n − 2]

(Anna University, November, 2007)
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Solution Taking z-transform on both sides of the equation, we get

Y [z]
X [z] = H [z] = (1+ 5z−1 + 6z−2)

(1− 3z−1 − 2z−2)

where b0 = 1; b1 = 5; b2 = 6; a1 = −3; a2 = −2

b̄2 = b2 − b0a2 = 6+ 2 = 8

b̄1 = b1 − b0a1 = 5+ 3 = 8

D = b0 = 1

q[n + 1] =
[
0 1
2 3

]
︸ ︷︷ ︸ q[n] +

[
0
1

]
︸︷︷︸ x[n]

A B

y[n] = [8 8]︸ ︷︷ ︸ q[n] + 1︸︷︷︸ x[n]
C D

Example 6.23 A continuous-time system has the state variable description

A =
[
2 −1
1 0

]
; B =

[
1
0

]
; C = [3 1]; D = [2]

Determine the transfer function.

Solution

(s I − A) =
[
(s − 2) 1
−1 s

]

(s I − A)−1 = cofactor

determinant

= 1

(s2 − 2s + 1)

[
s 1
1 (2− s)

]

(s I − A)−1B = 1

(s2 − 2s + 1)

[
s 1
1 (2− s)

] [
1
0

]

= 1

(s2 − 2s + 1)

[
s
1

]

C(s I − A)−1B = 1

(s2 − 2s + 1)
[3 1]

[
s
1

]
= (3s + 1)

(s2 − 2s + 1)

C(s I − A)−1B + D = (3s + 1)

(s2 − 2s + 1)
+ 2
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H(s) = (2s2 − s + 3)

(s2 − 2s + 1)

Summary

1. An N th-order systems (continuous aswell as discrete) can be described in terms of
N variables with N first-order equations. These variable are called state variables.

2. State variables representation is not unique. However, the solution of state equa-
tion is unique.

3. The state equations are written in specific format. Such an equation is called
vector–matrix differential/difference equation.

4. The state variables give internal and external description of the system. Thus,
physical variables can be chosen as state variables and their behavior can be
readily studied.

5. State equations are written from system structure or from block diagrams.
6. State equations are solved by time domain or frequency domain methods.

Exercise

I. Short Answer Type Questions

1. Define the state of a system?
The state of a system is defined as the minimum number of initial conditions
that must be specified at any initial time t0 so that the complete behavior of the
system at any time t > t0 is determined if the input x(t) is known.

2. What do you understand by state vector?
If N state variables are required to completely describe the behavior of the system
then these N variables are the N components of a vector q. Such a vector is called
state vector.

3. What is state space?
The N dimensional space whose coordinate axes consist of q1 axis, q2 axis,
. . . , qN axis, is called state space.

4. What is state-space equations?
Input variables, output variables and state variables are involved in the modeling
of dynamic systems. The dynamic equations involving these three variables are
called state space equations.

5. What is vector–matrix differential/difference equation?
State variables equations are expressed in the time domain by using compact
vector–matrix notations. These equations when written for a CT systems are
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called vector–matrix differential equations and when written to DT systems are
called vector–matrix difference equation.

6. What is state transition matrix STM?
The matrix which is unique for a given system that transforms any initial state
q(t0) to any final state q(t f ) is called state transition matrix. It contains all
the informations about the system dynamics at all time. For a continuous-time
system the STM φ(t) = eAt .

7. What is Cayley–Hamilton theorem?
According to Cayley–Hamilton theorem, the matrix A satisfies its own charac-
teristic equation. This property is used to evaluate the STM eAt .

8. What physical variables are chosen as state variables in electrical circuit
and mechanical systems?
The current through the inductor and the voltage across the capacitor are chosen
as state variables in electrical circuits. The displacement and velocity of energy-
storing elements such as mass (inertia) and spring are chosen as state variables
in mechanical systems.

9. What are the advantages of state space model over that of transfer function
model?

(a) State spacemodel is applicable to linear, non-linear and timevarying systems
whereas T.F. model is applicable only to linear system.

(b) T.F. model requires initial conditions to be zero whereas for state space
model, the initial conditions need not be zero.

(c) System design modeled by T.F. is based on trial and error and in will not in
general lead to optimal control. The famous optimal control theory which
follows a systematic design procedure uses state space model of the system.

10. For a particular system, the Amatrix is represented in more than one form.
What is the nature of characteristic equation?
In sate space model, even though the system A matrix is not unique, the charac-
teristic equation is same and is unique.

II. Long Answer Type Questions

1. Consider the mechanical system shown in Fig.6.21. Form the state space
equation.

q̇(t) =

⎡
⎢⎢⎢⎣

− R
L 0 0

0 0 1
Ks

Meq
− Keq

Meq
− Beq

Meq

⎤
⎥⎥⎥⎦ q(t) +

⎡
⎢⎣

1
L

0

0

⎤
⎥⎦ e(t)
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e(t)
f(t) Ksi(t)

K2 B2

M1, L, R

l1 l2

i(t)

M2

Fig. 6.21 Mechanical system with lower arrangement

v(t)

R1 1

C 2F

L 1H

R3 3

R2

Fig. 6.22 Electrical circuit for Example6.2

where

Meq = l1
l2
M1 + l2

l1
M2

Beq = l1
l2
B1 + l2

l1
B2

Keq = l1
l2
K1 + l2

l1
K2

2. Consider the electrical circuit shown in Fig.6.22. Form the state space equa-
tion.
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q̇(t) =

⎡
⎢⎢⎣
−11

4

1

4

3

8
−1

8

⎤
⎥⎥⎦ q(t) +

⎡
⎢⎣

5

4

−1

8

⎤
⎥⎦ v(t)

3. Consider the following T.F. of a certain continuous-time system. Form the
state space equations in canonical form I model.

H(z) = 7s2 + 8s + 4
s3 + 5s2 + 9s + 10

q̇(t) =
⎡
⎣ −5 1 0
−9 0 1
−10 0 0

⎤
⎦ q(t) +

⎡
⎣7
8
4

⎤
⎦ x(t)

y(t) = [1 0 0]q(t)

4. Consider the following T.F. of continuous-time system. Form the state space
equation in canonical form II model.

H(z) = 5s3 + 6s2 + 2s + 10
s3 + 7s2 + 4s + 5

q̇(t) =
⎡
⎣ 0 1 0

0 0 1
−5 −4 −7

⎤
⎦ q(t) +

⎡
⎣0
0
1

⎤
⎦ x(t)

y(t) = [−15 − 18 − 29]q(t) + 5x(t)

5. Consider the following T.F. of continuous-time system. Form the state space
equation in diagonal form model.

H(z) = (s2 + 6s + 8)
(s3 + 27s2 + 230s + 600)

q̇(t) =
⎡
⎣−5 0 0

0 −10 0
0 0 −12

⎤
⎦ q(t) +

⎡
⎣1
1
1

⎤
⎦ x(t)
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y(t) =
[
3

35
− 24

5

40

7

]
q(t)

6. Consider the following differential equation

d3 y
dt3

− 5
d2 y
dt2

+ 6
d y
dt

+ 7 y = 2
dx
dt

+ 5x(t)

Form the state space equation in canonical form II model.

q̇(t) =
⎡
⎣ 0 1 0

0 0 1
−7 −6 5

⎤
⎦ q(t) +

⎡
⎣0
0
1

⎤
⎦ x(t)

y(t) = [5 2 0] q(t)

7. Consider the following T.F. of a certain discrete-time system

H(z) = 4z2 − 5z + 10
z3 + 2z2 − 7z + 9

Form the state variable equation in canonical form II model.

q[n + 1] =
⎡
⎣ 0 1 0

0 0 1
−9 7 −2

⎤
⎦ q[n] +

⎡
⎣0
0
1

⎤
⎦ x[n]

y[n] = [10 − 5 4] q[n]

8. Consider the following T.F. of a certain discrete system given below. Form
the state space equation of canonical form I model.

H(z) = 2z2 + 6z + 9
z3 + 8z2 + 7z + 16

q[n − 1] =
⎡
⎣ −8 1 0
−7 0 1
−16 0 0

⎤
⎦ q[n] +

⎡
⎣2
6
9

⎤
⎦ x[n]
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y[n] = [1 0 0] q[n]

9. A certain discrete-time system is described by the following difference
equation.

y[n] − 1
12 y[n− 1] − 1

6 y[n− 2] + 1
48 y[n− 3]

= x[n− 1] − 3
8 x[n− 2] + 1

32 x[n− 3]

Determine the system T.F. Form the state space equation in the diagonal
form. What are the eigen values of the system?

q[n + 1] =

⎡
⎢⎢⎣

1
2 0 0

0 − 1
6 0

0 0 − 1
4

⎤
⎥⎥⎦ q[n] +

⎡
⎣1
1
1

⎤
⎦ x[n]

y[n] =
[
3

16
− 35

16
3

]
q[n]

H [z] = z−1 − 3
8 z

−2 + 1
32 z

−3

1− 1
12 z

−1 − 1
6 z

−2 − 1
48 z

−3

The eigen values are λ1 = 1
2 , λ2 = − 1

6 , λ3 = − 1
4 .

10. Find the state equation of a continuous-time LTI system described by

ÿ(t)+ 3 ẏ(t)+ 2 y(t) = x(t)

(Anna University, May, 2007)

q̇(t) =
[

0 1

−2 −3

]
q(t) +

[
0
1

]
x(t).



Chapter 7
Application of MATLAB and Python
Programs to Solve Problems

7.1 Application of MATLAB Program

Example 7.1 Write a MATLAB program for a signal x(t) shown in Fig. 1.23a, and
sketch the output waveforms. (Refer Example 1.2)

(a) x(3t + 2) (b) x(−t
2 + 2)

Program (a)

clc;
clf;
clear all;
start_time=-1;
end_time=1;
time=start_time:0.5:end_time;
Amplitude=[ 1 2 2 1 0 ];
subplot(3,1,1)
y=stairs(time,Amplitude);
xticks(time);
yticks(0:1:2);
ylim([0 2]);
xlabel(’time (t)’);
ylabel(’x(t)’);
title(’plot of x(t)’);

shift=2;
time=start_time-shift:0.5:end_time-shift;
subplot(3,1,2)
y=stairs(time,Amplitude);
xticks(time);
yticks(0:1:2);

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 7.1 Plot of response of the signal x(t), x(t + 2) and x(3t + 2) of Example 7.1

ylim([0 2]);
xlabel(’time (t)’);
ylabel(’x(t+2)’);
title(’Time Shifted x(t)’);

scale=3;
time=time./scale;
subplot(3,1,3)
y=stairs(time,Amplitude);
xticks(time);
yticks(0:1:2);
ylim([0 2]);
xlabel(’time (t)’);
ylabel(’x(3t+2)’);
title(’Time Compressed x(t)’);

Figure7.1 represents the response of the signal x(t), x(t + 2) and x(3t + 2). The
input signal x(t), time shifted signal x(t + 2) and time compressed signal x(3t + 2)
are plotted in Fig. 7.1a, b, c, respectively.
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Program (b)

x

(
− t

2
+ 2

)

clf;
clear all;
start_time=-1;
end_time=1;
time=start_time:0.5:end_time;
Amplitude=[ 1 2 2 1 0 ];
subplot(3,1,1)
y=stairs(time,Amplitude);
xticks(time);
yticks(0:1:2);
ylim([0 2]);
xlabel(’time (t)’);
ylabel(’x(-t)’);
title(’Folded x(-t)’);

shift=1;
time=start_time-shift:0.5:end_time-shift;
subplot(3,1,2)
y=stairs(time,Amplitude);
xticks(time);
yticks(0:1:2);
ylim([0 2]);
xlabel(’time (-t-1)’);
ylabel(’x(t+2)’);
title(’Time Shifted x(-t)’);

scale=0.5;
time=time./scale;
subplot(3,1,3)
y=stairs(time,Amplitude);
xticks(time);
yticks(0:1:2);
ylim([0 2]);
xlabel(’time (t)’);
ylabel(’x(-t/2-1)’);
title(’Time expansion of x(-t-1) to get x(-t/2-1)’);

Figure7.2 represents the response of the signal x(t) shown in Fig. 1.23b. The input
signal x(−t), time shifted signal x(−t) and time expanded signal x((−t/2) − 1))
are plotted in Fig. 7.2a, b, c respectively.
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Fig. 7.2 Response of the signal x(t) of Example 7.1b

Example 7.2 Write a MATLAB program to represent the signal x(t) = 5u(4 − t)
shown in Fig. 1.27 (Refer Example 1.6).

clc;
clearall;
start_time=0;
end_time=-10;
time=end_time:1:start_time;
Amplitude=5*ones(1,length(time));
subplot(2,1,1)
y=stairs(time,Amplitude);
xticks(time);
xlabel(’time (-t)’);
ylabel(’5u(-t))’);
title(’Original Signal 5u(-t))’);

shift=4;
time=end_time:1:start_time+shift;
Amplitude=5*ones(1,length(time+shift));
subplot(2,1,2)
y=stairs(time,Amplitude);
xticks(time);
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Fig. 7.3 The original and time shifted response of the signal y(t) = 5u(4 − t) of Example 7.2

xlabel(’time (-t)’);
ylabel(’5u(4-t))’);
title(’Time Shifted step Signal 5u(4-t))’);% %

The signals 5u(−t) and 5u(4 − t) are shown in Fig. 7.3a and b respectively.

Example 7.3 Write a MATLAB program to check the system y(t) = 5x(t) sin 10t
is linear. (Refer Example 1.45a)

n=0:5;
x1=(5.*n).*sin(10*n);
x2=(5.*n).*sin(10*n);
a1=1;
a2=1;
z=a1*x1+a2*x2;
y1=n.*z
z1=n.*x1;
z2=n.*x2;
y2=a1*z1+a2*z2
if y1==y2

fprintf(’The System y(t)=5x(t) sin 10t is Linear \n’);
else



624 7 Application of MATLAB and Python Programs to Solve Problems

fprintf(’The System y(t)=5x(t) sin 10t is non-linear \n’);
end;

Output:

y1 = 0 −5.4402 36.5178 −88.9228 119.2181 −65.5937

y2 = 0 −5.4402 36.5178 −88.9228 119.2181 −65.5937

y1 = y2

The System y(t) = 5x(t) sin 10t is Linear.

Example 7.4 Write a MATLAB program to check the system y(t) = 3x(t) + 5 is
linear or not (Refer Example 1.45b)

n=0:5;
x1=(3.*n)+5;
x2=(3.*n)+5;
a1=1;
a2=1;
z=a1*x1+a2*x2;
y1=n.*z
z1=n.*x1;
z2=n.*x2;
y2=a1*z1+a2*z2+5
if y1==y2

fprintf(’The System y(t)=3x(t)+5 is Linear \n’);
else

fprintf(’The System y(t)=3x(t)+5 is non-linear \n’);
end;

Output:

y1 = 0 16 44 84 136 200

y2 = 5 21 49 89 141 205

y1 �= y2

The System y(t)=3x(t)+5 is non-linear
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Example 7.5 Write a MATLAB program to check the system y(t) = t2x(t + 1) is
linear or not (Refer Example 1.45c)

n=0:5;
x1=(n.∧2).*(n+1);
x2=(n.∧2).*(n+1);
a1=1;
a2=1;
z=a1*x1+a2*x2;
y1=n.*z
z1=n.*x1;
z2=n.*x2;
y2=a1*z1+a2*z2
if y1==y2

fprintf(’The System y(t)=t∧2*x(t+1) is Linear \n’)
else

fprintf(’The System y(t)=t∧2*x(t+1) is non-linear \n’)
end;

Output:

y1 = 0 4 48 216 640 1500

y2 = 0 4 48 216 640 1500

The System y(t)=t∧2*x(t+1) is Linear

Example 7.6 Write a MATLAB program to check the system y(t) = x(t2) is linear
or not (Refer Example 1.45e)

n=0:5;
x1=n.∧2;
x2=n.∧2;
a1=1;
a2=1;
z=a1*x1+a2*x2;
y1=n.*z
z1=n.*x1;
z2=n.*x2;
y2=a1*z1+a2*z2
if y1==y2

fprintf(’The System y(t)=x(t∧2) is Linear \n’);
else

fprintf(’The System y(t)=x(t∧2) is non-linear \n’);
end;
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Output:

y1 = 0 2 16 54 128 250

y2 = 0 2 16 54 128 250

y1 = y2

The System y(t)=x(t∧2) is Linear

Example 7.7 Write a MATLAB program to check the system y(t) = x(t + 1) + 5
is static or dynamic (Refer Example 1.48a)

clc;
clear all;
t=0;
if t < t+1

fprintf(’ The system y(t)=x(t+1)+5 is Dynamic \n’);
else

fprintf(’ The system y(t)=x(t+1)+5 is Static \n’);
end

Output:

The system y(t)=x(t+1)+5 is dynamic

Example 7.8 Write a MATLAB program to check the system y(t) = x(t2) is static
or dynamic (Refer Example 1.48b)

clc;
clear all;
t=2;
if t < t∧2

fprintf(’ The system y(t)=x(t∧2) is Dynamic \n’);
else

fprintf(’ The system y(t)=x(t∧2) is Static \n’);
end

Output:

The signal y(t)=x(t∧2) is dynamic

Example 7.9 Write aMATLAB program to check the system y(t) = x(t2) is causal
or non-causal (Refer Example 1.49c)

t=0:5;
for i=0 : length(t-1)
if i >= i∧2

fprintf(’ The signal y(t)=x(t∧2) is causal \n’);
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else
fprintf(’ The signal y(t)=x(t∧2) is non-causal \n’);

end
end;

Output:

The system y(t)=x(t∧2) is non-causal

Example 7.10 Write a MATLAB program to check the system y(t) = x(t + 1) is
causal or non-causal (Refer Example 1.49e)

t=0:5;
for i=0 : length(t-1)
if i >= i+1

fprintf(’ The signal y(t)=x(t+1) is causal \n’);
else

fprintf(’ The signal y(t)=x(t+1) is non-causal \n’);
end
end;

Output:

The system y(t)=x(t+1) is non-causal

Example 7.11 Write a MATLAB program to check the system y(t) = x(t − 1) is
causal or non-causal (Refer Example 1.49f)

t=0:5;
for i=0 : length(t-1)
if i >= i-1

fprintf(’ The signal y(t)=x(t+1) is causal \n’);
else

fprintf(’ The signal y(t)=x(t+1) is non-causal \n’);
end
end;

Output:

The system y(t)=x(t-1) is causal

Example 7.12 Write aMATLABprogram to check the system y(t) = t x(t) is stable
or not (Refer Example 1.50a)

clc;
clear all;
clf;
t=0:.1:10;



628 7 Application of MATLAB and Python Programs to Solve Problems

x=cos(2*pi*t);
plot(t,x);
xlabel(’Time (t)’);
ylabel(’Magnitude of the Signal’);
legend(’x(t)’)
ylim([-2 2]);
figure
y2=t.*x;
plot(t,y2);
legend(’y(t)’)
xlabel(’Time (t)’);
ylabel(’Magnitude of the Signal’);
if max(x)>max(y2)

fprintf(’The System y(t)=t(x(t) is stable \n’);
else

fprintf(’The System y(t)=t(x(t) is unstable \n’);
end

Output:

The System y(t)=t(x(t)) is unstable

Figure7.4a represents x(t) and Fig. 7.4b represents the output t x(t).

Example 7.13 Write a MATLAB program to check the system y(t) = x(t) sin t is
stable or not (Refer Example 1.50c)

clc;
clear all;
clf;
t=0:.1:10;
x=cos(2*pi*t);
plot(t,x);
xlabel(’Time (t)’);
ylabel(’Magnitude of the Signal’);
legend(’x(t)’)
ylim([-2 2]);
figure
y2=sin(t).*x;
plot(t,y2);
legend(’y(t)’)
xlabel(’Time (t)’);
ylabel(’Magnitude of the Signal’);
if max(x)>max(y2)

fprintf(’The System y(t)=(x(t) sin t is stable \n’);
else
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Fig. 7.4 The output response of the signal y(t) = t (x(t))

fprintf(’The System y(t)=(x(t) sin t is unstable \n’);
end

Output:

The System y(t)=(x(t) sin t is stable

Figure7.5a represents x(t) and Fig. 7.5b represents y(t) = x(t) sin t respectively.

Example 7.14 Write a MATLAB program to determine the trigonometric Fourier
series of Example 2.1.
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Fig. 7.5 The output
response of the signal
y(t) = (x(t) sin t of
Example 7.13

clear all;
syms t n A pi
n = [1:3];
A=1;
T0=4;
wo=pi/2;
up_limit1=1;
low_limit1=-1;
up_limit2=3;
low_limit2=1;



7.1 Application of MATLAB Program 631

half_a0 = (1/T0)*(int(A,t,low_limit1, up_limit1)+int(-A,t,low_limit2,up_limit2))
ai = (2/T0)*(int(A*cos(n*wo*t),t,low_limit1, up_limit1)

+int((-A)*cos(n*wo*t),t,low_limit2, up_limit2))
bi = (2/T0)*(int(A*sin(n*wo*t),t,low_limit1, up_limit1 )

+int((-A)*sin(n*wo*t),t,low_limit2, up_limit2))
ft = half_a0;
for k=1:length(n)
ft = ft + ai(k)*cos(k*wo*t) + bi(k)*sin(k*wo*t);
end;
ezplot(ft),grid
xlabel(’Time (t) ’);
ylabel(’x(t) ’);
title(’Output response of x(t)’);
ft

Output:

half_a0 =0

ai =[ 4/pi, 0, -4/(3*pi)],. . .

bi = [ 0, 0, 0]

ft =(4*cos((pi*t)/2))/pi - (4*cos((3*pi*t)/2))/(3*pi)+. . .

The plot of x(t) for n = 3 is shown in Fig. 7.6. By increasing n to 20, x(t) may be
plotted and the original signal can be obtained in the form of periodic square wave
as represented in Fig. 2.1.

Example 7.15 Write a MATLAB program to determine the trigonometric Fourier
series of Example 2.2.

clc;
clear all;
syms t n A pi
n = [1:3];
A=t;
T0=2;
wo=pi;
up_limit=1;
low_limit=-1;
half_a0 = (1/T0)*(int(A,t,low_limit, up_limit))
ai = (2/T0)*(int(A*cos(n*wo*t),t,low_limit, up_limit))
bi = (2/T0)*(int(A*sin(n*wo*t),t,low_limit, up_limit))
ft = half_a0;
for k=1:length(n)
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Fig. 7.6 x(t) response of Example 7.14 for n = 3

ft = ft + ai(k)*cos(k*wo*t) + bi(k)*sin(k*wo*t);
end;
ezplot(ft),grid
xlabel(’Time (t) ’);
ylabel(’x(t) ’);
title(’Output response of x(t)’);
ft

Output:

a0 = 0.0

ai = [ 0, 0, 0]

bi = [ 2/pi, -1/pi, 2/(3*pi)],. . .
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Fig. 7.7 x(t) response of Example 7.15 for n = 3

ft = (2*sin(pi*t))/pi - sin(2*pi*t)/pi + (2*sin(3*pi*t))/(3*pi) + . . .

The output response is shown in Fig. 7.7 for n = 3.

Example 7.16 Write a MATLAB program to determine the trigonometric Fourier
series of Example 2.3.

clc;
clear all;
syms t n A pi
n = [1:3];
A=t/(2*pi);
T0=2*pi;
wo=1;
up_limit=0;
low_limit=2*pi;
half_a0 = (1/T0)*(int(A,t,low_limit, up_limit))
ai = (2/T0)*(int(A*cos(n*wo*t),t,low_limit, up_limit))
bi = (2/T0)*(int(A*sin(n*wo*t),t,low_limit, up_limit))
ft = half_a0;
for k=1:length(n)
ft = ft + ai(k)*cos(k*wo*t) + bi(k)*sin(k*wo*t);
end;
ezplot(ft),grid
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xlabel(’Time (t) ’);
ylabel(’x(t) ’);
title(’Output response of x(t)’);
ft

Output:

half_a0 = 1/2

ai = [ 0, 0, 0]

bi = [ 1/pi, 1/(2*pi), 1/(3*pi)]+ . . .

ft = -sin(2*t)/(2*pi) + sin(3*t)/(3*pi) - sin(t)/pi + 1/2 + . . .

Example 7.17 Write a MATLAB program to determine the trigonometric Fourier
series of Example 2.4

clc;
clear all;
syms t n A pi
n = [1:3];
A=sin(t);
T0=pi;
wo=2;
up_limit=pi;
low_limit=0;
half_a0 = (1/T0)*(int(A,t,low_limit, up_limit))
ai = (2/T0)*(int(A*cos(n*wo*t),t,low_limit, up_limit))
bi = (2/T0)*(int(A*sin(n*wo*t),t,low_limit, up_limit))
ft = half_a0;
for k=1:length(n)
ft = ft + ai(k)*cos(k*wo*t) + bi(k)*sin(k*wo*t);
end;
ezplot(ft),grid
xlabel(’Time (t) ’);
ylabel(’x(t) ’);
title(’Output response of x(t)’);
ft

Output:

half_a0 = 2/pi

ai = [ -4/(3*pi), -4/(15*pi), -4/(35*pi)] + . . .
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Fig. 7.8 Fourier series response x(t)n = 3 of Example 7.17

bi = [ 0, 0, 0]

ft = 2/pi - (4*cos(4*t))/(15*pi) - (4*cos(6*t))/(35*pi) - (4*cos(2*t))/(3*pi) + . . .

The x(t) response is shown in Fig. 7.8 for n = 3.

Example 7.18 Write a MATLAB program to determine the trigonometric Fourier
series of Example 2.5.

clc;
clear all;
syms t n B A pi
n = [1:3];
B=A*sin(t);
T0=2*pi;
wo=1;
up_limit=pi;
low_limit=0;
half_a0 = (1/T0)*(int(B,t,low_limit, up_limit))
ai = (2/T0)*(int(B*cos(n*wo*t),t,low_limit, up_limit))
bi = (2/T0)*(int(B*sin(n*wo*t),t,low_limit, up_limit))
ft = half_a0;
for k=1:length(n)
ft = ft + ai(k)*cos(k*wo*t) + bi(k)*sin(k*wo*t);
end;
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ezplot(ft),grid
xlabel(’Time (t) ’);
ylabel(’x(t) ’);
title(’Output response of x(t)’);
ft

Output:

half_a0 = A/pi

ai = [ 0, -(2*A)/(3*pi), 0] + . . .

bi = [ A/2, 0, 0]

ft = A/pi + (A*sin(t))/2 - (2*A*cos(2*t))/(3*pi) + . . .

Example 7.19 Write a MATLAB program to determine the trigonometric Fourier
series of Example 2.6.

clc;
clear all;
syms t n B A pi
n = [1:20];
B=t∧2;
T0=2;
wo=pi;
up_limit=1;
low_limit=-1;
half_a0 = (1/T0)*(int(B,t,low_limit, up_limit))
ai = (2/T0)*(int(B*cos(n*wo*t),t,low_limit, up_limit))
bi = (2/T0)*(int(B*sin(n*wo*t),t,low_limit, up_limit))
ft = half_a0;
for k=1:length(n)
ft = ft + ai(k)*cos(k*wo*t) + bi(k)*sin(k*wo*t);
end;
ezplot(ft),grid
xlabel(’Time (t) ’);
ylabel(’x(t) ’);
title(’Output response of x(t)’);
ft

Output:

half_a0 = 1/3

ai = [ -4/pi∧2, 1/pi∧2, -4/(9*pi∧2)] + . . .
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Fig. 7.9 Fourier series response x(t) of Example 7.19, n = 3

bi = [ 0, 0, 0]

ft = cos(2*pi*t)/pi∧2 - (4*cos(pi*t))/pi∧2 - (4*cos(3*pi*t))/(9*pi∧2) + 1/3+. . .

See (Fig. 7.9).

Example 7.20 Write a MATLAB program to determine the exponential Fourier
series of Example 2.9.

clc;
clear all;
syms t n B A pi
n = [1:2];
B=cos(t);
T0=10;
wo=0.2*pi;
up_limit=pi/2;
low_limit=-pi/2;
D = (1/T0)*(int(B*exp(-j*wo*n*t),t,low_limit, up_limit))
Dn=vpa(D,4)
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xt=0;
for k=1:length(n)
xt = xt + Dn(k)*exp(j*0.2*pi*k*t);
end;
vpa(xt,4)

Output:

D = [−(5*cos(pi∧2/10))/(pi∧2 − 25), −(5*cos(pi∧2/5))/(4*pi∧2 − 25)]

Dn = [0.1822, 0.1355]

x(t) = 0.1822*exp(t*0.6283i) + 0.1355*exp(t*1.257i)

Example 7.21 Write aMATLABprogram to find the Fourier transform of the signal
x(t) = δ(t − 2) (Refer Example 3.14 (1))

syms t x
x = dirac(t-2);
F= fourier(x)

Output:

F =exp(-w*2i)

Example 7.22 Write aMATLABprogram to find the Fourier transform of the signal
x(t) = δ(t − 1) − (t + 1) (Refer Example 3.14 (2)).

syms t x
x = dirac(t-1)-dirac(t+1);
F= fourier(x);
simplify(F)

Output:

ans = -sin(w)*2i

Example 7.23 Write aMATLABprogram to find the Fourier transform of the signal
x(t) = δ(t + 2) + δ(t − 2) (Refer Example 3.14 (3)).

syms t x
x = dirac(t+2)+dirac(t-2);
F= fourier(x)
simplify(F)

Output:

ans =2*cos(2*w)



7.1 Application of MATLAB Program 639

Example 7.24 Write aMATLABprogram to find the Fourier transform of the signal
x(t) = u(t − 1) − u(t + 1) (Refer Example 3.14 (4))

syms t x
x = heaviside(t+2)- heaviside(t-2);
F= fourier(x)
simplify(F)

Output:

ans = (2*sin(2*w))/w

Example 7.25 Write aMATLABprogram to find the Fourier transform of the signal

x(t) = d

dt
(u(−t − 3) + u(t − 3)

(Refer Example 3.14 (5))

syms t x
x = heaviside(-t-32)+ heaviside(t-3);
F= fourier(diff(x))

Output:

F = exp(-w*3i) - exp(w*32i)

Example 7.26 Write aMATLABprogram to find the Fourier transform of the signal
x(t) = e−3tu(t − 1) (Refer Example 3.14 (6))

syms t x(t)
x(t) = exp(-3*t) * heaviside(t-1);
F= fourier(x(t))

Output:

F =exp(- w*1i - 3)/(3 + w*1i)

Example 7.27 Write aMATLABprogram to find the Fourier transform of the signal
x(t) = te−0.5u(t) (Refer Example 3.14 (7))

syms t w
x=t*exp(-0.5*t) *heaviside(t);
F=fourier(x,w)

Output:

F = 1/(1/2 + w*1i)∧2
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Example 7.28 Write aMATLABprogram to find the Fourier transform of the signal
x(t) = e−a(t−2)u(t − 2) (Refer Example 3.14 (8))

syms t w a
a=3; % Assume a=3
x=exp(-a*(t-2)) *heaviside(t-2);
F=fourier(x,w)

Output:

F = exp(-w*2i)/(a + w*1i)

Example 7.29 Write aMATLABprogram to find the Fourier transform of the signal

x(t) = d

dt

(
5rect

(
t

8

))

(Refer Example 3.14 (18))

syms t x
x =5*rectangularPulse(-1, 1, (t/8))
F= fourier(diff(x))
simplify(F)

Output:

ans =sin(8*w)*10i

Example 7.30 Write aMATLABprogram to find the Fourier transform of the signal

x(t) = δ(t + 2) + 5δ(t − 2)

(Refer Example 3.14 (19))

syms t x
x = dirac(t+2)+5*dirac(t+1)+dirac(t-1)+5*dirac(t-2);
F= fourier(x)

Output:

F = exp(-w*1i) + 5*exp(w*1i) + 5*exp(-w*2i) + exp(w*2i)

Example 7.31 Write a MATLAB program to find the Inverse Fourier transform of
the function X ( jω) = δ(w − w0) (Example 3.18a)

syms t w wo
ifourier(dirac(w-wo), w, t)

Output:

ans = exp(t*wo*1i)/(2*pi)
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Example 7.32 Write a MATLAB program to find the Inverse Fourier transform of
the function

X ( jw) =
{
1 w < 2
0 elsewhere

}

Example 3.18(3).

syms t
f = rectangularPulse(-2,2,t); %
F = ifourier(f,’t’);
simplify(F)

Output:

ans =sin(2*t)/(t*pi)

Example 7.33 Write a MATLAB program to find the Inverse Fourier transform of
the function

X ( jw) = 6

w2 + 9

Example 3.18(4).

clc;
syms t w wo
X=6/(9+w∧2)
ifourier(X,t)

Output:

x(t) = e−3t u(t) + e3t u(−t)

Example 7.34 Write a MATLAB program to find the Laplace transform of ramp
function (Refer Example 4.9)

syms t s
f=t;
laplace(f)
laplace(f,s)

Output:

ans =1/s∧2

Example 7.35 Write a MATLAB program to find the Laplace transform of accel-
eration function (Refer Example 4.10)
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syms a t s
f=(1/2)*a*t∧2;
laplace(f)
laplace(f,s)

Output:

ans =a/s∧3

Example 7.36 Write a MATLAB program to find the Laplace transform of expo-
nential decay function (Refer Example 4.11)

syms a t s
f=(1/2)*a*t∧2;
laplace(f)
laplace(f,s)

Output:

ans = 1/(a + s)

Example 7.37 Write a MATLAB program to find the Laplace transform of sine
function x(t) = sin atu(t) (Refer Example 4.12)

syms a t s
f=sin (a*t);
laplace(f)
laplace(f,s)

Output:

ans = a/(a∧2 + s∧2)

Example 7.38 Write a MATLAB program to find the Laplace transform of cosine
function x(t) = cos atu(t) (Refer Example 4.13)

syms a t s
f=cos (a*t);
laplace(f)
laplace(f,s)

Output:

ans = s/(a∧2 + s∧2)

Example 7.39 Write a MATLAB program to find the Laplace transform of hyper-
bolic sine function (Refer Example 4.14)
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syms a t s
f=sinh(a*t);
laplace(f)
laplace(f,s)

Output:

ans = -a/(a∧2 - s∧2)

Example 7.40 Write a MATLAB program to find the Laplace transform of hyper-
bolic cosine function (Refer Example 4.15)

syms a t s
f=cosh(a*t);
laplace(f)
laplace(f,s)

Output:

ans = -s/(a∧2 - s∧2)

Example 7.41 Write a MATLAB program to find the Laplace transform of x(t) =
tnu(t) function (Refer Example 4.16)

syms n t s
f=t∧n;
laplace(f)
laplace(f,s)

Output:

ans = piecewise([-1 < real(n), gamma(n + 1)/s∧(n + 1)])

Example 7.42 Write a MATLAB program to find the Laplace transform of x(t) =
e−at sinw0t function (Refer Example 4.17)

syms a t s wo
f=exp(-a*t)*sin(wo*t);
laplace(f)
laplace(f,s)

Output:

ans = wo/((a + s)∧2 + wo∧2)

Example 7.43 Write a MATLAB program to find the Laplace transform of x(t) =
t sinw0t function (Refer Example 4.18)
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syms t s wo
f=t*sin(wo*t);
laplace(f)
laplace(f,s)

Output:

ans=(2*s*wo)/(s∧2 + wo∧2)∧2

Example 7.44 Write a MATLAB program to find the Laplace transform of x(t) =
cos at sin bt function (Refer Example 4.19)

syms a t s b
f=cos(a*t)*sin(b*t);
laplace(f)
laplace(f,s)

Output:

ans= (- a∧2*b + b∧3 + b*s∧2)/(a∧4 - 2*a∧2*b∧2 + 2*a∧2*s∧2 + b∧4 + 2*b∧2*s∧2
+ s∧4)

Example 7.45 Write a MATLAB program to find the Laplace transform of x(t) =
sin(at + θ) function (Refer Example 4.21)

syms a t s b
f=sin(a*t+b);
laplace(f)
laplace(f,s)

Output:

ans= (a*cos(b) + s*sin(b))/(a∧2 + s∧2)*s*wo)/(s∧2 + wo∧2)∧2

Example 7.46 Write a MATLAB program to find the Inverse Laplace transform of

X (s) = (s + 1)(s + 3)

(s + 2)(s + 4)

(Refer Example 4.38(1))

syms t s
figure
X2=((s+1)*(s+3))/((s+2)*(s+4));
x2=ilaplace(X2,t)
ezplot(x2,[0 10])
title(’x(t) Inverse form’)
xlabel(’Time (t)’);
ylabel(’Magnitude ’);
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Output:

x2 = dirac(t) - (3*exp(-4*t))/2 - exp(-2*t)/2

Example 7.47 Write a MATLAB program to find the Inverse Laplace transform of

X (s) = 10(s + 4)

s2(s + 2)

(Refer Example 4.39)

syms t s w
figure
X2=(10*(s+4))/((s∧2)*(s+2));
x2=ilaplace(X2,t)
ezplot(x2,[0 10])
title(’x(t) Inverse form’)
xlabel(’Time (t)’);
ylabel(’Magnitude ’);

Output:

x2 = 20*t + 5*exp(-2*t) - 5

Example 7.48 Write a MATLAB program to find the Inverse Laplace transform of

X (s) = (3s2 + 8s + 23)

(s + 3)(s2 + 2s + 10)

(Refer Example 4.41)

syms t s w
figure
X2=(3*s∧2+8*s+23)/((s+3)*(s∧2+2*s+10));
x2=ilaplace(X2,t)
ezplot(x2,[0 10])
title(’x(t) Inverse form’)
xlabel(’Time (t)’);
ylabel(’Magnitude ’);

Output:

x2 = 2*exp(-3*t) + cos(3*t)*exp(-t)

Example 7.49 Write a MATLAB program to find the Inverse Laplace transform of

X (s) = (3s2 + 8s + 6)

(s + 2)(s2 + 2s + 1)

(Refer Example 4.42)



646 7 Application of MATLAB and Python Programs to Solve Problems

syms t s w
figure
X2=(3*s∧2+8*s+6)/((s+2)*(s∧2+2*s+1));
x2=ilaplace(X2,t)
ezplot(x2,[0 10])
title(’x(t) Inverse form’)
xlabel(’Time (t)’);
ylabel(’Magnitude ’);

Output:

x2 = exp(-t) + 2*exp(-2*t) + t*exp(-t)

Example 7.50 Write a MATLAB program to find the Inverse Laplace transform of

X (s) = 10s2

(s + 2)(s2 + 4s + 5)

(Refer Example 4.43)

syms t s w
figure
X2=(10*s∧2)/((s+2)*(s∧2+4*s+5));
x2=ilaplace(X2,t)
ezplot(x2,[0 10])
title(’x(t) Inverse form’)
xlabel(’Time (t)’);
ylabel(’Magnitude ’);

Output:

x2 = 40*exp(-2*t) - 30*exp(-2*t)*(cos(t) + (4*sin(t))/3)

Example 7.51 Write a MATLAB program to find the Inverse Laplace transform of
following differential equation

d2y(t)

dt2
+ 7

dy(t)

dt
+ 12y(t) = x(t)

x(t) = u(t) and assume y(0) = −2 and dy/dt (0) = 0 (Refer Example 4.48)

syms t s Y
x=heaviside(t);
X=laplace(x,s);
y0=-2;
yd0=0;
Y1=s*Y-y0;
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Y2=s*Y1-yd0;
G=Y2+7*Y1+12*Y-X;
Y=solve(G,Y);
y=ilaplace(Y,t)
ezplot(y,[0 10]);
xlabel(’Time (t)’);
ylabel(’Magnitude ’);

Output:

y(t) =(25*exp(-4*t))/4 - (25*exp(-3*t))/3 + 1/12

Example 7.52 Write a MATLAB program to find the Inverse Laplace transform of
following differential equation

d2y(t)

dt2
+ 4

dy(t)

dt
+ 4y(t) = dx(t)

dt
+ x(t)

x(t) = e−3t u(t) and assume y(0) = 9/4, and dy/dt (0) = 5 (Refer Example 4.49)

syms t s Y
y0=9/4;
yd0=5;
x=exp(-3*t)*heaviside(t);
X=laplace(x,s);
dx=diff(exp(-3*t));
dxi=laplace(dx,s);
Y1=s*Y-y0;
Y2=s*Y1-yd0;
G=Y2+4*Y1+4*Y-X-dxi;
Y=solve(G,Y);
y=ilaplace(Y,t)
ezplot(y)
legend(’Output response of y(t)’)
xlabel(’Time (t)’);
ylabel(’Magnitude ’);

Output:

y(t) =((17*exp(-2*t))/4 - 2*exp(-3*t) + (15*t*exp(-2*t))/2

Example 7.53 Write a MATLAB program to find the convolution property of
Laplace transform of following signal x1(t) = e−2t u(t) and x2(t) = e−3t u(t) (Refer
Example 4.52)

syms t s
x1=exp(-2*t)*heaviside(t);
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x2=exp(-3*t)*heaviside(t);
X1=laplace(x1,s);
X2=laplace(x2,s);
R=ilaplace(X1*X2,t)
ezplot(R,[0 20]);
legend(’Output response of y(t)’)
xlabel(’Time (t)’);
ylabel(’Magnitude ’);

Output:

R = exp(-2*t) - exp(-3*t)

Example 7.54 Write a MATLAB program to find the convolution property of
Laplace transform of following signals.

x1(t) = e−2t u(t)

and
x2(t) = (1 + e−3t )u(t)

(Refer Example 4.53)

syms t s
x1=exp(-2*t)*heaviside(t);
x2=(1+exp(-3*t))*heaviside(t);
X1=laplace(x1,s);
X2=laplace(x2,s);
R=ilaplace(X1*X2,t)
ezplot(R,[0 20]);
legend(’Output response of y(t)’)
xlabel(’Time (t)’);
ylabel(’Magnitude ’);

Output:

R = exp(-2*t)/2 - exp(-3*t) + 1/2

Example 7.55 Write a MATLAB program to find the z-transform of the signal
x[n] = {2,−1, 0, 3, 4} (Refer Example 5.2 (1))

syms z
x=[2 -1 0 3 4];
n=[0 1 2 3 4];
X=sum(x.*(z.∧-n))

Output:

X = 3/z∧3 - 1/z + 4/z∧4 + 2
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Example 7.56 Write a MATLAB program to find the z-transform of the signal
x[n] = {1,−2, 3,−2, 2} (Refer Example 5.2 (2))

syms z
x=[1 -2 3 -1 2];
n=[-4 -3 -2 -1 0 ];
X=sum(x.*(z.∧-n))

Output:

z∧4 - 2*z∧3 + 3*z∧2 - z + 2

Example 7.57 Write a MATLAB program to find the z-transform of unit impulse
function (Refer Example 5.2 (4))

syms n z a w
f=dirac(n);
ztrans(f,z)

Output:

ztrans(dirac(n), n, z)
X [z] = 1

Example 7.58 Write a MATLAB program to find the z-transform of unit step func-
tion (Refer Example 5.2 (5))

syms n z a w
f=heaviside(1)
ztrans(f,z)

Output:

ans = z/(z - 1)

Example 7.59 Write a MATLAB program to find the z-transform of x[n] = e jwn

u[n] (Refer Example 5.2 (11))

syms z,w,n
f=exp(w*n);
ztrans(f,z)

Output:

ans = z/(z - exp(w))

Example 7.60 Write a MATLAB program to find the z-transform of x[n] = cos
w0nu[n] (Refer Example 5.2 (12))
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syms z,w,n
f=cos(w*n);
ztrans(f,z)

Output:

ans = (z*(z - cos(w)))/(z∧2 - 2*cos(w)*z + 1)

Example 7.61 Write a MATLAB program to find the z-transform of x[n] =
sinwnu[n] (Refer Example 5.2 (13))

syms z,w,n
f=cos(w*n);
ztrans(f,z)

Output:

ans = (z*sin(w))/(z∧2 - 2*cos(w)*z + 1)

Example 7.62 Write a MATLAB program to find the z-transform of x[n] = nu[n]
(Refer Example 5.3 (7))

syms n z a w
x=n*heaviside(n);
Left=ztrans(x,z);
simplify(Left)

Output:

ans = z/(z - 1)∧2

Example 7.63 Write aMATLABprogram to find the z-transform of x[n] = nu[n −
1] (Refer Example 5.3 (19))

syms n z
x=n*heaviside(n);
Left=ztrans(x,z);
simplify(Left)

Output:

ans = z/(z - 1)∧2

Example 7.64 Write a MATLAB program to solve difference equation

y[n + 2] + 1.1y[n + 1] + 0.3y[n] = x[n + 1] + x[n]

x(n) = (−4)−nu(n) and assume initial conditions are zero (Refer Example 5.29)
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syms n z Y
x=-4∧-n;
X=ztrans(x,z);
X1=z∧(1)*X;
Y1=z∧(1)*Y;
Y2=z∧2*Y
G=0.3*Y+1.1*Y1+Y2-X-X1;
SOL=solve(G,Y);
y=iztrans(SOL,n)

n_s=0:30;
y_s=subs(y,n,n_s);
stem(n_s,y_s);
legend(’Output response of y[n]’)
xlabel(’Time (t)’);
ylabel(’Magnitude ’);

Output:

(20*(-1/2)∧n)/3 - (100*(1/4)∧n)/51 - (80*(-3/5)∧n)/17

Example 7.65 Write a MATLAB program to solve difference equation

y[n] + 2y[n − 1] + 2y[n − 2] = x[n]

X (n) = u(n) and assume y[−1] = 0 and y[−2] = 2 (Refer Example 5.35)

clc;
clear all;
syms n z Y
x=0.2∧n;
X=ztrans(x,z);
y_1=0;
y_2=1;
Y1=z∧(-1)*Y+y_1;
Y2=z∧(-2)*Y+z∧-1*y_1+y_2;
G=Y-0.75*Y1+.125*Y2-X;
SOL=solve(G,Y);
y=iztrans(SOL,n)
n1=0:50;
y_n=subs(y,n,n1);
stem(n1,y_n)
legend(’Output response of y[n]’)
xlabel(’Time (t)’);
ylabel(’Magnitude ’);
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Output:

(37*(1/2)∧n)/12 - (39*(1/4)∧n)/8 + (8*(1/5)∧n)/3

Example 7.66 Write a MATLAB program to solve difference equation

y[n] + 6y[n − 1] + 8y[n − 2] = 5x[n − 1] + x[n − 2]

X (n) = u(n) and assume y[−1] = 1 and y[−2] = 2 (Refer Example 5.37), x[n] =
u[n].

clc;
clear all;
syms n z Y
x=heaviside(n+1);
X=ztrans(x,z);
X1=z∧(-1)*X;
X2=z∧(-2)*X;
y_1=1;
y_2=2;
Y1=z∧(-1)*Y+y_1;
Y2=z∧(-2)*Y+z∧-1*y_1+y_2;
G=Y+6*Y1+8*Y2-5*X1-X2;
SOL=solve(G,Y);
y=iztrans(SOL,n)
n1=0:50;
y_n=subs(y,n,n1);
stem(n1,y_n)
title(’y[n] in z-Transform ’);
legend(’Output response of y[n]’)
xlabel(’Time (t)’);
ylabel(’Magnitude ’);

Output:

(39*(-2)∧n)/2 - (419*(-4)∧n)/10 + 2/5

Example 7.67 Write a MATLAB program to solve difference equation

y[n + 2] + y[n + 1] + 0.24y[n] = x[n + 1] + 2x[n]

x(n) = (1/2)nu(n) and assume initial conditions are zero (Refer Example 5.38)

syms n z Y
x=0.5∧n;
X=ztrans(x,z);
X1=z∧(1)*X;
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y_1=0;
y_2=0;
Y1=z∧(1)*Y+y_1;
Y2=z∧(2)*Y+y_2+(z∧1)*y_1;

G=Y2+Y1+0.24*Y-X1-2*X;
SOL=solve(G,Y);
y=iztrans(SOL,n)

n1=0:50;
y_n=subs(y,n,n1);
stem(n1,y_n)
legend(’Output response of y[n]’)
xlabel(’Time (t)’);
ylabel(’Magnitude ’);

Output:

y[n]=(250*(1/2)∧n)/99 - (80*(-2/5)∧n)/9 + (70*(-3/5)∧n)/11

Example 7.68 Write a MATLAB program to solve difference equation

y[n + 2] − 9y[n + 1] + 20y[n] = 4x[n + 1] + 2x[n]

X (n) = (1/2)nu(n) and assume y[−1] = 2 and y[−2] = 1 (Refer Example 5.40)

clc;
clear all;
syms n z Y
x=0.5∧n;
X=ztrans(x,z);
X1=z∧(-1)*X;
X2=z∧(-2)*X;
y_1=1;
y_2=2;
Y1=z∧(-1)*Y+y_1;
Y2=z∧(-2)*Y+z∧-1*y_1+y_2;
G=Y-9*Y1+20*Y2-4*X1-2*X;
SOL=solve(G,Y);
y=iztrans(SOL,n)
n1=0:50;
y_n=subs(y,n,n1);
stem(n1,y_n)
legend(’Output response of y[n]’)
xlabel(’Time (t)’);
ylabel(’Magnitude ’);
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Output:

y[n] = [0.254(0.5)n + 42.86(4)n − 45.1(5)n]u[n]
Example 7.69 Write a MATLAB program to find the state equation for the transfer
function (Refer Example 6.13)

H(S) = 7s3 + 11s2 + 14s + 10

s3 + 8s2 + 5s + 4

clc;
clear all;
num=[7 11 14 10];
den=[1 8 5 4];
z=tf(num,den)
[A ,B,C,D]=tf2ss(num ,den)

Output:

z = 7s∧3 + 11s∧2 + 14s + 10
——————————
s∧3 + 8s∧2 + 5s + 4

Continuous-time transfer function.

A =
⎡
⎣−8 −5 −4

1 0 0
0 1 0

⎤
⎦

B =
⎡
⎣1
0
0

⎤
⎦

C = [−45 −21 −18
]

D = 7

Example 7.70 Write a MATLAB program to determine the system function (Refer
Example 6.14)

q =
[−3 1
−2 0

]
+

[
1
0

]
q(t)

y = [0 1]q(t)

clc;
clear all;
A=[-3 1;-2 0];
B=[1 ;0];
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C=[0 1];
D=0;
[n , d]=ss2tf(A,B,C,D)
transferfn=tf(n,d)

Output:
–2

transferfn = ———————
s∧2 + 3s + 2

Example 7.71 Write a MATLAB program to find the state equation for the transfer
function (Refer Example 6.18)

H(S) = 5z4 + 7z3 + 8z2 + 2z + 10

z4 + 6z3 + 7z2 + 4z + 9

clc;
clear all;
num=[5 7 8 2 10];
den=[1 6 7 4 9];
z=tf(num,den)
[A ,B,C,D]=tf2ss(num ,den)

Output:

A =

⎡
⎢⎢⎣

−6 −7 −4 −9
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦

B =

⎡
⎢⎢⎣
1
0
0
0

⎤
⎥⎥⎦

C = [−23 −27 −18 −35
]

D = 5

Example 7.72 Write aMATLAB program to find the state equation (Refer Example
6.19)

4y[n − 3] + 6y[n − 2] − 5y[n − 1] + y[n] = 5x[n − 1] + x[n]
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b0=1;
b1=5;
b2=0;
b3=0;
a1=-5;
a2=6;
a3=4;
A=[0 1 0 ; 0 0 1; -a3 -a2 -a1]
B=[ 0 0 1];
bb3=b3-b0*a3;
bb2=b2-b0*a2;
bb1=b1-b0*a1;
C= [bb3 bb2 bb1]
D=b0

Output:

A =
⎡
⎣ 0 1 0

0 0 1
−4 −6 5

⎤
⎦

B =
⎡
⎣0
0
1

⎤
⎦

C = [−4 −6 −10
]

D = 1

Example 7.73 Write aMATLAB program to find the state equation canonical form-
I for the transfer function (Refer Example 6.20)

H(S) = 5z4 + 7z3 + 8z2 + 2z + 10

z4 + 6z3 + 7z2 + 4z + 9

clc;
clear all;
num=[5 7 8 2 10];
den=[1 6 7 4 9];
z=tf(num,den)
[A ,B,C,D]= tf2ss(num ,den);
A=A’
B=B’
C=C’
D=D
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Output:

z =

5s∧4 + 7s∧3 + 8s∧2 + 2s + 10
—————————————
s∧4 + 6s∧3 + 7s∧2 + 4s + 9

Continuous-time transfer function.

A =

⎡
⎢⎢⎣

−6 1 0 0
−7 0 1 0
−4 0 0 1
−9 0 0 0

⎤
⎥⎥⎦

B = [1 0 0 0]
C = [−23 −27 −18 −35

]
D = 5

Example 7.74 Write aMATLABprogram to find the state variables (Refer Example
6.22)

y[n] − 3y[n − 1] − 2[y − 2] = x[n] + 5x[n − 1] + 6x[n − 2]

clc;
clear all;
b0=1;
b1=5;
b2=6;
a1=-3;
a2=-2;
A=[0 1 ; -a2 -a1]
B=[ 0 1];
bb2=b2-b0*a2;
bb1=b1-b0*a1;
C= [ bb2 bb1]
D=b0

Output:

A =
[
0 1
2 3

]

B =
[
1
0

]

C = [8 8]
D = 1
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Example 7.75 Write aMATLAB program to determine the transfer function (Refer
Example 6.23)

A =
[
2 −1
1 0

]
; B =

[
1
0

]
; C = [3 1]; D = [2]

clc;
clear all;
A=[2 -1;1 0];
B=[1 ;0];
C=[3 1];
D=2;
[n , d]=ss2tf(A,B,C,D)
transferfn=tf(n,d)

Output:

transferfn =
2s∧2 – s + 3
—————–
s∧2 – 2s + 1

Example 7.76 Determine the transfer function and the Eigen values of the system
represented in state space using MATLAB.

dx(t)

dt
=

⎡
⎣4 1 −2
1 0 2
1 −1 3

⎤
⎦ x(t) +

⎡
⎣1
2
3

⎤
⎦ u(t)

y(t) = [2 − 6 5]x(t)
clc;
A = [41 − 2; 102; 1 − 13];
B = [1; 2; 3];
C = [2 − 65];
D = 0;
[num,den]=ss2tf(A,B,C,D)
sys=tf(num,den)
EigenValues=roots(den)

Output:

num = 0 5.0000 − 37.0000 60.0000
den = 1.0000 − 7.0000 15.0000 − 9.0000
Transfer function:
5 s2 − 37 s + 60/s3 − 7 s2 + 15 s − 9
Eigen Values = 3.0000

3.0000
1.0000
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Example 7.77 Write a Program to obtain the transfer function of the system defined
by the following state space equations

dx(t)

dt
=

⎡
⎣ 0 1 0

0 0 1
−5 −10 −3

⎤
⎦ x(t) +

⎡
⎣0
0
1

⎤
⎦ u(t)

y(t) = [4 5 1]x(t)
clc;
A = [010; 001;−5 − 10 − 3];
B = [0; 0; 1];
C = [451];
D = 0;
[num,den]=ss2tf(A,B,C,D) sys=tf(num,den)

Output:

num = 0 1.0000 5.0000 4.0000
den = 1.0000 3.0000 10.0000 5.0000
Transfer function:
s2 + 5 s + 4/s3 + 3 s2 + 10 s + 5

Example 7.78 Write a Program to obtain the state space equations for the transfer
function given below

T (s) = 5 s + 2

s3 + 7 s2 + 3 s + 5

clc;
num=[0 0 5 2];
den=[1 7 3 5];
[A,B,C,D]=tf2ss(num,den)

Output:

A =
⎡
⎣−7 −3 −5

1 0 0
0 1 0

⎤
⎦

B =
⎡
⎣1
0
0

⎤
⎦

C = [0 5 2]
D = [0]

Example 7.79 Write a Program to find the state transition matrix for the following
A matrix.
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A =
[−3 1
−2 0

]

clc;
A = [−31;−20];
T=sym(‘t’)
STM=expm(A*t)

Output:

STM =[2/exp(2*t) – 1/exp(t), 1/exp(t) – 1/exp(2*t)]
[2/exp(2*t) – 2/exp(t), 2/exp(t) – 1/exp(2*t)]

Example 7.80 A certain control system is described by the following vector matrix
differential equation

dx

dt
=

⎡
⎣ 1 2 1

−1 −4 −3
1 2 3

⎤
⎦ x(t) +

⎡
⎣1
4
6

⎤
⎦ u(t)

y(t) = [1 1 2]x(t)

Determine whether the above system is completely state controllable, completely
output controllable and observable.

clc;
A = [121;−1 − 4 − 3;−123];
B = [1; 4; 6];
C = [112];
D=0;
disp(‘Rank of the Matrix’)
Rankc=rank([B A*B A2*B]) % To check the controllability
Ranko= rank([C’ A’*C’ A’2*C’]) % To check the observability
Rankoc= rank([C*B C*A*B C*A2*B]) % To check the output Controllability

Output:

Rankc =3
Ranko = 3
Rankoc = 1

From the above the system is completely state controllable and observable. The
system is not output controllable since the rank of the matrix is not three.

Example 7.81 Write a program to obtain the response for the following system for
unit step input and u(t) = e−t .

dx(t)

dt
=

[−3 1
−2 0

]
x(t) +

[
0
1

]
u(t)

y(t) = [1 0]x(t) + [0]u(t)
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Fig. 7.10 Unit step response for Example 7.81

clc;
t=0:0.1:12;
A = [−31;−20];
B=[0;1];
C=[1 0];
D=[0];
y=step(A,B,C,D,1,t);

figure(1)
plot(t,y)
grid
title(‘Unit step Response’)
xlabel(‘tsec’)
ylabel(‘output’)
u = exp(−t)
z=lsim(A,B,C,D,u,t)
figure(2)
plot(t,u,‘ − ’,t,z,‘o’)
grid
title(‘Response to exponential Input u=exp(-t)’)
xlabel(‘tSec’)
ylabel(‘Exponential input’)
text(6.4,0.38,‘output’)

The output response is shown in Fig. 7.10 for unit step input.
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Fig. 7.11 Response for exponential Input for Example 7.81 for x(t) = e−t

Output:
The output response of the system in Example 7.81 for x(t) = e−t is shown in

Fig. 7.11.

Example 7.82 Write a program to obtain the response to initial conditions for the
given system

dx(t)

dt
= Ax + Bu

y = Cx + Du

x(0) =
[
1

−1

]

where

A =
[−3 1
−2 0

]

B =
[
0
1

]

C = [1 0]
D = [0]
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clc;
t=0:0.05:3
A = [−31;−20];
B=[1;0];
C=[0 1];
D=[0];
[y x]= initial(A,B,C,D,[1;-1],t);
figure(1)
plot(t,y)
grid
x1=[1 0]*x’;
x2=[0 1]*x’;
figure(2)
plot(t,x1,‘x’,t,x2,‘ − ’)
grid
title(‘Response to Initial Condition’)
xlabel(‘tSec’)
ylabel(‘State variables x1 and x2’)
gtext(‘x1’)
gtext(‘x2’)

Output:

The state variable response of Example 7.82 is shown in Fig. 7.12.

Example 7.83 Write a MATLAB program to perform unit impulse function.

Unit impulse function:

clc;
clear all;
close all;
x=ones(1,1);
subplot(2,3,1);
n=0;
stem(n,x);
xlabel(’n’);
ylabel(’x’);
title(’unit impulse function’);

The unit impulse function is shown in Fig. 7.13.

Example 7.84 Write a MATLAB program to perform unit step sequence.

clc;
clear all;
N=8;
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Fig. 7.12 Response for exponential input for Example 7.82

Fig. 7.13 Representation of unit impulse function
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Fig. 7.14 Representation of unit step sequence

x=ones(1,N);
n=0:1:N-1;
subplot(2,3,1);
stem(n,x);
xlabel(’n’);
ylabel(’x(n’);
title(’unit step function’)

The unit step sequence is shown in Fig. 7.14.

Example 7.85 Write a MATLAB program to perform unit ramp sequence.

Unit ramp:

clc;
clear all;
N=8;
x=0:N-1;
n=0:N-1;
subplot(2,3,1);
stem(n,x);
xlabel(’n’);
ylabel(’x(n’);
title(’unit ramp functin’);



666 7 Application of MATLAB and Python Programs to Solve Problems

Fig. 7.15 Representation of unit ramp sequence

The unit ramp sequence is shown in Fig. 7.15.

Example 7.86 Write a MATLAB program to perform linear convolution.

x[n] = [1 2 3 4]
h[n] = [2 3 4 1]

Linear convolution:

Program:

clc;
clear all;
close all;
x=input(’Enter the first input sequence x(n)’);
h=input(’Enter the second input sequence h(n)’);
n1=length(x);
n2=length(h);
n=n1+n2-1;
y=conv(x,h);
disp(’Linear Convolution Output is:’);
disp(y);
t1=0:n1-1;
subplot(2,2,1);
stem(t1,x);
xlabel(’n’);
ylabel(’Amplitude’);



7.1 Application of MATLAB Program 667

title(’First input sequence:’);
t2=0:n2-1;
subplot(2,2,2);
stem(t2,h);
xlabel(’n’);
ylabel(’Amplitude’);
title(’Second input sequence:’);
t=0:1:n-1;
subplot(2,2,3);
stem(t,y);
xlabel(’n’);
ylabel(’Amplitude’);
title(’Output sequence:’);

Output:

First sequence [1 2 3 4]
Second sequence[2 3 4 1]

o/p sequence:
[2 7 16 26 26 19 4]

Example 7.87 Write a MATLAB program to perform circular convolution for the
Example 7.86.

clc;
clear all;
close all;
x1=input(’enter’);
x2=input(’enter’);
n1=length(x1);
n2=length(x2);
if(n1<n2)

x1=[zeros x1(1,n2-n1)];
elseif(n2<n1)

x2=[zeros x2(1,n1-n2)];
else

x1=x1;
x2=x2;

end;
n1=length(x1);
n2=length(x2);
A=fft(x1,n1);
B=fft(x2,n2);
Y=A.*B;
y=ifft(Y);
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n=length(y);
disp(’Circular convolution output is:’);
disp(y);
t1=0:n1-1;
subplot(2,2,1);
stem(t1,x1);
xlabel(’n’);
ylabel(’Amplitude’);
title(’First input sequence:’);
t2=0:n2-1;
subplot(2,2,2);
stem(t2,x2);
xlabel(’n’);
ylabel(’Amplitude’);
title(’second input sequence:’);
t=0:n-1;
subplot(2,2,3);
stem(t,y);
xlabel(’n’);
ylabel(’Amplitude’);
title(’Output sequence:’);

enter[1 2 3 4]
enter[2 3 4 5]

Output:

36 38 36 30

The input and output sequences are shown Fig. 7.16.

Example 7.88 Write a MATLAB program to find n point DFT of a given sequence.

x[n] = [1 1 1 1 0 0 0 0]

Discrete fourier transform

Clear all
Xn=input(’enter a sequence’);
L=length(xn); length of the sequence
N=input(’enter the length of the DFT’);
Xk=dft(xn,N)
Subplot(2,1,2),stem(abs(xk))
Xlable(’\itk’)
Ylabel(’x(k))
subplot(2,1,2).stem(angle(xk))
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Fig. 7.16 Input/output of circular convolution

Xlabel(’\itk’)
Ylabel(’arg(x(k))’)

Output:

enter sequence [1 1 1 1 0 0 0 0]
enter the length of the DFT 8

xk=

Columns 1 through 6

4.0000 1.0000 − 2.4142i − 0.0000 − 0.0000i 1.0000 − 0.4142i 0 − 0.0000i
1.0000 + 0.4142i

Columns 7 through 8

0.0000 − 0.0000i 1.0000 + 2.4142i
See (Fig. 7.17).

Example 7.89 Write a MATLAB program to perform upsampling.
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Fig. 7.17 N points DFT of x[n] = [11110000]

Illustration of upsampling:

Clear all
N=10% sequence length
N=0:1:N-1;
X=sin(2*pi*n/10)+sin(2*pi*n/5)
L=3% upsampling factor
X1=[zeros(1,L*N)];
N1=1:1:L*N j=1:L:L*N;
X1(j)=x;
Subplot(2,1,1); stem(n1,x1)
Xlabel(’n’),ylabel(’x)
Title(’input sequence’)
Subplot(2,1,2), stem(n1,x1)
Xlabel(’n’),ylabel(’x1’)
Title(’upsampled sequence’);

The input sequence and the up sampled sequences are shown in Fig. 7.18. The input
sequence is shown in Fig. 7.18a and output sequence in Fig. 7.18b.

Example 7.90 Write a MATLAB program to find Z transform.
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Fig. 7.18 Representation of input and upsampled sequences

Z transform:

To find the partial fraction of H(Z):

Clear all
Clc
Num=[2];%numerator coefficients
Den=[1 -3 2];% denominator coefficients
[r,p,k]=residuez(num,den]

Output:

r = 4 -2
p= 2 1
k= [ ]

Example 7.91 Write a MATLAB program to estimate the power spectrum using
periodogram.
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Fig. 7.19 Power spectrum is represented in Example 7.91

% power spectrum estimate using periodogram

Clear all
N=input (’enter the length of the sequence’)
Window=hamming(n);
Nfft=input(’length of the FFT");
Fs=input(’sampling frequency’);
N=0:1:n-1;
%signal sum of two sinusoids and random noise
X=cos(2*1*pi*f/fs)+sin(2*4*pi*n/fs)+0.01*randnsize(n);
Subplot(2,1,1),plot(n,x)
Xlabel(’n’),ylabel(’x(n)’)
[pxx,f]=periodogram(x,window,nfft,fs)
Subplot(2,1,2)
Plot(f/fs.10*log10(pxx)); grid
Xlabel(’omega/\pi’),ylabel(’power spectrum’)

The power spectrum is represented in Fig. 7.19.
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Fig. 7.20 Power spectrum estimation using Welch method in Example 7.92

Example 7.92 Write aMATLAB program to estimate power spectrum usingWelch
method.

% power spectrum estimate using Welch method

Clear all
Fs=800;
T=0.1/Fs:4;
X=cos(2*pi*t*100)+sin(2*pi*t*300))+randn(size(t));
Pwelch(x,[],0[],Fs)% uses default window overlap

Output:

The power spectrum estimation is shown in Fig. 7.20.

Example 7.93 Write a MATLAB program for echo cancellation.

Echo Cancelation

load mtlb
% To hear, type soundsc(mtlb,Fs)
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Fig. 7.21 Representation of echo cancellation in Example 7.93

timelag = 0.23;
delta = round(Fs*timelag);
alpha = 0.5;
orig = [mtlb;zeros(delta,1)];
echo = [zeros(delta,1);mtlb]*alpha;
mtEcho = orig + echo;
t = (0:length(mtEcho)-1)/Fs;
subplot(2,1,1)
plot(t,[orig echo])
legend(’Original’,’Echo’)
subplot(2,1,2)
plot(t,mtEcho)
legend(’Total’)
xlabel(’Time (s)’)

The echo cancellation is shown in Fig. 7.21.

Example 7.94 Write a MATLAB program for Speech Signal Testing.

clc; clear;
close all;
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addpath ’func’
addpath ’func\func_pregross
\’ addpath ’Speech_Processing_Toolbox’
Num_Gauss=64;
[Speech_Test0,Fs,nbits]=wavread(’Test_Samples\test5\yes_no\yes.wav’);
Index_use = func_cut(Speech_Test0,Fs,nbits);
Speech_Test = Speech_Test0(Index_use(1):Index_use(2));
figure;
plot(Speech_Test0);
hold on;
Len = [–1.05:0.01:1.05];
plot(Index_use(1)*ones(length(Len),1),Len,’r’,’linewidth’,2);
hold on;
plot(Index_use(2)*ones(length(Len),1),Len,’k’,’linewidth’,2);
hold off axis([1,length(Speech_Test0),-1.05,1.05]);
title(’The simulation result of EndPoint checking’);
figure; Linlin Pan Research and simulation on speech recognition by MATLAB A3
plot(Speech_Test+1.5,’b’);
Speech_Test = filter([1, -0.95], 1, Speech_Test);
hold on plot(Speech_Test,’r’);
legend(’original’,’Pre emphasis’);
global Show_Wind;
Show_Wind = 1;
global Show_FFT;
Show_FFT = 1;
Test_features= melcepst(Speech_Test,Fs);
figure;
surf(Test_features);
load GMM_MFCC.mat A=[0,0];
for i = 1:2 [lYM,lY]=func_multi_gauss(Test_features’,

mu_traini,sigma_traini,c_traini); A(i)=mean(lY);
end [V,I] = max(A); if I == 1 disp(’The speech is: YES’);
else disp(’The speech is: NO’);

The speech signal testing is shown in Fig. 7.22.

Example 7.95 Perform Live recording of 1 D speech signal using headset and plot
the output waveform.

%%%audtest%%%%
USING audiorecorder function:

Fs=8000;
nBits=8;
nChannels=1;
recObj = audiorecorder(Fs,nBits,nChannels);
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Fig. 7.22 Representation of speech signal testing for Example 7.94

disp(’Start speaking.’)
recordblocking(recObj, 5);
disp(’End of Recording.’);
% Play back the recording.
play(recObj);
myRecording = getaudiodata(recObj);
plot(myRecording);
% Plot the waveform.

Output waveform obtained from the above Program is plotted below in Fig. 7.23.

Output waveform:

Example 7.96 Write a MATLAB program for the acquisition of 2D (image) signal.

%%%Read gray scale image%%imgrd
clc;
clear all;
a=imread(’cameraman.tif’); %Read the gray scale image
[M N]=size(a);
Figure;
subplot(3,2,1);
imshow(a);
%%%%Apply 2D DCT to the image
b=dct2(a);
subplot(3,2,2);
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Fig. 7.23 Plot of 1 D speech signal of Example 7.95

imshow(abs(b),[]);
subplot(3,2,3);
e=idct2(b);
subplot(3,2,3);
imshow(e,[]);

Output obtained from the above Program is shown below in Fig. 7.24.

Output:

Example 7.97 Perform time scaling operations on 1D signal and analyze the process
in time and frequency domains.

clc;
clear all;
Fs = 1000; % Sampling frequency
T = 1/Fs; % Sampling period
L = 1500; % Length of signal
t = (0:L-1)*T; % Time vector
f=50;
X = 0.7*sin(2*pi*f*t);
Y= 2*sin(2*pi*(2*f)*t);
plot(1000*t(1:50),X(1:50))
title(’Signal-1’)
xlabel(’t (milliseconds)’)
ylabel(’X(t)’)
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Fig. 7.24 Output image of DCT and IDCT of Example 7.96

plot(1000*t(1:50),Y(1:50))

title(’Signal-2’)
xlabel(’t (milliseconds)’)
ylabel(’Y(t)’)
z1 = fft(X);
P2 = abs(z1/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);
f = Fs*(0:(L/2))/L;
plot(f,P1)
title(’Single-Sided Amplitude Spectrum of X(t)’)
xlabel(’f (Hz)’)
ylabel(’|P1(f)|’)
z2=fft(Y);
P3 = abs(z2/L);
P4 = P3(1:L/2+1);
P4(2:end-1) = 2*P4(2:end-1);
f = Fs*(0:(L/2))/L;
plot(f,P4)
title(’Single-Sided Amplitude Spectrum of Y(t)’)
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xlabel(’f (Hz)’)
ylabel(’|P1(f)|’)

Output waveform obtained from the above Program is plotted in Fig. 7.25.

Output waveform:

Example 7.98 Perform Convolution operation on two speech signals and analyze
the process in time and frequency domains.

(a) Time Domain

[sig1, fs] = audioread(’example1.wav’);
% import the song
t = [1:length(sig1)]/fs;
% soundsc(sig1,fs);
subplot(3,1,1)
plot(t, sig1) % plot the song
xlabel(’t (second)’)
ylabel(’Relative signal strength’)
title(’Song’)

[sig2, fs] = audioread(’SpeechDFT-16-8-mono-5secs.wav’);
% soundsc(sig2,fs);% import the song
x=sig2;
x(length(sig1))=0; % zero-pad if lenth(sig2) < sig1
x=x(1:length(sig1));
t1 = [1:length(sig2)]/fs;
subplot(3, 1, 2)
plot(t1, sig2) % plot the song
xlabel(’t1 (second)’)
ylabel(’Relative signal strength’)
title(’Speech signal’)
w =conv2(sig1,x,’same’);
soundsc(w,fs);
% t2 = 0:1:10;
t2=[1:length(sig1)]/fs;
subplot(3,1,3);
plot(t2,w);
xlabel(’t2 (second)’)
ylabel(’Relative signal strength’)
title(’Convolved Signal’)

Output waveform obtained from the above Program is plotted and shown in Fig. 7.26.
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Fig. 7.25 Output of 1D single sided amplitude spectrum. a x(t) and b y(t) of Example 7.97
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Fig. 7.26 Output of convolution of two speech signals in time domain analysis of Example 7.98a

Output Waveform:

(b) Frequency Domain

[sig1,fs] = audioread(’example1.wav’);
% import the song
f = [1:length(sig1)];
soundsc(sig1,fs);
% plot(t, sig1) % plot the song
X = fft(sig1);
X = fftshift(X);%rearranges a Fourier transform X by
% shifting the zero-frequency component to the center of the array.
Xmag = abs(X);

subplot(3,1,1)
plot(f,Xmag);
xlabel(’Frequency’)
ylabel(’Relative signal strength’)
title(’Song’)
[sig2, fs] = audioread(’SpeechDFT-16-8-mono-5secs.wav’);
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soundsc(sig2,fs);% import the song
x=sig2;
x(length(sig1))=0; % zero-pad if lenth(sig2) < sig1
x=x(1:length(sig1));
f1 = [1:length(x)];
% plot(t1, sig2) % plot the song
X1 = fft(x);
X1 = fftshift(X1);%rearranges a Fourier transform X by
% shifting the zero-frequency component to the center of the array.
Xmag1 =abs(X1);
% delta_f = fs./(N.*1000);

% nf = -N./2:1:N/2-1;
% f = nf .* delta_f;
subplot(3, 1, 2)
plot(f1,Xmag1);
xlabel(’Frequency’)
ylabel(’Relative signal strength’)
title(’Speech Signal’)
w =conv2(sig1,x,’same’);
soundsc(w,fs);
% t2 = 0:1:10;
% t2=[1:length(sig1)]/fs;
X2 = fft(w);
X2 = fftshift(X2);%rearranges a Fourier transform X by
% shifting the zero-frequency component to the center of the array.
Xmag2 = abs(X2);
f2=[1:length(sig1)];
subplot(3,1,3);
plot(f2,Xmag2);
% plot(t2,w);
xlabel(’Frequency’)
ylabel(’Relative signal strength’)
title(’Convolved Signal’)

Output waveform obtained from the above Program is plotted and shown in Fig. 7.27.

Output Waveform:

Example 7.99 Perform Correlation operations on two speech signals and analyze
the process in time and frequency domains.

(a) Time Domain

load mtlb

% soundsc(mtlb,Fs)
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Fig. 7.27 Output of convolution of two speech signals in frequency domain analysis of Example
7.98b

timelag = 0.23;
delta = round(Fs*timelag);
alpha = 0.5;

orig = [mtlb;zeros(delta,1)];
echo = [zeros(delta,1);mtlb]*alpha;

mtEcho = orig + echo;
t = (0:length(mtEcho)-1)/Fs;

subplot(2,1,1)
plot(t,[orig echo])
legend(’Original’,’Echo’)

subplot(2,1,2)
plot(t,mtEcho)
legend(’Total’)
xlabel(’Time (s)’)
% soundsc(mtEcho,Fs)
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[Rmm,lags] = xcorr(mtEcho,’unbiased’);

Rmm = Rmm(lags>0);
lags = lags(lags>0);

figure
plot(lags/Fs,Rmm)
xlabel(’Lag (s)’)
[ ,dl] = findpeaks(Rmm,lags,’MinPeakHeight’,0.22);

tNew = filter(1,[1 zeros(1,dl-1) alpha],mtEcho);
soundsc(mtNew,Fs)
subplot(2,1,1)
plot(t,orig)
legend(’Original’)

subplot(2,1,2)
plot(t,mtNew)
legend(’Filtered’)
xlabel(’Time (s)’)

Output waveform obtained from the above Program is plotted and is shown in
Fig. 7.28.

Output Waveform:

(b) Frequency Domain

[sig1,fs] = audioread(’example1.wav’);
% import the song
f = [1:length(sig1)];
soundsc(sig1,fs);
% plot(t, sig1) % plot the song
X = fft(sig1);
X = fftshift(X);%rearranges a Fourier transform X by
% shifting the zero-frequency component to the center of the array.
Xmag = abs(X);

subplot(3,1,1)
plot(f,Xmag);
xlabel(’Frequency’)
ylabel(’Relative signal strength’)
title(’Song’)
[sig2, fs] = audioread(’SpeechDFT-16-8-mono-5secs.wav’);
soundsc(sig2,fs);% import the song
x=sig2;
x(length(sig1))=0; % zero-pad if lenth(sig2) < sig1
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Fig. 7.28 Output of correlation of two speech signals in time domain analysis of Example 7.99a

x=x(1:length(sig1));
f1 = [1:length(x)];
% plot(t1, sig2) % plot the song
X1 = fft(x);
X1 = fftshift(X1);%rearranges a Fourier transform X by
% shifting the zero-frequency component to the center of the array.
Xmag1 =abs(X1);
% delta_f = fs./(N.*1000);
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% nf = -N./2:1:N/2-1;
% f = nf .* delta_f;
subplot(3, 1, 2)
plot(f1,Xmag1);
xlabel(’Frequency’)
ylabel(’Relative signal strength’)
title(’Speech Signal’)
w =conv2(sig1,x,’same’);
soundsc(w,fs);
% t2 = 0:1:10;
% t2=[1:length(sig1)]/fs;
X2 = fft(w);
X2 = fftshift(X2);%rearranges a Fourier transform X by
% shifting the zero-frequency component to the center of the array.
Xmag2 = abs(X2);
f2=[1:length(sig1)];
subplot(3,1,3);
plot(f2,Xmag2);
% plot(t2,w);
xlabel(’Frequency’)
ylabel(’Relative signal strength’)
title(’Convolved Signal’)

Output waveform obtained from the above Program is plotted and is shown in
Fig. 7.29.

Output Waveform:

Example 7.100 Downsample and upsample the speech signal by an integer factor
2 and 4. Analyze the process in frequency and time domains.

% A speech signal is downsampled and upsampled, the spectra
% are plotted, and the signals are run through the sound card.
% %—————————————————————

clc;
clear all;
close all;
%%
%—————————————————————
% Parameters
D =4; % downsampling/upsampling factor
%%
%—————————————————————
%Read and play back data sampled at 8192HzHz
Fs = 8192;
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Fig. 7.29 Output of correlation of two speech signals in frequency domain analysis of Example
7.99b

data=load(’data_1.txt’,’ascii’);
x=data;
x(8192)=0; % zero-pad if lenth(data) < 8192
x=x(1:8192);
N = length(x);
%%
%—————————————————————

a. % Downsampling by D
n = 1:1:N;
t = (n-1)./Fs;
z = zeros(1,N);
z(1:ceil(N/D)) = x(1:D:N); % ceil(x) will round of the elements to the nearest integer
z(ceil(N/D)+1:N) = zeros(1,N-ceil(N/D));
figure;
subplot(2,1,1), plot(t,x);% ploting
xlabel(’t sec’);
title(’Original utterance’); % utterence spoken word
subplot(2,1,2), plot(t,z);xlabel(’t sec’);
title(’Utterance downsampled by D’);
X = fft(x);
X = fftshift(X);%rearranges a Fourier transform X by
% shifting the zero-frequency component to the center of the array.
Xmag = abs(X);
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Z = fft(z);
Z = fftshift(Z);
Zmag = abs(Z);
delta_f = Fs./(N.*1000);
nf = -N./2:1:N/2-1;
f = nf .* delta_f;
figure;
subplot(2,1,1), plot(f,Xmag);
xlabel(’f kHz’);
title(’Original utterance’);
subplot(2,1,2), plot(f,Zmag);
xlabel(’f kHz’);
title(’Utterance downsampled by D’);
input(’Original utterance’)
soundsc(x,Fs);
input(’Utterance downsampled by D’)
soundsc(z,Fs);
input(’Utterance downsampled by D, played at Fs/D’)
soundsc(z,Fs./D);
%%

%—————————————————————

b. % Upsampling by D
z = zeros(1,D.*N);
z(1:D:D.*N) = x(1:N);
x_extend = x;
x_extend(N+1:D.*N) = zeros(1,(D-1).*N);
n_extend = 1:1:D.*N;
t_extend = n_extend./Fs;
figure;
subplot(2,1,1), plot(t_extend,x_extend);
xlabel(’t sec’);
title(’Original utterance’);
subplot(2,1,2), plot(t_extend,z);
xlabel(’t sec’);
title(’Utterance upsampled by D’);
X_extend = fft(x_extend);
X_extend = fftshift(X_extend);
Xmag_extend = abs(X_extend);
Z = fft(z);
Z = fftshift(Z);
Zmag = abs(Z);
delta_f = Fs./(D.*N.*1000);
nf = -D.*N./2:1:D.*N/2-1;
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f = nf .* delta_f;
figure;
subplot(2,1,1), plot(f,Xmag_extend);
xlabel(’f kHz’);
title(’Original utterance’);
subplot(2,1,2), plot(f,Zmag);
xlabel(’f kHz’);
title(’Utterance upsampled by D’);
input(’Original utterance’)
soundsc(x,Fs);
input(’Utterance upsampled by D’)
soundsc(z,Fs);
input(’Utterance upsampled by D, played at Fs*D’)
soundsc(z,Fs*D);

Output waveform obtained from the above Program is plotted and is shown in
Fig. 7.30.

Output Waveform: The down sampling for a factor of 4 is shown in Fig. 7.30a.
Down sampling for a factor of 2 is shown in Fig. 7.30b. The up sampling for a factor
of 2 is shown in Fig. 7.30c. The up sampling for a factor of 4 is shown in Fig. 7.30d.

7.2 Application of Python Program to Solve Engineering
Problems

Example 7.101 Write a Python program for daily recording covid cases. Get the
input from the user.

Program:

#covid case wave
import matplotlib.pyplot as plt
x=[]
y=[]
n=int(input("Enter the number of days to be recorded»> "))
for i in range(n):

y.append(int(input(f"Enter the case recorded on day i+1» ")))
for i in range(n):

i+=1
x.append(i)

print(x)
print(y)
plt.plot(x,y)
plt.xlabel(’Days’)
plt.ylabel(’Number of cases’)
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(a)

Fig. 7.30 a Output of downsampling the speech signal by a factor of 4 of Example 7.100. bOutput
of downsampling the speech signal by a factor of 2 of Example 7.100. c Output of upsampling the
speech signal by a factor of 2 of Example 7.100. d Output of upsampling the speech signal by a
factor of 4 of Example 7.100

plt.title(’Covid case graph’)
plt.show()

The covid cases graph is represented in Fig. 7.31.

Output:

The graph of daily covid cases is shown in Fig. 7.31.

Example 7.102 Write a Python program to perform deposit and withdrawing cash
account.

Program:

class Bank_Account:
def_init_(self):

self.balance=0
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(b)

Fig. 7.30 (continued)

print("Hello!!! Welcome to the Deposit & Withdrawal Machine")
def deposit(self):

amount=float(input("Enter amount to be Deposited: "))
self.balance += amount
print("\n Amount Deposited:",amount)

def withdraw(self):
amount = float(input("Enter amount to be Withdrawn: "))
if self.balance>=amount:

self.balance-=amount
print("\n You Withdrew:", amount)
else:

print("\n Insufficient balance ")
def display(self):

print("\n Net Available Balance=",self.balance)
s = Bank_Account()
s.deposit()
s.withdraw()
s.display()
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(c)

Fig. 7.30 (continued)

Output:
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Fig. 7.31 Graph of daily
covid cases of Example
7.101
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Example 7.103 Write a Python program to calculate Electricity consumption bill.

The problem statement is given below.

Problem statement:

• Get the input from the user.
• The first 100 units are free.
• The next 100 units it costs 1.5rs per unit.
• For the next 300 units it costs 3rs per unit.
• For more than 500 units, the first 100 units are free, the next 100 units costs 3.50rs
per unit, the next 300 units costs 4.60rs per unit and the rest of the units used costs
6.60rs per unit.

Program

unit=int(input("Enter the amount of units used» "))
cal=unit
cost=0
if unit>0 and unit<=100:

print("the first 100 unit is free")
elif unit>100 and unit<=200:

unit=unit-100
cost=unit*1.5

elif unit>200 and unit<=500:
unit=unit-200
cost=(unit*3)+(100*2)

elif unit>500:
unit=unit-500
cost=(unit*6.60)+(100*3.50)+(300*4.60)

else:
print("Invalid input")

print(f"The total electricity bill amount you have to pay for cal units is Rs.cost")

Output 1:

Enter the amount of units used» 248

The total electricity bill amount you have to pay for 248 units is Rs.344

Output 2:

Enter the amount of units used» 576

The total electricity bill amount you have to pay for 576 units is Rs.2231.6

Example 7.104 Write a Python program to implement a line graph for the given
points (10,10), (20,78), (30,40), (40,45), (50,20), (60,60), (70,30), (80,20), (90,90),
(100,10).
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Program

#open cmd
#pip install matplotlib
import matplotlib.pyplot as plt
x=[10,20,30,40,50,60,70,80,90,100]
y=[10,78,30,45,20,60,30,20,90,10]
plt.plot(x, y)
plt.show()

Output:

The graph of distance between points is shown in Fig. 7.32.

Example 7.105 Write a Python program to manage retail shop billing system with
orders of technical items.

Program:

product_name=[]
product_quantity=[]
product_price=[]
company_name=’Retail Store’
company_address=’Malik street,maathur’
company_city=’Trichy’
message=’Thanks for shopping with us today!’
length=int(input("Enter the number of product purchased»> "))
for i in range(length):

product_name.append(input("Enter the product name: "))
product_quantity.append(int(input("Enter the product quantity: ")))
product_price.append(int(input("Enter the product price: ")))

print("\n\t\t#### BILL ####")
print("*"*50)
print("\t\t{}".format(company_name.title()))
print("\t\t{}".format(company_address.title()))
print("\t\t{}".format(company_city.title()))
print("*"*50)
print("\tProduct Name\t Qantity \tPrice")
print("-"*50)
i=0
for i in range(length):

print("\t",product_name[i],"\t",product_quantity[i],"\t\t",product_price[i])
print("="*50)
print("\t\t\t\tTotal")
total=0
i=0
for i in range(length):
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Fig. 7.32 Graph of distance between two points of Example 7.104
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total+=(product_price[i]*product_quantity[i])
print("\t\t\t\tRs.{}".format(total))
print("="*50)
print("\n\t{}\n".format(message))
print("*"*50)

Output:

Example 7.106 Write a Python program for Signal Processing on Graphs.

Program:

#pip install pygsp
#pip install numpy
from pygsp import graphs, filters
G = graphs.Logo()
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Fig. 7.33 Output response of Example 7.106

G.estimate_lmax()
g = filters.Heat(G, tau=100)
import numpy as np
DELTAS = [20, 30, 1090]
s = np.zeros(G.N)
s[DELTAS] = 1
s = g.filter(s)
G.plot_signal(s, highlight=DELTAS, backend=’matplotlib’)

Output:
The signal processing plot is shown in Fig. 7.33.

Example 7.107 Develop a Python program for logical gates

Program:

def AND (a, b):
if a == 1 and b == 1:

return True
else:

return False

def NAND (a, b):
if a == 1 and b == 1:

return False
else:

return True
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def OR(a, b):
if a == 1 or b ==1:

return True
else:

return False

def XOR (a, b):
if a != b:

return True
else:

return False

def NOT(a):
return not a

def NOR(a, b):
if(a == 0) and (b == 0):

return True
elif(a == 0) and (b == 1):

return False
elif(a == 1) and (b == 0):

return False
elif(a == 1) and (b == 1):

return False

def XNOR(a,b):
if(a == b):

return True
else:

return False
while True:

print(”’
1.AND Gate
2.OR Gate
3.NAND Gate
4.NOR Gate
5.XOR Gate
6.XNOR Gate
7.NOT Gate
8,Exit
”’)

a=int(input("Enter the Choice» "))
if a==1:

print("Enter ’1’ for Ture and ’0’ for false")
a=int(input("Enter the first condition: "))
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b=int(input("Enter the second condition: "))
print(AND(a,b))

elif a==2:
print("Enter ’1’ for Ture and ’0’ for false")
a=int(input("Enter the first condition: "))
b=int(input("Enter the second condition: "))
print(OR(a,b))

elif a==3:
print("Enter ’1’ for Ture and ’0’ for false")
a=int(input("Enter the first condition: "))
b=int(input("Enter the second condition: "))
print(NAND(a,b))

elif a==4:
print("Enter ’1’ for Ture and ’0’ for false")
a=int(input("Enter the first condition: "))
b=int(input("Enter the second condition: "))
print(NOR(a,b))

elif a==5:
print("Enter ’1’ for Ture and ’0’ for false")
a=int(input("Enter the first condition: "))
b=int(input("Enter the second condition: "))
print(XOR(a,b))

elif a==6:
print("Enter ’1’ for Ture and ’0’ for false")
a=int(input("Enter the first condition: "))
b=int(input("Enter the second condition: "))
print(XNOR(a,b))

elif a==7:
print("Enter ’1’ for Ture and ’0’ for false")
a=int(input("Enter the first condition: "))
b=int(input("Enter the second condition: "))
print(NOT(a,b))

elif a==8:
print("-"*20)
break

else:
print("Invalid Input")

print()
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Output:

Example 7.108 Write a Python program to calculate the employee salary.

Program:

e_name=input("Enter the name of Employee \n")
c_name=input("Enter the company name \n")
salary=float(input("Enter the salary of Employee \n"))
if(salary>50000):

tax=0.15*salary
netsalary=salary-tax
print("The net salary of "+e_name+" worked in " +c_name+ " is",netsalary)

else:
netsalary=salary
print("No taxalbe Amount")
print("The net salary of "+e_name+" worked in " +c_name+ " is",salary)
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Output:
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