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Preface

The book Basic System Analysis presents a comprehensive treatment of signals
and linear systems for the undergraduate level study. It is a rich subject with
diverse applications such as signal processing, control systems, and communica-
tion systems. It provides an integrated treatment of continuous-time and discrete-
time forms of signals and systems. These two forms are treated side by side. Even
though continuous-time and discrete-time theory have many mathematical properties
common between them, the physical processes that are modeled by continuous-time
systems are very much different from the discrete-time systems counterpart.

I have written this book with the material I have collected during my long experi-
ence of teaching signals and systems to the undergraduate level students in national
level reputed institutions. The book in the present form is written to meet the require-
ments of undergraduate syllabus of Indian Universities in general and B.Tech. EEE
branch of Uttar Pradesh Technological University in particular. The organization of
the chapters is as follows.

Chapter 1 deals with the representation of signals and systems. It motivates the
reader as to what signals and systems are and how they are related to other areas
such as communication systems, control systems, and digital signal processing. In
this chapter, various terminologies related to signals and systems are defined. Further,
mathematical description, representation, and classifications of signals and systems
are explained.

Chapter 2 deals with the Fourier representation of continuous-time signals.
Continuous-time periodic signals are represented by trigonometric Fourier series,
polar Fourier series, and exponential Fourier series.

It is not possible to find Fourier series representation of non-periodic signals. In
Chap. 3, Fourier transform is introduced which can represent periodic as well as non-
periodic signals. In this chapter, the Fourier transform for continuous-time signal is
explained.

The Laplace transform is a very powerful tool in the analysis of continuous-time
signals and systems. In Chap. 4, the Laplace transform method is explained and its
properties derived. The use of Laplace transform to solve differential equation is
described.

vii



viii Preface

Chapter 5 is devoted to the z-transform and its application to discrete-time signals
and systems. The properties of z-transform and techniques for inversion are intro-
duced in this chapter. The use of z-transform for solving difference equation is
explained.

Chapter 6 is devoted to state space modeling and analysis of continuous-time and
discrete-time systems. Formation of vector matrix differential/difference equation is
also explained in this chapter.

In Chap. 7, application of MATLAB and Python programs to solve problems is
discussed.

The notable features of this book include the following:

1. The syllabus content of signals and systems for undergraduate level has been

covered.

The organization of the chapter is sequential in nature.

Large number of numerical examples have been worked out.

Learning objectives and summary are given in each chapter.

For the students to practice, short and long questions with answers are given at

the end of each chapter.

6. In this edition, a new chapter titled “Application of MATLAB and PYTHON
Programs” has been included. Here many applications to real-life practical
systems and exposure to computational tools are discussed by solving numerical
problems. Some useful special computational concepts are also presented which
will be useful to readers.
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Chapter 1 )
Representation of Signals and Systems

Chapter Objectives

To define various terminologies related to signals and systems.

To classify signals and systems.

To give mathematical description and representation of signals and systems.

To perform basic operations on CT signals.

To classify CT signals as periodic and non-periodic, odd and even and power

and energy signals.

e To classify systems as linear and non-linear, time invariant and time varying,
static and dynamic, causal and non-casual, stable and unstable, invertible
and non-invertible.

e To find the force—voltage and force—current electric analogous circuit for
mechanical system.

e To find the time response of first- and second-order systems.

1.1 Introduction

The concepts of signals and systems play a very important role in many areas of
science and technology. These concepts are very extensively applied in the field
of circuit analysis and design, long-distance communication, power system genera-
tion and distribution, electron devices, electrical machines, biomedical engineering,
aeronautics, process control, speech, and image processing to mention a few. Signals
represent some independent variables which contain some information about
the behavior of some natural phenomenon. Voltages and currents in electrical and
electronic circuits, electromagnetic radio waves, human speech, and sounds produced
by animals are some of the examples of signals. When these signals are operated

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 1
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on some objects, they give out signals in the same or modified form. These
objects are called systems. A system is, therefore, defined as the interconnection of
objects with a definite relationship between objects and attributes. Signals appearing
at various stages of the system are attributes. R, L, C components, spring, dash-
pots, mass, etc. are the objects. The electrical and electronic circuits comprising of
R, L, C components and amplifiers, the transmitter and receiver in a communica-
tion system, the petrol and diesel engines in an automobile, chemical plants, nuclear
reactor, human beings, animals, a government establishment, etc. are all examples
of systems.

1.2 Terminologies Related to Signals and Systems

Before we give mathematical descriptions and representations of various terminolo-
gies related to signals and systems, the following terminologies which are very fre-
quently used are defined as follows:

1.2.1 Signal

A signal is defined as a physical phenomenon which carries some information or
data. The signals are usually functions of independent variable time. There are some
cases where the signals are not functions of time. The electrical charge distributed
in a body is a signal which is a function of space and not time.

1.2.2 System

A system is defined as the set of interconnected objects with a definite relationship
between objects and attributes. The interconnected components provide desired func-
tion. Objects are parts or components of a system. For example, switches, springs,
masses, dash-pots, etc. in a mechanical system and inductors, capacitors, and resis-
tors in an electrical system are the objects. The displacement of mass, spring, and
dash-pot and the current flow and the voltage across the inductor, capacitor, and
resistor are the attributes. There is a definite relationship between the objects and
attributes. The voltages across R, L, C series components can be expressed as
vg =IiR, v, = L%, and ve = % f idt. If this series circuit is excited by the voltage
source e; (1), the e; (¢) is the input attribute or the input signal. If the voltage across any
of the objects R, L, and C is taken then such an attribute is called the output signal.
The block diagram representation of input and output (voltage across the resistor)
signals and the system is shown in Fig. 1.1.
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Fig. 1.1 Block diagram
representation of signals and ed) SYSTEM vr(®)
AN

systems
Input signal ®L,0)

or excitation

Output signal

1.3 Continuous- and Discrete-Time Signals

Signals are broadly classified as follows:

1. Continuous-time signal (CT signal).
2. Discrete-time signal (DT signal).

The signal that is specified for every value of time ¢ is called continuous-time signal
and is denoted by x(¢). On the other hand, the signal that is specified at discrete
value of time is called discrete-time signal. The discrete-time signal is represented
as a sequence of numbers and is denoted by x[n] where n is an integer. Here time ¢ is
divided into n discrete time intervals. The continuous-time signal (CT) and discrete-
time signal (DT) are represented in Figs. 1.2 and 1.3 respectively.

It is to be noted that in continuous-time signal representation the independent
variable t which has unit as sec is put in the parenthesis (-) and in discrete-time signal
the independent variable n which is an integer is put inside the square parenthesis
[-]. Accordingly, the dependent variables of the continuous-time signal/system are

Fig. 1.2 CT signal Ax(?)
~1 0 t
Fig. 1.3 DT signal 4 x[n]
1.5 1.5
1
0.5 0.5 0.5
I | | o,

-n -4 -3 -2 -1 0 1 2
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denoted as x(¢), g(¢), u(t), etc. Similarly the dependent variables of discrete-time
signals/systems are denoted as x[n], g[n], u[n], etc.

A discrete-time signal x[n] is represented by the following two methods:

_ @) n=zo0
x[n] = {0 n <0 (1.1)

Substituting various values of n where n > 0 in Eq.(1.1) the sequence for x[n]
which is denoted by x{n} is written as follows:

11 1
x{n}z 17_7_27-~~7_
a

a a’
The sequence is also represented as given below:

x{n}=1{3,2, 5,4,6,8, 2}
T

The arrow indicates the value of x[n] at n = 0 which is 5 in this case. The numbers
to the left of the arrow indicate to the negative sequence n = —1, —2, etc. The
numbers to the right of the arrow correspond to n = 1, 2, 3, 4, etc. Thus, for the
above sequence x[—1] = 2, x[-2] = 3, x[0] = 5, x[1] = 4, x[2] = 6, x[3] = 8,
and x[4] = 2. If no arrow is marked for a sequence, the sequence starts from the
first term in the extreme left. Consider the sequence

x{n} = {5, 3, 4, 2}

Here x[0] = 5, x[1] = 3, x[2] = 4, and x[3] = 2. There is no negative sequence
here.

1.4 Basic Continuous-Time Signals

Basic continuous-time signals play a very important role in signals and systems
analysis. The following are the basic continuous-time signals which serve as a basis
to represent other signals. The basic continuous-time signals are

AN N AW

. Unit impulse function.

. Unit step function.

. Unit ramp function.

. Unit parabolic function.

. Unit rectangular pulse (or gate) function.
. Unit area triangular function.
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Unit signum function.

Unit Sinc function.

. Sinusoidal signal.

. Real exponential signal.

. Complex exponential signal.

SRR

1
1
The mathematical description and graphical representation of the above signals are

discussed below. Similar to continuous-time signals, basic discrete-time signals are
also available. The descriptions of these signals will immediately follow this.

1.4.1 Unit Impulse Function

The unit impulse function is also known as Dirac delta function which is repre-
sented in Fig. 1.4. The unit impulse function is denoted as §(¢) and its mathematical
description is given below:

)0 t#0
a(t)_il 0 (1.2)

1.4.1.1 Importance of Impulse Function

1. By applying impulse signal to a system one can get the impulse response of
the system. From impulse response, it is possible to get the transfer function of
the system.

2. For a linear time invariant system, if the area under the impulse response curve is
finite, then the system is said to be stable.

3. Form the impulse response of the system, one can easily get the step response
and ramp response by integrating it once and twice respectively.

4. Impulse signal is easy to generate and apply to any system.

Fig. 1.4 Unit impulse 2+ x(1)
function

A 6(1)

A
A
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Fig. 1.5 Unit step function 4 u(®

1.4.2 Unit Step Function

The unit step function is shown in Fig. 1.5. The function is defined as follows:

1 t>0
t) = = 1.3
“O=10 ;<0 (13)

The step function is denoted by u(¢). Any causal signal which begins at # = 0 (which
has a value of zero for ¢ < 0) is multiplied by the signal by u(¢). For example, a causal
exponentially decaying signal e~ (¢ > 0) is represented as x(¢) = e~ “u(t).
Similarly e=% (¢t < 0) is represented as x (¢) = e~ u(—t).

1.4.2.1 Importance of Step Function

1. Step function is easy to generate and apply to the system.

2. By differentiating the step response impulse response can be obtained. By inte-
grating the step response, ramp response can be obtained.

3. Step signal is considered as a white noise which is drastic. If the system response
is satisfactory for a step signal, it is likely to give satisfactory response to other
types of signals.

4. Application of step signal is equivalent to the application of numerous sinusoidal
signals with a wide range of frequencies.

1.4.3 Unit Ramp Function

The unit ramp function is represented in Fig.1.6. It is defined by the following
mathematical equation:
t t>0

ro=1, .-, (1.4)
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Fig. 1.6 Unit ramp function 0]
2 ________________
|
l
] . !
! |
! |
! |
! |
! |
! |
L
0 12 t
For a causal signal (+ > 0), the ramp function can also be expressed as
r(t) =tu(t) (1.5)

1.4.3.1 Relationships Between Impulse, Step, and Ramp Signals

1. Integrating the unit step signal u(¢) we get

/u(t)dt =/dt =t (1.6)

By integrating the unit step function, unit ramp function is obtained. In the reverse
process, by differentiating a ramp function, a step function is obtained.

2. The continuous-time unit step function is the running integral of the unit impulse
function which is expressed as

u(t) =/ 8(r)dr

[e¢]

du(t)
dt

=68(@1) (1.7)
3. By differentiating the ramp function twice, the impulse function is obtained
r(t) =t

dr(t)
dt

1=u) (1.8)



8 1 Representation of Signals and Systems

d*r (1) _ du(t) _

Thus, the impulse function is obtained by differentiating the ramp function twice.
By the reverse process, by integrating the impulse function twice, the ramp func-
tion is obtained which is mathematically expressed as follows:

rU):i//SO)dt (1.10)

The relationships between the impulse, step, and ramp signals are represented

below:
integrate integrate

8(t) — u(t) — r(t)

differentiate differentiate

rt)  — u®) — @)

1.4.4 Unit Parabolic Function

The unit parabolic function x (¢) is represented in Fig. 1.7. The mathematical expres-
sion is given below:

12
Xy =52 120 (1.11)

If the parabolic function is differentiated, unit ramp function is obtained. Thus

dx(t) _,

t>0
dt -

Fig. 1.7 Unit parabolic 0
function

—_—f—
[N SN
Sy
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1.4.5 Unit Rectangular Pulse (or Gate) Function

The unit area rectangular pulse which is also called gate function is represented in
Fig. 1.8. Mathematically it is described as follows:

1 a
x([): (;) for |t| SE

. (1.12)
0  otherwise

The above equation is also written in the following form:

=r=

NSRS
NS

1
X(l):; —

The function is written as x(¢) = rect(¢).

1.4.6 Unit Area Triangular Function

The unit area triangular function is represented in Fig. 1.9. It is symbolically written
as x(t) = tri(z). It is defined as

N [F R
tri(t) = {o . (1.13)

The above equation can be written in the following form also:

tri(¢) = [1 +¢] —1<t<0
=[1—-1] 0<r<l1

Fig. 1.8 Unit area 4 x(1) = rect(t)
rectangular pulse (or gate)
function

1

a

|
-
|
[N
(e}
STy
i 4
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Fig. 1.9 Unit area triangular 4 x(¢) = tri(r)
function
1
hi -1 0 1 1

1.4.7 Unit Signum Function

The signum function is written in the abbreviated form as sgn(z). It represents the
characteristics of an ideal relay. This is shown in Fig.1.10. It is defined by the
following equations:

1 t>0
sgn(t) = {0 t=0 (1.14)
—1 t<0

1.4.8 Unit Sinc Function

The unit sinc function is represented in Fig. 1.11. It is defined as

. sint
sinc(t) =

—00 <t < 00. (1.15)
Tt

Fig. 1.10 Representation of 4+ x(f) = sgn(?)
unit signum function

A
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11

Let

4 sinc(¢)
1
S o—"3 2 1 [0 1 2 3 7

Fig. 1.11 Representation of unit sinc function
1.4.9 Sinusoidal Signal
The sinusoidal signal is represented in Fig. 1.12. It is defined as

x(t) = Asin(wt — ¢) (1.16)
where A = peak amplitude, @ =radian frequency, ¢ = phase shift.
1.4.10 Real Exponential Signal

x(@t)=¢" (1.17)

ANVAN

4 x(1) = Asin(wt— )

Vi

Fig. 1.12 Representation of sinusoidal signal

NV
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b
@ 4 x(t) = €91 ®) 4 x(f) = €971
/(»0 \ .
/ \
~1 R i Y R 1

Fig. 1.13 Representation of real exponential signals. a Growing exponential; b Decaying
exponential

where s = 0 + jw is a complex number. The signal x(¢) in Eq.(1.17) is called
general complex exponential. Equation (1.17) is written in the following form:

x(t) — e(a-‘rja))t

— eateja)t
= e?'(cos wt + j sin wt) (1.18)
Ifw=0,
x(t) =e' (1.19)

Equation (1.19) is real exponential. The plot of x (¢) with respect to t for o > 0 and
o < OisshowninFig. 1.13aand b respectively. Foro > 0, the signal is exponentially
growing and for o < 0, it is exponentially decaying.

1.4.11 Complex Exponential Signal

The signal x(¢) in Eq.(1.18) is the general complex exponential which has real
part as e°’ cos wt and the imaginary part e’ sin wt. For o = 0, the signal x(¢) is a
sinusoid. For o > 0, x(¢) is a sinusoid which is exponentially building and is shown
in Fig. 1.14a. For o < 0, the signal x(¢) = e~?"(cos wt + j sin wt) is exponentially
decaying and is shown in Fig. 1.14b.
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()

4 x(1)

1/

(b)

13

4+ x(9)

»

< /——\”/\
SRR CYRVAY

nn—-
JEVAVER

o<0

Fig. 1.14 Complex exponential signals. a Exponentially growing (o > 0); b Exponentially decay-
ing (o < 0)

1.5 Basic Operations on Continuous-Time Signals

The basic operations performed on continuous-time signals are given below:

Addition of CT signals.
Multiplications of CT signals.
Amplitude scaling of CT signals.
Time scaling of CT signals.

Time shifting of CT signals.
Reflection or folding of CT signals.
Inverted CT signal.

AR e

1.5.1 Addition of CT Signals

Consider the signals x; () and x, (#) which are shown in Fig. 1.15a and b. The ampli-
tude of these two signals at each instant of time is added to get their sum. The
following table is prepared.

From Table 1.1, x(t) = x;(t) + x»(¢) is plotted and is shown in Fig. 1.15c.

1.5.2 Multiplication of CT Signals

Consider the two signals x () and x, (¢) shown in Fig. 1.15a and b respectively. These
signals x| (#) and x;(¢) are multiplied to get x(¢)

x(t) = x1(1) X x2(2)
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(a) (b)
4 xl(t) A xz(t)
2 3k-—
-4 1

I

l
-t -2 -1 0 1 2 1 -t -3 -2 -1 o1 2

-2
v
() .
x(1) = x(H+x,5(1)
3
2
________ 1_
i -1 Jo 1 2 ;
-——-—1

Fig. 1.15 Addition of two CT signals (Contd.) Addition of two CT signals
Table 1.1 Sum of two signals x{(¢) and x2 ()
t -3 -2 -1 0 1 2
x1(t) 0 1 2 2 0 0
x2(1) 1 -2 -2 1 3 0
x()=x1(t)+ |1 —1 0 3 3 0
x2(1)

The functions x;(¢) and x,(¢) at different time intervals are determined from figure
and multiplied. Table 1.2 is prepared to get x (¢) at different time intervals. Table 1.2
is transformed to plot x(¢) = x;(¢) X x,(¢) which is shown in Fig. 1.16.
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Table 1.2 Product of two signals x1(¢) and x> (t)

t -3 -2 -1 0 1 2
x1(7) 0 1 2 2 0 0
x2(t) 1 -2 -2 1 3 0
x(t)=x1(t) x |0 -2 —4 2 0 0
x2(f)
Fig. 1.16 Multiplications of + x(D)=x1(1) Xx5(2)
two CT signals
2
. -2 -1 R
=t | 0 1 r
I
I
I
l
I
----- -2
—4

1.5.3 Amplitude Scaling of Signals

Consider the signals x(¢) sketched and shown in Fig. 1.17a. This signal when mul-
tiplied by a factor A is expressed as Ax(¢). At any time ¢, the amplitude of x () is
multiplied by A. This type of signal transformation is called amplitude scaling. The
signal 3x(¢) is shown in Fig. 1.17b. At any instant 7, x(¢) is multiplied by a factor 3.

Consider the signal % At any time ¢, the amplitude of x (#) shown in Fig. 1.17a
is divided by the factor 2. The above transformation is plotted in Fig. 1.17c.

1.5.4 Time Scaling of CT Signals

The compression or expansion of a signal in time is known as time scaling. Consider
the signal x(¢#) shown in Fig.1.18a. The signal is time compressed and shown in
Fig.1.18b as x(4¢). For any given magnitude of x(¢), the time is divided by the
factor 4. The time expanded signal x (%) is shown in Fig. 1.18c. Here, for any given
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(b) 4 3x(1)
6
(@) 4 x(1)
3
2
£-11
| I
| I
4 >« >
-3-2-10 1 2 t —t 1 2 t
(© + x(0)
2
1
/0.5
-t -3 -2 -1 0 1 2 1

t
Fig. 1.17 Amplitude scaling. a x(¢); b 3x(¢) and ¢ %

magnitude of x(¢), the time is multiplied by the factor 4. In general, for any given
amplitude of x (), x (at) is time compressed by a factor a and x(é) is time expanded
by a factor a.

1.5.5 Time Shifting of CT Signals

Consider the signal x(¢) = u(t), the unit step function. The step function is shown
in Fig. 1.19a as u(¢). The transformation t = ¢ — fy where # is any arbitrary constant
amounts to shifting u(¢) to the right by #; unit if 7y is positive and is denoted as
u(t — to). If 1y is negative, the function is shifted to the left by #; unit and is denoted as
u(t + o). The right shifted u (¢ — #;) is shown in Fig. 1.19b and left shifted u (¢t + 7y)
is shown in Fig. 1.19c. The signal u(—t) is shown in Fig. 1.19d and is obtained by
folding u(¢) shown in Fig. 1.19a. u(—t) = 1 for t < 0. If we fold across the vertical
axis, the signal to the right of the vertical axis is transformed to its left and vice versa.
That is why it is called folded signal. The signal u(—t — #) is obtained by shifting
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b
@) Ax(1) () Ax(4r)
3 3
—t -3 0 2 1 —t -3/, 02, '
c
© a x('y)
3
-t —12 0 8 1

Fig. 1.18 Time scaling of CT signals

the signal u(—t) to the left by #y unit as shown in Fig. 1.19e. The signal u(—¢ + 1) is
obtained by shifting the signal u(—t) to the right by #; unit and is shown in Fig. 1.19f.

Summary of Shifting of CT Signal

1.
2.
3.

It x(¢) is given, then x (¢ + #) is plotted by shifting x (¢) to the left by #,.

It x(¢) is given, then x (¢ — #,) is plotted by shifting x (¢) to the right by ¢,.
It x (—¢) is given, then x (—¢ — t,) is plotted by shifting x (—¢) to the left by
ty.

It x (—t) is given, then x (—¢ + ¢) is plotted by shifting x (—¢) to the right by
1.

In general for x (¢ + #)) and x(—¢ — #)) the time shift is made to the left of
x(¢t) and x (—¢) respectively by #y. For x (¢t — t)) and x (—¢ + t) the time shift
is made to the right of x (¢) and x (—¢) respectively by ¢,.

1.5.6 Signal Reflection or Folding

Consider the signal x(¢) shown in Fig. 1.20a. The signal x (—¢) is obtained by putting
amirror along the vertical axis. The signal to the right of the vertical axis gets reflected
to the left and vice versa. Alternatively, if we make a folding across the vertical axis,
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a b C
@ s ®ry u(t—ty) © A u(t+1y)
1 || !
0 70 o T S0 7
d (e)
@ tu(—1) b u(—1—1g)
T 1
e 0 [ —t -t 0 7
69)
4 u(—t+1p)
1
i 0 i 7

Fig. 1.19 Representation of time shifting CT signals

the signal in the right of the vertical axis is printed in the left and vice versa. The
signal so obtained is x(—t).

1.5.7 Inverted CT Signal

Consider the CT signal x () shown in Fig. 1.21a. The inverted signal —x () is obtained
by inverting its amplitude. By this the signal above the horizontal axis (time axis)
comes below the axis and vice versa. Alternatively, if a mirror is put along the
horizontal axis, the signal above the axis gets reflected below the axis and vice versa.



1.5 Basic Operations on Continuous-Time Signals 19

b
(a) £ x(0) (b) $ x(=D

4 4

~v

—t =3 0 2 t -t 2 0 3
Fig. 1.20 CT signal reflection or folding

b
(a) £ x0) (b) s —x()

Fig. 1.21 Inverted CT signal

1.5.8 Multiple Transformation

The transformation, namely, amplitude scaling, time reversal, time shifting, time
scaling, etc. when applied simultaneously, the sequence of operation is important. If
not followed correctly, it would give erroneous results.

Consider the following signal:

y(t):Ax<_t_t0>
a
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The sequence of transformation is as follows:

1. y(t) is written in the following form:

Plot x(¢).

Plot Ax(t) using amplitude scaling.

Plot Ax(—1t) using time reversal.

Plot Ax(—t — ';0) by shifting Ax(—t) to the left by ’;0 (time shifting).
Plot Ax(—% — ) by time expansion.

AR

The following examples illustrate the above sequence of operation.

Example 1.1 Consider the signal y(z) = 5x(—3¢ + 1) where x(¢) is shown in
Fig. 1.2a. Plot y(¢) and —y(¢).

Solution

The given signal x (¢) is represented in Fig. 1.22a.

The signal x (¢) is amplitude scaled and plotted in Fig. 1.22b.

5x(—t) is obtained by folding 5x(¢) in Fig. 1.22b and is plotted in Fig. 1.22c.

5x(—t) is time shifted by one unit to the right and 5x(—¢ + 1) is obtained and

shown in Fig. 1.22d.

5. 5x(—t + 1) is time compressed by a factor 3 and 5x(—3¢ + 1) is obtained. This
is shown in Fig. 1.22e.

6. 5x(—3t + 1) amplitude inverted to get —5x(—3¢ + 1). This is shown in Fig. 1.22f.

Ll

Example 1.2 For a signal x(¢) shown in Fig. 1.23a, sketch

(a) x(3t+2)

(b) x(%t _ 1)

(Anna University, June 2007)
Solution To plot x (3¢ 4+ 2)

1. x(r) is represented in Fig. 1.23a. x(¢) is moved to the left by r = 2 and is shown
in Fig. 1.23b.

2. By time compression by a factor 3, from Fig. 1.23b, x (37 4 2) is obtained and is
shown in Fig. 1.23c.

Solution To plot x (—(§) — 1)

1. By folding x(#) represented in Fig.1.23a, x(—t) is obtained and is shown in
Fig.1.23d.
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(a) (b)
A .X(t) 4

10+

A
\S}
A
|
|
|

»

) 0o 1 ¢ -t =2 0o 1
Amplitude scaling

(©) d
+ Sx(—1) + Sx(—t+1)

——-10 10

A

~v
(e}
~v

-t —1 0 2 3
Time reversal Time shifting
(e) ®
4 y(f) = 5x(—3t+1) 4
1
0 7
10
—10
0 1 ; v y(t)= *5x(*3t+1)
Time scaling Amplitude inverted
(compression)

Fig. 1.22 Basic operations on CT signal

2. x(—t — 1) is obtained by shifting x (—¢) by t = 1totheleft. x(—¢ — 1) is sketched
as shown in Fig. 1.23e.

3. By time expansion, the time of the signal x(—¢ — 1) is multiplied by the factor 2,
and x(—% — 1) is obtained. This is shown in Fig. 1.23f.
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(a) + x()
2
__________ |
A |
! i
| |
| l
| l
| |
| |
< I ! .
-t -1 _% 0 % 1 t
(b) b x(1+2)
__________________ 2
----------- 1
| |
| |
| |
| |
| |
< L L >
—t -3 2.5 -2 —-1.5 -1 0 t
(©) b x(31+2)
| 2
|
|
|
|
|
|
N I 1
| |
| : |
| ! |
| ! |
| ! |
I ! I
I ! I
+ L ' ! »
S B R R o

Fig.1.23 aPlotof x(¢). b Time shifted x (7). ¢ Time compressed x (¢). d Folded x (¢). e Time shifted
x(—t). f Time expansion of x(—¢ — 1) to get x(—% -1
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(a) +x(=0)
2
,,,,,,,,,, v
| |
| |
! 1
! I
|
| |
1 |
< 1 »
-t -1 7% 0 _% 1 t
(b) A x(—1—1)
—————— 2
1
l l
| |
1 1
« L L >
—t -2 -1} -1 -4 0 t
(C) tx=4-1)
********** 2
1
l l
| |
| |
—t —4 -3 -2 -1 0 t

Fig. 1.23 (continued)

23

Example 1.3 The rectangular signal x(¢) is shown in Fig. 1.24a. Sketch the follow-

ing signals:

(a)
(b)
(©)
(d)

x(t —3)

2x(t)

—3x(t)

x(t —2)4+3x(1)
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(a) (b)
4 x(t) = rect(?) 4 x(t—3) =rect[t—3]
1
papa— 0 T S0 2 .
© (d)
-t —1 0 1 r
4 2x(1) = 2rect([t]
2
-3
-t —1 0 1t + —3x(f) = —3rect[{]
e f)
© x(t—2) ( + 3x(f)
3
1 b e — =
S0 1 3 1 S5 -1 0 1 7
® 4 x(t—2)+3x[t]
3
— 1 ,,,,,
|
|
—t -1 0 1 2 3 1

Fig. 1.24 a x(t) = rect(z) signal and b Representation of x(# — 3) = rect[t — 3]. ¢ Representation
of 2x(t) = 2rect[t] and d Representation of —3x(#) = —3rect[¢]. e Representation of x (¢ — 2) and
f Representation of 3x (7). g Representation of x(t — 2) 4 3x(¢)
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Solution

(a) To represent the signal x (¢ — 3)
x(t — 3) is obtained by time shifting x(¢) by 3 unit of time towards right. This
is shown in Fig. 1.24b.

(b) To represent the signal 2x (¢) = 2 rect[]
This is amplitude scaled signal. The amplitude of x (#) = rect[¢] is multiplied by
the factor 2 and is shown in Fig. 1.24c.

(c) To represent the signal —3x (¢) = —3rect[¢]
The signal x () is amplitude inverted and multiplied by a factor 3. This is shown
in Fig. 1.24d.

(d) To represent the signal x (¢ — 2) + 3x(¢)
The time delayed x (¢ — 2) is obtained by shifting x(¢) to the right by a factor
2. This is represented in Fig. 1.24e. The signal x (¢) is amplitude multiplied by a
factor 3 and 3x(¢) is obtained. This is shown in Fig. 1.24f. By adding the signals
shown in Fig.1.24e and f, x(+ — 2) 4+ 3x(¢) is obtained and is represented in
Fig.1.24g.

Example 1.4 Consider the triangular wave form x (#) shown in Fig. 1.25a. Sketch
the following wave forms:

(a) x(2t +3)

b x <#>
L3
(c) X <§ - )

d  x(=2t+3)
)  x(=2t—13)

Solution

(a) To sketch x(2¢ + 3)
Figure 1.25a shows x () = tri(¢). By time shifting by r = 3 towards left, x (+ 4+ 3)
is obtained and this is sketched in Fig. 1.25b. x (¢ 4+ 3) is time compressed by a
factor of 2 to get x(2¢ 4 3). This is sketched in Fig. 1.25c.

(b) To sketch x (42)
The signal x (#) is written as x (% + 1.5). The signal x(¢) is time shifted to
the left by 1.5 unit to get x (¢ + 1.5). This is sketched in Fig. 1.25d. x(¢ + 1.5)
is time expanded by a factor 2 to get x (4 4 1.5) which is nothing but x (£2).
This is sketched in Fig. 1.25e.

(¢) To sketch x (5 — 3)
x(t — 3) is obtained from x(¢) by time shifting the signal x(¢) to the right by 3
unit and is shown in Fig. 1.25f. By time expansion of x(# — 3) by a factor 2,
X (% — 3) is obtained and sketched as shown in Fig. 1.25g.
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(a) 4 x(f) = tri(r)
1

(b) ©
x(t+3) x(2t+3)

A

|
-
|
B~
|
w
|
)
o

—t -2 -15-1 0

(d
x(1+1.5)
—————— 1
|
|
|
|
—t -25-15-5 0
x(t—3)
L ]
I I
I I
I I
I I
: R : N
0 2 3 4 1t 0 4 6 8 1

Fig.1.25 ax(¢t) =tri(t).bx(t +3);cx(2t +3).dx(t + 1.5);ex (%) fx(t—3);gx (% — 3).
hx(=1); @) x(—t+3);jx(—2t +3). kx(—t —3); 1 x(—2r — 3)
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h .
™ A x(—1) O f —143)

1

~v

)

o
—
=
W
[\
~v

(k) )

A

T4 3 2 = —2-15-1 0

Fig. 1.25 (continued)

(d) To sketch the signal x (—2¢ + 3)
Signal x(—t) is obtained by folding x(¢) and it is shown in Fig. 1.25h. x(—¢) is
time shifted to the right by 3 unit to get x(—¢ + 3). This is shown in Fig. 1.251.
The signal x(—¢ + 3) is time compressed by a factor 2 to get x(—2¢ + 3). This
is sketched in Fig. 1.25j.

(e) To sketch the signal x (—2¢ — 3)
x(—t) is shown in Fig. 1.25h. From Fig. 1.25h, x(—¢) is time shifted towards
left by 3 units to get x(—¢ — 3). This is shown in Fig. 1.25k. x (¢ — 3) is time
compressed by a factor 2 to get x(—2¢ — 3). This is sketched in Fig. 1.251.

Example 1.5 A continuous-time signal x (¢) is shown in Fig. 1.26a. Sketch and label
carefully each of the following signals:
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@  x@—1)
b  x2-1

©  x) [a <z+ ;) s (t _ ;)}

(d) x2t+1)

(Anna University, April 2008)

Solution

(a) To sketch x(t — 1)
x(t — 1) is the time delayed signal of x () by one unit. x (¢) is shifted to the right
by ¢ = 1 and it is sketched as shown in Fig. 1.26b.

(b) To sketch x(2 — t)
The folded signal of x(¢) is x(—¢) and is shown in Fig. 1.26¢c. x(—t) is right
shifted by 2 unit to get x(2 — ¢) and is shown in Fig. 1.26d.

(c) To sketch x()[8(t + 3) — 8(t — 3)]
S(t + %) and §(r — %) are shown in Fig. 1.26e, which occur as unit impulses at
t = —% andr = %respectively. Att = —%,x(t) = —% and §(t + %) = 1. Using
the property of impulse x(¢)3(t — ty) = x(t)5(t — ty), we get x(£)8(¢ + %) =
—1. Similarly at = 2, x() = 1 and —8(t — ) = —1. Hence, x(1)3(t — 3) =
—%. This is sketched as shown in Fig. 1.26f.

(d) To sketch x(2t + 1)
From Fig. 1.26a, x (¢ + 1) is derived by shifting x (¢) to the left by ¢ = 1. This is
shown in Fig. 1.26g. By time compression of x (¢ + 1) by a factor 2, x (2t + 1)
is obtained and sketched as shown in Fig. 1.26h.

Example 1.6 Represent the signal x(¢) = Su(4 — t).

Solution

1. The unit step signal when its amplitude is multiplied by a factor 5, it becomes
Su(t). When this is time reversed, it becomes 5Su(—¢) and is shown in Fig. 1.27a.

2. 5u(—t) is time shifted to the right by r =4 and is sketched as 5u(4 —t) in
Fig. 1.27b.

Example 1.7 Sketch the signal x () = [u(t) — u(t — a)] where a > 0.

Solution

1. The unit step signal u(¢) is shown in Fig. 1.28a.

2. The unit step signal with a time delay a and amplitude inverted is shown in
Fig. 1.28b.

3. If the above two step signals are added, a pulse signal is obtained and is sketched
as shown in Fig. 1.28c which gives u(t) — u(t — a). The above signal is defined
as

x(t) =1 0<t<a
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(@) + x(0)
2
1
I
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I
< o by
t -2 -1 0 1
_________________ _1
(b) 4 x(1—1)
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Fig. 1.26 a x(¢) plot. b x(r — 1) plot. ¢ x(—¢) and d x(2 —1). e 8(¢t + %), —§(t — %) and f
x(OB(+3)—8(—3).gx(t+1)andhx(2r + 1)



30 1 Representation of Signals and Systems

© OB =3—)]
8(t+3/5)
----- 1
T 3/5 —3h 3/
=t —2-3,,—1 |0 1J 2t -t -2 L -1 [0 1] 2 1
S ~8=302) B T
(®) A x(+1) () A XQt+1)
2 2
11 _h
I I
3 | \\ i \
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—t ~2 -1 o 1 t =t _3[/115[0 f
_____________ _1 -1

Fig. 1.26 (continued)

(a) (b)
4 Su(—1) 4 Su(4—1)
5
5
=i 0 = 0 4 1
Fig. 1.27 Time shifted step signal
(a) (b) (©
+u() 0 a 4 b u()—u(t—a)
1 1
— 1 _____
0 l; —u(t—a) 0 a >

Fig. 1.28 Pulse signal from two step signals
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(@ (b) (©
x(1) +u(l—r1) x(Hu(l1—1)
2 2
1
1 J—
2 0 2 1 o 1 1 2 0 1 7
Fig. 1.29 Product of triangular and time delayed step signals
(a) (b) |
4 rect(r) o(t+73) rect(t)8(t+z)
1
I’ -—1
-1 o 1t T Lo 1 _10 T
2 2

Fig. 1.30 Product of rectangular and time advanced impulse

Example 1.8 Consider the signal x(f) shown in Fig.1.29a. Sketch the signal
x(Hu(l —1).

Solution

1. The signal x(¢) is shown in Fig. 1.29a. The signal u(1 — ¢) is shown in Fig. 1.29b.

2. The signal x(¢) is multiplied by the factor 1 for the intervals —2 < ¢t < 0 and
0 <t < 1. During these time intervals, the slopes of the straight lines of the
triangles are +1 and —1 respectively. Hence, x(¢) is retained as it is. At ¢ =1,
x(t) =1land u(l —t) = 1. Hence, x(t)u(1 —t) = 1.

3. For t > 1, u(1 —¢t) =0 and hence x(t)u(l1 —¢t) =0. This is sketched in
Fig.1.29c.

Example 1.9 Consider the signal rect(z). Sketch the signal rect(r) §(¢ + %).

Solution

1. The rectangular pulse rect(#) is shown in Fig. 1.30a.
2. The time advanced impulse & (¢ + %) is defined as follows:

8 l‘-l—1 1 ift !
— — 1 e p—
2 2

=0 otherwise

This is sketched in Fig. 1.30b.
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3. Attt = —%, the magnitude of rect(t) = 1. Hence, using the property x(¢) §(t +
to) = x(ty), we sketch x(¢)8 (¢ + #p) as an impulse at t = —% which is shown in
Fig. 1.30c.

Example 1.10
x(1) = 10e 3+

Determine x (7 + 2), x(—t +2), and x(§ — 5).

Solution
x(t) = 10e 3+

1. Fort =1t +2,
x(t +2) = 10730+

x(t +2) = 10732

2. Fort = —t+ 2,
x(—t + 2) — 10673(7T+2)+4

x(—t +2) = 10e¥2

3. Fort = (§ —5),
t ‘
X (Z - 5> = 10e 3G+

(L _5) =103t
4

Example 1.11 Decompose the signal x(¢) shown in Fig.1.31a in terms of basic
signals such as delta, step, and ramp.

(Anna University, December 2007)

Solution

1. The given signal x(¢) is shown in Fig. 1.31a.

2. The signals u(t) + u(t — 1) — 3u(t — 2) are shown in Fig. 1.31b and their sum is
shown in Fig. 1.31c.

3. The signals (¢t — 3) and r (¢ — 4) are shown in Fig. 1.31d.
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U@ Fu—1)—3u(—2)

(a) 4x(0 (b) 1
2___ ¢M(t)
Yu—1
l 3 .
0 1 2 W 4t 0 1 ) ;
B !
_3 ——————————
—3u(t—2)T
© u@®+ut—1)-3u(t—2) (A ar(t=3)—r(t—4)
2____
1 rt—3) 7
|
|
0 ' > 0 >
1 2 t 1 2 3 4Nt
f
—lpmmmmm e — r(t—4)
(e) + ()
2____ Ve
| H-3)

|
|
| »
0 1 24/\\\ i
| AN
Y S_H(t—4)

Fig. 1.31 Composite signal expressed in terms of basic signals
4. Signalsin Fig. 1.31c and d are summed up and they are shown in Fig. 1.31e which
is nothing but x (). Hence
x)=u@)—u@t—1)—3u@t—-2)+rt —=3)—rt —4)4+u(—3)
or
x@) =u@)+u—1) —=3u@—-2)+ ¢ —H[u® —3) —ul —4H]+u(t—-3)
Example 1.12 Sketch the signals

(a) x(t) = —4sgn 3¢ (b) x(t) = Ssinc 10¢
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(@) (b)
4 x(t)=sgnt 4 x(f)= —4sgn3t
I —4
: :
-1 —4
© . (d)
x(t) = sinct x(t) = Ssinc10¢
5
1

~ KA T
-4 -3 =2 -1 |O 1'\/2I 34

~Vv
T
%
|
|.—
g
|‘*’§

~V

S
S
—
S
—_
=
—
3
_
=
=N

Fig. 1.32 Representation of signum and sinc functions

Solution

(a) x(t) = —4sgn3t
The signal sgn ¢ is shown in Fig. 1.32a. The signum function is inverted and
multiplied by a factor 4. The time compression by a factor 3 does not apply in
this case as the signal remains constant for —co < t < oo. The signal is shown
in Fig. 1.32b.

(b) x(t) = 5sinc10¢
The signal sinc ¢ is sketched in Fig. 1.32c. The sinc function amplitude is multi-
plied by the factor 5 and the time is compressed by the factor 10. x(#) = 5 sin 107
is represented in Fig. 1.32d.

1.6 Classification of Signals

Signals which are classified in the broad category of continuous- and discrete-time
signals are further classified as follows:

1. Deterministic and non-deterministic (random) signals.
2. Periodic and non-periodic (aperiodic) signals.

3. Odd and even signals.

4. Power and energy signals.
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1.6.1 Deterministic and Non-deterministic Continuous
Signals

Deterministic signals are signals which are characterized mathematically. The ampli-
tude of such signals at any time interval ¢ can be determined at all time ¢. Consider
the signals described by the following equations:

x(t)=A

x(t) = Asinwt
The above signals represent a step signal and a sinusoidal signal respectively and
they are shown in Fig. 1.33a and b. At any instant of time ¢ the amplitude of the step
signal which is deterministic can be easily determined. On the other hand consider

the sinusoidal signal polluted with noise shown in Fig. 1.33b. The magnitude of such
a signal cannot be easily determined since the noise variation is random.

1.6.2 Periodic and Non-periodic Continuous Signals

Consider the continuous-time signal described by the following equation:

x(t +nTy) = x(¢) for all ¢ (1.20)
where n is any integer value. A continuous-time signal x (¢) is said to be periodic
with period 7y if it repeats itself in a minimum positive interval. The minimum

positive interval over which a function repeats is called fundamental period 7.
The fundamental frequency f is expressed as

fo=— (1.21)

(@) (b)
+ x(0) + x(1)

A AN
R

0 t

Fig. 1.33 Continuous. a Deterministic signal; b Random signal



36 1 Representation of Signals and Systems

(a) + x(1) (b) t

-

L —A
— Ty — Ty —
Fig. 1.34 Examples of periodic signals. a Rectangular wave; b Sine wave
(a) b x(7) () 1 x(0
- - A
Ae—at
Ty=>
—t 1 0 1

Fig. 1.35 Non-periodic signals. a Rectangular; b Exponential decay

where fj is expressed in cycles per sec. The fundamental radian frequency is
expressed as

wy = 27 [
2w
== 1.22
T (1.22)

Here w is expressed in rad./s. The periodic rectangular wave and sine wave are shown
in Fig. 1.34a and b respectively.

Any continuous-time signal which is not periodic is said to be non-periodic or ape-
riodic signal. Figure 1.35a represents a non-periodic rectangular wave and Fig. 1.35b
represents an exponential decay. The non-periodic signal does not repeat itself with
respect to time.
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1.6.3 Fundamental Period of Two Periodic Signals

Consider the periodic signal of two periodic functions with two different fundamental
periods as given below:

. t . t
x(t) = A;sin (27‘[ F) + A; sin (271 F) (1.23)

1 2

where 77 and T, are the fundamental periods of two sine waves. The fundamental
period of the composite signal x(¢) is given by the shortest time by which these
signals have an integer number. If each of these two signals repeats exactly an integer
number of times in some minimum time interval, then they will repeat exactly an
integer number of times again in the next time interval. This is calculated as the least
common multiple [LCM] of the two fundamental periods. Thus, the fundamental
period of a periodic signal which is composed of more than one periodic signal
is obtained by taking least common multiple of the fundamental periods of all the
signals. The fundamental frequency of the sum of the signals is the greatest common
divisor of the two frequencies. It is to be remembered that if any of the composite
signal is non-periodic, then the overall function is also non-periodic.

Instead of sum of two functions, if a signal is a product of two functions, the
method of finding the fundamental period remains the same. Consider the following
composite signal:

x(1) = Asin (2nTi> sin <2nTi> (1.24)

1 2

The fundamental periods of the two sine functions are 7} and 7,. The fundamental
period of x(¢) is calculated as the least common multiple of 7} and 75. The sum of
product of two or more periodic signals is periodic iff (if and only if) the ratio of their
fundamental periods is rational. The following steps are followed to determine this:

1. Determine the fundamental period of the individual signal in the sum or product.

2. Find the ratio of the fundamental period of the first signal with the fundamental
period of every other signal.

3. If these ratios are rational, then the sum or the product of the composite signal is
periodic.

4. The fundamental period of the composite signal is determined by taking the least
common multiple of the fundamental period. Alternatively, the greatest common
divisor of the fundamental frequency of each signal gives the fundamental fre-
quency of the composite signal.

For example if T}, T, and T3 are the fundamental periods of three signals which are
the sums of the composite signal then the ratio % and % should be an integer multiple

or rational. % = % is an integer or rational number. On the other hand % = 2 s

=317
not an integer number and it is not rational.
Sinusoidal and complex exponentials are examples of continuous-time periodic
signals. Consider the following sinusoidal signal:
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x(t) = Asin(wot + 0) (1.25)
x(t 4+ Ty) = Asin(wy(t + Tp) + 6)
= Asin(wot + woTp + 6) (1.26)

A sine function repeats itself when its total argument is increased or decreased by
any integer multiple of 27 radians. Thus, in Eq. (1.32) if we put w7y = 27,

x(t + Tp) = Asin(wpt + 0) = x(t)

In other words the fundamental period of a sine function is

2
Ty = — (1.27)
wo
Now consider the complex exponential
x(1) = e/
x(t + Ty) = e/@t+T0) (1.28)
= e/t gi@0To (1.29)
If we put e/*0%0 = 1, Eq.(1.35) becomes
x(t + Tp) = /" = x(1)
Thus, the condition for the complex exponential to be periodic is that
efoTo —
or  wyTy=2m [e/*" =cos2m + jsin2x = 1]
2
Ty = — (1.30)
wo

Example 1.13 Test the periodicity of the following signals:

(@) x(@) =3cos (St + %)

b)  x(@) =/
(¢) x(t) =tan(5t +0)
d x@=1

(Anna University, May 2006)
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Solution

(a) x(t) = 3cos (5t + %)

wo = Srad./s.
Using Eq. (1.33), we get
2 2
0o=—=— S
wo 5

The given signal is periodic with the fundamental period Ty = % s.

(b) x(t) = /1% ’

wo = 10rad./s.
Using Eq. (1.36), we get
2
Ty = —
wo
=27 02
=130=-° TS.

The given signal is periodic with the fundamental period
T() =0.27 s.
(¢) x(t) =tan(5t + 6)

x(t 4+ Tp) =tan(5(t + Ty) + 6)
= tan(5t 4+ 5Ty + 0)

The tangent function repeats itself for every m rad. of its total argument. Thus,
it 5Ty = m,

x(t + Ty) = tan(5¢ + 60)
= x(1)

Hence
T T
= —s.
75

(d) x(z) is a d.c. signal and it does not repeat itself. Hence, it is not periodic.
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Example 1.14 If x;(¢) and x,(¢) are periodic signals of period T and 7>, show that
the sum x () = x;(¢) + x(¢) is a periodic signal if 7} /T, = n/m which is a rational
number.

Solution For the signals x;(¢) and x,(¢) to be periodic, the following equations hold
good:

x1(t) = x1(t + mTy)
X2(t) = x2(t +nT>)

Now,

x(t) = x1(1) + x2(1)
x+T)=x1t+T)+x+T)
=x1(t + mT)) + x(t +nTy)

From the above equations, we get

T =mT, =nT,

T1 n .
— = — = arational number.
T2 m

Example 1.15 If x;(¢) and x,(¢) are the periodic signals with fundamental periods

T, and T, respectively, show that the product x () = x;(¢)x,(¢) will be periodic if %
is a rational number.

Solution For the periodic signals x;(¢) and x;(¢), the following equations are
written:

x1() = x1(t + 1) = x1(t + mTy)
x2(t) = x2(t + 17) = x2(t +nTy)
x(t) = x1(t + mT)x2(t +nT>)

Also
xt+T)=x1t+T)x,(t +T)

From the above two equations, we get

T = mT] = I/ZTZ
T1 n .
— = — = arational number
T2 m
Example 1.16 Test whether the following signals are periodic. If periodic determine
the fundamental period and frequency.
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(a) x(1) = /172
(b) x(t) = cos* ¢t

(©) x(t) = E,cos4mt
(d) x(t) = V™21

Solution
(a) x(t) = /=2
x(1) = /@172
— e—jZejﬂt
The signal is a complex exponential with e~/2 being a constant. Comparing this

with standard complex exponential, we get

ejﬂl — eju)ut

wy =T
2 2w
T0=—=—
wo b4
T0=25.
fo= 1 1
T T 2
fo = 0.5Hz.

The signal is a periodic one with fundamental period Ty = 2 s. and fundamental
frequency fy = 0.5Hz.
(b) x(t) = cos? ¢t

1
cos’t = E[l + cos 2¢]
! + ! 2t
= — + —cos
2 2
= x1(t) + x2(2)
where |
x1(t) = > which is a d.c. signal
and

1
X (1) = 3 cos 2t

For x (), the fundamental radian frequency
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0)0:2
2r 2w
Th="—="=ns.
wo 2

The fundamental frequency fy = Tlo = % Hz.
(¢c) x(t) = E, cosdnt
The even function of x(¢) is

1
Eyx(t) = E[x(t) + x(=1)]
1
= E[COS4TU + cos(—4mt)]
= cosdrnt
wy = 4
2 2
T0= —:—:OSS
wo 4
fo = 1 _ 1 _oH
T Tos

(d) x(t) = elUm—2t

x(1) = VT
— e—Ztejrrt

The function e/™ is periodic with fundamental period 2s. as seen in problem (a).
However the function e~ is non-periodic and becomes zero at t — oo. Hence,

the composite signal x(¢) is aperiodic.

Example 1.17 Consider the following continuous-time signal:

x(t) =2cos3mt + 7cos9t

Find the periodicity of the signal.
(Anna University, May 2005)

Solution
x(1) = x1 (1) + x2(1)

where

x1(t) = 2cos3mt
x2(t) = 7cos9t

If T is the fundamental period of x; (),
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w] = 3
27 2w 2 .

T} = — = — = — (rational)
w1 3 3

Xx2(t) = 7cos 9t

wy = 9
2 2 .

T, = — = — (not rational)
wy 9

T\ 29 3 .

— = —— = = (not rational)

T 32w T

The signal x (¢) is not periodic.

Example 1.18 Find the fundamental period and frequency of the following signals:

(a) x(t) = 5sin24nt + 7sin 367t
(b) x(t) = 5S5cosmtsin3mt

Solution

(a) Method 1:

x(t) = 5sin24mt + 7sin 367t
= x1(t) + x2(2)

where

x1(t) = 5sin24mt
xo(t) = 7sin 367t

Let 7| and T, be the fundamental periods of x;(#) and x;(¢) respectively.

w) = 24w
2 2 1 .

T = — = —— = — (rational)
w1 247 12

wy = 36w
2 2 1 .

T, = — = —— = — (rational)
w) 36 18

T
- 18=2 (rational)
7, 12 2

The composite signal is a periodic signal. Since 7} and T, are rational, x () is
periodic. The fundamental period is obtained as follows. From the ratio of %,
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2T =3T, =T,
2 1
T():—:—S.
12 6
or
T 3 1
= — —= — §
T 18 6
1
=—=06H
fo T z
1
To:gs.
f0=6HZ.
Method 2:

In this method, the least common multiple (LCM) for 7} and 7> is obtained which
gives Ty. In case, T} and T are fractions, they are made integers by multiplying
by a least number. For 7 and T, thus obtained, LCM is found. 7 is obtained by
dividing by the same number which was chosen to make 7; and T, as integers.
In the above example,

(1)
1 1
Tl = — and T2 = —
12 18
By multiplying 7T} and T, by 36, 71 = 3 and T, = 2.
(2) The LCM for the new T} and 75 is easily obtained as 6.
(3) Ty is obtained by dividing LCM by 36.

LCM 6 1
Th=—=—=-s.
36 36 6
1
T() = 8 S.
fo = 6Hz.
(b)
x(t) = 5cosmtsin3mwt = x1(t)x,(1)
where

x1(t) = 5S5cosmt

x2(t) = sinmt



1.6 Classification of Signals 45

Let 7| and T, be the fundamental periods of x;(#) and x;(¢) respectively. The
following equations are obtained for 77 and 75.

w) =T
27 27 .

T} = — = — =2 s. (rational)
w1 T

wy) = 3
2 2 2 .

T, = — = — = = s. (rational).
wo 3 3

T .

— =2 x — = 3 (rational).

1

The composite signal x (¢) is periodic and the fundamental period Ty is given by
T() = Tl = 3T2 =2s.

TQ =2s.
fo =0.5Hz
The same results are obtained by finding LCM for 7} and 7,. By multiplying T}
and 7, by 3, they are made integers. The new 77 = 6 and T, = 2. The LCM for
this is 6. Hence, T = £§% = § = 2s.and fy = - = 0.5Hz.
Example 1.19 Find whether the following signal is periodic. If periodic, determine

the fundamental period and frequency. Also determine the fundamental period of
each function in the composite signal in the time of the fundamental period.

x(t) = sin(Qwt — ) — 5cos (37rt + %) — 8cos (57tt - %)

Solution
x(t) = x1(2) + x2(8) + x3(1)

where

x1(t) = sin(2at — )

Xx2(t) = —5cos (3m + %)

x3(t) = —8cos (Snt + %)

Let Ty, T, and T3 be the fundamental periods of x; (¢), x,(¢), and x3(¢) respectively.
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w)] = 2
27 2m .

T = — = — =1 s. (rational)
w1 2

wy = 3
2 27 2 .

T, = — = — = — s. (rational)
w? 3 3

w3 = S5
2 27 2 .

T3 = — = — = — s. (rational)
w3 Sm 5

T Ix3 3

F; = >2< =3 s. (rational)

Tl 1 X 5 5 .

— = = — s. (rational)

Ts 2 2

Hence, the composite signal x(¢) is periodic. The fundamental period is obtained by
taking LCM of Ty, T, and T3 as explained below:

(D
Ti=1: =2 Ty=2
=1 2—3» 3—5

Multiply by 15 to make them integers. The new periods are obtained as 7T; =
15, T, = 10, and T5 = 6.
(2) The LCM is obtained as

5[15, 10, 6
313, 2,6
211, 2,2
1,1
The LCM =5 x 3 x 2 = 30.
3)
LCM 30
Ty = = — =2s.
15 15
TO_Zs
f L _osn
= — = U. VA
0 TO
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The fundamental period of x;(¢) during Ty = 2. is

1.6.4 0Odd and Even Functions of Continuous-Time Signals

One of the properties of signals is their symmetry when the time is reversed. They
are classified as even and odd signals. A continuous-time signal x () is said to be an
even signal if it satisfies the following condition:

x(—t) = x(t) for all ¢ (1.31)

It is identical under folding about the origin. A signal x (¢) is said to be an odd signal
if it satisfies the condition,

x(=t) = —x(¢) for all ¢ (1.32)

An odd signal must necessarily be zero at £ = (. While even signals are symmetric
about the vertical axis odd signals are anti-symmetric (asymmetric) about the time
origin. Consider the following signal:

x(t) = Acoswt
x(—t) = Acos(—wt)
= Acoswt = x(t)

The above even signal is shown in Fig. 1.36.
Consider the following signal:

x(t) = Asinwt
x(—t) = Asin(—wt)
= —Asinwt

= —x(1)

The above odd signal is shown in Fig. 1.37. The odd function is zero at t = 0 as
shown in Fig. 1.37.
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4 x(t) = Acosw(?)

Fig. 1.36 Representation of an even (symmetric) function
4 x(t) = Asinw(t)

Fig. 1.37 Representing of an odd (anti-symmetric) function

1.6.4.1 Even and Odd Components of a Signal
A continuous-time signal x () can be expressed in terms of odd and even components.
Let x.(¢) and x((¢) represent the even and odd components of x(z). We may write
x(t) as
x(t) = x.(t) + x0(2) (1.33)
Putting ¢t = —¢ in Eq. (1.39) we get
xX(—1) = x.(—1) + xo(—1) (1.34)

For an even function x,(—t) = x.(¢) and for an odd function xo(—t) = —xo(t).
Equation (1.34) is written as
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x(=1) = x0(8) = x0(1) (135)
Adding Egs. (1.33) and (1.35) the following equation is obtained:
1
Xe(1) = E[x(t) +x(=1)] (1.36)
Subtracting Eq. (1.35) from Eq. (1.33), we get
1
Xo(t) = Flx(0) = x(=1)] (1.37)

Example 1.20 Show that the even function has its odd part zero.

Solution From Eq. (1.42) the even function of x(¢) can be written as
1
xe(1) = E[x(t) +x(=1)]
For an even function x(—t) = x(¢). Hence, the above equation can be written as
1
xe(1) = E[x(t) +x()] =x()
From Eq. (1.43) the odd function of x(#) can be written as

[x(®) — x(=1)]

xXo(t) =

e S

[x(1) —x(0)] =0

Thus, it is proved that for an even function the odd part is zero.
Example 1.21 Show that the odd function has its even part zero.

Solution Let x(¢) be an odd function. For an odd function, x(—t) = —x(t). The
even function of x(#) can be written as

1
X (t) = E[x(t) + x(=1)]
= %[X(t) —x(1)]
=0
1
xo(t) = E[x(t) —x(=1)]
1
= z[x(t) +x®)]=x@)

Thus, for an odd function x(t), the even part of x(¢) = 0.
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Example 1.22 Show that the product of two even signals is an even signal.

Solution Let x;(7) and x,(¢) be the two even signals. Let x () be the product of these
two signals.

x(1) = x1(1)x2(1)

For an even function, x(—t) = x(¢); and x;(—t) = x1(¢) and xo(—t) = x,(¢). The
above equation is written as follows. Substituting t = —¢ we get

x(=t) = xi(=1)x2(—1)
= x1(H)x2(1) = x(1)
Thus, x(t) = x(—t) which is even.
Example 1.23 Show that the product of two odd signals is an even signal.

Solution Let x;(¢) and x;,(¢) be two odd signals. For the odd signals, x;(—t) =
—x1(¢) and x,(¢t) = —x,(t). Let x(¢) be the product of x;(¢) and x, (7).

x(1) = x1(1)x2(1)
Putting ¢+ = —1 in the above equation, we get
x(=1) = x1(=H)x2(=1)
= x1(D)x2(t) = x(1)
Thus, itis proved that x (r) = x(—t). The product of two odd signals is an even signal.
Example 1.24 Prove that the product of an odd and an even signal is an odd signal.

Solution Let x;(r) be an odd signal and x,(f) be an even signal. Then x;(—¢) =
—x1(¢) and xp(—t) = x,(t). Let x(¢) be the product of x;(¢) and x, (7).

x(1) = x1()x2(1)
Putting ¢+ = —1 in the above equation, we get
x(=t) = xi(=0)x2(—1)

= —x1()x2(t) = —x(2)

Thus, x(t) = —x(—t) which is odd. The product of an odd and an even signal is an
odd signal.

Example 1.25 Show that the sum of the two even functions is an even function and
the sum of the two odd functions is an odd function.
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Solution Let x(¢) be expressed as the sum of two functions x; (¢) and x,(¢).
x(1) = x1(2) + x2(2)
Substituting + = —¢ in the above equation, we get
x(=1) = x1(=1) + x2(—1) (a)
If x(¢) and x, () are even functions, the above equation is written as

x(=t) = x1(t) +x202)
=x(1)

This shows that x(¢) which is the sum of two even functions is an even function. If
x1(t) and x,(¢) are odd functions, equation (a) can be written as

x(=t) = x1(=1) + x2(—1)
— (1 (1) + x2())
= —x(t)

Thus, x(¢) which is the sum of two odd functions is an odd function.

Example 1.26 Find whether the following signals are odd or even. Find the odd and
even components.

() x(t) =t> =5t + 10

(b) x()=1*+4 +6

(c) x(t) =13+ 3¢

@  x(t)=10sin (10m n %)

(e) x(1) = /1
Solution
(@ x(@®) =t>—=5t+10
Putt = —¢

x(—t) = >+ 5t 4+ 10
# x(1)
# —x(1)

The function is neither even nor odd.
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X () = z[x(@) +x(=1)]

[t> — 5t + 10 4 12 + 5¢ + 10]

N =N =

X (1) = (t* + 10)

1
Xo(t) = Flx(t) = x(=1)]

1 2 2
=§[t —5t+ 10—t =5t —10]

xo(t) = =5t

b) x@®) =t*+42+6
Putt = —t¢

x(=t) =t*+ 4>+ 6 = x(1)
x(t) = x(—1)

The function is even. The odd part should be zero which can be verified as

[x (1) —x(=1)]

S| =N =

xo(1)

[t* 4+ 41> + 6 — 1* — 41> — 6]

x.t) =x(t)=t*+4>+6
©) x(t) =13+ 3¢
Putt = —¢
x(—1) = — (> +31) = —x(1)

The function is odd. The even component is zero.

xo(t) =13 + 3¢
x.(t) =0
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(d) x(t) = 10sin (107t + %)
Putt = —¢

N

x(=1) = 10sin (- 1071 + )

q B~

— —10sin (10m - —)

N

T T
—10 [sin 107wt cos Z — cos 107t sin Z]

-10
——[sin 107t — cos 107¢]
V2

# x(1)
# —x(1)

The above signal is neither even nor odd.
T .
x(t) =10 [sin 107t cos 7 + cos 10 ¢ sin Z]

10
= —[sin 107¢ + cos 107¢]
V2

1
X () = F[x(0) + x(=1)]

10
——[sin 10t 4+ cos 10wt — sin 10wt 4+ cos 107¢]
22

10
X.(t) = —=cos 107t

V2

1
Xo(t) = Slx() = x(=1)]

10
= [sin 1077 + cos 107t 4 sin 107 — cos 107¢]

232

10 .
xo(t) = —=sin 10t

V2

53
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(e) x(t) = /1

.x(—t) — e*leI
x(1) # x(=1)
x(t) # —x(—t)

The signal is neither odd nor even.

X (1) = %[x(t) —x(=0]= %[e-"”” +e7/1]

Xe(t) = cos 10t

Xo(t) = %[x(t) —x(=)] = %[ejwt — e i10

Xo(t) = jsin 10z

Note: In all the above cases x(¢) passes through the origin at ¢ = 0.

Example 1.27 Sketch the even and odd components of a step signal shown in
Fig. 1.38a.

Solution The step function is shown in Fig.1.38a. x(—¢) is shown in Fig. 1.38b.
In Fig. 1.38c, the sum of x(¢) and x(—t) is represented. The even function x,(¢) =
%[x (t) + x(—1)] is shown in Fig. 1.38d. In Fig. 1.38e, —x(—1) is represented. The
odd function x( () = %[x(t) — x(—1t)] is represented in Fig. 1.38f.

Example 1.28 Sketch the even and odd components of the pulse signal shown in
Fig.1.39a.

Solution x(¢) is shown in Fig. 1.39a. In Fig. 1.39b, x (—t) is represented. The sum of
x(t) + x(—t) is shown in Fig. 1.39¢c. The even component of x (t) which is x.(t) =
%[x (t) + x(—1)] is shown in Fig. 1.39d. In Fig. 1.39e, —x(—t) is shown. The odd

component of x(¢) which is xo(7) = %[x (t) — x(—1)] is represented in Fig. 1.39f.

Example 1.29 Sketch the even and odd components of the triangular wave shown
in Fig. 1.40a.

Solution Figure 1.40a represents the x (¢) which is a triangular wave. x (—t) is repre-
sented in Fig. 1.40b. x(¢) + x(—t) is represented in Fig. 1.40c. From this figure, the
even component is obtained by dividing the amplitude by 2 and x.(¢) is shown
in Fig.1.40d. In Fig.1.40e, —x(—t) is represented which is obtained by invert-
ing Fig.1.40b. Adding Fig.1.40a and e, [x(¢#) — x(—t)] is obtained and repre-
sented in Fig. 1.40f. By dividing the amplitude of Fig. 1.40f by 2, x¢(¢) which is
%[x (t) — x(—1)] is obtained and sketched as shown in Fig. 1.40g.
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(@) + x(0) (b) +x(—1)
10 10
© PN e S G $xe(0) =L (x(0) +x(—1)
5
“ 0 ; P 0 ;
© () 1 x0()= S0 =x(=1)
i 0 T S
— 10 p ,
-t 0 t
v —x(—1) S —

Fig. 1.38 Even and odd components of a step function

Example 1.30 Sketch the even and odd components of exponential signal x(¢) =
10e~%.

Solution x(7) = 10e~% is sketched and shown in Fig. 1.41a. Figure 1.41a is time
reversed to get x(—¢) and is sketched in Fig.1.41b. The sum of x(¢#) and x(—t)
is sketched as shown in Fig.1.41c. The amplitude of Fig.1.41c is reduced by a
factor 2. This gives x.(t) = %[x () + x(—t)] and is shown in Fig. 1.41d. Figure 1.41a
is inverted and time reversed to get —x(—¢) which is sketched in Fig.1.41e. The
sum of Fig.1.41a and e gives [x(¢#) — x(—t)] and this is sketched and shown in
Fig.1.41f. The amplitude of Fig.1.41f is reduced by a factor 2 which gives odd
signal xo(¢) = %[x(t) — x(—1)]. This is shown in Fig. 1.41g.

Example 1.31 Sketch the even and odd parts of the signal shown in Fig. 1.42a.
Solution x(z) is graphically represented in Fig. 1.42a. By time folding of Fig. 1.42a,

x(—t) is obtained and is shown in Fig. 1.42b. These figures are graphically added
to get x(t) + x(—t) and represented in Fig. 1.42c. To get the even signal of x(¢),
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(a) + x(1) (b) +x(—1)
2 2
it 0 3 ? it -3 0 ?
(c) +x(0)+x(—1) (d + xe(0)
2 1
o3 0 3 7 -3 0 3 7
(e) —t -3 0 1 () + xo(1)
1
< _3 »
-2 e 0 3 1
v —x(—t) —1

Fig. 1.39 Even and odd components of a pulse signal

the amplitude of the signal is divided by a factor 2 and is represented in Fig. 1.42d.
The signal x(¢) is time folded and inverted to get —x(—). This is represented in
Fig.1.42e. Figure 1.42a and e is graphically added to get x(#) — x(—¢) which is
represented in Fig. 1.42f. The amplitude of the signal in Fig. 1.42f is divided by a
factor 2 which gives x((¢) of x(¢). This is represented in Fig. 1.42g.

Note the even component x,(¢) in Fig. 1.42d. It is symmetrical with respect to the
vertical axis and when time folded identical mirror images are obtained. Similarly,
the odd component x(¢) represented in Fig. 1.42g passes through the origin at = 0
and it is also anti-symmetry.

Example 1.32 Find the even and odd component of the following signal:
x(t) =cost +sint + costsint

(Anna University, May 2007)
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(b) x(=n (¢ x(O)+x(=1)
2
Y i Y Y
6 © %
hap Y
() b x(H)—x(—1) (€9) b xo(0)
) S | E—
< 73 » < _3 »
= 0 3 1 ) 0 3
—————— -2 @ |

Fig. 1.40 Even and odd components of a triangular wave

Solution
x(t) =cost +sint + costsint

Putt = —¢

x(—t) = cos(—t) + sin(—t) + cos(—t) sin(—t) = cost — sint — cost sint

X (1) = S[x(2) + x(=1)]

[cost + sint + costsint + cost — sint — coS ¢ sin ¢]

S S

Xx.(t) = cost
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(a) (b) x(—1)
10
it ; it 0 ;
© 10 x(H)+x(—1) (d) Xe(1)
5
it 0 ; it 0 ;
(e) + > () + x()—x(—1)
—t 0 t 10
-10 ) ,
—x(—1) —t 0 t
(€9) + xo(0) ~10
5
it 0 ?
-5

Fig. 1.41 Representation of even and odd function of exponential decay
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(a) + x(®) (b) tx(—1)
2h——- -——2
| |
| |
| |
| |
| |
< ! > < ! >
—t -2 o /1 2 4 t —t —4 —-2—-10 2 t
(©) b x()+x(—1) @ b x.(1)
2 1
I7 777777I I77777777I
I | I |
I I I I
I | I |
p I I R . I I
—t—4 2 Ao| K2 4 —t—4 -2 f\o| A2 4
_4 4 _4 4
3 3 3 3
—4 )
(e) b —x(—1) () b x()—x(—1)
2
2,,,,
I
I
|
4 2 , L4 2 !
~1 L~10 2 ! —t | 0 2
| |
I I
I I
. ) -2
(2) 4 xp(D)
],,,,
I
—t i 0 2 4 1
A

Fig. 1.42 Representation of even and odd signals of Example 1.40
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The odd component of x(¢) is obtained as follows:

1
Slx (@) —x(=0)]

Xo(1) 3

1 . . . .
= E[cost—|—smt+costsmt—cost+smt+costsmt]

Xo(t) = sint[1 4 cost]

1.6.5 Energy and Power of Continuous-Time Signals

Consider the electric circuit shown in Fig. 1.43 in which a resistor R is connected
across the voltage source v(¢). The current flowing through the resistor is i (¢). The
instantaneous power consumed by the resistor is given by

P =i*(")R
_ i)
" R

(1.38)

If we assume R = 1 ohm, the power is expressed as normalized power which is given
by
P = v2(t) (1.39)

The average power consumption by the circuit over the time #; < ¢ < ¢, is given by
the following equation:

_ 1 "
P=c _tl)l/ V2 (1) dt (1.40)

The average energy consumption which is the product of power and time given as

153 15
E:/ sz:/ vi(t) dt (1.41)
n h
Fig. 1.43 Electric circuit O >
with a resistor T i)
V() R
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Similar to voltages and currents, many other physical variables such as force, temper-
ature, pressure, and charge are available for other types of systems. As a convention,
similar terminologies for power and energy of continuous signal x(¢) and discrete
signal x[n] are defined and used. However, the “power” and “energy” defined here are
not related to physical power and energy. Thus, if x(¢) represents a continuous-time
signal, then the average power over an infinite time interval 7 is defined as

1 T
P= Lt — |* dt 1.42
Mm/ x(0)] (1.42)
-T
The expression for the total energy is expressed as

T
E= Lt / lx(1)|* dt (1.43)

-T

If the energy signal does not converge, such signals have infinite energy. On the other
hand if E converges then the signal has finite energy. From Egs. (1.42) and (1.43),
the following inferences are drawn and given in Table 1.3.

Example 1.33 Find the power, RMS value, and energy of the following signals:

(a) x(t) = Au(t)
(b) x(1) = e Y u(r)
Solution
(@) x(t) =Au()
1 T
P= Lt — | A’d:
T—o002T

-T

For x(¢t) = Au(t), the signal starts at ¢t = 0.

Table 1.3 Comparison of power and energy signals

Energy signal Power signal
1. The total energy is obtained using 1. The average power is obtained using
E= Lt [Tix@)|*dt P= Lt 5= [Tx@)dt
T—o0 T—oo™" “p
2. For the energy signal 0 < E < oo, 2. For the power signal 0 < P < oo,
the average power P =0 the energy E should be co
3. Non-periodic signals are 3. Periodic signals are power signals. However
energy signals all power signals need not be periodic
4. Energy signals are not time limited 4. Power signals exist over infinite time
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1, (7 A or
P= Lt —A dt = — 1]
T—>02T 2T 0

[=)

A2
P=—W
2
RMS value of power is
A
Prys = VP = 7
A
Prvs = ﬁ
Since power is finite, energy E is infinite.
(b) x(t) = e u(t)
For this signal ¢ varies from 0 to co.
T
E= Lt / (e73)%dt
T—o0
0
T
= Lt / e Sdt
T—o0
0
(=D —6t1T
- T~>loo 6 [€ t]o
= Lt [1—e°
6T—o00 [ ¢ ]
E=-1]

Since E is finite, power P = 0.

Example 1.34 Find the power and energy of the following signals:

(a) x(1) = Acos(wot + @)
(b) x(t) = Asin(wot + ¢)
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Solution

(a) x(t) = A cos(wpt + ¢)

63

Since the signal is periodic, it is necessarily a power signal and its energy £ = oo.

The power of the signal is determined as follows:

l T
P= Lt 77 A? cos? (wot + ¢)dt
-T

But,
1 + cos 2(wot + @)

cos®(wot + @) =

2
A2 T
P = Tgl:)oﬁ/ [1 4+ cos2(wot + ¢)]dt
-7
Now consider the integral
T
/ cos 2(wot + ¢)dt

-T

|
= 2—600[sm 2wot + )14

= L[sin 2(woT 4+ ¢) — sin2(—awo T + ¢)]
26()0

1
= ——[sin 2¢ — sin 2¢] [ wT =2n]
20)0
=0

A? 197
Tritoo?[t]*T
2

A 1
= — Lt =2T
4 T500T
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(b) x(t) = A sin(wof + ¢)

1 T
P= Lt —/ A? sin(wot + ¢)dt
T—002T
—T
Ar (Tl - 2(wopt
_ g A [Tz cos2ent + )]
T—-02T 2
-T

A2 T T
= Tgl;oﬁ / dt — / cos 2(wot + ¢) | dt
-r T

Since fT cos 2(wot + p)dt =0
-7

Since P is finite, £ = o0.
Example 1.35 Find the power and energy of the following signals:
x(t) = 5cos(10t + ¢) + 10sin(5¢ + ¢)
Solution
x(t) = 5cos(10t + ¢) + 10sin(5¢ + ¢) = x1(t) + x2(t)
where

X1y = Scos(10t + ¢)
x2(t) = 10sin(5¢ + ¢)

Let P; and P, be the powers of x;(¢) and x,(¢) respectively.

A% 25
P=—=—=125
2 2

AT 100

- 50
D) 2
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The average power

P=P+P
=125+50
P=625W

Since the power is finite energy E = oo.

Example 1.36 Find the power and energy of the following signal:
x(t) =5t —10<t <10

Solution Energy of the signal E is

E

10 3710
(yfdz=25[—}
10 310

2
el x 2000
3

50000
E = 3 J

Power of the signal P is

10

1

= — 5¢)%dt
20 (51)
—10

50000
3x20

~
|

2500
P=""W

Example 1.37 Find the energy and power of the signal:

x(t) =u(t) —u(10 —1)
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(a) +x(0) (b) tx(@) = u(@)—u(10—1)

u(t)

10

y
A
A

v

—u(10—1) _1

Fig. 1.44 Representation of x(t) = u(t) — u(10 — 1)

Solution Thesignalsu(t) and —u(10 — ¢) are represented in Fig. 1.44a. InFig. 1.44b,
x(t) = u(t) —u(10 —r) is sketched. From Fig. 1.44b, the following equation for
power is written:

1 0 2 ’ 2
P= Lt — —1)°dt 1)°dt
A | [ s [
-T 10
1 0 T
L a7 AT+ [T
1

1
— Lt =[T+T-10
2T—>ooT[ + ]

1 10
-l 2= 7=

2T—>oc0 T

P=1W
If the power is finite, the energy E = oo.

Example 1.38 Determine the power and RMS value of the signal.
x(t) = e/ cos wyt

(Anna University, 2007)
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Solution

P = |ef " cos wot |2 dt
T—>002T

e/ = cosat + jsinat

le’¥| = v/cos2at + sin®at = 1
T

= Lt — cos? wotdt
T—002T
-T

v
|

Tgl;oﬁ_/ (1 + cos 2wqt)dt

Since [ T cos 2wotdt = 0, as provided in Example 1.24,

.y
P= Lt ! Tdt— ! 2T
T 1500dT 4T
-7
P=05W
RMS value of power is
1
Prvs = E =0.707

Example 1.39 Find the power and energy of the following signals:

() x() = 10/ u(r)
(b) x([) — ej(2t+71/4)

(Anna University, April 2007)

Solution

(@) x(¢) = 10e7?" u(t)

= Lt —/ 11072 2dt  [x(t) = 0 for ¢t < 0]
T—o02T
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100 1 (7 A
=— Lt —|[ dt le/?™! | = 1
2 T—ooT
0

1
=50 —[T]=50
T

P=50W

Since power is finite, E = oo.
(b) x(t) = J@+n/d

|)C(t)| — |ej(2t+rr/4)| =1
1 T 1
P= Lt — dt = —2T =1
T—o0 2T 2T
—-T
P=1

since power is finite, £ = oo.

Example 1.40 Find the energy of the following signal:

xO):Stﬁ(%)

Solution The triangular signal x(¢) = tri(¢#) is shown in Fig.1.45a. By ampli-
tude multiplication and time expansion, x(¢) = Stri (%) is obtained and shown in
Fig. 1.45b. For Fig. 1.45b the following equation is written:

(a) 4 x(1) = tri(r) (b) 4 x(t) =5tri(%)

~V

AP ! f P 0 2

Fig. 1.45 Representation of triangular signals of Example 1.40
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c is obtained as 5.

¢ is obtained as 5.
Let E| be the energy for the time interval —2 < ¢t < 0 and E; energy for the time

interval 0 <t < 2.
0 5 2
El = / (Et +5) dt

-2
50

12 2 3

2 5 2
E2=/ (_§t+5> dt

0

2 /25
=/ (Zt2+25t—25t>dt
0

25 4 25 ,71°
=| =t +25t+ —t =
-2

2
=|:§i+25t—§t2:| _ 0
13 2 ],” 3
E=E1+E2=$+@
3 3
_ 100

Since energy is finite, the average power P = 0.

Example 1.41 Find the energy of the signal:

— i t—2
x(t)— II<T>

Solution

i t—2
x(t)— rl<T)

= tri(0.1¢ — 0.2)
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(a) x(t) = tri() (b) x() = tri(t—.2)  (c)

1 1

x(1) = tri(fy—.2)

»

=1 0 1 ' 528 02 12t S8 02 121t

Fig. 1.46 Representation of x(¢) = tri(l’—0 —-0.2)

Figure 1.46a shows x(¢) = tri(z). The time shifted signal x(¢) = tri(t — 0.2) is
shown in Fig. 1.46b. The time shift is 0.2 towards right. By time elongation by factor
10, x(t) = tri(ﬁ — 0.2) is obtained and is shown in Fig. 1.46c¢. For Fig. 1.46¢ the
following equations are written:

1
) = —t —8<t<?2
x(1) 10 +c
Fort =2,x(t) =1
=24
10 ¢
c=0..8
x(t) =0.1r + 0.8
1
t)y=——t 2<t<12
x(1) 10 +c <t=<
Fort=2,x(t) =1
P
= — C
10
c=1.2
x(t) =—-01t+12

Energy of the signal is given as

2 12
E:/ (0.1t+0.8)2dt+f (—=0.1¢ + 1.2)%d¢
—8 2
=E +E

where )
E; =/ (0.17 4 0.8)%dt
-8
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and

12
E2:/ (—0.17 + 1.2)%dt
2

1

~ 100 100

2 1 2
/ (t + 8)%dt = —/ (1> + 161 + 64)dt
—8 -8

1 [ 2 10
— | = +82+64r| =—
100 [3 e L 3

12 1
E, = / — (12 — 1)%dt
, 100

1 12
— (12 — 24t + 144)dt

100 J,
1 [ 20
= — | = — 12"+ 144t | = —
100 | 3 , 3
E—E g 10,10 20
I T T
20
E=2]
3

Since the energy is finite, the average power is zero.

Example 1.42 Find the energy of the following signal:

x(t) = 2rect <%>

Solution The rectangular or unit gate function is represented in Fig. 1.47a. It is
defined as

) =1 —1<t<1

=0 otherwise
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b x(f) = Zrect(—é)

4

b x(1) = rect(t) (b)
2

r

(a)

1 t

0

Fig. 1.47 Representation of rectangular function

The rectangular signal with amplitude scaling and time elongation is shown in
Fig. 1.47b. From Fig. 1.47b, the equation for energy is written as follows:

2
E= / (2)%dt =4[], = 16
2

E =161

Since the energy is finite, the average power = 0.

Example 1.43 A trapezoidal pulse x(#) is defined by

G—-1
1

x(t) =
(t+5)

(a) Determine total energy of x(z).

(b) Sketch x(2t — 3).
© Ify@) = %, determine the total energy of y(¢).
(Anna University, December 2007)

Solution
(a) To determine the total energy of x (¢).
The given trapezoid pulse x(z) is represented in Fig. 1.48a. The total energy of

the signal is determined as described below:
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(@) +x(0) (b) b x(21—=3)
1
| |
| | | |
' | ' |
' | ' |
' | ' |
l ! l !
s —a 0 4 5 1 ) 110 3 T
© £ 3= L0
___1
Pt i 15

Fig. 1.48 Example 1.53

—4 4 5
E =/ (t+5)2dt+/ (1)2dt+/ (5 —1)%dt
-5 —4 4
—4 4 5
=/ (t2+10t+25)dt+/ dt+/ (r? — 107 + 25)dt
-5 —4 4

t3 —4 4 l3 5
= [— +52 + 25:} + M + [— — 52+ 25z]
3 s 4 L3 4

4 125 125
=—%+80—100+T—125+125+8+T—125

64
+125 — 3 + 80 — 100

—1+8+1
3 3
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(b) To sketch x (2t — 3)
x(t) in Fig. 1.48a is right shifted by fy = 3 and time compressed by a factor 2.
x (2t — 3) is shown in Fig. 1.48b.

(c) To determine the total energy for y(¢) = ‘%.

x(t) =5+t —5<t<-—4
dx (1)

y@) = P =1 —5<t=<-4

x(@) =1 —4<t<4

vy =29 _y —4<t=<4
dt -

x(t)=5—1t 4<t<5

i = 0 4<r<5
dt -

The sketch of the above equations is shown in Fig. 1.48c. From this figure, the
total energy is calculated as follows:

—4 5
E:/ (1)2dz+/ (D2t =[t] s+ [, =1+1
-5 4
E=2]

1.7 System

A system is an interconnection of objects with a definite relationship with the objects
and attributes. Consider a simple R, L, C series electric circuit. The components
(objects) R, L, and C when connected together form the system. The current flow in
the series circuit and the voltages across the elements R, L, and C are the attributes. If
i is the current flowing in the circuit, the voltage across the resistor R is i R. Thus, the
object R and the attribute i have a definite relationship between them. The voltages
across any of these objects R, L, and C can be taken as the output. Thus, the system
when excited by a signal, processes and produces signals as outputs in the same
form or in a modified form. Electrical motors, communication systems, automotive
vehicles, human body, government, stock markets, etc. are examples of systems. The
block diagram representation of a system is shown in Fig. 1.49.
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SYSTEM
with
Functional relationship

Excitation Response
or Output

¥(1) or y[n]

or Input
x(1) or x[n]

Fig. 1.49 Block diagram representation of system

In Fig. 1.49 the system is excited by the output signal x(#) or x[n]. It is being
processed by the functional relationship of the system and the response is obtained as
y(t) or y[n]. The functional relationship includes differential equation or difference
equation or the system transfer function which is H (s) for CT system and H (z) for
DT system.

1.8 Linear Time Invariant Continuous (LTIC) Time System

The block diagram of a continuous-time system is shown in Fig. 1.50a. x(¢) is the
input signal which is continuous. The system with the functional relationship H (s)
produces the output y(¢) which is also continuous. The system dynamics or the
functional relationship is written in the form of differential equation connecting x (¢)
and y(t). If the Laplace transforms of x(¢) and y(¢) are X (s) and Y (s) respectively,
the system functional relationship is written as

Y(s)
X(s)

H(s) (1.44)

H (s) is called system function or system transfer function.
Consider the electric network shown in Fig. 1.50b. The following dynamic equa-
tion is written for Fig. 1.50b:

. dit)y 1 [
e() = Ri() + L~ —i—E/l(t)dt (1.45)

eo(t) = é / i(t)dt (1.46)

In the continuous-time system shown in Fig. 1.50b, e(¢) is represented by x(¢) and
eo(?) is represented by y(¢). The system dynamic equations are given in Eqs. (1.45)
and (1.46).
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()

x(1) HGs) y(©)
X(s) Y(s)

A4

v

bt " VN5 2

i(7) R 7

x(1)

e(?) (oh— eo(t) = y(1)

v b 4
O O

Fig. 1.50 a Block diagram of CT system. b R-L-C series electric circuit

1.9 Properties (Classification) of Continuous-Time System

The continuous-time system possesses the following properties and it is classified
accordingly.

Linear and non-linear systems.

Time invariant and time varying systems.

Causal and non-causal systems.

Static and dynamic systems (systems without and with memory).
Stable and unstable systems.

Invertible and non-invertible systems.

S i Sl

The above properties of LTIC time system are defined, described and illustrated with
examples below.

1.9.1 Linear and Non-linear Systems

For a linear system if an input x, (t) produces an output y; (t) and another input x; ()
when applied separately produces an output y,(¢), then when both inputs x(¢) =
[x1(2) + x2(¢)] are applied to the system simultaneously will produce an output
y() = y1(t) + y2(¢). Thus,

x1() = y1(1)
x2(t) = y2(1)
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[x1(2) + x2(0)] = [y1(2) + ¥2(2)] (1.47)

Equation (1.47) obeys the Additivity property of superposition theorem. Further, the
linear system should also satisfy the homogeneity or scaling property of superposi-
tion theorem. According to this property, if

arxi(t) = ay(t)
axa2(t) = ay»(t)

then

[a1x1 () + axx2()] = [ar1y1(t) + axy2()] (1.48)

Thus, for a continuous system to be linear, the weighted sum of several inputs
produces the weighted sum of outputs. In other words, it should satisfy the
homogeneity and additivity properties of superposition theorem. If the above
conditions are not satisfied the system is said to be non-linear.

STEP-BY-STEP PROCEDURE TO TEST LINEARITY

1. Let

yi(®) = f(xi(0)
(1) = f(x()

Find the weighted sum of the output

y3(t) = a1y (t) + axy» ()
v3(t) = ay f(x1(8)) +az f(x2(2))

2. For the linear combination of input [a;x; () + a>x>(¢)] find the output for the
weighted sum of the input.

v4(t) = flaixi(t) + axxx(1)]

y3(t) = y4(t)

the system is linear, otherwise the system is non-linear. The following examples
illustrate the method of testing the linearity of continuous-time systems.

Example 1.44 Consider the following input—output equation of a certain system.
Y = 2x)

Determine whether the system is linear or non-linear.
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Solution

y(t) = 2x(®)]
= 4x%(1)
yi(t) = 4x7 (1)
y2(t) = 4x3 (1)
v3(t) = aryi(t) + axy»(1)
= da;x3 (1) + darx3 (1)
ya(t) = 4ayx (1) + arxo ()]
= 4aix{(t) + a3x3 (1) + 2a1a2x1 (1)x2(1)]
y3(t) # ya(t)

Hence, the system is non-linear.

Example 1.45 Consider the following systems. Determine whether each of them is
linear.

(a)  y(t) = 5x(t)sin 10t
®) ¥y =3x@)+5

© y@)=r*x@t+1)

(d @) = Ex()

@ y) =x

)  y@0)= /f 10x(7)dt

o]

(@ yt)=e =0

h)  yO)=xt-7)—x(5-1)

Solution

(a) y(t) = 5x(¢) sin 10¢

yi(t) = 5x(¢) sin 10¢
y2(t) = 5x,(t) sin 10¢
y3(t) = a1y1(t) + axys ()

= 5sin 10z (a1 x1 (¢) + axx»(2))
v4(t) = 5sin 10t (a1 x1 (1) + ax2 (1))
y3(t) = ya(t)

The system is Linear.
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(b) y(t) =3x(t) +5

yi(t) = 3x(t) +5
y2(t) = 3x2(t) +5
»3(t) = a1y1(t) + axy2 (1)
= 3(arx1(t) + axx2(1)) + 5(a1 + az)
ya(t) = 3(arxi(t) + axxa(t)) +5
y3(t) # ya(t)

The system is Non-linear.

) y) =2x(t+1)

yit) =’xi (1 + 1)
() = t2x(t + 1)
v3(t) = a1y (t) +axy»(t)

= laix1(t + 1) + arx2(t + 1)]
ya(t) = Plapx (t + 1) + axxp(t + 1)]
y3(t) = y4(t)

The system is Linear.

(d) y(@®) = Eyx(t)

1

y(@) = E[x(t) + x(=1)]
1

(@) = E[xl(t) + x1(=1)]

1
»n@) = E[xz(l) + x2(=1)]
y3(t) = a1y1(t) +axy2 (1)
1
= §[a1x1(l) + axxy(t) + arx1(—t) + arxz(—1)]

1
y4(t) = E[al(xl(t) + x1(=1)) + a2 (x2(t) + x2(—1))]

1
= E[alxl(t) + asxy(t) + arxi (1) + axxz(—1)]
y3(1) = ya(t)

79
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The system is Linear.

(e) y(&) =x(?)

@) = x(t%)

y2(t) = x2(t%)

y3(t) = aryi(t) + axy»(t)
a1x1 (%) + ayxa(t%)
ya(t) = arxi(t%) + ayxs (%)
v3(t) = ya(t)

The system is Linear.
0 y@0) =10 ' x(2)dz
t
nw =10 mr
—00

ya(t) = 10/ x2(t)dt

y3() = ary1(t) + axy2 (1)

=10 |:a1/ )C1(‘L')d‘f+(12/ xg(t)dr:|

ya(t) =10 |:/ {arx(r) + azxz(f)}dfi|

oo

=10 H/ ajx|(t)drt +f azxz(f)dTH

y3(t) = ya(1)

The system is Linear.

(®) y(t) = e



1.9 Properties (Classification) of Continuous-Time System 81

n() = e

niE) =e
y3(t) = aryi1(t) + axy2(t)

— alefle([) +a2672)(2(t)
—2(ayx1()+azxx2 (1))

—2x5(t)

va(t) =e
=e

y3(t) # y4(1)

—2a1x1(t) e—Zazxz (1)

The system is Non-linear.
h) y@)=x@ -7 —x(5-1)

@) =x1t =7 —x1(5—1)
() = x2(t =7) —x2(5 — 1)
y3(t) = ary1(t) + a2 y2(¢)

=ailxit =7 —x16 =]+ alx2(t =7) — x2(5 = 1)]
ya(t) = arlx; (¢ = 7) — x1(5 — )] + az[x2(t = 7) — x2(5 — 1)]
y3(#) = ya(t)

The system is Linear.

Linearity Test for the System Described by Differential Equation

Step 1. Write down the system differential equation with responses y; (#) and y,(¢)
for the inputs x; () and x,(¢) respectively.

Step 2. Multiply the y;(¢) response equation with a; and y,(#) response equation
with a, and add them.

Step 3. Write down the differential equation for the sum of the inputs x (1) = a;x; ()
+axxa(2).

Step 4. If y(t) = a;y1(t) + a>y»(¢) obtained in Steps 2 and 3 are same, the given
differential equation is linear. Otherwise the differential equation is non-
linear.

The following examples illustrate the above method.

Example 1.46 Determine whether the following differential equations are linear or
non-linear:
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(@) % + 10y(1) = 2x(1)
(b) % + 105sin y(r) = 2x(1)
dy(1)

(c) y(t)T + 10y(r) = 2x (1)
Solution (a) The weighted sum of the response due to each input signal is
d
E[al)’l(t)] + 10a1y1 (1) = 2a1x(1)
d
Z[azyz(l)] + 10a2y,(1) = 2azx,()
Adding the above two equations, we get
d
E[al)ﬂ(t) + az2y2(t)] + 10[ar y1 (1) + a2 y2 ()] = 2[a1x1 (1) + azx2(1)]  (a)

The response of the system due to weighted sum of input is given as

d d
a yc;t(t) ta y;t(” +100aryi (1) + azya()] = 2[arx (1) + ases(0)]

d
E[al)’l(t) + ay2 ()] + 10[a; y1(t) + a2y2(1)] = 2[a1x1(t) + axx2(t)]  (b)

Equations (a) and (b) are same. Hence, the given system is linear.

The system is Linear.
(b) L0 4 10sin y(t) = 2x(¢)

% + 10sin y(1) = 2x(1)

The weighted sum of responses due to a;x(¢) and a,x;(¢) are

d :
E[alyl(t)] + 10sina; y(t) = 2a;x,(t)

d )
Z[azm(t)] + 10sinaxy»(1) = 2axx> (1)

The weighted sum of the responses is obtained by adding the above two
equations.
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d . .
77 1@1@) +a2y2(0] + 10sinay y1 (1) + 10sinazy2 (1) = 2larx1 (1) + azx2 ()] (a)

The output response due to weighted sum of inputs x () = a;x;(¢) + axx,(¢) is

d d . .
ar -1 ) +ay Eyz(t) + 10a; sin y; (#) + 10ap sin y(r) = 2[a;x1 (1) + azx2(1)]

d
E[alyl () + axy2(t) + 10[a; sin y; (¢) + az sin y2(1)] = 2[a1x1 (1) + a2x2()]
(b)

Equations (a) and (b) are not the same. Hence, it is not linear.

The system is Non-linear.

YO LD +10y(t) = 2x(t)

y(r)% +10y() = 2x(1)

The weighted responses due to inputs a;x; () and a,x,(t) are

d

alyl(t)a[alyl(t)] + 10a1y1 (t) = 2a1x:(¢)
d

az)’z(l)E[az)’z(l)] + 10ay2(t) = 2ax,(2)

The sum of the weighted response due to x(t) = a;x;(¢t) + axx»(¢) is obtained
by adding the above two equations.

d d
afyl (t)E[YI O]+ a%yz(t)a[yz(t)] + 10[a1y1 () + a2 y2(0)]1=2[a1x1 (t) + axx(1)]
(@)

The response due to weighted sum of inputs x () = a;x;(¢) + ax(t) is

d d
apyi (I)Eyl () + 10ay y1 (1) + azyz(f)ayz(t) + 10a2y7 () = 2[a;x1(t) + apx2(2)]

d d
apyi (f)a)’I )+ azyz(t)ayz(t) + 10[a1y1(t) + azy2(t)] = 2[ayx1 (1) + azxx2(1)]
(b)

Equations (a) and (b) are not equal. Hence, the system is not linear.

The system is Non-linear.
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1.9.2 Time Invariant and Time Varying Systems

A continuous-time system is said to be time invariant if the parameters of the sys-
tem do not change with time. The characteristics of such system are fixed over a
time. The input—output of a certain continuous-time system is shown in Fig. 1.51a
and b respectively. If the input is delayed by f, seconds, the characteristic of the
output response remains the same but delayed by #y seconds. This is illustrated in
Fig.1.51c and d respectively. This property is also illustrated in Fig. 1.51e and f in
block diagram form. In Fig.1.51e the output y(¢) of the system H is delayed by
to seconds to get y(tr — ty) as the delayed output. The delayed output y(t — #y) of
system H can also be obtained by delaying the input x(¢) as x (¢t — #). This is illus-
trated in Fig. 1.51f. This time delay the system commutes only if the system is time

@ ()
R
0 i
(c)
R
R "
(e
x(1) " y(0) o Delay y(t—1p)
®
x(1) Delay x(1—1p) N " y(t—1p)

Fig. 1.51 Time invariancy property
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invariant. The above property will not apply if the system is time varying which can
be easily proved. Thus, to identify the time invariant system, the steps given below
are followed:

Step 1. For the delayed input x (¢ — fy) obtain the output y(¢, ty).

Step 2. Obtain the expression for the delayed output y(z — #y) by substituting t =
(t — 1o).

Step 3. If y(z, 1) = y(¢t — 1), then the system is time invariant. Otherwise it is a
time varying system.

The following examples illustrate the method of identifying time invariancy.

Example 1.47 Check whether the following systems are time invariant or not:

(a) y(@) =1tx(t)

(b)  y(t) = cosx(r)

©  y(t)=x(t)cosx(t)
@ oy =20

) @ t+2d 1) +5y(1) = x(@)
(e Ey() Ey( () = x(

f d2t+2tdt+5t—t
() Ey() Ey() y() =x(1)

dx(t)]2

(& y(@) = [ o

Solution
(@) y(t) =tx(@)

1. For the delayed input x (¢ — #y), the output y(t, #y) is obtained as
y(t, t0) = tx(t — to)

2. The delayed output y(¢r — fy) is obtained by substituting t = ¢ — fy in the
given equation

y(t —1to) = (t — to)x(t — o)

3.y —10) # y(t, to)
4.

The system is Time Varying.

(b) y(t) =cosx(?)

1. y(t, tp) = cosx(t — ty) [Delayed input]
2. y(t —t9) = cosx(t — ty) [Delayed output]
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3. y(t —19) = y(t, 1)
4.

The system is Time Invariant.

(c) y() = x(t) cosx(¢)

1. y(t, t9) = x(t — tp) cos x (¢t — tp) [Delayed input]
2. y(t —ty) = x(t — tp) cos x(t — ty) [Delayed output]

3.yt — 1) =y, 1)
4.

The system is Time Invariant.

@ y(0) = e >0
1. The output due to delayed input is

¥t 19) = &0

2. The delayed output is obtained by putting t =t — 1,

Y(t = 1g) = e~

3. y( — 1) =y, 1)
4.

The system is Time Invariant.

(@) (O +24y®) +5y() =x(0)
The coefficients of the given differential equation are 1, 2 and 5 and they are
constants. They do not vary with time. Hence

The system is Time Invariant.

(®) j—;y(t) + Zt%y(t) +5y(t) = x(¢t)

The coefficient of % is 2¢ and it varies with respect to time. Hence

The system is Time Varying.

2
) ¥y = [Fx®]
1. For the delayed input x (# — o) the output is obtained as
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d 2
y(t, 1) = [Ex(t - to)}

2. The delayed output is obtained by putting r = t — t; in the given equation

J 2
y(t —1t) = [Ex(t - to)]

3. y(t —1t9) = y(t, to)
4,

The system is Time Invariant.

1.9.3 Static and Dynamic Systems (Memoryless and System
with Memory)

Consider the R-C series electrical circuit shown in Fig. 1.52a. The charge in the
capacitor is determined by the current that has flown through it. By this mecha-
nism the capacitor remembers about something about its past. Similarly consider the
mechanical system in Fig. 1.52b. The stored energy in the mechanical spring depends
on the past history of the applied force. The present response of these systems which
have energy storing elements depends not only on the present excitation but also
on the past excitation which are remembered by these elements. Such systems are
called dynamic systems or systems with memory.

Consider the electrical network shown in Fig. 1.52a in which only a resistor is
connected. The current flowing through the resistor depends on the present value
of the excitation. The response does not depend on the excitation at any other time.

(b)

l l lX(t) l y(®)

Fig. 1.52 Dynamic systems
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Such systems which have no energy storing elements are called static systems or
systems without memory.

A dynamic system is, therefore, defined as a system in which the output signal
at any specified time depends on the values of the input signals at the specific
time at other time also.

A static system is defined as a system in which the output signal at any
specified time depends on the present value of the input signal alone.

The following examples illustrate the method of identifying static and dynamic
systems.

Example 1.48 Determine whether the following systems are static or dynamic:

(a) yt)=x@t+1)+5

b))  y@®) =x@?

(©) y(t) = x(t) sin 2t

(d) yt)=xt—-3)+x3—1)

© oy =x (%)

®) y() =/ x(r)dt

d
() % +5y(t) = 2x(1)
(h) y() =2x()+3

i) y)=eH0®

Solution

@ y@)=x@t+1+5
y(0) =x(1)+5

The system response depends on the future input x (¢ 4+ 1). Hence

The system is Dynamic.

(b) y(t) = x(t?)
Fortr =1,
y(1) =x(1)

Fort =2,
y(1) = x(4)
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The response depends on the future input. Hence
The system is Dynamic.
(c) y(t) =x(t)sin2t
The system response depends on the present value of the input x(¢) and due to
sin 2¢, only its magnitude varies from —1 to +1. Hence

The system is Static.

@ y@)=xt-3)+x3-1)

Fort =0,

y(0) = x(=3) +x(3)
Fort =3,

y(3) = x(0) + x(0)
Fort = -3,

y(=3) = x(=6) + x(6)
The system response depends on past and future values of input. Hence
The system is Dynamic.
) y&)=x(%)

y(0) = x(0)

y(1) =x <l>
4
y=1) =x (—l>
4

The system response depends on present, future, and past values of input. Hence

The system is Dynamic.

® y@) = [’ x(v)dt

By integrating the input, the output is retained and stored in a memory from time
t to the infinite past. Hence

The system is Dynamic.
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d
(&) G +5y(0) =2x(0)

The input—output is described by a first-order differential equation. It requires an
energy storing element which remembers the past history of the input applied.
Hence

The system is Dynamic.

(h) y(t) =2x(t)+3
The output always depends on the present input. Hence

The system is Static.

() y() = 0
The output always depends on the present input only. Hence

The system is Static.

1.9.4 Causal and Non-causal Systems

Consider a continuous-time system excited by the signal x (¢). If the response (out-
put) depends on the present and past values of the input x (), the system is said
to be causal. In a causal signal, the output cannot start before the input is applied.
Hence, the causal system is also called non-anticipative system. On the other hand,
if the system acts on the knowledge of future input, before it is being applied such
systems are called anticipative or non-causal systems. Real-time systems are all
causal systems.
Consider the system described by the following input—output equation

y) =x(t—=3)+x(t+3) (1.49)

For the input shown in Fig. 1.53a, the output y(¢) is sketched and shown in Fig. 1.53b.
The output y(¢) at time ¢ is given by the sum of the input values at (f — 3) which
is 3 seconds before and at (r + 3) which is 3 seconds after. This is illustrated in
Fig. 1.53b. Here the system responds to the future input x (# + 3) and it is non-causal
system and cannot be realizable in real time. The following examples illustrate the
method of identifying causal and non-causal systems.

Example 1.49 Consider the continuous-time systems described below by their
input—output equations. Identify whether they are causal or non-causal.
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(a)
A x(t) (b) y(t)
1 Future input
ix(t+3) | Lx(t_?’)
Present [ [~ "~~~ T-~———- Past input
input
0 2 t N 3 5

Fig. 1.53 A non-causal system

@ vy ==x (g)

(b) y() = x(t) sin(l 4+ ¢)
© vy =x)

@  y®)=x1)

e YO =xt+1
oy =x@-1

) () = d ()
(g y0) = —x

t+4
(h) y@) = / x(7)dt

—4
Solution
@ y@&)=x(%)

y(0) = x(0)
y(=4) =x(=1)

The output depends on future value of input which is evident from y(—4) =
x(—1). Hence

The system is Non-causal.
(b) y(@®) =x(®)sin(1+1¢)

y(0) = x(0) sin(1)
y(1) = x(1) sin(2)
y(=1) = x(=1)sin(0)

Thus, at all time, the output depends on the present input only. Hence
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The system is Causal.

(©) y(@&) =x(t?)

y(0) = x(0)
y(1) = x(1)
y(2) =x(4)

The system output depends on the present input as seen from y(0) = x(0) and
y(1) = x(1). The system output y(¢) att = 2, which is y(2) = x(4) depends on
the future input x (). Hence

The system is Non-causal.

@ y(t) =x(1)
Atr=0.64

¥(0.64) = x(0.8)
The output depends on the future input. Hence
The system is Non-causal.

© y®)=xt+1
Fort =0,

y(0) =x(D)
The system output depends on the future input. Hence

The system is Non-causal.

® y@&)=xt-1

y(0) = x(=1)
y(1) = x(0)
y(@2) =x(1)

The output depends on the past values of the input. Hence

The system is Causal.
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@) y() = Lx()

d
0)=—x(0
y(0) p tx( )
(1) d (1)
= —x
Y dt
The output depends on the present input. Hence

The system is Causal.

() y@) = [ x(x)de
t+4
v = [xo]”
=x({t+4)—x(t—4)

Fort =0,
y(0) =x(4) — x(—4)
The output y(0) depends on future input x(4). Hence

The system is Non-causal.

1.9.5 Stable and Unstable Systems

Consider a cone which is resting on its base as shown in Fig. 1.54a. The cone at this
position when given a small disturbance will stay in the same position with a small
displacement which is the new equilibrium state. Now this position of the cone is
said to be in stable state. On the other hand, consider the cone resting on its tip. When
the cone is given a small displacement (say an impulse) the contact of the tip with
the resting surface is lost and it rolls over the surface. The output position (resting
on the tip) is never reached. This state of the cone is said to be unstable.

Consider a linear time invariant continuous-time system which is excited by an
impulse as shown in block diagram of Fig. 1.55a. The output response of the system
is shown in Fig. 1.55b and c. In Fig. 1.55b the area under the impulse response curve
is finite. It can be mathematically proved that such systems whose area of the impulse
response curve is finite are said to be stable. On the other hand, consider Fig. 1.55c.
The area under this impulse curve is infinite. Systems which possess such an impulse
curve are said to be unstable.
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(a) (b)

Fig. 1.54 Stable and unstable systems

(@)
x(1)
8(1) x(1) SYSTEM y(®)
0 t
(b) ()
y(0) 4 y(®)
0 " 0 %

Fig. 1.55 Impulse response of stable and unstable systems

A linear time invariant continuous-time system is said to be Bounded Input,
Bounded Output (BIBO) stable, if for any bounded input, it produces bounded
output. This also implies that for BIBO stability, the area under the impulse
response (output) curve should be finite.

The BIBO stability concept is mathematically expressed as follows. Let the input—
output of a linear time invariant system be expressed as

y(t) = f[x(¢t)] forall ¢ (1.50)
If |x(#)| is bounded, |y(¢)| should also be bounded for the system to be stable.

ly(t)] <M, <oo forall? (1.51)
[x(t)] < My <oo forallt (1.52)
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where |M,| and |M,| represent positive values. It can be easily established that the
necessary and sufficient condition for the LTIC time system to be stable is

y(@) = foo lx(#)|dt < o0 (1.53)

oo

The following examples illustrate the method of finding the stability of LTIC time
system.

Example 1.50 Determine whether the systems described by the following equations
are BIBO stable.

(a) y(@) =tx()

(b)  y@)=e"

(©) y(t) = x(t) sint

@ y@) =teu()

@  y0)=e"ur-3)
(f) y(t) = e sin 21 u(r)

Solution

(@) y@) =tx(@)
If x(¢) is bounded, y(¢) varies with respect to time and becomes unbounded.
Hence

The system is BIBO Unstable.

(b) y(t) = e~
Here

2t

x(t) =e” 0<t<o

=¥ —oc0o<t<0

y(1) =/ x(1)
—00
0 oo
=/ etht—i—/ e 2dt
—00 0
0
_ [162,} B [1e_ztr
2 127 ],
1

The output is bounded and the system is stable.
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The system is BIBO Stable.

(¢) y(#) = x(t)sint
It x () is bounded, y(¢) is also bounded because sin ¢ will take a maximum value
of +1 and —1. Hence, y(¢) is bounded.

The system is BIBO Stable.

(@) y() =te*u(t)
Here the output varies linearly as ¢ and also exponentially increasing due to e*.
Hence, |y(¢)| = oo and the system is BIBO unstable. Mathematically this can

be proved as follows. For a causal system, |y(¢)| can be written as

o0
()] = / tedt
0

The following integration formula is used to evaluate the above integral:

/Ooo tedt = %[e‘”{at _ 1}]:o
[ezf{zz _ 1}]:o

[e®{200 — 1} + 1]

ly(@®] =

Bl— A=

3

The system is BIBO Unstable.

@ y(@®) = e ut -3)
The output response is exponentially increasing as ¢ increases with a time delay of
t = 3. Hence, the system is unstable. This is mathematically proved as follows:

@)l = / () dt

oo

o0
:/ et dt
3
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The system is BIBO Unstable.
) y@t) = e *sin2t u(t)
The output response is a function of exponential decay and a sinusoid. The
sinusoid will have a maximum value of +1 and —1. As ¢ increases, y(z) will

exponentially decrease and the output is bounded. The result can be mathemat-
ically obtained as follows. For a causal signal u(¢)

o0
ly(1)| = / e 2 sin 2t dt
0

Using the formula,

0o e“{asinbt — bcosat}|>
/ e sinbt dt = [ o
0 612 + b2
we get
ly(@®)] 2 [ ~20{sin 2t 2;}]00
= e Sin — COS
Y 2+ 0
1
= - <0
4

The system is BIBO Stable.

1.9.6 Invertibility and Inverse System

Consider the system H which is excited with x(¢). The system produces the output
y(t). This signal is applied as the input to the inverse system H~! which produces the
output x (7). The block diagram representation of the system and the inverse system
is shown in Fig. 1.56a. From Fig. 1.56a, the inverse system is defined as follows.
A system is said to be invertible if the distinct inputs give distinct output.
Consider the system shown in Fig. 1.56b. The input—output relationship of system
1 is described as

d ) =x(
T30 = x()

Consider system 2, the input—output of this system is described by

d
Y0 =x®)
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(a)
x(®) System H Y g) Inverse system w(t) = x(1)
H1
(b)
X(s) 1 Y(s) W(s) = X(s)
K § "
System 1 System 2

Fig. 1.56 Representation of inverse system

When these two systems are cascaded, the output response of the interconnected
system is same as the excitation of the system itself. The system which makes
this possible is called inverse system. Here unique excitation produces unique
response.

Example 1.51 Consider the systems described by the equations given below:
(a) The impulse A(t) is given as

h(t) = 8(t) — 3e Y u(t) + de " u(r)

(b) ,
dy(t) x| dx()
dr +5y(0) = dr? 2 dt

— 8x(¢)

Determine the inverse systems for the above. Are these systems both causal and
stable?

Solution

@ k() =68@1) —3eu(t) +de 4 u(t)
Taking Laplace transform on both sides, we get

3 4 (2485 +12)

o=l S = 613619

The inverse of the above system is

I (s+3)(s+4)

Hl(s) = =
©) = Fe = Prss 2

+3)s+4

H ' (s) =
(s +2)(s +6)



1.9 Properties (Classification) of Continuous-Time System 99

The poles of H —lareats = —2and s = —6. Hence, the inverse systems is stable.
The region of convergence (ROC) is to the right of rightmost pole s = —2. Hence,
it is causal.

The inverse system is both Causal and Stable.

2
(b) P +5y(0) = T + 2950 — 8x (1)

Taking Laplace transform on both sides of the above equation, we get

(s +35)Y(s) = (s> + 25 —8)X(s)
YY) (5°4+25—8)  (s—2(s+4)

H(s) = e = =
() (s +5) (s+5)

The inverse system is

1 (s+5)
H(s) (s —2)(s+4)

H ' (s) =

(s +5)

-1 .
B =06 +»

The poles of the inverse systems are at s = 2 and s = —4. The pole ats = 2 will
make the system unstable if the system is causal. For the system to be stable the
ROC should form a strip between s = 2 and s = —4 in which case it includes
the jw axis. In this case, the system has to be non-causal.

The system is not both Causal and Stable.

Example 1.52 Determine whether the given system is memoryless, time invariant,
linear, causal, and stable. Justify your answers.

y(t) = (cos3t) x(¢)
(Anna University, December 2006)

Solution

y(0) = x(0)
y(1) = cos3x(1)
y(—=1) =cos lx(—1)
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1. The output depends only on the present input. Hence, the system is memoryless
(static). Since the output does not depend on the future input, it is causal.
2. The output due to the delayed input is
y(t, to) = cos 3t x(t — tp)

The delayed output is obtained by substituting t = (# — o) in the given equation

y(t — ty) = cos3(t — ty)x(t — tp)
y(& — 1) # y(t, o)

The system is therefore time varying.
3. To test the linearity of the system, consider the given equation

y(t) = (cos3t)x(t)
yi1(1) = (cos 31)x (1)
y2(1) = (cos 31)x,(7)
y3(t) = a1y1(f) + azy2(¢) = cos 3t[ayx; (t) + axxa()]

The output due to the weighted sum of input is
ya(t) = (cos3t)[arx (1) + axa(1)]
y3(1) = ya(?)

The system is Linear.

|y(£)] = cos 3t|x(1)]

If x(¢) is bounded |y(¢)| is also bounded. Hence, the system is stable.

The system is
(a) Static, (b) Time Variant, (¢) Linear, (d) Causal, and (e) Stable.
Example 1.53 Verify whether the system given by
() = x(t?)

is causal, instantaneous, linear, and shift invariant.

(Anna University, May 2006)
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Solution

1.

() = x ()
yQ2) = x(4)
The output depends on the future input. Hence, the system is not causal.
2. Since the output depends on the present and future inputs, it requires memory. It

is, therefore, not instantaneous.
3. The response due to the delayed input is

Yt 10) = x[(1* — 19)]
The delayed output is obtained by putting t =t — ¢, in the given equation

y(t —to) = x[(t — 19)*]
y(t, to) # y(t —ty)

Hence, the system is shift variant.

() = x(1)
yi(t) = x(t%)
»2(t) = x2(t%)
y3(t) = ary1(t) + axy2(¢)
= a1x1(t*) + arxa (1)
y4(t) = flaixi1(t) + axxa(1)]
= ax; (1) + axx2 (1)

y3(1) = y4(t)

The system is linear.

The system is
(a) Non-causal, (b) Not Instantaneous, (c) Shift Variant, and (d) Linear.

Example 1.54 Determine whether the system described by the following equation
is static, linear, time variant, and causal.

y(t) = Ey[x(1)]
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Solution

L. y(®) = Ey[x(#)]

y() = Ey[x(#)]
1
= E[x(t) +x(=1)]

1
y(=h = Zlx(=D+xD)]

The output depends on the present value of x(—1) and also the future value of
x(1). Hence, the system is non-causal. Since x (1) requires memory, the system
is dynamic.

y(t) = %[X(t) +x(=0)]
The output due to the delayed input is
y(t, 1) = %[x(t — o) + x(—t —1o)]
The delayed output is obtained by putting t =t — ¢

1
y(t — 1) = E[x(t — fg) + x(—=t + )]
y(t, fo) # y(t —1p)

Hence, the system is time variant.

3.
YO = 5160 + x(-0)]
N = 300 +xi (0]
120 = 3000 + (D)

y3(1) = a1y () + a2y (1)

= %[alxl(t) + arxi(=1) + axxz (1) + axxa(—1)]
ya(t) = flaix1(t) + azx2(1)]

= Slara (0 + 510} + @l + x0)]
y3(1) = ya()

The system is linear.
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The system is
(a) Dynamic, (b) Non-causal, (c) Time Variant, and (d) Linear.

Example 1.55 Determine whether the following system is static, time invariant,

linear, causal, and stable.

d
3% 50 y(0) = x(1)

Solution

1. The system is described by differential equation. Hence, it is dynamic.

2. In the given differential equation, the coefficient of y(¢) is 5t which is a function
of time 7. Hence, the system is time varying.

3. The differential equations of the input a;x; and a,x, are written as follows:

d

35[111)’10)] +Stay(t) = arx (1)
d

SE[‘Q”O)] + Staxyx(t) = arx»(t)

Adding the above two equations, we get

3%[611)’10) + a2y2(1)] + Stlaryi (1) + azy2(1)] = arx1 (1) + axx2 (1)
3%%(0 + 5t y3(t) = arx1(t) + axx2(t)
where
y3(1) = aryi(t) + axy> (1)
The differential equation for the weighted sum of input is written as
3%[01)’10) + axy2 ()] + Stlaryi (1) + axy2(1)] = a1x1 () + axx (1)

d

3
dt

va(t) + 5t ya(t) = a1x1(t) + axx» (1)
where

va(t) = a1y1(t) + axy»(t)
y3(t) = ya(t)

Hence, the system is linear.
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4. From the given differential equation it is obvious that y(#) depends on the present
input only. Hence, the system is causal.
The system is described by first-order differential equation with varying coef-
ficient. As long as x(¢) is bounded, y(¢) is also bounded. If x(¢) is an impulse,
y(¢) exponentially decays and the area under the impulse response curve becomes
finite. Hence, the system is stable.

The system is
(a) Dynamic, (b) Time Varying, (c) Linear, (d) Causal, and (e) Stable.

Example 1.56 Check whether the system having the input—output relation
t
y() = / x(t)dt
—00
is linear and time invariant.
(Anna University, April 2004)

Solution

Ly =[f'_x()dr

al)’L(l)=/ ayxi(t)dr

o0

arya(t) = / arxy(D)de

(o]

The weighted sum of the output is

y3(t) = ary1(t) + axy2(¢)
/ axi(t)dt +(lz/ arxr(t)dt

oo —00

The output due to the weighted sum of input is

ya(t) = / [a1x1(7) + axxp(7)]dT
y3(t) = ya(t)

The system is linear.
2. The output due to the input is

y(t, to) =/ x(t —tp)dt

o0
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The delayed output due to the input is

t
Y& —1o) = / x(t — ty)dr
—00
y(t, 10) = y(t — o)
The system is time invariant.
The system is both
(a) Linear and (b) Time Invariant.
Example 1.57 A certain is described by the following input—output equation
y(t) =x@t + 1) +x(?)
Determine whether the system is static, causal, time invariant, linear, and stable.
Solution
L y@t) =x(t+1) + x>
y(0) =x(1) +x(0)

The output depends on the present input x(0) and also the future input x(1). To
store the future input it requires memory, and hence it is dynamic system. Since
the output depends on future input it is non-causal.

2. If the input is delayed by #, the output is

Y(t,10) = x(t =19 + 1) +x(1* — 10)
The delayed output due to the input is

y(t —to) = x(t —to+ 1) + x(t — 1))*
y(t, ) #y(t —1t)

The system is time variant.
3. The weighted sum of the output due to input is

ary(t) = ay[x1(t + 1) 4 x;(t%)]
@y (1) = axx(t + 1) + x2(t7)]
y3(t) = ary1(t) + axy»(t)
= ailx1(t + 1) + x1(t)] + ax[x2(t + 1) + x2(£7)]
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The output due to the weighted sum of input is

ya(t) = ar[xi(t + 1) + x1 ()] + aslxa(t + 1) + x2(62)]
() = ya(t)

The system is linear.
4. If the system, input x () is bounded, then the output y(¢) is also bounded. Hence,
the system is stable.

The system is

(a) Dynamic, (b) Non-causal, (c) Time Variant, (d) Linear, and (e) Stable.
Example 1.58 The input—output relationship of a certain system is given by the
following equation:

y®) =x(@t -5 —-x2~-1)

Determine whether the above system is linear and causal.

Solution
Ly®)=x(t—-5—-x2-1)

y(it)=x(t—=7)—x2—1)
The weighted sum of the output due to the input is given as

y3(t) = ary1(t) + axy2(¢)
aryi(t) = arlx1(t =7) —x1(2 = 1)]
a2 (t) = ar[x2(t = 7) —x2(2 — 1)]
y3@) = ailxi(t =7) —x12 — )]+ azlx2(t —7) — x2(2 — 1)]

The output due to the weighted sum of input is

va@) = ai[x1(t =7) —x12 =]+ az[x2(t = 7) — x2(2 — 1)]
y3() = y4(1)

The system is linear.

y@) =x(t =7 —x@2—1)
y(0) = x(=7) —x(2)

The output depends on the past input x(—7) and also depends on the future input
x(2). Hence, it is non-causal.
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The system is

(a) Linear and (b) Non-causal.

1.10 Modeling of Mechanical Systems

Mechanical systems are of two kinds. They are

1. Translational system.
2. Rotational system.

In translational system we have three passive components connected and they are
mass, spring, and dash-pot. Lever arrangement is connected to change the power
level. Force is the input given to the system and linear displacement or velocity
is taken as the output. Mass and spring are energy storage elements and dash-pot
dissipates energy. The two energy storage elements are analogous to inductor and
capacitor in electrical network. In rotational mechanical system, we have three pas-
sive components, namely, inertia, spring, and rotational dash-pot. Torque is the input
given to such systems and angular velocity or angular acceleration is taken as the
output. Gear arrangement is used to change the power level. We give below the
notations used to identify the mechanical systems and the variables.

Mechanical Translational System

(a) M = Mass, (kg)

(b) B = Viscous friction coefficient of dash-pot, (N/m/s.)
(c) K = Spring stiffness constant, (N/m)

(d) f(r) = Applied force, (N)

(e) x(¢#) = Linear displacement, (m)

® v(t) = % = Linear velocity, (m/s)

(g) a= % = Linear acceleration, (m/s?)

Mechanical Rotational System

(a) J = Moment of inertia, (kg-mz)

(b) B = Rotational friction coefficient of dash-pot, (N-m/(rad/s.))
(c) K = Spring stiffness constant, (N-m/rad.)

(d) T(r) = Applied force, (N-m)

(e) 6(t) = Angular displacement, (rad.)

®) w() = % = Angular velocity, (rad/s.)

(2) % = Angular acceleration, (rad/s?)
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1.10.1 Dynamic Equations of Mechanical Translational
System

In mechanical translational system, mass M, spring K, and dash-pot B are the three
elements connected. Mass stores kinetic energy, spring stores potential energy, and
the dash-pot dissipates energy and provides damping to the system. To write the
dynamic equation of mechanical system, the free body diagram is made use of. In
the free body diagram, various forces acting on a particular element are represented.
The sum of the forces acting in one direction is equated to the sum of the forces
acting in the opposite direction. The free body diagram of all the elements is written,
and then the simultaneous equations so obtained are solved to get the input/output
relationship. We give below the free body diagram of mass M, spring K, and
dash-pot B.

Mass M
The mechanical system consisting of mass M is shown in Fig. 1.57a. The applied

force f(t) acts towards right. The displacement x (¢) is in the direction of the applied
d*x(1)

force. The opposing force developed by mass M is proportional to acceleration

dr?
and the proportionality constant is M and hence the opposing force M ";;;2’) acts in

the direction opposite to the direction of the applied force f(¢). This is shown in
Fig.1.57b.

From Fig. 1.57b, equating the sum of the forces acting towards the right to the
sum of the forces acting towards the left, we get

d*x (1)
dt?

fo =M

Spring K,

The spring K connected to a reference frame is shown in Fig. 1.58a and its free
body diagram is shown in Fig. 1.58b. The opposing force developed by the spring is
proportional to the displacement x(¢) and the proportionality constant is K. It acts
in the direction opposite to the applied force. Equating the right-hand direction force
to the left-hand direction force, we get the following equation:

f(t) = Kx(1)

Dash-pot B

The dash-pot B connected to the reference frame is shown in Fig. 1.59a and the
free body diagram is shown in Fig. 1.59b. The opposing force developed by the dash-
pot is proportional to the velocity % and the proportionality constant is B. From
Fig. 1.59b the following equation is written:

dx(t)
dt

f@) =8
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(@) |_> x(f) (b)

2
d=x(1) M

M ) M —>f(0)
dr
QO
T—Reference frame
Fig. 1.57 Mechanical system with mass M
@ > xt  ®)
K
f(t) K x () «——000—>f(t)
K

Fig. 1.58 Free body diagram of a spring
(a) > xt (b)
B ® B

+ﬂ0 R )

Fig. 1.59 Free body diagram of a dash-pot

While drawing the free body diagram, the following points are to be observed:

1. Eachmass is to be given an independent displacement x (¢) irrespective of whether
one end of it is connected to the reference frame or to the end of any other element.
Thus, if there are four masses in a particular mechanical system, the displacement
of these masses should be x;(¢), x»(¢), x3(¢), and x4(t).

2. In the case of the spring and dash-pot, it is necessary to identify the variables
with which the two ends of the spring or the dash-pot move. If one end of the
spring (say) is connected to the mass M, whose displacement is x;(¢), then that
end of the spring moves with a displacement x; (z). The other end of the spring,
if it is connected to the reference frame, its displacement is zero. On the other
hand, if it is not connected to the reference frame, then it is necessary to give a
new displacement say x; (¢) for that end. Now the opposing force generated by the
spring is proportional to the difference in displacement with the proportionality
constant K . The same is true for the dash-pot also. This is illustrated in Fig. 1.60a.

In Fig. 1.60a one end of the spring K is connected to the mass M. This end moves
with the displacement x (¢). Its free body diagram is also shown with various forces
acting. Now consider the spring whose one end is connected to the mass M which
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(a)
> x)
d? x(r)
M —f) dr? M f)
K K x(f) «—
[OHO)
(b)
QEN() |—> x,()
! Md%x(0)
j}y@ﬁp_ M dr M
- K U e pa—
[OHO)
dt
oA

K (xy—x)) «—

Fig. 1.60 a Mechanical system component spring connected to the reference frame; b Spring not
connected to the reference frame

moves with a displacement of x;(¢). The other end of the spring K is connected to
the dash-pot B. This end is neither connected to any mass nor to the reference frame.
This end is identified as point A. A new variable x;(¢) is given for the end A. When
we write the free body diagram for the mass M, the opposing force due to mass M
is M %. The opposing force generated by the spring is proportional to the final
displacement minus initial displacement. Final displacement is the displacement of
the point under consideration which is x;(¢) here. The initial displacement is the
displacement of the other end of the spring which is denoted as x,(¢).

Now at point A, the opposing forces due to the spring and dash-pot act to the left.
At point A, the final displacement is x,(¢). Therefore, the initial displacement for the
spring now is x; (¢). For the dash-pot B, the final velocity is ‘%. Since its other end
is connected to the reference frame, the initial velocity is zero. The opposing forces
acting at point A are shown in the free body diagram. For the system represented in
Fig. 1.60b following equation is written:

d*x(t)
dt?

M + Kx(t) = f(t)

For the system represented in Fig. 1.60b the following equation is written:
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a
@ > x,0) > 50
St) —
M, _I|7 M,
K, 3 K,
P
B, B,
(b)
d2 x,(1) d? x,(1)
Mszl L f(0) M, T
Kix(() «— M, B j*t(xz_xl)ﬁ M, |¢+—K,x,
d x,(1) d _ dx
B Tlt) ] B3 (x—x) B, th «—

Fig. 1.61 a Mechanical system for Example 1.59. b Free body diagram for Example 1.59

d2

M0 4 K - = £
d2

B ;Ctzz(l) + K@ —x1)=0

By taking Laplace transform, one can obtain the transfer function model of the above
two mechanical systems. The rotational mechanical system model is obtained exactly
by similar approach. The following examples illustrate the method of obtaining
transfer function model of mechanical system.

Example 1.59 For the mechanical system shown in Fig.1.61 obtain the transfer
function %(s).

Solution

1. The displacements of the masses M| and M, are identified as x;(t) and x; ().

2. The two ends of the elements K|, K,, By, B,, and Bj are either connected to
the masses or to the reference frame. This enables us for complete description of
the system.

3. The input variable is f(¢) and the output variable is x(z). By solving the simul-
taneous equation, the third variable x, (¢) has to be eliminated. By taking Laplace
transform, the transfer function % (s) is obtained.

4. From free body diagram, the following equations are obtained:

dle(l) dx (1) d
B By —(x; — Kixi(t) = f(¢
g2 B B (i —x)+ K () f@)

1
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Taking Laplace transform on both sides v we get

[Mys® + (Bi + B3)s + K11X1(s) — B3sXa(s) = F(s)

20 | g de® g d ) + Kaxa(t) = 0
2 dr2 2 dt 3dt X2 — X1 2X2 =

Taking Laplace transform on both sides, we get

[Mys? + (By + B3)s + K21X2(s) = B3sX(s)
B3s X (s)

X =
28 = o T (Bs + Boys + Kol

Substituting for X, (s), we obtain

B32S2X1 (S)

Mis® 4+ (B, + B3)s + K{1X,(s) —
(M, (B1 + B3) 11X1(s) Vo’ = (Bt Bo)s 7 Ko

= F(s)

X1(s) 2
—— =[Mjs" + (B2 + B3)s + K]
F(s)
[MiM>s* + (Ma(By + B3) + Mi(B, + B3))s’
+ (MyK; + B1By + BiBs + B2By + +M; K»)s?

+ (B> + B3)K1 + (B + B3)K»)s + K1 K>

Example 1.60 Consider the mechanical system shown in Fig.1.62a. Determine
F6)
= (5).

Solution Consider the free body diagram shown in Fig. 1.62b. The following equa-
tions are written:

d’x;(t)

el s
dr?

d
+ BE(XI —x2) + Kixp = f(1)
Taking Laplace transform on both sides, we get

[M1s2 + Bs + K{1X1(s) — BsX,(s) = F(s)
dZXZ(l)
dt?

d
M, +BE(XQ—X1)+K2)C2:O
(Mas*> + Bs + K»)Xa2(s) = BsX;(s)
Substituting for X (s), we get

(Mys* + Bs + K3) B
Bs

[(M152 + Bs + K;) Bsi| X,(s) = F(s)
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Fig. 1.62 a Mechanical system for Example 1.60. b Free body diagram for Example 1.60

X 4 3
F(S) =Bs [ [M\M>s" + (M + M>)Bs

+ (M K> + M>K\)s*> + (K| + K»)Bs + K1 K>]

Example 1.61 For the electromechanical system shown in Fig.1.63a determine

%(s). The solenoid parameters are

— Assume back emf effect is negligible.
— Force constant K; N/amp.

— Coil inductance L Henry.

— Coil resistance R ohms.
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(@) x(t) <—|

x,(1) +—

I
M m é
K A

B

b
®) Bdx @
d
K i(t) «— M Ae
— K (x—x)

—> K(x;—x)

Fig. 1.63 a Electromechanical system for Example 1.61. b Free body diagram for Example 1.61

Solution The free body diagram for the given mechanical system is shown in
Fig. 1.63b and the following equations are written from there.

E Ldi + Ri
= —_— l
dt

Taking Laplace transform on both sides, we get
E(@s) = (R+Ls)I(s)

E(s)
I(5) = ———~—
(R + Ls)

The electromechanical force generated by the solenoid is Ki(¢). Thus
2

) d“x
Ki(t) =Mﬁ+K(x—XI)

K I(s) = (Ms*> + K)X(s) — KX;(s)

At point A, the following equation is written:
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T(1)
ﬂ* i 00 b
K
® 54200 a0 &b,
a2 K(0,-6)  K(0,70) di dt
RS L. P
T(0)

Fig. 1.64 a Mechanical Rotational System. b Free body diagram for Example 1.62

d
BE(XI) +K(x;—x)=0
(Bs+ K)Xi(s) = KX (s)

Substituting for X (s) and I (s), we get

KEO) s 4 k)X () — X(s)
(R+1Ls) 0 YT Bs+ kY
X(s) K (Bs + K)

E(s)  s(R+ Ls)(MBs?>+ MKs + BK)

Example 1.62 For the mechanical rotational system shown in Fig. 1.64a derive the
T.E £(s).
T

Solution The free body diagram for the rotational system is drawn exactly in similar
way as was done for translational system. Here each inertia is to be identified with
an angular displacement. From the free body diagram the following equations are
written:

Al + KO —6) =T(1)
"0 1—02) =

Taking Laplace transform on both sides, we get

(Jis> 4+ K)Oi(s) — KOx(s) = T (s)

Jd292+K(9 9)+Bd92—0
2dr 2 dr
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Taking Laplace transform on both sides, we get

(Jos% + Bs + K)6x(s) = K6, (s)
Substituting for 6, (s), we get

(/252 + Bs + K)

|:(J152+K) X

— K] 0,(s) = T(s)

Re-arranging the terms and simplifying, we get

K
S(J]J253 + J]BS2 + K(J; + J»)s + BK)

6'%(s) =

1.11 Electrical Analogue

An electric circuit which is analogous to a system from another discipline is called
electric circuit analogs. Thus, the mechanical systems discussed above can be con-
veniently converted into its electric circuit equivalent and different variables in the
mechanical system can be analyzed in terms of electric circuit variables. Analogs
can be obtained by comparing the equations describing the mechanical system with
those describing the electric circuit. When the equations of motion of mechanical
system are compared with the mesh equations of electric circuit, the analogy is called
force—voltage analogy or series analog. Similarly when the equations of motion of
mechanical system are compared with the nodal equations of the electric circuit,
the analogy is called force—current (torque—current for rotational system) or parallel
analog.

1.11.1 Force-Voltage Analogy (F-V analogy)

Consider the mechanical system shown in Fig. 1.65a. For Fig. 1.65a, the following
equation is written:

dv(t)
dt

M

—i—Bv(t)—i—K/v(t)dt = f() (1.54)

where v(t) = % = velocity of mass M.

Now consider the electric circuit shown in Fig. 1.65b. For this the following equa-
tion is written:
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(a)

(b)

B v

M )
0
K
QO
77 a4 /

Fig. 1.65 Force—voltage analogy of mechanical system

PO, U [iiovar = 1.55
- z(t)+E/l()t—e(t) (1.55)

Equations (1.54) and (1.55) are identical and therefore the following analog is
derived: Using the above table, the steps given below are followed to obtain the

Mechanical system Electric circuit (Series analog)

1. Applied force, f(t) Voltage source e(?)

2. Velocity v(t) Mesh current i (¢)

3. Mass M Inductance L

4. Dash-pot B Resistance R

5. Spring K Reciprocal of capacitance C

force—voltage analogous electric circuit (loop or series circuit):

1.

For the given mechanical system, each mass is identified with its velocity.
This corresponds to a single current flowing through the inductor. For exam-
ple, if there are five masses in a mechanical system, they move with velocity
v1(2), v2(t), v3(t), v4(2), and vs(¢). Correspondingly, in the electric circuit, there
will be five inductances and single current i;(¢), i>(t), i3(¢), i4(¢), and is(z) will
flow through these inductances.

Identify the source voltages which are equivalent to applied forces.
Corresponding to velocity differences applied across the mechanical elements,
current differences will flow through the corresponding electrical components
which are identified as per the table given above.

Thus, by inspection of mechanical system, its electrical analog is drawn.

Just to verify whether the analog circuit drawn is correct, write down the equation
describing the motion of the given mechanical system. Also write down the mesh
equation of the electric circuit drawn. See both are identical.
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1.11.2 Force-Current Analogy (F-I Analogy)

Consider the electric circuit with the current source i (¢), inductance L, resistance R,
and capacitance C connected to the node which is at a potential e(¢). For Fig. 1.66
the following equation is written:

i1 +iy+i3=i(t)
%/e(r)dt LD L o™ (1.56)

R dt

Equations (1.54) and (1.56) are identical and therefore the following analogy is
derived.

Mechanical system Electric circuit (Parallel analog)
1. Applied force f(¢) Source currenti(t)

2. Velocity v(t) Nodal voltage e(t)

3. Mass M Capacitance C

4. Dash-pot B Reciprocal of resistance R
5. Spring K Reciprocal of inductance L

Using the above table, the following steps are followed to obtain the force—current
analogous electric circuit (nodal or parallel circuit).

1. For the given mechanical system, each mass is identified with its velocity. This is
equivalent to a nodal voltage to which one end of the capacitance is connected.
There should be as many nodes in the electric circuit as there are masses in
mechanical system. Further, in addition, other nodes are created if any of the
elements in mechanical system are neither connected to any mass nor to the
reference frame.

2. Identify source currents which are equivalent to applied forces.

3. Corresponding to velocity differences applied across the mechanical elements, the
electrical components are connected between the two nodes representing these
velocity differences.

4. By inspection, the electrical analogous circuit is drawn.

Fig. 1.66 Electric circuit e(t)

with a current source
i
i .
i(%)
L R —C
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Fig. 1.67 a Mechanical notational system. b and ¢ Electrical analogous circuit for Example 1.63

5. Just by writing the equations of motion of mechanical system and the nodal
electric circuit, it is verified they are identical. Thus the analog is verified.

The following examples illustrate the method of obtaining electrical analogous

circuits.

Example 1.63 Consider the mechanical rotational system shown in Fig. 1.67. Draw
the torque—voltage and torque—current electrical analogous circuits and verify by
writing mesh and nodal equations.

(Anna University, December 2009)
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Solution Torque—Voltage Analogy

1. There are two inertias in the mechanical rotational system. They are given angular
velocity w; and w,. Corresponding to these displacements single branch currents
i1 and i, are opened.

2. To the source voltage e(t) — T (t), the inductance L — Jj, resistance R} — B
are connected in series. The current flow is i; — w;.

3. In the branch where the current flow is i, — w, the inductance L, — J,, resis-

tance R, — B», and the capacitance C, — KLZ are connected in series.

4. A branch current (i — i) — (w; — wy) is opened and a capacitor C; — Kl] is

connected in this branch since the velocity difference across K is (w1 — ;). The
torque—voltage analogous electric circuit is shown in Fig. 1.67b.

Verification
For the mechanical circuit, for the elements connected to the inertia J;, the following
equation is written:

dw

A dtl + B + K, /((m — wy)dt = T(1) (1.57)

For the elements connected to the inertia J,, the following equation is written:

d
Jz%+Bza)2+K1[a)2dt+K1/(a)z—a)l)dtzo (1.58)

Now consider T-V analogous electric circuit. For the mesh where i; current is flowing
the following equation is written:

di 1
Lo R +c_1/(“ _ ipdt = e(t) (1.59)

For the mesh where i, current is flowing the following equation is written:

dip ) 1 . 1 .
— 4+ Ryir + — irdt + C_ (i —ip)dt =0 (1.60)
2

L
2t C,

Equation (1.57) is identical to Eq.(1.59) and Eq.(1.58) is identical to Eq.(1.60).
Hence the analogous circuit drawn just by inspection of the given mechanical system
is correct.

Torque—Current Analogy

1. There are two velocities w; and w, with which the inertias J; and J; rotate. Cor-
responding to these angular velocities nodes with e; and e, voltages are marked.

2. To the e; node, current source i(t) — T (¢), capacitance C; — Jp, resistance
R, — 1/B, are connected.
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3. Inertia J,, dash-pot B, and inductance K all rotate at w,. Therefore, C, — J3,
R, — 1/B; and L, — 1/K; are connected to the e, node. Their other ends are
connected to the common point.

4. The spring K rotates with a velocity (w; — w;). Therefore, the inductance L; —
1/K is connected in between e; and e, nodes. The complete T-1 analogous circuit
is shown in Fig. 1.67c.

Verification

1. At e; node the following equation is written:

de1 el 1 / .
Ci—+ —+ — —e)dt =i(t 1.61
"I + R, + L (e1 —e2) i(t) (1.61)

2. At e; node the following equation is written:

d€2 () 1 1 /
Cr— + — + — dt + — —epdt =0 1.62
2 + R + L exdt + I (e2 —e1) (1.62)

Equations (1.57) and (1.61) are identical. Similarly Eqgs.(1.58) and (1.62) are
identical. Therefore the T-I diagram shown in Fig. 1.67¢ is correct.

Example 1.64 Draw the force—voltage and force—current electrical analogous cir-
cuits and verify by writing mesh and node equation for the mechanical system shown
in Fig. 1.68a.

(Anna University, December 2009)

Solution Force—Voltage Analogy

1. Mass M moves with velocity v; and mass M, moves with velocity v,. Single cur-
rentsi; — v andi, — v, are opened out. i; flows through the series combination
of Ly — M, Ry — B and the source voltage e(¢t) — f ().

2. Mass M,, dash-pot B,, and spring K, all move with velocity v,. Hence, the mesh
current i, — v, flows through the series combination of L, — M;, R, — By,
and C; — 1/K;.

3. The velocity difference across K; and By, is (v; — v;). Hence, from mesh currents
i1 and i», a branch is created in which the current (i; — i,) flows and the elements
Cy — 1/K; and R;; — Bj; are connected in series. This completes the F-V
analogous circuit and is shown in Fig. 1.68b.

Verification
For the mechanical system, for mass M, the following equation is written:

dv
M]d_tl + Biv; + B2 (v — v2) + K| /(Ul —v)dt = f(t) (1.63)
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Fig. 1.68 a Electrical analogous circuits for Example 1.64. b F-V analogy. ¢ F-I analogy
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For mass M5, the following equation is written:

dv
Mzd—: + Bova+ Kz/vzdl + B2 (v2 — vy)

+ K /(v2 —v)dt =0 (1.64)

For the F-V electric circuit, the following equation is written for the mesh where i,
current flows:

di 1
L2 4+ Ryiy + Rio(i —i2)+—/(i1 —ir)dt = e(t) (1.65)
dt G

For the mesh where i, current flows, the following equation is written:

di 1
L= + Ryir+ —/izdt-i- Rip(iy — i)
dt C,

1
e /(i2 —indt =0 (1.66)

Equation (1.63) is identical to Eq.(1.65) and Eq.(1.64) is identical to Eq.(1.66).
Hence F-V electric circuit drawn just by inspection of the mechanical system is
correct. Now let us consider F-I analogous circuit shown in Fig. 1.68c. At node e,
the following equation is written:

de; el el — e
Ci—+ —
! dt R, R

+ f(el —e)dt =i(t) (1.67)
Ly

At node e;, the following equation is written:

d62 1

1 1 1
c L Y [ war s e e+ [(er—endr =0 (168
2t R262+ szez + R12(62 e1) + L /(62 er) (1.68)

Equations (1.63) and (1.64) are identical to Egs. (1.67) and (1.68) respectively. Hence
the F-I analog circuit represented in Fig. 1.68c is correct.

Example 1.65 Derive the transfer functions of the systems shown in Fig. 1.69 and
show these systems are analogous.

(Anna University, December 2004)

Solution For the mechanical system, at point A the following equation is written:

d
BE(xO —x)+Kxg=0
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() (b)

Fig. 1.69 Mechanical system and electric circuit for Example 1.65

Taking Laplace transform on both sides and arranging the like terms, we get the TF
as

(Bs + K)xo(s) = BsX;(s)

Bs

1.
Bs + K (1.69)

%)
Zlig) =
Xo
For the electric circuit, the following equations are written:
! [ idt + iR
— | iR=c¢e
C 0
iR = ()

Taking Laplace transform on both sides of the above equations and dividing one by
the other, we get the TF of the network as

EC T &Ry D

EQ Rs

s) = 1.

E; (<) (Rs + &) (1.70)

Comparison of Egs. (1.69) and (1.70) shows the electric circuit drawn is F-V anal-
ogous circuit. Here E( which is proportional to i is again proportional to velocity
vo- R — B and C — 1/K. E; is the source voltage which is equivalent to x; —
force. Hence the electric circuit shown is analogous to mechanical system.
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Example 1.66 Obtain the analogous electrical network for the mechanical system
shown in Fig. 1.70a.

(Anna University, December 2007)
Solution Force—Voltage Analogy

1. Single currents corresponding to the velocities vy, v, and v3 are created as iy, iy,
and i3 respectively. In the mesh where i current flows, L — Mjande(t) — f(¢)
are connected in series.

2. A branch is created in which the current flow is (i; — i) — (v — v»). In this

branch a resistor Ry — Bj is connected.

In the branch where i, — v, flows, L, — M, is connected.

4. From i, and i3 current branches, a branch with current (i, — i3) — (v, — v3) is
created. In this branch the series combination of Ry — B, and C; — 1/K] is
connected.

5. Inthebranch wherei; — v flows, L3 — M3 and C, — 1/K; series combination
is connected. This completes the F—V analogous electric circuit.

et

Verification by equations, F—V Analogy
For the mechanical system, for mass M, the following equation is written:

d
M,§+B,(v1 — ) = f() (1.71)

For mass M5, the following equation is written:

dv
Mzd—t2 + By(va — v3) + Bi(vy — v1) + K /(vz —v3)dt =0 (1.72)

For mass M3, the following equation is written:.

dv
M3d—t3+Bz(v3—U2)+K1/(U3—U2)dt+K2/U3dt=O (1.73)

Now consider the F—V analogous circuit shown in Fig. 1.70b. For the mesh where i,
current flows, the following equation is written:

diy .
LIE'FRI(ZI — i) =e(t) (174)

For the mesh where i, current flows, the following equation is written:

di 1
de—: + Ro(ip —i3) + Ri(i — i) + o /(iz —i3)dt =0 (1.75)
1
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Fig. 1.70 a Mechanical System for Example 1.67. b F-V analogous circuit for Example 1.66.
¢ F-I analogous circuit for Example 1.66
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Fig. 1.70 (continued)
For the mesh where i3 current flows, the following equation is written:

L3Cfi—l: + Ry(i5 —ip) + CL] /(13 —b)dt + CLQ / izdt =0 (1.76)
Equations (1.71), (1.72), and (1.73) are respectively analogous to Egs. (1.74), (1.75),
and (1.76) and hence the circuit shown in Fig. 1.70b represents the F—V analogy of
the given mechanical system.

Verification by equations, F-I Analogy

Now consider the F-I analogous circuit shown in Fig. 1.70c. At node e, the following
equation is written:

o L —ey =i (1.77)
R,

At node e,, the following equation is written:

dey; (ex—e3) (ex—ep) 1
C,— — —»3)dt =0 1.78
2 + % + R +L1 /(Uz v3) (1.78)

At node e3, the following equation is written:

o, e e 1 /( Yt + / dt =0 (1.79)
3 dt Rz L1 € = L2 € - '

Equations (1.71), (1.72), and (1.73) of the given mechanical system are analogous
to the Eqgs. (1.77), (1.78), and (1.79) of F-I analogous electric circuit.
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1.12 Analysis of First- and Second-Order Linear Systems

When the control system is excited by the input r(¢), the output c(¢) which is
expressed as a function of time # is known as time response of the system. When time
t tends to infinity, the output response reaches the steady state. Such a response is
called the steady-state response. The dynamic behavior of continuous-time system
is described by differential equation. The functional relationship between the output
and the input of a linear time invariant system is described by transfer function which
is defined as the ratio of the Laplace transform of the output variable to the Laplace
transform of the input variable with all initial conditions being zero. On the other
hand the dynamic behavior of a discrete time system is described by the difference
equation. The system function here is represented by means of z-transform whereas
for a continuous system it is represented by Laplace transform. The system func-
tion of linear continuous-time system as well as discrete-time system is expressed
in terms of poles and zeros. The values of s at which the transfer function becomes
infinity are called poles of Linear Time Invariant Continuous system (LTIC). The
poles are also known as the factors of the denominator polynomial. Similarly the
values of s at which the transfer function becomes zero are called zeros of the trans-
fer function of the systems. They are also the factors of the numerator polynomial
of the transfer function. On similar line the transfer function and poles and zeros of
discrete-time system are defined in the z-plane. For system performance analysis,
the transfer function is represented in the form of a block. A complex control system
when interconnected by numerous blocks can be ultimately reduced to a single block
with the system required output and the input. This is done by what is known as block
diagram reduction technique.

1.13 First-Order Continuous-Time System

1.13.1 System Modeling
Consider the following first-order differential equation with input r(¢) and output
c(t):

de(t)
dt

+ac(t) = Kr(t) (1.80)

Taking Laplace transform on both sides, we get
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Fig. 1.71 Block diagram
representation of first-order R(s) C(s)

system — G(s) =
(s+a)

v

(s +a)C(s) = kR(s)

C(s) _

RG) G(s)
__K (1.81)
C (s+a) '

Equation (1.81) gives the transfer function of a first-order system. This is represented
in block diagram and is shown in Fig. 1.71.

1.13.2 Time Response of First-Order System

1.13.2.1 Impulse Response of First-Order System

The impulse input is defined as

8(’)2:1’ t=0

0, otherwise
Here r(t) = 6(¢)
R(s) =1

From Eq. (1.81), for impulse input it is written as

(1.82)

The impulse response of a first-order system is obtained by taking inverse Laplace
transform. Thus
c(t) = Ke ™.

The impulse response curve is plotted and is shown in Fig. 1.72.
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Fig. 1.72 Impulse response 4
of a first-order system (0

~V

1.13.2.2 Step Response of First-Order System

The unit step input is defined as follows:

u(t),
r(t) =11, t>0
0, t<0

The Laplace transform of unit step input is
1
R(s) = —
s

Substituting the above in Eq. (1.81), we get

C(s) = L (1.83)
s(s +a)

The above equation is put into partial fraction as given below:

AL 4

Ky s +a
_K 1 1
T als s+a

Taking inverse Laplace transform, we get

C(s) =

c(t) = 5[1 — e (1.84)

The transient response curve of Eq. (1.84) is shown in Fig. 1.73.
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Fig. 1.73 Step response of first-order system

Note: The time response for ramp input () = ¢ can be obtained by integrating
Eq. (1.84) and is given below:

K —at
ey == [~1+at+¢] (1.85)

1.13.3 Time Domain Specifications

The following time domain specifications are defined for a first-order system:

(a) Time constant T'.
(b) Rise time #,.

(c) Settling time z;.
(d) Time delay #,.

1.13.3.1 Time Constant

The time constant 7 is defined as the time taken for the step response to reach 63.2%
of its final value for the first time. From Fig. 1.73, the time constant 7 is obtained as

1
T =-— (1.86)
a
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It is to be noted here that the tangential line of the exponential curve has the slope at
t = 0 as K. Thus, if the time constant 7 is small, the response is fast and vice versa.
1.13.3.2 Rise Time ¢,

The rise time ¢, is defined as the time taken for the response to go from 10% to 90%

of its final value K7T'. From Eq.(1.84), at t = T}, let the output be 10% and t = T,
the output be 90%. Thus

K K
0.1— = —[1 —e "]
a a
K K —aT;
0.9— = —[1—e¢ "]
a a

Dividing the second equation by the first equation, we get

_ (1 — e™T2)
© (1 —emaTh)

Taking log, on both sides, we get
2.2 = a(T2 - T])
Substituting ¢, = (T, — T1), the rise time is obtained as

t, = 22T (1.87)

1.13.3.3 Time Delay ¢;
Time delay 7, is defined as the time taken for the response c(¢) to reach 50% of

its final value for the first time. From Eq. (1.84), for 50% output, we may write the
following equation with t = #;:

05=1—¢*
d

e T =05
Taking [, on both sides, we get

ty = 0.693T (1.88)
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1.13.3.4 Settling Time #,
Settling time ¢, is defined as the time taken for the response c(¢) to reach and stay

within 2% of its final value for the first time. From Eq.(1.84) for 98% output, we
may write the following equation with t = #,:

098=1—e7
Taking /, on both sides, we get
t, =391T (1.89)
For 5% error tolerance
ty =3T
For 7% error tolerance
t, = 2.66T

Itis to be noted that error tolerance may be given as 5%, 7%, etc., and the correspond-
ing settling time is determined. Unless otherwise the error tolerance is specified it is
always taken as 2% error.

Summary of Time Domain Specifications of First-Order System

1.| Time constant| 7T = %

2.| Rise time t, =2.2T

3.| Time delay tqg = 0.693T
4.| Settling time | # =3.91T

Example 1.67 Consider the following T.F. of a certain first-order system.

10

=510

Derive an expression for the response of the system for r(t) = Su(¢). Find the time
constant, settling time, time delay, and rise time.
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Solution
€O _ ey = 10
Rs) T 5110
5
R(s) = >
)

50 [1 1 :|
Ce)=——=5|-—
s(s 4+ 10) s s4+10

Taking inverse Laplace transform, we get

c(t) =5[1 —e™ 1

1
Time constant 7 = T =0.1s

Settling time t;, = 3.917 = 0.391s
Rise time t, = 2.2T = 0.22s
Time delay 7; = 0.693T = 0.0693 s

T =0.1s

t, =0.391s
t. =0.22s

t; = 0.0693 s

Example 1.68 A glass bulb thermometer reads 98.2% of its final value of temper-
ature 1 min after immersing it in hot water. Determine the time constant, rise time,
time delay, and settling time for 5% error tolerance.

Solution The mercury thermometer is a first-order system. From Eq.(1.84), for
98.2% output, the time taken is 60s.

K » K

—[l—eT]=0.982—

a a
4T = 60s

T =15s

Rise time

t, =22T
=22x15
=335
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Time delay

ty = 0.693T
=0.693 x 15
=104s

For 5% error tolerance, the settling time is

t, =3T
=3x15
=45s

T =155
t, = 33s
ty =104s
t, =455

1.14 Second-Order System Modeling

For model development of a general second-order system, consider the electrical
motor represented in block diagram form as shown in Fig. 1.74a. The system param-
eters are as follows:

J = Moment of inertia of motor not or in Kg.m?
B = Motor frictional coefficient in N-m/rad/s

K = Error detector constant in N-m/rad error

Torque developed by the motor is
Ta(1) = Ke(t) = K(r(t) —c(1))

This torque is to overcome the torque opposed by J and B under no load condition.
Thus

2
dc(t) + Bdc(t)

T.(t) =J

dr? dt
T,(1) = Ty(1)
2
]d c(t) N Bdc(t) — K(r(t) — c(1)) (1.90)

dt? dt
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@ Error detector
M TN e MOTOR o
_ 1 J,B "
Error
(b)
R(s) w,? C(s)
-7 )
(s2+ 2w, s+ wnz)
(©)
2
G(s) = B — C >
s(s+2w,)

Fig. 1.74 a Block diagram representation of a second-order systems. Second-order system repre-
sentation. b open-loop form, ¢ closed-loop form

Taking Laplace transform on both sides and expressing the ratio of the output variable
to the input variable, we get the following equation:

C(s) K
R(s) (Js2+ Bs+K)

(1.91)

The denominator of Eq.(1.91) is a second-degree polynomial in s and therefore
Eq.(1.91) describes the dynamics of a second-order system. Equation (1.91) can be
written as

C(s) K/J
R(s) ~ (s + Bs+ %)

(1.92)
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Equation (1.92) can be written in a generalized form as given below:

Cs) 2
R(s) (2 +20w,s + o) (1.93)

where

[ K
W, = 7= Natural frequency of oscillation

B
¢ = = Damping factor

2VKJ

Thus, natural frequency of oscillation and damping factor are the two parameters
of a generalized second-order system. The systems may be electrical, mechanical,
thermal, hydraulic, biological, or in any form. Equation (1.93) is represented in block
diagram form as shown in Fig. 1.74b and ¢ which are in open-loop and closed-loop
forms respectively. Equation (1.93) is also called standard equation for a second-order
system.

The natural frequency w, is defined as the frequency of oscillation of a second-
order system without damping. If the damping is provided to the system, the system
time response contains damped oscillations with exponential decay. Now consider
Eq. (1.93) which can be written as follows:

2
) _ On (1.94)
R(@s) (s+a)(s+a)

where a; and a, are the pole locations of Eq. (1.93) and they are expressed in terms
of { and w,. For0 < ¢ < 1.

ar = —Cw, + jo,/ 1 — 52
ay = —Cw, — jouy/1 — 2 (1.95)

In the above case the system is said to be under-damped and the pole locations are
as shown in Fig. 1.75.

From Fig. 1.75, wg = w,+/1 — ¢? is called damped frequency of oscillation. For
¢ = 1, the system is said to be critically damped and the pole locations are shown in
Fig. 1.76, which are repeated poles at s = —w,,.

If ¢ > 1, the system is said to be over-damped. In this case, the poles are at

ar = —{wy + wnv ;2_1
tw, — =1 (1.96)

The pole locations are shown in Fig. 1.77.

az
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—lo,Tjo, 4w
N s-plane
N \mn
w;=w = * 2

v

n i \»)/'\ eztan_ll_TC
A

Fig. 1.75 Pole location in the s-plane for complex conjugate poles for 0 < ¢ < 1 (under-damped)

A

s-plane

|
3
Sy

Fig. 1.76 Pole location of a critically damped system (¢ = 1)

A J(l)

N

/ 0 ;
=t ST

Fig. 1.77 Pole location of an over-damped system ({ > 1)
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1.15 Time Response of a Second-Order System

1.15.1 Impulse Response

Consider Eq. (1.93),
C(s) _ w?

n

R(s)  (s2+2Cawys + w?)

For an impulse input,
R(s) =1

The above equation is written as

2

wn
C(s) = ST (1.97)

The impulse response for the following cases are determined:

1. Under-damped case (¢ < 1).
2. Over-damped case (¢ > 1).
3. Critically damped case (¢ = 1).

1.15.1.1 Under-damped Case (¢ < 1)

For ¢ < 1, the second-degree denominator polynomial of equation (1.97) is written
as follows:

w?

C(s) = — .
(s +Ewn + jwa)(s + Ewp — jwa)

where

wg = wyy/1 — ¢2 = Damped frequency of oscillation

Putting the above equation into partial fraction, we get

Ay Az
s+ Ew, + jwg +S+§wn — jwy
A1(s + lwy — jwa) + Ax(s + S, + jwa)
- (52 + 2L wys + w2)
@y = Ai(s + Loy — joa) + As(s + Lo, + jog)

C(s) =
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Put

= —fw, + jwg
= A2(2jwa)

Wy
Ay = ———
NI
A = Conjugate of A,
—wy

J2y1=¢2
wn [ —1 N 1 } 1
21 =02 LG+ sw, + joa) (s +Ew, — jwa) | j24/5

Taking inverse Laplace transform, we get

S
|

C(s) =

c(t) =

On [ —Qontjodt | (o jout
O [ G + e ]
J2y1=¢2
wy e*fwnl |:€jw'it — ej“’f”]

V1-¢2 2j

el = e sino /1= 01 (198

1.15.1.2 Critically Damped Case (¢ = 1)

Equation (1.97) for ¢ = 1 is written as

w?

Cls) = — “n
) §2 + 20,5 + @}

2
w,

T s+ o)

Taking inverse Laplace transform, we get

c(t) = wte ™! (1.99)
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1.15.1.3 Over-damped Case (¢ > 1)

Equation (1.97) for ¢ > 1 is written as

w2

(S+€wn +wn\/ ;2 )(S+§a)n _a)n\/ ;2 )

Al
(S +€wn +wn\/ ;2 ) (S +§wn — W/ {2 )
wn:Al(S+§wn_wt1V§2_ )+A2(s+§wn+wn\/§2_l)

Puts = —Cw, — w,+/¢% — 1
@)= M 20,/ =D A=

C(s) =

Puts = —Cw, + w,/¢% — 1
d=mwwﬂﬂxm=;&—
:

wy, -1 1
C(s) = n
(S) 2 {2_1 |:(S+§wn+a)n\/§2_l) (s+§wn_wn\/§2_]):|

Taking inverse Laplace transform, we get

€)= et [T g/ (1.100)
2,/¢2—1
The time response curves of Egs. (1.98), (1.99), and (1.100) are shown in Fig. 1.78.

Example 1.69 Find the unit impulse response of the second-order system whose

T.F.is
9

R

(Anna University, May 2005)

Solution
(> +4s+9) = (s +2 4 j¥3)(s +2 — jv/53)

For an impulse input R(s) = 1. Hence
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c(t)
A
«— (<1
(=1
1
0 >
t

Fig. 1.78 Impulse response curves of a second-order system

9 Ay As
el — _|_
+24 V) +2—jV5 (4245 (s+2—jv5)
9=Ai(s+2— jvV5) + Ay(s + 2+ jV/5)

C(s)

Puts = —2 — j/5

9=A1(=2—jV5—jV5)+0
-9

Ay = —
1 j2«/§
9
2——].2«/g
C(s) 9[ —! + ! } !
S) =
s+2+jvV5  +2- V3] j2V5

Taking inverse Laplace transform, we get

9 [_67(2+j«/§)t + e*(Z*jfo)t]
2j

c(t) =

S

c(t) = de ¥ sin /5t
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1.15.1.4 TImportance of Impulse Response

1.

2.

If the area under the impulse response curve is finite, then the system is said to
be Bounded Input, Bounded Output (BIBO) stable.

From impulse response, by taking inverse Laplace transform the system transfer
function is obtained.

. If impulse response is known, step response can be obtained by integrating it.

1.15.2 Step Response

Step response of a system is important for the following reasons:

1.
2.

It is easy to generate step signal and test the system in the laboratory.

The step signal is sufficiently drastic and if satisfactory step response is obtained,
then the system is likely to give satisfactory performance for other types of inputs.
From step response impulse response can be obtained by differentiating it and
useful information may be derived. Similarly from step response, ramp response
can be obtained by integrating it.

The application of step input is equivalent to the application of numerous sinu-
soidal signals with a wide range of frequencies.

1.15.3 Step Response of a Second-Order System

Consider Eq. (1.83).

C(s) . w?

n

R(s)  (s2+42Cw,s + w?)

For a step input of height R, the Laplace transform

R
R(S) = ?

Substituting this in the above equation, we get

C(s) = R, (1.101)
= 5(s2 + 2L w,s + @?) '
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1.15.3.1 Under-damped Response (¢ < 1)

For ¢ < 1, Eq.(1.101) is written in the following form:

Rw?
C(s) = - -
S(s + S + joa)(s + Lwy — joo)
A A A
Cls) =L+ 2 + 3 (1.102a)

s (S+§wn+.]wd) (S+§a)n_jwd)

Analytical Method of Determining the Residues A, A;, and Aj

Ra),zl = Al(s2 + 2 wys + a)ﬁ) + Ays(s +Cwy, — jwg) + Azs(s + Cw, + jwa)
Putting s = 0 in the above equation, we get

2 _ 2
Ra)n = Ala)n

A =R
Putting s = (—¢w, — jwy), we get

Rw; = Ay(—Cw, — jwa)(—joq — jwa)

| R R/—¢ — %
2: =
J2V1 =8¢+ jy1=¢2) 2y/1=¢?
where tan ¢p = Y 1;{2
R/ z
Ay = A5 = ot

21 —2¢2

Graphical Method of Determining the Residues
The residues of Eq.(1.102a) can also be determined as explained below. The poles
are located along with their residues as shown in Fig. 1.79.
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iju)

N s-plane

” d’f\‘x

’ (Dn
! ,
Ay - \4’
2>'<__ -
—{w,—joy

Fig. 1.79 Poles and residue locations of Eq. (1.102a)

Ra)ﬁ _
a)nld)a)nl_q5 B
Ra),zl

Az =
0 LTt — P04 L5
_R/Z+¢
2/1—1¢2

RZ—(3 +¢)
2/1—=1¢?
The residues determined by analytical method are the same as obtained by graphical

method. However, the graphical method is simpler and quicker. Substituting the
above residues in Eq. (1.102a), we get

A = R

Ay = A% =

—j(5+9) J(5+9)
C(s) =R [1 ¢ e H

1
+ +
2/1-¢2 {(s+;wn+jwd) (s + Lwn — jwa)
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Taking inverse Laplace transform, we get

—Cwpt
ct)=R|1+ {e*j(%+¢+wdt) + ej(%+¢+wzlt)}
21 —1¢2
e~ tont T
=RI|1 _ (— t)
+ 1_§2COS 3 + ¢+ wy

—Swyt
)=R|1 — ——
c(?) [ T

where ¢ is in radians and w, = rad/s.

sin(wpy/1 — £2t + ¢):|

1.15.3.2 Critically Damped Response (¢ = 1)

For¢ =1,
s+ 2L w,s + a)ﬁ =(s+ a),,)2

Equation (1.21) can be written as

R
s(s + wy)?

A A A
_ _1 + 2 + 3

S (S +a)n)2 (S +(,()n)
R=Ai(s+®)>+ Ass + Azs(s + wp)

C(s) =

Puts =0
Al = —
1 e
Puts = —w,
—R
Ay =
Wy

Equating the coefficients of s? terms, we get

0=A+ A3
A _—R
3= o
R |1 Wy 1
C(S)=—2 - — >
w; s (s + wp) s + w,

(1.102)
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Taking inverse Laplace transform, we get

R
c(t) = — [1 — tw,e™" —e™'] (1.103)
a)n

1.15.3.3 Over-damped Response (¢ > 1)

For over-damped case, the time response of a second system for step input can be
derived following the method described above. The time response is given below:

e—On(C+A/52 =Dt e~ @n({—A/C>=D)t
+ +
A -1+ 1) 22— 1 -0/ 1)

Using Egs. (1.103), (1.104), and (1.105), the transient response curves are plotted as
shown in Fig. 1.80.

The pole locations in the s-plane and the transient response curves are shown in
Fig. 1.81.

c(t) =R [1 } (1.104)

c(@) 1

Fig. 1.80 Transient response curves of a second-order system
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(a) r'y j(x) C(t) 4
=0
(undamped) o
s-plane
e
— jwn
0 t
(b) ' o
_C‘Dn"'/‘”d c(;) A
X
0<(<1 s-plane
(underdamped) N AWA
g
X
—lo,—jo, R
0 t'
©
A ],(D C(t) 4
(=1
(critically damped) s-plane
X Rb---oommoo - =
o
— cwn
0 t'
(d
A
JUJ L(t) A
el s-plane
(over damped)
N Rb--------------
g
(—low,~w, €27 1
(—Lmn+mn"§2—1) ‘
0 ;

Fig. 1.81 Pole locations and transient response of a second-order system
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1.15.4 Time Domain Specifications of a Second-Order System

The performance of a second-order system is measured by the following specifica-
tions.

Peak over-shoot M, and % peak over-shoot % M.

Time at which the peak over-shoot occurs is peak time ¢,,.
Time constant 7.

Rise time ¢,.

Settling time ;.

Time delay ¢;.

A

Expressions for the above specifications are derived in terms of the second-order
system parameters ¢ and w,. The transient response curve is shown in Fig. 1.82.

1.15.4.1 Peak Over-Shoot M,

Peak over-shoot is defined as the amount by which the transient response waveform
over-shoots the steady value or the final value.

F'
CmaX _________
I
|
|
c(?) ) Mp Tolerance error
|
|
v
Ctinal =R [ —--- I____:' ______________ - - - —: —————
| | X
| | .
| | .
| | .
| | X
| | X
0.5R [-- : : :
! | | |
! | | |
b | |
b | |
! | | |
! | | |
! | | |
! | | X
! | | X
' | | ;
id tr n tg 4

Fig. 1.82 Time domain specifications of a second-order system
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The peak over-shoot is denoted by Mp. It is expressed as
Mp = Cinax — Chinal
The percentage over-shoot is expressed as

Cmax_Cna
% My = Cmn = Cina) 4

Cﬁnal

Peak over-shoot can be expressed in terms of the system parameters ¢ and w,,. This
occurs for the under-damped system response. Consider Eq. (1.103).

—Cwyt
c(t) = R {1 _ ;ﬁ sin(wny/1 — 2t + ¢)}

Cmax 1s obtained by differentiating c(¢) with respect to ¢ which gives 7, the time at
which the maxima occurs and substituting in Eq. (1.103).

Wy 1 — 2

de@) _ [1 et
dt 1— §-2
x cos(wpy/ 1 — 22t + ¢)
et (Lwy) sin(wy/1 — 2t + @)
V1-=2¢2
=0

V1—=1¢%cos(w,y/1— %t + @) = ¢ sin(w,/1 — £21 + @)
tan ¢ = tan(w,+/ 1 — %t + ¢)
wp/1 =%t =nmw wheren =0,1,2,...

For n = 1 maxima occurs and =1,

+

/i ex
Ciax = R 1—;s1n(n+¢) =R|:1+em]
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MP = Cmax - Cﬁnal
_¢n

=R+ ReV' —R

—r

Mp = Rev'-2 (1.105)

Mp
%Mpz?XIOO

—m

% Mp = evV1- x 100 (1.106)

1.154.2 Peak Time ¢,

The peak time 7, is defined as the time at which the first maximum of transient
response waveform occurs. It is expressed as

T

t, = ——F——
! w11V1_§2

(1.107)

1.15.4.3 Settling Time #,

The settling time ¢, is defined as the time required for the transient response to reach
and stay within the prescribed percentage error. The expression for the settling time
of a second-order system is derived as follows.

Let

+e™™ x 100 wherem =1,2,3... (1.108)

be the prescribed error within which the system transient response settles down.
Equation (1.105) represents the error and can be written as follows:

—{mn
% Mp = e———— x 100 (1.109)
V1=2¢2
wheren = 0, 1, 2, .. .. For odd values of n over-shoots occur and for even values of

n under-shoots occur. For any error, Eqs. (1.107) and (1.108) are same. Thus,
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e =¢ VI7
2
n:ﬂ%—i- (1.110)
T

From Eq. (1.106), for any peak value of the response ¢, can be written as follows:

P nmw
P W/ 1 — 22

For the given error e™", t, = t,. Substituting this in Eq. (1.111) and also for n from
Eq.(1.110), we get the following expression for the settling time:

P my/1— 2%
o gn’wn\/l_gz

m

§ Wp

(1.111)

ty =

t, =mT (1.112)

InEq.(1.112), T = {— is called the time constant of the system.
Normally the permissible error prescribed for the settling time is 2%. In this case

e =0.02
log, e™" =log,(0.02)

= -3.91

—m = —3.91
m = 3.91

(1.113)
t, =391T
For 5% error, m = 3 and
ty = 3T

For 7% error, m = 2.66

t, = 2.66T
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1.15.4.4 Time Constant T

Time constant is defined as the time taken for the transient response to reach 62.3%
of its final value for the first time. From Eq.(1.112) it can be obtained as

1
T =
Sy

(1.114)

1.15.4.5 Rise Time ¢,

Rise time ¢, is defined as the time taken for the transient response to go from 10%
to 90% of the final value. Sometimes, the rise time is also defined as the time taken
for the transient response to reach the final value for the first time. The expression
for the rise time is derived as follows using the second definition stated above. For
c(t) = R, Eq.(1.102) is written as follows:

N

Equation (1.115) gives the solution as

—Cw,t
R=R [1 — L Gin(wgt +¢)} (1.115)

sin(wgt + ¢) =0
=sinnwr where n=0,1,2...

wgt+¢ =nm=m forn=1

Substituting ¢ = ¢, in the above equation, we get

tr:M (1.116)

WpH/ 1 _é‘z

In Eq.(1.116) it is to be noted that ¢ is in radians.

1.154.6 Time Delay ¢;

Time delay is defined as the time taken for the transient response to reach 50% of
the final value for the first time. The expression for the time delay is given by the
following empirical formula:

(140.7¢)
g = ———=

Wy

(1.117)
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Summary of Time Domain Specifications of Second-Order System

1.| Time constant T = gclun
2.| Rise time f = —F=0)
, 1-¢2
3.| Time delay tg = “*&75 )
4. Settling time ty =mT
n

5.| % Peak over-shoot % M), = evV1=¢* x 100
6.| Time at which the peak over-shoot occurs| ¢, = wld

Example 1.70 Obtain the impulse and step responses of the following unity feed-
back control system with open-loop transfer function

(Anna University, December 2009)

Solution The given system is represented in block diagram form as shown in
Fig. 1.83. From Fig. 1.83, the following equation is derived:

) Gs)
R(s) 1+G(s)
_ 6
T 245546
C(s) . 6

R(s)  (s+2)(s+3)

1
For unit step input R(s) = —.
s

Ris) T 6 C
v Gl = s(s+5) o

v

Fig. 1.83 System block diagram for Example 1.70
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6 A A, N As
sG+DG+3) s s+2 s+3
6=A1(s+2)(s+3)+ Ars(s +3) + Azs(s +2)

C(s) =

Fors =0
A =1
Fors = -2
Ay =-3
Fors = —3
Az =+2
C()—l 3 n 2
S_s s+2 s4+3

Taking inverse Laplace transform, we get
c(t)y=1—3e2 427

The impulse response is obtained by differentiating the step response. If we denote
impulse response as k(t), then

dc(t)

h() = dt

h(t) = 6[e™ — 7]
Alternatively, the impulse response is obtained from first principle.

C(s) 6
R(s) (s+2(s+3)

For an impulse R(s) = 1

&
(s +2)(s+3)

1 1
-6 _
[s+2 s+3:|

h(t) = 6[e™ — 7]

C(s)=H(s) =
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It is to be noted that the poles of the closed-loop transfer function lie on the —ve real
axis of the s-plane and hence the system is over-damped.

Example 1.71 A certain unity negative feedback control system has an open-loop

transfer function.
10

Gls) = s(s +2)

Find the rise time, percentage over-shoot, peak time, and settling time for a step input
of 12 units.

(Anna University, December 2009)

Solution
G(s) = 1—0
= s(s+2)
C(s)  G(s) 10

RGs) 1+G(s) 2425410
Comparing the above equation with the following standard second-order equation.
Ces) _ o
R(s) s>+ 2Cw,s + w?
w, = V10

20w, =2
¢ =0.3162

Given R = 12 units. Using Eq. (1.105),

_é‘ —0.31621

—T[ = 12¢ V1-031622
N

over-shoot M, = Re

M, = 4.2 units

M,
% over-shoot = 53 x 100
4.2

= —x100
12

% M, = 35%



1.15 Time Response of a Second-Order System

Using Eq. (1.111), the peak time is obtained.

T

fo = —
b wp/1 — 2

T

V104/(1 — 0.31622)

t, =1.05s

The rise time is obtained using Eq. (1.116)

t, =

Wy +/ 1- ;2

w1 =2 = /1041 — 0.31622
=3

cos¢p =¢
¢ =cos 10.3162
= 1.25rad
(r —1.25)
T3
t, =0.63s
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The settling time is obtained using Eq.(1.113). Here 2% error tolerance is taken.

Hence, m = 3.91.

Time constant, T =

Wn

1

= 03162410

T =1s

ty =mT

t, =391s
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Answers:
M, =4.2 units
% M, =35%
t, =1.05s
t, =0.63s
T=1s
. =3091s

Example 1.72 Figure 1.84 shows a unity feedback system. Calculate ¢ and w, when
K = 0. Also calculate K when ¢ = 0.6.

(Anna University, December 2009)

Solution The given block diagram is reduced and represented as shown in Fig. 1.85.
From Fig. 1.85, the following equation is written:

C(s) 64
R(s) s24+ (K +4)s +64

Compare this with the following standard second order by

C(s) _ w?

n

R(s) (524 2Cw,s + ?)

RGs) T + 1 C(s)
? 64 ? s(s+4)

Ks <

v

Fig. 1.84 Block diagram of Example 1.72

Res) T 64 C(s)
s(s+K+4)

v

Fig. 1.85 Reduced block diagram of Fig. 1.84
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For K = 0;
wy = 64 =8
2tw, =4
¢ =0.25
For ¢ = 0.6;
2tw, = K +4
K=2x06x8—-4
K =56
Answers:
For K =0; ¢=0.25
w, =8
For¢ =0.6; K =5.6
Summary

1. Signals are broadly classified as continuous-time (CT) and discrete-time (DT)
signals. They are further classified as deterministic and stochastic, periodic and
non-periodic, odd and even, and energy and power signals.

2. Basic CT signal includes impulse, step, ramp, parabolic, rectangular pulse, tri-
angular pulse, signum function, sinc function, sinusoid, and real and complex
exponentials.

3. Basic operations on CT signals include addition, multiplication, amplitude scal-
ing, time scaling, time shifting, reflection or folding, and amplitude inverted
signals.

4. In time shifting of CT signal, for x (¢ + #9) and x (—t — ;) the time shift is made
to the left of x(#) and x (—t) respectively by #y. For x(t — #y) and x(—t + #;) the
time shift is made to the right of the x(¢) and x (—) respectively by #.

5. To plot CT signal, the operation performed is in the following sequence. The
signal is folded (if necessary), time shifted, time scaled, amplitude scaled and
inverted.

6. Signals are classified as even signals and odd signals. Even signals are symmetric
about the vertical axis whereas odd signals are anti-symmetric about the time
origin. Odd signals pass through the origin. The product of two even signals or
two odd signals is an even signal. The product of an even and an odd signal is
an odd signal.

7. A CT signal which repeats itself for every T seconds or a DT signal for every
N sequence is called a periodic signal. If the signal is not periodic it is called an
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11.

12.

13.

14.
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aperiodic or non-periodic signal. The necessary condition for the composite of
two or more signals to be periodic is that the individual signal should be periodic.

. A signal is an energy signal iff the total energy of the signal satisfies the condi-

tion 0 < E < oo. A signal is called a power signal iff the average power of the
signal satisfies the condition 0 < P < oo. If the energy of a signal is finite, the
average power is zero. If the power of the signal is finite, the signal has infinite
energy. All periodic signals are power signals. However, all power signals need
not be periodic. Signals which are deterministic and non-periodic are usually
energy signals. Some signals are neither energy signal nor power signal.

. The system is broadly classified as continuous- and discrete-time system.
. The CT and DT systems are further classified based on the property of causality,

linearity, time invariancy, invertibility, memory, and stability.

The definitions of the above properties are given which are same for both CT
and DT systems. Illustrative examples are given to explain these properties.
For the first-order and second-order system, the transfer functions are derived
and their impulse and step responses are determined.

From step responses of first- and second-order systems, the time domain specifi-
cations are defined and analytical expressions for these specifications are derived
in terms of system parameters.

Poles and zeros of continuous- and discrete-time systems are defined and they
are located in the complex s-plane and z-plane respectively.

Exercise

I. Short Answer Type Questions

1.

How are signals classified?

Signals are generally classified as CT and DT signals. They are further classified
as deterministic and non-deterministic, odd and even, periodic and non-periodic,
and power and energy signals.

. What are odd and even signals?

A continuous CT signal is said to be an even signal if it satisfies the condition
x(—t) = x(¢) for all ¢. It is said to be an odd signal if x(—#) = —x(¢) for all 7.

. How even and odd components of a signal are mathematically expressed for

CT and DT signals?

1
X (1) = E[x(t) +x(=1)]

1
Xo(?) = E[x(t) —x(=1)]



1.15 Time Response of a Second-Order System 161

4.

10.

11.

What are periodic and non-periodic signals?

A continuous-time signal is said to be a periodic signal if it repeats itself for
every T sec. It satisfies the condition x(#) = x(¢r + T') for all ¢. A signal which
is not periodic is said to be non-periodic.

. What is the fundamental period of a periodic signal? What is fundamental

frequency?

A CT signal is said to be periodic if it satisfies the condition x(¢) = x(t + T). If
this condition is satisfied for T = Ty, it is also satisfied for T = 2T, 37T, .. ..
The smallest value of T that satisfies the above condition is called fundamental

period. The fundamental frequency fy = Tio Hz. It is also expressed as wy =

2
T rad/s.

. What are power and energy signals?

For a CT signal, the total energy is defined as
T
E= Lt / |x(t)|dt
T—o0 _T
and the average power is defined as

1 T 5
P= Lt — | |x@)dt
T—o0 2T -T

The square root of P is called root mean square (RMS) value of x (¢).

. What is the condition that the signal x (¢) = e“’u(t) to be energy signal?

For the signal x () = ¢*u(¢) to be energy signal a < 0.

. Is the unit step signal an energy signal?

The unit step has an average power P = % It is a power signal.

. Determine the power and RMS value of the signal x () = e/% cos wyt?

Average power P = % and RMS power Prvs = «/LE

What is the periodicity of x (t) = ¢/1007/+30°9

The periodicity of the signal x(¢) is T = % S.

Find the equivalence of the following functions (a) § (at); (b) §(—1); (c) t3(¢);
(d) sinzd(t); (e) cos8(2); (F) x(1)6(t — ty)?

(a) d(at) = 530)

(b) 8(—1) =4(1)

() t8(t) =0

(d) sinté(t) =0

(e) costd(t) = 8(¢)

(f) x(2)8(t — 19) = x(to)
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How do you represent an everlasting exponential e~ for ¢ > 0 and ¢ < 0?

The everlasting exponential e~ is expressed as e~ u(t) fort > Oande ™ u(—t)

fort < 0. ,

Find the value of ¥35(t — 2).
(t2+5)8(t 2) =0.958(t - 2)
(% + 6) -

Find the odd and even components of e/,

x.(t) = cos2t
xo(t) = sin 2t

What are the properties of systems?

Systems are generally classified as continuous- and discrete-time systems. Fur-
ther classifications of these systems are done based on their properties which
include (a) linear and non-linear, (b) time invariant and time variant, (c) static
and dynamic, (d) causal and non-causal, (e) stable and unstable and (f) Invertible
and non-invertible.

Define system. What is linear system?

A system is defined as the interconnection of objects with a definite relationship
between objects and attributes.

A system is said to be linear if the weighted sum of several inputs produce
weighted sum of outputs. In other words, the system should satisfy the homo-
geneity and additivity of super position theorem if it is to be linear. Otherwise it
is a non-linear system.

What is time invariant and time varying system?

A system is said to be time invariant if the output due to the delayed input is same
as the delayed output due to the input. If the continuous-time system is described
by the differential equation its coefficients should be time independent for the
system to be time invariant. In the case of discrete-time system, the coefficients
of the difference equation describing the system should be time independent
(constant) for the system to be time invariants. If the above conditions are not
satisfied the system (CT as well as DT) is said to be time variant.

What are static and dynamic systems?

If the output of the system depends only on the present input, the system is said
to be static or instantaneous. If the output of the system depends on the past and
future input, the system is not static and it is called dynamic system. Static system
does not require memory and so it is called memoryless system. Dynamic system
requires memory, and hence it is called system with memory. Systems which are
described by differential and difference equations are dynamic systems.



1.15 Time Response of a Second-Order System 163

19.

20.

21.

22.

23.

24.

What are causal and non-causal systems?

If the system output depends on present and on past inputs, it is called causal
system. If the system output depends on future input it is called non-causal
system.

What are stable and unstable systems?

If the input is bounded and output is also bounded, the system is called BIBO
stable system. If the input is bounded and the output is unbounded, the system
is unstable. System whose impulse response curve has finite area is also called
stable systems.

What are invertible and non-invertible systems?

A system is said to be invertible if the distinct inputs give distinct outputs.
State the condition for a discrete-time LTI system to be causal and stable.
(Anna University, 2008)

A discrete-time LTI system is said to be causal and stable if the poles of the
transfer function all lie in the left half s-plane and the Region of Convergence
(ROCQ) is to the right of the rightmost pole.

Check whether the system having the input—output relation

t
y(t)=L/: x(r)dT

is linear and time invariant. (Anna University, 2004)
The system is linear. (See Example 2.2(f)) By differentiating the above equation,
we get

dy®) _

I x(t)

The coefficient of the differential equation is time independent and is constant.
Hence, it is a time invariant system.
Check whether the system classified by

x ()

yiy)=e
is time invariant or not? (Anna University, 2007)

y(t, tp) = 7
y(t —19) = &7
y(t, t9) = y(t — tp)

The system is time invariant.
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Determine whether the system described by the following input—output rela-
tionship is linear and causal.

y(@®) =x(-1)

(Anna University, 2007)
The system is linear and non-causal.
Is the system y(¢) = cos¢ x (¢ — 5) time invariant?

y(t, o) = costx(t —tog— )
y(t — ty) = cos(t — to)x(t —ty — 5)
y(t, 10) # y(t —1o)

The system is not time invariant.
What do you understand by transient response of a system?
The study of different variables in the system as a function of time when the
input/disturbance is applied is called transient response of the system.
What are first- and second-order systems?
A system described by the first-order differential equation is called a first-order
system. The system dynamics when described by a second-order differential
equation is called a second-order system.
What is a standard second-order system equation?
Any second-order system whether it is mechanical, electrical, hydraulic, pneu-
matic, or chemical process can be modeled by a second-order dynamic equation
in terms of damping factor ¢ and natural frequency of oscillation w,. Such a
system has the following T.F.:

C(s) w?

n

R(s) (s> +2Cwys + ?)

What are the time domain specifications of a first-order system?
The time domain specifications of a first-order system are

(a) Time constant T,
(b) Rise time #,,

(c) Time delay ¢4, and
(d) Settling time ¢,.

What are the time domain specifications of a second-order system?
The time domain specifications of a second-order system are

(a) Time constant T,
(b) Rise time #,,

(c) Time delay #,,
(d) Settling time ¢,,
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32.

33.

34.

35.

36.

II.

(e) Peak over-shoot M, and
(f) The time at which the peak over-shoot occurs ¢, (peak time).

How second-order system is identified according to the nature of damping?
The second-order system is identified according to the damping as follows:

(a) Under-damped for ¢ < 1.
(b) Critically damped for ¢ = 1.
(c) Over-damped for ¢ > 1.

How location of poles are identified in the s-plane according to the +ve
damping?

For under-damped system, the poles are complex conjugate in the left half s-
plane (LHP). For critical damping, the two poles are identical in magnitude and
located on the negative real axis. For over-damped system, the two poles are
located on the negative real axis at two different points.

What do you understand by negative damping?

Negative damping makes the system unstable. For a second-order system, the
one pole lies in RHP of the s-plane.

What is damped frequency of oscillation of a second-order system?

The natural frequency and damped frequency of oscillation are related as

wd=w11\/1_§2

The damped frequency of oscillation for a stable system will always be less than
the natural frequency of oscillation w,.

How system function is defined for a CT system?

For a continuous-time system, the system function is defined as the ratio of the
Laplace transform of the output variable to the Laplace transform of the input
variable.

Long Answer Type Questions

. Atriangular pulse signal x (¢) is shown in Fig. 1.77a. Sketch the following signals.

(a) x(41); (b) x (41 + 3); (¢) x (=31 + 2); (d) x(5 +2); (e) x(3r — 2); () x (4 +
3) + x(2t).

. Sketch the following CT functions. (a) x(t) = 8u(5 — t); (b) x(¢) = 36(¢t + 2);

(©) x(t) = ramp(t + 1); (d) x(r) = Srect E; () x(t) = —tri'F; () x(1) =
u(t) —u(t —5); () x(t) = u(t) — u(t + 5); (h) x(t) = —ramp()u(t — 3); (i)
x(1) = u(t)(t + Hramp(§ — 1); () x (1) = rect(t + 2) — rect(r — 2).

. Determine whether each of the following CT signals are periodic. If periodic

determine the fundamental period (Figs. 1.86 and 1.87).
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(a) x(1) (b) x(41) (© x(41+3)
| /’l\ NI
|
/\
|
o » o > A o >
-1 0 1 t _41 0 ‘% t -1 _% _‘ZL 0 t
(d) 4 x(—3t+2) (e) x(£+2) ®  txGt=2)
| | |
| | |
o : > 4 | > ¢ 1 >
0 L 3 11 -9 —6 -3 0 1 0 L 2 11
(€3] x(4t+3)+x(27)

~V

Fig. 1.86 Basic signal operations as applied to a triangular CT signal

() x(t) = e/
(b)  x() =T

©  x(t)=sin (60m ¥ %)

(d) x(t) = cos (60711 — %) — sin 207t

t
(e) x(t) = sin (87” + %) + 5cos <% + %) + 6. cos (77” - g)

(f) x(t) = 30sin (8m + %) cos (2711‘ + %) sin (Snt — %)

(a) Periodic with period Ty = 7 sec. (b) Not periodic. (c) Periodic. Ty = % S.
(d) Periodic Ty = % s. (e) Periodic Ty = 65. (f) Periodic Ty = 2s.
4. Sketch the even and odd parts of the following signals shown in Fig. 1.88a and b.
5. Consider the CT signal x(¢) = §(t +4) — §(t — 4). Sketch fx(t)dt and find
the energy of the signal (Fig. 1.89).
Energy E = 8.
6. Find the energy of the following CT signal. (a) x(¢) = tri3z; (b) x(t) = 2tri(%);
(c) x(t) = rect10t; (d) 2rect(l’—0); (e) sin(2mt).

@E=%0E=$©@E=5LWE=80©E=}
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(a) 4 8u(5—1) (b) 33(t+2) (c) ramp(r+1)
8
-—-3
1
0 5 1 -t —2 0 t -1 0 1
(d) (e 4+ —tri(i))
4 5rect(Lf) 3 0 1‘ S,
| t
> |
|
_1 L ‘
=5 0 3 7
() (2) + u(t)—u(r+5)
4 u(t)—u(t—5) _s 1
1
-1
0 5 1
(h) 0] t u(r+4%) ramp (4 —1)
—ramp()u(t—3) 1
3 4 <
Lt ,
| o
_1 ,,,,,,,,,,
G) t rect(t+2)—rect(t—2)
--11
1 3 R
-3 —1 1

Fig. 1.87 Basic signal operations as applied to a CT signal x(¢) = 8u(5 — 1)
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(a) 1+ x(®) (b)
2
0 2 Y 7
(d 4 xo(t
© o)
+ x1) 1
_2 .
1 2 1
-1
-2 0 2 1
() + xo(8)
(e) .
X (1) L
2 \
|
L -2 -1 \
2 | 01 2
\ ! \
\ ‘ \
\ ! ——{-1
l ‘ ,
-2 -1 0 1 2 t

Fig. 1.88 Even and odd signals of CT signals

Fig. 1.89 Basic signal
operation as applied to CT
rectangular signal

4

b J[S(t+4)*8(t*4)]dt
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Fig. 1.90 Triangular wave b x(F)

l _—— e — =
| | |
| | |
I I I LN )
| | |
| | |

o 1 2 3 4 5 6 t
7. What is the average power of the triangular wave shown in Fig. 1.90?

8.

10.

Average power P = % W.

_4d
y(t)—dt[e x(1)]

(a) The system response requires memory. Hence, it is dynamic.

(b) The output depends on the present input only. Hence, it is causal.

(c) The output due to the delayed input is not the same as the delayed output.
Hence, it is time variant.

(d) The weighted sum of the output is the same as output due to weighted sum
of the input. Hence, the system is linear.

(e) Since %(e’” x(t)) is bounded y(¢) is also bounded, and hence the system
is stable.

y&) =x(t)+10x(t —5) >0

(a) The output response depends on present and past inputs. Hence, it is
dynamic.

(b) The output does not depend on the future input. Hence, it is causal.

(c) The output due to the delayed input is same as the delayed output. Hence,
the system is time invariant.

(d) The weighted sum of the output is the same as output due to the weighted
sum of the input. Hence, it is linear.

(e) As long as the input x (¢) is bounded, x (¢t — 5) is also bounded. Hence, y(¢)
is bounded. The system is stable.

y(@®) = x(101)

(a) The system response depends on present, past, and future inputs. Hence, it
is dynamic.

(b) Since the output depends on the future input, it is non-causal.

(c) The output due to the delayed input is not the same as the delayed output.
Hence, the system is time variant.
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(d) The weighted sum of the output is the same as output due to the weighted
sum of the input. Hence, it is linear.
(e) If the input is bounded, the output is also bounded. The system is stable.

t
y(it)=x (ﬁ)

The output depends on present, past, and future inputs.

(a) The system is dynamic.

(b) The system is non-causal.

(c) The output due to the delayed input is not the same as the delayed output.
The system is time variant.

(d) The weighted sum of the output will be the same as output due to the weighted
sum of the input. The system is linear.

(e) If the input x(ﬁ) is bounded, the output is also bounded. The system is
stable.

d
yo) = Ex(t -4

(a) The system requires memory and so it is dynamic.

(b) The output depends on present and past inputs. Hence, it is causal.

(c) The output due to the delayed input is same as the delayed output. The
system is time invariant.

(d) The weighted sum of the output is the same as output due to the weighted
sum of the input. The system is linear.

(e) If the input is bounded, the output is also bounded. The system is stable.

Consider the system shown in Fig. 1.91. Derive expressions for the impulse
response and unit step response of the system. Also determine T, ¢,, t;, f;
for step input.
Ans:

C(s) 10

R(s) s+12

Ris) T 10 C(s)

Q
~
©
~
I

A

1.91 First-order system for Question 13
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Ris) T © 13 C(s)
s) = >
_ s(s+4)
Fig. 1.92 Second-order system for question 14
Impulse response, i (f) = 10e™> u(t)
: 10 —12r
Unit step response, c(t) = o [1 —e ] u(t)
1
Time constant, T = — s.
12
L. 2.2
Rise time, ¢, = 0 =0.1833s.
0.693

Time delay, 7, = STE = 0.05775s.

3.91
Settling time for 2% error tolerance, t; = o = 0.3258s.

14. Consider the second-order system shown in Fig. 1.92. The system is sub-
jected to unit step input. Derive the expression for the output variable.
Determine the time domain specifications T, #,, 5, M, and t,. What is the
resonant peak M, and resonant frequency o, in the frequency domain?

Ans:

c(t) = [1 — 1.2¢* sin(3t + 0.98)]
Rise time, t, = 0.72s
Time constant, 7 = 0.5s
Settling time, #, = 1.955s
Time delay, t; = 0.3857 s

Peak time, 1, = 1.05s

% over-shoot %, M,

Resonant peak, M, =

Resonant frequency, w,

=12.3%
1.0828
= 2.23rad/s

15. Explain why system is tested for impulse and step inputs.
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(a)
= = v
Ky K, K3
M TS M
— )
moxcaillis ns
B, B,
(b)
Ly=>M, i
— 00— MA—
R—>B
i) 5
e(?)
v
S G%;
1
(c) Lz*fz .
o
Ly Ry Ly
[0) | il G 1 Rzé !
J D — 8.1 ?% v_— | %L
A0 M, K, B, M, 1 K
B

Fig. 1.93 a Mechanical translational system. b F-V analogous circuit. ¢ F-I analogous circuit

16. Consider the mechanical system shown in Fig.1.93a. Draw the F-V and
F-I analogous circuits and verify by writing down the dynamic equations
describing the given system and the electric circuit so drawn.

For the mechanical system, the following equations are written:

dv

Mld_tl+Blvl+K2/(vl —vz)dt—i—Kl/Ul(f) = f@)

dv
Mzd—: + Bvy + K3/U2df + Kz/(vz —v)d(t) =0
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For F-V analog circuit, the equations are
di;
Li— +iR + — [ (i1 —ix)dt + — [ i1dt = e(t)

d
d +l2R2+C /lzdt—i-—/(lz—ll)df—o

For F-I analog circuit, the equations are

d
clf % /(e1 — ex)di + —/eldt = e(t)

d
czﬁ+e_2+— ezdt+—/(€2—€1)dt—0



Chapter 2 )
Fourier Series Analysis oo
of Continuous-Time Signals

Chapter Objectives

To represent the periodic continuous-time signal by trigonometric Fourier
series.

To represent the CT signal by polar Fourier series.

To determine the exponential Fourier series and Fourier spectra.

To establish the properties of Fourier series.

To establish Parseval’s theorem and Dirichlet conditions.

2.1 Introduction

Sinusoidal input signals are often used to study the response of the system which
gives useful informations. If a linear time invariant system is excited by a complex
sinusoid, then the output response is also a complex sinusoid of the same frequency
as the input. However, the amplitude of such a sinusoid is different from the input
amplitude and also has a phase shift. The study of input—output if the input frequency
is varied in the range 0 < w < oo is termed as the frequency response of the sys-
tem. The frequency response gives the steady-state response of the system which is
the function of sinusoid’s frequency. The frequency response is usually represented
in graph by its magnitude and phase as a function of frequency. Several methods
have been suggested in literature such as polar plot, Bode plot, and Nichols plot.
Each method has its own merits. If the system is excited by the signal which is a
weighted superposition of the complex sinusoids, then the system output is also a
weighted superposition of the system response to each complex sinusoid. Thus, any
arbitrary excitation signal x () can be expressed as a linear combination of complex
sinusoids. The output is obtained by summing up the responses to the individual
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complex sinusoids using superposition. However, expressing any arbitrary real func-
tion as a linear combination of complex sinusoids is a matter of concern. Baron
Jean Baptiste Joseph Fourier (1768-1830), a French mathematician, represented
an arbitrary signal x(¢) in the form of a linear combination of complex sinusoids
and is called as Fourier Series. In a Fourier series representation of a periodical
signal, the higher frequency sines and cosines have frequencies that are integer mul-
tiples of the fundamental frequency. These multiples are called harmonic numbers.
The study of signals using sinusoids has widespread applications in every branch of
science and engineering. This great mathematical poem which finds wide applica-
tions in modern communication, signal processing, antenna design, and several other
fields was not shown much enthusiasm by the scientific world during its inception.
Fourier could not get the results published for the lack of mathematical rigor. The
vehement opposition came from his fellow country men and great mathematical wiz-
ards Lagrange and Laplace. However, 15 years later, after several tireless attempts,
Fourier successfully published the results in the form of text which is a classic now.

Fourier, born on 21-03-1768 in France, was the son of a tailor. Being orphaned at
the age of eight, Fourier was educated in a local military college where he showed
his brilliance in mathematics. When the French revolution broke out, many intel-
lectuals decided to leave France to save themselves from the growing barbarism.
Fourier escaped guillotine twice. Napoleon Bonaparte, a soldier scientist, captured
power in France after the historical French revolution and stopped prosecution of
intellectuals. The French ruler, who himself was a great scientist, appointed Fourier
chair of mathematics academy in which he served with distinction when he was
just 26 years of age. He was honored as the Baron of the empire by Napoleon in
1809. When Napoleon was exiled by King Louis X VIII, Fourier was identified as a
Bonapartist and was treated with all disgrace. Napoleon came back to power within
a year of his exile from Elba. However he was defeated by the English captain
Nelson in the Battle of Waterloo and the great warrior scientist died in 1821 at St.
Helena Island where he was exiled for the second time. Fourier should have again
become an orphan but for the help of his former student who was now a prefect of
Paris. He was appointed as the statistical bureau of the Seine, and subsequently in
1827 elected to the powerful position of Secretary of the Paris Academy of Science.

While carrying out investigations on propagation of heat in solid bodies, Fourier
was able to establish the Fourier series and Fourier integral. In 1807, when he was
40years of age, Fourier published his results. He claimed that any arbitrary function
can always be expressed as a sum of sinusoids. For the lack of rigor and generality, the
judges who included the great French mathematicians Lagrange, Laplace, Legendre,
Monge, and Lacroix criticized Fourier’s work for the lack of rigor but appreciated
the novelty and importance of the work. Fourier could not defend the criticisms since
the necessary tools were not available to him at that time. However in the year 1829,
Dirichlet proved most of the claims of Fourier by putting a few restrictions (Dirichlet
conditions).
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Fifteen years after the paper was rejected mainly due to the vehement opposition
given by Lagrange and to some extent by Laplace, Fourier published his results in
expanded form as a text which has now become a classic in the area of mathematics,
science, and engineering applications. The great mathematician who laid the foun-
dation for the signal representation and analysis died on 16-05-1830, when he was
63 years old.

2.2 Periodic Signal Representation by Fourier Series

A continuous-time signal x(¢) is said to be periodic if there is a positive non-zero
value of T for which
x(t+T)=x() forallt (2.1)

The fundamental period Ty of x(¢) is the smallest positive value of T for which

Eq. (2.1) is satisfied. Tln is called fundamental frequency f, and wy = ZT—’; is called

fundamental radian frequency. The real sinusoidal signal
x(t) = cos(wot + @) 2.2)
and the complex exponential signal
x(t) = e/ (2.3)

have been proved in Chap. 1 as periodic signals as Eq. (2.1) is applicable in the above
cases. The prerequisite for the representation of any arbitrary continuous signal
x(¢) in Fourier series is that it should be periodic. Non-periodic signals cannot
be represented by Fourier series but can be represented by Fourier transform
which is discussed later.

2.3 Different Forms of Fourier Series Representation

Any arbitrary real or complex x (¢) signal which is periodic with fundamental period
Tp can be expressed as a sum of a sinusoid of period Tj and its harmonics. They are
represented in the following forms of Fourier series:

1. Trigonometric Fourier series.
2. Complex exponential Fourier series.
3. Polar or harmonic form Fourier series.

The above Fourier series representations are described below with illustrated exam-
ples.
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2.3.1 Trigonometric Fourier Series

Consider any arbitrary continuous-time signal x(#). This arbitrary signal can be split
up as sines and cosines of fundamental frequency wy and all of its harmonics are
expressed as given below:

x(1) = ag + Z a, cosnwot + b, sin nwgt (2.4)

n=1

Equation (2.4) is the Fourier series representation of an arbitrary signal x(¢) in
trigonometric form.

In Eq. (2.4), ag corresponds to the zeroth harmonic or DC. The expression for the
constant term @ and the amplitudes of the harmonic can be derived as

1
= — t)dt 2.5
dao T / x(1) (2.5)
To
2
a, = —/x(t) cos nwot dt (2.6)
To
To
2 .
b, = —/x(t)sm nwot dt 2.7)
Ty
To
In Egs. (2.5), (2.6) and (2.7)
1 2
TO = —= —
fo o

Ty = Fundamental period of x(¢) in seconds;
fo = Fundamental frequency in Hz;
wp = Radian frequency in rad/second.

For the detailed derivation of the above equations, one may refer to standard
textbooks. Equation (2.4) is valid iff x (¢) is periodic.

To Prove the periodicity of x (¢)

The periodicity x(t) is proved if x(t) = x (¢t + Tj). Substituting (¢ + Tp) in place of
t in Eq. (2.4), the following equation is obtained:
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oo o0
x(t +Tp) =aop+ Zan cosnwy(t + Tp) + an sin nwy (t + Tp)

n=1 n=1

o0 o0
=ap+ Z a, cos(nwot + nwyTy) + Z b, sin(nwot + nwoTy)

n=1 n=1

[o.¢] o0
x(t + Tp) = ap + Z a, cos(nwot + 2mn) + Z b, sin(nwot + 2mn)

n=1 n=1

o0 o0
=ay+ Z a, cos(nwot) + Z b,, sin nwyt

n=1 n=1

x(t + Tp) = x(t) (2.8)

Thus, it is established, if x(¢) is periodic, at t = Tj every sinusoid starts and repeats
the same over the next 7y seconds and so on. The following points are to be noted
while the coefficients ay, a,, and b, are determined. It can be proved that

1. If the periodical signal x () is symmetrical with respect to the time axis, then the
coefficient ay = 0.

2. If the periodical signal x(¢) represents an even function, only cosine terms in FS
exist and therefore b, = 0.

3. If the periodical signal x () represents an odd function, only sine terms in FS exist
and therefore a,, = 0.

2.3.2 Complex Exponential Fourier Series

By using Euler’s identity, the complex sinusoids can always be expressed in terms of
exponentials. Thus, the trigonometric Fourier series of Eq. (2.4) can be represented
as

o0
x(t)= ) Dyel (2.9)
n=—00
where
1 B
D, =— | x(H)e /“™Mdt (2.10)
Ty

Ty
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Equation (2.9) represents exponential Fourier series and D, is the coefficient of the
exponential Fourier series. For detailed derivation of Eq. (2.10) one may refer to
standard textbooks. It is to be noticed here that Eq. (2.9) is in a compact form and it
is much more convenient to handle compared to trigonometric Fourier series. Further,
determination of the coefficients D, using Eq. (2.10) is much easier compared to ay,
a,, and b, in Eq. (2.4). For these reasons many authors prefer exponential Fourier
series representation of signals. The coefficients D, are related to trigonometric
Fourier series coefficients a,, and b,, as

DO =dap

1
D, = z(an — Jbn) (2.11)
D} = conjugate of D,

1
= E(an + ]bn)

2.3.3 Polar or Harmonic Form Fourier Series

The results derived in Sects.2.31 and 2.32 are applicable whether x(¢) is real or
complex. When x () is real, the coefficients of trigonometric Fourier series @, and
b, are real. In such cases, Eq. (2.4) can be expressed in a compact form as

x(t) = Co + Z C, cos(nwot — 6,) (2.12)

n=1

where C,, and 0, are related to a, and b,, as

Co =ayp

C, =,/al+ b2 (2.13)
-1 (bn>
6, = tan —
a,

Equation (2.12) is also called as compact form Fourier series or cosine form
Fourier series.

The coefficients of compact form Fourier series and exponential form Fourier
series are related as
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Table 2.1 Different form of FS representation their coefficients and their equivalence

FS form Coefficients Equivalence

1. Trigonometric ap = TLO [ x(@)dt ap = Co = Dy

To

(o]
x(t) =ap+ Y. apcosnwpt |a, =

+ b, sin nwot

1 T%fo(t) cos nwot dt ap — jb, = Cpel? =2D,
n= 0

by = TlOfo(z) sinnwot dt ay + jby = Cpe™ %" = 2D%
0

2. Exponential

0 . .
x(t)= Y Dpel"™ D, = r% [ x(2)e=imot gy Cyo=2ID,| n>1
n=-o00 To
3. Polar or compact cosine Co =agp 6, = 24D,
x(1) = C, = /a2 + b2

o0
Co+ Y. Cycos(n™' —6,)

n=1

—1 ( by,
6, = tan~! (E)

Dy =Cy
1
|D,| = |D}| = G (2.14)
4D, =06,; 4D;=—06,

For detailed derivations of Eqs. (2.13) and (2.14) one may refer to standard textbooks.
Table?2.1 gives the different form of Fourier series representation, their coefficients
and their equivalence.

The following examples illustrate the method of determining the Fourier series

(FS) in the above three forms.

Example 2.1 Find the trigonometric Fourier series for the periodic signal shown in
Fig.2.1.

Solution 1. From Fig.2.1, it is evident that the wave form is symmetrical with

2.

respect to the time axis ¢. Hence ag = 0.
By folding x(¢) across the vertical axis, it is observed that x(¢) = x(—¢) which
shows that the function of the signal is even. Hence b,, = 0.

. From Fig.2.1, it is easily obtained that the fundamental period Ty = 4 seconds

and the fundamental radian frequency wy = ZT—Z = 7 radians per second. From

Eq. (2.4) the trigonometric Fourier series is written as

o0
x(t) =ag + Z [a,, cos nwyt + b, sin nwot]

n=1
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A x(t)

«— Typ —»

Fig. 2.1 A rectangular wave of Example 2.1

But

x(t)=1 for —1<t<l1

=—1 for 1<t<3

Substituting ap = 0 and b, = 0, and wy = 5

o0
nrw
x(t) = Zan cos 71‘
n=1

3

2
a, = To x(t) cos (%t) dt
-1
. 1 3
= 3 /cos%t—k/‘(—l)cos%tdt
—1 1

1[,nn+,nn+_nn+,nn]
= — — — +sin — + sin —
- sin > sin > 2 >
4 . nm
= —sin —
ni 2
=0 for n = even
4
= — forn=1,59,13,...

ni
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A x(t)

-2 —1 1 V f t

«—Tp—>»

Fig. 2.2 Saw tooth wave form

4
= —— forn=3,7,11,15,...
nmw

o0
nrw
x(t) = Zan cos 7t
n=1

o 4 nt 1 37Tt+1 Sth 1 77Tt

= —|cos -t — = coS—1+ - COS —1t — = COS —

AR R A R T R R A

Example 2.2 For the periodic signal shown in Fig. 2.2, determine the trigonometric
Fourier series.

Solution 1. From Fig.2.2, Ty = 2 seconds and wy = 2” = mr. The signal is sym-

metrical with respect to time axis and hence ay = O Also, from Fig.2.2, it is
evident that x(#) = —x(—1) and therefore the signal is an odd signal and a, = 0.
The Fourier series for such a signal is therefore

o0
x(t) = Z b, sin nwyt

n=I

2. The coefficient b, is determined as follows:

xt)=t —-1<tr<l
1

b, = — t sin nwot dt
Ty

1
= / tsinnmt dt
-1
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~

—dr —2r 0 2w dr

Fig. 2.3 Saw tooth signal of Example 2.3

The above integral is solved using the infinite integral

/udv:uv—/vdu

Letu =1t,du =dt

. 1
dv = fsmnzrtdt; v = ——cosnmt
nm

1

1
t 1 .
b, = | ——cosnmt + ﬁ[smnm]
nw -, n’m

2 . .
= ——cosnm + [sinnm 4 sinnr]

nmw n2m?

since sinnm = 0,

b, = ——cosnm
nw

o0
x(t) = Z b, sinnwt

n=1

2 1 1
x(t) = — |sinwt — —sin2xt + = sin3wt 4 - - -
b4 2 3

Example 2.3 Find the trigonometric Fourier series for the signal shown in Fig.2.3.
(Anna University, December 2006)

Solution 1. FromFig.2.3, Ty = 2w and wy = 2T—7Z = 1. The signal is neither odd nor
even. Further, it is not symmetrical with respect to the time axis. So the coefficients
aop, a,, and b, are to be evaluated.
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2.

t 1
x(t) = — 0<t <2m | for aramp signal the slope is —
2w 2

1 2 ¢ t2 27
ag = — —dt = — | —
o Jo 2m 4r2 |2 |,
1
an = —
L)
2 2
a, = — — cosnt dt
T() 0 2w
1 2
= — tcosntdt
27'[2 0 "

Letu =t;,du =dt

sin nt
dv:/cosntdt; V=

n
an=uv—/vdu

1 [tsinnt cosnt]*™
- +

272 n n?

0

1
=—[04+0+1-1
27r2[+ + 1

a, =0
(This is due to half wave symmetry).
2 2
b, = — — sinnt dt
TO 0 2w
1 tcosnt  sinnt ¥ .
= — |- + [using u-v method]

272 n n? |,

1 2
= — | ——cos2nn
252 n
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~Y

=21 -1 O y 2 31 4

Fig. 2.4 A full wave rectifier

1 &1
x(t) == — — sinnt
® 2 Z nmw
n=1
Example 2.4 Determine the trigonometric Fourier series representation of a full

wave rectified signal.

(Anna University, April 2005)

Solution 1. The full wave rectified signal is shown in Fig.2.4. Here Tp = 7 and
2

woy = Ty =2.
2. The signal is not symmetrical with respect to time axis. Therefore, ay is calculated
as follows:
1 T
ag = — / x(t)dt
To Jo
where

x(t) =sint 0<t<m

1 b
aoz—/ sint dt

T Jo

1 k4

2
:—[—cost] = —
T (U

2
apg = —
g
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3.
x(t) = x(—1)

The given signal represents an even function and therefore

b, =0
4,
T
a, = — / sint cos nwot dt

T Jo

T
= — f sin f cos 2nt dt
T Jo
Using the property,

1
sin Acos B = 3 [sin(A + B) + sin(A — B)]

the above integral is written as

I 1 [~
a, = —/ sin(2n + 1)tdt+—/ sin(1 — 2n)t dt
0 T Jo

T
1 cos@n+ D" 1 cos(1 —2n)t "
x| @n+ D ]0 ;[_ (1 —2n) L
L[ cos@n+ D +1 1 cos(l —2n)m + 1
“xl @n+D } ;[_ (1—2n) ]
1 M1 — (= 1)+ +1_(_1)1—2ni|
| @i+ (1 —2n)
17 2 2
ZE_(2n+1)+(1—2n)]
2 [1-2n+2n+1
T (1 — 4n?) ]
3 4
= (0 —4n?)

(3] 2 + 4 i ! cos 2nt
X = — —_ _— n
Tom e (1 —4n?)

Example 2.5 Obtain the Fourier series expression of a half wave sine wave.

(Anna University, December 2007)
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~V

27 31 41

«— Ty=2m—»

Fig. 2.5 A half wave rectified sine wave

Solution 1. Ty = 27 and wy = ZT—’; =X =] (Fig.2.5)

x(t) =Asint 0<t<m

=0 T <t<2mw
1 T
ag = — Asint dt
27 0
A T A
=—[—c0st] = —
2r 0 b4
A
ap)g = —
T
2.
2 (.
a, = — Asintcosnt dt
27 0
AT [T, T
= — / s1n(1+n)tdt+/ sin(l1 — n)t dt
27 1 Jo 0

2t d4+n  (dA-n) |

A [1—=cos(1+nm 1—cos(l—n)m
2nl (+n (1—n) }
AT 2 2 24
ZE_(1+n)+(1—n)}=n(1—n2)

AT cos(I+n) cos(l—n)t]”

2A
(1 —n?)

n#1

a, =
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Since for n = 1, a,, = 00, a; is calculated as follows.
Forn =1,

1 T
a = — Asintcostdt
2 0
A T
= — sin 2t dt
2 0
A P
= E[_ cos2t|; =0
a) = 0
3.
2 (M
b, = — Asint sinnt dt
2 0
A B T
= — / {cos(1 — n)t — cos(1 + n)t}dti|
2 LJo
A [sind—m)t  sin(l14+n)]"
21| (1—=n) (I+n) 1o
A [sin(1 —n)wr —sin0  sin(1 + )7 + sin0
2w | (1 —=n) (1+n)
b,=0 n#1

For n = 1, by = oo and therefore b, is calculated as follows:

T

2
b= — Asintsint dt

2

AT,
= — Asin“ t dt

T Jo

A ™ A sin2t "
= — (I —cos2t)dt | = — |t —

27 0 27 2 0

A
2

by =

189
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®) A + A t+i 24 t
x(t) = — 4+ —sin ————cosn
T 2 =l —n?)

Example 2.6 Determine the Fourier series representation of the signal x () = 2 for
all values of “¢” which exists in the interval (—1, 1).

(Anna University, May 2007)

Solution 1. For the given signal 7y = 2 and wy = ZT—’Z =7.

1/12 1737 1
ay = = todt == | = ==
2/, 23], 3

ag =

W | =

2 1
2
a, = Ef t“cosnmtdt

-1

1
= / 2 cosnmtdt
—1

Applying [ udv = uv — [ vdu twice for the above equation, we get

,sinnmt 2t 2 !
a, = |t + ——cosnmwt — —— sinnwt
—1

nmw n2m? n3m3
sinnmw 2 2 . sinnmw
= +ﬁcosnn—ﬁsmnn+
nmw nemw n’mw nmw

+ 2 2 i
——— cosnmw — —— sinaw
n2m? n3m3

sinnt =0 foralln

4
a, = ——— COSAT
n2m?
4
a, = (_l)n
n2m?

3. From Fig.2.6, it is evident that x (¢) is an even function and therefore b, = 0.
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A X(f)

—— — — — — — =

e

Fig. 2.6 Representation of x(¢) = 12

1 4 (=)
X(t)=§ —22:: )cosnm

4 1 1
x(t) = § o |:—cosnt~|— ZcosZm - §cos37rt+...i|

2.4 Properties of Fourier Series

2.4.1 Linearity

Let x;(#) and x,(¢) be two periodic signals with the same period Ty. Let D,; and
D,» be the Fourier series coefficients in complex exponential form. Let x(¢) be the
composite signals of x;(¢) and x,(¢) which are related as

x(t) = Ax1(t) + Bxa(t) (2.15)

where A and B are constants.
From Eq. (2.10)

1 )
Dy = — / X1 (e dy (2.16)
To

1 A
Dy = — / xp(t)e " dt 2.17)
Ty
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Let D,, be the Fourier series coefficient of x ()

1 ~inent
D, = — [ x(t)e /"'dt (2.18)
To
To
1 .
= / [Ax{(t) + Bx,(t)]e /"' dt (2.19)
0 ’
1 — jnawot 1 — jnwot
= — [ Axi(t)e™7""dt + — | Bxy(t)e /"'dt (2.20)
Ty Ty
To To
D,=AD,  +BD,, (2.21)

The Fourier series coefficient of the composite signal x (¢) is the linear com-
bination of individual signal.

2.4.2 Time Shifting Property

According to time shifting property, if the periodic signal x (¢) with fundamental
period T is time shifted, the periodicity remains the same and the FS coefficient
is multiplied by the factor e=/"*o%,

Proof Let x(t) be time shifted by #y. Now the time shifted signal is x(# — #). The
Fourier series coefficient of x () is

1 .
D, = — /x(t)e_”w”tdt (2.22)
Ty
Ty

Let D, be the FS coefficient for the time shifted signal.

1 )
D, = —/x(t — ty)e /" dt (2.23)
Ty
Ty
Substitute T = (# — fy) in the above equation
1 .
Dy = — | x(r)e /"0THlgy

To

Ty

. 1 j
— e_j’lwolo?/x(f)e_]nwordt (2.24)
0
Ty
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D,o = e "™ p, (2.25)

2.4.3 Time Reversal Property

According to time reversal property, if the signal x(¢) is time reversed, the
periodicity remains the same with the time reversal in the FS coefficient.

Proof Let x(t) be the signal with period Tj and the FS coefficient D,,. If x(¢) is time
reversed, the signal becomes x(—t). Let D_,, be the FS coefficient of x(—1).

1 .
D, = — | x(=t)e /"'dt (2.26)
Ty
Ty
Let us substitute 1 = —¢
1 —j(—=n)wyt
D,=— [ x(t)e™’ 0T (—dT) (2.27)
Ty
To
1 e
=—— [ x(v)e /TG (2.28)
Ty
To
D,=-D_,

2.4.4 Time Scaling Property

According to time scaling property if x (¢) is periodic with fundamental period
Ty, then x (at) where a is any positive real number, and is also periodic but with
a fundamental period of 2.

Proof Let D, be the FS coefficient of x (at).

1 )
Dy = — | x(at)e /"™ dt (2.29)
Ty J

0

Letatr=r1

g = —— x(r)e‘-’"“’“ﬁdt
ClT()

Ty
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1
D, = =D,/ (2.30)
a

2.4.5 Multiplication Property

According to multiplication property, if x;(¢) and x,(¢) are the two signals
having the periodicity 7, then the Fourier coefficient of the product of these
two signals is given by

(e ]
Dy= ) AiBu

I=—00
where A; and B, are the FS coefficients of x1(¢) and x,(¢) respectively.
Proof Let
x(1) = x1(1) X x2(2)

1 .
D, = — /x(t)e_-’”‘”“’dt
Ty
To

S
I

1 / L1 (1) x xa()] 7" di
To
To

l=—00

1 s A .
T |: Z Aleﬂ‘”"’:|x2(t)e_f”“’°'dt
0
Ty

nd 1
= § A— f X2 (1)e I Deot gy
Ty
[=—00

To

o0
D, = Z A/B_, (2.31)

I=—00

2.4.6 Conjugation Property

According to this property, the FS coefficients have conjugate symmetric
property

D_, = D:
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Proof
o0
x(t) = Z D, /"'
n=—0oo
x*(t) = |: Z Dnej”‘“‘)’i|
n=—00
— Z D*e—j}’la)ol
Let!/ = —n,
o0
x*(t) = Z D* el!o! (2.32)
|=—00

Thus during conjugation, FS coefficient becomes conjugate and time reversed.

2.4.7 Differentiation Property

If a periodical signal x(¢) is differentiated, the FS coefficient is multiplied by
the factor jnw.

Proof

oo
x(t)= Y Del

n=—0o

dx(t) > :
— . Dn Jwont
dt n;w]a)on e
- Z D} i@t (2.33)

where D,‘, = jwonD,,. Thus, when the signal x (¢) is differentiated, its FS coefficient
is multiplied by the factor jwgn.
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2.4.8 Integration Property

According to the integration property, the FS coefficient of x () when x(#) is

integrated becomes
1

Jwon

D,

Proof
o0
x(t) = Z Dne]nwm

n=—oo
Integrating both sides we get

t t

/ x(t) = f > Dye"dt

—00 —00

(2.34)

where D,% = ja+nD"' Thus, when the signal x(¢) is integrated, its FS coefficient is

divided by the factor jwon.

2.4.9 Parseval’s Theorem

According to Parseval’s theorem, the total average power in a periodic signal
is the sum of the average powers in all its components which is the sum of the

squared value of FS coefficients.

Proof The average power in a periodic signal is given by

P 1f| > dt
= — X
Ty
To
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1 *
P = TO/X(I) [x(t)]* dt
To

1 o :
TO/x(r) [ > Dnej“"’”’:| dt
To

o0 1 o0
= > D:;T0 / x()e I dr = Y~ DD,
n=—0oo TO n=—0oo
o0
P= %" |D, (2.35a)
n=—0oo
For areal x(t), |D_,| = | D,|
P=Dj+2) |D," (2.35b)
n=1
For a trigonometric Fourier series,
1 o0
2t 2
P=Ci+; >oc (2.35¢)

n=I1

Example 2.7 Find the Fourier series representation for the signal

x(t) = 3cos (%t + %)

and hence find the power.
(Anna University, April 2008)

Solution
b4 b4
x(t) = 3cos (Et + Z>
3 [ej(n/21+7r/4) +efj(%t+7r/4)]

2

3 . j@/2) 3 ; ;
_ejﬂ/4e t + _e—]n/4e—]n/2t

Compare this with complex exponential Fourier series
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o0
. T
x(t) = Z D,e/"™!  where wy = 5

n=—oo

oo
E Dnejn%t

n=—0oo

_ir T
= D_je I3t +D1€]ZZ

D 3 % 3[cosn—i—’sinﬂ]
= —€ = — —_ —_
) 2 [y Ty

3 ) 3
Di=——=1+j); |Dil=

272 2
3 3
Di=——(1—j) |D_yl=2
1 Zﬁ( 7 ID—yl >
00 2 2
3 3 9
n=—oo

Example 2.8 Find the Fourier series of the following signals. Also find the power
using Fourier series coefficients.

(a) x(t) = 2cos3t + 3sin2t
(b) x(t) = cos’ ¢t

Solution (a) x(¢) = 2 cos 3¢ 4+ 3sin 2t

1.
2 2
wn =3 To=—=—F
wo1 3
2 2w
Wy = 2; Tp=—=—=m
w2 2
T01 _ 2 . 2
T02 - 3 B 3
T() = 3T()1 = 2T()2 =2
27 2w
a)O = —_——= —— =
T() 2

2. Using Euler’s Formula, x (#) can be expressed as
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j3t —j3t 3 j2t —j2t
x(0) = (" + e ) + (e —enT)
J

=e—j3t+j§e—j2t+ej3t _jgesz

x(t) can also be expressed in complex exponential form as

o0
x(t) = Z D, e/t

n=-—00
0

— § : Dnejnl
n=-—00

Equating the two equations for x (), we get

o0
e_j3;+j%e—j2t+ej3t_j%ejzt: Z Dnejnz

Putting n = £3
D;=1 and D_;=1

Putting n = 42

(O8]

3
D2=—j§ and D_,=j—

[\

All other D, = 0.

Power P = |D_3|> + |D_s|* + |D3|* + | D,|?

— 4 (2 2+12+ EANE
o 2 2] T2

x(t) = cos’t

(b) x(t) = cos? ¢

1
=1 2t
2[ + cos 2¢]
a)0=2
1 1[612t+e—12t] o
) = = - — D j2nt
X0 =5+ 5 5 _Z e

Forn =0,

199
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4 x(f)=cost

~V

Fig. 2.7 Signal of Example 2.9

Forn = +1,

1 1
D[ = — and D_| = —
4 4

) 5 , 1 1 1 3
POWCrP:DO"‘D—l""Dl:Z"‘E‘f‘R:g

Example 2.9 Find the exponential Fourier series for the signal shown in Fig.2.7.
(Anna University, December 2007)

Solution

x(t) = cost
To = 10

2
wy = i =027
To

Ty
1 .
— / x(t)e /™M dy
To
0

/2
1 )
= — / coste I gt
10
—/2
/2

— % / (ejt +e—jt)e—j0.2nﬂtdt
—/2

S
I
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/2 /2
— % / ej(l—.2nr[)tdt + / e—j(l+42nn)tdt
—/2 —m/2
_ i 1 [ j(l—lnn)t]ﬂ/z _ 1 [ —j(1+.2nn)t]ﬂ/2
= e E———— — e )2 N e —/2
20 | j(1 — 2nm) j(d + 2nm)

j%(l—,2n7r) _ e—jn/2(l—.2nn)]

1 1
20 {j(l — 2nm) [

B 1 [e—jrr/2(1+.2nrr) _ e—jn/2(1+.2nrr)]
T+ 2n7)
! ! in (1 — 2nm) + — in Z(1 + 2n7)
= — | ——S1n — — LZNTT — S1Nn — LZNTT
10| (1= 2nm) "2 A+ .2nm) "2

1
= 00 =08 [(14 .2n7) cos 0.1n7” + (1 — 2n7) cos(0.1n7?)]

_ 0.2cos0. lnw?
(1 = 0.04n272)

00
x(t) = Z DnejO.Zmlt

n=—00

n

Example 2.10 Consider the wave form shown in Fig.2.8. Determine the complex
exponential Fourier series.

A X(t)

~Y

Fig. 2.8 Signal of Example 2.10



202 2 Fourier Series Analysis of Continuous-Time Signals

bie 2

Solution 1. From Fig.2.8, Ty = 2 and wy = 2T—0 =L =7,
2.

Ty
1 )
D, = — /x(t)e”""’“tdt
To
0

1

2
— l/e—jnﬂtdl 1/ —]nmdt
2
1
1
0

0
1 1 : 2
_ —jnmt _ —jnmt
) 7] 2(— JnJT) [T,
— 3 1 = [e—jnn — 1= e—jnn2 +e—jmr]
—jn
— _2;”-[‘] [2e—jnrf _ 2] [ e—jn?‘rz — 1]
1 )
_ _ ,—jnmw
- jnm [1 ¢ ]
1
= ]n_r[ [1 —cosnm]

where 7 is an odd number.

x(t)= Y D™

n=—00
pR— 1 .
) = — Jj@m+1)mt
x(1) i m:Z_oo—zm+le

where m is any integer which will be equivalent to n being odd integer.

Example 2.11 Let

be a periodic signal with fundamental period 7Ty = 2 and Fourier coefficients a;.
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(@)
Ax(t)
1
-5 -4 -3 -2 -1 0 1 2 3 4 5 't
b
(b) N
d
1
-4 [=3 |2 -1 o 1 2 |3 4 5 f
_l I

Fig. 2.9 a A triangular wave and b Derivative of triangular wave

(a) Determine the value of ag.
(b) Determine the Fourier series representation of %.

(c) Use the result of part (b) and the differentiation property of FS to help determine
the Fourier series coefficients of x(¢).

(Anna University, May 2008)

Solution (a)
t 0<tr<l1
x(1) = -
2—t 1<t<?2

The above equation represents a triangle in the given time interval and the peri-
odical signal with period 7Ty = 2 is shown in Fig.2.9.

2w
wy=—=17
0 T

The Fourier series coefficient a is determined as follows:
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(b) Differentiating the given x(¢) we get

dx(t)_l 0<tr<l1
dt | -1 1<t<2

This is the square wave and is shown in Fig.2.9b. Figures2.8 and 2.9b are
the rectangular waves with the amplitude and periodicity. The exponential FS
coefficient of Fig. 2.8 has been determined as

2
D, = —— where n is an odd integer
jnw

2
= am+ n where m is any integer
jQ@2m i

dx(t) 1 ol Qm+ Dt
+1)

. 2«
= 1) = —
dt *) NEL m;m (2m

(c) x(¢) in the Fourier exponential form can be written as follows:

oo
x(t)=Y_ Dye/"™

n=—0o0
dx (1)
dt

= > (jnwo)D,e"

n=—0o

From the result derived in part (b),
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A x(t)
2
i i
I I
I I
I I R
-1 -10 -9 -1 0 1 9 10 11 t
Fig. 2.10 Signal of Example 2.12
Jjnwy Dy = ——
jnw
D — -2
n — nzﬂz

where 7 is an odd integer.

o0
x(t) = Dy + Z D, el

n=—0oo

1
DOZ(IOZE

n=2m+1  wherem is any integer

1

1 2 &
)= — — — = iCm+Dmt
X0 =5-— m;w L

Example 2.12 For the signal shown in Fig. 2.10. Determine the exponential Fourier
series.

Solution

To = 10
2 T

5
1

10
- 2
D, = — / Qe /M dt = — / e IS dt
T 10
-1

-1

wy =



206 2 Fourier Series Analysis of Continuous-Time Signals

x(?)

-3 -2 —1 0 1 2 3

~V

Fig. 2.11 Periodic train of impulses

L3 e
Snwjn -1

Z_L [e*/‘%"_eﬂ”s’]
jmn
2 T
Dnz—sin—n for alln but n # 0
n 5
Forn =0,
D ZSin%
0= ,205 =
D —2—04
0=3 =
2 ad 1 T —jmnt
x(t) =04+ — —sin —ne” 5
® nn;wn 5

Example 2.13 Determine the exponential and trigonometric Fourier series of a train
of impulse with periodicity Ty = 1. Verify the exponential and trigonometric coeffi-
cients relationship (Fig.2.11).

Solution
To=1 and (wy=27

To determine the exponential FS coefficients

Ty
1 . 1 [ .
D,=— | §(t)e /"'dt = —/ 8(t) e /M 4t
To ) To Jo1p2

1

Over this interval, D, = T
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1
D,=— =1
Ty

Dy =1

o0
x(t) = Z D, e/t

n=—00

oo
x(t) = Z ej2r[nt

n=—0o0

To determine the trigonometric Fourier series

1 [T
= — §(t)dt
ap T/o @)
1

ag=— =1
0 T

Since the train of impulses is an even signal b, = 0.

To
a, = — 8(t) cos nwpt dt
To Jo
2
= — = 2
Ty

[0}
x(t) =ayp+ Zan Ccos nwyt

n=1

x(t) =1+ ZZCOSZnnt

n=1
Cl():Do:l

a, 2
Dn=_=_=1

2 2

Thus, the relationships between trigonometric and exponential Fourier series coeffi-
cients are verified.

Example 2.14 For the periodic signal x(t) = e~' with a period Ty = 1 second, find
the Fourier series in
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A x(t)

~V

Fig. 2.12 Exponentially decaying periodic signal

(a) Exponential form,

(b) Trigonometric form,

(c) Polar form, and

(d) Verify the relationships of FS coefficients.

Solution (a) Exponential Fourier series

T =1
2

wy = il =27
To
1 [h .

D, = — x(t)e /"™ dt
To Jo

1
— / eftefjHZnIdt
0

1
— f e—(l+]27'rn)ldt
0

_ _(1 - 1.2 ) [e—(H—jZ;Tn)t](l)
j2mn
= a7 1.2 ) [1 — e~(+72m)]
j2rn
1 .
=dramm e Letr=1]
j2mn
__oe2 o 0632
" (14 j27n)’ Y V1t 4ntn?

Dy = 0.632
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o0
x(t) = Z D, el

n=—0o0

j2mnt

oo
1
x(t) = 0.632 E —————1o
we—eo V(1 + 472n2)

(b) Trigonometric Fourier series

ag = — x(t)dt

=(l—-e)
ag = 0.632
2 h
an = — x(t) cos wont dt
T() 0
1
= 2/ e~ cos2mnt dt
0
Using the property
fb Wt cos bt di ¢“ (acosbt 4+ bsinbr) ]’
e cos =
a (a* +b?) .
- e [~ cos2mne(e™) + 72 '2]‘
o= (1 + 472n?) —cosimntle ")+ e Zmnsinimn N
2
T U +4n2n2) [e7! {—cos2mn + 2mnsin27n} + 1]
2n
2

_ _ -1
= Qadntyli—¢
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1.264

T 0+ annd)

To
2
b, = x(t) sin wont dt

T
0

1
= 2/6” sin 2 nt dt
0

Using the property

b 1 b
/ e sinbrdf = —— {e“’ [a sin bt — b cos bt]}
p (a? + b?)

a

we get,

1
w = ———————1¢ ' [—sin2mnt — 2mwn cos 2w nt }
(1 + 4m2n?) { [ ] 0

2
- (1 +4n2n2) [—e ' (sin27n + 27n cos 27rn) + 27n)
drn R 71)
=TT o e
(14 472n?)
_ 2.537n
"1 422

oo (o]
x(t) =ap + Zan cos wont + an sin wont

n=1 n=1
x(t) =0.632 + 1.264 —cosZnnt
® Z 1 +4m2n? )
+2.537 Z sin 27 nt

47tn
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(c) Polar form Fourier series (cosine form FS)

o0
x(t) =Co+ Z C, cos(wont — 6,)

n=1

C():ao

C, =,/a2+ b2
6, = tan —
ay

Cp =0.632

_ J1.6+647702)

C, = :
(1 +4m%n?)

c 1.265
"V A2

| 2.537n 1
6, = tan =tan ' 27n =
1.264
> V1.6 + 647212
x(t) = 0.632 + nX:]: m cos[2mnt]
o0
1.265
x(t) =0.632 + Z —_cos2mnt
= V(1 +4m2n?)
(d) 1. ap = C() = DQ =0.632
2.
C 1.265 0.632

|Dn| =— = =
2 21+ 47202 1+ 4n2n?

211
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C, =,/a’+b?

_/(1.264)% + 2532722
(1 4 472n2)
V1.6(1 + 472n2)
(1 +4nn?)
1.265

V(1 +4n2n?

2.5 Existence of Fourier Series—The Dirichlet Conditions

The continuous Fourier series of the signal x (¢) is represented in the following form:

o0
x(t)= Y D™ (2.36)
n=—00
where
T[) .
D, = — x(t)e > dt (2.37)
Ty Jo

and n represents the harmonic member.

If the integral in Eq. (2.37) diverges, CTES cannot be found for x (¢). If certain con-
straints are put on x(¢), Eq. (2.37) converges and the conditions are called Dirichlet
conditions. The Dirichlet conditions are

1. The signal x(¢) must be absolutely integrable over the time interval #y < t <
to + Tp. The above condition implies that

to+To
/ |x (1) dt < o0 (2.38)

fo

2. The signal x(¢) must have a finite number of maxima and minima in the time
interval tp <t < ty + Tp.

3. The signal x(#) must have finite number of discontinuities in the time interval
o<t <ty+ Tp.
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2.6 Convergence of Continuous-Time Fourier Series

The arbitrary signal x(¢) can be expressed by FS in Eq. (2.4) if it is periodic. It does
not mean that every periodic signal can be expressed by FS. When the series uses
a fixed number of terms, then it guarantees convergence. If the energy difference
between the signal x(¢) and the corresponding finite term series approaches zero as
the number of terms approaches infinity, such a series is said to be convergent in the
mean. The Fourier series of x () converges in the mean if it has a finite energy over
one period. This can be expressed as

E= | |x(®)*dt < o0 (2.39)
Ty

When condition (2.39) is satisfied, the Fourier series converges in the mean and also
guarantees that the Fourier coefficients are finite.

2.7 Fourier Series Spectrum

The plot of Fourier series coefficients with respect to w is called Fourier series
spectrum. In exponential Fourier series and in polar Fourier series, the Fourier series,
the FS coefficients D, and C,, are complex. Thus, these coefficients have magnitude
and angle. Thus, the plots of D, versus w and ZD,, verses w are called exponential
Fourier spectra. Similarly the plots of |C,| versus @ and ZC, versus w are called
trigonometric Fourier spectra. The following examples illustrate the above methods.

Example 2.15 For Example 2.14, plot the exponential Fourier spectra for the peri-
odic signal x(¢) shown in Fig.2.12.
Solution The exponential Fourier series coefficient of Fig.2.12 has been derived as

0.632 0.632 .
= / —tan~ 2mn

T 1+ j2mn Jlfanin

n

Forn =0,
Dy = 0.632/0°
Forn = +1,

Dy =D_| = 0.1£ + 81°
D,=D_,= 0.05Z F 85.5°
Dy =D_3=3.35x%x 10724 F 87°
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Aanl
a
@ 0.632
1 .1
. .05
0 025.0335 N N .0335 025 0
0168 . . . . 0168 0144
o T Y ] I A Y A e
-7 -6 -5 —4 -3 =2 -1 0 1 2 3 4 5 6 7 n
—-n
®) 0 e
88.7 g5 41Pn
88.2
87.7°
87" 185.5°
{ l81°
-7 -6 -5 -4 -3 -2 -1 |0 ll 2 |3 4 5 6 7'”
—n
81 _g55 8
—87 .
—87.7_8820
_88'5—88.7"

Fig. 2.13 Frequency spectra of Example 2.15. a Magnitude spectrum and b Phase angle spectrum

Dy=D_4=25%x10"2L£F87.7°

D5=D_5=2X

1072/ ¥ 88.2°

D¢ = D_¢=1.68x 1072£ F88.5°
D;=D_; =144 x 1072/ F88.7°

The magnitude spectrum of D, is shown in Fig.2.13a and the phase spectrum is
Fig.2.13b. Note: @ = nwy = 27rn or n = 32 which is a function of frequency.

Summary

1. Any arbitrary periodic signal x(¢) can be represented in the form of a linear
combination of complex sinusoids. Such a representation is called Fourier series.
The higher frequency sines and cosines have frequencies that are integer multiples

of the fundamental frequency.

(a) Trigonometry form.

. The Fourier series can be represented in any one of the following forms:
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(b) Complex exponential form.
(c) Polar or harmonic or cosine form.

The coefficients of the above forms have definite relationships between them.
3. The Fourier series possesses the following properties:

(a) Linearity,

(b) Time shifting,

(c¢) Time reversal,

(d) Time scaling,

(e) Multiplication,

(f) Conjugation,

(g) Differentiation, and
(h) Integration.

4. Parseval’s theorem on Fourier series states that the total average power in a peri-
odic signal is the sum of the average powers in all its components which is the
sum of the squared value of Fourier series coefficients.

5. Dirichlet showed that if x () satisfies certain conditions, the Fourier series of x (t)
is guaranteed. These conditions are called Dirichlet conditions.

6. The magnitude and phase angle of Fourier series coefficients plotted versus fre-
quency o are called Fourier spectra of the signal x(¢).

7. The exponential form of Fourier series representation is better preferred compared
to other forms because it is more compact and the system response is also simpler.

Exercises

I. Short Answer Type Questions

1. What is a Fourier series?
Any arbitrary periodic signal x(¢) can be expressed as a sum of sinusoids and
all its harmonics. Such an infinite series is known as Fourier series.

2. What are the different forms of representing Fourier series?
The different forms of representing Fourier series are

(a) Trigonometric Fourier series.
(b) Polar (compact or cosine form) Fourier series.
(c) Exponential form Fourier series.

3. Give mathematical expression for trigonometric Fourier series?

o0
x(t) = ap + Z (a,cosnwyt + b,sinnwyt)

n=1
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where

1
= — t)dt
ag TO/X()
To

2
a, = — | x(t)cos nwytdt
Ty

To

2
b, = —fx(t)sin nwotdt
Ty
Ty

ap, a, and b, are called the coefficients of trigonometric Fourier series.

4. What is the effect of symmetry in trigonometric Fourier series?
If x () has an odd symmetry, a, = 0. If x(¢) has even symmetry b, = 0. If x(¢)
is symmetrical with respect to the time axis, agp = 0.

5. What is half wave symmetry?
If the periodic signal x(¢#) when shifted by half the period remains unchanged
except for a sign, the signal is said to be half wave symmetry. Mathematically,

it is expressed as
L )
x|t——)=—x
2

For the signal with half wave symmetry, all the even numbered harmonics vanish.
6. Give the mathematical expression for the cosine Fourier series.

o0
x(t) =Co+ Z C,cosn(nwyt — 6,)

n=1
where
C() =
C, =,/a2+b?
b
6, = tan ' =
ay

7. Give mathematical expression for the exponential Fourier series?

x(t)= Y Dyel

n=—00

where

1 .
D, = — | x()e /" dt
Ty

Ty
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8.

10.

11.

12.

13.

How the coefficients of exponential Fourier series are related to the coeffi-
cients of trigonometric and cosine Fourier series?

D0=a0=C0
1 .
D, = E[an_/bn]
1
|Dn| = _Cn
2

. Why exponential Fourier series is preferred to represent the Fourier series?

The exponential Fourier series is more compact and the system response to
exponential signal is simpler.

What do you understand by Fourier spectrum?

The Fourier series expresses a periodic signal x(¢) as a sum of sinusoids of
fundamental frequency w( and their higher harmonics 2wy, 3wy, ..., nwy. Cor-
responding to these frequencies, the amplitudes and phases are determined. The
plot of these amplitudes versus n which is proportional to nw is termed as ampli-
tude spectrum. The plot of phase angle 8, versus n is called phase spectrum.
What do you understand by existence of Fourier series?

For the existence of Fourier series, its coefficients should exist. The existence of
these coefficients is guaranteed iff x(¢) is absolutely integrable. In other words

/|x(t)|dt < 00

Ty

What do you understand by convergence of Fourier series in the mean?
The periodic signal x (#) which has finite energy over one period guarantees the
convergence in the mean of its Fourier series. Mathematically, it is expressed as

/lx(r)lzdt <0
To

What are Dirichlet conditions?

Fourier at the time of presenting his papers could not successfully defend the
existence Fourier series which is infinite. He could not also give convincing reply
when there is discontinuities in x (¢). The answers to these questions came from
the great mathematician Dirichlet in the form of certain constraints. These
constraints are called Dirichlet conditions and they are

(a) The function x () must be absolutely integrable.

(b) The function x (¢) should have finite number discontinuities in one period.

(c) The function x (¢) should contain only a finite number of maxima and minima
in one period.



218 2 Fourier Series Analysis of Continuous-Time Signals

14. What do you understand by Parseval’s theorem as applied to Fourier series?
According to Parseval’s theorem, the power of the periodic signal is equal to the
sum of the powers of its Fourier coefficients

1 o0
P=C2+ 3 Z C? (For cosine FS)

n=1

o0
P = Z |D,|? (Exponential FS)

n=—0o0

o0
P =D+ 22 D, (x(t) = real)

n=I

15. What are differentiating and integrating properties of Fourier series?
If a periodical signal x(¢) is differentiated the Fourier series coefficient gets
multiplied by the factor jnw,. Suppose D, is the Fourier series coefficient of x (¢).
Then the Fourier series coefficient of d;ﬁ’ ) is JjwonD,. This is the differentiation
property of Fourier series. If the periodic signal x (¢) is integrated, then the Fourier
series coefficient gets divided by jwgyn. If D, is the coefficient of exponential

Fourier series of x(¢), then the Fourier series coefficient of f x(t)dt is ja%nnD,,.
To

This is called the integration property of Fourier series.

I1. Long Answer Type Questions

1. Determine the trigonometric and exponential Fourier series representation
of the signal x (¢) shown in Fig. 2.14?

T T 2r 2m
=1; wy = — = —
0 0 T T
“x(t)
1
e A T S A G > B G Y B

Fig. 2.14 Signal x(¢) for Problem 1
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(a) Trigonometric or quadratic Fourier series.

T
do = —
'T T
b, = 0 since x(¢) is even
2 . (nnr)
a, = —sin ( —
nmw T
T 231 . /nnt 2t
N=—=+4+—>) - — —
x(1) T+rr2nsm( T )cosn T

n=1
(b) Exponential Fourier series.
T nwt
D, = —sinc (—)
2 T
o0

x(t) = Z %sinc (m;r> eInF

n=1

2. Consider the following signal:

1 2
x(t) = cos (Et + 30°) + sin (gt + 60°)

Determine (a) whether the signal is periodic, (b) find the fundamental period
and frequency, (¢) what harmonics are present in x(¢), (d) Determine the
coefficients of exponential Fourier series, and (e) Determine the power of the
signal using Parseval’s theorem.

(a) The signal is periodic.
(b) The fundamental period 7y = 307 and the fundamental radian frequency

woy = 13
(c) Fifth and sixth harmonics are present.
(d
1 . 1 .
Ds=[V3+jl; Ds=V3-]]
1 1
D= 7[V3—jli Dog=(Iv3+]]
(e)
P=DsP + 1D+ 1D +1DsP =+ by by
- B ¢ o=y Ty T

3. For the signal shown in Fig. 2.15, determine the coefficients of exponential
Fourier series.
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220
A x( l)

X

~V

-4 -3 -2 -1 0
Fig. 2.15 Signal x(¢) for Problem 3

Ty=4 T Dy=>
= ’ CL):—, = -
0 0 ) 0 4
1 [1 R R
S = (1) — e/

"= nr |2 2

4. Find the exponential Fourier series coefficients for the signal shown in

Fig. 2.16a and plot its amplitude and phase spectrum.

(a) 4 x()
T T T T >
-3 -2 -1 0 1 t
(b) 4 (D,
1.72
0.136
0.068
0.046 0.034
! ? X
0 1 2 3 4

Fig. 2.16 a x(¢) signal and b Amplitude spectrum of D,
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~Y

D= ———
V1 +4n2n?

6, =0

The amplitude spectrum is shown in Fig.2.16b.
5. Consider the signal shown in Fig. 2.17. Determine the exponential Fourier

series coefficients.

Do = Qmr —1)
4
D, = ! [e_j" - 1].

2mn?



Chapter 3 ®
Fourier Transform Analysis e
of Continuous Time Signals

Chapter Objectives

e To define the Fourier transform for continuous time signal which is aperiodic.

e To derive the properties of Fourier transform and demonstrate with
examples.

e To find the magnitude and phase angle spectrum of Fourier transform.

e To solve the differential equation by partial fraction method using Fourier
transform (FT).

3.1 Introduction

In Chap. 2, periodic signals were represented as a sum of everlasting sinusoids or
exponentials. The Fourier series method of analysis of such periodic signals is indeed
a very powerful tool. However, FS fails when applied to aperiodic signals. To over-
come this major limitation, an aperiodic signal x(¢) is expressed as a continuous
sum (integral) of everlasting exponentials. Such a representation is called Fourier
integral which is basically a Fourier series with fundamental frequency tending to
zero. By such representation the aperiodic signal x(¢) in the time domain is trans-
formed to X (jw) in the frequency domain. The transformations from x (¢) to X (jw)
and from X (jw) to x(¢) are called Fourier transform and inverse Fourier transform
respectively. They are also called Fourier transform pairs.
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3.2 Representation of Aperiodic Signal by Fourier
Integral-The Fourier Transform

If an aperiodic signal is viewed as a periodical signal with an infinite period, then it
can be represented by the Fourier series. In such a situation, as the period increases,
the fundamental frequency decreases, and the frequency components become closer.
Now the Fourier series sum becomes integral.

Consider the periodic signal x(¢) defined as follows:

L, [t <T

x(t) =
@) 0, Ty <ltl <%

The above signal is represented as a periodic square wave in Fig. 3.1. The exponential
Fourier series coefficients D, can be determined as

_ 2sin(nwoTh)

= 3.1
(nawoT) G-D
where wg = 2?” The Fourier series coefficient 7' D,, is obtained as
2si T
TD, = 2sin(naxTh) (3.2)

(nwo)

For a fixed value of Ty, the plot of T D, represents a sinc function. Equation (3.2) is
plotted for 2wy, 4wy and 8wy and they are represented in Fig. 3.2a—c respectively.
From Fig. 3.2, itis evident that as T increases (the fundamental frequency wy = 27”
decreases) the samples of T D,, become closer and closer. As 7' becomes very large,
the original periodic square wave becomes a rectangular pulse. As T — oo, T D,

becomes continuous.

A x([)

~V

—2T -7 I -T, T, T T 2T
2 2

Fig. 3.1 A continuous time periodic square wave
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(a) ATDy,
T=4T,
—2(1)0 2("-)0
T Y N R
0 \_I/ w
(b) 4 TDy,
T=8T1
—4(00 4(")0
AT \ ’ ATIT R
w 0 NV o
(©) 4 TDy
T=16T1
AT Wil v A ,
0 > w®

Fig. 3.2 Fourier series coefficients for different values of T

Let x(¢) be non-periodic square wave as represented in Fig. 3.3.

(1) =0

lt] > Tq

The periodic signal x(¢) formed by repeating x(¢) with fundamental period T is

shown in Fig.3.1.If T — oo

Lt x(t) = x(1).
T—o0
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Fig. 3.3 A continuous time A %(F)
aperiodic square wave
1
-7, 0 T, 1
The Fourier series coefficients of periodical signal are written as (Fig.3.1)
1 (72 .
D, = — / x(t)e I dy (3.3)
T J_rp
The periodical signal x () can be expressed in the Fourier series as
x(t)= Y Dye" (3.4
n=-—00
Tx(t)= Y TD,e"™ (3.5)
Let
X (nawo) = T D,
7/2 A
= / x(t)e I dy
-T/2
l oo
— jnwot
x(t) = T Z T D, /"
n=-—00
1 - jnwot
= — X (nawg)e?" ™ wq (3.6)
2
n=—o00

AsT — o0, wy = 27” — 0 and nwy = w which is continuous. Further, the summa-

tion in Equation (3.6) becomes integration. Thus, Equation (3.6) is written as

X(ja)):/ x(t)e /" dt forall w (3.7)

o0
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1 [ ;
x(t) = 2—/ X(jw)e!dw forall t (3.8)
7 J_

[e¢]

Equations (3.7) and (3.8) are called Fourier transform pair. Equation (3.7) transforms
the time function x (¢) to frequency function X (jw) and so it is called Fourier trans-
form. Equation (3.8) converts the frequency function to time function, and hence, it
is called inverse Fourier transform. These transformations are also denoted as given
below:

X(jo) = Flx(1)]
x(t) <5 X (jw) (3.9)
x(t) = F X (jo)]

X(jw) &5 x(r)

Note: The time function x(¢) is always denoted by lower case letter and the
frequency function X (jw) by capital letter. Further, when x(¢) is Fourier
transformed, it becomes complex and so it is denoted as X (j®). In some lit-
erature, X (jw) is also represented simply as X (w).

3.3 Convergence of Fourier Transforms—The Dirichlet
Conditions

As in the case of continuous time periodic signals, the following conditions (Dirichlet
Conditions) are sufficient for the convergence of X (jw).

1. x(r) is absolutely integrable or square integrable. That is

/OO |x ()| dt < oo

o0

/OO lx ()| dt < 0o

o0

2. x(t) should have finite number of maxima and minima within any finite interval.
3. x(¢) has a finite number of discontinuities within any finite interval.

However, signals which do not satisfy these conditions can have Fourier trans-
forms if impulse functions are included in the transform.
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3.4 Fourier Spectra

The Fourier transform of X (jw) of x(f) is in general, complex and can be
expressed as

X(jo) =1X(jo)| [X(jo)

The plot of | X (jw)| versus w is called magnitude spectrum of X (jw). The plot of

X (jw) versus w is called phase spectrum. The amplitude (magnitude) and phase
spectra are together called Fourier spectrum which is nothing but the frequency
response of X (jw) for the frequency range —oo < w < oo.

3.5 Connection Between the Fourier Transform
and Laplace Transform

By definitions,

X(jo) = /OO x()e 7 dt (3.10)

o0

and the Laplace transform is given by

X(s) = /oo x(t)e ™ dt. @3.11)

oo

From Equations (3.10) and (3.11), it is observed that the Fourier transform is a special
case of the Laplace transform in which s = jw. Substituting s = o + jw in Equation
(3.11) we get

o0

X(o + jo) = / x()e” TN gt

—00

= / [x()e " e/ dt
= Flx(t)e ']

Thus, the bilateral Laplace transform of x (¢) is nothing but the Fourier transform of
x(t)e ",

Note: The statement that Fourier transform can be obtained from Laplace trans-
form by replacing s by jw is true only if x(¢) is absolutely integrable. If x (¢) is
not absolutely integrable the above statement is erroneous.
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b
@ () ® e 9 4w
s 1
0 [ 0 o 0 o

Fig. 3.4 Representation of §(¢) and its spectra

The following examples illustrate the method of finding the Fourier transform of
non-periodic signals:

Example 3.1 Find the Fourier transform of the following time functions and sketch
their Fourier spectra (amplitude and phase).

(a) x(t) =48()
(b) x(1) =sgn (1)
(©) x(t) =1 for all ¢
(d) x(t) = u(t) and x(t) = u(—t)
(e) x() =e “u(t); a>0
(f) x()=e M a>0
(@ x(t) =e"u(t); a=>0
x(t) = e“u(—t)

Solution

(@ x(t) =48@)

X(jw) = /oo s(t)e I dt

o0
=1 [6t)=0 fort#0
=1 fort=0]

5(1) <5 1
Fourier Spectra of §(t)
8(jw) = 1 which is independent of frequency. Hence, the amplitude spectrum

is constant at all w and the phase spectrum is zero at all w. 6(¢) and its Fourier
spectra are shown in Fig. 3.4a—c respectively.
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(b) x(¢) = sgn(?)

1 t>0
sgn(t) =30 =0
-1 t<0
o0 .
Flsgn(t)] = / x()e I dt
—00

0 . o0 .
= —/ e 7/ dt +/ e/ dt
—00 0

The first integral on the right side of the above equation is not integrable. x(¢) is
multiplied by el and the limiting value of a — 0 is considered.

0

Fle sgn(r)] = /

—00

0 oo
/ _e(a—ja))t dt + / e—(a+jw)z‘ dt
—00 0

(a—jo)t [, latjo)
X, [a—jw te b (a+ jow) te h }

—1 1 1 1 2
Lt — + —|=—+—=—
a—0| (a — jw) a+ jo jo Jo jo

oo
eatefja)t dl +f efatefja)t dl
0

Fle"sgn(1)]

2

sgn(t) <E> —
1)

Fourier Spectra of sgn(t)

2
—/-90° w=>0
X(jw) = — @
: © 24900 0
— <
» 1)

x(t) =sgn(), | X(jw)| = % and | X (jw) are represented in Fig. 3.5a—c respec-
tively.
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(a) (b) .
4 x(n)=sgn(t) [x(jo)|
[
— 0 0 R
) 0 ®
-1
© )
4 x(jo)
/2
o 0 o
—7/2

Fig. 3.5 Representation of sgn(r) and its spectra

(c) x(t) =1; forall ¢

F8(w)] = 1 foo S(w)e!™ dow

2 J_o

1 1 =0
== S=1 “~
2 0 otherwise

1
— 5w
21

FT

1 «— =276(w)

The above result shows that a constant signal x(¢) = 1 for all ¢, when Fourier
transformed becomes an impulse 277 §(w). x(¢) and X (jw) are represented in
Fig.3.6a, b respectively.

(d) x(#) =u(t) and x(t) = u(—t)

_ u(t)
() = 1 >0

To find the FT of unit step u () by direct integration yields an indeterminate value
as is evident from the following equation because it has a jump discontinuity at
t=0.
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(a) (b) .
A x(1) 4 x(jw)
. 4 273 (w)
—t 0 =l‘ - 0 (T)
Fig. 3.6 Representation of x(#) = 1 and its FT
. 1 NS
X(jo) = /0 eI dt = —— [

jo

So, the problem is approached by considering u(¢) as

Figure 3.7 represents %sgn(t) and u(r)

(a)

A

k 0.5sgn(7)

05—

(t)—l ! ()
u —2+25gn

17 1
Flu(®)] = F [5] + 5 F sgn(0)

F [%i| =1 §(w)

A1 1
o=

Flu(®)] = n8(w) + L
Jw

(b)

0.5

(©)
4 x(£)=.5+.5sgn(7)

~Vv

—0.5

~V

~Vv

Fig. 3.7 Representation of u(¢) in terms of signum function
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Flu(=1)] = X(—jo)

Flu(=0)] = 7 () — —
jCl)
) x() =e “u(t); a>0

o0 00
X(]a)) = / e—aze—ja)l dt = / e—(a+jw)t dt
0 0

_ 1 —(a+jw)t X
- (a +]w) [@ ]0
X(jw) = ——
(o) @t o)
1
X(Jj = —
XUl = e
. _ 1 g
X(jw) = —tan P

The signal x(t), the amplitude spectrum | X (jw)| and phase spectrum | X (jw)
are shown in Fig. 3.8a—c respectively.
) x@t) =e 5 a>0

X(jw) = / x()e I dt

o0

0 00

=/ ef“”dt~|—/ atg=Jot gt
—00 0
0 oo

:/ (a Jjo)t dt +f 7(a+ja))t dt
— 0

1 0 i oo
. _ (a—jw)t —(a+jw)t
X(Ja)) (a _ J ) [ ]—oo (a ](1)) [e ]0

b
S a—jo)  (@+jw)

2a

X =g
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(a) (b) .
4 x(1) 4 1XGw)|
1 1
a
4Le‘_mu(t)

0 't —w 0 o
© 2 [X(o)
. B
T~ w4
— &
"""""""""" — ,,'T/'4"" ~
-------------------- oy T

Fig. 3.8 Representation of x(¢) = e~ u(¢) and its FT spectra

[e_am] FT 2a
a? + w?
Fourier Spectra
2a
X(jo)|=———
X(jo)l = =~

X(jw)=0

The Fourier phase spectrum is zero at all frequencies. The representation of x (¢)
and its Fourier amplitude spectrum are shown in Fig.3.9a, b respectively.
(2) x(t) =e"u(t); a>0

R .
X(jow) = / e"e I dt
0

oo
:/ eIt gt
0

1 .
— (a—jo)t1>®
“ o T

If the upper limit is applied to the above integral, the Fourier integral does not
converge. Hence, FT does not exist for x (¢) = e*u(t).
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(@) (b) .
Ax(1) X))
2
e(ll 1 . a
—a
Vel €
—t 0 7 - 0 ®

Fig. 3.9 Representation of e =!I and its amplitude spectrum

x(t) = e“'u(—t)

a>0
x(=1) = e "u(r)
From Example 3.1(e), it is derived
Fle “u)] = ;
C (a+ jo)

Flx(=D)] = X(—jw)

Fleu(—t)] = p—

The above result can be derived from the first principle as explained below:

0

Fle"u(—1)] = / ee ™I dt
—00
0
= / =IO gy
- [ew—jw)z]o
(a—jo) e
Fle"u(—t)] = ———
(a—jo)

Example 3.2 Consider the rectangular pulse shown in Fig.3.10 which is the gate
function. Find the FT and sketch the Fourier spectra.

(Anna University, April, 2004)
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Fig. 3.10 Representation of Ax(1)
gate function

A
-~V

—t -T 0 T
Solution
x(t) =1 t| < T
X(jo) /T lei di = L [eier]"
Jjw) = e =< |€ _
7 jow r
[eij _ e—ij]
= —ja)
2T sinwT .
= ————— =2Tsinc oT
oT

X(jw) = 2Tsinc T

Frequency Spectra of Gate Function

Amplitude Spectrum
Atw =0,
X(jw)| 2sinwT  2sin0 )
w = = =
J oT 0
Atw =77,

IX(jw)| =0, wheren =1,2,3, ...

Phase Spectrum

For sinc w > 0, X(jw)=0

For sinc w < 0, X(jw)=m

The amplitude and phase spectra are shown in Fig. 3.11a, b respectively.

Note: Since 7 = —x, in Fig.3.11b, IX(ja)) is marked as .
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AlX(jw))
a
(a) )
—3m 3w
¢ T T
oo —2m, —i 0 oo 2@ | ®

| T T |O=7F 1T |
| | | | | |
| | ! | | |
| | | | : |
| I .

® | | ) | |
| | ! R S ! ! |

~w —37 —2m I o=T 2w 3m  ©
T T T T T
Fig. 3.11 Fourier spectra of gate function
A x(t)
1
“z_
—t 0 't
e“'—2y
-1

Fig. 3.12 Antisymmetry exponential decay pulse

Example 3.3 For the following signal x(¢), find the FT and FT spectra

e >0
x(t) = 11| t=0
—et 1 <0

Solution The signal x(¢) is sketched as shown in Fig. 3.12.
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(@ +X(o)
*o 0 3

Fig. 3.13 a Amplitude spectra and b Phase spectra

X(jw) = /OO x(t)e " dt

oo

0 ‘ o+
=/ —ee I dt—i—/
—00 0~

ot

0
[ s
—00 0~

(b) X
iy
2
o 0 i
—1/2

+

o0
le /® dt + / e e/ dt
0

o0
eIt dt+/ e~ @tion gy
0

+

X (i — (a—jw)r]0 0— —(a+jw)t1>®
(]w) (a _ ](1)) [6’ ]—oo + ((1 + ]w) [e :|OJr
-1 1
S a—jo)  (a+jo)
X(jo) —2jw
w) = —F/F—"7-
/ (@ + %)
Fourier Transform Spectra
X ()] = e
w)|=——--
/ (@ + o)
——= w>0
X(jo) =
— w<0

The frequency spectra for —oo < w < oo are shown in Fig.3.13a, b.
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Fig. 3.14 Representation of Ax(t)
triangular pulse
4
% -2 0 t

Example 3.4 Consider the triangular pulse shown in Fig. 3.14. Find the FT and its

amplitude spectrum.

Solution

{(2z+4) 2<1<0
x(t) =
4-21) 0<1<2

0 2
X(jw) = / Qr + 4)e 7" dt +f @ —=20e77"dt = X,(jw) + X>(jw)
-2 0

0
X (jow) = / Qt +4)e /" dt
-2

Lg—jor
Jo

Letu =2t +4:du=2dt;dv=e/“dt;andv = —

X1(jw) = uv—fvdu

o NP L L
= |:(2t + 4) (—) e_'lwt} + -— e_]wl dt
Jw 2 JwJ2

-4 2 2

1(jo) o w2€
2 .
X2(jw) = / (4 —2t)e 7" dt
0
Letu = (4 —2t);du = —2dt;dv =e 7 dt;and v = —jlwe—fwf

Xo(jw) =uv—/vdu

—1 1?2 2
= |:(4 — 2[) (—) e]wti| - X e*]wt dt
Jw o J®WJo
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+ X(jo)

8

v

-3 =2 —r 0 ™ 2 37

Fig. 3.15 Magnitude spectrum of a triangular wave

2

. 4 Ciet1?
XZ(JCU): J—w—a?[e J l]o
4 2 —j2w
=j—w—g[€’ —1]
X(jo)=X1(jo) + X2(jo)
4 2 2 . 4 . 2
_ Jj2w —j2w
e STy i o
jo  o? w2 jo w2 ?
4
:—2——20052(1)
@ w

4
= —2[— cos2w + 1]
w

=— sin w
w

: 2
Sin @
w

X(jw) = 8sinc’ w

Fourier Spectra

|X (jw)| = 8sinc? w
X(jw) =0° forall w
The magnitude spectra is represented in Fig.3.15.

Note: The FT of rectangular, triangular, and other signals can be easily deter-
mined by following the properties of FT which are discussed below.
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3.6 Properties of Fourier Transform

The Fourier transform possesses the following properties and using them same results
are easily obtained. These properties are:

Linearity

Time shifting

Conjugation and conjugation symmetry
Differentiation

Integration

Time scaling and time reversal
Frequency shifting

Duality

Time convolution

Parseval’s Theorem.

COXANE P~

—_

3.6.1 Linearity

If
FT .
x1() «~— Xi1(jo)
FT .
xX(t) <— X2(jo)
then

[Axi(t) + Bxa(t)] < [AX,(jw) + B X2(jo)]

Proof Letx(t) = Ax1(¢t) + B x2(t)

X(jo) = foo x()e I dt = /Oo[Axl(;) + Bxy(0)]e 7 dt

o0 (o]

o0 . o0 .
= A/ xi(t)e /" +B/ x2(t)e ' dt

o0 —0Q

X(jo) = AX\(jo) + B X2(jo) (3.12)
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3.6.2 Time Shifting

If
x(t) <5 X(jw)
then
x(t — 1g) <5 eI X (jew)
Proof
oe .
Flx(t —t))] = / x(t —ty)e I dt
—00
Let (t —t)) = panddt =dp
o .
Flx(t — 1)l = / x(p)e 1wt ap
—0

[o.¢]
— e—jwfo/ x(p)e—jwp dp

[ee]

Flx(t — )] = e /" X (jw) (3.13)

3.6.3 Conjugation and Conjugation Symmetry

It
x(t) <5 X(jw)
then
X' (1) <5 X (= jo)
Proof

Flx*()] = X*(jo) = Uoo x(t)e /¥ dt]

—00

00 .
= / x*(t)e!” dt

o0
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Replacing w by (—w),

X (—jw) = fm x*(t)e /! dt

o0

X" (—jow) = X(jo) if x(r) is real x*(1) = x(¢)
Also

X(—jo)=X*"(jo) (3.14)

3.6.4 Differentiation in Time

If
x(t) <5 X(jw)
then
dx(t
ZE) L joX (o)
Proof
1 ° .
Flx(®)] = —/ X(jw)e! dw
27 J_so
dx(t) jo /00 . .
F =— X o q
[ d } o ), XU@eTdo
=joX(jo)
dx(t
X0 T X (o) (3.15)
dt
In general,

F [d" x(1)
dr"

] =(jo)" X(jo)
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3.6.5 Differentiation in Frequency

If
Flx()] = X(jw)
then
. d )
Flix@®)] = j d—X(]CO)
w
Proof

X(jw) = /oo x(0)e /¥ dt

d . ) .
—[X(jw)] =/ —jtx(t)e /" dt
dw

—0Q

= —jFltx(1)]

dX(jo)
]—

[1x(1)] <> ”

(3.16)

3.6.6 Time Integration

If
Flx()] = X(jo)
then
F [/mx(t)dr] = jLwX(jw) + 71X (0)8(w)
Proof Let

y(t) = /t x(t)drt

oo

Differentiating the above equation, we get

d
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Using differentiation property, we get
X(jow) = joY(jw)

The differentiation in the time domain corresponds to multiplication by j in fre-
quency domain.

1
Y(jw) = (J—w) X(jow)

if the initial condition X (0) = 0.

If X(jw) # 0atw = 0, then y(¢) is not integrable and FT does not exist. However,
this problem is overcome by including impulses in the transform. The value at w = 0
is modified by adding 7 X (0) and the FT is written as

F UOO x(t)dt] LN jin(jw) +7X(0)8(w) (3.17)

o0

3.6.7 Time Scaling

If
Flx(®)] = X(jow)
then
1 <]a))
Flx(at)] = —X | —
la| a
Proof

Flx(at)] = /Oo x(at)e /" dt

o0

Letat = p;and dt = %dp,a >0

o]

1 Jap
FIx(p)l = - / x(pye s dp

—00
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Flx(an)] = leX (,g)

Fora < O,
—1 w
Flx(an] = —X (] Z)
Hence,
Flr(an] = —x (jf) (3.18)
la| a
For time reversal,
Flx(=0)] = X(—jw) (3.19)

3.6.8 Frequency Shifting

If
Flx(t)] = X (jo)
then
Flx(t)e!™] = X[j (@ — wp)]
Proof
Flx(t)e!™"] = /oo x(1)e! ™ eI dt

oo
= / x(t)e /@@ gy

o0

Flx()e’™] = X[j(w — wp)] (3.20)
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3.6.9 Duality

It
Flx()] = X(jo)
then
FIX()] =2nx(jw)
Proof

x(1) = i/ X (jw)e! dw
21 J_w
x(—t) = 1 / X(jw)e ' dw
21 J_wo
2rx(—t) = f X(jw)e ' dw
= F[X(jo)]

Changing ¢ to jw, we get

2rx(jw) = FIX(1)] (3.21)

3.6.10 The Convolution

Let

y(t) = x(t) * h(t)
FlyOl=Y(jo) = X(jo)H(jw)

Proof
y() = /00 x(t)h(t —t)drt

FlyOl=Y(jo) = /oo Uoo x()h(t — t)dr} eI dr

—00 o0

Interchanging the order of integration, we get
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Y(jw) = /oo x(1) Uoo h(t — 1)e /" dt} dt

By time shifting property, the term inside the bracket becomes e/“* H (jw).

Y(jo)= /OO x(0)e /"H(jw)dt = H(jw) /oo x(1)e 1% dt

Y(jw) = H(jo)X(jw) (3.22)

3.6.11 Parseval’s Theorem

According to Parseval’s theorem, that the total energy in a signal is obtained by
IX(jo)*

integrating the energy per unit frequency =~

Proof

E=/OO |x(t)|2dt=/oox(r)x*(z)dt

o] [e.¢]

= /00 x(1) |:L /‘00 X*(jw)e /" da)] dt
oo 27 J_o
1 o0 . o0 . 1 o0 . .
E = —/ X*(jo) |:/ x(t)e /" dt] do = —/ X (jo)X (jow)dw
27 J_o o 27 J_so

1 [ .
E=_— X(jo)|"dw
27 J_o

The Fourier transform properties are summarized and given in Table 3.1. The basic
Fourier transform pairs are given in Table 3.2.

3.7 Fourier Transform of Periodic Signal

Example 3.5 Find the Fourier transform of the following periodic signals:

(a) x(t) = /!
(b) x(t) = e J@ot
(c) x(t) = cos wyt

(d) x(t) = sin wot
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Table 3.1 Fourier transform properties

Property Time signal x(r) Fourier transform X (jw)
1. Linearity x(t) = Ax1(t) + Bxp(t) X(jw)=AX|(jo)+ B X(jo)
2. Time shifting x(t — 19) eI X (jw)

3. Conjugation x*(t) X*(—jw)
dn
4. Differentiation in time df"( U (jo)"X (jw)
. Lo . d .
5. Differentiation in frequency tx(t) J o X(jow)
1)
t 1
6. Time integration / x(v)dr —X(jo) + 71X (0)5(w)
—o0 jo
1
7. Time scaling x(at) —X (j 9)
lal a
8. Time reversal x(—1) X(—jw)
9. Frequency shifting x(t)el®0! X[j(w— wp)]
10. Duality X(1) 2nx(jw)
11. Time convolution x(t) * h(t) X(jo)H(jw)

12. Parseval’s theorem

E=/oo Ix(O)1 dt
o0

1 [> 2
E=_— [X(jo)|” dew
21 J_o

Table 3.2 Basic Fourier transform pairs

Signal Fourier transform
1.8() 1
1
2. u(t) — +7(w)
jo
3.58(t — tg) e~ J@ly
_ 1
4. te=y(r) P
(a+ jw)?
1
5. u(—t) wd(w) — —
jo
1
6. e u(—1) [ —
(a—jw)
2a
7. e~alll e
¢ a? + w?
8. cos wpt [8(w — wp) + 8(w + wp)]
9. sinwot —jm[8(w — wp) — 8(w + wp)]
1
10, ——— —alo|
@ +12) ¢
2
11. sgn(r) —
jo

12. 1; for all ¢
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Solution

(a) x(t) = eJo!
Lety(r) =1
Y(jw) =2nmd(w)
By using the frequency shifting property, we get
X (jw) =216(w — wp)
(b) x(t) = e~/

x(t) = e /!

= e /o]
By using the frequency shifting property, we get
X(jw) =2m8(w + wp)
(c) x(t) = cos(wyt)
x(t) = cos(wpt)

— % [ejwot + e*jwot]

X(jow) = m[d(w + wy) + §(w — wo)]

The frequency spectrum is shown in Fig. 3.16.
(d) x(t) = sin wyt

x(t) = sin wyt
1

— Z [ejwol _ e—jwol]
X(jo) = —jr[d(w — wo) — 8w + wo)]

The Fourier spectra of sin wyt are shown in Fig.3.17.

Example 3.6 Consider the signal x () shown in Fig.3.18a. The rectangular pulse
x(t) is shown in Fig.3.18b. From X (jw), determine X (jw) using shift property.
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AX(jo)
N T
-0 - N 0 O o
Fig. 3.16 FT of cos(wyt)
(a) A X(jw) (b) 4X(jw)
______ T === 72
(.00 -
- J 03
o —w 0 0 I 2=
Fig. 3.17 Fourier spectra of sin wo?
(a) $x() (b) +x(1)
1
0 2 g -1 0 1t

Fig. 3.18 a Rectangular time-shifted pulse and b Rectangular or gate pulse

Solution In Example 3.2, the FT of x(¢) has been derived as
X(jw) = 2sincw
Using shift property, the FT of x(¢) is obtained as
X (jow) = 2e /“sinc w

Example 3.7 Find the Fourier transform of the signal shown in Fig.3.19 and plot
its magnitude.

(Anna University, April, 2005)
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b x(7)

Fig. 3.19 x(¢) signal of y
Example 3.7
—1
|
|
|
-1
Solution
Method 1
1 —-1<tr<0
x(t) = -
-1 0<tr<1
X(jow) =/ e/ dt —/ e/ dt
-1 0
_ -1 —jwt19 —jor1!
=l =L,
-1 . .
=.—[1—€jw—e jm+1]
jo
. 2
X(jw) = —[cosw — 1]
jo
Method 2

~Y

Differentiating the signal in Fig. 3.19, 92 is obtained and is represented in Fig. 3.20.

> dt

Fig. 3.20 Differentiated
signal of Fig.3.19

A

hdx(t)
dt

~V
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X (o))

4/

Sv

—8m7 —6m —4ar -2 0 2 41 ot 8

Fig. 3.21 Amplitude spectrum of w sinc?(w/2)

Using time shifting property, FT of Fig.3.20 is written as follows:

- [dx(t)

=[e/® — 2 + ¢77*] = 2[cos w — 1]
dt

Using the time integration property w get

Fix()] = X(jw) = .i[cosw —1]
jo

X(jw) = ,i[cosa) —1]
jo

To Plot the Magnitude Spectrum

. 2 2 ) @ L,
|X(]a))|:—[cosa)—1]:—[cos — —sin ——1]
w w 2

—4 inw/27?

= —sinw/2 = —w |:sz)/ ]
@ 2
IX(jw)| = ‘wsinc2 %‘

The amplitude spectrum of X (jw) is shown in Fig.3.21.

Example 3.8 Using Fourier transform properties, find the Fourier transform of the
signal shown in Fig.3.22a.

(Anna University, December, 2007)
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@  4x(0
2A F-----

A
I I
I I
I I
: . ! R

0 T T 3T T T
4 2 4
(b) 2x(0 © 4x,(2)
A A
-T 0 T ot -T 0 T 1
2 2 4 4

Fig. 3.22 Decomposition of signal

Solution The given signal x (¢) represented in Fig. 3.22a can be decomposed as x; ()
and x,(¢) and represented in Fig. 3.22b, ¢ respectively. x(#) can be represented as

x(0) = A [xl (,_ %) e (t ) g)]

Thus, the FT of x(¢#) can be obtained using linearity and time shifting. From
Example 3.2,

. . oT
Xi(jw) = ATsch

, . oT
XH(jw) = ATsch

X(jo) = [X1(jo) + Xa(jo)le ™/

sl

) . oT . ol | _ior
X(jw) = AT [sch + schi| e /2

Example 3.9 Find the Fourier transform X (jw) of the signal x(¢) represented in
Fig.3.23ausing differentiation property of FT. Verify the same using Fourier integral.
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(a) 4x(2) (b) 4x()
sz(t)
N 2
—1 . dx(n) _ . -1 1
0 1 t dt -1 o 1t °
A )
-2 -2

dx(t)

Fig. 3.23 Representation of x(7) and =

Solution
(a) FT Using Differentiation Property

x(t) =2t —1<tr<1
d
Zit)=2—28(t—l)—28(t+l) _l<t<1

x(t) is represented in Fig.3.23a and % is shown in Fig.3.23b. In Fig.3.23b,
x1(t) represents the gate function and x,(¢) represents impulse functions. From

Example 3.2,
X1 (jw) = 4sincw
Xh(jw) = -2 (ej‘“ + eij“’)

= —4cosw

. |:dx(t)

R } =X1(jo) + X2(jow)

= 4[sinc w — cos w]

Using integration property, FT of x(¢) is obtained by dividing by jw. Thus,
: 4 .
X(jw) = —[sincw — cos w]
jo

The above result can be obtained using the Fourier integral as explained below.
(b) FT Using Fourier Integral

x(t) = 2t

1
X(jw) = / 2te I dt
—1



256 3 Fourier Transform Analysis of Continuous Time Signals

Letu = 2t;du = 2dt and dv = [ e/ dt; v = L=/t

jo

. —2t —jot : 2 —jot
X(jw)=uv— | vdu=|——¢""/ +j— | e’ dt
jw 4 10)

-2t . 2 1!
— | et = ot
[ ¢ * wze :|1

jo
[—e™/® 1 L 1
-2 £ 4 —e Y — —el¥ — e"":|
| Jjo w jo )
=2 __L (er + efjw) — i (ejw effw)
| o ?
1 1 sinw]
=4|———cosw+ —
L 0 o

4
X(jw) = —[sincw — cos w]
jw

Example 3.10 Find the Fourier transform of impulse train shown in Fig. 3.24.

® (1)

—6T —5T —4T —3T 2T —T o T 2T 3T 4T 5T 6T

b
® 4 X(jo)
427
—6m —4ar —2m 0 20 4w 6m ©
T T T T T T

Fig. 3.24 a Impulse train and b FT of Impulse train
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Solution For Fig.3.24a,

]

x(y= Y 8(t—nT)

n=—00

where T is periodic. The Fourier series coefficients are determined as

1 T/2 )
— S(t)e "™ dt
T/ ()e

)

D,

T
For a periodical signal,
X(jo) = Z ( 2””)
n=-00
The above expression is represented in Fig. 3.24b.
Example 3.11 For the triangular wave shown in Fig. 3.25, find the Fourier transform

using double-differentiation property.

Solution The triangular signal x (¢) is represented in Fig. 3.25a. It is mathematically
expressed as

2t +4 —-2<t<0
x(1) =
4 -2t 0<tr<2
dx(ty |2 2<1<0
dt ~ |-2 0<t<2
d;i’) ,—o Varies from +2 to —2. dx(’) is represented in Fig. 3.25b.
26(t+2 t=-2
Px(t) (t+2) '
a2 N
28(t—2) t=2
dx(t)

=7 1s shown in Fig. 3.25¢. From Fig. 3.25c¢, using linearity and time shifting prop-
erties of FT, we get
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(@) 4x(t) (®) 4dx(t)
dt
2
4
2 .
-2 't
-2 0 2 1
-2

(o) “degt)
dr
2 2
-2 0 2 g
v—4

Fig. 3.25 a Triangular wave; b First derivative and ¢ Second derivative

dzx(t) 20 —j2w
F|: i :| =2/ —4 4 2¢77
= 4[cos 2w — 1]
= —8sinw

FLx(1)] s obtained by dividing F [ 2+ ] by (jeo)?. Thus

. _8 .2
X(jw) = (J— sin” w

)?

=8 [sin S]z

X (jw) = 8sinc’ w
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The same result is obtained in Example 3.4 which is obtained directly using Fourier
integral.

Example 3.12 Find the Fourier transform of

2a

N=—5——>
*) a’+1?

using the duality property of FT.

Solution
Method 1
From Example 3.1(f), the FT of x(z) = e~%!"l is obtained as
2a
_ par T
x(t) =e <~ R

By the application of the inverse Fourier transform, we get

el — ! /-oo 2a e dw

21 J_o a? + @?
*© 2
_ a i
2re M = el dw
oo G T w

Replacing ¢ by —t in the above equation, we get

2a

B o0 »

2me @l = 5 se Jot e
—o0 @ w

Interchanging ¢ and w in the above equation, we get
o0
2mealel =f 2—aefjw’ dt
oo @+ 1)

2a
a’+t*"

The right-hand side of the above equation is nothing but the FT of
2 eia‘w‘ =F z—a
L@+

2a FT —alo|
m <~ 2me
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(a) 4 X(jw)| (b) 4 X(o)|
2 2
) 2 ®
| |
| | R N
-2 -1 0 1 2 4
© A XGo)
2
| |
| |
| |
| |
| | N
-2 —1 0 1 2 o

Fig. 3.26 Fourier transformed signal

Method 2
The duality property of X (t) = 2w x(—w). From Example 3.1(f), the FT of e~ is

obtained as

el FI 2a
a’ + w?
_ 2a
XO=ois
x(—w) = e !

X() <E> 2nx(—w)

_2a T ealel
a’+12

Example 3.13 For the Fourier transforms shown in Fig. 3.26a—c. Find the energy of
the signals using Parseval’s theorem

Solution

(a)

1 [*® .
E=— X (jw)|* dw
27 J_so
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E i{/l 12dw+/122dw+/212dw}
2 \J-2 —1 1

1 —1 1 2

ALl +4o] + [ ]

1
=—{-14+24+4+4+2-1}
2

5
E=—
14
(b)
0 2
1 2 2
E=— 2°do+ | (-2)°dw
27 ()= 0
1 0 2
=5 {0
8
E=—
T
()
20 +4 2<w=<-1
X (jo)l =12 “-1<w<l

1 -1 5 Lo, 2 5
E=_— / Qw +4) dw+/ ) dw+/ 4 —2w)* dw
27 |J-2 -1 1

-1 1 2
=5 / (4w2+16w+16)dw+4/ dw+/ (dw? — 16a)+16)dw}
T\/-2 -1 1

43 2 - ! 4 3 2 2
= — 1| zw’ + 8w + 16w + 4|:w] + | zw’ — 8w” + 16w
2 3 ) -1 3 )

1 4 32
=573 816+ 5 =324 32|+ 4+ 4]

+ 2 32+32 4+8 16
3 3
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Example 3.14 Find the Fourier transform of the following continuous time func-
tions by applying Fourier transform properties or otherwise.

1 x(1) = 8(t —2)
2. x(1) =8(r—1)=8(+1)
3. x(1) =8(t +2)+8(t —2)
4 x(t) =ult+2)—ul—2)

d
5 x(t) = E[u(—t—3)+u(t—3)]
6. x(0) = e u@ —1)
7. x(t) =te u(t)
8 x(t) = e Dy (s — 2)
9.  x()=e

. T

10, x(t) = sin (2m n Z>

1. x(r) = cos (3m+ %) 1

12. x(t) = cos (67l’t — %)

13.  x()=x(4r —8)
d2
14 x()= 5x(t=2)

15. x)=xQ2—-1)4+x(-2-1)

t+2
16. x(t) = rect (T)
17 Hoi =2
. x()_rl( 10)

18 t) = 4 [5 t£:|
. X = dt rec 8
19,  x(O)=8(t+2)+58¢+1)+8¢—1)+55(—2)

e.76|l| |l| <7
20. x(t) = -
0 elsewhere

21. x(t) = cos(wot + @)
22, x(r) = sin(wot + ¢)
0 [t] > 1
23, x()= (t—|2—1) i<
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0<tr<l1

elsewhere

24. x(t) =

S

t 0<t<l1
25. x()=4{1 1<tr<?2

0 elsewhere

1 7] <1
26. x@)=12—1t] I<|t| <2
0 elsewhere

Solution
1. x(t) =68(t —2)
The impulse is time shifted by 7y = 2.

F[8(t —2)] = e~ /“0 F[5(1)]

— 6712(1}

F[8(r —2)] = e /2
2.x()=8t-1) -8t +1)
F[5(t —1D]=e/®
F[8(t 4+ 1] =¢/?

FI8(t —1)+8(t+1D]=e—e/®

= —2jsinw
F[8(t —1) =8+ 1] =—2jsinw
3. x(t) =8t +2)+8(t—2)
F[5(t +2)] = />
F[8(t —2)] = e/

F[8(t+2)+8(t—2)] = e/> 4 e /2

= 2cos2w

X(jw) =2cos2w

263
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4. x@)=u(t+2)—u(t-2)

Flu(t +2)] = .ieﬂw
J

w
1.

Flu(t —2)] = —e /2

Jw
1. .
Flu(t +2) —u(t —2)] = — [¢/** — e77%*]

Jw

= —sin2w

X (jw) = 4sinc 2w

5. x(t) = %[u(—t =3 +u(-3)]

dx(t)

x(t) and are shown in Fig. 3.27a-b respectively.

From Fig.3.27b,

F dx(1) — g0 _ ik
dt

B ' [eij _ e—j3w]
= —2]2—].

[dx(t)] .
F = —2jsin3w
dt

() x(0) (b) A du(t)
dt
u(—t—3) u(t—3)
L T
—3i 3 1o
-3 0 3 t -
dx(1)

Fig. 3.27 a Representation of x(¢) and b Representation of
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6. x(t) =eui-1)

Method 1
F [e_3tu(t)] = _
B+ jo)
Using time shifting property, we get
e/
Fle?Du@ -] = ——
B+ jo)
3,3 e J?
ECF e uit —1)] = ——
B+ jo)
e—(io+3)
Fle 7 'u@t—1D]= ——
B+ jo)

Method 2

Using FT definition, from Fig. 3.28, we get
t t
Rect (Z) and rect (Z + 0.5) are represented in Figs.3.29a, b respectively

Flx(1)] = / e eI dy
1

o .
— / e—(3+jw)l dt
1

—1 e
— —GB+jo)t
“Grml

A X([)

~V¥

Fig. 3.28 Representation of x (1) = e Mu@ —1)
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o—G+jw)
Flx()] = iot3
7. x(t) =te u(t)
Fle™"u()] = L
¢ T W)

Using the FT property of differentiation in frequency, we get

d 1
Flte™u@)] = 7 [—]

(a+ jw)
_ D)
(a+ jw)?
X(jo) :
W)= ——"-—
1= Gt jor
8. x(t) = e Dy -2)
Method 1
x(t) <5 X (jw)
x(t — fp) <> X (jow)e @0
F [e—a(t—Z)u(t _ 2)] — ;e—ij
(a+ jw)
Method 2

Using the definition of FT, we get
o0 .
X(jo) = / e D eIt gy
2

o0 .
— e2a/ e—(a+]w)t dt
2

_e2a

T+t jo)
+eZa
C(a+jo)

[e—(a-‘rja))r];x)

e—(a+jw)2
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e—jZ(u
X(jw)= —
U = a5 )
9. x(t) = e~alt=2l
=2 0<t<o0
1) =
*() e+ —00<t<0
Let|t —2| =t
)C(T) — e—a|1’\
From Example 3.1(e),
2a
—alt]] —
F [e ] = Zra
Using time shifting property,
2a :
—alt—2 —Jj2w
Fle 2 = a2+wze I
10. x(¢) = sin (Znt + %) (Anna University, December, 2006)

Let wy =21 andq}:%

Flx(t)] = —jm [¢/?8(w — wp) — e ?8(w + wp) |

(For proof, see Example 3.21 below).

X(jw) = —jn [e%(w —or)— e FS(w+ 271)]

11. x(¢) = cos (37tt + %) +1

Flcos(wt + @)1 = 7 [e/?8(w — wp) + e 78(w + wp) ]

Let wy = 37 andqb:%

F [cos3m + %] =1 [ej%é(w —37)+e /58w + 31)]

F[1] = 278(w)

267



268 3 Fourier Transform Analysis of Continuous Time Signals

[cos (3m‘+ ) ]<—>7T eJXS(w—3n)+e /88(w+3n)+28(a))]

T
12. x(t) = cos (671,'t §)
Letwy = 67 and ¢ = -

Flcoswot + ¢] = 7 [e/?8(w — wo) + e /?8(w + wp) |

F [cos <6m - %)] =7 [e‘j%S(w— 67) +ej%8(w+6n)]

13. x(t) =x4t - 38)
By time scaling,

Flx(41)] = %X (%)

x(4t) is time shifted by —% = —2. Hence,

Flx(4t — 8)] = %X (%) e /%

d2
14, x(t) = —ox(t=2)

d*x(t) 2 o
F|: I ] = -0 X(jw)
For the time delay ¢,

Flx(t —19)] = e 7" X (jo)

Here, 1ty = 2.
F d—zx(t —-2)| = —w?e 7 X (jw)
dr?
5. x()=x2—-t)+x(-2—-1%)

x(1) = x1(t) + x2(1)

where
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x1(t) =x2—1)
X(t) =x(=2—1)
Flx(-0)] = X(—jw)

Using time shifting property of FT, we get

Xi(jo) = Flx2 -] =e¢ 7 X(—jo)
X2(jw) = Flx(=2 — )] = /> X (— jw)
X(jw) = Xi(jw) + X2(jw)
= X(—jo)[e7* + e/*]

X(jw) =2X(—jw)cos2w
t+2

16. x(t) = rect (T)

x(t) = rect <% + O.5>

(2) 4rect(4) (b) trect(£+0.5)

~V

-2 0 2 1 -25 0 15

t t
Fig. 3.29 a Representation of rect (Z) and b Representation of rect <Z + 0.5)

<t> T 2 .
rect| — | «— —sin2w
4 w

+0.5jw

t FT 2 .
rect( = +0.5) «— —sin2we
4 w

2 .
X (jw) = = sin2w e/
1)
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(t—4
17. x(t) = tri (T)

ft—4 ot
tri{f —— ) =tri| — —0.4
10 10

tri(7) is represented in Fig. 3.30a and tri (55) in Fig.3.30b.

tri(r)_ (1+0.10) —-10<1r<0
10/ |a-01) 0<r<10

Let x(¢) = tri0.1¢.

dx(t) d?x(t)

T and are represented in Fig.3.30c.
(a) A tri(f) (b) 3 tri(y)
1 1
-1 0 11 -10 0 0 1
(c) A dx(r) 4 dx(1)
dt a2
.1 0.1 0.1
—10 10 ¢ > —10 10 e
—0.1 Y —0.2

Fig. 3.30 a x(r) = tri(r) and b x(r) = tri ({5). ¢ Representation of % and %
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F [d%c(t)

W} =0.1¢/1% 4 0.1¢771% — 0.2 [Refer to Example 3.11]

=0.2[cos 10w — 1]

= —04sin’50

Using the double integration property of FT, we get

—-04 in%5
Fltri0.11] = — sin? 5w = 0422 : @
“o o
By time shifting, we get
)
5 .
Fltri (0.1f — 0.4)] = 0420 2@ —jo40

18. x(¢t) = % [5 rect (%)]

Figure3.31a represents 5 rect(¢). The time expanded 5 rect (é) is shown in
Fig.3.31b and its derivative is shown in Fig.3.31c. From Fig.3.31c,

X(jw) = 5e/8 — 50778

X(jw) = j10sin8w

(a) 4 Srect(r) (b) 4 Srect(¢)
5 5
-1 0 11 -8 0 8 1
(©) 4 d‘—i [Srect(sgﬂ

Fig. 3.31 Representation of rectangular wave and its derivatives
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A X(t)
5 5
1 1
-2 -1 0 1 2 1
Fig. 3.32 Discrete time signal
Fig. 3.33 Representation of 4y(9)

rectangular pulse

~v

19. x) =8 +2)+56¢+1)+6(¢ —1)+5(—2)

The given x () is represented in Fig. 3.32. By applying time shifting property to
each impulse, we get

X(jw) = e/ 4 5¢/” 4 e7I” 4 5772

Jjét t] <
2. xny=1¢ ==
0 elsewhere
The above signal is represented as a product of a rectangular pulse of width 27
and a complex sinusoid e/% .

le/® Jt|<m
x(1) = i1l = .
0 otherwise

For —m <t < m, the rectangular pulse y(¢) is shown in Fig. 3.33. The FT of the
rectangular pulse shown in Fig.3.33 can be easily derived as

2
Y(jw) = ” sin wrm
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Using frequency shifting property,

Y(0)e' =Y (j(w - 6))
X(jo) = F [y(t)e’™]

X(jw) = 2 sin((a()a)_—6)6)7r)

21. x(¢t) = cos(wot + ¢)

cos(wot + @) = 1 [ej(wot+¢) 4 e—j(wol+¢)] — l [e.i¢ejwof 4 e—j¢e—jwol]

N

By frequency shifting property,
F [ef"’(”] =278 (w — wyp)
F [e‘j“"’t] =278 (w + wp)

2 A
Flx()] = X (jw) = 7” [¢798(w — wp) + €78 (w + w0) ]

X(jow)=m [ej¢8(a) —wy) + e 8 (w + wo)]
22. x(t) = sin(wyt + ¢)

1 . )
sin(wot + ¢) = % [eti(@td) — gmilento)]

_ 1 [ei¢eiont — it giont]

2j

Flx()] = X(jo) = i—” [¢/78(w — wp) — e 7?8(w + wp)]
J

X(jo) =—jm [e/?8(w — wp) — e /?8(w + wy)]
0 lt] > 1
23. x(t) = 1
e+,

2 =t=
. . . . dx(t)
Figure 3.34a gives x(¢) and Fig.3.34b gives PR
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(@) 4x(0) (b) Adx(t)
dt

%)

EN 4
N 4

dx(t)

Fig. 3.34 a Representation of x(¢) and b Representation of

sin w

Flrect(t)] =

a)
P |:dx(t)i| _F [rect(l)} _ o
dt 2

Using the integration property of FT,

. 1 [sinw .
X(jo) = — —e e
jo| o

t 0<t<l1
0 otherwise

24. x(t) = {
x()=1;0<t <1 is shown in Fig.3.35a % is shown in Fig. 3.35b. The
Fourier transform of the time-shifted rectangle is 2%6’1' @/2 and that of the
negative impulse is —e /%,

F |:dx(t)] _ |:Zsin(a)/2)e;2m 3 ej“’]

dt w

Using the integration property of FT,

o] = L[4
xO1=5 [ dr ]

X(jw) = [_2 S/2) ot e‘jw]
jo w



3.7 Fourier Transform of Periodic Signal 275

(a) 4 x(1) (b) 4dx(®)
dt
1
) P
1 q
0 1 g v—1
. . . dx(t)
Fig. 3.35 a Representation of x(¢) and b Representation of
(a) 4x(1) (b) 4dx(»
dt
1
|| A
\
l .
} 0 1 2 1
1 .
0 1 2 1 -1
dx(t)

Fig. 3.36 a Representation of x(¢) and b Representation of

t 0<t<1
25. x(t) =41 1<t<2
0 elsewhere

The signal x (#) shown in Fig. 3.36a when differentiated takes the shape as shown
in Fig.3.36b. For the square pulse, the FT is

2sing o
e 2

X1(jo) =
For the negative impulse, the FT is
Xo(jw) = —e

. . 2 . W _jo _in
Xi(jo)+ Xs(jo) = | =—sin—e" 7 —e />
w 2

The Fourier transform of the given signal is obtained using the integration prop-
erty.
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1
X(jo)=—I[X1(jo) + X2(jw)]
jo

1 [2 jo )
X(jow)=— [— sin ee*/7 — efz“’}
jo |

2
1 lt] <1
26 x()=32—1t] 1<|t] <2
0 elsewhere

The given signal x (¢) is represented in Fig. 3.37a. The first and second derivatives
are shown in Figs. 3.37b, c respectively. From Fig.3.37c the FT of the impulses
are obtained using time shifting property.

F |:d2x(t)

— :| = [e/*” — (e/” + e7/*) + e7/?*] = 2[cos 2w — cos w]

Using the integration property of FT

Pl = 2 F[dzx(z)]
YOI=Gor | Tan

2
x(jw) = P [cosw — cos2w]

Example 3.15 Let the FT of a signal x(7) be as shown in Fig. 3.38a. Determine the
FT of & tx(¢) and [, x(t)dt using property.

(Anna University, December, 2005)

Solution
(a)
dx(t) . . .
F[ T } = joX(jo) = |oX (jo)]|
X(jwr) = w
X(jw) = w

X(joy=0 w1 =w=wm

This is the straight line with slope 1. This is represented in Fig. 3.38b.
(b)

d
Flix(n)] = %X(jw)
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(a) Ax(P) (b) Adx(t)
dt
! --—1
l l
| |
| | . .
-2 -1 12 1 -2 -1 1
— 1 I
© +d%x(1)
2
1 at 1
-2 -1 12 1
-1 -1
. . . . . dx(t)
Fig. 3.37 a Representation of signal x(¢); b Representation of the signal and ¢ Representa-
, L dRx()
tion of the signal 3
dt
(a) 4X(jw) (b)
1 ______
0 ) o & &
© 4.d (x; (d LX(jw)
FoXGo) 4 X0
1
@
> O I M
o)) wy 14 Wy
—1 o o &

dx(t)

Fig. 3.38 a FT of x(#); b FT of R

t
;e FT of tx(¢) and d FT of/ x(t)dt
0
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The rectangular wave in Fig.3.38a when differentiated with respect to w it
becomes +ve and —ve impulses of magnitude 1 at = w; and w = w, respec-
tively. This is shown in Fig. 3.38c.

©
t 1 1 .
F [/ x(t)dt:| = —X(jw) = ‘—X(Jw)‘
0 Jw @
Atw = wy,
_ 1
X(jor) = —
wi
At w = w,,
) 1
X(jwr) = —
wy

For w; < w < wy, itis a drooping curve. This is represented in Fig. 3.38d.

Example 3.16 Find the magnitude spectrum of FT and plot it where

(1 4 2¢77@)

H(jw) = W Loy

(Anna University, April, 2004)

Solution
) (14+2e77°)  (1+2cosw) — j2sinw
H(JC())Z 1 = 1 j .
(1+ 3e77?) (1+3cosw) — §sinw
i V(1 +2cosw)? + 4sin o V1 +4cos?w+ 4dcosw + 4sin’ w
|H(jw)| = =

\/(l—i—%cosw)z—i—isinzw \/1+%cos2a)+cosw+}—1sin2w

V5 +4cosw _

= —7=2

%+COSC¢)

|H(jw)| =2

|H (jw)| is independent of frequency and is shown in Fig.3.39.
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Fig. 3.39 Magnitude AlH(jw)|
spectrum of H (jw)
2
*o 0 &

Example 3.17 Using the properties of continuous time Fourier transform determine

the time domain signal x(¢), if the frequency domain signal

. . d el
X(jo) =Jj-~ —(1+%w) :

(Anna University, December, 2007)

Solution From inspection of X (jw), the given problem can be solved using differ-

entiation in frequency, time shifting and scaling in the proper order.
First, the time scaling property is applied. Let

Xi(jw) = Tt
x1(t) =eu(t)

F [x1[3t]] = 3¢ 3 'u(3t)
_
[+5]
F~! ; =3¢ u@) [ u@) =uBt)]
(1+%)

According to the time shifting property,

F 3¢ u@t)] =

Y (jo) = y(t +2)

ej2u)
(1+%)

According to differentiating property,

F~! =330y (1 +2)
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d
I Xe) =1x(0).
®

Applying the above property, we have

| . d e/> —3(1+42)
F ]%—]m = 3te u(t +2)
(1 + T)
]d ej2w
X(jo)y="—|-+——<
do | (1+2)

x(t) = 3te 3Dyt +2)
Example 3.18 Find the inverse Fourier transform of the following functions:

1. X(jw) = §(w — wp)
_Jje
Q2+ jow)?

. 1 ol <2
3. X =
(o) {O elsewhere

2. X(jo)=

6
o XUe =0T
. (jo+2)
> XU = e+ 3]
(ot
6. X(]w)_[(ja)+2)2(ja)+3)]

Solution
. X(Jw) =8 (w — @)
The IFT of §(w) = 5-8(w) is frequency shifted by wy.

o1
F X (jo)l = /™ —
2

—1 _ 1 Jwot
F7 [§(w—wy)] = —e
2

The above result can also be got from the first principle of inverse Fourier
transform



3.7 Fourier Transform of Periodic Signal 281

1 [® A
F'8(w—wy)] = 7 / 8(w — wp)e’ dw

Using the sampling property of the impulse function which exists only at w = wy,
we get

1 .
F7 [8(w — wg)] = — e/
2

. jo
2. X(jo) = ———
VO = a1 e
1
Fle?]= o——
2+ jw)
By applying,
o d 1
Fle?]=———
do 2+ jw)

(Applying frequency differentiation).

gt
2+ jw)?
By applying time differentiation, namely

dx(t) . X(i
o e (Jo)

-1 jo _i 2
F [(2+jw2)]_dr(’e )

1 |w| <2
0 otherwise
The frequency spectrum of the above function is shown in Fig. 3.40.

3. X(jw) =

Using the definition of inverse FT, we get
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Fig. 3.40 Representation of

X (o)
X(jo) G

2 0
I ‘
x(t) = —/ X(jw)e! dw
2w )
1 )
= — [lejwt]z
2mjt 2
_ 1 [ej2t _e—j2t]
2wt

1
= —sin 2t
Tt
2.
x(t) = —sinc2t
b4

. 6

—6
(jo+3)(jo—3)
R
jo+3 jo-3
—6=A1(jo—-3)+ A (jo+3).

X(jw) =

Let jo = -3

Let jo =3

A, =—1
1
jo+3 B jo—73
x(1) = FUX(w)] = e u@t) + eu(—t)

X(jw) =

x(t) = e u(t) + eMu(—r)

193 4
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. _ (jo+2)
3 XU®) = [Gorrgjors]
: (jo+2)
X(jw) = —212"
(Jo+D(jo+3)
A A,

= GotD T Gotd)
(w+2) = Ai(jo+3)+ Ar(jo+ 1)

Let jo = —1,

._.
I
0o
=

A =

| =

Let jo=-3, Ay =1

Iy 1 1
X(jw) = ~
() 2|:ja)+l+ja)+3:|

x(t) = % [€7t + 873t] u(t)

N S )
6. X(J®) = GoinGerd

A Ay Aj

XUo) =i T Gors T Got

(o+1)=A1(jo+3)+ A (jo+2)(jo+3) + As(jo + 2)*

Let jo = —2;
—-1=4A
Let jo = —3;

—2 = As

283

(Jo+ 1) =A1(jo+3)+ A [(jo)’ +5jo+ 6]+ A3 [(jo)* +4jo + 4]

Compare the coefficients of jw on both sides
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1= A, +5A; + 44,
=—1+54,-38
Ay =2
-1 2 2
Got2?  Got2  Gotd)
x(t) = F'[x(jo)]

x(t) = [—te ™ +2e7 —2¢ 7 u(t)

Example 3.19 Consider a causal LTI system with frequency response

Hjo) = jo+3
For a particular input x(¢), this system is to produce the output
y() = e ut) — e M u@).
Determine x (7).
(Anna University, April, 2008)

Solution

y(t) = e ut) — e M u(r)

. _ _ 1 _ 1

YU = G0 " Gotd -~ Gotd(otd
O Y(jw)

HU®) =¥ oy

Xy = YU Go+3) 1

T H(o)  (o+3(otd o+
x(t) = F'X(jow) = e u(r)
x(®) = e Mu(t)

Example 3.20 Find the Fourier transform of the following signals using the convo-
lution theorem.
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1. x(1) = e Hu(r) x e u(t)
2. x(t) = % [e7u(t) x e u(®)]
3. x(t) = [e X u(t) xeut — 5)]
Determine x (¢) in all the above cases.
Solution
1. x(t) = e u(t) * e Stu(t)
X(jo)=F [e?u®)] F [eu®)]

F [eiZtu(t)] = (]a)——I—Z)

s 1
F[e Su(t)] = (]a)——|—5)

1
(jo+2)(jo+5)

X(jo) =5 | — 1
J@ =3 |:ja)+2_ (jw+5)i|

X(jo) =

_ gl R _ -5t
x()=F [X(Jw)]—3[e u) —e > u(t)l

x(t) = % [e_Z’ — 6_5’] u(t)

2. x(t) = % [e‘Z‘u(t) * e‘Stu(t)]
Let

xi1(t) = e Hu(t) « e u(t)
1

Xi(jw) =
o) = T ot 3)

Using the time differentiation property of FT, we get

dx(t)
dt
X(jo) = joXi(jo)

x(t) =
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. jo
X(jo) =

(jo+2)(jo+5)
Putting into partial fraction, we get

X(jw) Ay n A

w) =

I =012 jo+s
jo=A1(jo+35)+ A(jo+2)

Let jo = —2;
2
Al = 3
Let jo = —5;
5
A2=§
X(o) =2 [-—2 4 2
w)=-|-—
=302 jwts

x(t) = F ' [X(jw)] = % [—2¢7 +5¢7 | u()

x(1) = % [—2¢7 4+ 5¢ | u(t)

3. x(t) = e u(t) = e >tu(t — 5)

x(1) = x1(2) * x2(1)
X(jo)=X1(jo)Xz2(jw)

L 1
X1(jo) = —(ja)+ )

@) =eut —5) =e Pe Iyt —5)

1
X(jo)=e P —-
(jo+5)

X (jo) =e-25[ 1 }
(jo+2)(jo+5)
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. 1 _,s 1 1
X(jw) = ze . -
3 jo+2 jo+5

o2
x(t) = 5 [672[ - 675[] u(t)

Example 3.21 Consider the following signals x; (¢) and x,(¢). Find

y(@) = x1(1) * x2(1).

x1(t) = e 2 u(t)

() = eu(—t)

x1(t) = e u(—t)

x2(t) = e*u(—r)

Solution

1. x1(8) = e Hu(t) and x,(t) = e3u(—1t)

Xi1(jo) = W—+2)

1

Xo(jow) = _(ja)——B)

x1(1) % x2(1) = X1(jw) X2 (jw)

Yiio) 1 (=D

w) =

1= Got2) o —3)
) Ay A

Y(jow) =

Got2 | Go-3)
1

B 1 1
S5 |ljo+2  jo-3

y(t) = F 'Y (jo)] = % [e7u@) + &'u(—1)]

y(t) = é [e7u@) + &u(—1)]
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2. x1(t) = e¥u(—t) and x,(t) = e*u(—1t)

o —1
X1(jow) = Go—2)
o —1
Xo(jow) = Go—4)
x1(1) *x2(1) = X1 (Jow) X2 (jw)
1
Y(jw) =
U = o~ Gw -8
A n A
C (jo=2)  (jo—4)

e
T 2l(jo—-2)  (jo—4)

1
ym=F”wmm=§k”—ﬂhen

ﬂnzék”—&ﬂw—n

Example 3.22 Find the Fourier transform of the following functions:

1. x() = &7 u(t)

2. x(t) = cos wot u(t)

3. x(t) = sin wot u(t)

4. x(t) =e “coswotu(t); a>0
5. x(t) =e “sinwptu(t); a>0
6. x() = [u(t +2) — ut — 2] cos 3t
7. x() = e 2 cos 5¢

8.

x(t) = e sin 2¢

Solution

1. x(¢) = e/u(r)

1
Flu@®)] = —+né(w)
jo
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By using the frequency shifting property, the FT of x(¢) is obtained.

Jwot 1
Fle/™u@)] = oo + 78 (w — wp)

2. x(t) = cos wotu(t)
1 jawot — jwot
cos wyt = E[ef of e/ “]
| R .
cos wotu(t) = 3 [e/ u(t) + e/ u(r)]
By using the frequency shifting property, F[x(¢)] is obtained.

X(jw) = Flcoswptu(t)]

1 1
—2 |:j(a)—a)0) 8w = wo) + Jj (@ + wo) +n8(a)+wo)i|
X(jow) = ! |:2—a) + md(w — wo) +7T3(a)+a)0):|
2 ](a)—a)(z))
. jo 1 1
X(jw) = m + 5718(60 — wp) + 5718(0) + wp)

3. x(t) = sinwotu(t)
: 1 jawot — jwot
s1nw0t=7[e/ o — e
: 1 jawot — jwot
sin wotu(t) = T [e/ u(r) — e/ u(r)]
J
By using the frequency shifting property, F[x(#)] is obtained.

1 1

. w( T 7'L’5
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4. x(t) = e~ cos wytu(t)

cos wot = |:ej“’°l + e_jwot]
LcoswoTe /@ dt

X(jo) =

1 [o° . .
e /wot —/wt dr + 2/ e~ p—Jwot j—jot gy
0

N | — N\r—ﬂ\t\)\v—‘
3
Q

f e—(a—jootjor g 4 1 / * —a+jootjor 4,
2 Jo

_ . . 50
a—]w0+]w) @t jootj® )

1
5 (G+Jw)—]w0 (a+jw)+jwo]
Tla+ jo+ jog+a+ jo— joyl
2 (a + jo)? + o

(a+ jo)

X(jow)= —— L7
(jo) @t jor + a2

”

Note: The property used to solve this problem is called the “Modulation
property which states that

x (1) cos wyt <£> %[X(w —wy) + X (w + wg)]

where x (¢) is the modulating signal and cos wy? is the carrier signal.
5. x(t) = e~ sinwptu(t)

. L1 ;
sinwot = — [ej“’ot - eff”’ot]
2j

1 [ ) ) 1 [ ) .
X(]a)) _ efatejcuotefjmf dt — — / e*me*JWO’e*Jﬂ” dt

2j Jo 2j
L[> — L[> —
— 7/ e~ (@—jwotjo) gy 7/ e—latiootjo) gy
2j Jo 2j Jo
1 [ Le—@—jotion  ,~@t+joo+jorr |
= - — + - -
2j | (a—jwo+jw)  (a+ jwo+jo) |

17 1 1
T 2j @+ jo)—joo (a+jw)+jw0]
_llatjotjoy—a— jo+t joy

2j | (a+ jw)? + o}
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wo

MU= v jor v ail

6. x(t) =[u(t+2) —u(t —2)]cos 3t

Xit)=u@+2)—u@®-2)=1; |t] <2

. 2 .
Xi(jw) = —sin2w
w
L
2
Fx(t) cos wot] = %[X (w — wp) + X(w + wp)]
_ [sin2(w — 3)] [sin2(w + 3)]

cos 3t =

Fliu+2) —u(t =2)} cos 3r] = —"— (@+3)

X(jo) = [sin 2(w—3) sin2(w+ 3)]

(w—3) (w+3)

7. x(¢) = e~ cos 5¢

Fle 2 = [see Example 3.1(f)]

w?+4
1
F[x(t) cos wpt] = E[X(w —wp) + X (w + wp)]
In the given problem, wy = 5

2 2
[(@—52+4  [@t52+4]

x(t) = [u(t +2) —u(t —2)] is shown in Fig.3.41.

291
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Fig. 3.41 Representation of x(t)
x(t) =[u(t +2) —u —2)] 4

1

N 4

8. x(t) = e 3 sin2¢
6
Fle 31 =
=G

x (1) sin wot <E> %j[X(w —wy) — X(w+ wp)]

F [e’3|’| sin Zt] il i 6 _ 1
2] L9+ (@ —2)21 [9+ (w+2)?]

—j24
[9 + (@ —2)21[9 + (w + 2)?]

x(jo) =

Example 3.23 Consider the following differential equation. Determine the fre-
quency response.

d*y(t) | dy() _ dx(1)
T +57 +6y@) = I +4x(t)

Solution Taking FT on both sides of the above differential equation, we get the
following algebraic equation. In the above equation, (jw)? = j—;; (jow) = j—l are
substituted while Fourier transformed.

(jw)*Y (jw) + 5(jw)Y (jo) + 6Y (jo) = [(jw) + 41X (jo)

VGO _ i = G0 td
XGo) Y T [Gw? +5j0 + 6]
Hjo) = —J2 Y

(jo+2)(jo+3)
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V (@? 4 16)
V(@ +4)(@*+9)

H(jw) = tan~! % —tan~! %) —tan~

|H(jo)| =

1@
3

H (jw) is the ratio of the Fourier transform of the output variable to the Fourier
transform of the input variable. It is called “Sinusoidal Transfer Function”.

Example 3.24 A certain continuous linear time invariant system is described by the
following differential equation.

dy(t) .
i +5y(t) = x()

Determine y(¢), using FT for the following input signals.
(@ x(@) =e Hu(r)

(b) x(¢) = 10u(z)

() x(®) =6(@).

Solution

(@) x(t) = e 2u(t)
Taking FT on both sides, we get

(Jo+35Y(jo) =X(jo)

Fle™ (r)]—%
¢ T Gor2)
Y (jw) = !
1O = G ¥ ) (jw+5)

1 1 1
3| jo+2  jo+5

1
YO = FIY(jo)l = 3 [e7 =™ u@)

y(t) =< [e™ — e u@)

W | =

(b) x(t) = 10u(t)

X(jo) = F10u()] = [IOnB(w) N ]1_0}
w

X(jo)
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1 10
= [na(m + .—}

jol| (jo+5)
 1078() 10
S (jo+5)  jo(jo+5)
_1078(@) | 2 2

T (jo+5  jo  (jo+5)

Applying the property X (jw)d(w) = X (0)§(w) in the above equation, we get

. 10 2 2
Y(]w)=?715(60)+1—w—(1w—+5)

—2|:718()+L:|—;

T T el T Gots)

y() = F'Y(jo) =2[u(t) — e u®)]

y(t) =2[1—e] u(r)
Note ;
F1 [na(w) + .—] =u(t).
jw

The above response is called “Step Response” because the input u(¢) is a
step signal.

(c) x(2) =4(t)

X(jo) =1

Y(jw) =
() jo+5

y(t) = F'[Y(jo)l = e u(t)

y(®) =e > u(t)

The above response is called “Impulse Response of the System” because the
input §(¢) is an impulse.

Example 3.25 Consider an LTI system with the differential equation.

& d d
dytgt) 4 4—2(;) +3y() = _ZE’) +2x (1)

Find the frequency response and impulse response.
(Anna University, December, 2006)
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Solution Taking FT on both sides of the above equation, we get

[(jo)* +4jw+31Y(jo) = (jo +2)X (jo)

ey < YU __ Gotd)
T X(jw) T (o2 +4jw + 3]
. (jo+2)
T o+ D(jo+3)
J(@? 14
H(jow)| = Y2 D
(0> + (0?4 9)
Ly AU R 1@
H(jw) = tan > tan”" w — tan 3

The above expressions give the magnitude and phase of the frequency response.
To find the impulse response

x(7) = 8(z)
Flx@®)]=F[6@®)] =1
Y(jw) = —J2F2)

(Jo+ D(jo+3)
Ay As

= GotD T Gotd)
(w+2) = A (jo+3)+ Ar(jw+ 1)

Let jo = —1;

1=2A| or A] =

N =

Let jo = —3;

1
—1= —2A2 or Az = E

NI 1
Y = 5[(jw+1> * (jw+3)]
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Taking inverse FT, we get

[ —t _}_673[] M(Z)

l\)l>—‘

y(t) = F'Y(jo)] =

yt)==[e" +e ] u)

l\)l'—

Example 3.26 An LTI continuous time system is described by the following differ-
ential equation.

d? d
dytgt) + —Z(I) +2y(t) = x(1)

Determine the impulse response of the system using FT and inverse FT.

Solution Taking FT on both sides, we get the following equation:
[(jo)* +2jo+2]Y(jo) = X(jo)

For an impulse input x(¢) = §(¢)

X(jw) = 1
1
Y(jo)= ——
Vo) = Gor ¥ 2jo+2
B 1
(Jo+1+Ho+1-))
A A

= — — + — -
(Jo+1+j) (o+1-))
l=A1(o+1— )+ A(Go+1+7)

Let jo =—(1+j)
l=A(-1—-j—-1-))

1
Al = —; AZ:AT:T

Y(jw) = 1 [ —1 1 i|
w
1= Geord+n Jord—)
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Fig. 3.42 Time response of
R-L circuit

x(1)

Taking inverse FT, we get

1 . .
V() = — [—e 1T 4 o= 0-D1]
2j
el — et
R §
—¢ [ 2 ]

y(t) = e 'sint

Example 3.27 Find the unit step response of the circuit shown in Fig.3.38. Use
Fourier transform method.

(Anna University, December, 2007)

Solution For the circuit shown in Fig. 3.42 the following equation is written

LG
74‘ i(t)y =x@)
sAD L 10i0) = 20)

dt

Taking FT on both sides, we get

[Sjo+10]I(jo) = X(jw)

. 02X (jw)

1 = —
Vo) =104

For a step input
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1
X(jo)=md(w) + —
jw

_0.276(w) 0.2

P

Applying the property X (jw)d(w) = X (0) 6(w) the above equation is written as

I(jw) = 0.178(w) + 0.1 [Jiw — jw1+ 2}
=0.1 |:718(a)) + i] — - 0.1
jw jo+2
i(1) =0.1[u(t) — e u®)]
y() =i()R

y(t) =[1—e ] u@).

Summary

1. Periodic signals are represented by Fourier series as a sum of complex sinusoids or
exponentials. However, FS is not applicable to aperiodic signals. Fourier transform
gives spectral representation to aperiodic signal. Thus, FT is applicable to periodic
and non-periodic signals as well to transform time domain signal x (¢) to frequency
domain signal X (jw). Here the frequency domain representation is continuous.

2. Itis possible to transform time domain specifications to frequency domain spec-
ifications and vice versa. The former is called Fourier transform and the latter is
called inverse Fourier transform which are denoted as F[x(¢)] and F~!'[X (jw)]
respectively and they are called Fourier transform pair.

3. Fourier transform does not exist for some useful signals. For example for x (¢) =
e u(r) FT does not converge.

4. Fourier and Laplace were contemporaries and great mathematicians who were
encouraged by the French ruler Napoleon Bonaparte. Laplace, by introducing
an exponential decay in the everlasting exponential made many functions con-
verge while FT failed in these cases. Further, Laplace transform is more powerful
especially in getting the solution of differential equations compared to FT.

5. FT is a special case of LT which is obtained in many cases by replacing s by jo.
But this is not always true. For example, in the case of a step signal, this is not
applicable.

6. Fourier transform has many useful properties. By applying these properties, one
can easily get the FT pair of even complex signals. They are powerful tools for
manipulating signals in time and frequency domains.
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Exercises

I. Short Answer Type Questions

1. What do you understand by Fourier transform pair?
When the time function x(¢) is transformed to frequency function X (jw), the
function x(¢) is said to be Fourier transformed. When the frequency function
X (jw) is transformed to x(¢) then the function X (jw) is said to be inverse
Fourier transformed. These transformations are respectively defined as follows:

X(jw) = /Oo x(t)e ¥ dt

oo

1 o0 ) o
x(t) = —/ X(jw)e!dw
2w J_

oo

The above two equations are called FT pair.

2. How Fourier transform is different from Fourier series?
Fourier series is applicable to periodic signals. Fourier transform is applicable
periodic and aperiodic signals as well.

3. How FT is developed from Fourier series?
When the aperiodic signals is considered as a periodic signal with its fundamental
period tending to infinite, the fundamental frequency decreases and the higher
harmonics become closer. The frequency components form a continuum and
the Fourier series sum becomes Fourier integral which is defined as Fourier
transform.

4. How Parseval’s Energy theorem is defined for the frequency domain
signal?
According to Parseval’s theorem (French mathematician of late eighteenth and
early nineteenth centuries) the energy of the frequency domain is defined as

1 [ o
E=_— X (jo)|”dw
27 J_ o

5. What is the connection between Fourier transform and Laplace transform?
The connection between Fourier transform and Laplace transform is that the
Fourier transform is the Laplace transform with s = jw. The Laplace transform
ofx(t) = e “u(t)is X (s) = ﬁ and its Fourier transformis X (jw) = (jwlﬂ) .
However, this is not generally true of signals which are not absolutely integrable.
The Laplace transform of a step signal is X (s) = % The Fourier transform of
the step signal is X (jw) = 7w (w) + jlw and not simply JLw

6. What do you understand by frequency response?

If y(¢) is the output, x(¢) the input and A (#) is the impulse response, then they
are related as
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10.

II.

L.

y(t) = x(t) * h(t)
By using convolution property, we get

Y(jw) = X(jo)H(jw)
Y(jw)
X(jw)

= H(jo)

The function H (jw) is called the frequency response.

. What is the condition required for the convergence of Fourier transform?

If the signal x () has finite energy or if it is square integrable such that

/ lx ()| dt < 0o

[ee}

then the Fourier transform X (jw) converges.

. What is the Fourier transform of

2

d
x(t) = Wx(t +1)

Flx(H)] = (jo)*e’”X (jo)
What is the FT of x(¢) = [§(t + 5) — §(t — 5)]?
X(jw) =2j sinSw

Find the FT of x(¢) = 2[u(t + 6) — u(t — 6)]?

4
X(jw) = > sin 6w = 24sincbw

Long Answer Type Questions
Consider the following continuous time signal.
x(t) = e

Find the FT. Hence determine the FT of 7x(¢).
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Fig. 3.43 FT of AX(jw)
x(r) = el
5
-5 0 5 o
Fig. 3.44 Representation of Ax(t)

x(t) for question 3

1 |
|
|
! .
-1 0 1 1
XGo) 10
W) = ——=
J 25 + o)
—j20w
FlreSM) = 122
L T

2. For the signal X (j®) shown in Fig.3.43, determine x (¢)?

in 5¢
x(t) = 5sm
Tt

3. Consider the signal shown in Fig. 3.44. Find X (j®). What is the FT for
x(t—1)?

S

. inw .
X(jo)y=2—> +e J@
jo
2sinw
Flx(t =Dl ="
jo

4. Using Parseval’s theorem evaluate energy in the frequency domain.
x(t) = e 4

P=Z
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x() = e u(t)
and

h(t) = e *u(t)
y(@) = x(t) = h(t)
Using time convolution property find Y (jw) and y(¢)?

1
(Jo+2)(jo+4)

y(t) = % [e7 — e *u()

Y(jw) =

x(t) = e *u@®)
h(t) = e 2 u(t)
y(t) = x(t) % h(t)

Find Y (j®) and hence y(¢)?

1
(jo + 2)?
y(t) = te Hu(r)

Y(jw) =

7. A certain LTIC system is described by the following differential equation.

% +2y(1) = x(0)

Determine the Frequency response and the Impulse response?

H(jo) = m

h(t) = e > u(r)
8. Consider the following differential equation

2
d dyt 2’) + S—dfl(tt) +15y(0) = —d’;y) +4x(t)
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(a) Find the frequency response.
(b) Find the impulse response.

(c) Find the response y(¢) due to the input x () = e~3u(z).

. (Jo+4)
H =
@ U = Gt 3G+ )
by K@) = % [e7 + e u)
1

(©) y(t) = 2 [2te™ + e — e ]u).

303



Chapter 4 )
The Laplace Transform Method for the
Analysis of Continuous-Time Signals

and Systems

Chapter Objectives

e To develop a new transform method, the Laplace transform (LT) which is

applicable for the analysis of continuous-time signals and systems.

To determine the range of signals to which the LT is applicable.

To derive the properties of LT.

To determine the LT of typical Continuous-Time (CT) signals.

To develop inverse LT method and illustrate it with examples.

To solve differential equations with and without initial conditions using LT

and inverse LT and also by classical method.

e To realize the structure of linear time invariant continuous-time systems
using LT.

4.1 Introduction

The Continuous-Time Fourier Transform (CTFT) is a powerful tool for the analysis of
CT signals and systems. However, the method has its limitation in that some useful
signals do not have CTFT because these signals do not converge. Marquis Pierre
Simon de Laplace (1749-1827), the great French mathematician and Astronomer
and the contemporary of Fourier (1768—1830), Louis de Lagrange and the French
ruler Napoleon, developed a new transform technique which overcame the problem
of convergence in CTFT. Laplace, first presented the transform and its applications to
solve linear differential equations in a paper published in the year 1779 when he was
just 30 years of age. For his excellent contributions to probability theory, astronomy,
special functions and celestial mechanics, Laplace was honored by Napoleon, as a

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 305
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policy of honoring and promoting scientists of high caliber, by appointing him as a
minister in the French Government. However, Laplace a born genius, showed more
interest in his research activities and totally neglected the administrative work in the
government. It was no surprise that soon Laplace was sacked from the ministerial
post by his admirer, Napoleon.

The CTFT expresses signals as linear combinations of complex sinusoids. Some
useful signals, when expressed as a combination of complex sinusoids, do not
converge and they do not have Fourier transform (FT). However, Laplace made
a small modification in his transform technique from time domain to frequency
domain by expressing time signals as linear combinations of complex exponen-
tial instead of complex sinusoids. LT is more general since complex sinusoids
are a special case of complex exponentials. Thus, LT can describe functions that
FT cannot describe. Both the FT and LT using mathematical operations, convert
the time signal x(¢) to frequency function X (jw) and X (s) respectively, where
s = 0 + jw. By introducing o in LT method, most of the signals become damped
waves and convergence becomes possible. However, it is to be noted that there exists
a class of signals which do not converge in LT also and, for these signals, LT does not
exist. The LT, even though a very powerful tool in the analysis and design of linear
time invariant signals and systems today, did not catch on until nearly a century later.
We discuss the development of the LT in the following sections.

4.2 Definition and Derivations of the LT

The time signal x () is expressed as a linear combination of complex sinusoids of the
form e/® by the FT. Here jw takes only imaginary value of  which is associated
with the frequency f as w = 2n f. Thus, some of the useful time functions such
as x(t) = e do not coverage as per the FT. By changing the complex sinusoid to
complex exponential of the form e*’, the FT can be generated and is termed as the
LT and is defined as

Lix()] = X(s) = foc x(t)e'dt “.1)

—00

The complex variable s has a real part and an imaginary part and is expressed as
s=0+jw “4.2)

If the real part o = 0, then Eq. (4.1) becomes a special case and it becomes the FT.
By substituting s = (¢ + jw), Eq. (4.1) can be written as follows:

X(S) _ /OO x(t)e—(<7+jw)ldt _ /oo [x(t)e_gf]e—ja)ldt (43)

o] —0Q
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In Eq. (4.3), the real exponential convergence factor e °” enables some of the time

functions x (¢) to converge in the complex s plane. Equation (4.1) is called the two-
sided (or bilateral) LT. The signal x(¢) is obtained from X (s) by taking the inverse
LT which is derived as

o+4joo
x(@®) =L7'X(s) = %/ ' X (s)e''ds 4.4)
o—joo

Equations (4.1) and (4.4) are called two-sided or bilateral LT pair. The symbol
L~ is used when X (s) is the inverse Laplace transformed. The following notations
are used to represent LT and inverse LT:

X(s) = L[x(1)]
or

x(1) <55 X (s)
x(t) = L7 [X(5)]

X(s) = <5 x(0) (4.5)

It is to be noted that the time function is represented by lower case letter and
the s function by upper case letter.

4.2.1 LT of Causal and Non-causal Systems

In Eq. (4.1), the transformation of x(¢) to X (s) is done for the following conditions:

e x(t) is anti-causal where t < 0,
e x(t) is an impulse where t = 0,
e x(t) is causal where t > 0.

The unilateral LT is a special case of LT and is defined as follows:

X(s) = /Oox(t)e_”dt (4.6)
0

It is to be noted here that Eq. (4.6) is valid only for causal signals and systems.
For non-casual signals and systems the limits if integration have to be changed. The
following two examples illustrate the method to determine the LT for casual and
non-causal signals.

Example 4.1 For the following signal determine the LT,

x(t) = e u(t)



308 4 The Laplace Transform Method ...

Solution The given signal x (¢) is a causal signal. The limit of integration is therefore
from O to co. Hence

o0
X(s) =/ e et dt
0

o0
— / e—(s+a)tdt
0

1 —(s+a)t>® 1 —(s+a —(s+a)0
T G+t [0y T Gta [ =]
X(s) =
(s) Gta)

The above integration converges when the upper limit oo is applied iff (s +a) > 0
ors > —a. If (s + a) < 0, then e#+¥> does not converge. In such a case LT does
not exist.

Example 4.2 Consider the following signal:
x(t) = e “u(—1)

Determine the LT.

Solution The given signal x (¢) is a non-causal signal. Hence, the limit of integration
is from —oo to 0.

0 0
X(s) =/ x(t)eﬂ’dtzf e et dt

0
= / e gy
—0oQ

-l
C (s+a)

[e—(s+a)t]0

—00

—1

X(s) = (s+a)

The above integration converges when the lower limit —oo is applied iff (s + a) < 0
or s < —a. The above two examples illustrate that for the same time signal x (¢), the
LT is also same with a change of sign. However, the mode of convergence is different
which is an important thing to note. This will be discussed in detail in the sections
to follow.
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4.3 The Existence of LT

Consider the one-sided LT given below.

oo
X(s) = / x(t)e ™ 'dt
0

Substituting s = o + jw in the above equation, we get

o .

X(s) = / [x(t)ef‘”] e/ dt
0
Since |e~/®!| = 1, the above integral can be written as

X(s) = / ” [x()e™"]dt 4.7
0

The integral in Eq. (4.7) converges if

/ ” [x(De "] dt < oo (4.8)
0

In other words, the LT of (4.7) exists if the integral of equation (4.8) is finite for some
value of o > oy or Re(s) which is o should be greater than oy which is expressed as

o > 0y

4.4 The Region of Convergence

One of the limitations of CTFT as mentioned earlier is that some useful functions
whether causal or non-causal do not have FT. By making the complex variable s as
expressed in Eq. (4.2) and defining LT as in Eq. (4.1), it is possible to overcome
this limitation of non-convergence of FT. For example, consider the following causal
signal:

x(t) = Ae”ut) a>0 4.9)

The plot of equation (4.9) as a function of time is shown in Fig.4.1. From Fig. 4.1,
it is evident that x () increases without bound as ¢ increases. It can be easily shown
that FT does not exist for the above x(¢). However, the LT exists for the above x(¢)
with certain constraint and it is derived as follows. Substituting x (1) = Ae* in (4.1),
the following equation is obtained:
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Fig. 4.1 Plot of 4
x(t) = Ae® u(t)
x(1)
A
; >
o0
X(s) = / Ae“ e u(t)dt (4.10)
—00

For a causal signal (also called right-sided signal), changing the limit of integration,
we get

X(s) = /OO Ae“ e dt 4.11)
0
—A f " oy (4.12)
0
—A —(s—a)t>®
=l (4.13)
X(s) = G—a) (4.14)

Equation (4.13) converges iff (s — a) > 0. In other words Re s > a. In that case
when the upper limit of ¥ = ocois applied, X (s) = 0 and when the lower limitofr = 0
is applied, X (s) is finite. Thus, Eq. (4.13) is simplified and given in Eq. (4.14). The
LT of x(¢) of (4.9) exists or Eq. (4.13) converges iff ¢ > a in the complex s-plane.
This is called the region of convergence.

The region of convergence which is denoted as ROC is therefore defined as the
set of values of s of the real part of s for which part the integral of equation (4.1)
converges.

The ROC of x(¢) in Eq. (4.9) is illustrated in Fig. 4.2. It is to be noted here that
X (s) in Eq. (4.14) becomes infinity at s = a. Therefore, the points in the s-plane at
which the function X (s) becomes infinity are called poles and are marked by a small
cross x. Now consider a function X (s) = (s + a). The function X (s) becomes zero
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Fig. 4.2 Pole-zero plot and

— 8

ROC of X (s) = T X jo
s-plane
——» oo
K » O
0 a
ROC
—p ©
olo
at s = —a. Therefore, the point in the s-plane at which the function X (s) becomes

zero are called zeros and are marked by a small circle O.
Now consider the following non-causal signal or otherwise called left-sided signal
shown in Fig. 4.3.
x(t) = Ae “u(—t) (4.15)

The LT of the above signal is obtained from

0
X (s) =/ x(t)e*'dt

o0
0
= / Ae e dt (4.16)
—00
0
2/ Ae—(s+ct)tdt
—00
_A —(§T+a O
S [e ¢+ 4.17)

It is evident from Eq. (4.17) that the integral given in Eq. (4.16) will converge
iff (s + a) < 0 when the lower limit of + = —o0 is applied to (4.17). Thus, X (s) is
obtained as

X(s) = _(s +a)
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A X(t)

A
v

Fig. 4.3 Plotof x(¢) = Ae™u(—t)

T A jw

s-plane

—a 0
ROC

l Left sided ROC

Fig. 44 ROC of X(s) =
g () cta)

The ROC for the left-sided signal is Re s < —a. The ROC is shown in Fig. 4.4.

From the above examples illustrated, for the same X (s), different time signals
x(t) exist and therefore the inverse LT is not unique. Hence, it is necessary to specify
the ROC while determining LT and inverse LT. However, for unilateral LT, there
exists one to one correspondence between the LT pair. For the bilateral or two-sided
LT it is essential to specify the ROC to avoid any ambiguity.
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4.4.1 Properties of ROCs for LT

Property 1: The ROC of X (s) consists of parallel strips to the imaginary axis.

Property 2: The ROC of LT does not include any pole of X (s).

Property 3: If x(¢) is a finite duration signal, and is absolutely integrable then the
ROC of X (s) is the entire s-plane.

Property 4: For the right-sided (causal) signal if the Re(s) = oy and is in ROC, then
for all the values of s for which Re(s) > oy is also in ROC.

Property 5: If x(¢) is a left-sided (non-causal) signal and if Re(s) = oy is in ROC,
then for all the values of s for which Re(s) < oy is also in ROC.

Property 6: If x(¢) is two-sided signal and if Re(s) = oy and is in ROC, then the
ROC of X (s) will consist of a strip in the s-plane which will include
Re(s) = op.

The following examples illustrate the above properties of ROC and pole-zero
locations of X (s) in the s-plane.

Example 4.3 Determine the LT of the following signal. Mark the poles and ROC
in the s-plane. x(t) = Ae % u(t) + Be " u(—t) where a > 0, b > 0 and |a| > |b].

Solution

1. The given signal x(¢) consists of causal and anti-causal signals and can be writ-
ten as

x(t) = x1(t) + x2(1)
where

x1(t) = Ae " u(r)
x2(t) = Be "u(—1)

2. X (s) is found as follows for a right-sided signal.

[0 ]
Xl(s):/ Ae et
0

[e e]
= A/ e Ot gy
0

—A —(s—a)t]—>®
T Gta) [,

_ A
C (s+a)

The ROC is Re(s) > —a.
3. X, (s) is found as follows for a left-sided signal.
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0
Xz(s)=/ Be Pe5dy

—0Q

0
= B/ e~ Gt gy
—00

—B —(s+b)t70

BT A

= B 1-0

= et Y
—B

(s+0b)

The ROC is Re(s) < —b.

* X(5) = X1 () + Xo(s) = — 5
= S = —
VA WEG+a) G+b)

5. The poles and ROC are marked as shown in Fig. 4.5b. In Fig. 4.5b, |a| > |b|.
Vertical lines passing through —a and —b are drawn. For X (s), the ROC is right-
sided and for X,(s) the ROC is left-sided. A strip where —a <Re s < —b is

drawn and hatched and the ROC is identified.

6. Consider the case where |b| > |a|. The poles are located as shown in Fig. 4.5c.
Vertical line passing through —a and —b are drawn. For X (s), the ROC is right-
sided and a strip where Re(s) > —a is drawn and hatched. For X;(s), the ROC
is left-sided. A vertical strip to the left of —b is formed and hatched. It is to be
noted that the ROC s of x;(¢#) and x,(¢) do not overlap and hence x (¢) does

not have LT.
Example 4.4 Determine the LT of
x(t) = e 2u(t) + e u@)

and sketch the ROC in the s-plane.

(Anna University, May, 2007)

Solution

1. x(¢) is completely a right-sided signal and hence the limit of the LT integration

is from ¢ = 0 to t = oo. Thus, the following equation is written for X (s).
o oo
X(s) = / e e St + / e e S dt
0 0

00 o0
— / e—(s+2)ldt + / e—(s+3)rdt
0 0

1 N 1 (2545
TG +2) (543 (5+2)(+3)
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(a) (®) T
I 0) 4 jo
X,(1) A s-plane
— % >0
ROC [
B xl(t)
t 0 t l
© T I 4 jo
I s-plane
+«— \R R
\ \R&&
» O

: l

Left-sided ROC Right-sided ROC

Fig. 4.5 a Representation of x(¢). b ROC and poles of X (s) |a| > |b|. ¢ Poles and ROC of X (s)

for |b| > |a|
2 2.5
X(s) = 2829
(s+2)(s+3)
2. The poles are at s = —2 and s = —3 and a zero is at s = —2.5 and are marked in
Fig. 4.6.

the ROC is right-sided to the vertical line passing through

3. For the pole S%,
o = —2. For the pole ﬁ, the ROC is also right-sided passing through o = —3.
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A ](,0
s-plane
ROC
—
O » O
3 25 2 0
—
l l Right-sided ROC

2(s +2.5)

Fig. 4.6 Poles and zeros and ROC of X (s) = ———————
(s+2)(s+3)

If ROC where o > —2 is satisfied then ROC where ¢ > —3 is automatically
satisfied. Further, no pole of X (s) will be inside the ROC.

4. A strip to the right of 0 = —2 is created and shaded. The strip is enlarged to co
in the direction of real and imaginary axis.

5. Thus, the ROC of a causal signal is to the right of the right most pole of X (s).

Example 4.5 Determine the LT of
x(t) = e Hu(—t) + e u(—1)

Locate the poles and zero of X (s) and also the ROC in the s-plane.

Solution

1. The given signal is fully a left-sided signal and hence the limit of LT integration
is from —oo to 0. The LT of x(¢) is obtained as follows:

0 0 0 0
X(s) =/ e He S dt +f e e S dt =/ e~ gy —l—/ e I gy
—0Q —0Q —0Q —0Q

(s 0 1 (s 0
= orp e g
1 1

T G+2) (s+3)

ROCRes < —3
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Fig. 4.7 Poles and zeros and ROC of X (s) =

4.

5.

Ajo

T s-plane

4—
ROC
O » O
-3 =25 -2

‘_

l Left-sided ROC

—2(s + 2.5)
(s+2)(s+3)

—2(s +2.5)

X(s) = ——— 2
(s+2)(s +3)

. The poles are ats = —2 and s = —3 and a zero is at s = —2.5 and are marked in

Fig. 4.7.

For the pole —!

(s+2)°
o = —2. For the pole # the ROC is also left-sided to the vertical line passing
through 0 = —3. If ROC where 0 = —3 is satisfied then ROC where 0 = —2 is
also satisfied. Further, no pole of X (s) will be inside the ROC.

A vertical strip to the left of 0 = —3 is created and shaded. The strip is enlarged
to oo in the direction of real and imaginary axis.

Thus, the ROC of a non-causal signal is to the left of the left most pole of X (s).

the ROC is left-sided to the vertical line passing through

Example 4.6 Consider the following signal:

x(t) = e 2 u(—t) + e u(t)

Determine the LT and locate the poles and zeros and the ROC in the s-plane.

Solution

1.

The given signal is a combination of left- and right-sided. The integration is
performed as given below:
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T Ajm
s-plane
ROC
> G
-3 -2
l Left-Right ROC strip
Fig. 4.8 Poles and £ X (s) ! d the ROC
18. 4. 0les and Zeros O §) = ————— an e
& 2 +3)
0 00
X(s) = f e e dt +/ e e S dt
—00 0
0 [ee)
— / e—(s+2)tdt + / e—(S+3)tdt
—00 0
_ 1 [e—(s+2)t]0 _ 1 [ef(s+3)t]°0 __ 1 + 1
(s+2) 0 (s+3) 0 (s+2) (s+3)

X(s) ROC—3 <Res < —2

T (5+2)(5+3)

2. The pole locations are shown in Fig. 4.8. For the left-sided signal the ROC is Re
s < —2 and for the right-sided signal the ROC is Re s > —3. The resultant ROC

is a strip in between the vertical lines passing through ¢ = —2 and 0 = —3. The
strip is shaded as shown in Fig. 4.8. It is enlarged in the vertical direction. The
poles are at s = —2 and s = —3. There is no zero for this function.

Example 4.7 Determine the LT and locate the poles and zeros and ROC in the
s-plane for the following signal:

x(t) = Au(t)
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(b) ajo T
s-plane

(a)

—»
x(f) 4

» RO
4 0 ROC
—»
> l Right-sided ROC
0 t
x(1) = Au(?) X(s) = % and ROC

Fig. 4.9 Representation of x(¢) and ROC

Solution

1. The given signal is right-sided signal. Its LT is obtained as follows:

oo
X (s) =/ Aedt
0

—A

A e

A
X(s) == ROCRes > 0.
S

2. For the given signal, a pole at the origin exists and it is marked in Fig. 4.9b.
3. The LT converges only if o > 0. Thus, the ROC is the entire right half of s-plane.

4.5 The Unilateral Laplace Transform
The unilateral LT is a special case of bilateral LT and is defined as
[o.¢]
X(s) = / x(t)e *'dt (4.18)
0

The unilateral LT has the following features:

1. The unilateral LT simplifies the system analysis considerably.
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2. The signals are restricted to causal signals.

There is one to one correspondence between LT and inverse LT.

4. Inview of the above advantages, Laplace transform means unilateral LT as defined
in Eq. (4.18) unless otherwise it is specifically mentioned that the signal is anti-
causal.

w

Before we go for the determination of LT of some of the commonly used signals,
we give below some of the properties of LT which will be useful to determine X (s)
from x(¢) and vice versa in a simplified way.

4.6 Properties of Laplace Transform

4.6.1 Linearity

X1 (1) <55 X, (s)
X (1) <55 X, (s)

[a1x1(t) + axs ()] <> [ar X1 (s) + a2 X5 ()] (4.19)

4.6.2 Time Shifting

Let x(¢) be time shifted to the right (time delay) by a real constant #,. The delayed
time function is written as x(# — #p). As per the time shifting property,

x(1) <5 X(s)

X(r — 1)) <E> X(s)e™*" (4.20)
Proof By definition of LT,
(o]
Lix(t — )] = / x(t —ty)e *'dt (4.21)
0
Let
t—th=AXA

dt = di
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For the integration of equation (4.21), the lower and upper limits are determined as
follows.
When t = 0, A = —fp and when t = oo, then A = oo. Thus, Eq. (4.21) is written

as follows:
o0

Lix(t —ty)] = / x(W)esPH0 gy, (4.22)

—1y

For a causal signal, x(#) = O for# < 0 and the lower limit of integration is zero. Now
Eq. (4.22) is written as follows:

Llx(1)] = e*% f x(W)e da
0

= e X (s)

Thus,

X(1 —1p) <2 X(s)e™™™ 1> 0 (4.23)

4.6.3 Frequency Shifting
According to frequency shifting property, if

x(1) <5 X(s)

x(t)e™ PN X (s — s0)

Proof

Lx(t)e™] :f x(1)e™ e dt
0

Llx(@)e™] = / x(t)e*(ffso)tdt
0
= X(s — s0)

x(1)e™ < X (s — s0) (4.24)
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4.6.4 Time Scaling
The time scaling property states that if

x(t) <5 X(s)
L 1 s
x(at) <— HX (;)
Proof
L[x(at)]:/ x(at)e'dt (4.25)
0

Let
A=at and d\ = adt

For the lower limit of integration of equation (4.25), when ¢t = 0, A = 0 and for the

upper limit of integration when ¢t = oo, then A = co. Hence, Eq. (4.25) is written as
follows:

Lix(at)] = /oo x(Me @ L
0 a

1 ° sy
= — x(A)e a*d
lal Jo
=)
T a a

x(at) <5 éx (f) (4.26)

a

4.6.5 Frequency Scaling

According to frequency scaling property, if

x(1) <5 X(s)

1 t L
—X (—) <~ X(as)
a

a

Proof According to time scaling property,

x(at) <L> éX (2)
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Let

Replacing b by a, we get

1 t L
—X (5) <~ X(as) 4.27)

4.6.6 Time Differentiation

x(1) <= X(s)

PO L, X(s) —x(0)

dt
d*x@) L 5 _ d _
I > X(s)—sx(O)—Ex(O)

Proof
X(s):/ x(t)e *'dt (4.28)
0

The above integral is evaluated by parts using

/udv:uv—/vdu

Letu = x(¢t) and dv = e *'dt; du = %x(t)dt andv = —%e’”

& -1 e R | d
/ x(He 'dt = |:—x(t)e_”i| —/ ——e M —x()dt
0 N 0 0 N dt

1 L[ _, d
X(s) = —x(0) + —/ e —x(t)dr.
s s Jo dt

or

d © d st
L[Eu(r))}: /0 e
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d L _
LE(X(I)) <« sX(s) —x(07) (4.29)

The time differentiation twice is proved as follows:
2 (x(1)) ¢(4 (x(1))
—(x =—|—(
dr? dt \dt
Using the property
d
S (x(0) <> 5X(s) — x(07)
dt
we get

L [dz(X(t))
dt?

d d _
} =sL [E(x(t))] — 7,07

t=0

2
d Elxtgt)) PN s2X(s) —sx(07) — %(X(Oi))
In general
d}:;;flt) Lo X (5) — 5" x(07) — " 2x(07) -+ 271 (07)

) OR (4.30)
n l» n
O L ny(s) — Y snxk107)

de" =1

4.6.7 Time Integration
The time integration property states that if

x(1) <5 X(s)

/x(t)dr L, X
0 S

Proof We define
f@) =/ x(t)dr.
0
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Differentiating the above equation, we get

df (1)
dt

=x() and x(07) =0
if
f) <= F(s)

X(s):L[%f(t)]:sF(s)—f(O)=sF(s) if f(07)=0

X(s)
S

F(s) =

t
X
/ r(rydr <2 X 4.31)
0 S
4.6.8 Time Convolution
The time convolution property states that if
L
x1(8) <— X, (s)
xo(1) PN Xo(s)
X1 (1) % X2(1) <=5 X, (5) X2(s) (4.32)

Proof
L{x1() * x2(t)] = / e |:/ x1(Dxp(t — r)dr} dt

—0Q o0

= /OO x1(7) [/OO e xy(t — r)dt] dt

The inner integral is the LT of x,(+ — t) with a time delay 7. Substituting

/ e x(t — 1)dt = Xo(s)e™™

o0
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in the above equation, we get

o0

L[x1(t) x x2(1)] =/ x1 (D) X2 (s)e dt

—00

= X,(s) /-oo x1(t)e ¥dt

= X7(s)X1(s)

[ () % X2(£)] <> X (5) X2 (s)

4.6.9 Complex Frequency Differentiation
According to this property,
d
—1x(1) <= (X (s))
ds
Proof By definition of LT,
oo
X(s) = / x(t)e ™ 'dt
0

Differentiating both sides with respect to s,

d X _4 /OO (t)e *'dt
g( (S))—a A x(l)e

o0
= —/ tx (e *'dt
0

= —L[tx()]

L d
—tx(t) «— —(X(s))
ds

(4.33)
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4.6.10 Complex Frequency Shifting
According to this property,

[ x(1)] <> X (s — 50) (4.34)

o0
Lle™'x()] = / e x(t)e'dt  where spis a constant
0

= / ” x(H)e 7004 = X (s — s0)
0
[ x(1)] PEIN X (s — s0)

4.6.11 Conjugation Property

According to this property if x(¢) PEING'S (s) then
X*(t) <2 X*(—s) (4.35)
Proof By definition of LT,
LIx*(t)] = / x*(t)e 'dt
OOO
= / [x(t)e” V' dt]*
0

= X*(~s)

(1) <5 X (=)

4.6.12 Initial Value Theorem

According to this theorem,

Lt x(t) = Lt sX(s) (4.36)
t— §—00
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Proof

L [%x(t)} = [)w %(x(t))ef‘"dt =s5X(s) —x(0)

Let s — oo; then

Lt /OO i(x(t))e‘”dt = Lt [sX(s) — x(0)]
s—00 Jo dt §=00
0= Lt [sX(s) —x(0)]

Since x(0) = Ltox(t)
t—

Lt x(t) = Lt sX(s)
t—0 5—>00

4.6.13 Final Value Theorem

According to this theorem,

Lt x(t) = Lt sX(s) 4.37)
t—00 s—0
Proof The LT of %(x(t)) could be written as

*d —st 3. _ _
/0 w0y di = [5X(5) ~ x(0)]

Taking Lt0 on both sides of the above equation, we get
S—>

/00 i()c(t))dt = Lt[sX(s) — x(0)]
0 dt s—0
tLt [x(t) —x(0)] = LtO[sX(s) —x(0)]

Lt x(t) = Lt sX(s)
t—00 s—0

The above theorem is valid if X (s) has no poles in RHP of s-plane Table 4.1 gives
the summary of properties of LT.

The following examples illustrate the method of determining LT.

Example 4.8 Determine the LT of unit impulse function §(¢) shown in Fig. 4.10.
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Table 4.1 Summary of properties of LT

S.No Property Time function Frequency function
x(t) X (s)
Linearity axi(t) + axxa (1) a1 X1(s) + a2 X>(s)
2. Time shifting x(t — 1) X (s)es0
Frequency shifting x(t)e X(s —a)
1
4. Time scaling x(at) -X (i )
a a
. 1 t
5. Frequency scaling x| - X (as)
a \a
) . - d _
6. Time differentiation o (x(1)) sX(s) —x(07)
d2
d7(x(z)) $2X(s) — sx(07) — x(07)
dﬂ
W(x([)) s"X(s)
_ ZZ:1 Snx(k—l)(o—)
X
7. Time integration Jo x(Ddt X©
s
8. Time convolution x1(2) * x2(¢) X1(s)Xo(s)
d
9. Complex frequency —tx(t) —(X(s))
differentiation ds
dn
n n
1" x(t) (=D ds,,X(S)
10. Complex frequency e Yx(t) X(s+a)
shifting
11. Conjugation x*(1) X*(—s)
12. Initial value theorem Lt x(t) Lt sX(s)
t—0 §—00
13. Final value theorem Lt x(t) Lt sX(s)
1— 00 s—0
14. Shift theorem x(t —a) X(s)e ™
Fig. 4.10 The unit impulse 4 x(6)

(or delta) function

1430

N 4
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Fig. 4.11 Ramp (or 4 x(f)
velocity) function

e
t
Solution The unit impulse function is represented as
3(¢)y=1 for t=0
=0 otherwise
[o.¢]
LI§()] = / S(t)e *'dt
ot
= / e dt
=1
5(1)<Xs1  ROC: alls (4.38)

Example 4.9 Determine the LT of a ramp function of slope R which is shown in
Fig. 4.11.

Solution The ramp function of slope R is represented in Fig. 4.11 and it is mathe-
matically expressed as
x(®) =Rtu(t) t>0

Taking LT, the following equation is written:
oo
L[Rt] = / Rte'dt
0

The above integration is solved by the well-known integration by parts using the

following relationship
/udv:uv—/vdu
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—st

Letu = Rt and du = Rdt;dv = e 'dt andv = [ e 'dt = ——

N

tefst 00 00 efst
L[Rt] =R [ } — R/ dt
(=5 1o 0o (=)
— R[0—0]+ R [8_32]
—2 |,

(4.39)

R
§2

L R
L(Rt) «— -
s

ROC: The entire right half s-plane (RHP) except the origin.
The LT of unit ramp (R = 1) is,

1
L(t) «— =
s

Example 4.10 Determine the LT of the acceleration function shown in Fig. 4.12.

Solution The acceleration function is expressed by the following equation:
L
x(t) = zat u(t) t=>0.

Taking LT for the above function, we get

1 |
L |:—at2:| :/ —at?e”'dr
2 2

Fig. 4.12 Acceleration 4 x(7)
function

~V
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The above integration is solved using integration by parts as described below:

u=1ar* and du=at

—st
dv=[e™dt and v= ‘
(=)

1 00 1 —st |0 o) t —st
L |:—at2:| = uy —/ vdu = |:—at2 ¢ :| —/ are dt
2 0 2 (=8 ] o (=9

a o0
=04+0+ —/ te*dt.
s Jo

The integration in the right-hand side of the equation is nothing but a ramp signal
whose LT is Siz Hence

N

L Baﬂ] _ (4.40)

The ROC is the entire RHP except the origin of the s-plane.

Example 4.11 Determine the LT of an exponential decay which is shown in
Fig. 4.13.

Solution The exponential decay is represented by

x(t) =e “u@t) t>0.

Fig. 4.13 Exponential decay 4 x(1)
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Taking LT for the above function, we get

o]

Lle ™ u()] = e et dt

o0
e—(s+a)tdt

I
I

1 00
L —at Nl = — —(s+a)t
[ ut)] = s [,
= with ROC: Re s > —a
(s +a)

Lle™“u(t)] = (4.41)

(s +a)
Example 4.12 Determine the LT of a sine function which is shown in Fig. 4.14.

Solution A sinusoidal function shown in Fig. 4.14 is mathematically expressed as
follows:
x(t) = Asinwotu(t) t>0

The given sinusoidal function is written as follows using Euler’s identity.

. 1 A
sin wyt = — (/" — 7™
2j

. A jwot — japt
L[Asinwgt] = T[L(e] 0"y — Le /"]
J

A x(t)

—A

Fig. 4.14 A sine function
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A X(l)

—A

Fig. 4.15 A cosine function

From Eq. (4.41) the above equation is written as

Lisin ] = 2 1 1 A 2jwo
sin = — — e
@0 2j s —jwo s+ jwy 2j (524 )
) Awg
L[Asinwgt] = ———- ROC:Res > 0. (4.42)
(52 + wp)

Example 4.13 Determine the LT of a cosine function which is shown in Fig. 4.15.

Solution A cosine function shown in Fig. 4.15 is mathematically expressed as
follows:
x(t) = Acoswotu(t) t <O0.

Using Euler’s identity, the above equation is written as follows:
A jaot — jwot
A coswpt = E(ef of e/
Taking LT for x(¢), the following equation is written
A jawot —jaot
L[A cos wotu(t)] = E[Lef u(t) + Le 7 u(t)]

Using the results obtained in Eq. (4.41), we get

A 1 1
L[A coswotu(t)] = 7 |:(s F o) + = jwo)]

As

T2+ a)(z))
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A
L[A cos wptu()] = ——  ROC: Res > 0.

(2 + )
Example 4.14 Determine the LT of hyperbolic sine function
x(t) = sin hwot.
Solution

wol

sin hawot = E[e — e ]
. 1 ; 1 ot
L[sin hwot] = =L[e™'] — =L[e”“""]
2 2
Using the results obtained in (4.41), we get
. 1 1
L[sin hwyt] = —
2(s —awo)  2(s + wp)
L[sin hwpt] = @0 5
§2 — wg

ROC: Re s > wy.

335

(4.43)

(4.44)

Example 4.15 Determine the Laplace transform of hyperbolic cosine function:

x(t) = cos hwot.

Solution

1 wol —wol
cos hwpt = E[e of + e

Taking LT on both sides, we get

1 1
L[cos hwot] = EL[e“’Ot] + EL[e_‘“O’]
1 |: 1 1 i|
== +
215 —wg s+ wy
B s
(s — )
L[cos hwot] =

2 2
(s* — wy

ROC: Re s > wy.

(4.45)
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Example 4.16 Determine the LT of
x(t) = "u(r).

Solution Using the definition of LT for the given function, we get

L[x(t)]:/ t"e ' dt
0

Let
u=1" and du=nt""'ds
e—sl‘
dv:/e_”dt and v =
(—s)
Using the property
/udv:uv—/vdu
we get

L[t"] = [t” e’ } - /oo int”“a’t
(=) 1o o (=9)

It can be shown that

00 -1 00
/ testgy = =) / " 2edt.
0 s 0

Thus, L[t"] is written as

nn—1@m-—2) 21

Lt = —-———— <~ ...
L] s s s ss
_ nn—1)n-2)...21 _ Zn
- sh s - Sn+1
Zn
L[t"] = = ROC:Re s > 0. (4.46)
Sn

Example 4.17 Using the complex shifting property of LT, determine the LT of

x(t) = e sin wyt.
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Table 4.2 Laplace transform tables

337

S.n0 x(t) X(s)
1 3(1) 1
1
2 u(t) -
N
1
3 tu(r) =
Zn
4 t"u(r) s
5 eu(t) !
(s—a)
6 e My (t) !
(s+a)
N
7 cosat M(l) m
. a
8 sinat u(t) m
bt (s +b)
9 e cosat u(t) m
—bt .: a
10 e ! s at u(l) m
11 §(t —a) e 4
—as
12 u(t —a) ¢
N
. 2as
13 tsinat u(t) m
. a
14 sin h at m
N
15 coshat m
. ssin® + acos
16 sin(at + 0) w
17 (at +6) scosf —asinf
cos(a —_—
(s +a?)
Solution
L[sinwyt] =

From Table 4.2, the complex shifting property is

Lle ™ x()] = X(s +a)

Applying the above property, we get
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wo

Lle“sinwpt] = ———
[ 0f] Gt

(4.47)

ROC: Re s > —a.

Example 4.18 By applying the complex differentiation property, determine the LT
of
x(t) = t sin wyt.
Solution
wo

L{sinwgt] = m

According to the complex differentiation property

d
LI-tx(D] = X ()

. wo
L[Sln a)ot] = am

L[t sin wot] = (s22j:—0;g)2 (4.48)
Example 4.19 Determine the LT of
x(t) = cosat sin bt.
Solution The given x(¢) is written in the following form:
x(t) = %[sin(a + b)t — sin(a — b)t]
L[cosat sinbt] = %[L sin(a + b)t — L sin(a — b)t]
L[cosatsinbt] = % [52 ia(:jz)b)z - —(:l(a— f)b)z] (4.49)

Example 4.20 Consider the following time function x(¢#) = u(¢r — 3). Determine
the LT using shift theorem.

Solution From Fig. 4.16, for step input the LT is

L{u()]

N
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Fig. 4.16 x(t) = u(t —3) 4 x(0)
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When the signal is shifted by # = 3, using time shifting property
Liu(t —3)] = ée*“
Table 4.2 gives the LT of some time functions.
Example 4.21 Determine the LT for the following time function:
x(t) = sin(at + 60)
Solution The given x(¢) can be expanded and written as follows:

x(t) = sin(at + 0)
= sinat cosf + cosat sin 6
L[sin(at + 0)] = L[sinat cos@] + L[cosat sin 9]

Substituting for L[sinat] and L[cos at] from Table 4.2, we get

acosf ssind

L[sin(at + 6)] = 2 +a?) + (s2 + a2)

Example 4.22 Determine the LT for the following time function:
x(t) = cos(at + 0)
Solution x(¢) can be expanded and written as follows:

x(t) = cosat cosf — sinat sinf
L[cos(at 4+ 0)] = cosOL[cosat] — sinfL[sinat]
_ scosd asinf
TP a) (Pa)

~V

(4.50)
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_ (scosf —asinf)
L[cos(at +0)] = R 4.51)

Example 4.23 Determine the LT for the following time function:
x(t) =680 —2)—65@—9).

Solution The given time function consists of two impulses occurring at = 2 and
t = 5. By applying shift theorem, we get

LIS(t—2)]=e %
L8t —5)]=e>
LGt —2) =8t —5)]=e > —e>
Example 4.24 Determine the LT for the following time function:
x(t) =u(t —2) —u(t —5).

Solution The given time function x () consists of two step functions shifted by t = 2
and r = 5. By applying shift theorem, we get

—2s

Lu@—2)] =%

—5s

Liu@—5)] =<

Llu(t —2)—u(t—5)] = l[e—” — e
S

Example 4.25 Consider the following function:

_ Gs+4(s+6)

X = 6726511

Find the initial and final values of x ().
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Solution The initial value is given by

Ltox(t) =x(0) = Lt sX(s)

tq5+®u+§)
=00 s(14+ G+ ()

_5><1_5
T 1x3 3
5

mm:§

The final value of x (¢) is given by

x(t) = x(00) = ‘LtOsX(s)

—>00
_ s(5s +4)(s +6)
o s—0 S(S + 2)(35 + 1)
4x6
Toaxl

12

x(00) =12

Example 4.26 Consider the pulse shown in Fig. 4.17a. Determine the LT.
Solution

Method 1: The given signal x(¢) which is shown in Fig. 4.17a could be split up of

step signals as shown in Fig. 4.17b and c. Thus, the following equation
is written.

x(t) =u(t) —u(t —3)

(a) A X(t) (b) A u(t) (C) 3

~

3

~V

~

<

<

|

<
~~

T

[9%]
N

Fig. 4.17 LT of a pulse
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Taking LT on both sides, we get

X(s) =U(s) —U(s)e™
[1—e U (s)

2
But U(s) = — (for a step input).
S

2 -3
X(s)=-[l—e"]
s
Method 2: By definition of LT, the following equation is written for Fig. 4.17a.

3
X(s) =/ 2e*'dt
0

2 —st73
= —s) [e ]o

2 —3s
X(s) = ;[1 —e 7]

Example 4.27 For the wave form shown in Fig. 4.18, determine the LT.

Solution For Fig. 4.18, the following equation is written:

x(t) =2sint 0<t<m

= 0 t >

Fig. 4.18 A sine wave 4 x(9)

~V
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The LT of the above signal is obtained from the following equation:

X(s)=/ 2sint e 'dt
0

Letu = 2sint anddu = 2 costdt;dv = e *'dtandv = —%e‘”.Applyingfudv =
uv — [ vdu, we get

N

2 T T2 2 ("
X(s) = |:—— sin te_”] + / Zcoste Mdt =0+ —/ coste *'dt
s 0 0o 0

Let u = cost and du = —sintdt; dv = e *'dt and v = —%e‘”. Substituting the
above in equation for X (s) we get

2 1 1" 1.,
X(s)=—1{|——coste™| — —sinte™*'dt
S S 0

0 N

2 1 1 4 X
== |{e™ +1} - — —X(s) since/ sinte*'dt = ()
s s 2s 0 2

SX(9) 1 (™4
2 T KW=

2+ DX(s) (@™ 41
2s o

N

2™ 4 1)
XO="G

Example 4.28 Determine the LT of the saw tooth wave form shown in Fig. 4.19.

(Anna University, April, 2005)

Fig. 4.19 Saw tooth wave 4 x(0)
form
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Solution The saw tooth wave form shown in Fig. 4.19 is expressed as

3
x(t)zit 0<t<2

= 0 otherwise

Taking LT for the time function x(¢), we get

23
X(s):/ —te *'dt
0 2

Let 3 3
u=—-t and du = =dt
2 2

dv=e'dt and v=——¢"

Using [ udv = uv — [ vdu, we get

3(_1Y : L3
Zif==)e et
2 s 0o 2
-3 3 2
T 2 - _1 —st

s e 252 [ ¢ ]
-3 —2s 3 —2s 3
Te 2s2€ + 252

X3l (3L 3,
H==-=—|=4+-—)e
252 s 252

Example 4.29 Consider the triangular wave form shown in Fig. 4.20. Determine
the LT.

X(s)

Fig. 4.20 Triangular wave 4 x(1)
form

~V
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Solution For the straight line OA, the slope is % and passes through the origin.
Hence, the following equation is written:

3
xl(t)zzt 0<r=<2
For the straight line AB, the slope is negative and it is —%. The following equation
is written 3
X(1) = _Et +C
when t = 2, x,(¢) = 3. Hence,

3=——x24C

orC=6 3
xz(t)=—§t+6 2<t<4

From Example 4.29, X (s) is written as

3 3 3
X _ — — _ —2s
1(5) 252 (s + 2s2) ¢

Now X5 (s) is written as

4 3
Xo(s) = / <6 — —t) e 'dt
2 2

3 3
u=\6— -t and du = —=dt
2 2

Let

1
dv:fe’”dt and v=——e¢"
s

Using [ udv = uv — [ vdu, we get
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Fig. 4.21 A rectangular A x(0)
wave

~V

3 n 13t
X,(s) = |:(6 — —t) <——) e_”i| — —/ e 'dt
2 S 2 2s 2
3 —2s 3 —st74
=[]t
— 36—23 3 —4s i —2s
s 252 252
X(s) = X1(s) + Xa(s)
_ 3 3 3 —2s —2s —4s 3 —2s
252 <s + 2s2> + s + 252 252°

Example 4.30 Consider the rectangular wave form shown in Fig. 4.21. Determine
the LT.

Solution Consider the rectangular wave shown in Fig. 4.21 for the time interval
x1(t)=3 0<r<2.

The LT of x;(¢) is found from the equation
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2
Xl(s)=/ 3e~*'dt
0

3

-2

s
3
=[1-e?]
s
Consider rectangular wave
) =-3 2<tr<4
Using shift theorem X, (s) is obtained as

Xa(s) = =X (s)e™ ™
X(s) = X1(s) + Xa(s)

3 3
— _(1 _ 6723) _ _(1 _ 6723)6723
N N

30—y — e
S

X(s) = ?(l — e ¥)?

Example 4.31 Consider the wave form shown in Fig. 4.22. Determine the LT.

Solution The mathematical description of the wave form shown in Fig. 4.22 is
written as follows:

x(t) =3t 2<t<3
=3 3<t<5

Fig. 4.22 A triangular pulse 4 x(0)
rectangular wave

v
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The LT of x(¢) is written as
3 5
X(s) = / 3te*'dt + / e dt
2 3
= Xi1(s) + Xa(s)

where

3 —st
X = =5 17

w

— —[6‘73S _ 875S]

5y

X1 (s) is determined as follows.
For the triangle x; (¢) is written as follows:

x1(t) =3t+C
Whent =2, x;(t) =0

0=3x2+4+C or C=-6
x1(t) = (3t = 6)

3
Xi(s) = f (3t — 6)e *'dt
2

Let
u=3t—6) and du = 3dt

dv=[edt and v=—1le™

N

1 —st ’ 3 —st13
Xi(s) = |:(3t—6) <—;>e ] + 5[],

2 N
3 5 3 ' !
— __e—3s + —2(6_36 _ 6—23)
N N
X(s) = X1(s) + Xa(s)

3 3 3
— __e—3s + _2(6—3s _ e—ZS) + _(e—3s _ e—SS)
S s s

3 5 3 , ‘
X(S) — __e—SA 4 _2(6—33 _ e—23)
N N
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4.7 Laplace Transform of Periodic Signal

If a signal x(#) is a periodic signal with period 7', then the LT of X (s) is given as

X(s) = X;(s) [1 +eTs 472 +]
X1(s)
(1 —eT%)

Here x;(¢) is the signal which is repeated for every T.

Example 4.32 Consider the output of a full wave rectifier shown in Fig. 4.23. Deter-
mine the LT.

Solution In Example 4.27, X (s) is determined as

20 + 1)

Xi(s) = o2+ 1)

If X (s) is the LT of the full wave rectifier
X(s)=X105)+ X1()e™ ™ + X (s)e™ TS + ...
where T =7

= X1(s) + X1(8)e ™ + X (s)e > 4 ...
=X [l +e ™ +e 2 .. ]
X

R

21

S (—e) (241D

x,(0) x(0) x3(0)

~ Vv

Fig. 4.23 Full wave rectifier
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A x(t)

Fig. 4.24 Saw tooth wave

2(14¢e7™)

X0 = i+

Example 4.33 Consider the saw tooth wave shown in Fig. 4.24. Determine the LT.

Solution The mathematical description of x(¢) for 0 < < 2 is given as x;(¢). In
Example 4.28, X (s) is determined as

3 3 3 iy
X1 =33~ (z*m)e

from Fig. 4.24,

X =X +e > +e ™ 4..]
X
)

Xis) — 3 [1_ 2.1 ZX}
=0 =em |2 (} —)

Example 4.34 Consider the rectangular periodic wave shown in Fig. 4.25. Deter-
mine the LT.

Solution The mathematical description of the periodic wave with period 4 is written
as follows:

x@)=3 0<tr<2
=-3 2<tr<4
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A X( T)

~ v

Fig. 4.25 A periodic rectangular wave

Let X (s) be the LT of x(¢) for the time 0 < ¢t < 4. X;(s) in Example 4.30 has been
determined as

Xi(s) = %(1 — e )?

X()=Xi)[1+e ™ +e 3+,

_Xi(s)
S (I—e¥)
_ 3(1 _ 6—25)2
X&) =Sa =

4.8 Inverse Laplace Transform

The time signal x(¢) is the Inverse LT of X (s). This is represented by the following
mathematical equation:

1 o+joo
x(t) = —/ X(s)e''ds (4.52)
27'[./ o—joo

Use of Eq. (4.52) to obtain x (¢) from X (s) is really a tedious process. The alternative
is to express X (s) in polynomial form both in the numerator and the denominator.
Both these polynomials are factorized as

_ Gtz +z)... (s +2zm)

X(s) =
s+ pDs+p2)---(s+ pa)

(4.53)
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The points in the s-plane at which X (s) = 0 are called zeros. Thus, (s + z1), (s +
22), ..., (s + z,,) are the zeros of X (s) in Eq. (4.53). Similarly, the points in the
s-plane at which X (s) = oo are called poles of X (s) in Eq. (4.53).

The zeros are identified by a small circle O and the poles by a small cross x in the
s-plane. For m < n the degree of the numerator polynomial is less than the degree
of the denominator polynomial. Under this condition X (s) in Eq. (4.53) is written in
the following partial fraction form:

Al A2 A3 An

X(s) = + + +F
s+p1 s+p2 s+ p3 S+ pn

(4.54)

In Eq. (4.54) Ay, Ay, ..., A, are called the residues and are determined by any
convenient method. Once the residues are determined, then by using Table 4.2, one
can easily obtain x (¢) which is the required inverse LT of X (s).

4.8.1 Graphical Method of Determining the Residues

The residues in Eq. (4.54) are determined by analytical as well as graphical method.
The graphical method has the following advantages:

e It is less time consuming.

e It does not require any graph to be drawn.

e The results are obtained in compact form very quickly even if the poles and zeros
are complex and repeated.

Both analytical and graphical methods are given wherever necessary. The following
simple example illustrates both analytical and graphical methods.

Example 4.35
_ 10(s +2)(s = 3)

X(s) =
s(s+4)(s—5)

Find x (7).

Solution The given X (s) is expressed in partial fraction form as follows:

X="ly 2, A
VTG4 T 5o
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A
@ s-plane
A2 A3
@ O > G
4 -2 A +3 +5

Fig. 4.26 Poles and zeros of X (s) (pole zero diagram)

Method 1. Analytical Method

1.

The poles and zeros of X (s) are represented in Fig. 4.26. X (s) is expressed in the
following form:

Ai(s+4)(s —5)+ Axs(s —5) 4+ Azs(s + 4)

X(s) = s+ 4)(s —5)

The numerator polynomial of X (s) should be same and therefore the following
equation is written.

10(s +2)(s —3) = A1(s +4)(s —5) + Aas(s —5) + Azs(s +4)
Substitute s = 0 in the above equation which will eliminate A, and A3. Thus,

102)(=3) = A (=5 +0+0
60

A= — =
20

3

Substitute s = —4 in X (s). This eliminates A; and As. Thus,

10(—44+2)(-4—-3)=0— A4(-4-5+0
10(—2)(—7) = A,36
14
A, 14035
36 9
Substitute s = 5 in X (s). This eliminates A; and A,. Thus,

1054+2)(5-3)=0+0+ A35)(5+4)
140 28
45 9

Az =
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3. With the values of residues obtained in step 2, X (s) is expressed as follows:

X(s) 3+35 1 +28 1
§)=—+— —
s 9GG+4 9 @G6-93

1 1

3 Grw and

4. From the Table 4.2, the inverse Laplace transform is obtained for
1

s—5"
5. To check whether the residues determined are correct, the following procedure is
followed:

10 +2)(s =3) 3 35 28

X(s)= s+Hs—5 s 9(s+4)+9(s—5)

Choose any value of s so that X (s) does not become zero or infinity. Let us choose
s=1

103)(-2) 3 35 N 28
15)(=4) 1 9%x35  9(—4)
7 7
3=34-—=-=3
+ 9 9
LHS = RHS.

Hence, A, A, and A3 determined are correct.
35 28
x(t) = (3 + 3674! + 365’) u(t)

Method 2. Graphical Method of Determining the Residues

1. According to the graphical method, the residue A at any pole is obtained from

Constant term x Directed Vector distances drawn from all zeros to the concerned point

Directed vector distances drawn from all poles to the concerned point

2. For the given problem, refer to the pole zero diagram of Fig. 4.26. From the Figure
we obtain, A; by drawing vectors from poles and zeros of X (s) to s = 0.

_10)(=3) 3
A=
A, is determined by drawing vectors from poles and zeros of X (s) to s = —4.

10(=2)(=7) 35
A= — 2 0 2%
=H(=9) 9
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A3 is obtained by drawing vectors from poles and zeros of X (s) tos = 5.

1072 28
A= —22 2
) 9

It is to be noted that the directed distances drawn from any pole or zero drawn
towards right, a +ve sign is added and for the directed distance drawn towards
left, a —ve sign in each case has to be included.

3. Itis seen that the residues determined by analytical method and graphical method
are same. Hence, inverse LT of X (s) is written as

35 28
x(t) = (3 + ge_‘” + ?eSZ) u(r)

In the expression for x(¢) it is necessary to include u(¢) in the right-side of the
equation. This indicates that the inverse LT is right-sided or unilateral. It is also
to be noted that the pole zero diagram of Fig. 4.26 need not be drawn to any scale.
Mere location of poles and zeros with the appropriate values is enough.

Example 4.36 Find the inverse LT of

10e=3¢
X@)= ————.
(s—=2)(s+2)
Solution Consider the function
10
Xi(5) = —F—F
(s—2)(s+2)
Putting this into partial fraction, we get
Ay

Xi(s) =

1
(s —2) + (s +2)
A+ + Ax(s —2)
a (s —2)(s +2)
10 = A1(s +2) + Ax(s — 2)

Substitute s = —2

10 =0+ Ax(—2—2)
Ay = —2.5
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Substitute s = 2

10=A12+2)+0
A =25

1 1
X =25|———
1(5) |:s—2 s+2:|

Taking inverse LT, we get
x1(t) =2.5[e™ — e M u(t)
According to time shifting property of LT

X(s) = Xi(s)e™

x(t) = 2.5[*7) — 720yt — 3)
Example 4.37 Find the inverse LT of

s+ 1) +3e %

X = e+

Solution The given function is written in the following form:

—4s
X(s) = (s+1 3e
+2D+3)  (+2)(s+3)
= Xi(s) + Xa(s)
X = D
(s+2)(s+3)
Ay A,

T (s+2) + (s +3)
Ai(s +3)+ Ax(s +2)
(s +2)(s +3)
s+ =A1(s+3)+A(s+2)

Puts = -3

(=3+1) =0+ A(-3+2)
Ay =2
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Puts = -2

(=24 1) = A1(=24+3)+0
A =—1
2
512 513
x1(t) = (—e 2 + 2 u(r).

X1(s) = —

Now consider X, (s) without delay as X3(s)

3
(s +2)(s+3)
A n Ay
42 (5+3)
3=A1(S+3)+A2(S+2)

X3(s) =

Puts = -2
3=A,
Puts = -3
3=A(-3+2)
A, = -3
X3(s) = 3 1 1
s) = —
3 s+2 s+3

Xa(s) = X3(s)e™

x3(t) = 3[e 2 — e u()

X2(t) =3[ 20 — 3Dy — 4)
x(t) = x1 (1) + x2(2)

x() =[—e " + 27 u) +3 [P — eV u(r — 4

Example 4.38 Find the inverse LT of

_(s+D(s+3)
TG+ +4)
—2s
Q) XG) = s+ 1D(s+3)e
s+2)(s+4)

1 X(s)

357
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Solution (1)
(s) = s+ D@ +3)
T s+ 2)(s +4)

Here both numerator polynomial and denominator polynomial have the same
degree and therefore it is an improper function. Now X (s) is written in the

polynomial form as given below:

_ (s2+4s5+3)
X = T 619

By synthetic division, we get
1
s2—|—6s+8) s2+4s+3
s>+ 65+ 8
—25s —5

X)=1_ 25+
s+2)(s+4

Now consider
. 2s +5)
X = 6+ 9
A n Ay
(542 (s+4)
2s+5 =A1(s+4)+ Ar(s +2)

Puts = —4
(=845 =04+ A(—4+2)
3
A2:§
Puts = -2

(—4+5) = Al(=2+4) +0

1
A =

2
P 3
1(S)_E[(s+2)+(s+4)}

X()—1—1|: L 3 ]
VT 6+ T 51
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Taking inverse LT, we get
x(t) = 8(t) — [0.5¢% + 1.5¢ "] u(t)

(2) Now consider
(s + D(s +3)e™*

X(s) =
+2)(s+4

Using the time shifting property the results obtained in the previous example is
modified and written as

x(1) =8t —2) —[0.5¢727 + 1.5¢ D] ut —2)
Example 4.39 Find the inverse LT of the following function:

_10(s +4)
X = 35712

Solution The given function X (s) is written in the partial fraction form as follows:

X =2y Aoy A
S_sz s s+2

10(s +4) = A|(s +2) + Ass(s +2) + Ass?

Puts =0
40=2A1 or A1 =20

Puts = -2
10(—2+4+4) =040+ As4
20

A3=Z=5

Comparing the coefficients of s term, we get

10 = (A + 245)

10 =20 + 24,
Ay =5
X(s) 20 5 5
§)=——=
2 s 542

x(1) = 20t — 5+ e )u(t)
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Example 4.40 Find the inverse LT of the following function:

2

X(s) = s(s24+25s +2)

Solution Method 1.

(P+254+2)=(+1+)+1-))

Ay Az
-+ :
s+14+j s+1—j

Ay
X(s)=—+

S
2=A(s>+25+2) + Ass(s + 1 — j)+ Azs(s + 1 + )

Puts =0
2=A]2 or A[:l

Puts = -1+

2=0+4+0+A3(=1+))(=1+j+1+))
= A3(=1+4))2j
1

A3 = T ..
(=1+))j

But (—1 4+ j) is expressed in polar form as

(=1 + j) = ~2£135°
B 1
T V2/135° 4 90°

= 0.707£+135°

A

= 0.707¢*/13%
A, is the conjugate of A3

Ay = 0.707/—135° = 0.707¢ /13

1 o135
e
s+1+j) s+1—j

1 -
X(s) = - +0.707 |:e/135
S

Taking inverse LT, we get
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Fig. 4.27 Pole-zero configuration of Example 4.39

.x(t) =1 +0.707[e_j13506_(+1+j)[ +e+jl35°e—(l—j)t)]
ej(135°+t) +efj(l35°+t)
]
=14 1.414e " cos(135° + 1)
=1—1.414¢7"sin(r + 45°)

=1+ 1.414¢7" [

x(t) = 1 — 1.414¢" sin (r + %rad)

Method 2. Graphical Method
From the pole-zero configuration of X (s) shown in Fig. 4.27, we get

2
A = =
LT /as45002/—450

2
— 0.707/—135°

A, =
2T 2413592290

Az = conjugate of A,

A3 =0.707/135°

By graphical method, the residues A, A, and A3 are obtained with ease. Substituting
these values in X (s) and taking inverse LT, the following result is obtained as in
Method 1
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—t . 4
x(t) =1—1.414¢7" sin (t + Zrad)

Example 4.41 Find the inverse LT of the following function:

(352 + 85 +23)

X&) = el m £ 10)°

(Anna University, April, 2005)

Solution
P25+ 10=(s+ 14 j3)(s+1—j3)

The given X (s) is put into partial fraction as follows:
A A A
ot L+ —
(s+3) G+1+73) G+1-,3)

(352485 4+23) = A (s> + 25 + 10) + Ax(s +3)(s + 1 — j3)
+A3(s +3)(s+ 14 J3)

X(s) =

Lets = -3

27— 24423 = A;(9 — 6 + 10)
26

=—==2
13

A
Puts = —1—j3

3414 j3)* — 8(1 + j3) +23 = As(—1 — j3 4 3)(—j6)
3(—8 4 j6) — 8 — 24 +23 = A>(j6— 18 — j18)
(=24 — 84 23) + jI18 — 24] = Ay(—18 — j12)
—9— j6=—As (18 + j12)
G+j2)  3.6/33.7°
T 6+ j4)  12/33.7°

2

=0.5
A3 = conjugate of A,
=0.5
X(s)=|: 2 n 0.5 n 0.5 }
s+3 s+14+j3 s+1-—-j3

Taking inverse LT, we get
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x(t) =2 +0.5 {e—<1+j3)z + e—(l—jS)t}

22731‘
e + e )

x(t) =2¢73 + e cos 3t
Example 4.42 Find the inverse LT of

352+ 8546
+2)(2+2s+1)°

X(s) =

(Anna University, December, 2007)

Solution

(s>4+2s+1) =(s+ 13

(352 + 8s + 6)

(s +2)(s +1)?

_ Ay Ar Ajz
“61r2) 6D GaD
AT 25+ D) 4 Ay(s +2) + As(s + D(s +2)
N (s +2)(s + 1)?

352485 4+6=A (s> + 25+ 1)+ Ar(s +2) + As(s + D (s +2)

X(s) =

Puts = -2

12—16+6=A,4—-4+1)+0+0
A =2
3524854+ 6 = (A + A3)s> + QA + Ay + 343)s + (A] + 24, + 243)

Comparing the coefficients of s2, we get

3=A1+A43
A3 =3—-A1=3-2
Az =1

Comparing the coefficients of s, we get

8 =24, + A + 345
=4+ Ay +3
Ar =1
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Substituting the values of A;, A, and Az in X (s) we get

__?2 .t .1
TG 42) (+D2 s+

X(s)
Taking inverse LT of X (s), we get
x(t) = Qe +te” + e Hult)

Example 4.43 Find the inverse LT of the following function:

10s2
X(s) =
(s+2)(s>+4s+5)
Solution
Method 1.
(s> +4s+5) =G6+24+ DG +2—)
10s?
X(s) = - :
S+2D)E+24+ ) +2—))
Al A2 A'%

= - + ‘
(s+2)  (+2+j)  (+2-))
105 = Ai(s” + 45 +5) + As(s +2)(s +2 — j) + As(s +2)(s + 2 + )

Puts = -2

40=A(4—8+5 +0+0
Ay = 40

Puts =—-2—j

10(—2— ) =04 Ax(—2—j+2(=2—j+2—j)+0
104 —1+4+4j) = Ay (—j)(=2))
103 +4)) = 24,
Ay = =53 +4))
— 25/-126.88" = 250712688

Az = conjugate of A,

Ay = 25/4126.88" = /12688
40 256—j|26.88° 256j]26.88°

(s+2)+(s+2+j)+(s+2—j)

X(s) =
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Taking inverse LT, we get

x(t) = 40e™ +25 {e*/uﬁgg e~ @Hi | 712688 ef(ij)t}
{e*j(t+126.88°) + e+j(126.88°+t)}

2
x(1) = [40e™% 4 50~ cos(t + 126.88°)]

=40e7*" + 7750

x(t) = [40 — 50 sin(t + 0.644 rad)]e > u(t)

Method 2. Graphical Method

The pole zero configuration of X (s) is shown in Fig. 4.28. From Fig. 4.28 the residues
Ay, A, and A3 are obtained as follows:

10(=2)(—
R G G R
1£90°1£-90°

Ax = 10+/5£153.44°4/5/153.44°
T 1/90° 2/90°
=25/126.88" = 25¢/1268%

“j(l)
—2+4j
A3 >I<\\
NN
i N 153.44°
| S~
! 26.560/\(\
X > O
A, =2 //@
I e
-7
Aysell .

Fig. 4.28 Pole-zero diagram of X (s) of Example 4.43
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A, =conjugate of A;
Ay =25/-126.88" = 25¢771208%

The residues A, A, and A3 obtained by graphical method are same as obtained by
analytical method. Thus by proceeding as in Method 1, the inverse LT is obtained as

x(t) = [40 — 50 sin(t + 0.644 rad)]e > u ()

4.9 Solving Differential Equation

Laplace transform is a very powerful tool in the analysis of linear time invariant
dynamic system. It provides

e Solutions to LTI dynamic systems described by linear differential equations by
converting the differential equation to algebraic equation.

e For test signals of different kind, solutions are obtained for the differential equa-
tions with and without initial conditions.

e The dynamic systems are represented in terms of transfer function which is nothing
but the ratio of the LT of the output variable to the LT of the input variable.

e The transfer function is made use of to determine the frequency response of the
system.

e The transfer function is also made use of to determine the stability of the system
using the well-known Routh-Hurwitz criterion and Nyquist stability criterion.

e The structure of the dynamic system is realized using the transfer function.

Now we give below the method of solving differential equation using LT.

4.9.1 Solving Differential Equation Without
Initial Conditions

1. If y(¢) is the output variable and x (¢) is the input variable, convert the differential
equation to algebraic equation which is obtained by simple multiplication of
Laplace complex variable s.

2. These algebraic equations are obtained using the following LT when the initial
conditions are zero.
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Lly(®)] =Y (s)

L[] = sves)
— | =sY(s
dt |
F ]

L_d_ty_ = s%Y(s)
iy ] .
L_ﬁ_ =S Y(S)

F
L_dtf_ =s5"Y(s)

Similarly for the input x(¢), we convert

Llx()] = X(s)

L[] 2 ox
E__S (s)

d’x ]
L [ﬁ SZX(S)

n ( )
L S )( S
d t

The following examples illustrate the method of solving differential equation using
LT when the initial conditions are zero for the input as well as the output.

Example 4.44 Consider an LTIC system with the following differential equation
with zero initial conditions for the input and output.

d*y(r)  dy@) _dx(1)
a2 +47+3y(t)— 74’2)6(1‘)

Find the impulse response of the system.
(Anna University, December, 2006)

Solution Taking LT on both sides of the given differential equation, we get

(s> +4s+3)Y () = (s +2)X(5)
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The transfer function is obtained as

H(S)_Y(s)_ (s+2)  (s+2)
TX(s) (244543 5+ D(s+3)
(s +2)X(s)
Y(s) =

(s + D(s+3)

From Table 4.1, for an impulse input x(#) = §(¢), X (s) = 1. Substituting this in the
above equation, we get

Y = XD

s+ D(s+3)

A n A
TG4+ 1D (s+3)

(s+2)=A1(s+3)+ Ax(s+ 1)

Puts = —1

(=1+2)=A;(-=1+3)+0
A =05

Puts = -3

(=34+2)=0+A(-3+1)
A, =0.5
0.5 0.5
+
s+1D  (+3)

Y(s) =

Taking inverse LT, we get
y(t)=0.5[e" + 6_3’] u(t)

Example 4.45 Using LT, find the impulse response of an LTI system described by
the following differential equation.

d? d
dytgt) - % —2y(t) = x(1)

Assume zero initial conditions.

(Anna University, April, 2004)
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Solution Taking LT on both sides of the given differential equation, we get

(s> =5 =2)Y(s) = X(s5)

X(s)
(s2—s5—=2)
_ X(s)
TG+ Ds -2

Y(s) =

For an impulse X (s) = 1

1
TGt Di-2)
A n Ay
T+ (s-2)
1=A1(s—2)+Ax(s+ 1)

Y(s)

Puts = —1 |
Alz—g
Puts =2
1
A2=§
Y()—l 1 1
s T 3|s—2 s+1
1 2t —t
y(t)=§[e —e"Ju()

Example 4.46 Consider the LTI system with the following differential equation
with zero initial conditions.

& d
dytgt) + S—Z(tt) +6y(t) = x(1)

where x(t) = e #u(t). Find an expression for y(¢) using LT method.

Solution The given differential equation is written as follows:

d’y . dy _
7 +SE +6y = e Mu(r)
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Taking LT on both sides, we get

(s> + 55 +6)Y(s) =

(s+4)
Y(s) =

(s +4)(s2 + 55 + 6)
1
TG+ +4)
A n Ay n Az
T G+3) (5+2) (s+4)
1= A(s+2)(s +4) + As(s +3)(s +4) + As(s +3)(s +2)

Puts = -3
1=A(-3+2)(—3+4)
A =-—1
Puts = -2
1 =A(—2+3)(-2+4)
1
Ay = 3 =05
Puts = —4

—_

= Ay(~4+3)(=4+2)
1
Az = 3= 0.5

-1 0.5 0.5

YO =533 632 T 619

y(t) = (e +0.5¢7* +0.5¢"*) u(t)

Example 4.47 Consider the following differential equation with zero initial condi-
tions.

2
YO LD ) = —d);y) +x(0)

dt dt

For x(t) = u(t), a unit step input find the response y(#) of the system.
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Solution
Method 1

Taking LT on both sides of the differential equation, we get

(s> 425 +2)Y(s) = (s + DX (s)
s+1

'O= i

X(s)

For unit step X (s) = % Substituting this in the above equation, we get

_ (s+1
Y(s) = s(s2+2s +2)
(P+25+2)=@G+1+)6+1—)
_ (s+1
Y(S)_s(s+1+j)(s+1—j)
_Al A2 A3

—+ — + .
s s+14+j) +1—)
(s+1)=A(s>+254+2)+ Aos(s + 1 — j) + Azs(s + 1 + )

Puts =0
1=2A1 or A] =0.5

Puts = -1+ )

(=1=j+D)=0+AH1-)HC1-j+1-/)+0
—Jj = A(=1—j)(=2))
=A(2j —2)=2A4( - 1)
05j 0.5 Z90°
Ay = - = — s
1—j  J2/-45
— 0.354/135 = 0.354¢/135
A3z = conjugate of A,
= 0.354¢ /13
Y(s) — 05 0.354¢7135° N 0.354¢=7135
s s+1+4+j (s+1—))
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Y(t) = 0.5 + 0.354¢/135 o=+ 4 (35407135 ==
[ej(135°71) +efj(135°7t)]
2
=0.540.708¢ " cos(135" — 1)
=0.5—0.708¢ " sin(45 — 1)

=0.5+0.708¢""

() = [0.5 +0.708¢" sin (z - %rad)] u()

Method 2

The pole-zero diagram of Y (s) is shown in Fig. 4.29. The residues A;, A, and Aj
are determined as follows:

Ay = 120 =05
V2/45° 2/ -45°

B 1£-90°

 V2/225°2/—9(°

A3 = conjugate of A, = 0.354/—135°

= 0.354/135

2

4 jw
—1+4j
Ay R >
[N
: \\\1/\
| ~
| NN
l Sol T 1350
| ~ \
| N Y
0 »C
? >
! 450 \ - TA,
|
|
|
|
|
|
|
|

Fig. 4.29 Pole-zero diagram of Example 4.47
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The residues determined by graphical method is same as determined by analytical
method. Therefore y(¢) is written as

() = [0.5 +0.708¢" sin (r _ %rad)] u(?)

4.9.2 Solving Differential Equation with the Initial
Conditions

1. When the initial conditions are specified for the given differential equation, they
have to be accounted for when LT is taken to convert the differential equation to
algebraic equation. Thus,

dy _ _
LI:Z_ =s5Y(s) —y(07)

L[dzy-—ﬁ/ — sy(07) — $(0~
W_—S (s) —sy(07) —y(07)

L @_ =$3Y(s) —s2y(07) —sy(07) — $(07)
a | = y y y

The initial conditions y(0™), y(0~) and ¥(07), are meant that the system initial
conditions are given just before the input is applied to the system.
The initial condition y(0™) indicates that the initial condition is given to the system
after the input is applied which is not realistic. Unless otherwise mentioned, y (0™)
means y(0) and y(0) is not y(0T).

2. The zero initial conditions explained in step 1 is applicable to the input also. Thus,

X _x 0
77 = $X() —x(07)
3. The initial conditions for an input multiplied by u(¢) implies that the signals are
zero prior to t = 0.

4. The solution of the differential equation contains two components. The first com-
ponent is the response due to the initial conditions only where the input is assumed
to be absent. The response is called the zero input response. The second com-
ponent is the response due to the input alone and the initial conditions here are
assumed to be zero. Such response is called zero state response.

. The total response = zero state response + zero input response.

6. If one is interested to find out the zero initial conditions for verification of the

results, only the zero input response has to be considered and not the total response.
The total response satisfies the initial conditions at = 0.

9,1
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The following examples illustrate the method of obtaining total response which is
due to initial conditions and the input.

Example 4.48 A certain system is described by the following differential equation:

2
dd);g) + 7% 4+ 12y(t) = x(¢)

Use LT to determine the response of the system to unit step input applied at t = 0.
Assume the initial conditions are y(0™) = —2 and % =0.

(Anna University, May, 2007)

Solution Taking LT on both sides of the given equation, we get

$2Y (s) — sy(07) — y(07) + 7Y (s) — Ty(07) + 12Y(s) = X (s)

1
(s> +7s+12)Y(s) +2s + 14 = —
S

1
(s> +7s +12)Y(s) = —2s — 14 + —
S

(282 — 145+ 1)
N

(=252 — 145 + 1)
s(s2+T7s +12)
(=257 — l4s 4+ 1)
s+ +4
Ay A A
K (s+3) (s+4)
257 —14s + 1= A (s +3)(s +4) + Ays(s +4) + Azs(s +3)

Y(s) =

Puts =0

1=A,(12)
1

A = —
"2

Puts = -3

—18 442+ 1= Ay(=3)(=3+4)
—25

Ay=—
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Puts = —4

3245641 = As(—4)(—4 +3)

25
A=,

11 25 1 25 1
Y(s) = ——— —

12s 3 (s+3)+7(s+4)

The total response is obtained by taking inverse LT

125 ., 25
=|———e '+ = t
y() [12 3¢ + i u(t)
Example 4.49 Solve
d’y(t) | dy(t) dx(1)
4= 4 4y(1t) = —= +x(t
dt? + dt +HO dt +x(®)

if the initial conditions are y(01) = %; y(0F) = 5, if the input is e ¥ u(z).
(Anna University, December, 2007)

Solution Taking LT on both sides of the equation, we get
s7Y (s) — sy(01) — 3(0F) +4sY (s) — 4y(0T) +4Y (s) = sX(s) + X (s) — x(0F)

If the initial conditions are given at ¢ = O for the output, then the initial conditions
must be applied to the input also

L [%x(t) + x(t)i| =5X(s) —x(0") + X(s)

=3t

Since x(0") = Lto e =1
t—

s+
s+3
_(s+1—s—3)
O (5+3)
2

T (543)

(s + DX (s) —x(0") = 1

Alternatively,
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3t

x(t) =e"
dx(t) _ g
dt
L |:dx(t)_ _ -3
dt | s4+3
1
Llx(@®)] = G+3)
L [dx(’) TN DL
a YT T3
=2
T (5+3)

Substituting y(0") and y(0") in the given equation we get

(s2+4s+4)Y(s)—2s—5—9— —2
4 S (s+3)

(S +4s +4Y(s) = 2&—}-14— —
T4 (s +3)

(952 + 83s + 160)

Y = 3t 145 1 4)
_ (952 + 83s + 160) )
T A+ 36+ 22 (@
Al A, As .

o+ 6122 T G512

1
Z[9s2 +83s +160] = A;(s +2)> + As(s +3) + A3(s +2)(s + 3)

Puts = -3

1
Z[81—249+160]:A1 or Aj =-2
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Puts = -2
1
2[36 —166+160] = A, or Ay =75
Compare the coefficients of s> on both sides
9
1 =A+A3=—-2+4+ A3 or A3 =425

-2 7.5 4.25

YO =3 6x22 T 642

Taking inverse LT, we get
y(t) = =273 +7.5te™ +4.25¢7 >0

To check whether the residues are correctly determined
Choose any value of s such that when substituted in X (s) it does not become zero
or infinitive. Find the value of Y (s) in (a) and (b). If both are same, the residues
determined are correct.

Fors = 0;

160 _—2 7.5 425
ix3x4 3 T3t
40  —8+225+255 40
12 12 T 12
LHS = RHS

Hence, the values of Aj, A, and A3 determined are correct.

4.9.3 Zero Input and Zero State Response

As described earlier, the response of the system due to the input x (¢) with all initial
conditions are zero is called zero state response. The response of the system due to
the initial conditions with zero input is called zero input response. The total response
of the system is the sum of the zero state response and zero input response. This is
illustrated in the following example.
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Example 4.50 Consider the following differential equation:

d*y(r) | dy@) _dx(1)
a2 +67+8y(t)— 7"‘3)6(1‘)

x() =u(t)

yO0)=1 and y(0°) =2

Find the zero state, zero input and total response. Verify, from the expression for the
response, the initial conditions given.

Solution Zero State Response

For zero state response the initial conditions are assumed to be zero. Under this
condition, the output is denoted as y; ().
Taking LT on both sides of the given differential equation, we get

(s 465 + 8)Yi(s) = (s +3) X (s)
Substituting X (s) = % and (s 4+ 65 +8) = (s + 2)(s + 4), we get

(s +3)
s(s+2)(s+4)
A Ar Az
=S 61 649
+3)=A1+2)(s+4) 4+ Axs(s +4) + Azs(s +2)

Yi(s) =

Puts =0 )
3= A]S or A] = g
Puts = -2
(=2+3) = A(=2)(-2+4)
1
Ay = ~1
Puts = —4
(=4 +3) = A3(—DH(—4+2)
1
Az = ~3
31 1 1 1 1
Yi(s) = = -

8s 4(s+2) 8(s+4
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(3 1 o 1,
y'(’)—<s e )um

Zero Input Response

Under zero input condition the output is denoted as y,(f). The given differential
equation becomes,

dy;(t)

d%y,(t
SHON = 48,1 =0

dt? d

Taking LT with initial conditions, we get

52Y,(s) — 5y5(07) — y,(07) + 6Y,(s) — 6y,(0) + 8Y,(s) =0

(s> +65s+8)Y,(s) = (s +2+6) = (s + 8)
(s +8)
(s +2)(s +4)
Ay A
_@+m+m+®
G+ =A1s+4) +A(s+2)

Yi(s) =

Puts = -2

(—248) = A;(—2+4)
A =3

Puts = —4

(—4+48) = Ax(—4+2)

Ay = -2
3 2
Ys(s): -
s+2 s+4
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Total Response

The total response is denoted by the letter y ().

() = yi(1) + y,(1)
_ (% - %e’z’ - é‘"") u(t) + Be ™ = 2¢u()

3 11 17
() = [§ + Ze‘Z’ - §e‘4’} u(t)

To verify the initial condition, consider the zero input response y;(¢)

ys(t) = 372 —2e™H
y5(0) =y(0)=3-2=1
R )
y(0) = T
y0) =2

— _6e—zt + 8e—4l‘
t=0

=—6+8
t=0

The given initial conditions are satisfied. On the other hand, consider the expression
for the total response

311, 17,
H=>-4+— - —
y(@) 8+4e g ¢
3 11 17
0)=>4———
y(0) 8+4 g
=1
. dY(t) 22 —2 68 —4t
1) = = —— —
Yo ==z ¢ Ty
—-22 68
) = —22 , 68
¥(0) 1 +8
y(0) =3

The result obtained is erroneous. Therefore, the initial conditions are verified from
zero input response and not the total response.
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4.9.4 Natural and Forced Response Using LT

Consider the differential equation of Example 4.50 which is given below:

& d d
dytgt) n 6% +83(0) = S (1) + 3x(0)

Taking LT on both sides of the above equation with zero conditions, we get

(s> 465 +8)Y(s) = (s +3)X(s)
S+ +DHY () = (s +3)X(s)

The transfer function is the ratio of Y (s) to X (s) and is written as

Y(s) (s +3)

X)) G+ +4
In the above equation, s> 4+ 65 + 8 = 0 is called characteristic equation and s = —2
and s = —4 are called characteristic roots or eigen values. In the total response of

y(t), corresponding to these eigen values, the characteristic modes are found. In the
above example the characteristic modes are e~ and e~*. In the total response of
the system which is composed of zero input response and zero state response, if we
can lump together all the terms corresponding to the characteristic mode, it is called
natural response y,(¢). The remaining non-characteristic mode terms are lumped
together and the response is called forced response and is denoted by y¢(¢). Thus, in
Example 4.49, the eigen values are s = —2 and s = —4. The characteristic modes
are e~ and e~ . Thus,

3 11 ., 17 _
) = — —_— - —
Y =g+ e 2
The natural response
I 17 4
n ) = — _—
Yn(t) = e 3¢

The forced response

3
yr(t) = 3
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Example 4.51 Find the forced response of the following differential equation:

d*y(t) _dy() dx
dyﬂ +6—Zr +8y() = = +x(0)

where x(¢) = 2.

Solution Taking LT of the given differential equation, we get

(s +65+8)Y(s) = (s + DX(s)
(s> +65s4+8) =(s+2)(s +4)
The eigen values are s = —2 and s = —4. The characteristic modes are e~ and
e~*. The terms involving these characteristic mode will correspond to the natural
response of the system. The remaining terms will correspond to forced response of
the system. Substituting X (s) = &, we get

2(s +1)
Y()= —— "7
®) = TG 15
Ay Ay Ay Ay As
T (s+2) + (s +4) + 53 + 52 + s
2s+1) = A1s°(s +4) + Ars>(s +2) + As(s +2)(s + 4)

+A4s(s +2)(s +4) + Ass’ (s +2)(s + 4)

Puts =0 |
2=8A3 or A3=Z

Compare the coefficients of s

2 =6A;+8A4
A _1
“T 16

Compare the coefficients of s>

0= A; +6A4 + 8As
6

1
— 4+ — 4384
1T 16 To4

10 5

T 128 64
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The residues A; and A, are determined as follows. Put s = —2

2(2+1D)=A1(-8)(-2+49)+0+0+0+0
1
A1=g

Puts = —4

2(—441) = Ar64(—4+2)
3

Ay = —
27 64

1 3 1 11 11 51

+_ _— —_—

1
3G+2) T6dst+4 49 T 1652 6as

Y(s)=
Taking inverse LT, we get

(1) 1‘2’+3 ‘4’+1r+1t
= —e —e — —_—f — —
Y 8 64 8 "6 64

Natural response  Forced response

The natural response which is due to the characteristic modes e > and e~ is given by

1 3
ya(t) = ge_Z’ + ae“” t>0

The forced response is the response which does not contain the characteristic mode.
Thus,

(t)—]t2+]t > >0
V=80T Tes 1 F

4.10 Time Convolution Property of the Laplace Transform

If ;
x1(t) «<— X1(s)

and ;
X2(1) <— X (s)
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then ;
x1(2) * x2(t) <> X1(s)X2(s)

This property of LT is used to determine
y(@) = x1(2) * x2(2)
The following examples illustrate this.

Example 4.52 Using the convolution property of the LT determine y(¢) = x;(¢) *
x2(¢) where x; (t) = e 2u(t) and x,(t) = e 3 u(r).

Solution

Xi(s) = Lle ¥ u(t)] =

(s +2)
.3 _
Xo(s) = Lle™"u(t)] = 613
Y(s) = X1(s)X2(s)
1 1
T (5+2)(s+3)
1 1

- (s+2) (s+3)

y(t) = [6_2’ — e_3’] u(t)
Example 4.53 Given

x1(t) = e 2 u(r)
@) = 1+ eHu(r)

Determine y(¢) = x1(¢) * x2(¢).

Solution

Xi(s) = LIxi(0)] =

(s +2)

1 1
X2(s) = Llx2 ()] = [; + n 3]
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Y(s) = X1(5)Xa(s)

1 1 1
T G642 [E+s+3]
_ (2s+3)
T os(s +2)(s+3)
A] A2 A3
T+s+2+s+3
2s +3) =A1(s +3)(s +2) + Azs(s +3) + Azs(s +2)

Puts =0
3=A412)(3)
A = 1
)
Puts = -2
(=4 +3) = A2 (=2)(=2+3)
1
Ay = 3
Puts = -3
(=6+3) = A3(=3)(-3+2)
A; =—1
Y(s) 1 N 1 1
) = — —
2s  2(s4+2) (s+3)
1 1
y(t) = <§ + ze_Z’ — e_3t) u(t)
Example 4.54

x1(t) = e™u(t)
x2(t) = e u(—t)
y(#) = x1(F) * x2(t)

Find y(¢) by Convolution method.
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Solution
= (s —a)
-1
Xo(s) = G —a2)
Y(s) = X1(s)X2(s)
-1
(s —aD(s —a)
A Aj
CGs—a)  (s—a)
—1=Ai(s —ax) + As(s —ay)
Puts = a;
—1=A(a; —a)
1
Al =
ay — a
Puts = ay

—1 = Ax(a; —ay)

Ay

Y(s) =

y(@) =

Example 4.55 Given

-1

- (az —ay)

1 [ 1 _ 1 i|
(a—ay) [(s—a) (s—a)

1 at art
@ —an [e u(t) +e u(—t)]

x1(1) = eXu(—=1)
X(t) = u(t —2)

Determine y(¢) = x(¢) * x2(¢).

Solution

Xi(s) = Llxi()] =

Xa(s) = Llxa(0)] =

(s —3)
—2s
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Y(s) = X1(5)Xa(s)

_ —e
T os(s=3)

171 1
— _ |2 6725
3[s s—3]

Let

1 3t
= g[u(l) +eu(=1)]
By using the shifting property,

y(O)y =y -2

y() =< [u@t —2) + & Pu(—t +2)]

W =

4.11 Network Analysis Using Laplace Transform

An electrical network consists of passive elements like resistors, capacitors and induc-
tors. They are connected in series, parallel and series parallel combinations. The
currents through and voltages across these elements are obtained by solving integro
differential equations using LT technique. Alternatively, the elements in the network
are transformed from time domain and an algebraic equation is obtained which is
expressed in terms of input and output. The commonly used inputs are impulse, step,
ramp, sinusoids, exponentials efc. The desired response is expressed as a function
of time for the given input. When writing the integro differential equation for a
given network, the initial conditions must be taken into account. The energy storing
elements such as inductor and a capacitor have initial conditions. At time ¢ = 0 the
capacitor is initially charged and has the initial voltage v.(0). Similarly, at t = 0,
the current through the inductor is denoted as i, (0). These initial conditions are
expressed v.(07) v.(0") and i (07) and iz (0"). The input is assumed to start at
t = 0 which is considered as the reference point. The condition just before the input
is applied (r = 07) is denoted as v.(0™) and the condition just after the input is
applied (r = 0™) is denoted as v.(0"). In many cases v.(0™) and v.(0™) are same but
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not always. Unless otherwise it is specified, v.(0) or iz (0) has to be taken as v.(07)
or iz (07) which is more practical.

4.11.1 Mathematical Description of R-L-C-Elements

(a) Resistor
Consider the resistor connected across the voltage source v; (¢). The loop equation
for the above circuit is written as follows:

v (t) =i(t)R (4.57a)
vr(t) =i(t)R

(b) Inductor
Consider the inductor connected across the voltage source v;(f) as shown in
Fig.4.30b. The loop equation for the above circuit is written as follows:

i)

vi(t) =L i
K

() =L ;(;)

Taking LT on both sides of the above equation, with the initial current i (#) = i (07),
we get

Vi(s) = LsI(s) — Li(07) (4.57b)

(¢) Capacitor
For the capacitor circuit shown in Fig. 4.30c the following equation is written.

vi(t) = %/i(t)dt

Taking LT on both sides of the above equation with the capacitor initially charged
with v.(07), the following equation is obtained

1
Vils) = - 1(s) +ve(07) (4.57¢c)

Equation 4.57a, b and c are called integro differential equations. If the initial condi-
tions are zero, these equations can respectively be written as
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Fig. 4.30 a Circuit with a
resistor. b Circuit with an
inductor. ¢ Circuit with a
capacitor

(a) - i(f)

—Pp
Y

vi(D) R

(b) i(1)

v

vi(t) L

(c) (1)

vi(t)

Vi(s) = I(s)R
Vi(s) = I(s)Ls

Vi(s) = éI(S)

389

V()

—»

v(f)

vel(D)

(4.58)

Equation (4.58) is called algebraic equation. These equations can be written in the
frequency domain with the impedance function for the resistor, inductor and capacitor

respectively as R, Ls and é

4.11.2 Transfer Function and Pole-Zero Location

Consider the R-L-C series circuit shown in Fig. 4.31. v;(¢) is the input, vo(?) is
the output and i (¢) is the current flowing through the series circuit. For Fig. 4.31 the
following integro differential equation is written.
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Fig. 4.31 R-L-C series
circuit -
1t
(0 L

C

]

vi(t) R vo(?)

UM

bit) = Ldl (t)

vo(t) = l(t)R

/ i (t)dt + Ri(t) (4.59)

Taking LT on both sides of the above equations, we get the following algebraic
equation.

Vi(s) = LsI(s) — Li(07) + CLI(S) +v.(07) + RI(s)
S
Vo(s) = RI(s) (4.60)

In Eq. (4.60) if the initial conditions i (0~) and v.(0™) are zero, the following equa-
tions could be written.

Vi(s) = (Ls + L + R> 1(s)
Cs
Vo(s) = RI(s)

Dividing one by the other, we get

Vols) _ R @.61)
Vis)  Ls+L +R '
RCs

T LCs2+ RCs + 1

Vols) __

Denoting TAD)

= G (s), the above equation can be written in the following form:

G(s) RCs (4.62)
§H)=——— .
LCs?+ RCs + 1

Equation (4.62) is called the transfer function of the given electric circuit.

Transfer function: Transfer function is therefore defined as the ratio of the LT of
the output variable to the LT of the input variable with all the initial conditions
being assumed to be zero.
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InEq. (4.62)ifweput L = 1,C = 1 and R = 2.5, the transfer function is obtained
as

2.5s

(s2+255+1)
2.5s

T G+2)(405)

G(s) =
(4.63)

The transfer function G (s) becomes zero at s = 0.

The points at which the transfer function becomes zero in the s-plane are called
zeros and are marked with a circle 0 in the s-plane.

The transfer function G(s) becomes infinity at points s = —2 and s = —0.5 in
the s-plane. These points are called poles of the transfer function and are marked
with a small cross x in the s-plane.

The poles of the transfer function are defined as the points in the s-plane at
which the transfer function becomes infinity.

The zeros of the transfer function are obtained by factorizing the numerator poly-
nomial and putting each factor to zero. The poles of a transfer function are obtained
by factorizing the denominator polynomial and putting each factor to zero. It is to be
noted that the transfer function is not defined if the initial conditions are not zero. The
poles and zeros of equation (4.63) are shown in Fig. 4.32. The s-plane is a complex
plane whose real axis is represented by o and the imaginary axis by jo.

The following examples illustrate electric circuit analysis using LT method.

Example 4.64 Consider the R.L.C. series circuit shown in Fig. 4.31 with L =
1H,C = 1F and R = 2.5 ohms. Derive an expression for the output voltage v (¢)
if the input is an (a) impulse (b) unit step. Assume zero initial conditions.

A jw

s-plane

2.5s

Fig. 4.32 Pole-zero locations of G(s) = —————
& ) = 26 1 03)
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Solution With zero initial conditions, for the circuit shown in Fig. 4.31, the following
equation is obtained.

di(t) 1 L
L o +E/dt+Rl(t)—v,(t)

vo(t) = i(f)R.

Taking LT on both sides and substituting the numerical values for R, L and C we get

V() 2.5s
v(s) = ——F——(=
i (s +2)(s +0.5)

(a) Impulse Response of the System

For an impulse input V;(s) = 1

2.5s
(s +2)(s +0.5)
_ Ay n A
(s+2) (s+0.5
255 = Ai(s +0.5) 4+ Ax(s + 2)

Vo(s) =

Puts = -2
2.5)(-2) = A1 (—2+0.5)
5 10
Al= —=—
1.5 3
Puts = —0.5

(2.5)(=0.5) = A>(—0.5 +2)

1.25 -5
AZ = = —
1.5 6
10 1 5 1
Vo(s) = —

3(4+2 6(+0.5)

Taking inverse LT, we get

V()(t) — (13_06_2t _ 26—0.51> u(t)
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(b) Step Response of the System

Vo 2.5s
Vi (s +2)(s +0.5)

For unit step input, V;(s) = 1

_ 2.5s
©s(s+2)(s+0.5)

B 2.5

T (s +2)(s +0.5)
A n Ay

T (5+2)  (s+05)
2.5=A1(s +0.5) + Ar(s +2)

Vo(s)

Puts = -2
25=A(-2+0.5)
2.5 -5
Al = —— = —
1.5 3
Puts = —-0.5

2.5 =A(-05+2)
25 5

PT1573

S i |
o) =3 (_(s+2) + (s+0.5)>

vo(t) = g(—e”’ +e”"Nu(n)

Note: For an impulse input V;(s) = 1 and for a step input V;(s) = % By integrating
the impulse response one can get the step response. Similarly by differentiating the
step response, the impulse response can be obtained.

In the above example, consider the step response.
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i(?)
S L=1H R=3Q 4,[
_ 1 F -
C=7F __ .0)=5volts

wo () -

Fig. 4.33 R.L.C. series circuit with initial conditions

vo(t) = §<—e*2’ + e " Mu(t)

dvo(t) 5 _ _, _
=20 r_0. 0.5¢
P 3( e 0.5¢ Yu(t)
10 5
— ( 3 e—2l _ 66—0.5t> u(t)

The above response is nothing but the impulse response.

Example 4.65 Consider the R.L.C series circuit shown in Fig. 4.33. The circuit
parameters are R =3 ohm; L = 1H and C = %F . The capacitor C is initially
charged with a voltage of v.(0™) =5 Volts. The initial current i (0~) before the
input is applied is 2 amps. Find the current in the R-L-C circuit if the input is unit
step. Also find the voltages across these elements for the above case.

Solution For the Circuit shown in Fig. 4.33, the loop equations is

Ldi + Ri + ! /'(t)dt— (1)
dl l C l =X

Taking LT on both sides of the equation, we get the following transformation term
by term
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L [Lﬂ_ =LsI(s)— Li(0) =(sI(s) —2)

dt |
L[Ri] = RI(s) = 3I(s)
| N ve(07)
L[E/l(t)dt_ = —1( )+ — S
. 21(s) S
- S s

Thus, the differential equation after taking LT is written as

sI(s) — 2+3I()+L+——X()

2 5
F+3+—}Mﬂ=2——+xﬁ)
S N

(243542 25 — 54+ s5X(s)
I(s) = S

Step Response
For step input X (s) = -

2s —5)+s%

s+ D +2)

_ 2s —4)
s+ D +2)
A As
“GED 612

2s —4) =A1(s+2)+ Ar(s + 1)

I(s) =

Puts = —1
(—2—4) =A(—-1+2)
A = -6
Puts = -2

(=4 —4) = Ay(-2+ 1)
A, =8

I(s) =

-6 8
(s+1) +2
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Taking inverse LT, we get

i(1) = (=6~ + 8¢ Hu(t)
The voltage across the resistor is given by

vr(t) =i(t)R
= 3i (1)

vr(®) = (—18¢™" + 24e¢ 2 )u(r)
The voltage across the inductor is given by

i

() = L ;(tt)
i)
T dr

v (1) = (6™ — 16 2 )u(r)

The voltage across the capacitor is given by

ve(t) = é/i(t)dt

=2 / (—6e™" + 8e~)dt

=12¢7" — 8¢ + C.

Att=0,v.(0)=5
5=12—-84C or C=1

ve(®) = (12¢™" — 8¢ + Du(r)

Example 4.66 Consider the R-L-C circuit shown in Fig. 4.34 with the numerical
values given. The initial current through the inductor and the initial voltage across the
capacitor at # = 07 is zero. Derive an expression for the source current as a function
of time for ¢ > 0 when the switch S is closed.

Solution The expression for i (¢) is obtained by writing the algebraic equation rather
than the integro differential equation when the initial conditions are zero.
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S i(%)

A\ JAVAVAVAVAY
¥ R=0.50

ove C

Fig. 4.34 R-L-C- circuit of Example 4.66

1. The impedance function for the inductor L is taken as Z; (s).

Zi(s) =Ls

=S

2. The impedance function for the capacitor C is taken as Z,(s).

1 4
Zz(s)=a=—

3. Z(s) and Z,(s) are in parallel. Let Z3(s) be impedance of the parallel combina-
tion of Z;(s) and Z,(s). Thus,

Z1(s)Z(s)
Z1(s) + Zy(s)
é—ls
% + s

4s
s2+4

Z5(s) =

4. R and Zs(s) are in series. Let Z(s) be the impedance of the series combination
of R and Z3(s). Thus,

Z(s) = R+ Z3(s)
4s
s2+4
(0.55% + 45 +2)
Y

Z(s) =05+

Z(s) =
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5. Ve
S
1 =
(5) 70)
. vV 10
For astep input V(s) = — = —
S s
1 Z+4
)= __&+H
s (0.552 +4s +2)
20(s* + 4)

- s(s24+8s+4)

But (s + 8s +4) = (s + 7.464)(s + 0.536).
6. Putting 7 (s) into partial fraction, we get

[( ) _ Al + Az + A3
N T 5 +7464) T (5 +0.536)
20(s> +4) = A (s> 4 85 + 4) + Axs(s + 0.536) + Ass(s + 7.464)

Puts =0
80 =4A,
A =20
Puts = —7.464
(1114.23 + 80) = A>(—7.464)(—7.464 + 0.536)
Ay, =231
Put s = —0.536

(5.746 4+ 80) = A3(—0.536)(—0.536 + 7.464)
Az = -23.1
20 23.1 23.1
I(s) = — + —
s s+7464 5+40.536

7. Taking inverse LT, we get
i(t) = (20 +23.1e7 4% — 23,17 093%) y(r)
Example 4.67 Find the unit step response of the circuit shown in Fig. 4.35.

(Anna University, December, 2007)
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Fig. 4.35 R.L. series circuit y(©)
i(1)

R=10Q

x(1) L=5H

Solution

1. Since the initial condition is zero, the total impedance of the circuit is written as

Z(s)=R+Ls
=10+ 5s

2. The current through the series circuit is

_X()
VAD)

1(s)

1
Since X (s) = — for unit step
s

1
SZ(s) - s(10 + 5s)

1(s) =

3. The output Y (s) = I(s)R

10 2
T 510455  sG+2)
11
zg_s+2

4. Taking inverse LT, we get

i) =L""1)=0=eu@)

Example 4.68 Consider the R-C-Circuit shown in Fig. 4.36. The input x(¢) =
u(t) —u(t — 2). Derive an expression for the voltage output across the capacitor
C as a function of time when the switch S is closed at + = 0. Assume zero initial
condition.
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400
@ 5 Rr=sq ®) x(r)
I =0
L 1
x(7) C=2F __ v
|

~ v

Fig. 436 aR.C.circuitand b x(r) = u(t) — u(t —2)

Solution

1.
x(t) =u(t) —u(t —2)

X(s) = |:% - 1ezsi|

N

2. Since the initial condition is zero, the impedance of the circuit is written as

1
Z(s) =R+ —
(s) &
=5+ !
- 2s
_ (10s+1)
- 2s
3. The current in the circuit is
X
IGs) = (s)
Z(s)
1 I _,, 2s
= |- — —¢ -
s s (10s + 1)
(e
- (10s + 1)
4. The impedance of the capacitor C is
Z.(s) = 1
W= Cs
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5. The output voltage across the capacitor C is given by

Ve(s) = 1(s)Z.(s)
21
(10s + 1) 2s
(1 —e2)0.1
- s(s +0.1)
ol 0.1e72
T s(s+0.1)  s(s+0.1)

=(1—-e)

ve(t) = L™'Ve(s)
_1|: 0.1 :| _1|: 0.1e™> ]
ve(t) =L — |- L _
s(s +0.1 s(s +0.1)

which can be expressed as Sl — —L_ Thus,

Now consider 301"

0.1
s(s+0.1)

1 1

Using shift theorem, L~ [%] — (1 — e %12, (t — 2). Thus,

ve(®) = (1 — e ""u@r) — (1 — e 1)y (s — 2)

Example 4.69 Consider the R.L. series circuit shown in Fig. 4.37a. At ¢ = 0, the
switch § is closed. Derive an expression for the current in the series circuit as a
function of time. The mathematical description of the input is given by

3
x(t) = >t 0<t<2

Solution

1. The mathematical description of x(¢) is represented as a triangular wave and is
shown in Fig. 4.37b.
2. For Fig. 4.37b, the LT is determined (see Example 4.28) as

X( ) 3 1 3 —2s + 3 —4s
$)=|z5—5e€ —e
252 2 252
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(a) S , (b) 4 x(0)
v}< A
' R=10 Q)
i | —
I
x(f) L=2H i
|
l :
v 0 2 4 t

Fig. 4.37 a R-L-series circuit; b x(¢)

3. For the circuit shown in Fig. 4.37a, the impedance function is

Z(s) = (R+ Ls)

= (10 4+ 2s)
=2(s+5)
4. The current through the series circuit is
X(s)
1 =
(s) 76)
31 3 ., 31 _, 1
- |:2s2 2° 7 T22° |26 +9)
5.
i(r) = L7 (s)
13 1 3 e n 3 e
h 452(s+5) 252(s+5)  4s2(s+5)
1 A n A; Aj
s2(s+5)  s2 s (s +53)
1 =Ai(s+5) + Ass(s + 5) + Aszs?
Puts =0 |
A] = g
Puts = -5
1 = A325
1
A3 = —
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Compare the coefficients of s2.

A, + A3 =0
Ay = —As
_ 1
25
6.
<3 v J_3, ot vt vt ] _ 371 1 1 5
L |:4s2(s+5)]_4L [ss2 25s+25(s+5)i| _4[5' 25 T 25°¢ }”(I)
(@)
ol P ooy Ly lesealuooa o
L DL R NI ul(r —
2 52(s +5) 215 25 25
] A B [ R G
AL D B S AL ult —
4s2s+5 | 4|5 25 25
7.

i(t) = (a) + (b) + (¢)
, [3{1 1 15,}
i=|2]t—— 4 —e ¥ u@)

415 " 25725
3 (1 11

— (=2 — 4+ —e Dy -2
2{5( )~ 25 T3¢ u(t =2)
3 (1 o1

A e VT
+4{5< )= 5z 5z u(t —4)

Example 4.70 Consider the circuit shown in Fig. 4.38. Initially the switch is in
position 1. At ¢ = 0, the switch is moved to position 2. Find the expression for the
current in the inductor L as a function of time .

Solution

1. When the switch S is in position 1, the current i passing through the inductor at
steady state is decided by the source voltage and resistance R;.

40
| = — =4 amp.
ST P
2. When the switch S is in position 2, the following dynamic equation for the R; —
R, — L series circuit is written

di
L— Ri+R)i=0
dt+( 1+ Ry)i
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\l R,=100Q

Fig. 4.38 Circuit of Example 4.70

MM 0
R=10Q g

o0V — C=0.05F___
p— L=5H

Fig. 4.39 Circuit for Example 4.71

3. Taking LT on both sides of the above equation, we get
SLI(s) —Li(0Y) + (R + Ry)I(s) =0
Substituting the numerical values, we get

Qs+ 15)I(s) =2 x4=8
8

2s + 15
4

s+7.5

I1(s) =

4. Taking inverse LT, we get
i) =4e " u(t)
Example 4.71 Consider the circuit shown in Fig. 4.39. The switch S is initially

closed. Derive an expression for the current through the inductor as a function of
time when the switch S is suddenly opened at ¢t = 0.
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Solution

1. When the switch § is closed, the current is passing through R, and L and C is
open circuited. Under this condition the initial current is limited by R only. Thus,

100

2. The initial charge across the capacitor is zero because the entire voltage is applied
across R only. Therefore, the following Loop equation for L.C. circuit is written

when the switch S is open.

Ldi Li(0) + ! f i (t)dt +v.(0) =0
— — Li — i ve(0) =
dt C

3. Taking LT and substituting i (0) = 10 and v.(0) = 0, we get
1 .
|:Ls + —i| I1(s) = Li(0)
Cs

1
<5s + m) 1(s) =50
(552 +20)1(s) = 50s

(s> +4)I(s) = 10s

s+ j2)(s — j2)I(s) = 10s

I(s) = Az

A
(s+j2)  (-j2)

Puts = —j2 ) )
10(—j2) = 4A((—J)
Al =5
Ay =AF=5

1 1
I(s) =5
) I:s~|—j2+s—j2:|

4. Taking inverse LT, we get

i) = 5[/ + &/

i(t) = 10cos 2t
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Example 4.72 Find the transfer function of LTI system described by the differential
equation
d’y(@®)  dy(®) dx (1)

a1 +37+2y(t)=27—3x(t)

(Anna University, May, 2008)
Solution Taking LT on both sides assuming zero initial conditions, we get

(s> 435 +2)Y(s) = 2s —3)X(s)

Y(s)

The transfer function is X
(s)

Y(s)  (25—3)
X(s) (s24+35+2)

Example 4.73 Consider an LTI system with input x() = e 'u(¢) and impulse
response
h(t) = e 2u(t)

e Determine the LT of x(¢) and A(z).

e Using the convolution property, determine the LT Y (s) of the output y(¢).
e From the LT of y(¢) as obtained in part (2) determine y(z).

e Verify your result in part (2) by explicitly convolving x(¢) and A ().

(Anna University, May, 2008)

Solution
1.
x() =e "u()
From LT table
X(s) = ROC: Re(s) > —1
(s) 6D (s)
h(t) = e u(t)
From LT table

H(s) = ROC: Re(s) > —3

(s+3)
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2.
Y(s) = X(s)H(s)
Y)= —
© = D6+
3.
Ys)= —
)= ST Do T3
A n A
T+ (s+3)
I=A1(s+3)+A(s+1)
Puts = —1
1 =A(-1+3)
1
A=
Puts = -3
1 =A(-3+2)
1
Ay=—3
Y =5 | -
g _2|:s+1 _s+3]
y() =L7'Y(s) = %[e*’ — e M u(t)
_ 1 —t -3t
y(t)—z[e —e u()
4,
x(t)=e"
x(t—t)=e 0
h(t) = e 7

407

Since x(¢) and h(¢) are casual, the limit of integration varies from O to . Thus,
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t
y(t) = / e e
0

t
:e"/ e dt
0

_ - 277
- (_2) [e ]()

y@) == [e7" — e u)

1
2
Example 4.74 Determine the impulse response /(¢) of the system whose input-
output is related by the differential equation where x(¢) is the input, y(¢) is the
output

& d
dytgt) + 3% F2y() = x(1)

with all initial conditions to be zeros.

(Anna University, April, 2004)
Solution

1. Taking LT on both sides of the given differential equation, we get

(2435 +2)Y(s) = X(s)
2435 4+2=G6+DE+2)

For an impulse,

X(s) =1

Y(s) = ——M—
(s +1D(s+2)

2. Putting into partial fraction, we get

y(s) = AL A2

S) =

+1)  (+2)
1= A (s 4+2) + As(s + 1)

Puts = —1

1=A(=1+2)
A =1

Puts = -2



4.11 Network Analysis Using Laplace Transform 409

1 =A-2+1)
Ay = —1
1 1
Y(s) = -
s+1 s+2

3. Taking inverse LT, we get
(1) = (" = e u()
For impulse input y(¢) = h(?)
h() = (e — e u(r)
Example 4.75 Determine the output response of the system whose impulse response
h(t) = e “u(t)
for the step input.

(Anna University, April, 2004)

Solution
1. ot
H(s) = L[h(1)] = Lle”" u(n)]
1
- s+a
Y
H(s) = (s)
X(s)
) 1
For step input X (s) = —.
s
2. Substituting in H (s), we get
Y (s) :
S) =
s(s 4+ a)

The residues are obtained by intuition

o[l L]t
s)_l:s_s—f—a]a

3. Taking inverse LT, we get

1
y(@) = —[1 — e “Ju(t)
a
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Example 4.76 Consider an LTI system whose response to the input x(¢) = (e~ +
eNu(t)is y(t) = (2e™" — 2e~*)u(t). Find the system’s impulse response.

(Anna University, December, 2007)

Solution

1. The LT of x(¢) is X (s)

X(s)=Lle "+ = ! + 1 ___26+2
B T G4+D  +3) G+Ds+3)

The LT of y(¢) is Y (s)

Y()—L[2"—2‘4’]—2[ Lo }— 0
§) = Hlee ¢ TSl T s+4l T G e+
2. The transfer function is
Hs) = Y(s) 6 s+ Ds+3)
X)) +DE+4) 2s+2)
3(s +3)

TG+t +

3. For an impulse X (s) = 1. Now Y (s) can be put into partial fraction as given
below.

Y(s):ﬂ
(s+2)s+4)
A n Ay
542 (544
3(s+3) = Ai(s +4) + As(s + 2)

Puts = -2
3(=2+3) = A1(-2+4)
3
Al ==
2
Puts = —4

3(—4+3) = Ay (=4 +2)




4.11 Network Analysis Using Laplace Transform 411
4. Taking inverse LT of Y (s), we get

y(t) = L7'Y(s)

3 1 N 1
T 27\ \s4+2  s+4

y(t) = %(ﬂ + e Mu(t)

Example 4.77 Determine the response of the system with impulse response 4 (f) =
u(t) for the input x(¢) = e~ u(t).

(Anna University, April, 2004)

Solution Method 1:

1. Taking LT for A(¢) and x(¢), we get

1
H(s) = L(u(®)) = —

s

X(s) = Lle % u(r)] =

(s +2)

y(&) = x(1) * h(r)
Y(s) = X(s)H(s)
1
- s(s +2)

3. Putting into partial fraction and by intuition the residues are obtained. Thus, Y (s)

18 written as
1/1 1
Ys)==|-—
2\s s+2

4. Taking Laplace inverse for Y (s), we get y(¢)

y(t) = L7'Y (s)

—L’ll 1 1
- 2\s 542

y(t) = %(1 —e
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Method 2: y(¢) can be derived by using Convolution Integral

1. Both h(¢) and x(¢) are casual. Hence, the following convolution integral is written
for y(¢)

y(t) = / h(t)x(t — t)drt
0

t
:/ e—2(t7r)dr
0
t
e—Zr/ eZ‘L’dT
0

e 7t
= 2 [62 ]0
-2t
_ 1 1 —2t
(@) = 5[ —e ]

Example 4.78 Find the output of an LTI system with impulse response () = §(t —
3) for the input x(¢) = cos 4t + cos 7t.

(Anna University, April, 2004)
Solution

h() =68@ —3)
H(s) =e™™
X (s) = L[cos 4t + cos 7t]
Y(s) = H(s)X(s) = L[cos4t + cos Tt]e”>

y(t) = cos4(t — 3) + cos 7(t — 3)
Example 4.79 Find the initial and final values for

(s +5)
X(s) = (s2 4+ 35 +2)

(Anna University, June, 2007)
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Solution

1. Initial value of x(0). According to initial value theorem

x(0) = Lt sX(s)

S—> 00

s2 4 5s
s%éo s24+3s+2

142
sélf;o 14+ % + 512

x(0) =1

(s>+3s+2)=(s+ D(s+2)

Here the poles are at s = —1 and s = —2 and are in LHP. No pole of X (s) is in
RHP. Hence, the application of initial value theorem is correct.
3. Final value of x(00). According to final value theorem,

x(00) = YI:)tOsX(s)

It 52+ 5s
s>0 524+ 35 4+2
x(00) =0

Example 4.80 Find the step response of the system whose impulse response is given

as
h(t) = u(t + 1) —u(t — 1)

(Anna University, June, 2007)

Solution

1. By taking LT for A (), using time shifting property, we get

H(s) = L[h(1)]

1, 1,
= —e¢ — —e¢

N N

1
— _[eS _ e—S]

N
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2.
Hs) = 29~ L oy
S) = = —|e —e
X (s) s
. 1
For step input X (s) = —
S
1 S —S
Y(s) = 5le' —e™]
K
=Yi(s)[e’ —e™’]
where )
Yi(s) = 2
3.
yi(0) = L7'Y1(s)
1
=L =
=1
4,

y@) =y @Ou@+1) —u - 1)]

y@) =@+ Du@+1) — (= Du(t = 1)
Example 4.81 Find the response of the system whose impulse response is

h(t) = e > u(t)
x(t) =u(@—3)—u(t-95)

(Anna University, June, 2007)
Solution
1. The LT of h(¢) is

H(s) = Lle 3 u()]
1

T 5 +3)

2. The LT of the input x(¢) is

X(s) =L[u@ —3) —u(t —95)]

1
— _[6—35 _6—55]
N
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3.

Y(s)
X(s)
Y(s) = H(s)X(s)
_ 1 —3s _ =55
T os(s+3) Le e
Yi)le™ —e™]

H(s) =

where Y, (s) =

s(s+3)°
4. Now Y;(s) can be put into partial fraction as

m:l[l— : }
3ls s4+3
yi(t) = L7'Y1(s)
_ e
3

5. The response y(¢) is obtained from y;(¢) and applying time shifting property

y(t) = %[1 — e 3y —3) — %[1 — ey (1 - 5)

Y0 = %[1 eI = 3) — %[1 eI - 5)

Example 4.82 Draw the wave forms §(t — 2) and u(t + 2).

Solution

1. The unit sample is shown in Fig. 4.40a. The time delayed signal (right-shifted by
t = 2) is shown by its side.

2. The unit step signal is shown in Fig. 4.40b. The unit step signal is left shifted by
t = —2 and is shown in the figure shown by its side.

Example 4.83 A system has the transfer function

(Bs—1)
HG) = —— 7
(s +3)(s —2)

Find the impulse response assuming the system is stable and causal.

(Anna University, December, 2007)
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(@)
143(r) 1 [ 3(t—2)
f 2 "t
(b)
u(t) A A u(t)
1 u(t+2)
i —t -2 0 =t

Fig. 4.40 Time shifted unit sample and unit step

Solution
1.
H(s) = _Gs—D
(s+3)(s—2)
A n A
5 +3) -2
Bs—1)=A1(s—2)+ Ar(s +3)
Puts = -3
(-9—-1)=A(-3-2)
A =2
Puts =2

6—1) =A422+3)

Ay =1

2 1
(s+3) =2

H(s) =

2. The poles of H(s) are at s = 2 and s = —3. If the system is stable, the pole at
s = 2 contributes to the left-sided term to the impulse response and the pole at
s = —3 contributes right-sided term. Thus, we have
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h(t) = 2e " u(t) — e*u(—t)

3. If the system is causal, then both the poles should contribute right-sided term to
the impulse response which is obtained as

h(t) = [2¢7 + ¥ u(t)

Due to e? u(t) the system is not stable.
4. Hence the given system cannot be both stable and causal due to the pole at s = 2.

4.12 Connection between Laplace Transform and
Fourier Transform

The bilateral LT of a signal x(¢) as defined earlier is written as follows:
X(s) = / x(e*'dt (4.64)
—0
Substituting s = jw in the above equation, we get

X(jow) = / ” x(t)e /¥ dt (4.65)

[ee]

Thus, the FT is a special case of LT which is obtained by putting X (s)|= . With the
following constraints:

e x(?) is absolutely integrable.
e ROC of X (s) includes the jw axis.

Many commonly used signals have x () = 0 for ¢+ < 0 and ROC of the LT includes
the jw axis. Under this condition,

X(]C()) = X(S)|s:jw
Consider the following signals

x(t) = e Hu(t)

X(s) =

) ROC: Re(s) > =2

Puts = jo

X(jow) = .
Vo)==
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Now by FT method, we get

o0 .
X (jw) =/ e e It
0
_ 1
 (jo+2)

In the above case ROC includes the jw axis.
Now consider the step function u(¢). The LT of a step function is

1
L] = —.

But the FT of u(¢) is obtained as
1
Flu()] =né(w) + —
jw

Thus, the FT of u(t) cannot be obtained from its LT as it is not absolutely integrable.

4.13 Causality of Continuous-Time Invariant System

A linear time invariant continuous time system is said to be causal iff the impulse
response h(t) of the system is zero for r < 0. Thus, the system which possesses
right-sided impulse response is said to be causal. For this, the ROC of the system
transfer function H (s) which is rational, should be in the right half plane and to the
right of the right most pole.

Consider the following impulse response function

h(t) = e 2 u(t)

ROC: Re(s) > —2

The above transfer function is rational because the degree of the denominator poly-
nomial is greater than the degree of the numerator polynomial. The ROC is to the
right of the right most pole s = —2. Hence, the system is causal. The ROC is shown
in Fig. 4.41a. Now consider the following impulse response function

h(t) = eV
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o

Fig. 4.41 a ROC of h(t) = e~ (causal); b ROC of h(r) = e~ ! (non-causal)

The above function can be written as

h(t) =€

H

=é¢ t

t>0

<0

0 [ee)
(s) =/ e'e ™ dt +/ e e tdt
—00 0

1

-2

G-D  GHD _ G-DG+D

The transfer function is rational. The ROC is shown in Fig. 4.41b. The right most
poleis ats = 1. The ROC is not to the right of the right most pole. Hence, the system
is not causal.

4.14 Stability of Linear Time Invariant

Continuous System

As already derived a linear time invariant system is said to be stable if the area
under the impulse response A (#) curve is finite (absolutely integrable). The impulse
response of a causal system is absolutely integrable if the response curve decays
exponentially as time increases. Consider the transfer function of an LTIC system.
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bus" +by_1s" L+ 4 by
ans™ + Q15" 4+ ag

H(s) =
For a rational function H(s), m > n. The above transfer function can be written in
terms of factors.

Ay n Ay I A,
(s+p)  (s+p2) (s + pm)

H(s) =

The impulse response of H (s) is obtained by taking inverse LT.
h(t)y=L""H(s) = Aje """ + Aye ™ + - + Aye™ P

For A (t) to be absolutely integrable, the following conditions are to be satisfied.

e All the poles of H (s) should lie in the left half of the s-plane.

e No repeated pole should be in the imaginary axis. Under these conditions, the
system is said to be stable.

e The stability is also assessed by ROC. The ROC of H (s) should include jw axis.

Example 4.84 A Certain causal linear time invariant system has the following trans-
fer function. Test whether the system is stable.

(a) H(S) — i
s+ -1
(s —4)
(b) H(s) = m
() H(s) = I Cll)
s(s+1D(s+4)
@ He = —S"Y ROC: —4 <Re(s) <3
(s—=3)(s+4

Solution (@) Since the system is causal, the pole s = 1 which lies in RHP makes
the system unstable.

(b) There are two poles repeated at the origin. The system is unstable.

(c) All the poles are in LHP. The system is stable. It is to be noted that the locations
of zeros do not have any influence on the system stability.

(d) This is a non-causal system. ROC strip is enclosing the jw axis. Hence, the
system is stable.
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4.15 The Bilateral Laplace Transform

The unilateral LT is applicable for causal signals and/or systems. However, for non-
causal signals and systems, the LT pair is defined as follows:

Lix()] = X(s) = /-oo x(t)e 'dt (4.66)
-1 1 eoe t
LX) =x@() = —/ X(s)e''ds (4.67)
27TJ c—joo

It is to be noted here that the unilateral LT pair defined earlier is the special case of
bilateral LT.

4.15.1 Representation of Causal and Anti-causal Signals

The signal x () shown in Fig. 4.42a is a non-causal signal which has two components.
x(t) can be split up into two components as x(¢) = x;(¢) + x2(¢). The signal x; (¢) is
a causal signal (positive time) and is also called as right-sided signal. This is shown
in Fig. 4.42b. The signal x,(¢) is called non-causal or anti-causal (negative time)
signal. It is also called left-sided signal. x,(¢) is shown in Fig. 4.42c. These signals
are given the following mathematical description.

x1(t) = x(@®)u(t) —0<t<o (4.68)
x2(t) = x(H)u(—t) —o0o<t<—0 (4.69)

The LT of x;(¢), the causal component is

00
Xi(s)=L[x;(0)] = / x1(tH)e 'dt (4.70)
(a) A x() (b) AD (C)kn X,()
— > —
—t 0 t —t 0 t —t 0 t

Fig. 4.42 a Signal x(¢); b Causal signal; ¢ Anti-causal signal
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The LT of x;,(¢), the non-causal component is
o
Xo(s) = L[x(1)] = / x2(t)e ' dt 4.71)

—0Q

It is to be noted that if x (¢) has any impulse or its derivatives at the origin they
should be included in the causal signal x; (¢)and x,(¢) = 0 at the origin.

4.15.2 ROC of Bilateral Laplace Transform

Consider the following signal
x(t) = e u@) + & u(—t)
x1(t) = e 2 u(r)

Xi(s) = ROC:Re s > -2

(s+2)
x(t) = eMu(—r1)

—0
X, (s) :/ eYe™dt

o0

-0
= / e I gy
—00

_ ~ 1 5 [67(373)t]07700
5 —
1
RS

e~ 732 converges iff (s —3) < 0 or s < 3. Hence, the ROC of the left-sided
(anti-causal signal) is to the left of the pole at s = 3

Xa(s) = — ROC:Res < 3
(s —3)
X(s) = Xi(s) + Xa(s)
X(s) = ! - ! ROC: —2 <Res <3
s+2) s-3

Unless the ROC is mentioned, the inverse LT is not unique. In the above case the
ROC is a strip between —2 < Re s < 3 and is shown in Fig.4.43.
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Fig. 4.43 ROC of x(¢)
4 jo s-plane
ROC
X—>»
-2 0 3

Example 4.85 Consider the following function:

10

X()= ————
(s+4)(s—2)

Find x(¢) if the ROCis(a) Res > 2; (b)Res < —4;(c) -4 < Re s > 2.

Solution
10
X)) = ————
G+ —2)
A As
T (s44) s—=2
10=Ai(s —2)+ Ax(s + 4)
Puts = —4
10=A(—4-2)
5
A1=—§
Puts =2
10 =A,(2+4)
5
A2=§
X()—S 1 n 1
s 3(s+4 s-—2

(a) ROC > 2.
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(@) , 1
tjo ROC >2
s-plane ROC
—
4 0 2 o
—
b
b) i ‘o
- ROC s-plane
' ROC < —4
—4 2 o
‘_
(c) T jw A T
s-plane
ROC —4<ROC <2
” 5 5

10
Fig. 444 ROCs of X(s) = —————— . Example4.85
& O = G ae 2 P

Figure 4.44a represents pole-zero locations for ROC > 2. Figure 4.44b represents
pole-zero locations for ROC < —4. Figure4.44c represents pole-zero locations for
—4 < ROC < 2.

Here the ROC is right-sided for both the poles at s = —4 and s = 2. Hence, the
system is causal (Fig. 4.44).
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x(t) = g[—e_‘” + ¥ u(t)

(b) ROCRe s < —4.
Here the system poles s = —4 and s = 2 are both left-sided since they lie left to the
ROC. Both are non-causal.

N _5[ -1 1}
=365t 52

x(t) = g(e—“’ — e®u(—r1)

(c)ROC —4 < Re s < 2.

Here the pole s = —4 is to the left of the ROC and it is a right-sided signal. It is
therefore causal. The pole s = 2 is to the right of the ROC and hence it is a left-sided
signal. It is non-causal. Hence

x(t) =

W] W

[—e“”u(r) — eZ'M(—t)]

Example 4.86 The impulse response function of a certain system is

10
H(s)=—5 ROC:Res <5

The system is excited by x(t) = e~

as a function of time.

u(t). Derive an expression for the output y(¢)

Solution
H(S)Z(S—S) ROC:Res < 5
1
X(s) =L '[eu(t)] = —— ROC:Res > —3
(s) [ ()] G13)
10
YG)=H(s)X(s) =— ROC: =3 <Res <5
(s =5)(s +3)
Putting into partial fraction, we get
Ay Ay
Y =
() s—35 + s+3

10 = A (s +3) + As(s — 5)
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I

ROC

s-plane

! }

Fig. 4.45 ROCof Y(s) = — 0
G-5G+3)
Puts =5
10 = A (5+3)
5
A] = Z
Puts = -3
10 = Ay(—=3 —5)
5
AQZ—Z
H Y(s) 5 1 1
ence, == _ '
V=a\5 5 T 513

The ROC is shown in Fig. 4.45. From the ROC, the pole (3—;5) is left-sided (right
to the ROC) and the pole ﬁ is right-sided (left to the ROC). Hence, ﬁ is
1

non-causal and ) is causal. y(¢) is obtained by taking inverse LT.

y(t) = Z (e u(=1) — e u(t))

Example 4.87 The impulse response function of a certain system is given by

1
H(s) = ROC:Re s > —10
(s +10)

The system is excited by the following input.
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x(t) = —2¢ 2 u(—t) — 3¢ u(t)
Derive an expression for the output y(¢) as a function of time.
Solution By taking LT for x(¢), we get

X(s) = L[—2e¢ 2 u(—t) — 3¢ u(r)]

2
= — 3 ROC: —3 <Res < -2
(s+2) (s+3)
2s4+6—35s—6

(s+2)(s+3)
—S

(s +2)(s+3)

H(s)

= ROC: Res > —10
(s +10)

—S
Y(s) =

(s +2)(s +3)(s + 10)

ROC: —3 <Res < -2

The ROC of Y (s) is shown in Fig. 4.46. The ROC of H (s) is automatically satisfied
if ROC Re s > —3. Putting Y (s) into partial fraction, we get

oo A A A
VTG T 513 5+10)
—s = A1(s +3)(s + 10) + Ax(s +2)(s + 10) + A3(s +2)(s + 3)

A j(D

s-plane

—-10 -3 -2 0

Qv

Fig. 4.46 ROC of Example 4.87
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Puts = -2
2=A1(-2+3)(-2+10)
1
Av=
Puts = -3
3=A(-3+2)(-3+10)
A — 3
2T g
Puts = —10
10 = A3(—1042)(—10+ 3)
5
Ay = —
> 728
Hence
1 1 3 1 5 1
Y(s)=- - = + =
4(s+2) T(+3) 28(s+10)
From Fig. 4.46 it is evident that the pole m of the system and the pole (313) of

the input are right-sided (to the left of ROC) and hence causal. On the other hand,
the pole ﬁ is left-sided (right to the ROC) and hence non-causal. Thus, y(¢) is
obtained by taking inverse LT.

1 3 5
y(t) = —Zefztu(—t) — 5673%{(!) + ﬁeflotu(t)
Example 4.88 The impulse response of a certain system is given by h(t) = &(¢) +
e 73", The system is excited by the following signal x (t) = e ™ u(t) + e > u(—t).
Find the response of the system y(¢).

Solution
H(s) = L[h(1)]

= L(8(1)) + L(e™3")

=1+ L
0~ 00

L(€73m) — f €+3t€7Stdt +/ @73t€73tdt
—00 0-
1 1

(s—3)+s+3
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1 1
H(s):1_(s—3)+(s+3) ROC: —3 <Res <3
o (s2-15)
(s =3)(s+3)
1
_ —4r =2\ — _
X(s) = Lle ™™u(t) + e X u(—t)] = T
"2 ROC: 4 <Res<_2
s+2)(s+4)
H(s) =+
VT X
Y(s) = H(s)X(s)
_ (s? = 15)(=2)
T =D+ +2(s+4)
Al A2 A3 A4

:s—3+s+3+s+2+(s+4)

(15—=52 = A1(s +3)(s +2)(s +4) + As(s = 3)(s +2)(s +4)
+A3(6 = 3)(s+3)(s+4) + Ass =3 +3)(s+2)

Puts =3
2(15=9) = A (6)(5)(7)
A=
35
Puts = -3
2(15 = 9) = A,(—6)(=1)(1)
A, =2
Puts = -2

2(15 — 4) = A3(=3)(1)(2)
11

A3:—?

Puts = —4

429
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A jw
T T s-plane
ROC
—4 -3 -2 0 3 g
' '

Fig. 4.47 ROC of Example 4.88

2(15 = 16) = A4(=T) (=1 (=2)
1
As=
Vo) = by
V3853543 56+2 T6+4

The ROC for Y (s) is shown in Fig. 4.47. From Fig. 4. 47 the poles m and (H_3)

right-sided and hence causal. However, the poles G +2) and ) are left-sided and
hence non-causal. Taking the ROC into account y(#) is obtamed as given below:

(t) = (2 ‘3’+l‘4’> (t)+< 2 3’+E > (—1)
y = e 76‘ u 356 56‘ u

Example 4.89 Consider the R.L.C. series circuit shown in Fig. 4.48a. The excitation
voltage x(¢) = e 3u(t) + e*u(—r). Derive the expression for the current in the
series circuit. Assume zero initial conditions.

are

Solution
1. The impedance of the R.L.C. circuit is,
Z(s)=R+Ls+ !
S) = A -
Cs
2
=345+ -
s

_ (2 +3s5+2) _ s+ D(s+2)
S S
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AJjO
b s-plane
@y xs i) ®1 1
; 7000 ———
A
R=3Q L=1H
1 ROC
c=-L1F
x(1) 2 Tz
-3 -2 -1 4
A 4

Fig. 4.48 a R.L.C circuit; b ROC of Example 4.89

2. The excitation voltage

x() = e u@) + e*u(—r)

1 1
X(s) = -
s+3) -4
7 ROC: —3<Res<4
s+3)(s—4)

3. The current flowing in the circuit is

X(s)
Z(s)

I1(s) =

—T1s

I1(s) =
(s+ D@ +2)(s+3)(s —4)

The corresponding ROC: — 1 < Re s < 4. The above ROC satisfies the previous

ROC also.

Ay Ay Az Ay
GID 612 T G1d G-
—Ts =A15+2)s+3) -4+ As+ D +3)(s —4)
FAs(s + 1)(s 4+ 25 — 4) + Ag(s + D5 +2)(s +3)

1(s) =

Puts = —1

T=A(=1+2)(-1+3)(-1-4)
7
10

1=
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Puts = -2
14 = A2 (=1)(1)(—6)
7
Ay = 3
Puts = -3
21 = A3(=2)(—=1)(=7)
3
Az = —3
Puts =4
=28 = A4(5)(6)(7)
a2
TS
-7 1 7 1 3 1 2 1
I1(s) =

E(s+1)+§s+2_§(s+3) C15(s —4)

The poles ﬁ, h+2 and % are right-sided as seen in ROC of Fig. 4.48b. The pole

ﬁ is left-sided and hence non-causal. Taking inverse LT for 7 (s), we get

-7 7 3 2
i(t) = <Ee[ + 3672[ - 563’> u(t) + Ee4’u(—t)

Summary

1. The LT is a tool to represent any arbitrary signal x(¢) in terms of exponential

components.
2. The LT is defined as follows:

X(s) = /‘00 x(t)e *'dt

o0

The Laplace inverse transform which converts X (s) into x (¢) is expressed as
1 o+4joo
x(t) = —/ X (s)e''ds
277] o—joo

The above two equations are called LT pair.
3. Fourier transform is a special case of LT. Fourier transform is obtained by sub-
stituting s = jw in LT in many practical cases even though it is not true always.



4.15 The Bilateral Laplace Transform 433

4.

5.

10.

11.
12.
13.
14.

15.

The LT of a causal signal and system is called unilateral LT. The LT of non-causal
signal and system is called bilateral LT.

The region in the complex s-plane where the LT converges is called the region
of convergence which is written in abbreviated form as ROC. For a causal signal
the ROC exists to the right of the right most pole of the transfer function. For a
non-causal signal the ROC exists to the left of the left most pole of the transfer
function. The ROC will not enclose any pole.

The unilateral LT is a special case of bilateral LT. Their properties are discussed
in details.

The inverse LT is conveniently obtained using partial fraction method. Analytical
as well as graphical methods are used to determine the residues in the partial
fraction.

. The integro differential equation of LTIC system can be converted into algebraic

equations using LT and the solution is obtained with case.

By knowing the transfer function using LT one can easily obtain impulse response
and step response. Using LT, it is also possible to get zero state response, zero
input response, natural response, forced response and total response of the sys-
tem.

The solutions of differential and integro-differential equations are obtained using
LT. The initial conditions are applied for zero input. The differential equation
can also be solved using classical method. However, in classical method, the
zero initial conditions are applied for the total response. The classical method is
restricted to a certain class of input and not applicable to any input. In classical
method, the total response is expressed in terms of natural response and forced
response.

Using LT, the electrical network which consists of passive elements can be
analyzed.

Using time convolution property of LT, it is possible to get the system response
y(@).

Using LT it’s possible to obtain the causality and stability of LTIC system.
Non-causal signals and/or systems can be analyzed by the bilateral (two-sided)
Laplace transform. Here, the ROC is mostly in the form of a strip. Bilateral
Laplace transform can also be used for linear system analysis.

The transfer function of an nth order system can be realized using integrators,
summers, and multipliers. The following form of realization which is a synthesis
problem have been discussed and illustrated with examples.

(a) Direct Form-I

(b) Direct Form-II
(c) Cascade Form
(d) Parallel Form

(e) Transposed Form.
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Exercise

I. Short Answer Type Questions

1. What is Laplace Transform?
The representation of a continuous-time signal x () in terms of complex expo-
nential e*' is termed as Laplace transform. Mathematically, it is expressed as

[e ]

Lix(H] = X(s) = / x(t)e 'dt

—0Q

where s is a complex variable expressed as s = o + jw. Thus, by LT the time
function x () is expressed as a frequency function.

2. What do you understand by LT pair?
The LT and inverse LT are called Laplace transform pair. Mathematically, they
are expressed as

X(s) = /00 x()e *'dt

]

1 o+00
x(t) = —f X (s)e''ds
27j Jo-oo

3. What is bilateral Laplace transform?
The LT to handle non-causal signals and systems is called bilateral LT. It is
mathematically expressed as

o0
X(s) = / x(t)e'dt
—00
4. What is unilateral Laplace transform?
The LT to handle causal signals and systems is called unilateral LT. Mathemat-
ically it is expressed as

X(s) = /Oox(t)e_”dt
.

5. What do you understand by LT of right-sided and left-sided signals?
The LT of a causal signal is called the right-sided LT and is mathematically
described as

X(s) = /‘oox(t)e’”dt
.

The LT of a non-causal signal is called the left-sided LT and is mathematically
expressed as
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6.

10.

11.

o
X (s) =/ x(t)e *'dt

o0
What is the connection between LT and FT?
The FT is a special case of LT which is obtained by putting X (s)[,=, With
the constraints that x (¢) is absolutely integrable and ROC of X (s) includes the

Jjw axis of the s-plane. Thus, the FT X (jw) is obtained from LT of X (s) by
substituting s = jo. It is evaluated on the jw axis in the s-plane.

. What do you understand by Region of convergence?

The region in the s-plane for which the LT integral
o0

X(s) = / x(t)e *'dt
—00

converges is called the region of convergence which is written in the abbreviated
form as ROC.

. How do you identify the ROC of a causal signal?

The ROC of a causal (or right-sided) signal is identified in the s-plane in the
region to the right of the right most pole of the T.F. H(s).

How do you identify the ROC of a non-causal (left-sided) signal?
The ROC of a non-causal signal is identified in the s-plane in the region to the
left of the left most pole of the T.F. H (s).

How do you identify the ROC of a bilateral Laplace transform?

The region to the right of the right most pole of the causal signal and the region
to the left of the left most pole of the non-causal signal are identified as the ROC
of bilateral LT. ROC should not include any pole. The ROC is a strip. If ROC
does not overlap, LT does not exist.

State any three properties of ROC.
The three properties of ROC are

(a) The ROC of LT does not include any pole of X (s).

(b) For the right-sided (causal) signal ROC exists to the right of right most pole
of X (s).

(c) For the left-sided (noncausal) signal ROC exists to the left of left most pole
of X (s).
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13.

14.

15.

16.
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Identify the ROCs for the following signals and sketch them in the s-plane?

(@) x(1) = e u(r)

(b) x(t) = e u(—1)

©) x(@) = e Hu(t) + u(—t)
(d) x(1) = eV

(@) x(1) =&l

Sketch the ROC of the following T.F. of a certain causal system and mark
the poles and zeros.
Sketch the ROC of a non-causal system whose T.F. is given as

_ (5+2)(s-2)

Hes) = (53 D6 =3)

Mark the poles and zeros of H (s).

What are initial and final value theorems?

Initial value theorem is used to determine the initial value of x(¢) (as t — 0)
from the LT X (s) which is given below.

x(0N) = Lt sX(s)

provided x (¢) and % are both Laplace transformable and X (s) is proper.

The final value theorem is used to determine x (¢) as ¢ tends to infinity. This can
be determined from X (s) using final value theorem as given below.

x(00) = LIOSX(S)

provided that x(¢) and % are both Laplace transformable and s X (s) has no
poles in the RHP or on the imaginary axis.
Find the initial and final values of x (¢) whose LT is given by

5
X(s) = _6+5
(s2+4+35+2)
(Anna University, June, 2007)
Initial Value,
s(s +5)
oM=Lt ———
07 s—>o0 (52 4+ 35 + 2)
s2(145/s)

T S0 52(1 + % + S%)
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17.

18.

19.

20.

21.

22.

x(0h) =1

Final value

20y = Lt S8+
s>o0 (s2 4+ 35 +2)

x(00) =0

Define transfer function.

The transfer function of a linear time invariant continuous system is defined as
the ratio of the LT of the output variable to the LT of the input variable with all
initial conditions being assumed to be zero. Thus,

Laplace transform of zero state response

TF. H(s) =
) Laplace transform of input signal

Transfer function does not exist for non-linear and time-varying systems.
Define poles and zeros of the transfer function.

The pole of a transfer function is defined as the value of s in the s-plane at which
the T.F. becomes infinity. The poles are represented by a small cross x. The
poles are the roots of the denominator polynomial of the T.F.

The zero of a transfer function is defined as the value of s in the s-plane at which
the T.F. becomes zero. They are represented by a small circle ‘O’ in the s-plane.
The zeros are the roots of the numerator polynomial of T.F.

What do you understand by eigenfunction of a system?

The input for which the system response is also of the same form is called
eigenfunction or characteristic function.

What do you understand by causality of an LTIC system?

An LTIC system with rational T.F. is said to be causal if the impulse response
is right-sided. For such a system the ROC is in RHP and to the right of right
most pole. An ROC to the right of the right most pole does not simply guarantee
causality of the system. The ROC should be in RHP also.

What do you understand by stability of an LTIC system?

The LTIC system is said to be stable iff the area under the impulse response 4 (¢)
curve is finite. In other words the impulse response /(¢) should be absolutely
integrable. In terms ROC, the T.F. of a stable LTIC system includes the jw axis
of the s-plane.

An LTIC system which is causal is said to be stable iff all the poles of the
transfer function H (s) lie in the LHP and no repeated poles are at the origin of
the s-plane.

What do you understand by impulse response and step response of a system?
The response of the system for the impulse input which is defined as
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23.

24.

25.

26.
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s)y=1 1t=0
=0 elsewhere

is called impulse response of the system. The response of the system for the step
input which is defined as

x()=u@®) t=>0
=0 t<0

is called step response of the system.

What do you understand by zero state response and zero input response?
The system response when the system is in zero state (all the initial conditions are
zero) is called zero state response. Here, the response is made up of characteristic
mode or the eigen values of the system.

The zero input response of the system is the response due to the initial conditions
only. Here the input is made zero. For an LTIC system, the total response is

Total response = zero state response + zero input response

What do you understand by natural response and forced response of a
system?

The total response of an LTIC system can be expressed in terms of zero input
component and zero state component. If we lump together all the characteristic
mode terms in the total response, such a response is called natural response. The
remaining part of the total response which consists of non-characteristic mode
terms is called the forced response of the system.

Are zero input response and natural response and zero state response and
forced response same?

Zero input response is not the same as the natural response and zero state response
is also not the same as forced response. However, the total response which is
the sum of natural response and forced response and also expressed as the sum
of zero state response and zero input response will be the same. In a few cases,
the natural response will be same as the zero input response and the zero state
response is same as forced response.

Comment on the solutions of the differential equations obtained by the
application of LT and by classical method?

(a) Inthe LT method the initial conditions are applied to zero input response. In
the classical method, the total response cannot be represented into zero state
response and zero input response. Hence, in the classical method, the zero
initial conditions are applied to the total response which begins at t = 0.

(b) The classical method is restricted to a certain class of inputs, whereas the
LT method is applicable to many commonly used signals.
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27.

28.

29.

30.

31.

32.

33.

34.

What do you understand by asymptotic stability of an LTIC system?

An LTIC system is said to be asymptotically stable iff all the roots of the T.F.
which may be simple or repeated lie in LHP. Further, there are no repeated roots
on the imaginary axis. Under such conditions the system remains in a particular
equilibrium state indefinitely in the absence of an external input.

What do you understand by marginal stability of the system?

An LTIC system is said to be marginally stable iff there are no roots in the RHP
and some un-repeated roots are on the imaginary axis.

What do you understand by zero input stability and zero state stability?
The zero state stability or external stability of the system is obtained when the
input is applied with zero initial conditions. The zero input stability or internal
stability of the system is obtained by applying initial conditions with no external
input.

What do you understand by bounded input and bounded output (BIBO)
stability?

An LTIC system is bounded input bounded output stable iff the area under the
impulse response curve is finite. Here all the poles of the T.F. lie in LHP. No
repeated poles are on the imaginary axis. An asymptotically stable system is
BIBO unstable.

Find the transfer function of LTI system described by the differential equa-

o d’y(®) | dy(®) dx (1)
17 3d_ +2y (t)—2——3 @®
(Anna University, May, 2008)
Y(s 2s —3
His) = X((s)) - (s2(+ 3s —:2)
Find the LT of x(¢) = e “u(t). (Anna University, December; 2006)

o0
X(s) = / et gy
0

ROC:Re s > —a

X(s) = (s +a)

Given 22 4 6y(¢) = x(¢). Find the T.F.
(Anna Umverszty December, 2006)

Y(s) 1

) =5 =616

Find the LT of u(t) — u(t — a) where a > 0.
(Anna University, December, 2006)
The LT of u(¢) is % By using the time shifting property of LT,
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1
Ll—u(t—a)]=X@)=——e* ROC:Res >0
s

1
L[M(t) — M(l — a)] = ;[1 _ e—aS]

35. Find the LT of x(¢) = +e~>u(t — 10)?

o0
X(s):/ e e dt
10

1
= m€_10(3+3) ROC:Res > —3
N

36. Find the LT of x (¢) = 8(t — 5)?
X(s)=e> ROC:alls

37. What is the output of a system whose impulse response A(t) = e~% for a

delta input? (Anna University, December, 2005)
O Hes = (X() = 1]
X(s) (s+a)
Y(s) =
(s) Gta)

y(#) =e “u(t) ROC:s > —a

38. Find the LT of x (¢) = te*u(t) where a > 0? (Anna University, May, 2005)

Lle ™ u(t)] =

(s +a)

L[t€7 M(t)] = m

(using frequency differentiation property).
39. Determine the LT of

x(t)=2t 0=<t=<1
=0 otherwise.

(Anna University, May, 2005)
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1
X (s) =/ 2te ' dt
0

Integrating by parts, we get

=2t _,
X(S) = |:T€ SjI

2.
= Sl -+ 1]
N

1
2
—stql
__[e St]
o ’

40. Determine the output response of the system whose impulse response
h(t) = e~ u(t) for the step input? (Anna University, April, 2004)

h(t) = e “u(t)

H(s) =

(s +a)
Y(s) 1 1
= X(S) = —
X)) (+a) s

1[1 1
-t

als s+a

1
y(#)=—[1—e*] ROC:Res >0
a

41. Find the LT and sketch the pole-zero plot with ROC for x(¢) =
™2 + e 3Yu(r). (Anna University, June 2007)

1 1
@+m+@+$
. 2(s+125)

T+ +3)

X(s) =

42. Find the LT of x(¢) = (¢ + 1) + §(¢ — 1) and its ROC.
X(s)=¢€"+e* ROC:alls.
43. Find the LT of x(¢f) = u(t + 1) + u(¢ — 1) and its ROC.

1
X(s)=-[e"+e*] ROC:Res >0
s
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44. Using convolution property determine y(¢) = x;(¢) % x,(¢) where
x1(t) = e Hu(t) and x5 (t) = e~ > u(t)?

1
Xi(s) = 61D
1
Xo(s) = 51
Y(s) = X1(s)X2(s)
1
T (5 +2(s+3)
1 1

TG+ 513
y(t) = (¥ —eu@) ROC:Res > —2

45. Find the zero input response for the following differential equation.

% +5y() = u();
y(07) =5
5
Ye) =173

(1) = 5¢u(r)
46. Find the LT £[5(¢)].
L d [6(1)] ROC: all
— =s sall s.
dt
47. Find the LT of x(¢t) = §(2¢).
1
X(s) = > ROC: all s
48. Find the LT of integrated value of §(¢).
1
X(s)=—
s

49. Why integrators are preferred to differentiators in structure realization?
Use of differentiators in structure realization enhances noise. That is why dif-
ferentiators are not preferred.
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50. What are the components required in structure realization?
The components required in structure realization are (Figs. 4.49, 4.50, 4.51 and
4.52):

(a) Integrators,
(b) Summers, and
(c) Multipliers.

51. Mention the steps to be followed to realize a transposed structure from
canonic form structure.

(a) Interchange X (s) and Y (s).
(b) Change the directions of arrows.
(c) Replace take off points by summers and vice versa.

II. Long Answer Type Questions

1. Find the LT of x () = ¢~21*! and ROC.

1

X(s) = ~|——2 ROC: —2 <Res <?2
5 —

(s+2)

2. Find the LT of x () = ¢! and ROC.
ROC do not overlap and x(¢) has no LT X (s).

3. Find the LT of x(¢) = (e* + ¢~?)u(¢) and the ROC.

1
+ — ROC:Re s > 2

X =0"y i,

4. Find the LT of x(t) = (e* + e~ *)u(—t) and the ROC.

1 1
X)) =—|——+— ROC: R -2
(s) <(s+2)+s—2> es <

5. Find the LT of x(¢) = (e™% + e *)u(t) + (e™¥ + e )u(—t)

1 1 1 1
X(s) = - ROC: —4 < R -3
=576 61 ((s+3)+s+2> =Res =

6. Find the LT of
x(t) = (% +eu@) + (e + e )u(-t)

ROC does not overlap and hence x () has no LT X (s).
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(a) 4o (b) tJjo
-plane s-plane
t 1t f
—» «—
= Y 3 Y
—» «—
I b
ROC Res>-2 ROC Res<-3
() tJjo (d) tJjo
-plane s-plane
t 1t 1
= 3 Y — 5 *O
I I
ROC —2<Res <3 ROC —2<Res <2
(e) tJjo
-plane
1 -
<« —>
> ) > No ROC
] —>

Fig. 4.49 Region of the convergence of different time functions for question 12

Figure 4.49a represents ROC for x (1) = e~ u(t). Figure 4.49b represents ROC
for x(t) = e 3u(—t). Figure 4.49¢c represents ROC for x(t) = e ' u(t) + e
u(—t). Figure4.49d represents ROC for x(t) = ¢!, Figure4.49¢ represents
no ROC for x(r) = €2/,
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Ajw
ROC>1 T s-plane

Lo
v

10(s — 2 2
Fig. 4.50 ROC of a causal systematic T.F. H(s) = M Question 13
s(s+3)s—1)

ROC <—1 4 jw
T s-plane
4—
S, >
-1 2 30
<—
2)(s —2
Fig. 4.51 ROC of a non-causal system with the T.F. H(s) = M Question 14
s(s+ 1D —3)
)
T s-plane
ROC>-2
—>
© >0
-3 =25 -2
—>
2 2.
Fig. 4.52 Pole zero plot and ROC of X (s) = M Question 41

s +2)(s+3)
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7. Find the LT and ROC of

x(@) =e Y u(@) —ut — 4]

o—4(s+3)

1 .

8. Find the inverse LT of the following X (s) for all possible combinations of

ROC.
4

X6 =G e =3

(a) x(t) = (¥ — eu(r) ROC:Res > 3
() x(t) = (e~ —e*u(—t) ROC:Res < —1
(©) x() = (e 'u(t) — e u(—t) —1<Res <3

9. Find the inverse LT of X (s)

8(s +2)

_ TS ROC:Res > -2
s(s2+ 45 + 8) es>

X(s) =

x() =2 [1 + +/2sin (2t - %)] u(t)
10. Find the inverse LT of

2425 +4)

= ROC: Res > -2
+2)s+49

X (s)

x(1) =8(t) + 3le™ — e u()
11. Find the inverse LT of

_ 243+

= — ROC: Res > -2
(s245s+6)

X (s)

x(t) = 8(t) — (9e™2 — 1le ¥ )u(t)

12. Find the inverse LT of

s3 + 852 +21s + 16
X = ROC: R =3
(s) 2 +7s +12) es>

x(1) = [58(0) +8() + 4e™* —2e7Ju(r)



4.15 The Bilateral Laplace Transform 447

13. Find the inverse LT of

10se % + 5% +6
X(s) = ROC: Re s > —5
®) = =@ T 135 + 40) €8>

80 50
x(t) = [?680” — ?35“2)} u(t —2)

5
+§(€_5(t_4) _ e—S(t—4))u(t _ 4) + 2[6_5t _ e—gt]u(t)
14. Find the initial and final value of y(¢) if its LT Y (s) is given by

_ 2+2s+5)

YO = 7 ras+o)

Initial value y(0) = 1. Final value y(c0) = 2

15.

x1(8) = u(t)
x2(t) = e u(t)

Using convolution property of LT find y(¢) = x1(¢) = x2(¢)

1 —2t
y@) = 5[1 —e u(t)
16. Consider an LTIC system described by the following differential equation

& d
dytgt) + % —6y(t) = X(s)

Determine

(a) the system transfer function.

(b) impulse response of the system if it is causal.

(c) Impulse response of the system if the system is stable.

(d) Impulse response of the system if it is neither causal nor stable.

(a)
1

SRR
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4 X(0)

v

2 4 6 8 10 ;

Fig. 4.53 A periodic pulse signal

Fig. 4.54 Electrical circuit

(b) |
y(t) = —g[e‘3’ —e®u(r) ROC:Res > 2
(©) |
y() = g[—ez’u(—t) —eu(t)] ROC: —3 <Res <2
(d)

1 2t —3t
y@) = g[—e + e 'lu(—t) ROC:Res < —3

17. Determine the LT of the periodic signal shown in Fig. 4.53.

3 1
s[14+e 2]
18. Consider the electrical circuit shown in Fig. 4.54. Initially the switch S is

closed. Derive an expression for the current through the inductor as soon
as the switch is open. i () = [3¢™> — 2¢72Ju(z)

X(s) =
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A jw 4jo
4> 4—
= 2 > -2 2 > o
Ly «
(a) ROC: Res>2 (b) ROC: Res< —2
Causal and unstable system Non-causal and unstable system
Jjw

I

(c) Non-causal and stable system ROC: —2<Res<2

Fig. 4.55 ROC related to causality and stability

19. Find the Laplace inverse of the following X (s) (Fig. 4.55):

(s+5) .
X(S)—m ROC:Res > -2

x(t) = [Be 2 — (t* + 3t + 3)e > u(r)
20. Solve the following differential equation:

d’y(t) | dy(@t) _dx(®)
i + “ar 2y(t) = ar +x(t)

The initial conditions are y(07) = 2; % = 1. The input is

(a) x(¢t) = §(¢) an impulse
(b) x(t) = u(t) unit step
©) x(t) =e*u@) an exponential decay.
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22.

23.

24.
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(@) x(1)=[3e* + Ie']u(t) ROC:Res > 1
(b) x(t) =[-5+ e ¥ +Ze'lu(r) ROC:Res > 1

© y(t) =[5 — e ¥+ e'lut) ROC:Res > 1

The unit step response of a certain LTIC system y(¢) = 10e~>. Find
(a) the impulse response? (b) the response due to the exponential decay
x(t) = e 3u(t)?

(a) h(t) = 108(t) — 50e~5u(t) ROC:Res > —5
(b) y(t) = 25¢7" — 15¢)u(t) ROC:Res > —3

The impulse response of a certain system is 2, () = e~*u(¢) and the impulse

response of another system is /1, (t) = e~>u(t). These two systems are con-
nected in cascade. Find (a) the impulse response of the cascade-connected
system (b). Is the system BIBO stable?

(a) h(t) = %[6*3’ —eu(t) ROC:Res > —3
(b) The system is BIBO stable since the ROC is to the right of right most pole
at s = —3 which includes the jw axis.

The impulse response of a certain system is given by h(¢) = e~>. The system
is excited by x (¢) = e~ u(¢) + e *u(—t). Determine

(a) The system transfer function

(b) Output of the system y(#)

(¢) BIBO stability of the system.
-1

(@) H(s) = ROC: —3 <Res < —2
s+2)s+3)s+5)

(b) y(@) = (3¢ = te™ ) u(t) + e u(—1)

(c) The system is not BIBO stable since the ROC does not include the jw axis.

A certain LTIC system is described by the following differential equation

d*y(t) dy@) dx(t)
dt2 dt —30y@) = dt

+4x(t)
The system is subjected to the following input.

x() =eu@®)



4.15 The Bilateral Laplace Transform 451

The initial conditions are y(0*) =3 and y(0*) = 1. Derive an expression
for the output response as a function of time.

35 145 1
y(t) = [ﬁe‘s’ + Weé’ — 1—8e—3f] u() ROC: —3 <Res<6

25. A certain LTIC system is described by the following differential equation:

d’y(t)  Ldy@) _ dx (1)

where x (f) = e~ u(¢). The initial conditions are y0™)=2and y(07) =1.
Determine

(a) The characteristic polynomial

(b) The characteristic equation

(¢) The eigen values

(d) The zero input response.

(e) The zero state response.

(f) Total response. Use Laplace transform method.

(a) The characteristic polynomial is F(s) = s2+3s +2.
(b) The characteristic equation is A> + 31 +2 = 0.

(c) The eigen values are A = —1 and A, = —2

(d) Zero input response is v, () = [Se™" — 3e "2 Ju(z).
(e) Zero state response is

yi(t) = [%e" — 27 4 %e‘3’] u(t)
(f) Total response is y(¢) = y; (¢) + ys(¢)
y(t) = [ge_’ —5e7 2 4 %e‘Sl] u(t)
26. An LTIC system has the following T.F

(s +10)
s34+5524+3s+4

H(s) =

Determine the differential equation.

dBy@r) | d*y@) | 3dy@®) _dx(0)
3 et A = = 4 10x()
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28.

29.

30.

31.
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An LTIC system is described by the following differential equation

d’y(@) | dy@) _dx(®)
dt2 +47 +3y(t) = 7+4X(t)

The system is in the initial state of y(0~™) = 2 and y(0~) = 1. The system is
excited with the input x (f) = e~'. Determine

(a) The natural response of the system.
(b) The forced response of the system.
(c) Total response of the system. Use Laplace transform method.

(a) The natural response of the system is

_ 31 —t 7 —3¢
yu(t) = (?e - Zé‘ )u(t)

(b) The forced response of the system is

l s
yr(t) = (—ge ) )u(t)

(c) The total response of the system is

7

31 1
y(t) = |:§et — 16731 — geS’:| u(t)

The impulse response of an LTIC system is given by x(f) = e~ *u(t). Is the
system causal? X (s) = ﬁ and rational ROC: Re s > —2 which lies in RHP.
Hence, the system is causal.

The impulse response of an LTIC system is given by h(¢) = e~?!"!. Is the sys-
tem causal. H(s) = m which is rational ROC is —2 < Re s < 2. The
ROC is not to the right of the right most pole and hence, the system is not causal.

Check the stability of an LTIC system whose impulse response is

h(t) = e|t| H(s) = ;=552 Whichis rational. The ROCis —2 < Re s < 2.

This includes the imaginary axis. Hence, the system is stable.

Consider the following transfer function.

1

X&) = a6-2

Identify all possible ROCs and in each case find the impulse response, sta-
bility, and causality. Also sketch the ROC. (1) ROC: Re s > +2
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1 2t —2t
ht) = 7 (7 — e u()

ROC does not include jw axis. The system is unstable. The system is causal
since ROC is right-sided and in RHP.
(2)ROC:Re s < =2

1
h(t) = Z[—e2’ + e u(—1)
ROC does not include jw axis. The system is unstable and non-causal since the

ROC is left-sided.
B)ROC: —2 <Res <2

h(r) = 4—11[—62tu(—t) — e 2 u(r)]

ROC includes the jw axis and the system is stable. The system is non-causal
since ROC is a strip.
32. Find the bilateral LT of
x(t) = e~ 10N

—20

X(S)Z m

33. Find the bilateral LT of

x(t) = e'u(t) — eu(—t)

(25 — 4)

X =563

34. Find the bilateral LT of

X(s) = (s —=5)

= - ROC: -5 <R -2
(s +2)(5+5) sRes=

_ 1 —5t —2t
x() = 3110e™ () +7e > u(=0)]

35. Find the inverse bilateral LT of

X(s) = (s+2)

= ROC:2 <Res <5
(s=2)(s =5

1
x(t) = —5[7e5’u(—t) +4e¥u)]
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36. Find the inverse bilateral LT of

_ s2-25s-3) .
X(s)_(s+2)(s+4)(s—6) ROC: —2 <Res <6

-5 =2t 21 —41 21 61
=(— — 1) — — —t
x(t) ( 6 e+ 20e u(t) 80e u(—t)]



Chapter 5 )
The z-Transform Analysis of Discrete
Time Signals and Systems

Chapter Objectives

To define the z-transform and the inverse z-transform.

To find the z-transform and ROC of typical DT signals.

To find the properties of ROC.

To find the properties of z-transform.

To find the inverse z-transform.

To solve difference equation using the z-transform.

To establish the relationship between the z-transform, Fourier transform and
the Laplace transform.

To find the causality and stability of DT system.

e To realize the structure of DT system.

5.1 Introduction

The z-transform is the discrete counterpart of Laplace transform. The Laplace trans-
form converts integro-differential equations into algebraic equations. In the same
way, the z-transform converts difference equations of discrete-time system to alge-
braic equations which simplifies the discrete-time system analysis. There are many
connections between Laplace and z-transforms except for some minor differences.
DTFT represents discrete-time signal in terms of complex sinusoids. When this sort
of representation is generalized and represented in terms of complex exponential, it
is termed as z-transform. This sort of representation has a broader characterization of
system with signals. Further, the DTFT is applicable only for stable system whereas
z-transform can be applied even to unstable systems which means that z-transform
can be used to larger class of systems and signals. It is to be noted that many of the
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properties in DTFT, Laplace transform and z-transform are common except that the
Laplace transform deals with continues time signals and systems.

5.2 The z-Transform

Let z" be an everlasting exponential. Let /(n) be the impulse response of the discrete-
time system. The response of a linear, time invariant discrete-time system to the
everlasting exponential z" is given as H(z)z". That is, it is the same exponential
within a multiplicative constant. Thus, the system response to the excitation x[n] is
the sum of the system’s responses to all these exponentials. The tool that is used to
represent an arbitrary discrete signal x[n] as a sum of everlasting exponential of the
form z”" is called the z-transform.

Let x[n] = z" be the input signal applied to an LTI discrete-time system whose
impulse response is k[n]. The system output y[n] is given by

y[n] = x[n] * h(n]

- Z hlk]lx[n — k]

k=—00

Substitute x[n] = 7"

y[n] = Z hlklZ" ™ = 7" |: Z h[k]z_k:|
k=—o00

k=—00

Define the transfer function

Hizl= ) hiklz™* (5.1)

k=—00
Equation (5.1) may be written as
H[Z"] = H[z]Z"

To represent any arbitrary signals as a weighted superposition of the Eigen function
7", let us substitute z = re/ into Eq.(5.1)

Hlre/® = Y hinllire/®1™"
Z (h[n]r’”) e I (5.2)

n=—0oQ
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Equation (5.2) corresponds to the DTFT of the signal h[n]r~". The inverse of
Hlrel%, by mathematical manipulation of Eq. (5.2) can be obtained as

hln] = L yg H(z)7" 'dz (5.3)
2 j

More generally Egs. (5.2) and (5.3) can be written as

X[z] = E x[n]z™" (5.4)
1 —1
x[n] = — ?g X(2)7" dz (5.5)
2]

The above equations are called z-transform pair. Equation (5.4) is the z-transform
of x[n] and Eq.(5.5) is called inverse z-transform. In Eq.(5.4) the range of n is
—o00 < n < oo and hence it is called bilateral z-transform. If x[n] =0 for n < O,
Equation (5.4) can be written as

X[z1 =) x[nlz™" (5.6)
n=0

Equation (5.6) is called unilateral or right-sided z-transform. Bilateral z-transform
has limited practical applications. Unless otherwise it is specifically mentioned, z-
transform means unilateral. z-transform and inverse z-transform are symbolically
represented as given below:

Zix[n]l = XIz]
x[n] << X[z]
X[zl = x[n]
X[zl £ xln] (5.7)

5.3 Existence of the z-Transform

Consider the unilateral z-transform given by Eq. (5.6)

X[z =) xlnlz™
n=0

>, x[n]

n
n=0 <
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For the existence for X[z],

X s Y Tl < oo (5.8)
n=0

If the signal x[n] is expressed in terms of an exponential signal ", then if x[n] < r"
for some r, then

Ix[n]l < r" (5.9)

Substitute Eq. (5.9) in Eq. (5.8)

| X[z]]

IA

2 ()

1
=——= iff|z| >r (5.10)

[1- 4]

From Eq. (5.10), it is evident that the z-transform of x[r] which is X (z) exists for
|z| > r and the signal is z-transformable. If the signal x[n] grows faster than the
exponential signal r" for any ry, Eq.(5.10) is not convergence and x[n] is not z-
transformable.

5.4 Connection Between Laplace Transform,
z-Transform and Fourier Transform

Consider the Laplace transform of x () which is represented below

X(s) = /OO x(t)e'dt .11

oo

When s = jw, Equation (5.11) becomes

X(jw) = /w x(e 7 dt (5.12)

o0

Equation (5.12) represents the Fourier transform. The Laplace transform reduces
to the Fourier transform on the imaginary axis where s = j®. The relationship
between these two transforms can also be interpreted as follows. The complex vari-
able s can be written as (o + jw). Equation (5.11) is written as
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Xw+jw%:/ x(t)e @t gy
_ / [x(t)e~""] e~ dr (5.13)

Equation (5.13) can be recognized as the Fourier transform of [x(¢)e~?']. Thus, the

Laplace transform of x (¢) is the Fourier transform of x (¢) after multiplication

by the real exponential ¢~°’ which may be growing or decay with respect to time.
The complex variable z can be expressed in polar form as

2 = rel® (5.14)

where r is the magnitude of z and w is the angle of z.
Substitute z = re/® in Eq. (5.6)

X(rel”) = Z x[n](re/*)™ = Z {x[n]r"}eJom
= Flx[nlr™] (5.15)

Thus, X (re’®) is the Fourier transform of the sequence x[n] which is multiplied
by a real exponential r =" which may be growing or decaying with increasing nr
depending on whether r is greater or less than unity. If » = 1, then |z] =1 and
equation becomes

o0

X(e™) = Y x[nle”/" = Flx[n]]

n=—0o0

The z-transform reduces to Fourier transform in the complex z-plane on the con-
tour of a circle with unit radius. The circle which is called unit circle plays the role
in the z-transform similar to the role of the imaginary axis in the s-plane for Laplace
transform. The unit circle in the z-plane is shown in Fig.5.1.

5.5 The Region of Convergence (ROC)

In Eq.(5.4) which defines the z-transform X (z) the sum may not coverage for all
values of z. The values of z in the complex z-plane for which the sum in the z-
transform equation converges is called the region of convergence which is written
in abbreviated form as ROC. The concept of ROC is illustrated in the following
examples.
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4Im z-plane
Unit circle —Lf
1 /\ »Re

Fig. 5.1 z-transform reduces to FT on the unit circle
Example 5.1 Consider the following discrete-time signals:

(a) x[n] =a"uln] a<1

(b) x[nl=—-d"'u(-n—-1) a<1

©) x[n] =a"uln] —b"u(-n—-1) b >aanda >>b

Find the z-transform and the ROC in the z-plane.

Solution (a) x[n] = a"uln]
The signal x[n] is shown in Fig.5.2a which is a right-sided signal.

X(z) =) a"ulnlz™"

=
[=]

[
e
Q:
A\l
S

[.- u[n]=1alln > 0]

3
Il
S

M

()

Using the power series we get

3
Il
=3

X(2) =

1
[i-

N
—

Whereg < lor|z| > |al.
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(b)

©
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4
X(z) = (5.16)
(z—a)
X(2) = — 5.17)
l—az!

Fourier transform is represented in the form as shown in Eq.(5.16) to identify
poles and zero and system transfer function. Equation (5.17) form is used when
inverse z-transform is taken and also for structure realization. z~! is used as
time delay operation. z-transform for the causal real exponential converges iff
|z| > lal|. Thus, the ROC of X (z) is to the exterior of the circle of radius a,
which is shown in Fig. 5.2b in shaded area. The ROC includes the unit circle for
la] < 1.

x[n] = —a"[u[—n — 1]]

The signal x[n] is shown in Fig.5.3a which is a left-sided signal

Z[—a"u[-n—1]] = Z —a"z™" v [u(=n—=1)]=1forall —n

Il
I
1
N
| I |
I
e
I
—
Q|
R
3

n=-—00 n=1
N S SRS
B a a* ad
—1- 1+5+(5)2+(5)3+
- a a a
- if ‘5‘ <1
Zl—d"u[—n —1]] = ——— ROC |z| < a (5.18)
(z—a)
The z-transforms of x[n] = a"u[n] which is causal and that of x[n] = —a"u[—n

— 1] which is anti-causal are identical. In the former case the ROC is to the
exterior of the circle passing through the outermost pole and in the letter case
(anti-causal) the ROC is to the interior of the circle passing through the innermost
pole. The ROC is shown in Fig.5.3b.

x[n] = a"u[n] — b"u[—n — 1]

From the results derived in Example 5.1a and b, we can find the z-transform of
x[n] as

< Z

Y=ot eow
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(a) 4 ad"uln] (b) Alm
v 1 Unit circle
1 O AN
a >
ROC
[ L1y .
o 1 2 3 4 5 n
Fig.5.2 ax[n] =ad"u[n]and bROC:0 <a < 1
AIm

z-plane
@ A

T >
J l ‘ zer{)‘ WC’ I Re
471 Unit circle

Fig.5.3 ax[n] = —a"u[-n—1]and bROC:0 < a < 1

o

(a) x[n]=—d"u[-n—1]4 (b)
0 n

The right-sided signal a"u[n] converges if |z| > a and the left-sided signal
—b"u[—n — 1] converges if |z| < b. The ROC for |a| > |b| and |a| < |b| are
shown in Fig. 5.4a and b respectively. From Fig. 5.4a it is observed that the two
ROC:s do not overlap and hence z-transform does not exist for this signal. Now
consider Fig.5.4b, it is observed that the two ROCs overlap and the overlapping
area is shaded in the form of a ring. The z-transform exists in the case with ROC
as |a| < |z| < |b|.
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Im (b) Im
ROC z-plane z-plane
o AV
Roc|%s_ )b @ L Ja e
ROC
la|>b |b|>a

Fig. 5.4 ROC of a two-sided sequence

5.6 Properties of the ROC

Assuming that X (z) is the rational function of z the properties of the ROC are summed

up

1.
2.
3.

and given below:

The ROC is a concentric ring in the z-plane.

The ROC does not contain any pole.

If x[n] is a finite sequence in a finite interval N < n < N, then the ROC is the
entire z-plane except z = 0 and z = oc.

. If x[n] is aright-sided sequence (causal) then the ROC is the exterior of the circle

|z| = rmax Where rp,y is the radius of the outermost pole of X (z).

If x[n] is a left-sided sequence (non-causal) then the ROC is the interior of the
circle |z| = rpin Where ry,;, is the radius of the innermost pole of X (z).

If x[n] is a two-sided sequence then the ROC is given by r| < |z| < r, where r;
and r, are the magnitudes of the two poles of X (z). Here ROC is an annular ring
between the circle |z| = r; and |z| = r, which does not include any poles.

The following examples illustrate the method of finding z-transform X (z) for the
discrete-time sequence x[n].

Example 5.2 Find the z-transform and the ROC for the sequences x [n] given below:

1. xnl={2, —1,0,3, 4}

T
2. x[n]={1, =2, 3, —1, 2}
T
3. x[n]=1{5,3, =2, 0,4, -3}

T
4.  x[n] = 8[n]
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x[n] = uln]
x[n] = u[—n]

[n] = a "u[—n]

=

[nl=a"ul—n — 1]
[n] = (=a)"u[—n]

]
]
]
]
]
10. x[n]=a"  forlal < 1and|a| > 1
]
]
1=
1=
1=

A S A
= =

—
—
=

[n] = e/ uln]
12. [n] = cos wonuln]
13. [n sin wonu[n]

14.  x[n] = u[n] — u[n — 6]
15. «x[n [cos (? + Z)] uln]

(Anna University, May, 2007)

=

=

Solution 1. x[n] = {2, -1, 0, 3, 4}
4
X[z1=) x[nlz™"

Xzl=2—z"+0+3z72+4z7*

X[z] will not converges if |z| = 0. Hence, ROC is |z| > 0.
2. x[n] =1{1, =2, 3, —1, 2}
/]\

0

X[zl = ) xlnlz™"

n=—4

X[zl=z* =23 432%2—z+42

X[z] will not converges if |z| = oo. Hence, ROC is |z| < o0.
3. x[n] =1{5, 3, =2, 0, 4, -3}
T

3

X[zl =) x[nlz™"

n=-2

X[z1=522437—-240+472 373
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For |z] = 0 and |z| = oo, X[z] is infinity. Hence, ROC is 0 < |z| < oo.
4. x[n] = é[n]

X[zl= ) dlnlz™"
S[n] = 17 n=20
=0 n#0

X[zl =1 ROC is entire z-plane

5. x[n] = u[n]

X[zl=) 2"
n=0

1 1
=l+-4+=5+--
z 2z
1
= 1 [By using summation formula]
z
X[zl =—
-1
@1) (5.19)
X[z] === ROC:|[z| > 1
== K
6. x[n] = u[—n]
0
X[z2l= ) "
n=—oo
oo
— Zzn
n=0
=l+z+2+--
1
X[z] = 1 ROC: |z] < 1 (5.20)
-2z

7. x[n] = a "u[—n]
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0
X[Z]: Z afnzfn

n=—00
0
= ) @™
n=-—0oQ

Z(az)”
n=0

=1+ (az) + (az)’* + -

X[z] = ; ROC: |z] < l 5.21)
(1 —az) a

8. x[nl =a"u[—n —1]

-1
E : a "z

X[z] =
o
= > @™

= Z(dz)”

n=1

=az+ (az)’ + (az)* + -

X[zl = az[l +az + (az)* +---]

J— aZ
T 1l-az
—Z 1
X[z] = i ROC: |z] < — (5.22)
D) a

9. x[n] = (—a)"u[—n]
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0
X[ =) (-a)"z"

:(;oo y
=Y (=) =X (=
n=—o0 —a n=0 —a
2 3

Z Z Z
(@) )

—dad —da —a

a

X[z] = Gt ROC : |z] < |a] (5.23)

10. x[n] = a5 a <1

x[n] =ad"uln] +a"u[—n — 1]

Zld"uln]] = — ROC: |z| > a
(z—a)
Zla "u[-n—1]] = _Zl ROC: |z]| < l
(z—13) a
Z Z
X[z] = -
[z] G- -1
X[z] (@ -1 < (5.24)
YT T G a)(z—1) '

ROC:a < 7| < % The ROC is sketched and shown in Fig.5.5a fora < 1.
x[nl=d™  a>1

The ROC is sketched and shown in Fig. 5.5b. In Fig. 5.5b the two ROCs do not
overlap and there is no common ROC. Hence, x[n] does not have X|[z].
11. x[n] = e/ u[n]

oo
Xlzl =) ez
n=0

oo (ejw())n
n=0 <

Il
—
|
—_
o
a |
<
Ss~——"
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(@ 4 Im (b)

Im

z-plane
ROC

Unit circle Unit circle

Fig. 5.5 ROCofx[n]=a".aa <landba > 1

Z

X[z] = (Z—T‘”U)

ROC: |z| > |e/®|or |z] > 1 (5.25)
12. x[n] = cos wonuln]

1. .
x[n] = S[/" + 7]

2
: Z
Z[e/" = ————
[e/“"] S
; z
Z —Jwon — .
[e ] @iy

1 z Z
Xlel = 2 [(Z —el™) * (z — e‘f“’O)]

[Z —e w0 47— ejwo]

Z
T 2[22 —z(e i+ eden) + 1]

[2z — 2 cos wy]

z
X[z]= 2
L2] 222 —2zcoswy + 1]

(1 —z7 ' coswyp)

X =
L2] (1 —z"12coswg + z72)

ROC: |z| > 1 (5.26)

13. x[n] = sin wonu[n]
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x[n] = —-[edonn — giom]
2j
Jwon _ z
Zle uln]] = —(Z i
—jwon _ Z
Zle uln]] = @ e
1 1
X[z] = — __ _
2j Liz—el)  (z—e7/™)
z [z—emi™ —z+e/™]
2 [22 — 2z coswy + 1]
_ z sin wyg
T (22 —2zcoswy + 1)
X[z] ¢! sinay ROC: |2] > 1 (5.27)
= N > .
¢ (1 —2z7 coswp +z72) ‘
14. x[n] = u[n] — u[n — 6]
x[n]l={1,1,1, 1, 1, 1}
Xzl=1+z "4z 477+ 47
—[1+1+1+1+1+1}
B z 2 D
5 4 3 2
1
X[z = E T2 +Z[ ;;Z T2 ROC all zexceptz £0  (5.28)
z

The above result can be represented in a compact form as
5
X[z21=) "
n=0
()
n=0 <

The following summation formula is used to simplify this (Fig.5.6).
n n+l _ . m
Z ak _ a a

Pt (a—1)

wherea = L; k

Oandn =5
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Fig. 5.6 Representation of 4 x[n]=u[n]—u[n—=6]
x[n] = u[n] —uln — 6]
1
0 1 2 3 4 5 n
1) _(1)°
q =)
)
Z
< -6
X[z] = 1=z
(z—1

15. x[n] = [cos (5* + Z)] uln]

x[n] = % [e/249) 4 i (24D)]
1 X mn x
= —|el7el 3 J1e7 )7
3 [e e +e e ]
1 x Z _in Z
X[zl =< e 4
2 (z—e'3) (z—e7'5)
z[zel% —e7ih 4 ze7i — 7
X[z] = _[ > T T ]
2 22—zl +ed3)+1
B z [2zcos & —2cos 5]
2 (22 —2zcos T +1)
0.707z — 0.966
X[z = A0707 I ROC: |2 > 1

(Z2—z+1)

5.7 Properties of z-Transform

The transformations of x(¢) and x[r] to X (s), and X (jw) using Laplace transform
and Fourier transform respectively as seen from Chapter 6 and Chapter 8 becomes
easier if the properties of these transforms are directly applied. Similarly if the prop-
erties of z-transform are applied directly to x[n], then X[z] can be easily derived.
Hence, some of the important properties of z-transform which are applied to signals
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and systems are derived and the applications illustrated. The following properties are
derived:

Linearity;

Time shifting;

Time reversal,

Multiplication by n;
Multiplication by an exponential;
Time expansion;

Convolution theorem;

Initial value theorem;

Final value theorem.

VXN B W=

5.7.1 Linearity

It
xi[n] <> X1[z] and xa[n] <> Xalz]
then
{arx1[n] + axxa[nl} <> [a1 X1[z] + a2 Xa 2] (5.29)
Proof Let

x[n] = a1x1[n] + axxz[n]

X[z] = Y [arxi[n] + axxaln]lz™"

n=—oo

o0 o0
= Z arxi[nlz™" + Z a)xy[n]z™"

X[z] = arx1[z] + axx;[z]

5.7.2 Time Shifting

If
z
x[n] <~— X|[z]

then
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x[n — k] << 7% X[z]

Proof Let

Zlx[n — k]l = i x[n —klz™"
Substitute (n — k) =m

Zlx[n — k]l = i x[m]z=

= Z 7 Kx[mlz™"

Z[x[n — k1] = 27" X[z]

5.7.3 Time Reversal

If
x[n] <% X[z] ROC:r < |z <7

then

z _1 1 1
x[—n]<— X[z7'] ROC: — < |z] <
ry r

Proof Let

oo

Zix[-nll = ) x[-nlz™"

n=—0oQ

Substitute —n = m

—00

Zlx[-nll = ) x[ml"

n=0oo
o0

= > xmlcH"

m=—0o0

Zlx[-n]l = X[z™"]

(5.30)

(5.31)
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Thus, according to time reversal property, folding the signal in the time domain is
equivalent to replacing z by z71. Further the ROC of X[z] whichisr; < |z| <r

becomes r; < |z!| < r, which is —2 <lz] < L.

r

5.7.4 Multiplication by n

If

then

Proof Let

Z[x[n]] = X[z]

Z[nx[n]] = —ziX[z]
dz

oo

X[zl= ) x[nlz™"

n=—00
o0

Zlnx[n]] = Z nx[nlz™"

n=—00

=z Z nx[n]z™"

n=—00

oo

=z Z x[nllnz™" 1

n=—oo

Zinx[n]] = z Z —x[n]—[z"’]

n=—0o0

(5.32)
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5.7.5 Multiplication by an Exponential

If
Z[x[n]] = X[z]

then

Zla"x[n]] = X[a™'z]
Proof Let

Zla"x[n]] = Z a"x[nlz™"
= Y x[nlla”'z]™"
Zla"x[n]] = X[a"'z] (5.33)

ROC: r| < |a™'z| < rporar; < |z| < ary. In X[z], z is replaced by <.

5.7.6 Time Expansion

If
Z[x[n]] = X[z]
then
Z[x[n]] = X[2"]
Proof
Zlx(n]] = nij@x [%] -

where n is multiple of k. Substitute 7 =/
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o0

Zixdnll = ) xl1z™

I=—00
o)

= Y x0T = X[

I=—00

Zx[n]l = X[2"] (5.34)

5.7.7 Convolution Theorem

If
yIn] = x[n] * h(n]
then
Y[z] = X[z]H[z]
Proof
yinl= Y x[klhln — k]
k=—00
Yizl= Y [ > x[klhln —k]:| "
n=—00 Lk=-oc0
= Y xlklz* Y hln—klz Y
k=—o00 n=—00
Substitute (n — k) =1
Yizl= ) x[klz™ ) hlllz™
k=—o00 l=—00

Y[z] = X[z]Y[z] (5.35)
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5.7.8 Initial Value Theorem

If
Xl[z] = Z[x[n]]
where x[n] is causal, then

x[0]= Lt X|[z]
Proof For a causal signal x[n]
X[zl =) x[nlz™"
n=0
= x[0] + x[1]z7" +x[2]z72 + - -

Taking z — oo on both sides we get

Lt X[zl = Lt [x[0]+ X[z X212 + -]

= x[0]

x[0] = 7Lt X[z] (5.36)

5.7.9 Final Value Theorem

If Z[x[n]] = X[z] where x[n] is a causal signal and the ROC of X[z] has no poles
on or outside the unit circle then

x[oo] = Lt (z — D XI[z]

Proof
k
Zlx[n + 1l = Zlx[n]] = Lt Z[x[n + 1] —x[n]lz™
n=0

k
xloo] = Lt Y [x[n+ 1] xln]lz™
n=0
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k
2X[z] = x[0] = X[z] = Lt Y [x[n+ 1] —x[n]lz™"
k—00 =0

k
(2 = DX[z] = x[0] = Lt ;[x[n + 11— x[n]lz”
Taking Lt on both sides we get
—>00
Lt (z— DX[z] — x[0]
— 00
= kLl [x[1] = x[01] + [x[2] — x[—=11] + [x[3] — x[2]] + - - - + [x[k + 1] — x[k]]
—00
= x[oo] — x[0]

x[oo] = Lt (2 = DXIe] (5.37)

Example 5.3 Find the z-transform of the following sequences and also ROC using
the properties of z-transform:

1 x[n] = 8[n — ngp]
2. x[n] = uln — ng)
3. x[nl=d"Mun+1]
4. x[nl=da" uln—1]

1 n
5. x[n]= <§> ul—n]
(AnnaUniversity, December, 2007)
6. x[n]=u[n—6]—uln—10]

7.  x[n] = nul[n]
x[n] = nluln] — uln — 8]]
9. x[n] =a" coswonuln]
10.  x[n] = a" sinwgnuln]
11.  Show that u[n] % u[n — 1] = nu[n]

12. x[n]:n(—%) u[n]*<é>_ ul—n]
m=[(3) - () ]um
x[n —|: 5) 3 i|un

FindX[z] and plot the poles and zeros. ~ (AnnaUniversity, December, 2007)

—_
w



478 5 The z-Transform Analysis of Discrete Time Signals and Systems

14. «x[n]=1 n>0

(AnnaUniversity, April, 2005)

15. (a) x[n]= [ — ) +3<1> uln]

- n i 1 n

) ul—n]+3 (8) ] uln]
n

n 3 1 n-
-3) +3(5) Jum

(b) x[n] =

16. (a) x[n]=

() x[n] =

4
1
5
1 1\"
(¢) x[n]= (Z) uln] + (g) u[—n —1]

1
17. x[n] =68[n]+ Eé(n +1)+5(0n—3) (AnnaUniversity, December, 2006)

(
(
(© x[n]= (
(
(

2
18.  x[n] =4"cos [% + %] u[—n — 1].Sketch the pole-zero plot and indicate
the ROC. (AnnaUniversity, April, 2008)
19.  x[n] = nuln — 1] (AnnaUniversity, December, 2006)

20. x[nl=@" n<0

1 n

:(Z> n=0,2,4,...
1 n

=<§) n=1735,...

Solution 1. x[n] = §[n — ny]
S[n] <“>1 ROC: |z| > 0
By applying time shifting property we get
Z[3[n —noll=2z7" (5.38)

ROC: all 7 excluding |z] = 0.
2. x[n] = u[n — ny]

Z

(z—=D

uln] <i>

By applying time shifting (right shifted) property we get
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z Mz Z*(mrl)

z=1 (-1

Zlu[n — noll =

7=

(z—=1

X[z] = ROC: 1 < |z] < o0

. x[n] = auln + 1]

By applying time shifting (left shifted) property we get

<

Zla" M uln+ 111 =z
(z—a)

Z2

Xlal = —

ROC: |a| < |z|] < o0

. x[n] = a* Yuln - 1]

Z
(z—a)

z
a'uln] <—

Applying time shifting (right shifted) property we get

Zilz

n—1 _ _
Zla" uln 1]]_(Z—a)

X[z] = ROC:a < |z] < o0

(z—a)

. x[n]l = (3)" ul-n]

1
(1—-2)

x[n] = (%) ul—n]j

ul[—n] <i>

By using multiplication property (replacing z by (%)’lz) we get

X[z] =

|
ROC: —
1 —22) 2l <3

479

(5.39)

(5.40)

(5.41)
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Fig.5.7 x[n] = 4 x[n]
uln — 6] — uln — 10]

6. x[n] = u[n — 6] — u[n — 10]
The signal is represented in Fig.5.7.

_ 6,1, 8, —»_L1 1 1 1
X[zZl=z7"+z2 "+z277+z =% tataEto
8,2

+z7+z+1
X[zl = 5
z

ROC: all z except z # 0. The above result can be simplified using the summation

formula as
9 1 n
X[z1=) (—)
n=6 <
10 6
_B -6
= 1
-1
< -6 _ _—10
X[z] = [ 1
(z—1
The above result can be obtained by the time shifting property of the unit step
sequence.
Z
Zuln —6]] = -6
luln = 611 = 2
2 ~10
Zluln — 10]] = Z
luln = 100) =
< -6 -10
X[z] = -z
2= ! ]
-5 _ -9
X[j= & =)
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7. x[n] = nu[n]

Zlu[n]] =

Z
(z—=1

Applying the differentiation property in z

Zinutn]) = 2225
dz
Znuln]] = —zi |: ‘ ]
dz | (z—1)
X[z] = (Z—Z—l)z (5.42)
8. x[n] = nlu[n] — uln — 8]]
By using shift theorem we get
Zluln) = uln =811 = =51 ="
_ (=2
)
)
Zintuln] — un — 811 = —z-£ 221
dz z-—1
o [z=-DHd+ 7278 — (z—z7 )]
X[zl = —z 12
(8247774 7)
Xl = (z —1)?
(28 —8z+7]
X[z]= — ="
[z] 1)
9. x[n] = a”" cos wynuln]
For Example 5.2.12 we get
_ [1—z"cosawp]
Z[cos wonuln]] = (1 2coswga—t + 27
To apply multiplication property, replace z by |£| orz™! = |£|7! = az™!

1

[1 —az™" coswp]

. Z[a" cos =
la wonu[n]] [1 —2acoswyz™! + a?z72]
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X[e] = [1 —az™! coswy] (5.43)
= [1 —2acoswoz™! + a?z72] ’

10. x[n] = a" sin wynu[n]
For Example 5.2.13 we get

77 sinwy

Z[si =
[sin wonu(n]] (1 2coswoa! +2-2]

To apply multiplication property, as in the previous example, replace z~! by a
zland 272 = q272

71 .
Z[a" sin wpnu[n]] = az S
0 =

[1 —2acoswoz! + a?z72]

[az~! sin wp]
X[z] = 5.44
L2] [1 —2acoswyz™! + a?z72] G449

11. Show that u[n] % u[n — 1] = nuln]

Z

Zlu[n]] = -1
1

Zluln —1]] = Y

Zluln] * uln — 1]] = Z[u[n]1Z[u[n — 1]]
z 1
z-D@E-1

_ Z

C(z—1)?

Multiplying by Z~! both sides we get

_ Z
ulnl*un—11= 2" [(Z_ 1)2}

uln] xuln — 1] = nlun]]

12. x[n] = n (=1)" uln] « (-1)™" ul-n]
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1\" z z
nl:(_1>nu[n]i|(i>_zi Z __Z[Z‘i‘%_Z]
4 dz(z+3) (z—i—l)2

P

= [_Z_‘] 5 ROC: |z] > l

(z+3) 4

[]—<l>n [n] <> —~  ROC: 1
X2 n] = 6 uln (Z—é) ,|z|>6

If time reversal property is used. z is to be replaced by 7!

(1>,1u[—n] LA
6 (=1 =3)

6
X[zl = g ROC: |z] < 6
26
X = XXl =
(z+3) @—6)
X[z] 1.5z ROC: + < |2 <6
)= 77—~ —_ L= Z
(z+3)@—6) 4

13, x(ml = [(3)" = (3)" ] uln)
Find X[z] and plot the poles and zeros.  (Anna University, December, 2007)

x[n] = x1[n] — xz[n]
X[z] = X1lz] — X»[z]
_ Z _ Z
T (z—05) (z—0.25)

z0.25
(z—=0.5)(z —0.25)

X[z] =

The pole-zero plot is shown in Fig.5.8.
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Fig. 5.8 Pole-zero plot Alm
z-plane

14.

x[nl=1 n>0
=3" n<0

(Anna University, April, 2005)

x[n] = uln] + 3"u[—n — 1]
= xi[n] + x2[n]

z
X = ROC: 1
K= =5 ROC:fl>

xa[n] = (3)'ul—n — 1]

Using time reversal and multiplication properties we get

Z
Xs[z] = =3 ROC: |z] <3
X[z] = X1(2) + X2(2)
. Z _ Z
=D (z-3)
-2z
X[zZl=—— ROC:1<z<3

(z=D@z=3)
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(a) x[n]=(—%) u[n]+3(%) uln]
1\" 1\"

(b) x[n] = [( 3) ul[— n]+3( )]u[n]
1 n

o e[ 55 Jaon

15.

(@)
[n] (—1>n+3<1)n [n]
xX|in| = 3 6 uin
= x1[n] + x2[n]
Z 1
Xil[z] = (Z+%) ROC: |z|>—§
Z 1
X =3 ROC: —
2[z] = é) |z| > G
X[z] = Xilz] + X2[z]
: + 3 ROC: |z :
= : > —
L) T T
(b)

1 n 1 n
x[n] = [<—§> ul—n]+3 (5) } uln] = x1[n] + x2[n]

Applying the properties of time reversal and multiplication we get

1 1
X = See Example 5.3.12; ROC: < =
1lz] T30 ¢ p |zl 3
] n
xa[n] = 3(6) uln]
3 1
Xslz] = (—Zl) ROC: || > -
17 %

X[z] = X1[z] + X»[z]
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X[z] L L 3% | rocid < <)
= - < < -
R N T R P 6 173

(©
-|(=5) ()
x[n]—|: —3 + G :|u[—n]
= x1[n] + x2[n]
1 1
Xi[z] = 1539 ROC: |z] < 3

The derivation is given in Example 5.3.15(b)

xa[n] = 3(%) u[—n]

1
(I-2)

ul[—n] <i>

Applying multiplication property we get

z 1n[ PN ! ROC: [z| !
—) ul—n : > —
6 (1—-62) 4%

3
(14 32) + (1 —67)

o= (2) + (2) ]

Applying results of Eq.(5.16) we get

X[Z]:[ :| ROCZ%<|Z|<1

3

16. (a)

X[z] = |: < + < :| ROC: |z]| > l
(=3 (-3 4

_T/y 1\" .
x[ﬂ]—[(g) u[n]+<z) u[—n — ]]

(b)
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Fig. 5.9 X[z] and its ROC Alm
of Example 5.16b

487

N/

X[z]—_—;_o ROC'1<|ZI<1
S -HE-%) 5 4

The poles and zero and the ROC are marked in Fig.5.9.

(©)
x[n] = [(%) uln] + (%) ] ul—n —1]

1"[] z Z ROC: |z 1
- n| <—> ———— . > —
4) " (-1 4=y

1" z -z 1
<§) ul—n — 1] <— (z—l ROC: |z] < 3

=
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Fig. 5.10 ROC of 4
Example5.16¢

A Im

T
N

ROC

Uj—
N
Zv

The ROCs of the above two equations are shown in Fig.5.10 and it is seen
that they do not overlap and thus the given x[n] does not have X[z].
17. x[n] =68[n]+ 36 +1) + 8(n — 3)

S[n] << 1

15[ +1]<i>1
p— n p—
2 2°
3

Sin — 3] << 7~

1
X[zl=1+ ok +2z7°
18. x[n] =4"cos[22 + Z]u[—n — 1]

2nn mn
cos| — ) = cos —
6 3

(27111 7{) e G+5) 4 o—i(G+%)
COS =
2
1 . ) i(zZn 1 —i(Zy —i(z2
= —e](4)e1(3)+—e J(4)e 1(3)
2 2

6 4

4" cos (Z”Tn + %) = %ej(%) (4e/3)" + %e—.i% (4e73)"

From Eq. (5.18)
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Fig. 5.11 Poles and zeros Alm
and ROC of Example 5.3.18
z-plane
2+j3.464
v
Re
ROC 5.467
2—j3.464
(4e%) u[—n— 1] <> ——_ ROC: || < 4
(z —4e’73)
(4e73) ul—n — 1] £ L ROC:|z| <4
(z—4e7%)
Xlz] 1 |: el e /% ]
7l =—zz =+ s
2 [(z—4e/5)  (z—4e775)
1 |:zej75 —4eTT —4elta +ze‘j71:|
= —=Z T s
2 2 —z4(e'3 +e/3)+ 16
_ —32[v22 - 17.73]
(z2 — 4z + 16)
—0.707z[z — 5.467
X[z] = zlz I ROC: |z] < 4

(z—2+j3.464)(z — 2 — j3.464)

The pole-zero diagram is shown in Fig. 5.11. The ROC s the interior of the circle.

19. x[n] = nuln — 1]
Method 1
1

(z—=1D

uln — 1]<i>

Using differential property we get

z d 1
nulpn — 1] «— —z—

dz (z—1)
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Z

(z—1)?

z[nuln — 1]] =

Method 2

nuln —1] = (m— Duln — 1]+ u[n — 1]

_ 1 VA 2z —
(n — Duln ] <— P S

1
(z—1

1 n 1
z-D* -1

uln — 1] <i>

nuln — 1] PEAN

<

20.
@)" n<0
x[nl=1(3)" n=0,2,4,...
3" n=135,...

-1 [ed] 1 n o0 1 n
X[z] = Z @"z™" + <Z> 7"+ Z (5) "
n=—00 n=0 n=0

= Xi[z] + Xolz] + X3(z]

-1
Xilzl= ) @'z

-y ()

3
I

_§+<£>2+
T4 \4

Z Z Z\2
=1+3+(5) + }
_z 1
T
N ROC: |z] < 4

(z—4)
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1
|z > ]

o0
= (527" wheren =2q + 1

1 o0

— 25

=52 (257
q=0

1 1

TS5 (- )
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Example 5.4 Find the initial and final values of the following functions:

Z

X[zl=———"— ROC: 1
(a) [z] @7 5.1 lz| >
10z(z — 0.4)
b X[z] = ROC: 0.5
(b) [z] =05 —03) |z| >
Solution (a) X[z] = m Initial Value
x[0] = Lt X[z]
>0
z

=y

1
= Lt —m —

SR )
x[0] =0

Final Value

(z—1

Z

x[oo] = Lt
z—1

Provided all the poles are inside the unit circle and possibly one pole on the unit
circle.

) 1
4z —51+1)=4(z—1)<z—z>

<

X[]= —
T Y Y

The poles (z — 1) is on the unit circle and z = }1 within unit circle. X[z] is valid
to apply final value theorem.

z—1 z
— L
B e T Y S Y P
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— _10z(z—0.9)
®) Xzl = 565z-05

x[0)= Lt 2(1- %) (1- 2)

x[0] =10

To find the final value x[oo], the poles of X[z] are all inside the unit circle and
hence is valid to apply final value theorem.

[oo] = Lt 10z(z — )(z — 0.4)
z—>1 Z(Z - 0.5)(Z — 0.3)

x[oo] =0

Example 5.5

[1 -3

X[z] =
(<} [T+ 22721+ 327" + 2277]

How many different regions of convergence could correspond to X[z]?
(Anna University, May, 2008)

Solution
X2l — 2[2-1] _ 2 (z+3) (z—3)
E+DEHED () () e+ D+
Xlol = 2 [z 5]

G ey

The poles and zeros are located in Fig.5.12. From Fig.5.12 circle passing through
3

|z| = 7 and |z| = % are drawn. X[z] exists from the following ROCs.

1. |z| > %. ROC is the exterior of the outer most pole z = —%. The system is causal
and X[z] exits (Fig.5.12a).

2. |z| < % ROC is the interior of the inner most pole :l:%. The system is anti-causal
and X[z] exits (Fig.5.12b).

3. % < |z] < %. The ROC is aring between the two circles of radius r; = 43'1 andr; =
%. Here X[z] exits. The system is both causal and anti-causal
(Fig.5.12¢).
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(a) Alm

ROC z-plane

S/

NI

(b) (©)

z-plane z-plane

ROC 42

Re

N
RN [08)

Fig. 5.12 Pole-zero diagram and ROC of X|[z]

The unilateral z-transform pairs are given in Table 5.1, The properties of z-transform
are given in Table5.2.

5.8 Inverse z-Transform

If X[z] is given then the sequence x[n] is determined. This is called inverse
z-transform. As in the Laplace transform, in inverse z-transform also, the integra-
tion in the complex z-plane using Eq. (5.5) is avoided since it is tedious. Instead the
following methods are used. They are:
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Table 5.1 Unilateral z-transform pairs

495

No. x[n] X[z]

1 d[n] 1

2 uln] 6]

3 nuln] ﬁf

4 n2uln] %

5 a"uln] ﬁ

6 a"luln — 1] =]

7 na"uln] (Zf2)2

8 cos wonu[n] ﬁ%
9 sin wonu[n] ﬁ{?
10 a" cos wonuln) %
11 a” sin wonu(n] T3 :ozs wosznlwia =

Table 5.2 z-transform-properties (operations)

Operation x[n] X|z]
Linearity ayxi[n] + axxy[n] a1 X1[z] + a2 X2[z]
Multiplication by a” a"x[nluln] X [%]
Multiplication by n nx[nluln] —z j—ZX [z]
Time shifting x[n — npl 27" X([z]
Multiplication by eJemn | eimonyp] X[e J®0z]
Time reversal x[—n] X [%]
Accumulation > e oo X[n] ﬁX [z]
Convolution x1[n] * xz[n] X1[z1X>[z]
Initial value x[0] Lt X[z]
Z—>00
Final value x[oo] Ltl @X [z] poles of (z — 1) X[z] are
—

inside the unit circle

Right shifting x[n —mluln —m] ZL,,,X[Z]
x[n — mluln] o X[zl + 2 Yoy X(—m)Z"
x[n — 1ufn] LX[z] + x[-1]
x[n — 2Jufn] S X[2]+ tx[—11+x[-2]
Left shifting x[n + mluln] 7" X[z] - 7" Z:::ol x[n]z™"

x[n + 1]uln]

zX[z] — zx(0)

x[n 4+ 2]u[n]

22X [z] — 22x[0] — zx[1]
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1. Partial fraction method;
2. Power series expansion;
3. Residue method.

Of these, the partial fraction method is very easy to apply as was done in determining

inverse Laplace transform.

5.8.1 Partial Fraction Method

If X[z] is a rational function of z then it can be expressed as follows:

_ N[zl KGz—z)(z—2)...(2 = zm)

X = =
= o = =G =pn .= pn)

where n > m and all the poles are simple.

X[z] _ K(iz—z1)(z—22)...(2— 2Zm)
z 2(z—=p)z—p2)...(2— pn)

Ao A A, A,
=—+— 4+ —+4 ...+
Z Z— D1 Z— P2 Z— Pn
where
Ag = X[z]l:=0
X[z]
Al =@Z—p)—
Z Z=pi
Z Az
X[zl = Ao+ A ot —
Z— Pp1 Z— Pn

(5.45)

(5.46)

Using z-transform pair table, x[n] can be determined. The following examples illus-
trate the above method. For repeated poles, the z-transform pairs given in Table 5.3

may be referred to.

Table 5.3 z-transform pairs of repeated poles

X[z] x[n] ROC: |z| > |al
1. ia a"u[n]
2. (Z—Zia)z nanflu[n]
2z nn — l)a”_2
> (z—a)’ Tu[n]
4 = n(n — 1)(n—2).,,(n7(kfz))an—kﬂu[n]
=) Z(k—1)




5.8 Inverse z-Transform 497

Example 5.6 Find the inverse z-transform of

1-— %z’l

Xl =0t

ROC: |z] > 2

(Anna University, April, 2004)

Solution
11— %z_l
X =
2] (1 —-z7H(a+2z7hH
2z -3)
T z—-D@Ez+2)
X[z] A As

z  @=-1D (z+2)
(z—%) =A1z+2)+A(z-1)

Substitute z = 1

2

Al =—

9

Substitute z = —2 .
Ay = 5

1 2z Tz
X[z]= -
(z] 9|:Z—1+Z+2]

1
xinl =3 [2()" +7(=2)" | uln]

Example 5.7 Find the inverse z-transform of

X[z] =

1 [1024 —z710

ROC:
1004 1 i| OC:|z| >0

1—%z—

(Anna University, April, 2008)

X[l = L 1024 — 7710
T 024 | 1o

Solution
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Taking inverse z-transform we get

x[n] = (l>n uln] — ; (l>n_lou[n —10]
2 1024 \ 2

' uln] — L <l>n <l>10u[n —10]
1024 \ 2 2

n 1 l n
—— (=) 1024ufn - 10
ulnl 1021(2) uln = 101

Example 5.8 Find the inverse z-transform of

2

Z
X[zl=—"-"—"—
L= e —a
(Anna University, December, 2007)
Solution
2
Z
Xz7]=—""—"—
[2] (1 —az)(z—a)
X[z] -z
z alz—1]lz—al
X[z] Ay A

¢ T en T ea
Z 1
——=A1(Z—a)+A2<Z——)
a a
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(@ 4 Im (b)

ROC z-plane z-plane

/ \ a>1 ROC a<l

Fig. 5.13 ROC of Example5.8

Substitute z = al

Substitute z = a

(~3)
—]=A2 a— —
a

a
(I —a?)

Xl = —— | S
A | a (-h T c-a

Fora > 1,the ROCis showninFig.5.13a. Fora < 1,the ROC is shown in Fig.5.13b.

For a > 1, the ROC is exterior of the outermost pole. Hence, the function is
casual.

Ay =

1 -1 1 )
x[n] = D) [7 @ +a(a) ]u[n]

_ 1 1 e n+1
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Fora < 1,the ROCisa < |z]| < % and it is a concentric strip. The pole at |z| = é is
anti-causal and z = a is causal.

1 1\ il
x[n] = m <;) ul—n — 114+ (a)"" " u[n]

Example 5.9
(7z — 23)

X =569

Find x[n]. ROC: |z| > 4.

Solution Method 1: Dividing both sides by z we get

X[z]  (7z2-123)

7 z2(z—=3)z—4)
A A A
_ A 2 3

Z z—-3) (-9
(72 —=23) = A1(z = 3)(z—4) + Arz(z — 4) + A3z(z — 3)

Substitute z = 0

23
—23 =12Ay; Al = ——
12
Substitute z = 3
2
—2=A403)(1; A= 3

Substitute z = 4

5 =4A3; A3 =

EENIRY)]

23+2 Z +5 Z
12 3(z-=3) 4@z—-4

X[zl = —

23 2 .5
X[n] = [—53[n]+ 5(3) + 3(4) }u[n]
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Method 2:

_ (72-23)

T z-3)z—-4
A A
DR

7z —23=A1(z—4)+ A(z—3)

Xzl

Substitute z = 3
-2 = —Al; A1 =2
Substitute z = 4

5 = A
2 L 5
z—=3) (-4

2L 2@y um — 1]

X[z] =

2
(z—3)
5
(z—4)

2L 5@y um — 1]

x[n] = 123)" " + 54" Juln — 1]

The results of the above two methods are the same even though they are expressed
in different forms.

Example 5.10
10z

Xl = v ar

ROC: |z| > 4

Find x[n] using partial fraction method.

Solution This is the case with poles repeated twice

X[2] = 10z
R P Yo
X[Z] _ 10 Al A2 Ag

7z @Z+2D@+DH? z+2) + (z+4) + (z+»4)2
10=A1z4+4)>+ A G+ @ +4) + As(z +2)
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Substitute z = —2

10=4A1; A1=

N |

Substitute z = —4
10 = —2A3; A3 =-5
Compare the coefficients of free terms

10 = 16A; +8A, + 243
5
= 165 + 84, — 10

z _é z 5
(z+2) 2@+4) (z+4)7?

X[]—5
d=3

5 n 5 n _ _ n
x[n] = [E(_Z) —5(—4) Sn(—4) ]u[n]

Example 5.11

2(z2 4+ z — 30)
X[zl = ———= ROC: 4
[z] G 2G4 OC: |z| >

Find x[n] using partial fraction method.

Solution This is the case with poles repeated thrice

2(z> +z —30)
Xl =y 2y
X[zl P +z-300  (—5(E+6)
7 (2=2@—-43 (z-2)(z—4)3
_ Ay Ar Aj Ay
R I H R iy
(Z+z2-30)=A1c -4+ Az —2) + A3z — (2 —4) + Au(z — 2)(z — 4)°

Substitute z = 2

(=3)®) =—-8A;; A =3
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Substitute z = 4

(=D0) =245, Ay =-5

(22 +2—-30) =3(z — 1222 + 487 — 64) — 5(z — 2) + A3(z> — 62+ 8)
+A4(22 — 1022 4+ 322 — 32)

Compare the coefficients of z?

1=-36+ As — 104,
A; — 10A4 = 37

Compare the coefficients of z

1 =144 — 5 — 645 + 3244
6A; — 324, = 138

Solving the above equation we get

A3=7; A4=—3

3z 5z 7z 3z
Xlel= =2 G=4 =4 -9
Z z1 n(n—1) n—2 _ n(n—1) n
oAy T g Wl =@l
< z! n—1 1 n
(Z——4)2 <~ nd)" uln] = Zn(4) uln]

n _i _ z — n
x[n] = |:3(2) + { 32n(n 1)+ 4n 3} (@] :|u[n]

The values of Ay, A, and A5 determined are checked for their correctness as follows:

X[zl (—=5(@E+06)
7z (2—-2)(z—4)}
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Substitute z = 0

Xzl _ (9O 15
z =0 (=2)(—4) o4
Xzl _ 3 5 7 3

. -2 G- e -9

Substitute z = 0

X[zl 3 5 7 3 15

7 l=0 2Tt 6TdT e

Hence the values of Ay, A,, A3z and A4 are found to be correct.
Example 5.12
z2(z + 10)

X —
= oD@ =8+ 20)

Find x[n] using partial fraction method.

Solution This is the case with complex poles

z(z + 10)
Xl = @ =8 520
X[zl (z + 10)
2 @—DE—4+,2)@E—-4—,2)
Ay Ay Aj

S Ge-D T G=4+j2 T —a— 2
(Z+10):Al(Z2—8Z+20)+A2(Z—l)(Z—4—j2)+A3(Z—1)(Z—4+j2)

Substitute z = 1

11=A,(13); A = 1
- 1 ’ 1_13

Substitute z = 4 + j2

(144 j2) = As(4+ j2 =4+ j2)(4 + j2 - 1)
(14+j2)  14.142/8.13°
J4G+)2)  4J13/123.69°
0.98/ — 115.56° = 0.98¢ /1155
A, = conjugate of A3
=0.98/115.56° = 0.98¢/!13-5¢
11z 0.98¢/11556° () 9ge—i115.56°

B(z—1)+(z—4+j2)+ (z—4—j2)

A; =

X[z] =
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Using z-transform pair we get the following inverse z-transform
11 115.56° . —j115.56° .
x[n] = Eu[n] 4+ [0.98¢’ 7% (4 — j2)" 4+ 0.98¢™7 % (4 + j2)"[u[n]

115.56° = 2 radians

(4 + Jz)n — (4.47)”61.0'4636”
(4 _ ]2)11 — (4.47)’le_j0'4636n

11 o o
x[n] = Eu[n] + [0.98¢/2¢ 704636 (4 4T 4 0.98(4.47)" e /2e/04036m 1 [n]

11 . A
= Bu[n] +0.98 5 (4.47)" [/ C—4636m) 4 (=i (C=4636m) 1,11

x[n] = [% + 1.96(4.47)" cos(2 — 0.463671)] uln)

Example 5.13
(523 — 2972 + 8z + 60)

X[z] =
[z] @721 10)

Find x[n] by partial fraction method.

Solution This is the case with irrational system function. The solution of x[n] will
have forward and backward shifts. Dividing the numerator polynomial by the denom-
inator polynomial we get

5z+6
22 — 724 10)5z% — 2922 + 8z + 60
523 — 3572 + 50z

672 — 427 + 60
67> — 427 + 60
@ =7z+10) = (z—2)(z—5)
1
X[z] = . X
2] = (5246 + 5 -5, = Xl + Xalzl

where
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Xilz] = (5z2+6)

1
Xolz] = =G =%
Xz[Z] _ 1

7z 2z—=2)(z-5)

A Ay As

=4

z z—2 z-—5
1=A1(z—2)(z—=5+ Axz(z—5) + Asz(z — 2)

Substitute z = 0

Substitute z = 2

1=A4,2)(=3); Ay=——

Substitute z = 5

1
=400 As=5

11 1
X[z] =57 46+ — < ¢

10 6(z—2)  15(z-5)

1 1
x[n] = [S(n +1)+6.18[n] — 6(2)" + E(S)":| uln]
Example 5.14 Find the inverse z-transform of

G+z72+4773

X =
=7, 710
Solution
X[z] = (5+z_2+4z_3)_(5+z_2+4z_3) z
(24774100 z (z+2)(z+5)
sl AL
5z +2 Gy Y,
I S l[ z oz }
z+2)z+5 ~ 3|z4+2 z45
Z

22 Ny - Csyum
Z+2)(z+5) 3 utn
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Now
-1 -3 —4 1 n n
x[n]=1[52""+z"+4z ]5[(—2) — (=5)"uln]
Using the time shifting property we get
5
I=3 [ =9 ‘]u[n—1]+ [(=2)"7 = (=5)" ] uln — 3]
2 S [ = (9" Juln — 4]

Example 5.15 Find the inverse z-transform for the following system functions:

(@) X[z]l=

ROC: |z] <5
(z—5)

b X[zl=z(1-zH1+2z7") ROC:0 < |z] < o0

Solution (a) X[z] = )

4 z
X[z] = = 477!
[z] z=3) 7 p—

x[n] = 4z7'[(5)"Juln]]

x[n] =4G3)" uln — 1]
®) X[zl=z(1-z"HA +2z7Y

X[zl=z(1—-z"H(1+2z7h
X[zl =z[1+ 277 -7 - 2z72)
=[z+1-2z7"]

x[n]={1,1, =2}
T

5.8.2 Inverse z-Transform using Power Series Expansion

The z-transform Eq. (5.4)
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can be expressed in power series form and the coefficients of 7! give the values of
the sequence. Equation (5.4) can be express as,

X[zl = -+ x[-3]2% + x[-2)2% + x[— 1]z + x[0] + x[1]z " + x[2]z 2 + x[3]z > + - - -
(5.47)
Equation (5.47) does not give closed form. However if X[z] is not in a simpler form
other than the polynomial in z !, using power series method x[n] is easily obtained.
If X[z] is rational, the power series is obtained by long division. The following
examples illustrate the above method.

Example 5.16 Using power series expansion, find the inverse z-transform of the
following X[z]:

4z
Xlz]=———— ROC: 2
(a) [z] @Z—3:12 lz| >
b) Xzl x ROC: || < 1
= = : <
4T @312 ¢
1
(¢c) X[zl=———— ROC:|z| > |a] and ROC: |z] < |a|
(1 —az™h

(Anna University, December, 2006)

Solution (2) X[z] = =155 ROC: [z] > 2
4z

X[z]= ———

[2] (2 -3z+2)

- D(E-2)

For ROC: |z| > 2, x[n] is a right-sided sequence where n > 0. Hence, the long

division is done in such a way that X[z] is expressed in power of 7!

477 412272428277 + - -

= 3z+2)4z
47 — 12+ 877!
12 —8z7!
12 — 367" 424772
28771 — 24772

28771 — 84772 4+ 56773




5.8 Inverse z-Transform 509

X[zl=4z""+12z72+28z73 +
x[n] = {0, 4, 12, 28, ...}
T

(b) X[zl = =5 ROC: [z] <1
For ROC: |z| < 1, x[n] sequence is negative where n < 0. The long division is
done in such a way that X[z] is expressed in power of z.

7
274322 + 513

2-3z+7%)4z
4z — 62> +27°
677 —27°
67> —9z° +3z*
7 -3z
72 — 271Z4 + ;zs

7
X[z]=21+3z2+§z3+~-~

x[n]:{n-; 3, 2,0}
R

(© XIzl = q=i=q: ROC: |z] > |a]

Z

(z—a)

X[z] =

The ROC: |z] > a, and it is the exterior of the circle of radius |a|. Hence, x[n] is
aright-sided sequence where n > 0. The long division is done in such that X[z]
is expressed in terms of power of z~! as shown below:
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l+az™' +a’z 7 +ada + -
z—a)z
z—a
a
a— (121_1
aZZ—l
(1217 _a3Z72
a‘z™?
6132_2 _ Cl4Z_3

Xzl=14az ' +ad’z+d°723+ -
x[nl=1{1, a, @*, a*,---}

T

x[n] = a"uln]
For ROC: |z| < |a|, x[n] sequence is left sided

o S - I

—a+2)z
z—a'Z’
a2
a1 — a2
a2
a2 a3
X[zl=—a'z—a??—a32 +--.
B (I
= Zo =00
T
x[n] = —a"u[—n — 1]

Example 5.17 Determine the inverse z-transform of

1
X[z] = log(1 — 27), lz] < 3
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by using the power series
o0 xn
log(1 —x) = — —, x| <1
g(1 —x) ; —, Il

and by first differentiating X[z] and then using this to recover x[n].
(Anna University, December, 2007)

Solution (a) Using Power Series

X[z] = log(1 —2z2)
oo
1
=-) ~Q"
n
n=I
Replacen = —n

X[z]= ) %(2@‘" = (%) %z‘"

n=—1 n=—1

By z-transform definition, it is a left-sided signal

(b) Using Differentiation Property

X[z] = log(1 —22)

d X[z] -2
Z X[z = ———
dz (1-2z)
Multiplying both sides by —z we get
d X[z 2z
—2— Xzl = ———
dz (1-2z)
-z

I
173
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d z!
—z—X[z] <— nx[n]
dz

-z 7z (1" 1
r<—|5) u(=n—-1 ROC:|z| < =
=3 2 2

nx[n] = <%) u(—n—1)
1\" 1
x[n] = <§> ;u(—n -1

Example 5.18 Find the inverse z-transform of

(@ Xlzl=log(l+az™") [z] > |al
() X[zl=log(l —az™") |z > |a|

(Madras University, October, 1998)

Solution (a) The power series expansion for log(1 + x) is

S (_1)n+1
log(1+x)=z . X" forx <1

n=1
o0
-1 n+1 ClZil n
log(l +az™ ") = ZM laz™!| < 1or |z| > |a]
n=1 n
io: )n+lanz—n
n=1

Since the summation is from n = 1, using time shifting property we get

(_ l)nJrlan
x[n] = ——u[n — 1]
n
(b) The power series expansion for log(1 — x) is

o0

1
log(l — x) = —Z;x” x| < 1

n=1

— |
log(1—az™)==>" ~(az”!
n=1
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5.8.3 Inverse z-Transform using Contour Integration
or the Method of Residue

The inverse z-transform can be obtained from Eq. (5.2) which is given by

1
x[nl = — ¢ X[z1z" 'dz (5.48)
2nj Je

The above integral can be evaluated by summing up all the residues of the poles
which are inside the circle ¢ of Eq. (5.48) which can be expressed as

x[n] = Z (Residues of X[z]z™" at the poles inside (¢)

= (z—z) X[zl (5.49)
N =T
For multiples poles of order k, and z = «, the residue is written as,
1 k—1 ‘ .
Residue = YATEY ZI;ta {dz"l (z —a)'X[z]z } (5.50)

Example 5.19 Find the inverse z-transform of the following X[z] using Residue
method

B (I1+z7hH
@) X[z]l= 1 +8 " +1522) lz] > 5
-1
Z
TS T e S
© X[zl=
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. -1
Solution (a) X[z] = %; lz] > §
zZ(z+1
X[z] = ( )

(z2+ 8z +15)

o zz+ D
XLl= 5+
) 2z+1)
= f ——
x[n] Z Residue o Y S)Z
_2etD
(z4+3)(z+5)
2(z + D!

(z+3)(z+5)

= Residue of (z + 3)

7=-3

+ Residue of (z + 5)

z=-5

x[n] = —(=3)" +2(=-5)"

1

(b) X[zl = ooy 4 <12l <6

z <
X = 050 = =9z -9
Forn >0
x[n] = Residue of X[z]z"""|
Z(anl)
= —4 = <, <
e grs
= —%(4)"u[n]
Forn <0
e T Y e -0l 2

1
x[n] = —5[(4)"u[n] +(6)"u(—n —1)]
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© XI:1 =

5.9 The System Function of DT Systems

Let

1. x[n] = Input of the system;
2. y[n] = Output of the system;
3. h[n] =Impulse response of the system.

The output y[n] can be expressed as the convolution of x[n] with h[n] as

y[n] = x[n] * h[n] (5.51)
By applying convolution property of z-transform we obtain

Y[z] = X[z]H[z] (5.52)

where Y[z], X[z] and H|[z] are the z-transforms of y[n], x[rn] and h[n] respectively.
Equation (5.52) can be expressed as

_ v

A=+

(5.53)

In Eq.(5.53), H|[z] is referred to as the system function or the transfer function.
System function is defined as the ratio of the z-transforms of the output y[#] and the
input x[n]. The system function completely depends on the system characteristic.
Equations (5.51) and (5.52) are illustrated in Fig.5.14a and b respectively.
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Fig. 5.14 System impulse
response and system (a) x[n] —> | hln] | —> y[n] = x[n] * hn]
function

(b)  Xl[z] — | Hlz] | — Ylz] = X[z]H[z]

5.10 Causality of DT Systems

An linear time invariant discrete-time system is said to be causal if the impulse
response h[n] =0 for n < 0 and it is therefore right sided. The ROC of such a
system H|[z] is the exterior of a circle. If H|[z] is rational then the system is said
to be causal if the ROC lies exterior of the circle passing through the outermost
pole and includes infinity area. A DT system which is linear time invariant with
its system function H|[z] rational is said to be causal iff the ROC is the exterior of
a circle which passes through the outermost pole of H{[z]. Further, the degree of
the numerator polynomial of H[z] should be less than or equal to the degree of the
denominator polynomial.

5.11 Stability of DT System

As we discussed in Chap. 2, an LTI discrete-time system is said to be BIBO stable if
the impulse response i[n] is summable. This is expressed as

Z |h[n]| < 0o (5.54)

The corresponding requirement on H|[z] is that the ROC of H[z] contains unit circle.
By definition of z-transform

oo
Hlzl= ) hnlz”™"
n=-—00
Let 7 = /@

lz] = e/
=1

|H[e/]| =
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o0
< Z ‘h[n]e‘jm‘
n=—0oo

= > |hn]l < o0 (5.55)

n=—0o0

From Eq. (5.55) we see that the stability condition given by Eq. (5.54) is satisfied if
7 = ¢/, Thus implies that H[z] must contain unit circle |z| = 1.

An LTI system is stable iff the ROC of its system function H[z] contains the unit
circle |z| = 1.

5.12 Causality and Stability of DT System

For a causal system whose H|[z] is rational the ROC is outside the outermost pole.
For the BIBO stability the ROC should include the unit circle |z| = 1. For the system
to be causal and stable the above requirements are satisfied if all the poles are within
the unit circle in the z-plane.

An LTID system with the system function H [z] is said to be both causal and stable
iff all the poles of H|[z] lie inside the unit circle.

The above characteristics of LTI discrete-time systems are illustrated in Fig.5.15
for a causal system.

Example 5.20 The input to the causal LTI system is

x[n]l=u[—n—-1]+ (%) uln]

The z-transform of the output of the system is

1,1
32

Y(z] =
[2] (1—3zA+zh

Determine H[z], the z-transform of the impulse response and also determine the
output y[n]. (Anna University, December, 2007)
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(a) 4Im 4 h[n]
0 T Re [ r o,
0 Jl 2 13 4 n
(b) Alm 4 hin]
PR ] \ .
of 1 2 3 4 5 n
() 4Im 4 h[n]
IR [ RN
0 1 2 3 4 5 n
(d) 4Im 4 hn]
= LT
0 1i 2 J3 4 Js 6 17 n

Fig. 5.15 Pole location and impulse response of a causal system
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©) Alm N
I Re { { [ { .
01 2 3 4 5 =n

® tIm 4 h[n]

—
v
(=)
- |
—
N ——o
-— |
w
NE—oe
-— |
W
AN f——e
-— |
S}
o0 f—o
3Iv

Fig. 5.15 (continued)

Solution
Z Z

Xel=—r—3 "t Z03)
_ —0.5z
T (z—-1(z—-05)

i
Y =
o (1=3z ) +z7

_ =3t
T 2-05GE+ D)
_ Y

Hz] = X[zl

_ (=0.5)z(z — )z — 0.5)
(2= 0.5)(z 4 1)(—0.5)z
_ k=D
@+
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Hlz] (-1

2 zz+1D)
_A A&
oz z+1

z—=1) =A1(z+ 1)+ Az
Substitute z = 0
-1=A4
Substitute z = —1

-2 = —Az; A2 =2

2z
z+ 1

H[z]=-1+

hin] = =é8[n] + (—1)"2u[n]

_1g

Y= o005 e T
Yzl -3

2 (z—05@E+1

A A

=05 i1

1
—5 = A D+ A 05)

Substitute z = 0.5

Substitute z = —1
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Y[]—l[— L ]
47317205 T Z+

1 1\" Iy
y[n]—g[— <§> + (=1 }u[n]

Example 5.21 A certain LTI system is described by the following system function:

(z+5)
Hl7l = — 2/
[z] C-D(E-1)

Find the system response to the input x[n] = 4~""*2y[n].

Solution
x[n] = 4~ Dyn]
1 —n
= E(4) uln]
1 Z
X[zl = 1_6—(z — 4]‘1)
Y[z] = H[z]X[z]
B 1(z+1)z
S 16 =D (z-3) (=)
Ylz] (z+3)
2 16@E-D(z-13)(z-1)
A A, A,

1 N _ 4 1 N4 . N4 . 1
w(e+3) =i y) (- g) raen(e-5) ae (- 3)

Substitute z = 1

Substitute z = %
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Substitute z = %

= Lay = LY L (Y N
e 2\2) Tal\s) |""
Example 5.22 Given

x[n] = {2, =3, 1}

hln] =11, 2, —1}
Find y[n] using z-transform.

Solution

X[z1=Q2-3z"+2z7
Hizl=1427"~z72
Y[z] = X[z]H][z]
=[2-3z7"+z1 +227 =277
=24z =772 45773 -4

yln]l=1{2, 1, =7, 5, —1}

Example 5.23 Given

x[n] = uln]
yln] = (2)"uln]

Find the system function and the impulse response.
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Solution

x[n] = uln]

Z
X[z]=(z_1) lz| > 1
y[n] = (2)"uln]
Z

Y[zl = @2 lz| > 2

_ Yzl =1
H[z] = X~ =2 1z
Hlz] (-1

2 z2(z—=2)
_ A, A
oz (z-2)

z—1=A1(z—2)+ Ayz

Substitute z = 0
1
—-1=A(-2); A= 5

Substitute z = 2

1:2A2; A2:—

HEl = L ‘
[Z]—§|: +(Z—2):|

1
il =2 [8(n) + (2)"uln]]

Example 5.24 Given

Find the system function and hence the system impulse response.

> 2

523
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Solution

Yol = — 2>+
(e - %) 4
x[n] = (%)” ul—n — 1]
X[z]=—(zf%) <3
[z] %

Hlzl _ —(z=3)
z z(z—1)
A A
=214 21
Z Z(Z_Z)
1
5—Z=A1<Z——>+A2Z
Substitute z = 0
1 1
-=—-A; A=-2
27 7%
Substitute z = 1
l— 1A A 2
2_4 25 2_

hin] =2 [—S[n] + <%> ] uln]
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Example 5.25 Consider the following system functions:

R )
(a) Hlz] = P r—
(z—D(z+2) 3
(b) Hl[z]= —————— ROC:|z| > =
(2=3)(—3) 4
z—D(E+2) 1
(©) H[z] = ———= ROC:|[z|] < =
(2=3)(-3) 2

Determine whether these systems are causal or not.

. 14zl 422
Solution (a) H[z] = (Z(z_-ll-_'_zsftiz_)x)

@ +42+2)

H - @@
=z s

H|z] is irrational since the degree of the numerator polynomial is greater than
the denominator polynomial.

The System is Non-causal.

-1 2
(b) Hlz] = (Z55E5 ROC: 2] > §

The ROC is the exterior of the circle passing through the outermost pole of H[z].
Hence h[n], the impulse response is right sided.

The System is Causal.

(c) Hlz] = % ROC: |z| <}

The ROC is the interior of the circle passing through the innermost pole of H[z].
Hence h[n], the impulse response is left sided.

The System is Non-causal.

Example 5.26 Consider the following system function:

(-2

H =
[2] (1—3z71) (1=3z7")

Determine the causality and stability of the system for the following cases.
(a) ROC: |z]| > 3;

(b) ROC: 7] < 1;

(¢) ROC: % <|z] < 3.
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Solution
2-F<)
H =
SRR (e YO
R (22 — %)
(e=3) =3

(@) ROC: |z] >3
The ROC is the exterior of the circle passing through the outermost pole of H[z]
which is rational (the denominator and numerator polynomials have same order).
The impulse response h[n] is a right-sided sequence. Hence, H|[z] is causal. The
ROC does not contain unit circle. Hence, i[n] is not summable. The system is
unstable. Refer to Fig.5.16a.

The System is Causal and Unstable.

(b) ROC: [z]| < §
The ROC is the interior of the circle passing through the innermost pole of H[z].
The impulse response is a left-sided sequence. H[z] is therefore non-causal.
The ROC does not include the unit circle. The h[n] is growing exponential
negative sequence. The system is unstable. Refer to Fig.5.16b.

The System is Non-causal and Unstable.

(c) ROC: % <|z] <3
The ROC is to the left of the outermost pole and to the right innermost pole.
Hence h[n] will have right and left-sided sequences, which is non-causal. The
ROC includes unit circle, which means that the right and left side sequences of
h[n] will exponentially decay and the system is stable. Refer to Fig.5.16c.

The System is Non-causal and Stable.
The system cannot be both Causal and Stable.

Example 5.27 Consider the following system function:

C-DE+DE-D

For different possible ROCs, determine the causality, stability, and the impulse
response of the system.

H[z] =
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(@ Alm

(1

Bl Re
ROC
Unit circle
(b) ()
A Im A Im

e LT
\// -

Unit circle

\/
\e]
=
w
WV

Fig. 5.16 a Causal and stable system. b Non-causal and unstable system and ¢ Non-causal and
stable system

Solution

Z

(=3 E+3)E-3)

The possible ROCs for H|[z] to exist are (a) ROC: |z| > %, (b)ROC: |z] < % and (¢)
ROC: % <|z| < %

H[z] =
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-0 G+ D D

Substitute z = i

TP L Y (L DO
“8\s T a)\a 2) =

Substitute z = —%

Substitute z = 1

ea (DO, 6
AV YAV YA 1T

Hlz] = - Nt
z

(a) ROC: [z] > 1
The pole-zero diagram and the ROC are shown in Fig.5.17a. From Fig. 5.17a
the ROC is the exterior of the outermost pole z = % Further, ROC includes unit
circle. Thus h[n] is a right-sided sequence and hence H|[z] is causal. Since ROC
includes unit circle and all the poles are within unit circle, the system is stable.
Now,

Hlzl= = o —
1

1\" 8/ 1\" 16 /1\"
n=[-s(3) +3(=3) + 5 (3) Jun

The System is Causal and Stable.
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(b)

©

ROC: |z] < ‘1—1

For ROC: |z| < Alf, the pole-zero diagram is shown in Fig.5.17b. The ROC is
interior of the circle passing through the innermost pole. Hence, the system is
non-causal. The condition that the ROC does not include unit circle implies
that the system is unstable. The sequence h[n] is left sided. This is obtained as
follows.

wim— g (L) _ 8 ( L\ _16 /1Y |
n=s(5) -3 (-5) -5 (5) Jun-n

The left-sided sequence u[—n — 1] will exponentially increase for n < 0 and
makes the system unstable.

The System is Non-causal and Unstable.

ROC: % < Iz| < % The pole-zero diagram and ROC of H|[z] are shown in
Fig.5.17c. The ROC is concentric ring for % < |z| < % The h[n] sequences

die to the poles at z = i and z = —% are right sided and the sequence due to
the pole z = % is left sided. Hence the system is non-causal. The ROC does not

include the unit circle and hence the system is unstable. The impulse response
is obtained as follows.

H[z] = —

it = (=8 (2) S (22) Tuwr = 22 (4 ut=n— 11

me a) T3\7q) M E )

The term —13—6(1 /2)"u[—n — 1] for n < 0 yields exponentially increasing
sequence.

The System is Non-causal and Unstable.
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(a) ‘

A Im

ROC z-plane

v

Re

™~ Unit circle

(b)

z-plane

Unit circle

Fig. 5.17 a Pole-zero diagram and ROC: |z| > % of Example 5.27. b Pole zero diagram and ROC:
|z] < % and ¢ Pole-zero diagram and ROC: % <|z] < %

5.13 z-Transform Solution of Linear
Difference Equations

As in the case of Laplace transform with differential equation, to get the solution
in time domain z-transform is used to solve difference equation to get the output
sequence as a function of n. By using the time shift property of z-transform, the
difference equation is converted into algebraic equation, taking into account the initial
conditions. by taking z-inverse transform, the time domain solution is obtained.
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5.13.1 Right Shift (Delay)

If
x[nluln] <> X[z]
then
7 1
x[n — 1u[n — 1] «— = X|z]
Z
x[n — 1ufn] << éX[z] + x[—1]
1 1
x[n — 2Ju[n] <% S X[l + —xl=1] 4 x[-2]
In general,

xln = mluln] <% 27" X[ + 27" Y x[—nlZ" (5.56)

n=1

5.13.2 Left Shift (Advance)

If
x[nluln] <2 X[z]
x[n + 1uln] <> zX[z] — zx[0]
xln + 2Juln] <% 22X[2] — 22x[0] - zx[1]
In general,
mt
xln 4+ mluln] <> 2"x(z] — 2" Y xlnle ™" (5.57)
0

Equations (5.56) and (5.57) are used to convert difference equations with initial
conditions to algebraic equations in z. Application of Eq.(5.56), the delay shift is
more common. The following examples illustrate the above procedure.
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Example 5.28 Consider the following linear constant coefficient difference equa-
tion

3 1
yln] — Zy[n — 1]+ gy[n —2]=2x[n—1]

Determine y[n] when x[n] = §[n] and y[n] =0, n < 0.
(Anna University, May and December, 2007)

Solution If y[n] =0, n =0 implies the initial conditions are zero. Taking z-
transform on both sides of the given equation we get

1- Ez_l + l2_2 Y[zl =2z ' X[z]
4 8

For §[n], X[z] =1

277! 2z
1—3z714 3272 22-32z+4
Yiz] 2
= 1 1
< (z=3)(z—12)
A A
_ 1 - 2

Substitute z =

Substitute z =

FST
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Example 5.29
yln+2]+ 1.1y[n 4+ 1]+ 0.3y[n] = x[n + 1] + x[n]

where x[n] = (—4)"u[n]. Find y[n] if the initial condition is zero.

Solution Taking z-transform using left shift property we get

(224 1.1z +0.3]Y[z] = [z + 11X [z]
x[n] = (—4)"uln]

Z
B
z2(z+ 1D
M= (z+ 1) @+ 1.12+03)
_ z(z+ 1)
@+ D) E+05E+0.6)
Yiz] (z+1)
2 (241 @ +05@E+0.6)
Ay Ay A3

T+ T 505 G106

z+1) =A;(z+0.5)(z+0.6) + A, <z + ‘1—‘) (z+0.6)
1
+A;3 (Z + Z) (z+0.5)

Substitute z = —1

1 1 1
—+1)=A4—-—=+05){—-—=+06]); A, = 8.57
(m5+1) = (-5 +os) (-5 +00): 4
Substitute z = —0.5
1
(-05+1)=A, (—0.5 + 4_1) (—0.5+0.6); Ay = =20
Substitute z = —0.6

1
(=0.6+1)= A3 <—O.6 + Z) (—=0.6 4+ 0.5); A3 =11.43
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8.57z 20z n 11.43
(z+3) @+05)  (z+0.6)

Y[z] =

1 n
y[n] = |:8.57(—Z> —20(—0.5" + 11.43(—0.6)":| uln]
Example 5.30 A causal LTT system is described by the difference equation
ylnl = yln — 11+ y[n — 2]+ x[n — 1]

Find (a) System function for this system and (b) Unit impulse response of the system.
(Anna University, April, 2008)

Solution Taking z-transform on both sides of the equation and making use of right
shift property we get

[1—z'=z2Y[zl = 27 'X[z]

(a)
Y[z]
Hlzl = —=
[z] X[2]
Z—l
H =
[z] T ——
(b)
Z
Hz]= ——
[z] R
Hlz] 1
7z (z—1.618)(z +0.618)
Ay n A

T (z—1618) ' (z+1.618)
1= A (z+0.618) + Ay(z — 1.618)

Substitute z = 1.618

1=A (1.6184+0.618); A, =0.447
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Substitute z = —0.618

1 =A,(—0.618 —1.618); Ay, = —0.447

Hiz] = 0.447 £ £
Z— 1618 z+0618

hln] = 0.447[(1.618)" — (—0.618)" | u[n]

Example 5.31 Find the impulse response of the discrete-time system described by
the difference equation

yln —2]=3y[n — 1]+ 2y[n] = x[n - 1]
(Anna University, April, 2005)
Solution

[z72 =3z 4+ 2]Y[z] = 27 ' X[z]

Y[z]
Hlzl = —=
[z] XLzl
T (z2=3z7142)
o Z
T Q2-3z+1)
Hlz] 0.5
7z (z—1(z—-05)
R
T z-1 (z—05)
Z Z
Hlzl = z—1 _z—0.5

l n
hin] = [(1)" - <§> ]u[n]

Example 5.32 Determine the impulse response and frequency response of the sys-
tem described by the difference equation

1 1
yln] — <8> yln—1]— gy[n —2]=x[n—1]

(Anna University, May, 2007)
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Solution To obtain Impulse Response

[1 — 1z’l — lzz] Y[z] = 27 ' X[z]

6 6
Y[z]

Hlz] = —=
[z] X[z

atnr=S[(2) = (2 Jutn
1=31() - ()

To obtain Frequency Response
Substitute z = /¢ in H[z]
jw

j el
Hle!“] =
Ty

This can be expressed in terms of amplitude and phase as follows:
el

(cosw+ jsinw — %) (cosw + jsinw + 1)

H[e/*] =

since |e/®| =1
. 1
|H(e!”)| = ; S T
H(cosa) -+ sinza)} {(cosa) +1)7+ sinza)}]2
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Since Ze/® = w

. sin w sin w
ZH(@E?) =w — tan~! — tan~! —
(cosa) - 5) (cosa) + 5)

Example 5.33 A causal system is represented by the difference equation

ylnl + iy[n — ] =x[n]+ %x[n — 1]

use z-transform to determine the

(1) System function;
(2) Unit sample response of the system;
(3) Frequency response of the system.

Solution (1)

1+l 1 X[z]
2Z Z

| —

]
1+-z|Y[z]=

4
Y[z]
H = —
[z] X[2]
1_—1
_ [+
Hlz] = 1 %z*l]
)
1
Hig] = (z+ %)
(z+3)
Hizl (z+3) A A,
= 1 = — —|— I
z 2(z+3) 7z (z+3)
1 1
<Z+§> :A1<Z+Z> + Az
Substitute z = 0
A =2

Substitute 7 = —1

537
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1 1 _ 4 1 _ A — —1
S NG P
Z
H[z]=2— —+
[z] (z+i)

3
1
Hiz] = (z+ %)
(z+3)
H[e*] = (e’ +1) _ (cosw+ 4) + jsinw
(ef“’ + }1) (cosa) + %) + jsinw
' [(cosw + %)2 + sin? w]l/z
|H ()] = o
[(cosw + }T)Z + sin w]
JH(io) — tan-] sin w ~ tan-! sin w
(o) an (cosa) + %) a (cosw + %)

Example 5.34 Find the output of the system whose input-output is related by the
difference equation

5 1 1
yln] — gy[n — 1]+ gy[n —2]=x[n] - EX[n —1]

for the step input. Assume initial conditions to be zero.

Solution

(-4
Y[z] = X
[z] =50+ 17] [z]

For unit step input, X[z] = =5
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2]
Y =
=)
Yizl _ 2[z 3]
TG DE-DE-D
Z
S @-D-3)
A A,
BECED R

Substrate z = 1

Substrate z =

wi—

3z 1 z
Y[zl == — =
=y T2

_ 31n 1 /1\"
y[n]—[z() —§<§>i|u[n]

Example 5.35 Find the output response of the discrete-time system described by
the following difference equation

3 1
y[n] — Zy[n — 11+ gy[n —2] =x[n]

the initial conditions are y[—1] = 0 and y = [—2] = 1. The input x[n] = (é)n uln].

Solution Taking z-transform on both sides of the above equation we get
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3., 1,
Y[z]—Z[z Y[z]+y[—1]]+§[z Y[z]

+z7 Iy [=1] + y[-2]] = X[z]

3 z
1->z71+ —zz} Y[zl = —- +
s .
2_ 3,41
[Z 42Z + 8] Y[zl n z :
(z—3)
Y[z] Z z2
_ _— :

£ T EE-DE-D  E-DE-D6-D)

= Yi[z] + 12[z]
Yilz] = — ¢

8(z—3)(z—12)

Al A2

11 1 1
———=—A— A=
8 4 8

Substrate 7z = %
1,1
28 Py 2= 7y

S

Substitute z = %
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Substitute z = %

D (o oy,
16 *\a s5)\4 2) 2T

Substitute z = 1

YLzl 8 1 5 10 1
2lzl = 3 - -
3(z=35) (=31 3(—3)
z Z Z 5z 10 z
Y[z] = + - -
8(z—3) 4(c—3) 3(-35) (-3 3(-3)
__39 z 37z +§ Z

(] = 39 1”+37 1"+8 1\" ]
=T \E) Tr\z) Ta3\s) M
Example 5.36 Consider the following difference equation

yln]+2y[n — 114 2y[n — 2] = x[n]

The initial conditions are y[—1] = 0 and y = [—2] = 2. Find the step response of
the system.

Solution Taking z-transform on both sides of the above equation we get

X[zl = Yzl + 20z Y[z] + y[— 111 + 2[z Y [2] + 2" y[— 1] + y[-2]]
—4 4+ X[z] = [1 4+ 227" + 22727 [z]

2402 2
=(z+z+)Y

—4 4+ X[z] 5 [z]

Z

For step input X[z] =

Z
(z=1)
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PH2742=GC+1+)z+1—))
+14+)Gz+1—
(z N ])ITz] 44 %

72 z—1
_ (4-37)
=
Yiz] _ 2(4 —32)
2 @-DE+1+)+1—))
Ay A Aj

"o terir) Terio )
24 =321 = Al +22+2) + Az — Dz +1—j)
+As3(z—1D)(z+1+))

Substitute z = 1

1
1=A15; A]:g

Substitute z = —1 + j

(=14 NG =343 =As(—=14+j—D(=1+1+j+))
(—1+ DA+ j3) = A3(=2+ j)j2
V2/135°/10£71.56° = A3v/5/153.43°v/2290°
_ V22135°V/10£71.56°

P /5/153.43°4/2./90°
= 1/-36.87° = 1¢ /064

conjugate of Aj
— /0643

Ay

The exponentials of A; and A, are expressed in radians using 57.3° = 1 radian.

1 z €j0'6432 e‘j0'643z
Y[zl = -—= + — .
5—-1) z+1+j z+1—
1 /0643, 10643,
Y[z] = - + — + —
S(—=1)  (z4+2e%)  (z4+2e777)

Taking inverse z-transform we get
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1 . _ .
yln] = S 4 IO (el Ty 4 o= I063 (2 Ty

— 1 + (_ﬁ)n [ej(0.643+%n) + efj(0.643+%n)]
5

y[n] = [% 4 2(=/2)" cos (%n + 0.643)] uln]

Example 5.37 Solve the following difference equation:
y[n]+ 6y[n — 114+ 8y[n — 2] = S5x[n — 1] 4+ x[n — 2]
The initial conditions are y[—1] = 1 and y[—2] = 2. The input x[n] = u[n].
Solution Taking z-transform on both sides we get
14+6(z' Y[zl + y[—1D) + 8 Y[zl 4+ 2~ ' y[—11 + y[-2]) = [5z7" + z*1X[z]

For a causal signal u[n], x[—2], x[—1] are zero.

Z

146z +8721V[z] + (648271 +16) =[5z~ + 777

(z—=1)
B N e S
z (z=1D
(=222 4192+ 9)

z(z—1
Yzl (=222 419249

. @=-DE+2D(E+4)
A " Ap n A3
T @G- @42 4+
—2222 419249 =A1z+2)(z+4) + Asz— Dz +4)

+A3(z — D(z+2)

Substitute z = 1
—224+194+9=A13)(5); A =04
Substitute z = —2

—88 —384+9 = A(-3)(2); A, =195



544 5 The z-Transform Analysis of Discrete Time Signals and Systems
Substitute z = —4

352 — 76+ 9 = A3(=5)(=2); A3 =—419

0.4z Z Z
Y = 19— —419—
(<] (Z—1)+ 95(z+2) 9(z+4)

yln] = [0.4 4 19.5(=2)" — 41.9(—4)" ] u[n]

Example 5.38 Find the response of the LTID system described by the following
difference equation

yln+ 2]+ yln+ 114 0.24y[n] = x[n + 1] + 2x[n]
where x[n] = (%)"u[n] and all the initial conditions are zero.

Solution When the initial conditions are zero.

yin +2] PEN Y[zl
yin+ 1] <% z¥[z]
x[n + 1] <> zX[z]

The given difference equation can be written in the following form after taking z-
transform on both sides.

[2% + 2 +0.24]Y[2] = [z + 2] ——

(z—0.5)
(22 4+2+024) = (z +0.6)(z +0.4)
Ylz] (z+2)
7z (z—0.5)(z+0.6)(z+0.4)
Ay A, As

@05 G106 T Grod
(z4+2)=A1(z+0.6)(z+04)+ Ax(z—0.5)(z+0.4)
+A3(z —0.5)(z + 0.6)

Substitute z = 0.5

2.5 = A (1.1)(0.9); A =2.525
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Substitute z = —0.6

1.4 = Ay (—1.1)(—0.2); A, =6.36
Substitute z = —0.4

1.6 = A3(—0.9)(—0.2); A3 =—8.89

Z Z

Y[z] = 2.525 _ % _ggo—°
L2] z+06) z+04)

Z
—— +6.36
(z —0.5)

yln]l = [2.525(0.5)" +6.36(—0.6)" — 8.89(—0.4)"] uln]
Example 5.39 Consider the following difference equation
y[n+2] —Sy[n+ 1]+ 6y[n] = x[n + 1] + 4x[n]

The auxiliary conditions are as follows y[0] = 1 and y[1] = 2 and the input x[n] =
u[n]. Solve for y[n].

Solution
) 2
yln +2] «— z7Y[z] = z7y(0) — zy(D)
= 2*Y[z]—-2> -2z
yin+11 <& 2¥[z] — 2y[0]
= z¥V[z] -z
xln+ 1] <% zX[z] - 2x[0]
= zX[z]—z
Taking z-transform on both sides of the above equation and substituting X[z] = ==
we get
[ = 524 61 ) = 2 4 22 = 52+ (G +4) 5 2
(z—4)z—-1)+z2(z+4
() — 3)Y[z] = z=Hez-D+z2z+4
(z=1
Y[z] (2> —4z+38)
2 @-DE-2E-3)
Ay A, A3

B S P e
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(z2—4z+8) =Az—2)@ -3+ Aiz—DE—3)+ A3z —D(z—-2)
Substitute z = 1
1-44+8=A(-1)(-2); A =25
Substitute z = 2
4 -8+4+8=A(—1); Ay =—4
Substitute z = 3

9—12+4+8=A52)(1); A3=25

< <

= 2. - —4 2.
YRI=2350—) ey " =3

y[n] = [2.5 —4Q)" + 2.5(3)”] uln)
Example 5.40 Solve the following difference equation
yln + 2] —9y[n + 1] 4+ 20y[n] = 4x[n + 1] + 2x[n]

The input x[n] = (%)”u[n]. The initial conditions are y[—1] = 2 and y[—2] = 1.

Solution The given difference equation is in advanced operator form which requires
the knowledge of y[1] and y[2]. Therefore, the given equation is converted into delay
operator form as described below and the given initial condition is applied. Replacing
n with (n — 2), the given difference equation is converted as

y[n] —9y[n — 114+ 20y[n — 2] = 4x[n — 1] + 2x[n — 2]

Since the input is causal, x[—1] = x[—2] = 0. Taking z-transform on both sides of
the above equation we get

Yiz]l — 9z~ Y [zl + y[—111 + 20[z %Y [z] + z ' y[—1] + y[—2]]
=4[z X[2] + x[— 1]+ 2[z 2 X[2] + 2~ 'x[— 1]+ z2x[-2]1]

= [4z7' +22721X[z]

=[1-92""4+20772]Y[z] — 18 + 40z 7' + 20 = 4z ' + 2772 X[z]
[z2 — 97 4+ 20] y

- [zl = -2 440z + @4z '+ 227 X[z]
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Substitute (z2 — 9z +20) = (z — 4)(z — 5) and X[z] = =

Y[z] (22" —35z422)
z (z—=05Ez—-4HEz-73)
_ A1 A2 A3
~ (z—0.5) + (z—4) + (z—5)
(—2272=352422) = A1z — D@ — 5 + Ar(z — 0.5)(z — 5)

+A3(z —0.5)(z —4)

Substitute z = 0.5
—0.5—-175+22 = A;(-3.5)(—4.5); A =0.254
Substitute 7z = 4
—32—-140+22 = A,(3.5)(—1); Ay =42.86
Substitute z = 5

—50 — 175 + 22 = A3(4.5); Az = —45.1

02547 | 4286z 451z
S (z—-05  (z—-4 (-5

Y[z]

ylnl = [0.254(0.5)" + 42.86(4)" — 45.1(5)" uln]

5.14 Zero-Input and Zero State Response

The total solution of the difference equation is separated into zero input and zero state
components. The response due to the initial conditions alone (in the absence of the
input) is called zero input response. The response due to the input alone (assuming
that the initial conditions are zero) is called zero state response. The total response
is the sum of zero input response and zero state response. This is illustrated in the
following examples.

Example 5.41

y[nl +5y[n — 11+ 6y[n — 2] = x[n — 1] + 2x[n]
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where x[n] = u[n]. The initial conditions are y[—1] =1 and y[—2] = 0. Find
(a) Zero input response, (b) Zero state response, and (c) Total response.

Solution (a) Zero-Input Response

y[nl <% Yz
yin =11 <% 7Y [z] + y[-1]
yln —2] JEAN 27 2Y[z] 4+ 2 y[—11+ y[-2]

Assuming the input is zero, taking z-transform on both sides of the given equation
we get

Y[zl + 57 'Y [z] + y[—1]) + 6(z %Y [z]
+z7'y[=1]1+y[-2]) =0
A+5z7"+627)Y[z]+54+62"' =0
(z+2)(z+3) Yzl = — (52 +6)

> =

Z Z
Yiz] 5z+6)
7 (@4+2@+3)
A Ar

- (z+2) + (z+3)
—5z4+6)=A1(z+3)+ A(z+2)

Substitute z = —2

10—6=A1; A]

I
N

Substitute z = —3

]5—6=A2(—1), A2=—9

4z B 9z
(z+2) (@z+3)

Y[z] =

yln] = [4(=2)" — 9(=3)"] uln]

The initial condition can be easily checked as explained below. Substitute n =
-1
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[—u—4—L-—9Ci)
== 3

549

= _243=1
Substitute n = —2
[-2] = 4 ! 9!
O  CR e 2
—1-1=0

(b) Zero State Response Assuming the zero initial conditions and noting x[—1] =
0, we get

(14527 +6272Y[z] = 27 ' X[z] — x[—1] 4+ 2X[z]

2
wy[z] =[z7' 4+ 21X[z]

_Qz+1) 2
Tz (-1
Yiz] z2z+1)
: @=DE+2(E+3)
Ay A Az

P S P e )
2243 =A41z+2)z+3)+ Az — Dz +3)
+A3(z — D(z +2)

Substitute z = 1

1
2+1=A13)4); A =17

Substitute z = —2

8—2=A2(—3); A2 =-2
Substitute z = —3

15
18 =3 =A3(-H(=1); Asz= T

b4 2z 15 z

1
=y vt 703
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1 . 15 .
yinl =17 =2(=2)"+ - (=3)" juln]

(c) Total Response

Total response = Zero input response + Zero state response

1 15
y[n] =4(=2)" = 9(=3)" + 1 2(=2)" + Z(—3)n
_ 1 20y 21 3y
yln] = |:Z+ (=2)" - ?(— ) ]u[n]

5.15 Natural and Forced Response

In the total response, the response due to the characteristic modes are called forced
response. The terms which include characteristic modes (Eigen values) are called
natural response. In Example 5.41 the Eigen values are Ay = —2 and A, = —3. In
the total response y[n] = —u[n] is free from characteristic modes. Hence, it is the
forced response. This is 1llustrated in the following example.

Example 5.42 Consider the following difference equation
yln + 2] —6y[n + 1] + 8y[n] = x[n]

where x[n] = (}T)”u[n]. The initial conditions are y[0] =1 and y[1] = 2. Find
(a) Zero state response; (b) Zero input response; (c) Natural response; (d) Forced
response and (e) Total response.

Solution (a) Taking z-transform on both sides we get

X[z] = 22Y[z] — 22y[0] — zy[1] — 6{zY [z] — zy[0]} + 8Y[z]
X[z) =[z22 — 6z +8]Y[z] — 22 — 2z + 62

Substituting X[z] = and 72 — 6z + 8 = (z — 2)(z — 4) we get

0 25)

Z

(z—=2)(z—4YIz] =72 —4z7+ m

z = 2 and z = 4 are the Eigen values. If the initial conditions are zero we get
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Y[z] 1
. (=2 —4(z—0.25)
_ A1 A2 A3
C (z-2) * (z—4) + (z —0.25)
1=A4,z—4)(z—025 4 As(z — 2)(z — 0.25) + A3(z — 2)(z — 4)

Substitute z = 2

2
1=A(=2)(1.75); Al = —5
Substitute z = 4
2
1 =A,(2)(3.75); Ay = —
15
Substitute z = 0.25
1 = A5(—1.75)(=3.75); A—16
T e 7105

Let yos[n] denote zero state response and y;[n] denote zero input response.

N S S S S (N
W = T =2 T 15z —4 105 (z —0.25)

— -2+ 2@y + 2 025y
Yos[n] = [—5( '+ @+ 155029 }u[n]

(b) If we assume the input is zero, X[z] = 0

Yulzl (-4
2z (@=2@-49
Z
Yoilz] =
0i [Z] (Z — 2)

yoi[nl = (2)"uln]

(c) The total response y[n] is given by
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2 2 16
ylnl = yosln] + yoiln] = [—5(2)" + E(4)" + ﬁ(0-25)" + (2)"] uln]

105

5 2 16
=|=-2)"+ ="+ —(0.25)"
|:7()+15()+ ( )]u[n]
Natural response Forced response
Let us denote y,[n] and y¢[n] as the natural and forced responses respectively.

The natural response is the response which is due to the characteristic roots z = 2
and z = 4. The remaining portion of y[n] is the forced response.

[n] = E(0 25)"
yylnl = 752(0.25)"uln]

(d) The natural response is
[n] = 5(2)”+ > @)" [uln]
yuln] = 7 G uln

The forced response is

16 ;
vrlnl = E(O.ZS) uln]

(e) The total response is

[n] = [§(2)"+3(4)"+£(0 25)"} [n]
=13 15 105 utn

5.16 Difference Equation from System Function

Let the system function H[z] be expressed as

Y[z] Hlz] = boz" + bV M+ + by_1z+ by
X[z] N +aZN 1+ +ay_ 1z +an

Cross multiplying and operating z on Y[z] and X[z] we get

yin+Nl+ayln+ N —1]1+---+ay_1yln + 1]+ ayy[n]
=box[n+ N]+bix[n+ N —1]+---+by_1x[n + 1]+ byx[n] (5.58)
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Similar procedure has to be followed if the system frequency response H (e/®) is
given. Here ¢/ has to be treated as z. The following examples demonstrate the
above methods.

Example 5.43 For the system functions given below determine the difference equa-
tion

(1—-2z7"
H =
@ AR =TT T
=D
® A= ey
1
Hizl= ———
© HiE=

(Anna University, December, 2006)

(d) Consider the system consisting of the cascade of two LTI system with frequency
responses

2 — el
1
(T

H(e!”) =

Hy(e!”) =

Find the difference equation describing the overall system.
(Anna University, April, 2008)
(e) Writeadifference equation that characterizes a system whose frequency response
is

(1 — Lemio 4 e’3j‘”)

H(e!”) = i 4
R (P P P
(Anna University, May, 2007)
1-— -1
Solution (a) H[z] = (1 z )1
1——z-14 _,-2
( 2Z +4Z )

Y[z] (1—2z7"
X[zl (1-1z7141z72)

Y[z] - %Z_IY[Z] + %z‘ZY[z] = X[z] —z7'X[z]
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1 1
yln] — Ey[n — 1]+ Zy[n =2l =x[n] —x[n—1]

z-1
&) Hizl = o e =2
Yizl -1
X[zl @+DE-2)
G-
T (2—-2z-2)
22Y[z] — z¥[z] — 2Y[z] = zX[z] — X[z]
yln +2] = y[n + 1] = 2y[n] = x[n + 1] — x[n]
Y[z] 1
H = =
(c) H[z] X[zl (1 1 _1)
4Z
1 I”YH—M]
|: — ZZ i| 7]l = Z
1 -
y[n] — Zy[n — 1] = x[n]
(@) Hi(e’) = 355 and Hy(e7) = (vt my
; Y(jo) (2—e®)
H, H,(e/?) = =
1Hy(e’%) X(jo)  (1+ Le 7o) (1= Lejo 4 Le-i)
(2—e®)

l,—j 1 ,—j2 l,—j l ,—j2w 1 ,—j3w
= Jw = Jew = Jw £ J = J
(1 se77? + e + 5e 1€ + ge )

Y[e/”] [1 + ée—ﬂw] =2 —e/?1X[e/”]

1
yln] + gy[n — 3] =2x[n] — x[n — 1]

(l—e_j“’+e_3f“’)

Y[el® j
©) Xiemf = H(el®) =
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> S
1
2
x[n]
O el e -
wln] wln—1] wln—2]
1
‘2
Fig. 5.18 Block diagram of Example 5.44
} Y[e/®] = [1 — e + 7] X[e/*]

1 . 3 .

1 ——jo Z2jw

|: + 26 + 4e
1 3

ylnl+ Ey[n -1+ Zy[n —2] =x[n] —x[n — 1]+ x[n — 3]

Example 5.44 Obtain the difference equation for the block diagram shown in

Fig.5.18.
Solution From Fig.5.18, the following equations are written:

w[n] = x[n] — Ey[n]

Replace n by (n — 2)

wln —2] = x[n —2] — %y[n—Z]
ylnl = j—lx[n — 1]+ w[n —2]

lx[n —1]+x[n—2] - %y[n -2]

1 1
ylnl+ Ey[n —2]= ZX[n — 1]+ x[n —2]
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Summary

1. The z-transform for discrete-time signals and systems has been developed. This
resembles corresponding treatment of Laplace transform for continuous time
system.

2. A definite connection exists between Laplace transform, Fourier transform and
z-transform. The Laplace transform reduces to Fourier transform on the imagi-
nary axis in the s-plane. Then z-transform reduces to Fourier transform on the
unit circle in the complex z-plane.

3. For the causal signals system (right sided), the z-transform exists if the ROC
is exterior of the circle which passes through the outermost pole of the system
function. For the anti-causal signal and system (left sided) the z-transform exists
if the ROC is interior of the circle which passes through the innermost pole of
the system. For the right- and left-sided signals, the ROC is a ring which does
not include any pole of system function.

4. The application of the properties of z-transform very much simplifies the proce-
dure to determine z-transform and inverse z-transform.

5. For an LTID system to be causal, the system function should be rational and the
ROC is the exterior of the circle which passes through the outermost pole of the
system function H|[z].

6. An LTID system is said to be stable if the ROC of the system function H|[z]
includes the unit circle.

7. An LTID system is said to be causal and stable if all the poles of the system
function H [z] lie inside the unit circle in the z-plane.

8. Using the properties of z-transform, LTID systems described by constant
coefficient difference equation can be converted into algebraic equations and
easily analyzed. The solution obtained is classified as zero state response, zero
input response, natural response, and forced response.

9. An LTID system structure is realized using adders, multipliers, and unit delay.
System is realized in direct form-I, direct form-II, parallel form, cascade form,
and transposed form.

Exercise

L. Short Answer Type Questions
1. Define z-transform.
The z-transform of a discrete-time signal x[n] is defined as

o0

X[zl= ) xlnlz™"

n=—0oQ

where 7 is a complex variable.
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2. Define z -transform pair.
When the discrete-time signal x[n] is z-transformed it is expressed as

(o]

X[z1= ) x[nlz”™"

n=—0oo

If we want to recover x[n] form X[z], it is obtained using the following integra-
tion

1
x[n] = — f X[z]z" 'dz
27

This equation is called as inverse z-transform. The above two equations for
z-transform and inverse z-transform are called z-transform pair.

3. What do you understand by ROC of z -transform?
The range of values of z for which the function X[z] converges is called region
of convergence which is expressed in abbreviated form as ROC.

4. Mention the properties of ROC.

1. The ROC of X[z] is in the form of a ring in the z-plane which is centered
about the origin.

2. The ROC does not include any poles.

3. For the right-sided sequence x[n], the ROC is the exterior of the outermost
pole.

4. For the left-sided sequence x[n], the ROC is the interior of the innermost
pole.

5. If the sequence x[n] is two sided, then the ROC consist of a ring in the
z-plane.

5. What is the scaling property of z -transform?
If
x[n] <> X[z] ROC: R

then

a'x[n] «<— X [2] ROC: aR

By using multiplication property, the z-transform is obtained by replacing z by
% with ROC R replaced by aR.

6. What is the convolution property of z -transform?
If

xi[n] << X,[z] ROC:R,
x3[n] PEIN X>[z] ROC: R,
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10.

11.
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then

xi[n] % xa[n] <2 Xi[z]1Xalz] ROC: R, N R,

. What is difference property in the z -transform?

If
x[n] <% X[z] ROC: R

then

z dx|z]

nx[n] <— —z

ROC: R

. What are initial and final value theorems?

If x[n] = 0 for n < 0, then

x[0] = Lt X[z]

=0

is called initial value theorem. According to the finial value theorem if X[z] is
the z-transform x[n] and if all the poles of X[z] are inside the unit circle, then
the final value of x[n] = x[oc] is obtained form

x[oo] = gtl(z - DX[z]

. What do you understand by the time reversal property of z -transform?

If
x[n] PN X[z] ROC:R

then

z [ 1 ] 1
x[-n]<— X |- ROC: —
z R

Thus, the z-transform of the time reversal signal is obtained by replacing z by
its reciprocal and also its ROC by its reciprocal.
What do you understand by the causality of an LTID system?
An linear time invariant discrete-time system is said to be causal if the ROC
of the system function H|[z] is the exterior of the circle containing all the poles
of H[z].
What do you understand by stability of an LTID system?
An LTID system is said to be stable if the ROC of the system function H[z]
includes the unit circle in the z-plane.
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12.

13.

14.

15.

16.

17.

18.

19.

20.

When the system is said to be both causal and stable?

An LTID system is said to be both causal and stable if all the poles of the system
function H|[z] are inside the unit circle in the z-plane.

Define system function.

System function or transfer function H|[z] is defined as the ratio of the
z-transform of output sequence y[n] and the input sequence x[7]

Y

What is the z -transform of §[n — 2]?

S[n — 2] <2 772

What is the z -transform of u[r] and é[n]?

Z
(z—D

S[n] <> 1

uln] <i>

Find the z -transform of x[n] = u[n] — u[n — 5].

Z

1 — .3
(z—l)[ z77]

X[z] =

Write the relationship between z -transform and Fourier transform. The z-
transform reduces to Fourier transform on the unit circle in the complex z-plane.
Write the relationship between z -transform and Laplace transform. The
Laplace transform and z-transform are related as

e =z

X[s] = X[zl

z=e’
What is the inverse z -transform of X[Z]?

X [E] - a"x[n]
a
Find the system function of the following first-order difference equation
y[n] —2y[n — 1] = x[n] + x[n — 1]?
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Y[zl [+z7]
e =S = =2

_lz+1]

T z=2]

II. Long Answer Type Questions
1. Find the z-transform of the following sequence.

x[n] = [3""" = (=3)" uln]

272
X[z]==——— ROC: |z] > 3.

3z2-9)
2. Find the z-transform of
[ee)

1 1

- _ -n _ _2 n_—n

x[n] §3z +4(=2)"z
1 1
ROC: |z] > 2.

1
Xl=30= 9 " 3a5 2

3. Find the z-transform of

00 1 n+1
x[n] = Z (Z) z"

n=-1

1o ROC: 2] = |
_— . > —.
47y

4. Find the z-transform of

oo 1 —n+1
x[n] = Z (Z) "

n=1

I 1
X[z]=~+—— ROC: 2| < -
=3t =g
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5. Find the z-transform of

x[n] = (%}) uln — 4]

1
ROC: —.
2> 15

6. Find the z-transform of

(a) x[n] =10<n<9
=0 otherwise
b)  yln] =x[r]—x[n—1]

B a- Z—m) '
(2) X[z] = m ROC: |z] > 0
(b) Ylzl=1-z""" ROC:|z| >0

7. Find the unilateral z-transform and the ROC for the following sequences:

1 n
@ x[n] = (3) uln + 6]
(b) x[n] =38[n+ 4]+ 8[n] + (3)"ul[—-n]

1 In|
(© x[n] Z(Z)

1
(@) X[z] = m ROC: |z| > 6
(b) X[z]=4 ROC:allz

1 1
(© X[z] = m ROC: |z] > Z

8. By applying properties of z-transform find the z -transform of the following

z
; -~z
sequences given x[n] )



562

(a)

(b)

©

(d)

(e)
®)

Y[zl =

Y[z] =

Y[z] =

Y[z] =

Y[zl =

Y[z] =

5 The z-Transform Analysis of Discrete Time Signals and Systems

(@ ylr]l =x[n-3]

(b)  y[n] = nx[n]

() ylnl =x[n+1]+x[n-1]
(d) x[n] =2"x[n]

(e¢) x[n] =m—-2)x[n—-1]

®  x[n] =x[-n]

-2

@12 2Z 12 ROC: |z| < 2 (Time shifting property)
z
u (Differentiation property)
(2 +2)?
2
1
—EZZ i 2; (Time advancing and time delaying)
z
22 . .
m (Multiplying property)
—4
—( 212 (Time differentiation and time shifting)
z
ﬁ (Time reversal)
z

9. Find the z-transform of

(@) x[n] =2"u[n -2]
(b) x[n] = (‘—1‘) u[—n]

4772

(a) X[z] = m

(b) X[z] = m

10. Find the z-transform of

(@ x[n] =@ —duln-4]
(b)  x[n] =u[n] —uln—4]
() x[n] =@ —4Hduln]

(d)  x[r] =nluln] —uln - 4]]
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-3

(2) X[zl = (ZZ——I)Z ROC: |z| > 1

®  Xid= = Sl —zY ROC:|z| > 1
42

(© X[zl = % ROC: |z] > 1
_ -2 -3

@  Xpl=Z :_ ;;fz ) ROC: |2 > 1

11. Find the z-transform of the following sequence?

C-DE+D 2

12. Using convolution find y[n] given

J— 1 "
x[n] = (E) uln]
h[n] = (%) uln]

yln] = x[n] % hn]

\" 1\" 1
y[n] = [3 (5) -2 (§> :|u[n] ROC: |z] < 3

13. Using partial function find the inverse z-transform

3 | |
X[z] = > {;] ROC: 7 < 2| < 5

1-z"'+z7%)

H =
1= T a - zzha =4z

ROC:2 < |z| < 4

h[n] = - §(2)" uln] + 3(4)"14[—" — 1]
32 16
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14. Find the inverse z-transform of

using power series expansion?

1
(@ ROC: |z| > 1

1
(b) ROC: |z] < 1

1
P 3

()  x[n]l=1{...,2048, —512, —128, —32, —4}
T

0| =—

@  x[n]l= {4, 2, %

15. Consider the algebraic expression for the z-transform of x[n]

(1)

T -+ )

How many different ROCs could correspond the X[z]?

1
(a) ROC:|z| > 3

1

(b) ROC:0 < |z] < 7

(©)  ROC ! |z] !

o< < —

¢ 3 =3

16. Consider the algebraic expression for the z-transform of x[r]

(1+z7"+4z72)

S A U= G )

ROC: |z]| > %. Find whether the system is causal and stable. X[z] is rational

and the poles are at 7 = %, 7= %, and z = %. Since the ROC is exterior of the

outermost pole the system is causal. The ROC includes unit circle and the poles
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17.

18.

19.

20.

are inside the unit circle. The system is stable. Therefore the system is causal
and stable.

A system with impulse response k[r] = 5(3)"u[n — 1] produces on output
y[n] = (—4)"u[n — 1].Determine the input x[n].

x[n] = é [(=4)"uln] — 3(=4)""uln — 1]] ROC: |z| > 4
Consider the following difference equation.
yn]l = yln —1] = 2y[n - 2] = x[n] + 2x[n — 1]
The initial conditions are y[—1] = 1and y[—2] = 2. The input x[r] = u[n].

Find (a) Zero input response, (b) Zero state response, (c) Natural response,
(d) Forced response, and (e) Total response.

(a) yoilnl = [(=1)" 4+ 4(2)" Juln]
1 8 3
(b) yos[n] = [—g(—l)" + 5(2)” - 5] uln]

© yuln] = —%u[n]

5 20
(@ yrlnl = [8(—1)" + ?(2)"} uln]

3.5 .2,
(e Yootal[] = [_5 + g(—l) + ?(2) ] uln]

Consider the causal LTID system represented in block diagram shown in
Fig.5.19. (a) Determine the difference equation relating the output y[n] and
input x[n] and (b) Is the system stable?

(a)
n ——1 ”_1 +_1 11—2 = X|n _SX ’l_l + ;x ”_2

(b) The ROC includes unit circle and the poles of system function are within
unit circle. Hence, the system is stable.

For each of the following difference equations determine the output response
y[n]?
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Fig. 5.19 Block diagram of Problem 19

(@) y[n] —4y[n —1] =x[n] with y[-1] = 2 and x[n] = (;) uln]

1 1
(b)  ylnl+ 3y[n — 1] =x[n] - gx[n -1]
with y[—1] =1 and x[n] = u[n]



Chapter 6 ®)
State Space Modeling and Analysis st

Chapter Objectives

e To define the state of a system.

o To represent the mechanical systems and electrical networks by state equa-
tions.

e To convert transfer function model to state space model of continuous-time
system.

e To find the solution of the state equation of continuous-time system.

e To represent the discrete-time system by state equations.

6.1 Introduction

The transfer function (T.F.) model, for quite a long time, was used for the analysis
and design of linear time invariant continuous time systems. However, this model
has many limitations in that it is expressed as a ratio of output to input variables
and thus the internal behavior of the system is hidden. Further, the T.F. method is
valid only for linear systems with initial conditions being zero. It is powerless for
non-linear, time varying and multi-input and multi-output (MIMO) systems. It is
also difficult to handle large-scale complex systems with transfer function model.
Furthermore, system design modeling by T.F. is based on trial and error procedure
which in general will not lead to optimal control systems. All these limitations are
overcome by representing the system in state space model. This is a differential
(or difference) equation model which is expressed in n first-order equations which
are written in a specific format. The model is valid for linear, non-linear, and time
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varying systems and also when initial conditions are not zero. Unlike the T.F. model,
it gives a complete description of the internal behavior of all physical variables in the
system. In this chapter, we first develop state space model of mechanical systems and
electrical networks followed by the conversion of T.F. model to state space model.
The solution of state equation is derived and illustrated by simple examples. Finally,
discrete-time system represented by the difference equation is converted into state
equations.

6.2 The State of a System and State Equation
of Continuous-Time System

For a linear continuous-time system, the state of a system is defined as the min-
imum number of initial conditions that must be specified at any initial time
ty so that the complete dynamic behavior of the system at any time ¢ > #, is
determined when the input x (¢) is known.

When the input x(¢) is applied, the future states of the system, for # > 7, also
change and we can uniquely determine these states. Since the states of the system
vary with respect to time we call these variables as state variables.

The number of state variables depends on the dynamic model selected to describe
the physical systems. For a system described by nth-order differential equation,
there will be n state variables. If these n state variables form the coordinates of a
n-dimensional vector space, it is known as state space. For a continuous-time system
described by nth-order differential equation, if the variables which represent the states
are chosen less than n, then the system is not fully represented and information about
the missing states will not be known. Similarly, if the states are chosen more than
n, then some of the states chosen are redundant and they can always be expressed
in terms of other known states. Hence, for an nth-order model of a system, it is
necessary strictly to choose only n appropriate states and they are represented by n
first-order equations together with the input.

6.3 Vector-Matrix Differential Equation
of Continuous-Time System

State variable equations, whether linear or non-linear, are expressed in the time
domain by using compact vector—matrix notations. These equations are called
vector-matrix differential equations. The standard form of representing these state
equations for a continuous-time system is

q(t) = Aq(t) + Bx(1) (6.1)
y(#) = Cq(t) + Dx(1) 6.2)
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> D

+
20 L3O OF ¢ e
+
L A ”

Fig. 6.1 Block diagram representation of state Egs. (6.1) and (6.2)

v
o

Equation (6.1) is called the state equation and Eq.(6.2) is called output equation.
Equations (6.1) and (6.2) together describe the system dynamics and they are called
vector—matrix differential equations.

In Egs. (6.1) and (6.2),

q(t) = State vector (n x 1 dimension)

y(t) = Output vector (p x 1 dimension)

x(t) =Input vector (r x 1 dimension)

A = State matrix (n x n dimension)

B =Input matrix (n x r dimension)

C = Output matrix (p x n dimension)

D = Direct transmission matrix (p x r dimension)

A block diagram representation of Egs. (6.1) and (6.2) is shown in Fig.6.1.

Depending upon the dimensions of the vector ¢, x, and y, the appropriate dimen-
sions of the matrices, A, B, and C are chosen. In most of the practical applications,
the direct transmission of input x (¢) to the output y(¢) is not done, and hence D = 0.
In forming the state Eq. (6.1), it is to be observed that only the first derivative of g (¢)
appears on the left side of the equation and no derivative of ¢ (¢) appears on the right
side. The right side of the equation contains only the states and input. The following
examples illustrate the method of forming state equations.

6.3.1 State Equations for Mechanical Systems

The dynamic equations of mechanical systems are written from the free body dia-
gram. The physical variables such as displacement, velocity, etc., are chosen as the
states and for each state variable the equation for its first derivative is obtained and
converted in the format of Eq. (6.1).

Example 6.1 For the mechanical system shown in Fig. 6.2a, form the state equation.



570 6 State Space Modeling and Analysis

(@ (b)

——— M —f0

PO 0 kp+]

Mechanical System Free Body Diagram

Fig. 6.2 Mechanical system and its free body diagram

Solution

1.

2.

The mechanical system is shown in Fig. 6.2a. Its free body diagram is shown in
Fig.6.2b.

p is the displacement of mass M and f(¢) is the force applied. In the free body
diagram, the opposing forces act in the direction opposite to the direction of
motion.

. From Fig. 6.2b, the following dynamic equations for the given mechanical system

are written: 5
d°p dp
M—+B— +Kp = f(t 6.3
5t B+ Kp=f0) (6.3)
Let us choose the displacement p, which is the physical variable in the mechanical
system as one state variable. Thus,

P =qr) (6.4)

dp .
= t
” q1(1)

Let us choose the velocity ‘2—’; as the second state variable. Thus,

d
L =0 =00 (6.5)

Equation (6.3), gives a complete description of the given mechanical system and
it is a second-order system. Therefore, there should be two states and two-state

equations. Equation (6.5) represents one state equation. Similar to that, we should
obtain an equation for ¢, (7).
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7.

Now consider Eq. (6.3). By substituting p = ¢, (¢), d—’t’ =¢gy(t) and f(t) = x(1),
we get
My (t) + Bqa (1) + Kqi(t) = x(1)

Solving for g, (1), we get

) = — g0 - Z g0+ 20 (6.6)
qa(1) = MCII qu Mx .
. From Egs. (6.5) and (6.6), the following vector—matrix differential equation is
formed.
a0l 0 1 1Tqm 0
, =l¢g®Ol=| K B +| 1 |x@) (6.7)
42(1) v md Le® v
~————
A B
In Eq. (6.7),
0 1 0
A= K B and B=| 1
M M M

Note that A matrix is a square matrix. In the examples to follow, for convenience,
the state variables are denoted as g instead of ¢ (z).

Example 6.2 Consider the mechanical system shown in Fig.6.3a. From the state
equation, the displacement plus velocity of mass M is taken as the output.

Solution

1.

The mechanical system is represented in Fig.6.3a and its free body diagram in
Fig.6.3b. The mass M is given a displacement of p,. The point A moves with a
displacement p;.

From free body diagram, the following equations are written:

M py + B(p2 — p1) + Kapr = f(1) (6.8)
B(pr—p)+Kipr=0 (6.9)

The following state variables are chosen
P2 =qi

P2=q
P1=4g3
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(a) (b)

A0 Mp,  Bpy—p)

| ]

M
Ky
K, Kip B(p, —p))
A
Mechani cal System Free Body Diagram

Fig. 6.3 Mechanical system and its free body diagram

The equations for the first derivatives of g;, g2, and g3 are to be obtained.

G1=p2=q
Mg, + Kiq3 + Kxg1 = x(1)
1 = — 2 ud +1 ()
92 = MCI1 M613 Mx
Bg; — Bgx + K193 =0
. K
‘I3=612—EQ3
Thus,
01 0 7r, 0
K20 K 1
an=| M M |||+ [x®
M
0 1—& q3 0
B ——
—_—
A B

The output y is given by
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(a)
|—>P2 |—>P1
T
B, i
I
i |
Kl
M, FTO0 M —
— 0000 O O
K,
Mechani cal System
(b)
Ki(py—p1) «—]
. My —— f0) M,
32]72 —
MyPy Ki(py —py) +—
Free Body Diagrams

Fig. 6.4 Mechanical system and its free body diagrams

q1

y=[1 1 0]|q
——

C q3

Example 6.3 Consider the mechanical system shown in Fig. 6.4a. Form the state
equation.

Solution
1. The mechanical system is shown in Fig. 6.4a and its free body diagram in Fig. 6.4b.

2. From Fig. 6.4b, the following dynamic equations are written:

Mypr+ Brpo + Kopr + Ki(pa — p1) = f(2) (6.10)
Mpr+ Ki(pr —p2) =0 (6.11)
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3. The following state variables are chosen

q1 = P1
42 = 41 = P
q3 = D2
4s =43 = p2

4. The first derivatives ¢; and g3 are known. The first derivatives ¢, and ¢4 are
obtained from Eqs. (6.11) and (6.10) respectively and they are given below:

S P (6.12)
q> = Mlql M, q3 .
. K (K1 + K3) B> 1

— e —f(t 6.13
q4 qul M q3 qu“ + sz( ) (6.13)

5. The vector—matrix differential equation is thus obtained as

01 0 0 0

) — 1 1

q(t) = 0 0 0 1 g)+| o |x@®
K (K1 +K>2) B 1
S WO S B e [;
M2 M2 M2 2

Example 6.4 For the mechanical system shown in Fig. 6.5, obtain the state space
model.

Solution

1. Ahybrid mechanical system which is a combination of translational and rotational
systems is shown in Fig. 6.5. Just by inspection, the following dynamic equations
o are written:

T(t) = Bi(6; — 62) + K1 (6 — 62) (6.14)

Also
T(t) = J6, + By, +r(Mp + B3p + Kap) (6.15)

Substituting p = r6, in Eq.(6.15), we get
T(t) = (J +r*M)b, + (By + r*B3)6, + r* K36, (6.16)

3. The following state variables are chosen
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K,

() AIL ’ J Z;l_
'J 0, \ 2

lp

By | K,

Fig. 6.5 A hybrid mechanical system

q1 =0
q@ =0
G=6b=a¢

4. The derivatives of ¢; and ¢ are obtained from Egs. (6.14) and (6.16) and are given
as

. K, K, 1

q = —B—1611 + B, —q@+q3+ B—IT(I)
92 = q3

. Ky B,

q3 = — Jeq 2 Jeo Jed

where J., = (J +r>M); B,y = (B, +r*B3) and K., = r*K;

kK 1
B, B B
go=| 0 0 L olgoy+| 0 |[x@
o _Keg Bey 1
Tog  Jeg J
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R L

v@(i) Ve __ C

Fig. 6.6 R-L-C series circuit

6.3.2 State Equations for Electrical Circuits

The number of independent energy-storing elements in the electrical circuit deter-
mine the number of state variables. The capacitor and inductor are the two energy-
storing elements in electrical circuits. The physical variables namely the current
through the inductor and voltages across the capacitor are chosen as the states vari-
ables. The following steps are followed while forming the state space equations for
electrical circuits.

1. Choose all independent inductor currents and the capacitor voltages as the state
variables.

2. The state variables and their first derivatives are expressed in terms of a set of
loop circuits.

3. Write loop equations and eliminate all variables other than the state variables and
their first derivatives.

The following examples illustrate the method of forming state equations for electrical
networks.

Example 6.5 Write the state equations for the network shown in Fig. 6.6.
Solution

1. Let i be the current passing through the inductor L and v¢ be the voltage across
the capacitor C. These variables are chosen as state variables.

Q=i
6]2 = V¢
2. The following loop equation is written

Ldi + Ri + (1)
— 1+ve=v
dt
R

1 1
= — g — —q + (e 6.17
q AL Lq2+LV() (6.17)



6.3 Vector-Matrix Differential Equation of Continuous-Time System 577

W) C_D R ve T C

Fig. 6.7 Electrical circuit of Example 6.6

Also
L[
ve =— | idt
C
Differentiating both sides, we get
. 1.
Ve = —i
C
= (6.18)
92 = qu .

3. Equations (6.17) and (6.18) represent the first derivatives of the chosen states.
Hence,

R 1 1
qn=| F Llao+| T [vo
rol 0 0

Example 6.6 For the electrical network shown in Fig. 6.7, form the state equation.

Solution
1. Let i be the current passing through the inductor L and v, be the voltage across
the capacitor C. These variables are taken as the state variables. Thus,
Q=i
q2 = Ve
2. The following loop equation connecting L and C is written

Ldi + (1)
4y, =
dt v

. 1 1
=T + ZV(I) (6.19)
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/\;{/(\l/\ i v /b%%\ i v
B L is
+
W) <_> C,”_025F G, _05F R, CT)
iS
1Q
Fig. 6.8 Electrical network of Example 6.7
3. Also
l.=1—1
CdvC . Ve
dt R
1 1
nh=—q| — — 6.20
@ =G~ pr0 (6.20)

1
0 —— !
qn=|, L lao+|L |vo)
S — 0
C RC

Example 6.7 For the electrical network shown in Fig. 6.8, form the state equations.

Solution

1. There are three energy-storing elements, namely L, Cj, and C,, and they are
independently connected and there should be three state variables. The following
state variables are chosen.

q1 =V
q2 ="
q3 = i3

2. The first derivative of these variables is obtained as follows. At v node,

i =iy +is
v—vy) dvi .
=C|—

R ldt + 13
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dv; 1 1, . 1
—_— = Vi — —i3+ —v
i ~ RC GO TRCG
1 1 1
= — — 6.21
q1 RGN T B + RC, (6.21)
3. At note v;, the following equation is written
is+is =i4+1is
dV2 %)
= ZE + R—2
Substituting the state variables, we get
. . 92
s = C -
gz +1 2q> + R
' AR DA (6.22)
= — — .
92 R.Cs q2 C, q93 C,
4. The voltage drop across the inductor L is
Ldi3
— =y =V
i 11— W2
. ! (6.23)
q3 = qu qu .
5. Combining Egs. (6.21), (6.22) and (6.23), we get
1 1 1 o
— - 0 v
R, Cy o R.C,
= o —— L lqo+ !
1 R, Gy G I 0 S
L1y 0o oL
L L

Substituting the numerical values, we get

1 0 —4 107 [v@)
Ggo=|0 -2 2 |gr+]02
0.5-0.5 0 00| |is0

Example 6.8 For the electrical network shown in Fig. 6.9, form the vector—matrix
differential equation.
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v, () Cf) C_D V(1)

G

Va4
l iy=(i;+i3)

Fig. 6.9 Electrical network of Example 6.8

Solution

1. There are four energy-storing elements, namely L, L,, C;, and C;,. Hence,
four state variables, the current through the inductors and the voltages across the
capacitors are chosen. Thus,

q1 =i
g = I3
q3 =Vv3
gs =4

The dimension of A matrix is 4 x 4. Since there are two inputs namely v;(¢) and
v, (1), the dimension of B matrix is 3 x 2.
2. The following loop equation is written connecting v, (¢), Ry, Ly, R, and C5.

di
wm=L5#+n&+arH9&+m

(R; + Ry R 1 1
e T R (R (10 (6.24)
1 1

@ = L L2

3. The following loop equation is written connecting v,(¢), L,, C;, R,, and C,.

di
va(t) = Ly— +v3 + (iy + i3)Ry + vy

dt
T P L S ()
92 = qul quz L2q3 L2614 L2V .

4. For the capacitance Cj, the following equation is written
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Fig. 6.10 Electrical network of Example 6.9

dvy .

ldt =13
73 = ! (6.26)
‘13—C1612 .

5. For the capacitance C,, the following equation is written

dvs . .
C2W =i +i3
1 1

14 = — — 6.27
q4 Cqu + C242 (6.27)

6. Combination Egs. (6.24)—(6.26) and (6.27) the following vector—matrix differen-
tial equation is obtained

_(RIZLlRﬁ _% 0 _LLI - 0 vi(t)
R _R _1 _1 0o L
§(1) = Lo L L Lign+| I
0 & 0 0 00

c% CLz 0 0 00 va(t)

Example 6.9 Develop the state model for the electrical network shown in
Fig.6.10.

(Anna University, April, 2004)

Solution

1. There are two energy-storing elements, L and C. The current i; through L; and
voltage v, across C are chosen as the state variables. Thus,

q1 =1

q2 = Ve
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2. The following equation is written connecting Ry, R;, and C.

Ve +iaRy = (i1 — i) Ry
R1 Ve

ih = Iy — (6.28)
(Ri+R) (Ri+R)
The following equation is written connecting ¢;, L, C, and R;.
diy .
e =L— +v.+ iR
dt
di RiR R
_ Li v+ iy Vg
dt R+ R, (Rl + R2)
‘ RiRa 42 LCHNN DAL (6.29)
= - - —— —e; .
NIRRT T\ R TRy )T LY
3. For the capacitor C, the following equation is written
dve . 1Ry Ve
2 i, = _
di ~ 7 (Ri+R) (R +Ry)
. R, 1
G = (6.30)

TCRi+ R T CR + R ™

4. Combining Egs. (6.29) and (6.30), we get

__(RiRy) 1( Ry  _ 1) 1
. L(R\+Ry) L \ Ri+R L
gay=| O EARTE q(1) + [o}"
R S [N
CRI+R2) CRI+R)

Substituting the numerical value, we get
3
—= 0.5
=7 “lao+ e;
3 0

ey = i2R2
RiRy . Ve
i
Ri+R ' R +R

wiw |G

5. The output

1
= —(15¢, —
8( q1 — q2)

1 q1
=e¢y=-[15—-1
Y=< 8[ ] I:CI2:|
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6.4 State Equations from Transfer Function

State equations can be easily obtained from the transfer function of the system.
Consider the first-order system with the following transfer function:

10
(s +a)

H(s) =

The system realization is shown in Fig.6.11.
From Fig.6.11, the following equations are derived.

g =—-aq+x
y = 10g (6.31)

The output of each integrator ( %) is chosen as one state variable. Thus, for an nth-
order system, n integrators are required. The following methods of realization are
used to determine the state equation. They are

1. The direct form-II.
2. The cascade form.
3. The parallel form.

Example 6.10 Determine the state space model of a continuous-time system whose
transfer function is given by

352 + 245 + 44

H =
) = (1257 + 445 + 48)

Use the following methods:

(a) The direct form-II.
(b) The cascade form.
(c) The parallel form.

Show that the A matrix is not unique for the given system.

Fig. 6.11 First-order T.F. X @ g

realization P
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x() @ s o)

D M4
3 J‘ < > '\2
9 | ©

—48 44
9

A
Y

352 4 24s + 44

Fig. 6.12 Direct form-II realization of H(s) =
& ) = 33 1252 1 445 1 48)

Solution

(a) The Direct Form-II

352 4 24s + 44
(s3 + 1252 + 445 + 48)

H(s) =

The above equation can be written as

3 24 44
s + 52 + 53

1412l el 4+ 8

H(s)

Here,bg = 0;b; =3; by, =24; b3 = 44;a; = 12; a, = 44; a3 = 48. The direct
form-II realization of H (s) is shown in Fig.6.12. From Fig. 6.12, the following
equations are written:

491 =q2
42 =q3
g3 = —48q; — 44q; — 12g3 + x(1)
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(6.32)

—6 | 2.845 -2 3
,,,,,,,, I R
Hz(S) H3(9)
Fig. 6.13 The cascade realization of H (s) = 3(s +5.155)(s +2.845)
(s +H(s+6)(s+2)
The state equation for H (s) is therefore written as
0o 1 0 0
gty=1 0 0 1 [qg®&)+|0]|x@®
—48 —44 —12 1
N e’ -
A "B

Also from Fig. 6.12, the output y(¢) is obtained as

y(t) = 444 + 24, + 3q3

y(t) = [44 243 Jq(@)
C

(b) The Cascade Form

352 4 245 + 44
(s3 + 1252 + 445 + 48)

H(s) =

The above equation can be written as

Hes) (s +5.155) (s +2.845) 1
6+4)  +6) “(+2)
= H] (S)Hz(S)H3(S)

The cascade form realization is shown in Fig.6.13.

From Fig. 6.13, the following equations are for the first derivatives of the states
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g1 = —4q +x()

[

43

—6g2 + g1 + 5.155¢;

—6q2 —4q1 + x(t) + 5.155¢q;

1.155q; — 6> + x(t)

—2g3 + ¢ + 2.8455¢,

—2q3 + 1.155g1 — 6q> + x(t) + 2.845q>

g3 = 1.155q; — 3.155¢> — 2g3 + x(t)

y() = 3q3

The state equations are given below:

q() =

—4 0 0 1
1.155 -6 0 |g@®)+|1]|x@) (6.33)
1.155 =3.155 -2 1

y@) =10 0 3]q(@)

(¢) The Parallel Form Realization

H(s) =

352 4 24s + 44
(83 + 1252 + 445 + 48)
. 352 + 245 + 44
T+ +6)
1 1 1
612 s+ T G610
= Hi(s) + Hy(s) + Hs(s)

The parallel form realization of H (s) is shown in Fig. 6.14. From Fig. 6.14, the
following equations are written for the first derivatives of the states

g1 = —2q1 +x()
G2 = —4q2 + x(1)
g3 = —6q;3 + x(1)
YO =g +q+q;

-2 0 0 1
gt)=10 =4 0 [g@)+|1]|x@) (6.34)
0 0 -6 1

y@)=[1 1 T]q()
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x(0)

s 20
1 ( >

—y

Fig. 6.14 The parallel form realization of H (s)

Equations (6.32), (6.33) and (6.34) give the state space description of the system
T.F. and the system A matrices are not unique. But all of them will give the
same characteristics of the system. In parallel form representation, the eigen
values of the system T.F. form the diagonal elements of the A matrix.

Example 6.11 Consider the following T.F. of a certain system

10(s + 2)

HO) = a6 19

Determine A, B, and C matrices using parallel form realization.
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91 q
— 1 s L 2 >
5
—35
N
+ \t
x(7) + L)
+x<
80
9
< : > ds
1
S
el
—4 ‘ 36
< P >
Fig. 6.15 The parallel form realization of H (s) for Example 6.11
Solution
10 2
H(s) = (s +2)
S2(s + D2 (s +4)
A A A A A
=5+ R R (6.35)
s s (s+1 s+1) (+4

The residues A, Ay, Az, A4, and As are determined by any one method discussed
in previous chapters and are given below:

80 5
—; A3=—; As=—7; d As=——
g BT T WA

36
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351 5 80 1 10 1 5 1
H()=——-

249 19 2L 636
i 2t oern T 3o wern (O30

Equation (6.36) is represented in Fig.6.15. From Fig. 6.15, the following equations
in terms of state variables

g1 = x()

g2 = q1

43 = —q3 + x(1)
44 =q3 — qa

gs = —4qs + x(1)

10 5

(1) = DS g+
yu) = 4 q1 q2 9 q3 3 q4 36%

The above equations are written in vector—matrix differential equation form as

000 0 0 B
100 0 0 0
gy =100-10 0 |qgo)+|1]|x0
001 —10 0
000 0 —4 1
35 80 10 5
y(t)—_ 1 9 3 36_6]0)

6.4.1 General Case of Representation

The state space description can be done in several ways. However, the state variables
obtained from direct form II are quite convenient since the state equations can be
immediately written just by inspection of the transfer function. Consider the general
Nth-order transfer function given below:

bos™ + bisN T 4 bosV 2+ by

sV +apsVN=1 4+ apsN=2 4 ... +ay
(bo+2+%+ -+ %)

B (FET T T (©37

s

H(s) =

Equation (6.37) is realized in direct form II structure and is shown in Fig. 6.16. From
Fig.6.16, the following equation for the state variable is written:
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<E> D)

<
<

—ay 91 by

Fig. 6.16 Direct form II realization of Nth-order LTIC system

q1 = q2
9 =q3
43 = qa4
gn—1 = qn

gn = —anqi — aN-1qa, ..., —dagn—1 — aiqn + x(t) (6.38)
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y(t) = bygi +bn_1g2 + -+ - + bigy + bogn
= (by — boan)q1 + (bx—1 — boan—1)g2 + - - -
+(b1 — boar)gn + box(t) (6.39)

Equations (6.38) and (6.39) can be represented in matrix form as given below:

o 1 0 -0 07l a 0
0 1 w0 0 || o 0
gy =| : : SRR ol x®
0 0 0 v ... 1 gn-1 0
—ay —ay-1| —ay-2 -+ —ay —aj qn 1
y(t) = [(by — boan)(bn—1 — boan—1) ... (b1 — boar)lq + box(t)
=[bx by-1...b1lg + box(1) (6.40)

where by = (by — bpay). The A matrix given in Eq. (6.40) is said to be in phase
variable canonical form.

6.4.2 Step by Step Procedure to Determine A, B and C
Matrices

1. If the system is described by linear differential equation, convert that into T.F.
form. Find the coefficients of numerator polynomial by, by, ..., by and the coef-
ficients of the denominator polynomials ag, ay, ..., ay.

2. The elements of A matrix are written in phase variable canonical form. The
elements of the last row are written in the reverse order with a negative sign as
—ay, —dy—_1, ..., —az, d;. The elements of B matrix and identified with Os in
all the rows and 1 in the last row.

3. The elements of C matrix are identified as given in Eq. (6.40). To remember this
in an easier way, the elements of the first column are obtained from the product
boay being subtracted from by, the second column from the product bpay 1 being
subtracted from by _; and so on. This can be easily viewed from Fig. 6.16. For
the state g, the right side branch gain is by . The left side branch gain after being
multiplied by by is —bgay. The sum of these two is (by — bpay). Similarly, the
second column of C is obtained which corresponds to the state g,. This is nothing
but (by 1 — boan—1).

Example 6.12 Consider the following differential equation which describes the
dynamics of a continuous-time system

d*y d*y d*y dy dx(t)
580 o0 49Y 7— 8y = =8 L g
g + 773 + 12 + + ar + 7x(2)
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Form the state space equation.
Solution

d*y d*y d*y dy dx(t)
5— +2—+4—+T7—+8y=8—-+Tx(t
dr* + dr3 + dt? + dt Oy dt +7x(0)

Taking Laplace transform on both sides of the above equation, we get

H(s) = Y(s) _ i (8S—£{1—7) i i
X(s) S(s*+ 323+ 324+1Is+ %)
where
by=0, by =0, b, =0, b3=§, b4=z, alzz, azzi, a3=z, (14:§
5 5 5 5 5 5

0O 1 0 O 0
... [0 0 1 0 0
q() 0O 0 0 1 q@) + 0 x(1)
_8 _ 7 _4_2 1
5 5 5 5
7
b4—b4—b0a4—§
8
b3=b3—b0a3=§

52:1)2—170(12:0

51=b]—b0611=0
1

y=2[7 8 0 0Olqg
S_xc—“

Example 6.13 Consider the following T.F. of a certain continuous-time system

783+ 1152 + 145 + 10

H =
(<) $3+8s2+5s+4

Form the state equations.
Solution

753 + 115> + 145 + 10

H =
(<) s34+ 8s2+5s+4

where
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bo=7, b1=11, b2=14, b3=10, a1=8, 61225, (13:4.

01 0 0
gt)y=10 0 1 |g@®)+|0|x@®
—4 -5 -8 1

by = (b3 — boaz) = (10 — 28) = —18
by = (by — boay) = (14 —35) = —21
by = (b — boa;) = (11 — 56) = —45
y=[-18 —21 —45]qg+7x(t)

6.5 Transfer Function of Continuous-Time System
from State Equations

Consider the state Egs. (6.1) and (6.2)

q(t) = Aq(t) + Bx(t)
y() = Cq(t) + Dx(1)

Let the initial conditions be zero. Taking Laplace transform on both sides of the
above equations, we get

[sI —A]Q(s) = BX(s)
Pre-multiplying both sides by [s/ — A]™", we get
Q(s) = [sI — A]"'BX(s) (6.41)
Similarly,
Y(s) = CO(s) + DX(s) = C[sI — A]"'BX(s) + DX (s)

Y(s)
X(s)

=H(s)=C[s] —Al"'B+ D (6.42)

[s] — A]"! is called the state transition matrix (STM). In Eq.(6.42),

[s] — A]"! Adjoint [s] — A]
S — =
Determinant [s] — A]
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Example 6.14 Consider the following state equations

. =31 1

q= [_2 0} q+ [O] q()

y=1[0 1lg()

Determine the system function.

Solution

q=[j(ﬂq+[<l)]q

y=1[0 llg
[ +3) -1
(sI—A)_[ : S}
_ -1 _ 1 _S 1
sf—A)" = s+ D(s+2)|—2 (S+3)i|

“1p _ 1 [ N 1 1
G- = e 26+ 3)} [0}

_ ! }
A+ Ds+2) |2

Y(s) —1
H(s) = X = C[sI — A]"'B
- oyl
s+ D(s +2)[ ] [—2}
-2
H(s) =

s+Ds+2)

6.6 Solution of State Equations

The state equations of a linear time invariant system are solved in both time and
frequency domains. In the frequency domain, the Laplace transform method is used.
These two methods are discussed below.
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6.6.1 Laplace Transform Solution of State Equations

Consider the vector—matrix differential equation of (6.1)
G = Aq + Bx(t)
Taking Laplace transform on both sides of the above equation, we get

sQ(s) —q(0) = AQ(s) + BX(s)
(sI —A)Q(s) = q(0) + BX(s) (6.43)

Pre-multiplying both sides of Eq.(6.43) by [s] — A]™!, we get

0(s) = [sI — A1 '[¢(0) + BX (s)]
= ¢(5)[q(0) + BX(s)] (6.44)

where

d(s) =[sI — Al (6.45)
O(s) = ¢(5)q(0) + ¢ (s)BX (s)

Taking the inverse Laplace transform, we get
q(0) = L7 [¢($)g(O] + L™ [$ () BX ()] (6.46)

¢ (s) defined in Eq.(6.45) is the STM. In Eq.(6.46) L~'[¢(s)g(0)] gives the zero
input response and L~ '[¢ (s) BX (s)] gives zero state response.

Example 6.15 A certain system is described by the following state equation:
G = Aq + Bx(t)

where

A= [:;(ﬂ; B = [5]; x(t) = u(r)

The initial conditions are ¢;(0) = 1 and ¢,(0) = —1. Find STM and hence ¢(¢).
Also find y(¢) if C = [0 1].
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Solution
. =31 1
NG
s +3)1
(sI —A) = |: ) S]
The STM is
1 f s 1 ]

_ _ -1 _
o) =l = Al = 6T | —25+3 ]

Q(s) =[sI — A17'q(0) + [sI — A]"'BX(s)

_ -l _ 1 [ s 1 1
Cr==a Q(O)_(S+l)(s+2)_—28+3_|:—1:|

_ ! [ =1 ]

T s+ DE+2) [ -6+ ]
(s—1)

| GEDE+2)

a (s +5)

G+ D +2)

Given x(t) = u(t) and X (s) = %

_ar-! _ s 11
br =l BX(S)_(S+1)(S+2)|:—25+3]|:0]s
1
_ 1 s s+ D +2)
‘m[—z}‘ 2
s DG +2)
q(t) = L™ Y[sI — A1"'q(0) + [s] — A]"'BX (s)}

r -1 1
| G+DE+2) | G+DE+D)
=L + L
(s+5) -2
L (s+ (s +2) s(s+D(s+2)
ro2 N 3 |
4 s+ (s+2) 4 s+1 (42
=1L +L
4 N 3 _1+ 2 1
L G+  +2) s G+ (42

26—2t et
() =
1 |:2e‘2t —2et—1 :|
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qi(t) = 2e™* — e u(t)
@ (t) = 2 —2e" — Du(r)
y(t) = Cq(t) =2e7 2 —2¢' — 1

6.6.2 Time Domain Solution to State Equations

Consider the state equation
4 = Aq + Bx(1) (6.47)
Pre-multiplying Eq. (6.47) by e~*! on both sides, we get

e Mg =e*Aqg+e Y Bx(t) (6.48)
(efA’q' —eYMAg) = e A" Bx(1)
d

Sl Mal = e Y Bx(1)

By integrating both sides of the above equation from O to ¢, we get

t
e Mg —q(0) =f e " Bx(t)dt
0

q(t) = e™q0) + / e Bx(t)dt (6.49)
0

In Eq. (6.49), e is the STM, Eq. (6.49) can be generalized to any initial value #, and
hence it can be modified as

t
q(t) = e g (1) + / A By (v)dT

o
= Free response + Forced response (6.50)

6.6.3 Determination of eA'—The Cayley-Hamilton Theorem

To determine ¢ (¢) which is the solution of the vector—matrix differential Eq. (6.49),
it is necessary to determine the STM e?’. This can be obtained using the Cayley—
Hamilton theorem. According to this theorem, an n X n square matrix A satisfies its
own characteristic equation [/ — A| = 0 where A, are the eigen values of system
matrix A. Let
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n—1
F(A) = Z ok AK
k=0
n—1
F(y =) ot
k=0
n—1
M = ZakAk (6.51)
k=0
Equation (6.51) should satisfy for all the eigen values of A.

6.6.3.1 Determination of e’ for Distinct Eigen Values of A

If the eigen values of A are distinct, then the following procedure is followed to
evaluate e’

1. Determine the eigen values of the matrix A from |A/ — A| = 0.
2. For distinct eigen values the following equations are written:

M =g +aih F ook A AT

Ml = g+ ajhy + C(z)»% 4+ -4+ an_lA.;71

et = ag +ah, + 052)\% +---+ (x,,_l)\;fl (6.52)
Thus, we will have n simultaneous equations if there are n distinct eigen values.
By solving these simultaneous equations, «g, o, @2, ..., &, can be determined.

3. Using the following equation, e’ can be evaluated.

M =gl + A+ A+ oy AT (6.53)

where I = n x n identity matrix.

6.6.3.2 Determination of e’ for Multiple Eigen Values of A

Let us assume that A = A; has multiplicity of m. If all the other eigen values are
distinct, then the number of distinct eigen values are (n — m + 1). Corresponding
to these eigen values, we will have (n — m + 1) independent equations. For the rest
(m — 1) we use Cauchy’s residue theorem.

: ; n—1
d' f() d [ k}

: =——|> (6.54)
o, T |

=Ai
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where i =1,2,3,..., (m — 1). The following examples illustrate the method of
evaluating STM and the solution for g(¢).

Example 6.16 Consider the following vector—matrix differential equation

=2l o

4(0) = [_IJ .

Find (a) e*" and (b) ¢(¢) for unit step input signal.

31
1= 30)
M —A| = A2+ 3% +2
=A+DHAR+2)

with the initial conditions

Solution

A =-—1

Ay =2
using Eq. (6.52), we get

e =ag—

e =y — 24

solving the above simultaneous equations for ¢« and o1, we get

ay=2e"—e ¥
) =e ' — e

e =gl + oA

[(2et — ) 0 } L [—3 1}
= + e =)
0 2e™" —e™ ) -20

B (_e—t +2e—2t) (e—t _6—21)
N 2(—e T e H) et — e )

t
q(t) = eq(0) +/ A Bx(t)dT
0
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Free Response grg(t)

(—e™" +2¢7) (e — e ) 1
_ LAt —
qrr(t) = ¢q(0) = [z(—e—f + ) (e — e‘”J [—1}

Be™ 2 —2e™)
| Be Y —4e)
Forced Response qr¢(?)

1
qro(t) =/ eI Bx(7)dr
0
_ t _ef(tfr) + 2672(17r) e,(,,r) _ 672(t7r) 1 J
T Jo | 2(=e=0 4 ¢=20-1)y 2p==1) _ p=20-0) | | O T
([ —e-0 4 2e-20-D
:/0 2(—e=(1=0) | g=20=0)) dz
|:{ —e~ (=D 4 9p=20-1) }’:|
= —=T) 4 ,=2(—1)
2(—e +e ) 0
el _ o~
B |:—1 +2e7! — 6_2’:|

Hence, the total response is

q(t) =qrr®) +qro(t)
3¢~ — Dot el — e
= +
|:3€2t - 4e’:| |:2e’ —e ¥ — 1]

3 (28721‘ _ eft)
A e

The result is same as derived in Example 6.15.

Example 6.17 Determine e for the following A matrix
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Solution
41 =2
A=|10 2
1-13
F\) = M — Al
=2 -T2 -9+ 15
=Gh-=1D0=3)2

This is the case of repeated eigen values.

A =1
A =3
A =3

t
e =og+ o+ o

&' = g + 30 + 9y
%e“ = %(ao + o h + ar?)
ForA =3

te¥ = oy + 6ay
Solving the above three simultaneous equations, we get
Lo 3t 3t
ay = Z(9e + 6te” — 5e7)

1
o) = Z(—6e’ — 81’ + 6¢*)

1
o) = Z(et + 2t — €3t)

e = agl + a1 A + ap A?

100 41 =2 15 6 —12
=a (010|401 0O 2 [4+a| 6 -1 4
001 1-1 3 6 -2 5
(—l€3t +e3f) ([63[) (—2[€3t)
et = (te’h) (2" 4+ te¥ — &) —=2(e' + te¥ — &)

(ted) (' +te3 — &) (—e! —2ted 4 26%)
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6.7 State Equations of A Discrete-Time System

The discrete-time system is described by difference equation. For a continuous-time
system which is described by an nth-order differential equation, it is converted into n
first-order equations and the descriptions for n state variables are given. Analogous
to continuous-time system, the discrete system described by Nth-order difference
equation is converted into N first-order difference equations and the description
for N state variables are given in the form of vector matrix difference equation.
(In difference equation, the order of the equation is denoted by N instead of n to
avoid confusion between order and sequence number).

6.7.1 Canonical Form II Model

Let H (s) be the discrete-time system transfer function which can be expressed as

H(s) = bozV +b1z¥N TV + btV -+ by 1z + by
N taiZN T +apsN 2+ ayog +ay

(6.55)

The input x[n] and the output y[n] are related by the following difference equation

(EN +aiEN"' - +ay 1 E +ay)yln]
= (boEN + b EN' 4 ... 4 by | E + by)x[n] (6.56)

where

EVy[n] = yln]
EN7ly[n] = yln — 1]
ENy[n] = yln + 1]

The direct form II realization of Eqs. (6.55) and (6.56) is represented in Fig.6.17.

The output of N delay elements are denoted by g;[n], g2[n], ..., gn[n]. The
output of the first delay is gy [n + 1]. Since there are N delays, N equations can be
written one each at the input point.

qi[n + 1] = q2[n]
@n + 1] = q1[n]

gn-1ln + 1] = gn[n]
gy[n + 1] = —anyqi[n] —ay_1q2[n] — ... — a1gn[n] + x[n] (6.57)
yvlnl = bnqi[n] — by—1g2[n] + ... + bign[n] + bogn+1[n]
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x[n] ( ) gnln+1] yln]
bO

< v »
< >

—ay q,[n] by

Fig. 6.17 Direct form II realization of Nth-order discrete-time system

Substituting for gy [n] from Eq. (6.57), we get

ylnl=(bn—boan)gi[n]+(by-_1—boan_1)q2[n]+ - - - +(b1—boai)gn[n]+box[n]
=byqi[n]+ by_1q2[n] + - - - + bigy + box[n] (6.58)

where b; = (b; — boa;). Equation (6.57) represents the state equations and Eq. (6.58)
represents the output equation. The above equations are written in matrix form as
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[giln + 17] 0 1 0 0 0 7][ qiln] 7] 0
q2[n + 1] 0 1 0O O q2[n] 0
q3[n + 1] 0 0 0 1 0 qs[n] 0
: = : : Do : T
gn-1ln] 0 0 0 0 1 gn-1ln]
L gwnln] | | —an —ay-1 —ay-—2 —ax —ay | | gn[n] | [ 1]
_=
qgln +1] A qln] B (6.59)
ylnl = [by by_1...bi1+ by x[nl (6.60)
—_—
C D

The general form of state and output equation is therefore written as

qln + 1] = Ag[n] + Bx[n]
y[n] = Cq[n] + Dx[n] (6.61)

The state equations for a discrete system can be obtained by several methods. How-
ever, we represented here by direct forms I, II and parallel form. The following
analogy between continuous- and discrete-time system are to be noted.

1. In the continuous-time system, the output of each integrator is identified as a state.
In the discrete-time system, the output of each delay element is identified as the
state.

2. In the continuous-time system, the input of each integrator is identified as the
first derivative from which the first-order differential equation is formed. In the
discrete-time system, the input to each delayed element is identified to form the
first-order difference equation.

The following examples, illustrate the method of forming state equations.

Example 6.18 Form the state equations of canonical form II for the following T.F.
of a discrete-time system,

5z +72° + 822+ 22+ 10

H[z] =
<l 463 +724+4z2+9

Solution

5244+ 73 +82+2z+10
463 +722 44249

5+ 727" +8z272+ 2273+ 1027
1+6z7" + 7272+ 4273 +9z74

Hlz] =

wherebyg =5, by =7, b, =8, b3=2; b4, =10, a1 =6; a, =7, a3 =4; a3 =9
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01 0 0 0

0 010 0
an+1=1| o o o 1 |4+ |xDn)

—9-4-7-6 1

by = by —bpas =10 —5x 9 = —35
by =by—boaz =2—5x4=—18
by=b, —boar =8 —5x7=-27
by=b —byay=7—-5x6=-23

y[n] =[-35 —18 —27 —23]gq[n]+ 5x[n]
Example 6.19 Consider the following difference equation
4y[n — 3]+ 6y[n — 2] — Sy[n — 1] 4+ y[n] = x[n] + S5x[n — 1]
Form state equations.

Solution

VI e (1+5z7")
X[z] T (1=5z71 + 6272 +4z79)

where by =1; by =5, b, =0; b3 =0; a1 =-5; a, =6, a3 =4

0 10 0
gin+11=1 0 0 1]|g[n]l+|0]|x[n]
—4—-65 1

53 = b3 —b0a3 =—-4
Bz = b2 —b0a2 = -6

by =by —bpay =5+5=10

y[nl =[—4 —6 10]g[n]+ x[n].

6.7.2 Canonical Form I Model

Consider the following system function

Y[z bo+ b1z + byz7?
L—H[z]: 0 171 272
l+a1z7' +axz

X[z]

By cross-multiplying the above equation, we get
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bo q,[n]

x[n]

A\ 4

v
) 4
{M =
= KN
)
+

; —
1 2["] 1
z1
/I\qz[n-&- 1]
> > <
b, NG

Fig. 6.18 Canonical form I structure

[14+aiz7" +az721Y[z] = [bo + b1z~ + bz 21X [z]

Y[zl = —a1z7'Y[z] — a2z Y [z] + boX[z]

+b1z7 ' X[2] 4 bz Xz] (6.62)
Equation (6.62) is represented in Fig. 6.18, where the states and the delay elements
are shown.

From Fig. 6.18, the following equations are written in terms of states

ylnl = qi[n] + box[n]
qiln + 1] = —a1y[n] + q2y[n] + b1x[n]

= —aiqi[n] + q2[n] + (b — boa)x[n] (6.63)
= —ary[n] + brx[n]

= —arq[n] + (by — bpa;)x[n]

qa2ln + 1]

(6.64)
Equations (6.63) and (6.64) can be combined and expressed in matrix form as

_[-ai 1 (b1 — boay)
qln+1] = [_az 0] gln] + |:(bz _ boaz)i| x[n]

y[n]l =[1 Olg[n] + box[n]

In general, for an Nth-order difference equation,
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[ —a; 100---0

—a; 010---0

—a; 001---0

qgln+1] = S .
—aN_1000-~~1
| —ay 000---0]

where b; is defined as b; = (b; — boa;)

qln] +

(b1 — boay)
(by — boay)

(b3 — boas)

(by—1 — boan—_1)
(by — boay)

yln]=[1 0 0---0lg[n] + box[n]

607

x[n] (6.65)

(6.66)

Example 6.20 Form the state equations of canonical form I for the following T.F.

of a discrete-time system

524 +772 +822+22+ 10

Hlz] =

4623 4+72+4z49

Solution

5z +722 +822+2z+ 10

H[z] =

463 4+72+4z249

54T 48P 220 + 1070

146z 472244773 + 97

wherebg =5, b, =7, 0 =8,b3=2,b,=10;a, =6; ao =7, a3 =4, a4, =9

by=b —byay=7—-5x6=-23
by=b, —boa =8—5x7T=-27
by =bs—byaz =2—5x4=—18
by = by —boas =10 — 5 x 9 = —35

—-6100
-7010
—4001
-9000

qln+1] =

qln] +

—23
=27
—18
-35

x[n]

y[n]=1[1 0 0 Olg[n]+ 5x[n]
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by
A 4
-1
x[n] :
A Ay
q1 "
n
| s go[n+t1] S o]
: A4 4
|
:
I
I
| 2 | 4,
I < »
! q
|
A 4
Z—l
Ay | Ay

Fig. 6.19 Diagonal form model

6.7.3 Diagonal Form (Parallel Form) Model

Consider the system transfer function given below:

bozV + b1zt -+ by 1z + by

flz)= N+ aiZV o tay_1z+aw 6.67
Cbo+biz by VD by
o dltaiz !+ tayaiz VD fayz N
by My A (6.68)
(z—21) (z—AnN)
where Ay, Aa, ..., A, are the distinct eigen values of H[z]. Equation (6.68) is repre-

sented in Fig.6.19.
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From Fig.6.19, the following state equations are written

qi[n + 11 = Aq1[n] + x[n]

qa[n + 11 = Arqa[n] + x[n]

gn[n + 1] = Angn[n] + x[n]

y[nl = A1qi[n] + Asga[n] + - - - + Aygn([n] + box[n]

Equations (6.69) and (6.70) can be represented in matrix form as

200 -0
04 0 -+ 0
00 A -

gln+1] = 30 0 g+ | 1| xln]
000 iy |
vinl=1[A1 Ay As---Anlgln]+ box[n]

Example 6.21 A certain discrete-time system has the following T.F.

723+ 1022 +322 4+ 29

Hiz] =
L2] 73+ 972 + 267 + 24

Form the state equation with its A matrix in diagonal form.

609

(6.69)

(6.70)

(6.71)

(6.72)

Solution Dividing the numerator polynomial with denominator polynomial, we get

1

20 492% 4 267 4 24) 23 + 1022 + 327 + 29
2+ 9z2° 4267424
2+6z +5

(224 6z+5)
(23 4+ 922 + 26z + 24)
(2+6z2+5 =@+ DE+5)
(492 +2624+24) = 2+ 2z +3)(z+4)

z+D(Ez+5)
H =1
=1t a3+

H[z] =1+
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4AIm
A3 Ay 4
»Re
-5 —4 -3 -2 -1 |0
Fig. 6.20 Pole-zero diagram
(Z+ 1)(Z+5) Al A2 Ag

C+2)G+3etd G+ T e1d @+ d

The pole-zero locations are shown in Fig. 6.20.

-3 x1 3
A1= = ——
2x1 2
2x?2
Ay = =4
1x1
—3x1 3
A3= X = ——
2x1 2
3 1 4 3 1
H[z]=1-

§(z+2)+(z+3) T 2(z+4)

The eigen values are A} = —2; A = —3;and A3 = —4

-2 0 0 1
gln+11=1 0 =3 0 [gn]+ |1 |x[n]
0 0 —4 1
ml=|-2 4 —2|qlnl+xln)
y[n] = 3 3 q[n]+ x[n

Example 6.22 Find the state variable matrices A, B, C and D for the equation
y[n] —3y[n — 1] — 2y[n — 2] = x[n] + Sx[n — 1] 4+ 6x[n — 2]

(Anna University, November, 2007)
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Solution Taking z-transform on both sides of the equation, we get

(4527146277
(1 =3z71—2772)

VIl _
X[z]

Hlz]

where by = 1; by =5; b, =6; ay = —-3; a, = -2

by =by —bpa, =6+2=28
by =by—boa; =5+3=28
D=by=1

gln+ 11 = [g ;]q[n] T m x[n]

A

B
vin] =8 81qlnl+ _1_x[n]
C D

Example 6.23 A continuous-time system has the state variable description

2 -1 1
A=|:1 0:|, B:I:Oi|, C=[31]; D=[2]

Determine the transfer function.

Solution
_ (s—2)1
(SI—A)_[ -1 si|
L cofactor
6F = A" = fterminant
it
T 2=+ D) [1C2-9)
J— -1 _;_S 1 1
(sI — A) B—(Sz_zs_}_l) | 1 (2_3)][0]
_ s
T2 —2s+1) _1]
T ey
C(sI — A) B_(sz—2s+l)[3 1]|:1j|_(52_25+1)
C(sI—A)*lB+D=M+2

(2 =25+ 1)
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25> —s+3)

HO) = &2+

Summary

hd

. An Nth-order systems (continuous as well as discrete) can be described in terms of

N variables with N first-order equations. These variable are called state variables.
State variables representation is not unique. However, the solution of state equa-
tion is unique.

. The state equations are written in specific format. Such an equation is called

vector—matrix differential/difference equation.

The state variables give internal and external description of the system. Thus,
physical variables can be chosen as state variables and their behavior can be
readily studied.

State equations are written from system structure or from block diagrams.

State equations are solved by time domain or frequency domain methods.

Exercise

I.

Short Answer Type Questions

. Define the state of a system?

The state of a system is defined as the minimum number of initial conditions
that must be specified at any initial time #; so that the complete behavior of the
system at any time ¢ > f is determined if the input x (¢) is known.

. What do you understand by state vector?

If N state variables are required to completely describe the behavior of the system
then these N variables are the N components of a vector g. Such a vector is called
State vector.

. What is state space?

The N dimensional space whose coordinate axes consist of ¢g; axis, g, axis,
., gy axis, is called state space.

What is state-space equations?

Input variables, output variables and state variables are involved in the modeling

of dynamic systems. The dynamic equations involving these three variables are

called state space equations.

. What is vector-matrix differential/difference equation?

State variables equations are expressed in the time domain by using compact
vector—matrix notations. These equations when written for a CT systems are
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II.
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called vector—matrix differential equations and when written to DT systems are
called vector—matrix difference equation.

. What is state transition matrix STM?

The matrix which is unique for a given system that transforms any initial state
q(tp) to any final state g(ts) is called state transition matrix. It contains all
the informations about the system dynamics at all time. For a continuous-time
system the STM ¢ (¢) = e?'.

. What is Cayley—-Hamilton theorem?

According to Cayley—Hamilton theorem, the matrix A satisfies its own charac-
teristic equation. This property is used to evaluate the STM e*’.

. What physical variables are chosen as state variables in electrical circuit

and mechanical systems?

The current through the inductor and the voltage across the capacitor are chosen
as state variables in electrical circuits. The displacement and velocity of energy-
storing elements such as mass (inertia) and spring are chosen as state variables
in mechanical systems.

. What are the advantages of state space model over that of transfer function

model?

(a) State space modelis applicable to linear, non-linear and time varying systems
whereas T.F. model is applicable only to linear system.

(b) T.F. model requires initial conditions to be zero whereas for state space
model, the initial conditions need not be zero.

(c) System design modeled by T.F. is based on trial and error and in will not in
general lead to optimal control. The famous optimal control theory which
follows a systematic design procedure uses state space model of the system.

For a particular system, the A matrix is represented in more than one form.
What is the nature of characteristic equation?

In sate space model, even though the system A matrix is not unique, the charac-
teristic equation is same and is unique.

Long Answer Type Questions

. Consider the mechanical system shown in Fig.6.21. Form the state space

equation.

(=)

|
=~

q@) = q(t) + e(r)

N o o
mos_

X o
2

S O =

S
=
S
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— 4 e I »
I I I
|
i(?)
>
M, L, R M
e(t) G+ 2
AD=K,i(1)
1L
Fig. 6.21 Mechanical system with lower arrangement
AAYA% NV
R=10 Ry =30
R2
+
w(0) C_) ~ C=2F
L
Fig. 6.22 Electrical circuit for Example 6.2
where
L
Meq == _Ml + _MZ
)
l
Beq =-Bi+--B
b
[

Keq =—K+ K>,

I

2. Consider the electrical circuit shown in Fig. 6.22. Form the state space equa-

tion.
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1 5
) 4 4 I
1) = t) + v(t
q(t) 3 | q() 1 (®)
8 8 8

3. Consider the following T.F. of a certain continuous-time system. Form the
state space equations in canonical form I model.

75> +8s +4

H =
@ s34+5524+95+10

510 7
Gy =1-901|q@)+|8]x)
~1000 4

y@)=[1 0 0lg()

4. Consider the following T.F. of continuous-time system. Form the state space
equation in canonical form II model.

553 + 652+ 25 + 10

H =
@ s3+7s2+4s+5
0 1 0 0
goy=1{0 0 1 |g®)+|0]|x@)
547 1

y()=[-15 —18 —29]q(t) 4+ 5x(t)

5. Consider the following T.F. of continuous-time system. Form the state space
equation in diagonal form model.

2 +6s+8)
(s3 + 2752 + 2305 + 600)

H(Z) =

-5 0 O 1
gty=1 0 =10 0 |qg@®)+|1]|x@)
0 0 -12 1
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n=|2 2 9,
Y =|535 — 3 7]q()

6. Consider the following differential equation

ddy _d*y dy dx
Y _5 62 +7y =22F 4 5xqe
PTE dt2+d+y ar 7@

Form the state space equation in canonical form II model.

0 10 0
ga)=10 0 I{qg@®)+|0|x(®)
-7—-65 1

y@) =[5 2 0]q()
7. Consider the following T.F. of a certain discrete-time system

472 — 5z 4+ 10
234+222-772+9

H(z) =

Form the state variable equation in canonical form II model.

010 0
gn+11=|( 0 0 1 [g[n]l+ [0 |x[n]
—-97 =2 1

y[r] =[10 —5 4]q[n]

8. Consider the following T.F. of a certain discrete system given below. Form
the state space equation of canonical form I model.

2224+ 6z2+9
H =
@ = s+ 416
-8 10 2
gln—11=| =7 01 | g[n]l+ |6 | x[n]

—-1600 9
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ylrl=[1 0 Olq(n]

9. A certain discrete-time system is described by the following difference
equation.

ylnl = Syln =11 = Lyln =21+ Lyln — 3]
=x[n—1]— 3x[n — 2]+ Lx[n - 3]

Determine the system T.F. Form the state space equation in the diagonal
form. What are the eigen values of the system?

1
5 0 0
gln+11=|0—3 0 [g[n]+ |1 |x[n]
00 -1 !
3 35
y[n] = R —E 3| qln]
-1 _ 3,2 -3
— 32 "+ 552
H[Z]: 1 18 1 _232 —
I—EZ — 53 " — <
: 1 1 1
The eigen values are Ay = 5, A2 = —¢, A3 = —7.

10. Find the state equation of a continuous-time LTI system described by
Y@ +3y() +2y() = x(@)

(Anna University, May, 2007)

) 0 1 0
q0=|_ a0+ Hx(t).



Chapter 7 ®)
Application of MATLAB and Python i
Programs to Solve Problems

7.1 Application of MATLAB Program

Example 7.1 Write a MATLAB program for a signal x(¢) shown in Fig. 1.23a, and
sketch the output waveforms. (Refer Example 1.2)

(@) x(3r+2) b x(5F+2)

Program (a)

clc;

clf;

clear all;

start_time=-1;
end_time=1;
time=start_time:0.5:end_time;
Amplitude=[12210];
subplot(3,1,1)
y=stairs(time,Amplitude);
xticks(time);
yticks(0:1:2);

ylim([0 2);

xlabel(’time (t));
ylabel(’x(t)’);

title(’plot of x(t)’);

shift=2;
time=start_time-shift:0.5:end_time-shift;
subplot(3,1,2)

y=stairs(time,Amplitude);

xticks(time);

yticks(0:1:2);

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 619
S. Palani, Basic System Analysis,
https://doi.org/10.1007/978-3-031-28280-5_7
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x(t)

0 1 1 1
-1 -0.5 0 0.5 1

time (1)
(a) plot of x(t)

x(t+2)

0 1 1 1
-3 -2.5 -2 -1.5 -1
time (t)
(b) Time Shifted x(t)
2 T T
N
81 ]
4
0 1 1 1
-1 -0.8333 -0.6667 -0.5 -0.3333

time (t)
(c) Time Compressed x(t)

Fig. 7.1 Plot of response of the signal x(¢), x(t + 2) and x (3¢ + 2) of Example 7.1

ylim([0 2]);

xlabel(’time (t)’);
ylabel(Cx(t+2));

title(" Time Shifted x(t)’);

scale=3;

time=time./scale;
subplot(3,1,3)
y=stairs(time,Amplitude);
xticks(time);

yticks(0:1:2);

ylim([0 2);

xlabel(’time (t));
ylabel(Cx(3t+2)’);

title(" Time Compressed x(t)’);

Figure 7.1 represents the response of the signal x(¢), x(t 4+ 2) and x(3¢ + 2). The
input signal x (¢), time shifted signal x (¢ + 2) and time compressed signal x (3¢ + 2)
are plotted in Fig.7.1a, b, c, respectively.
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Program (b)

clf;

clear all;

start_time=-1;
end_time=1;
time=start_time:0.5:end_time;
Amplitude=[ 12210 ];
subplot(3,1,1)
y=stairs(time,Amplitude);
xticks(time);
yticks(0:1:2);

ylim([0 2]);

xlabel(’time (t)’);
ylabel(x(-t)’);
title(’Folded x(-t)’);

shift=1;
time=start_time-shift:0.5:end_time-shift;
subplot(3,1,2)

y=stairs(time,Amplitude);

xticks(time);

yticks(0:1:2);

ylim([0 2]);

xlabel(’time (-t-1));

ylabel(Cx(t+2)’);

title(’ Time Shifted x(-t)’);

scale=0.5;

time=time./scale;

subplot(3,1,3)

y=stairs(time,Amplitude);

xticks(time);

yticks(0:1:2);

ylim([0 2]);

xlabel(’time (t));

ylabel(Cx(-t/2-1)’);

title(’ Time expansion of x(-t-1) to get x(-t/2-1)’);

Figure 7.2 represents the response of the signal x (#) shown in Fig. 1.23b. The input
signal x(—t), time shifted signal x(—¢) and time expanded signal x((—¢/2) — 1))
are plotted in Fig. 7.2a, b, c respectively.
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e ] | ]

>

0 1 1 1

-1 -0.5 0 0.5 1

time (t)
(a) Folded x(-t)

2 T
o
21 y
E3

0 L L 1

-2 -1.5 -1 0.5 0

time (1)
(b) Time Shifted x(-t)

] L

-4 -3 -2 -1 0
time (t)
(c) Time expansion of x(-t-1) to get x(-t/2-1)

x(/2-1)

Fig. 7.2 Response of the signal x(r) of Example 7.1b

Example 7.2 Write a MATLAB program to represent the signal x(¢t) = Su(4 —t)
shown in Fig. 1.27 (Refer Example 1.6).

clc;

clearall,

start_time=0;

end_time=-10;
time=end_time:1:start_time;
Amplitude=5*ones(1,length(time));
subplot(2,1,1)
y=stairs(time,Amplitude);
xticks(time);

xlabel(’time (-t)’);
ylabel(’Su(-t))’);
title(’Original Signal Su(-t))’);

shift=4;
time=end_time:1:start_time+shift;
Amplitude=5*ones(1,length(time+shift));
subplot(2,1,2)

y=stairs(time,Amplitude);

xticks(time);
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Original Signal 5u(-t))

T T T

55 1

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
time (t)

5 Time Shifted step Signal 5u(4-t))

55| 1

Su(4-))

45 1

-0 9 -8 -7 6 -5 -4 -3 -2 -1 0 1 2 3 4
time (t)

Fig. 7.3 The original and time shifted response of the signal y(¢) = Su(4 — t) of Example 7.2

xlabel(’time (-t)’);
ylabel(’Su(4-t))’);
title("Time Shifted step Signal Su(4-t))’);% %

The signals Su(—t) and Su(4 — t) are shown in Fig.7.3a and b respectively.

Example 7.3 Write a MATLAB program to check the system y(¢) = Sx(¢) sin 10¢
is linear. (Refer Example 1.45a)

n=0:5;

x1=(5.%n).*sin(10*n);

x2=(5.*n).*sin(10*n);

al=1;

a2=1;

z=al*x1+a2*x2;

yl=n.*z

z1=n.*x1;

72=n.%x2;

y2=al*zl1+a2%z2

if yl==y2
fprintf("The System y(t)=5x(t) sin 10t is Linear \n’);

else
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fprintf(" The System y(t)=5x(t) sin 10t is non-linear \n’);
end;

Output:
y1 =0 —5.4402 36.5178 —88.9228 119.2181 —65.5937

y2 =0 -5.4402 36.5178 —88.9228 119.2181 —65.5937

yl=y2
The System y(¢) = 5x(¢) sin 10¢ is Linear.

Example 7.4 Write a MATLAB program to check the system y(¢) = 3x(¢) + 5 is
linear or not (Refer Example 1.45b)

n=0:5;
x1=(3.*n)+5;
x2=(3.*%n)+5;
al=1;
a2=1;
z=al*x1+a2*x2;
yl=n.*z
z1=n.*x1;
72=n.%x2;
y2=al*z14+a2%z2+5
if yl==y2
fprintf(" The System y(t)=3x(t)+5 is Linear \n’);
else
fprintf("The System y(t)=3x(t)+5 is non-linear \n’);
end;

Output:
yl1=01644 84 136 200

y2 =521 49 89 141 205
yl #y2

The System y(t)=3x(t)+5 is non-linear
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Example 7.5 Write a MATLAB program to check the system y(¢) = t?x(t + 1) is
linear or not (Refer Example 1.45¢)

n=0:5;
x1=(n."2).*(n+1);
x2=(n."2).*(n+1);
al=1;
a2=1,
z=al*x1+a2*x2;
yl=n.*z
z1=n.*x1;
z2=n.%x2;
y2=al*z1+a2%z2
if yl==y2
fprintf(C The System y(t)=t"2*x(t+1) is Linear \n")
else
fprintf(’ The System y(t)=t"2*x(t+1) is non-linear \n")
end;

Output:
yl1=0448 216 640 1500

y2=0448 216 640 1500

The System y(t)=t"2*x(t+1) is Linear

Example 7.6 Write a MATLAB program to check the system y(¢) = x(¢) is linear
or not (Refer Example 1.45¢)

n=0:5;
x1=n."2;
x2=n."2;
al=1;
a2=1;
z=al*x1+a2*x2;
yl=n.*z
z1=n.*x1;
72=n.%x2;
y2=al*z1+a2%z2
if yl==y2
fprintf(" The System y(t)=x(t"2) is Linear \n’);
else
fprintf(’The System y(t)=x(t"2) is non-linear \n’);
end;
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Output:
y1=021654 128 250

y2=0216 54 128 250

yl=y2
The System y(t)=x(t"2) is Linear

Example 7.7 Write a MATLAB program to check the system y(f) = x(t + 1) + 5
is static or dynamic (Refer Example 1.48a)

clc;
clear all;
t=0;
ift <t+1

fprintf(’ The system y(t)=x(t+1)+5 is Dynamic \n’);
else

fprintf(C The system y(t)=x(t+1)+5 is Static \n’);
end

Output:
The system y(t)=x(t+1)+5 is dynamic

Example 7.8 Write a MATLAB program to check the system y(¢) = x(¢?) is static
or dynamic (Refer Example 1.48b)

clc;
clear all;
t=2;
ift <t"2

fprintf(’ The system y(t)=x(t"2) is Dynamic \n’);
else

fprintf(’ The system y(t)=x(t"2) is Static \n’);
end

Output:
The signal y(t)=x(t"2) is dynamic

Example 7.9 Write a MATLAB program to check the system y(¢) = x(7?) is causal
or non-causal (Refer Example 1.49c¢)

t=0:5;
for i=0 : length(t-1)
ifi >=i"2

fprintf(’ The signal y(t)=x(t"2) is causal \n’);
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else

fprintf(’ The signal y(t)=x(t"2) is non-causal \n’);
end
end;

Output:

The system y(t)=x(t"2) is non-causal

Example 7.10 Write a MATLAB program to check the system y(¢) = x(t + 1) is
causal or non-causal (Refer Example 1.49¢)

t=0:5;
for i=0 : length(t-1)
ifi >=i+1

fprintf(” The signal y(t)=x(t+1) is causal \n’);
else

fprintf(’ The signal y(t)=x(t+1) is non-causal \n’);
end
end;

Output:

The system y(t)=x(t+1) is non-causal

Example 7.11 Write a MATLAB program to check the system y(¢#) = x(r — 1) is
causal or non-causal (Refer Example 1.49f)

t=0:5;
for i=0 : length(t-1)
ifi >=i-1

fprintf(’ The signal y(t)=x(t+1) is causal \n’);
else

fprintf(" The signal y(t)=x(t+1) is non-causal \n’);
end
end;

Output:
The system y(t)=x(t-1) is causal

Example 7.12 Write a MATLAB program to check the system y(¢) = rx(¢) is stable
or not (Refer Example 1.50a)

clc;

clear all;
clf;
t=0:.1:10;
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x=cos(2*pi*t);
plot(t,x);
xlabel(’Time (t)’);
ylabel("Magnitude of the Signal’);
legend("x(t)")
ylim([-2 21);
figure
y2=t.*x;
plot(t,y2);
legend("y(t)")
xlabel("Time (t)’);
ylabel(’Magnitude of the Signal’);
if max(x)>max(y2)
fprintf(" The System y(t)=t(x(t) is stable \n’);
else
fprintf(" The System y(t)=t(x(t) is unstable \n’);
end

Output:
The System y(t)=t(x(t)) is unstable

Figure 7.4a represents x(¢) and Fig.7.4b represents the output 7 x(¢).

Example 7.13 Write a MATLAB program to check the system y(z) = x(¢) sint is
stable or not (Refer Example 1.50c)

clc;
clear all;
clf;
t=0:.1:10;
x=cos(2*pi*t);
plot(t,x);
xlabel("Time (t)’);
ylabel(’Magnitude of the Signal’);
legend("x(t)*)
ylim((-2 2]);
figure
y2=sin(t).*x;
plot(t,y2);
legend("y(t)")
xlabel(’Time (t)’);
ylabel(’Magnitude of the Signal’);
if max(x)>max(y2)
fprintf(’ The System y(t)=(x(t) sin t is stable \n’);
else
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Fig. 7.4 The output response of the signal y(¢) = #(x(t))

fprintf( The System y(t)=(x(t) sin t is unstable \n’);
end

Output:
The System y(t)=(x(t) sin t is stable
Figure 7.5a represents x (¢) and Fig. 7.5b represents y(¢) = x(t) sin ¢ respectively.

Example 7.14 Write a MATLAB program to determine the trigonometric Fourier
series of Example 2.1.
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Fig. 7.5 The output (a)

: 2
response of the signal
y(t) = (x(¢) sint of
Example 7.13

(1)

Magnitude of the Signal x(t)

Magnitude of the Signal y{)
f=]
[ ———
—
-

_é‘;_

Time (t)

clear all;

syms tn A pi
n=[1:3];
A=1;

TO0=4;
wo=pi/2;
up_limitl=1;
low_limitl=-1;
up_limit2=3;
low_limit2=1;
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half_a0 = (1/TO)*(int(A,t,Jow_limit1, up_limitl)+int(-A,t,low_limit2,up_limit2))

ai = (2/TO)*(int(A*cos(n*wo*t),t,low_limitl, up_limit1)
+int((-A)*cos(n*wo*t),t,Jlow_limit2, up_limit2))

bi = (2/TO)*(int(A*sin(n*wo*t),t,low_limitl, up_limit1 )
+int((-A)*sin(n*wo*t),t,low_limit2, up_limit2))

ft = half_a0;

for k=1:length(n)

ft = ft + ai(k)*cos(k*wo*t) + bi(k)*sin(k*wo*t);

end;

ezplot(ft),grid

xlabel("Time (t) *);

ylabel(’x(t) *);

title(’ Output response of x(t)’);

ft

Output:
half_a0 =0

ai =[ 4/pi, 0, -4/(3*pi)].. . .
bi=[0,0,0]

ft =(4*cos((pi*t)/2))/pi - (4*cos((3*pi*t)/2))/(3*pi)+. ..

The plot of x(¢) for n = 3 is shown in Fig.7.6. By increasing n to 20, x(¢) may be
plotted and the original signal can be obtained in the form of periodic square wave
as represented in Fig. 2.1.

Example 7.15 Write a MATLAB program to determine the trigonometric Fourier
series of Example 2.2.

clc;

clear all;

syms tn A pi

n=[1:3];

A=t;

T0=2;

Wwo=pi;

up_limit=1;

low_limit=-1;

half_a0 = (1/T0)*(int(A,t,low_limit, up_limit))

ai = (2/T0)*(int(A*cos(n*wo*t),t,Jow_limit, up_limit))
bi = (2/T0)*(int(A*sin(n*wo*t),t,Jow_limit, up_limit))
ft = half_a0;

for k=1:length(n)
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Fig. 7.6 x(t) response of Example 7.14 forn = 3

ft = ft + ai(k)*cos(k*wo*t) + bi(k)*sin(k*wo*t);

end;

ezplot(ft),grid

xlabel(’Time (t) ’);

ylabel(’x(t) *);

title(’Output response of x(t)’);
ft

Output:
a0 =0.0

ai=[0,0,0]

bi = [ 2/pi, -1/pi, 2/(3*pi)].. ..
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response of x(t)
T T

]
Tirrse: (1)

Fig. 7.7 x(t) response of Example 7.15 forn = 3

ft = (2*sin(pi*t))/pi - sin(2*pi*t)/pi + (2*sin(3*pi*t))/(3*pi) + . ..
The output response is shown in Fig.7.7 for n = 3.

Example 7.16 Write a MATLAB program to determine the trigonometric Fourier
series of Example 2.3.

cle;

clear all;

syms tn A pi

n=[1:3];

A=t/(2%pi);

TO0=2%pi;

wo=1;

up_limit=0;

low_limit=2%pi;

half_a0 = (1/T0)*(int(A,t,low_limit, up_limit))

ai = (2/T0)*(int(A*cos(n*wo*t),t,low_limit, up_limit))
bi = (2/T0)*(int(A*sin(n*wo*t),t,Jlow_limit, up_limit))
ft = half a0,

for k=1:length(n)
ft = ft + ai(k)*cos(k*wo*t) + bi(k)*sin(k*wo*t);
end;
ezplot(ft),grid
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xlabel(’Time (t) °);
ylabel(’x(t) *);
title(’Output response of x(t)’);

ft

Output:
half_a0 =1/2
ai=[0,0,0]

bi=[ 1/pi, 1/(2%pi), 1/(3*pi)]+ ...
ft = -sin(2*t)/(2%pi) + sin(3*t)/(3*pi) - sin(t)pi + 1/2 + ...

Example 7.17 Write a MATLAB program to determine the trigonometric Fourier
series of Example 2.4

cle;

clear all;

syms tn A pi

n=[1:3];

A=sin(t);

TO=pi;

wo=2;

up_limit=pi;

low_limit=0;

half_a0 = (1/T0)*(int(A,t,Jow_limit, up_limit))
ai = (2/T0)*(int(A*cos(n*wo*t),t,low_limit, up_limit))
bi = (2/T0)*(int(A*sin(n*wo*t),t,low_limit, up_limit))
ft = half_a0;

for k=1:length(n)

ft = ft + ai(k)*cos(k*wo*t) + bi(k)*sin(k*wo*t);
end;

ezplot(ft),grid

xlabel(’Time (t) ’);

ylabel(Cx(t) *);

title(’Output response of x(t)’);

ft

Output:
half_a0 = 2/pi

ai = [ -4/(3%pi), -4/(15%pi), -4/(35%pi)] + . ..
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Fig. 7.8 Fourier series response x (1)n = 3 of Example 7.17

bi=[0,0, 0]

ft = 2/pi - (4*cos(4*1))/(15%pi) - (4*cos(6%t))/(35%pi) - (4*cos(2*t))/(3*pi) + ...

The x () response is shown in Fig.7.8 for n = 3.

Example 7.18 Write a MATLAB program to determine the trigonometric Fourier
series of Example 2.5.

cle;

clear all;

symstn B A pi

n=[1:3];

B=A*sin(t);

TO=2%pi;

wo=1;

up_limit=pi;

low_limit=0;

half_a0 = (1/T0)*(int(B,t,low_limit, up_limit))

ai = (2/T0)*(int(B*cos(n*wo*t),t,Jlow_limit, up_limit))
bi = (2/TO)*(int(B*sin(n*wo*t),t,Jlow_limit, up_limit))
ft = half_a0;

for k=1:length(n)

ft = ft + ai(k)*cos(k*wo*t) + bi(k)*sin(k*wo*t);

end;
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ezplot(ft),grid

xlabel("Time (t) *);

ylabel(’x(t) *);

title(’Output response of x(t)’);
ft

Output:
half_a0 = A/pi

ai = [ 0, -(2*A)(3*pi), 0] + . ..

ft = A/pi + (A*sin(0)/2 - (2% A*cos(2%0)/(3*pi) + . . .

Example 7.19 Write a MATLAB program to determine the trigonometric Fourier
series of Example 2.6.

clc;

clear all;

syms tn B A pi

n=[1:20];

B=t"2;

T0=2;

wo=pi;

up_limit=1;

low_limit=-1;

half_a0 = (1/TO)*(int(B,t,low_limit, up_limit))
ai = (2/T0)*(int(B*cos(n*wo*t),t,Jlow_limit, up_limit))
bi = (2/TO)*(int(B*sin(n*wo*t),t,Jow_limit, up_limit))
ft = half_a0;

for k=1:length(n)

ft = ft + ai(k)*cos(k*wo*t) + bi(k)*sin(k*wo*t);
end;

ezplot(ft),grid

xlabel(’Time (t) ’);

ylabel(Cx(t) *);

title(’ Output response of x(t)’);

ft

Output:
half_a0 = 1/3

ai = [ -4/pi”2, 1/pi’2, -4/(9*pi*2)] + . ..
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Fig. 7.9 Fourier series response x (¢) of Example 7.19, n = 3

bi=[0,0,0]

ft = cos(2*pi*t)/pi”2 - (4*cos(pi*t))/pi*2 - (4*cos(3*pi*t))/(9*pi"2) + 1/3+. ..
See (Fig.7.9).

Example 7.20 Write a MATLAB program to determine the exponential Fourier
series of Example 2.9.

clc;

clear all;

syms tn B A pi
n=[1:2];
B=cos(t);
TO=10;
wo=0.2%*pi;
up_limit=pi/2;
low_limit=-pi/2;
D = (1/TO)*(int(B*exp(-j*wo*n*t),t,low_limit, up_limit))
Dn=vpa(D,4)
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xt=0;

for k=1:length(n)

xt = xt + Dn(k)*exp(G*0.2*pi*k*t);
end;

vpa(xt,4)

Output:
D = [—(5*cos(pi”2/10))/(pi*2 — 25), —(5*cos(pi”2/5))/(4*pi*2 — 25)]

Dn =[0.1822, 0.1355]

x(t) = 0.1822*exp(t*0.62831) + 0.1355*exp(t*1.2571)

Example 7.21 Write a MATLAB program to find the Fourier transform of the signal
x(t) = 6(t — 2) (Refer Example 3.14 (1))

syms t X
x = dirac(t-2);
F= fourier(x)

Output:
F =exp(-w*2i)

Example 7.22 Write a MATLAB program to find the Fourier transform of the signal
x(t) =6 — 1) — (t + 1) (Refer Example 3.14 (2)).

syms t X

x = dirac(t-1)-dirac(t+1);
F= fourier(x);
simplify(F)

Output:

ans = -sin(w)*2i

Example 7.23 Write a MATLAB program to find the Fourier transform of the signal
x(t) =68 +2) + 6(t — 2) (Refer Example 3.14 (3)).

syms t X

x = dirac(t+2)+dirac(t-2);
F= fourier(x)

simplify(F)

Output:

ans =2*cos(2*w)
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Example 7.24 Write a MATLAB program to find the Fourier transform of the signal
x(t) =u(t —1) —u(t + 1) (Refer Example 3.14 (4))

syms t X

X = heaviside(t+2)- heaviside(t-2);
F= fourier(x)

simplify(F)

Output:

ans = (2*sin(2*w))/w

Example 7.25 Write a MATLAB program to find the Fourier transform of the signal

x(t) = %(u(—t =3)+ul—3)
(Refer Example 3.14 (5))

syms t X
x = heaviside(-t-32)+ heaviside(t-3);
F= fourier(diff(x))

Output:
F = exp(-w*3i) - exp(w*32i)

Example 7.26 Write a MATLAB program to find the Fourier transform of the signal
x(t) = e—3tu(t — 1) (Refer Example 3.14 (6))

syms t x(t)
x(t) = exp(-3*t) * heaviside(t-1);
F= fourier(x(t))

Output:
F =exp(- w*1i - 3)/(3 + w*11i)

Example 7.27 Write a MATLAB program to find the Fourier transform of the signal
x(t) = te %u(r) (Refer Example 3.14 (7))

syms t w
x=t*exp(-0.5*t) *heaviside(t);
F=fourier(x,w)

Output:
F=1/(172 + w*1i)"2
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Example 7.28 Write a MATLAB program to find the Fourier transform of the signal
x(t) = e Dy(t — 2) (Refer Example 3.14 (8))

symstwa

a=3; % Assume a=3
x=exp(-a*(t-2)) *heaviside(t-2);
F=fourier(x,w)

Output:
F = exp(-w*2i)/(a + w*11)
Example 7.29 Write a MATLAB program to find the Fourier transform of the signal

t—d srect ( ©
0= (= (5))

(Refer Example 3.14 (18))

syms t X

x =5*rectangularPulse(-1, 1, (t/8))
F= fourier(diff(x))

simplify(F)

Output:
ans =sin(8*w)*10i

Example 7.30 Write a MATLAB program to find the Fourier transform of the signal
x(t) =68 +2)+55(t -2)
(Refer Example 3.14 (19))

syms t X
x = dirac(t+2)+5*dirac(t+1)+dirac(t-1)+5*dirac(t-2);
F= fourier(x)

Output:

F = exp(-w*1i) + S*exp(w*11) + S*exp(-w*2i) + exp(w*2i)

Example 7.31 Write a MATLAB program to find the Inverse Fourier transform of
the function X (jw) = §(w — wy) (Example 3.18a)

syms t w wo

ifourier(dirac(w-wo), w, t)

Output:

ans = exp(t*wo*11)/(2*pi)
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Example 7.32 Write a MATLAB program to find the Inverse Fourier transform of
the function

. 1 w<?2
X(w) = { 0 elsewhere }

Example 3.18(3).

syms t

f = rectangularPulse(-2,2,t); %
F = ifourier(f,’t’);

simplify(F)

Output:

ans =sin(2*t)/(t*pi)

Example 7.33 Write a MATLAB program to find the Inverse Fourier transform of

the function 6

XU =57

Example 3.18(4).

clc;

syms t w wo
X=6/(9+w"2)
ifourier(X,t)

Output:
x(@) = e u@) + elu(=r1)

Example 7.34 Write a MATLAB program to find the Laplace transform of ramp
function (Refer Example 4.9)

syms ts
f=t;
laplace(f)
laplace(f,s)
Output:

ans =1/s"2

Example 7.35 Write a MATLAB program to find the Laplace transform of accel-
eration function (Refer Example 4.10)



642 7 Application of MATLAB and Python Programs to Solve Problems

symsats
f=(1/2)*a*t"2;
laplace(f)
laplace(f,s)
Output:

ans =a/s"3

Example 7.36 Write a MATLAB program to find the Laplace transform of expo-
nential decay function (Refer Example 4.11)

symsats
f=(1/2)*a*t"2;
laplace(f)
laplace(f,s)
Output:

ans = 1/(a +s)

Example 7.37 Write a MATLAB program to find the Laplace transform of sine
function x () = sinatu(t) (Refer Example 4.12)

symsats
f=sin (a*t);
laplace(f)
laplace(f,s)
Output:

ans = a/(a"2 + s"2)

Example 7.38 Write a MATLAB program to find the Laplace transform of cosine
function x(t) = cos atu(t) (Refer Example 4.13)

symsats
f=cos (a*t);
laplace(f)
laplace(f,s)
Output:

ans = s/(a”2 + s"2)

Example 7.39 Write a MATLAB program to find the Laplace transform of hyper-
bolic sine function (Refer Example 4.14)
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symsats
f=sinh(a*t);
laplace(f)
laplace(f,s)
Output:

ans = -a/(a”2 - s"2)

Example 7.40 Write a MATLAB program to find the Laplace transform of hyper-
bolic cosine function (Refer Example 4.15)

symsats
f=cosh(a*t);
laplace(f)
laplace(f,s)

Output:
ans = -s/(a"2 - s"2)

Example 7.41 Write a MATLAB program to find the Laplace transform of x(¢) =
t"u(t) function (Refer Example 4.16)

symsnts
f=t"n;
laplace(f)
laplace(f,s)
Output:

ans = piecewise([-1 < real(n), gamma(n + 1)/s"(n + 1)])

Example 7.42 Write a MATLAB program to find the Laplace transform of x(¢) =
e~ sinwyt function (Refer Example 4.17)

syms ats wo
f=exp(-a*t)*sin(wo*t);
laplace(f)

laplace(f,s)

Output:

ans = wo/((a + )2 + wo”*2)

Example 7.43 Write a MATLAB program to find the Laplace transform of x(¢) =
t sin wot function (Refer Example 4.18)
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syms t s wo
f=t*sin(wo*t);
laplace(f)
laplace(f,s)

Output:
ans=(2*s*wo0)/(s"2 + wo”2)"2

Example 7.44 Write a MATLAB program to find the Laplace transform of x(¢) =
cos at sin bt function (Refer Example 4.19)

symsatsb
f=cos(a*t)*sin(b*t);
laplace(f)
laplace(f,s)

Output:

ans= (- a"2*b + b3 + b*s"2)/(a™4 - 2*a"2*b"2 + 2*a"2*s"2 + b4 + 2*b"2%*s"2
+s"4)

Example 7.45 Write a MATLAB program to find the Laplace transform of x(¢) =
sin(at 4 0) function (Refer Example 4.21)

symsatsb
f=sin(a*t+b);
laplace(f)
laplace(f,s)

Output:

ans= (a*cos(b) + s*sin(b))/(a"2 + s"2)*s*w0)/(s"2 + wo"2)"2

Example 7.46 Write a MATLAB program to find the Inverse Laplace transform of

G+ D +3)

X(@s) =
(s +2)(s+4)

(Refer Example 4.38(1))

syms ts

figure
X2=((s+1)*(s+3))/((s+2)*(s+4));
x2=ilaplace(X2,t)

ezplot(x2,[0 10])

title(’x(t) Inverse form”)
xlabel(’Time (t)’);
ylabel(’Magnitude ’);
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Output:
x2 = dirac(t) - (3*exp(-4*t))/2 - exp(-2*t)/2
Example 7.47 Write a MATLAB program to find the Inverse Laplace transform of

10(s + 4)

X(s) = s2(s +2)

(Refer Example 4.39)

syms tsw

figure
X2=(10*(s+4)/((s"2)*(s+2));
x2=ilaplace(X2,t)
ezplot(x2,[0 10])

title(’x(t) Inverse form”)
xlabel(’Time (t)’);
ylabel(’Magnitude °);

Output:
x2 = 20%t + S*exp(-2*t) - 5
Example 7.48 Write a MATLAB program to find the Inverse Laplace transform of

(357 +85+23)
T (s +3)(s2+ 25 + 10)

X (s)

(Refer Example 4.41)

syms tsw

figure
X2=(3%s"2+8*s+23)/((s+3)*(s"2+2*s+10));
x2=ilaplace(X2,t)

ezplot(x2,[0 10])

title(’x(t) Inverse form”)

xlabel("Time (t)’);

ylabel(’Magnitude ’);

Output:

x2 = 2*¥exp(-3*t) + cos(3*t)*exp(-t)

Example 7.49 Write a MATLAB program to find the Inverse Laplace transform of

(35> + 85 + 6)
(s+2)(2+2s+1)

X(s) =

(Refer Example 4.42)
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syms ts w

figure

X2=(3*s"2+8*s+0)/((s+2)*(s" 2+2%s+1));
x2=ilaplace(X2,t)

ezplot(x2,[0 10])

title(Cx(t) Inverse form”)

xlabel(’Time (t)’);

ylabel(’Magnitude ’);

Output:
x2 = exp(-t) + 2%¥exp(-2*t) + t*exp(-t)

Example 7.50 Write a MATLAB program to find the Inverse Laplace transform of

10s?
X(s) =
(s +2)(s2+ 45 +5)
(Refer Example 4.43)
syms ts w
figure

X2=(10%s"2)/((s+2)*(s" 2+4*s+5));
x2=ilaplace(X2,t)

ezplot(x2,[0 10])

title(Cx(t) Inverse form”)
xlabel(’Time (t)’);
ylabel(’Magnitude ’);

Output:
x2 = 40%exp(-2*t) - 30*exp(-2*t)*(cos(t) + (4*sin(t))/3)

Example 7.51 Write a MATLAB program to find the Inverse Laplace transform of
following differential equation

2
dd);g) + 7% 4+ 12y(t) = x(¢)

x(t) = u(t) and assume y(0) = —2 and dy/dt(0) = 0 (Refer Example 4.48)

symstsY
x=heaviside(t);
X=laplace(x,s);
y0=-2;

yd0=0;

Y 1=s*Y-y0;
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Y2=s*Y1-ydO;
G=Y2+7*Y1+12*Y-X;
Y=solve(G,Y);
y=ilaplace(Y,t)
ezplot(y,[0 10]);
xlabel(’Time (t)’);
ylabel(’Magnitude ’);

Output:
y(t) =(25*exp(-4*1))/4 - (25%exp(-3*t))/3 + 1/12
Example 7.52 Write a MATLAB program to find the Inverse Laplace transform of

following differential equation

e d d
dytgt) + 4% Fay() = % +x()

x(t) = e 'u(t) and assume y(0) = 9/4, and dy/dt(0) = 5 (Refer Example 4.49)

symstsY

y0=9/4;

yd0=5;
x=exp(-3*t)*heaviside(t);
X=laplace(x,s);
dx=diff(exp(-3*t));
dxi=laplace(dx,s);

Y 1=s*Y-y0;
Y2=s*Y1-ydO;
G=Y2+4*Y 1+4*Y-X-dxi;
Y=solve(G,Y);
y=ilaplace(Y,t)

ezplot(y)

legend(’Output response of y(t)’)
xlabel(’Time (t)’);
ylabel("Magnitude ’);

Output:
y(t) =((17*exp(-2*t))/4 - 2*exp(-3*t) + (15*t*exp(-2*1))/2
Example 7.53 Write a MATLAB program to find the convolution property of

Laplace transform of following signal x; () = e 2u(r) and x,(¢) = e u(t) (Refer
Example 4.52)

symsts
x1=exp(-2*t)*heaviside(t);
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x2=exp(-3*t)*heaviside(t);
Xl=laplace(x1,s);
X2=laplace(x2,s);
R=ilaplace(X1*X2,t)

ezplot(R,[0 20]);

legend(’ Output response of y(t)’)
xlabel(’Time (t)’);
ylabel(’Magnitude ’);

Output:
R = exp(-2*t) - exp(-3*t)

Example 7.54 Write a MATLAB program to find the convolution property of
Laplace transform of following signals.

xi1(t) = e Hu(t)

and
X)) = (1 +eu@)

(Refer Example 4.53)

syms t s
x1=exp(-2*t)*heaviside(t);
x2=(1+exp(-3*t))*heaviside(t);
X1=laplace(x1,s);
X2=laplace(x2,s);
R=ilaplace(X1*¥X2,t)

ezplot(R,[0 20]);

legend(’Output response of y(t)’)
xlabel("Time (t)’);
ylabel(’Magnitude °);

Output:
R = exp(-2*t)/2 - exp(-3*t) + 1/2

Example 7.55 Write a MATLAB program to find the z-transform of the signal
x[n] =1{2,—1,0, 3,4} (Refer Example 5.2 (1))

syms z
x=[2-1034];
n=[01234],
X=sum(x.*(z.”-n))
Output:

X=3/2"3-1z+4/z"4 +2
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Example 7.56 Write a MATLAB program to find the z-transform of the signal
x[n] = {1, =2, 3, =2, 2} (Refer Example 5.2 (2))

Syms z
x=[1-23-12];
n=[-4-3-2-101;
X=sum(x.*(z."-n))

Output:
z" - 2%z 3 + 3% 2 -z + 2

Example 7.57 Write a MATLAB program to find the z-transform of unit impulse
function (Refer Example 5.2 (4))

symsnzaw
f=dirac(n);
ztrans(f,z)

Output:
ztrans(dirac(n), n, z)

X[zl =1

Example 7.58 Write a MATLAB program to find the z-transform of unit step func-
tion (Refer Example 5.2 (5))

symsnzaw
f=heaviside(1)
ztrans(f,z)

Output:

ans=1z/(z- 1)

Example 7.59 Write a MATLAB program to find the z-transform of x[n] = e/""
u[n] (Refer Example 5.2 (11))

syms z,w,n
f=exp(w*n);
ztrans(f,z)

Output:

ans = z/(z - exp(w))

Example 7.60 Write a MATLAB program to find the z-transform of x[n] = cos
wonuln] (Refer Example 5.2 (12))
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syms z,w,n
f=cos(w*n);
ztrans(f,z)

Output:
ans = (z*(z - cos(w)))/(z"2 - 2*cos(w)*z + 1)

Example 7.61 Write a MATLAB program to find the z-transform of x[n] =
sin wnu[n] (Refer Example 5.2 (13))

syms z,w,n
f=cos(w*n);
ztrans(f,z)

Output:
ans = (z*sin(w))/(z"2 - 2*cos(w)*z + 1)

Example 7.62 Write a MATLAB program to find the z-transform of x[n] = nu[n]
(Refer Example 5.3 (7))

symsnzaw
x=n*heaviside(n);
Left=ztrans(x,z);
simplify(Left)

Output:

ans = z/(z - 1)"2

Example 7.63 Write a MATLAB program to find the z-transform of x[n] = nu[n —
1] (Refer Example 5.3 (19))

syms n z
x=n*heaviside(n);
Left=ztrans(x,z);
simplify(Left)

Output:

ans = z/(z - 1)"2
Example 7.64 Write a MATLAB program to solve difference equation
yln+2]+ 1l.1y[n 4+ 1] + 0.3y[n] = x[n + 1] + x[n]

x(n) = (—4) "u(n) and assume initial conditions are zero (Refer Example 5.29)
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symsnzY

x=-4"-n;

X=ztrans(X,z);

X1=z"(1)*X;

Y1=z"(1)*Y;

Y2=z"2*Y
G=0.3*Y+1.1*Y1+Y2-X-X1;
SOL=solve(G,Y);
y=iztrans(SOL,n)

n_s=0:30;

y_s=subs(y,n,n_s);
stem(n_s,y_S);

legend(’Output response of y[n]’)
xlabel(’Time (t)’);
ylabel(’Magnitude ’);

Output:

(20*(-1/2)"n)/3 - (100*(1/4)"n)/51 - (80*(-3/5)"n)/17
Example 7.65 Write a MATLAB program to solve difference equation
yln]+2y[n — 1]+ 2y[n — 2] = x[n]

X (n) = u(n) and assume y[—1] = 0 and y[—2] = 2 (Refer Example 5.35)

clc;

clear all;

symsnzY

x=0.2"n;

X=ztrans(X,z);

y_1=0;

y_2=1;

Y1=z"(-1)*Y+y_1;
Y2=2"(-2)*Y+z"-1*y_l+y_2;
G=Y-0.75*Y1+.125*Y2-X;
SOL=solve(G,Y);
y=iztrans(SOL,n)

n1=0:50;

y_n=subs(y,n,nl);
stem(nl,y_n)

legend(’Output response of y[n]’)
xlabel("Time (t)’);
ylabel(’Magnitude ’);
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Output:
(37*(1/2)"*n)/12 - (39*(1/4)"n)/8 + (8*(1/5)"n)/3

Example 7.66 Write a MATLAB program to solve difference equation
y[n]+6y[n — 114+ 8y[n — 2] = 5x[n — 1] + x[n — 2]

X (n) = u(n) and assume y[—1] = 1 and y[—2] = 2 (Refer Example 5.37), x[n] =
uln].

clc;

clear all;

symsnzY
x=heaviside(n+1);
X=ztrans(X,z);

X1=z"(-1)*X;

X2=z"(-2)*X,

y_l=1;

y_2=2;

Y1=z"(-1)*Y+y_1;
Y2=2"(-2)*Y+z"-1*y_l+y_2;
G=Y+6*Y 1+8*Y2-5%X1-X2;
SOL=solve(G,Y);
y=iztrans(SOL,n)

n1=0:50;

y_n=subs(y,n,nl);
stem(nl,y_n)

title('y[n] in z-Transform ’);
legend(’Output response of y[n]’)
xlabel(’Time (t)’);
ylabel(’Magnitude ’);

Output:
(39%(-2)"n)/2 - (419%(-4)"n)/10 + 2/5

Example 7.67 Write a MATLAB program to solve difference equation
yln+ 2]+ y[n + 114 0.24y[n] = x[n + 1] + 2x[n]

x(n) = (1/2)"u(n) and assume initial conditions are zero (Refer Example 5.38)

symsnzY
x=0.5"n;
X=ztrans(X,z);
X1=z"(1)*X;



7.1 Application of MATLAB Program

y_1=0;

y_2=0;

Y=z (1)*Y+y_l;
Y2=2"2)*Y+y_2+(z" 1)*y_1;

G=Y2+Y1+0.24*Y-X1-2*X;
SOL=solve(G,Y);
y=iztrans(SOL,n)

n1=0:50;

y_n=subs(y,n,nl);

stem(nl,y_n)

legend(’Output response of y[n]’)
xlabel(’Time (t)’);
ylabel(’Magnitude ’);

Output:

y[n]=(250*(1/2)"n)/99 - (80*(-2/5)"n)/9 + (70*(-3/5)"n)/11

Example 7.68 Write a MATLAB program to solve difference equation

y[n +2] —9y[n + 11+ 20y[n] = 4x[n + 1] + 2x[n]
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X(n) = (1/2)"u(n) and assume y[—1] = 2 and y[—2] = 1 (Refer Example 5.40)

clc;

clear all;

symsnzY

x=0.5"n;

X=ztrans(X,z);

X1=z"(-1)*X,

X2=z"(-2)*X,

y_1=1;

y_2=2;

Y1=2"(-1)*Y+y_1;
Y2=2"(-2)*Y+z"-1*y_l+y_2;
G=Y-9*Y 1+20*Y2-4*X1-2*X;
SOL=solve(G,Y);
y=iztrans(SOL,n)

n1=0:50;

y_n=subs(y,n,nl);
stem(nl,y_n)

legend(’Output response of y[n]’)
xlabel(’Time (t)’);
ylabel(’Magnitude ’);
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Output:
y[n] =[0.254(0.5)" 4 42.86(4)" — 45.1(5)" Ju[n]

Example 7.69 Write a MATLAB program to find the state equation for the transfer
function (Refer Example 6.13)

753 4+ 11s2 + 145 + 10

H(S) =
(5 s34+ 8s2+55+4

clc;

clear all;

num=[7 11 14 10];

den=[1 8 54];
z=tf(num,den)

[A ,B,C,D]=tf2ss(num ,den)

Output:
z=78"3+118"2+ 145+ 10

$"3+8s"2+5s+4

Continuous-time transfer function.

[—8 -5 —4
A=[1 0 0
L0 1 0
(1
B=|0
K
C =[-45 —21 —18]
D=7

Example 7.70 Write a MATLAB program to determine the system function (Refer

Example 6.14)
-31 1
0=|30)*[o] e

y=1[0 Tlg(

cle;

clear all;
A=[-31;-2 0];
B=[10];
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C=[01];
D=0;
[n, d]=ss2tf(A,B,C,D)
transferfn=tf(n,d)
Output:
-2

transferfn =

$"2+3s+2

Example 7.71 Write a MATLAB program to find the state equation for the transfer
function (Refer Example 6.18)

574 +772 +822 4+ 224+ 10

H(S) =
5 4 4+6234+724+4249

clc;

clear all;

num=[57 8 2 10];
den=[167409];
z=tf(num,den)

[A ,B,C,D]=tf2ss(num ,den)

Output:

—6-7-4-9

1
0
0
0

[-23 —27 —18 —35]
5

B
C
D

Example 7.72 Write a MATLAB program to find the state equation (Refer Example
6.19)
4y[n — 3]+ 6y[n — 2] — Sy[n — 1] + y[n] = Sx[n — 1] + x[n]
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b0=1;

bl=5;

b2=0;

b3=0;

al=-5;

a2=6;

a3=4;
A=[010;001;-a3 -a2 -al]
B=[001];
bb3=b3-b0*a3;
bb2=b2-b0*a2;
bbl=bl-b0*al;
C=[bb3 bb2 bbl]
D=b0

Output:

[0 10
A=]0 01
| —4-65
[0
B=|0
1
=[-4 -6 —-10]

C —
D=1

Example 7.73 Write a MATLAB program to find the state equation canonical form-
I for the transfer function (Refer Example 6.20)

5z +723 + 822+ 22+ 10

H(S) =
5 4623 +7724+4z7+9

cle;

clear all;

num=[57 8 2 10];
den=[16749],
z=tf(num,den)

[A ,B,C,D]= tf2ss(num ,den);
A=A

B=B’

Cc=C’

D=D
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Output:

7=

58" +7s"3+8s8"2+2s+ 10

"4 +6s"3+78"2+4s+9
Continuous-time transfer function.
—-6100
-7010

—-4001
-9000

B=[l 0 0 0]
C =[-23 27 —18 -35]
D=5

A=

Example 7.74 Write a MATLAB program to find the state variables (Refer Example
6.22)
y[n] —3y[n — 1] — 2[y — 2] = x[n] + 5x[n — 1] + 6x[n — 2]

clc;

clear all;

b0=1;

bl=5;

b2=6;

al=-3;

a2=-2;
A=[01;-a2 -al]
B=[01];
bb2=b2-b0*a2;
bbl=b1-b0O*al;
C=[bb2 bbl]
D=b0

Output:
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Example 7.75 Write a MATLAB program to determine the transfer function (Refer
Example 6.23)

2 -1 1
A=[10} B:b} C=[3 1; D=[2]

clc;

clear all;
A=[2-1;10];
B=[10];

C=[31];

D=2;

[n, d]=ss2tf(A,B,C,D)
transferfn=tf(n,d)

Output:

transferfn =
2SA2—-s+3

SA2-2s+1

Example 7.76 Determine the transfer function and the Eigen values of the system
represented in state space using MATLAB.

41 -2 1
O _ 110 2 [xw+ | 2] um
dt 1-13 3

e Y =12 =6 Sk

A =[41 —2:102: 1 — 13];

B =1[1;2;3];

C =[2 - 65]:

D =0;

[num,den]=ss2tf(A,B,C,D)
sys=tf(num,den)
EigenValues=roots(den)

Output:

num =0 5.0000 —37.0000 60.0000
den = 1.0000 —7.0000 15.0000 —9.0000
Transfer function:
552 —37s+60/s> —7s>+ 155 -9
Eigen Values = 3.0000
3.0000
1.0000
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Example 7.77 Write a Program to obtain the transfer function of the system defined
by the following state space equations

0 1 0 0
dx(t
’;() =10 0 1 |x®)+]|0]|u®

f ~5-10 -3 1
e Y0 =14 5 1)
A =[010; 001; =5 — 10 — 3];
B =10;0; 1];
C = [451];
D =0;
[num,den]=ss2tf(A,B,C,D) sys=tf(num,den)
Output:

num =0 1.0000 5.0000 4.0000

den = 1.0000 3.0000 10.0000 5.0000
Transfer function:

2455 +4/s +3524+10s5+5

Example 7.78 Write a Program to obtain the state space equations for the transfer
function given below

S5s+2
T(s) =
() s34+7s24+354+5
clc;
num=[005 2];
den=[17 3 5];
[A,B,C,D]=tf2ss(num,den)
Output:

[—7 -3 -5
A=|1 10 0

0 10

(1
B=|0

0
c=1[05 2]
D =1[0]

Example 7.79 Write a Program to find the state transition matrix for the following
A matrix.
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=31
= 150)
clc;
A =[-31; —-20];
T=sym(‘t’)
STM=expm(A*t)
Output:

STM =[2/exp(2*t) — 1/exp(t), 1/exp(t) — l/exp(2*t)]
[2/exp(2*t) — 2/exp(t), 2/exp(t) — 1/exp(2*t)]

Example 7.80 A certain control system is described by the following vector matrix
differential equation

I 1 2 1 1

— = —-1-4-3[x®+|[4]|u@
dt 1 2 3 6
yi@)=1[1 1 2]x()

Determine whether the above system is completely state controllable, completely
output controllable and observable.

clc;

A=1[121; -1 -4 —3; —123];
B =1[1;4;6];

C =[112];

D=0;

Rankc=rank([B A*B A%*B]) % To check the controllability
Ranko= rank([C’ A’*C” A’2*C’]) % To check the observability
Rankoc= rank([C*B C*A*B C*A2*B]) % To check the output Controllability

Output:

Rankc =3
Ranko =3
Rankoc =1

From the above the system is completely state controllable and observable. The
system is not output controllable since the rank of the matrix is not three.

Example 7.81 Write a program to obtain the response for the following system for
unit step input and u(t) = e~".

d _
0[5 Jewrs [o

y() =11 Olx()+ [0]u(z)
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Fig. 7.10 Unit step response for Example 7.81

clc;

t=0:0.1:12;

A =[-31; =20],

B=[0;1];

C=[10];

D=[0];

y=step(A,B,C,D,1,t);
figure(1)
plot(t,y)
grid
title(‘Unit step Response’)
xlabel(‘tsec’)
ylabel(‘output’)
u =exp(—t)
z=lIsim(A,B,C,D,u,t)
figure(2)
plot(t,u,” —’,t,z,°0")
grid
title(‘Response to exponential Input u=exp(-t)’)
xlabel(‘tSec’)
ylabel(‘Exponential input’)
text(6.4,0.38, ‘output”)

The output response is shown in Fig.7.10 for unit step input.
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Response to exponential Input u=exp(-t)

0.9

08

0.7

06

0.5

04

Exponential input

output

Fig. 7.11

Output:

t sec

Response for exponential Input for Example 7.81 for x(¢) = e™'

The output response of the system in Example 7.81 for x(¢) = e~ is shown in
Fig.7.11.

Example 7.82 Write a program to obtain the response to initial conditions for the
given system

where

dx(t)

dt
y=Cx + Du

w-[)

=[]
[

C=][1 0]
D = [0]

= Ax + Bu
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clc;

t=0:0.05:3

A = [-31; =20];

B=[1;0];

C=[0 17;

D=[0];

[y x]= initial(A,B,C,D,[1;-1],t);
figure(1)

plot(t,y)

grid

x1=[1 0]*x’;

x2=[0 1]*x’;

figure(2)

plot(t,x1,‘x’,t,x2,* — ")

grid

title(‘Response to Initial Condition’)
xlabel(‘tSec’)

ylabel(‘State variables x1 and x2”)
gtext(‘x1”)

gtext(‘x2’)

Output:

The state variable response of Example 7.82 is shown in Fig.7.12.

Example 7.83 Write a MATLAB program to perform unit impulse function.

Unit impulse function:

clc;

clear all;

close all;

x=ones(1,1);

subplot(2,3,1);

n=0;

stem(n,x);

xlabel(’n’);

ylabel(’x’);

title(’unit impulse function’);

The unit impulse function is shown in Fig.7.13.

Example 7.84 Write a MATLAB program to perform unit step sequence.

cle;
clear all;
N=8;
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Response to Initial Condition
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t Sec
Fig. 7.12 Response for exponential input for Example 7.82

File Edit View Insert Tools Deskiop Window Help
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unit impulse function

= 05

Fig. 7.13 Representation of unit impulse function
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Fig. 7.14 Representation of unit step sequence

x=ones(1,N);
n=0:1:N-1;
subplot(2,3,1);
stem(n,X);

xlabel(’n’);
ylabel(x(n’);

title("unit step function’)

The unit step sequence is shown in Fig.7.14.

Example 7.85 Write a MATLAB program to perform unit ramp sequence.

Unit ramp:

clc;

clear all;

N=8;

x=0:N-1;

n=0:N-1;

subplot(2,3,1);

stem(n,X);

xlabel(’n’);
ylabel(’x(n’);

title("unit ramp functin’);
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File Edit WYew Insert Tools Desktop Window Help
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Fig. 7.15 Representation of unit ramp sequence

The unit ramp sequence is shown in Fig.7.15.

Example 7.86 Write a MATLAB program to perform linear convolution.

x[n] = [1234]
hin] =[2341]

Linear convolution:

Program:

clc;

clear all;

close all;

x=input(’ Enter the first input sequence x(n)’);
h=input(’Enter the second input sequence h(n)’);
nl=length(x);

n2=length(h);

n=nl+n2-1;

y=conv(x,h);

disp(’Linear Convolution Output is:’);
disp(y);

t1=0:n1-1;

subplot(2,2,1);

stem(t1,x);

xlabel(’n’);

ylabel(’ Amplitude’);
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title('First input sequence:’);
t2=0:n2-1;

subplot(2,2,2);

stem(t2,h);

xlabel(’n’);

ylabel(” Amplitude’);
title(’Second input sequence:’);
t=0:1:n-1;

subplot(2,2,3);

stem(t,y);

xlabel(’n’);

ylabel(’ Amplitude’);
title(’Output sequence:’);

Output:
First sequence [1 2 3 4]
Second sequence[2 3 4 1]

o/p sequence:
[27 16262619 4]
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Example 7.87 Write a MATLAB program to perform circular convolution for the

Example 7.86.

clc;
clear all;
close all;
x I=input(’enter’);
x2=input(’enter’);
nl=length(x1);
n2=length(x2);
if(n1<n2)
x1=[zeros x1(1,n2-n1)];
elseif(n2<nl)
x2=[zeros x2(1,n1-n2)];
else
x1=x1;
xX2=x2;
end;
nl=length(x1);
n2=length(x2);
A=fft(x1,nl);
B=fft(x2,n2);
Y=A.*B;
y=ifft(Y);
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n=length(y);

disp(’Circular convolution output is:’);
disp(y);

t1=0:n1-1;

subplot(2,2,1);

stem(tl,x1);

xlabel(’n’);

ylabel(’ Amplitude’);
title("First input sequence:’);
t2=0:n2-1;

subplot(2,2,2);

stem(t2,x2);

xlabel(’n’);

ylabel(’ Amplitude’);
title("second input sequence:’);
t=0:n-1;

subplot(2,2,3);

stem(t,y);

xlabel(’n’);

ylabel(’ Amplitude’);
title(’Output sequence:’);

enter[1 2 3 4]
enter[2 3 4 5]

Output:
36 38 36 30

The input and output sequences are shown Fig.7.16.

Example 7.88 Write a MATLAB program to find n point DFT of a given sequence.

x[n]=[11110000]

Discrete fourier transform

Clear all

Xn=input(’enter a sequence’);
L=length(xn); length of the sequence
N=input(’enter the length of the DFT’);
Xk=dft(xn,N)
Subplot(2,1,2),stem(abs(xk))
Xlable(*\itk”)

Ylabel("x(k))
subplot(2,1,2).stem(angle(xk))
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Fig. 7.16 Input/output of circular convolution

Xlabel(*\itk”)
Ylabel(arg(x(k))’)
Output:

enter sequence [1 1 110000]
enter the length of the DFT 8§

xk=
Columns 1 through 6

4.0000 1.0000 — 2.4142i — 0.0000 — 0.0000; 1.0000 — 0.4142i 0 — 0.0000i
1.0000 + 0.4142i

Columns 7 through 8

0.0000 — 0.0000; 1.0000 + 2.4142i
See (Fig.7.17).

Example 7.89 Write a MATLAB program to perform upsampling.
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Fig. 7.17 N points DFT of x[n] = [11110000]

Ilustration of upsampling:

Clear all

N=10% sequence length
N=0:1:N-1;
X=sin(2*pi*n/10)+sin(2*pi*n/5)
L=3% upsampling factor
X1=[zeros(1,L*N)];
NI1=1:1:L*N j=1:L:L*N;
X1()=x;

Subplot(2,1,1); stem(n1,x1)
Xlabel(’'n’),ylabel(’x)
Title(’input sequence’)
Subplot(2,1,2), stem(nl,x1)
Xlabel(’'n’),ylabel("x1”)
Title(upsampled sequence’);

The input sequence and the up sampled sequences are shown in Fig.7.18. The input
sequence is shown in Fig.7.18a and output sequence in Fig.7.18b.

Example 7.90 Write a MATLAB program to find Z transform.
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Fig. 7.18 Representation of input and upsampled sequences

Z transform:
To find the partial fraction of H (Z):

Clear all

Clc

Num=[2];%numerator coefficients
Den=[1 -3 2];% denominator coefficients
[r,p,k]=residuez(num,den]

Output:

r=4 -2
p=2 1
k=[]

Example 7.91 Write a MATLAB program to estimate the power spectrum using
periodogram.
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Fig. 7.19 Power spectrum is represented in Example 7.91

% power spectrum estimate using periodogram

Clear all

N=input ("enter the length of the sequence’)
Window=hamming(n);

Nfft=input(’length of the FFT");
Fs=input(’sampling frequency’);

N=0:1:n-1;

%signal sum of two sinusoids and random noise
X=cos(2* 1 *pi*f/fs)+sin(2*4*pi*n/fs)+0.01 *randnsize(n);
Subplot(2,1,1),plot(n,x)
Xlabel(’n’),ylabel(’x(n)’)
[pxx,f]=periodogram(x,window,nfft,fs)
Subplot(2,1,2)

Plot(f/fs.10*log10(pxx)); grid
Xlabel(’omega/\pi’),ylabel(’power spectrum’)

The power spectrum is represented in Fig.7.19.
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Fig. 7.20 Power spectrum estimation using Welch method in Example 7.92

Example 7.92 Write a MATLAB program to estimate power spectrum using Welch
method.

% power spectrum estimate using Welch method

Clear all
Fs=800;
T=0.1/Fs:4;

X=cos(2*pi*t*100)+sin(2*pi*t*300))+randn(size(t));
Pwelch(x,[],0[],Fs)% uses default window overlap
Output:

The power spectrum estimation is shown in Fig.7.20.
Example 7.93 Write a MATLAB program for echo cancellation.

Echo Cancelation

load mtlb
% To hear, type soundsc(mtlb,Fs)
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Fig. 7.21 Representation of echo cancellation in Example 7.93

timelag = 0.23;

delta = round(Fs*timelag);
alpha =0.5;

orig = [mtlb;zeros(delta,1)];
echo = [zeros(delta,1);mtlb]*alpha;
mtEcho = orig + echo;

t = (0:length(mtEcho)-1)/Fs;
subplot(2,1,1)

plot(t,[orig echo])
legend(’Original’,’Echo’)
subplot(2,1,2)
plot(t,mtEcho)
legend(’Total’)
xlabel(’Time (s)’)

The echo cancellation is shown in Fig.7.21.

0.7 0.8

Example 7.94 Write a MATLAB program for Speech Signal Testing.

clc; clear;
close all;
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addpath *func’

addpath ’func\func_pregross

\" addpath ’Speech_Processing_Toolbox’

Num_Gauss=64;

[Speech_Test0,Fs,nbits]=wavread(’ Test_Samples\test5\yes_no\yes.wav’);

Index_use = func_cut(Speech_Test0,Fs,nbits);

Speech_Test = Speech_TestO(Index_use(1):Index_use(2));

figure;

plot(Speech_Test0);

hold on;

Len =[-1.05:0.01:1.05];

plot(Index_use(1)*ones(length(Len),1),Len,’r’,’linewidth’,2);

hold on;

plot(Index_use(2)*ones(length(Len),1),Len,’k’,’linewidth’,2);

hold off axis([1,length(Speech_Test0),-1.05,1.05]);

title(" The simulation result of EndPoint checking’);

figure; Linlin Pan Research and simulation on speech recognition by MATLAB A3

plot(Speech_Test+1.5,’b’);

Speech_Test = filter([1, -0.95], 1, Speech_Test);

hold on plot(Speech_Test,r’);

legend(’original’,’Pre emphasis’);

global Show_Wind;

Show_Wind = 1;

global Show_FFT;

Show_FFT =1;

Test_features= melcepst(Speech_Test,Fs);

figure;

surf(Test_features);

load GMM_MFCC.mat A=[0,0];

for i = 1:2 [IYM,IY]=func_multi_gauss(Test_features’,
mu_traini,sigma_traini,c_traini); A(i)=mean(1Y);

end [V,I] = max(A); if == 1 disp(’The speech is: YES’);

else disp(’The speech is: NO’);

The speech signal testing is shown in Fig.7.22.

Example 7.95 Perform Live recording of 1 D speech signal using headset and plot
the output waveform.

Y0 %0 Yo audtest % %o %o %o
USING audiorecorder function:

Fs=8000;

nBits=8;

nChannels=1;

recObj = audiorecorder(Fs,nBits,nChannels);
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Fig. 7.22 Representation of speech signal testing for Example 7.94

disp(’Start speaking.”)

recordblocking(recObj, 5);
disp(CEnd of Recording.’);
% Play back the recording.

play(recObj);
myRecording = getaudiodata(recObj);
plot(myRecording);

% Plot the waveform.
Output waveform obtained from the above Program is plotted below in Fig.7.23.

Output waveform:

Example 7.96 Write a MATLAB program for the acquisition of 2D (image) signal.

%% %Read gray scale image% %imgrd
clc;

clear all;

a=imread(’cameraman.tif’); %Read the gray scale image
[M N]=size(a);

Figure;

subplot(3,2,1);

imshow(a);

%% % % Apply 2D DCT to the image
b=dct2(a);

subplot(3,2,2);
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Fig. 7.23 Plot of 1 D speech signal of Example 7.95

imshow(abs(b),[]);
subplot(3,2,3);
e=idct2(b);
subplot(3,2,3);
imshow(e,[]);

Output obtained from the above Program is shown below in Fig.7.24.

Output:

Example 7.97 Perform time scaling operations on 1D signal and analyze the process
in time and frequency domains.

clc;

clear all;

Fs=1000; % Sampling frequency
T = 1/Fs; % Sampling period
L =1500; % Length of signal
t = (0:L-1)*T; % Time vector
f=50;

X = 0.7*sin(2*pi*f*t);

Y= 2*sin(2*pi*(2*f)*t);
plot(1000*t(1:50),X(1:50))
title(’Signal-17)

xlabel(’t (milliseconds)’)
ylabel("X(t))
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Fig. 7.24 Output image of DCT and IDCT of Example 7.96

plot(1000%t(1:50),Y(1:50))

title(’Signal-2”)

xlabel(’t (milliseconds)’)

ylabel(CY(t)*)

z1 = fft(X);

P2 = abs(z1/L);

P1 =P2(1:L/2+1);

P1(2:end-1) = 2*P1(2:end-1);

f = Fs*(0:(L/2))/L;

plot(f,P1)

title(’ Single-Sided Amplitude Spectrum of X(t)’)
xlabel(’f (Hz)")

ylabelCIP1(f)I")

z2=fft(Y);

P3 = abs(z2/L);

P4 =P3(1:L/2+1);

P4(2:end-1) = 2*P4(2:end-1);

f = Fs*(0:(L/2))/L;

plot(f,P4)

title(’Single-Sided Amplitude Spectrum of Y(t)’)
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xlabel(f (Hz)*)
ylabelCIP1(f)")

Output waveform obtained from the above Program is plotted in Fig. 7.25.

Output waveform:

Example 7.98 Perform Convolution operation on two speech signals and analyze
the process in time and frequency domains.

(a) Time Domain

[sigl, fs] = audioread(’examplel.wav’);
% import the song

t = [1:length(sigl)]/fs;

% soundsc(sigl,fs);

subplot(3,1,1)

plot(t, sigl) % plot the song

xlabel(’t (second)’)

ylabel(’Relative signal strength’)
title("Song’)

[sig2, fs] = audioread(’ SpeechDFT-16-8-mono-5secs.wav’);
% soundsc(sig2,fs);% import the song

x=sig2;

x(length(sigl))=0; % zero-pad if lenth(sig2) < sigl
x=x(1:length(sigl));

tl = [1:length(sig2)]/fs;

subplot(3, 1, 2)

plot(tl, sig2) % plot the song

xlabel(’t1 (second)’)

ylabel(’Relative signal strength’)

title(’Speech signal’)

w =conv2(sigl,x,’same’);

soundsc(w,fs);

% t2 = 0:1:10;

t2=[1:length(sigl)]/fs;

subplot(3,1,3);

plot(t2,w);

xlabel(’t2 (second)’)

ylabel(’Relative signal strength’)

title(’Convolved Signal’)

Output waveform obtained from the above Program is plotted and shown in Fig. 7.26.
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Fig. 7.25 Output of 1D single sided amplitude spectrum. a x(¢) and b y(¢) of Example 7.97
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Fig. 7.26 Output of convolution of two speech signals in time domain analysis of Example 7.98a

Output Waveform:
(b) Frequency Domain

[sigl,fs] = audioread(’examplel.wav’);

% import the song

f = [L:length(sigl)];

soundsc(sigl,fs);

% plot(t, sigl) % plot the song

X = fft(sigl);

X = fftshift(X);%rearranges a Fourier transform X by

% shifting the zero-frequency component to the center of the array.

Xmag = abs(X);

subplot(3,1,1)

plot(f,Xmag);

xlabel(’Frequency’)

ylabel(’Relative signal strength’)

title("Song’)

[sig2, fs] = audioread(’SpeechDFT-16-8-mono-5secs.wav’);
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soundsc(sig2,fs);% import the song

x=sig2;

x(length(sigl))=0; % zero-pad if lenth(sig2) < sigl
x=x(1:length(sigl));

fl = [1:length(x)];

% plot(tl, sig2) % plot the song

X1 = fft(x);

X1 = fftshift(X1);%rearranges a Fourier transform X by
% shifting the zero-frequency component to the center of the array.
Xmagl =abs(X1);

% delta_f = fs./(N.*1000);

% nf = -N./2:1:N/2-1;

% f =nf .* delta_f;

subplot(3, 1, 2)

plot(f1,Xmag1);
xlabel(’Frequency’)
ylabel(’Relative signal strength’)
title(’Speech Signal’)

w =conv2(sigl,x,’same’);
soundsc(w,fs);

% 12 =0:1:10;

% t2=[1:length(sig1)]/fs;

X2 = fft(w);

X2 = fftshift(X2);%rearranges a Fourier transform X by
% shifting the zero-frequency component to the center of the array.
Xmag?2 = abs(X2);
f2=[1:length(sig1)];
subplot(3,1,3);

plot(f2,Xmag2);

% plot(t2,w);
xlabel(’Frequency’)
ylabel(’Relative signal strength’)
title("Convolved Signal’)

Output waveform obtained from the above Program is plotted and shown in Fig. 7.27.

Output Waveform:

Example 7.99 Perform Correlation operations on two speech signals and analyze
the process in time and frequency domains.

(a) Time Domain

load mtlb

% soundsc(mtlb,Fs)
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Fig. 7.27 Output of convolution of two speech signals in frequency domain analysis of Example

7.98b

timelag = 0.23;
delta = round(Fs*timelag);
alpha =0.5;

orig = [mtlb;zeros(delta,1)];
echo = [zeros(delta, 1 );mtlb]*alpha;

mtEcho = orig + echo;
t = (0:length(mtEcho)-1)/Fs;

subplot(2,1,1)
plot(t,[orig echo])
legend(’Original’,’Echo’)

subplot(2,1,2)
plot(t,mtEcho)
legend(’ Total’)
xlabel(’Time (s)’)

% soundsc(mtEcho,Fs)
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[Rmm,lags] = xcorr(mtEcho, unbiased’);

Rmm = Rmm(lags>0);
lags = lags(lags>0);

figure

plot(lags/Fs,Rmm)

xlabel(’Lag (s)’)

[ ,dl] = findpeaks(Rmm,lags,’MinPeakHeight’,0.22);

tNew = filter(1,[1 zeros(1,dl-1) alpha],mtEcho);
soundsc(mtNew,Fs)

subplot(2,1,1)

plot(t,orig)

legend(’Original’)

subplot(2,1,2)
plot(t,mtNew)
legend(’Filtered’)
xlabel(’Time (s)’)

Output waveform obtained from the above Program is plotted and is shown in
Fig.7.28.

Output Waveform:
(b) Frequency Domain

[sigl,fs] = audioread(’examplel.wav’);

% import the song

f = [1:length(sigl)];

soundsc(sigl,fs);

% plot(t, sigl) % plot the song

X = fft(sigl);

X = fftshift(X);%rearranges a Fourier transform X by

% shifting the zero-frequency component to the center of the array.
Xmag = abs(X);

subplot(3,1,1)

plot(f,Xmag);

xlabel(’Frequency’)

ylabel(’Relative signal strength’)

title("Song’)

[sig2, fs] = audioread(’SpeechDFT-16-8-mono-5secs.wav’);
soundsc(sig2,fs);% import the song

x=sig2;

x(length(sigl))=0; % zero-pad if lenth(sig2) < sigl
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Fig. 7.28 Output of correlation of two speech signals in time domain analysis of Example 7.99a

x=x(1:length(sigl));

fl = [1:length(x)];

% plot(tl, sig2) % plot the song

X1 = fft(x);

X1 = fftshift(X1);%rearranges a Fourier transform X by

% shifting the zero-frequency component to the center of the array.
Xmagl =abs(X1);

% delta_f = fs./(N.*1000);
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% nf = -N./2:1:N/2-1;

% f =nf .* delta_f;

subplot(3, 1, 2)

plot(f1,Xmagl);
xlabel("Frequency’)
ylabel(’Relative signal strength’)
title(’Speech Signal’)

w =conv2(sigl,x,’same’);
soundsc(w,fs);

% 12 =0:1:10;

% t2=[1:length(sigl)]/fs;

X2 = fft(w);

X2 = fftshift(X2);%rearranges a Fourier transform X by
% shifting the zero-frequency component to the center of the array.
Xmag?2 = abs(X2);
f2=[1:length(sig1)];
subplot(3,1,3);

plot(f2,Xmag?2);

% plot(t2,w);
xlabel("Frequency’)
ylabel(’Relative signal strength’)
title(’ Convolved Signal’)

Output waveform obtained from the above Program is plotted and is shown in
Fig.7.29.

Output Waveform:

Example 7.100 Downsample and upsample the speech signal by an integer factor
2 and 4. Analyze the process in frequency and time domains.

% A speech signal is downsampled and upsampled, the spectra
% are plotted, and the signals are run through the sound card.
% %o

clc;
clear all;
close all;
%0 %

%
% Parameters

D =4; % downsampling/upsampling factor
%%

%
%Read and play back data sampled at 8192 HzHz
Fs =8192;
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Fig. 7.29 Output of correlation of two speech signals in frequency domain analysis of Example
7.99b

data=load(’data_1.txt’, ascii’);

x=data;

x(8192)=0; % zero-pad if lenth(data) < 8192
x=x(1:8192);

N = length(x);

% Yo

%

a. % Downsampling by D

n=1:1:N;

t=(n-1)./Fs;

z = zeros(1,N);

z(1:ceil(N/D)) = x(1:D:N); % ceil(x) will round of the elements to the nearest integer
z(ceil(N/D)+1:N) = zeros(1,N-ceil(N/D));

figure;

subplot(2,1,1), plot(t,x);% ploting

xlabel(’t sec’);

title(’Original utterance’); % utterence spoken word
subplot(2,1,2), plot(t,z);xlabel(’t sec’);

title(’ Utterance downsampled by D’);

X = fft(x);

X = fftshift(X);%rearranges a Fourier transform X by

% shifting the zero-frequency component to the center of the array.
Xmag = abs(X);
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Z = fft(z);

Z = fftshift(Z),

Zmag = abs(Z);

delta_f = Fs./(N.*1000);

nf = -N./2:1:N/2-1;

f =nf .* delta_f;

figure;

subplot(2,1,1), plot(f,Xmag);
xlabel(’f kHz’);

title(’Original utterance’);
subplot(2,1,2), plot(f,Zmag);

xlabel(’f kHz’);

title(’ Utterance downsampled by D’);
input(’Original utterance’)
soundsc(x,Fs);

input(’ Utterance downsampled by D’)
soundsc(z,Fs);

input(’ Utterance downsampled by D, played at Fs/D’)
soundsc(z,Fs./D);

Y0 %

%

b. % Upsampling by D

z = zeros(1,D.*N);

z(1:D:D.*N) = x(1:N);

x_extend = x;
x_extend(N+1:D.*N) = zeros(1,(D-1).*N);
n_extend = 1:1:D.*N;

t_extend = n_extend./Fs;

figure;

subplot(2,1,1), plot(t_extend,x_extend);
xlabel(’t sec’);

title(’Original utterance’);
subplot(2,1,2), plot(t_extend,z);
xlabel(’t sec’);

title(’ Utterance upsampled by D’);
X_extend = fft(x_extend);
X_extend = fftshift(X_extend);
Xmag_extend = abs(X_extend);

Z = fft(z);

Z = fftshift(Z);

Zmag = abs(Z);

delta_f = Fs./(D.*N.*1000);

nf =-D.*N./2:1:D.*N/2-1;
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f =nf .* delta_f;

figure;

subplot(2,1,1), plot(f,Xmag_extend);
xlabel(’f kHz’);

title(’Original utterance’);
subplot(2,1,2), plot(f,Zmag);
xlabel(’f kHz’);

title(’ Utterance upsampled by D’);
input(’Original utterance’)
soundsc(x,Fs);

input(’ Utterance upsampled by D’)
soundsc(z,Fs);

input(’ Utterance upsampled by D, played at Fs*D’)
soundsc(z,Fs*D);

Output waveform obtained from the above Program is plotted and is shown in
Fig.7.30.

Output Waveform: The down sampling for a factor of 4 is shown in Fig.7.30a.
Down sampling for a factor of 2 is shown in Fig. 7.30b. The up sampling for a factor
of 2 is shown in Fig. 7.30c. The up sampling for a factor of 4 is shown in Fig.7.30d.

7.2 Application of Python Program to Solve Engineering
Problems

Example 7.101 Write a Python program for daily recording covid cases. Get the
input from the user.

Program:

#covid case wave
import matplotlib.pyplot as plt
x=[]
y=I[]
n=int(input("Enter the number of days to be recorded»> "))
for i in range(n):
y.append(int(input(f"Enter the case recorded on day i+1» ")))
for i in range(n):
i+=1
x.append(i)
print(x)
print(y)
plt.plot(x,y)
plt.xlabel(’Days’)
plt.ylabel(’Number of cases’)
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Fig. 7.30 a Output of downsampling the speech signal by a factor of 4 of Example 7.100. b Output
of downsampling the speech signal by a factor of 2 of Example 7.100. ¢ Output of upsampling the
speech signal by a factor of 2 of Example 7.100. d Output of upsampling the speech signal by a
factor of 4 of Example 7.100

plt.title(’ Covid case graph’)
plt.show()

The covid cases graph is represented in Fig.7.31.
Output:
The graph of daily covid cases is shown in Fig.7.31.

Example 7.102 Write a Python program to perform deposit and withdrawing cash
account.

Program:

class Bank_Account:
def_init_(self):
self.balance=0
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Fig. 7.30 (continued)

print("Hello!!! Welcome to the Deposit & Withdrawal Machine")
def deposit(self):
amount=float(input("Enter amount to be Deposited: "))
self.balance += amount
print("\n Amount Deposited:",amount)
def withdraw(self):
amount = float(input("Enter amount to be Withdrawn: "))
if self.balance>=amount:
self.balance-=amount
print("\n You Withdrew:", amount)
else:
print("\n Insufficient balance ")
def display(self):
print("\n Net Available Balance=",self .balance)
s = Bank_Account()
s.deposit()
s.withdraw()
s.display()
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Fig. 7.30 (continued)
Output:
A DLESH 101 - 0 X
file Edit Shell Debug Options Window Help
{Python 3.10.1 (tags/v3.10.1:2c4268a, Dec 6 2021, 19:10:37) [MSC v.1929 64 bit (ANDG4)) on wind2 A

| Type "help”, "copyright”, "credits” or "license()" for more information.
»y
| = RESTART: C:/Users/Unknovn._.Dresmer/AppData/Local/Programs/Pychon/Python310/bank example.py
|Hello!!! Welcoms to the Deposit ¢ Vithdraval Machine
| Enter amount to be Deposited: 8500

Amount Deposited: 8500.0
| Enter amount to be Withdrawm: 150

You Vithdrew: 130.0

Net hvailable Balance= 8350.0
|

Lo Col:0
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Fig. 7.31 Graph of daily (B oesaer = 0 X

(7:01\/1(; cases of Example fe e 9 ooy Optes -
10 Python 3.10.1 (tegs/vd.10.1:2cd268a, Dec 6 2021, 19:10:37) [MSC v.1929 64 by -

t (AMDE4)) om wind2
Type "help”, "copyright®, "credits® or "license()” for more information.

® RESTART: C:/Users/Unknown._.Dresmer/AppData/Local/Programe/Python/Pythond10
feovid vave.py

Enter the maber of days to be recorded»> 10
Enter the case recorded on day 13> §

Enter the case recorded on day 2>> 10

Enter the case recorded on day 3»> 20

Enter the case recorded on day 43> 40

Enter the case recorded on day 52> 60

Enter the case recorded on day é>> 30

Enter the case recorded on day 7> 15

Enter the case recorded on day 8> 7

Enter the case recorded on day %> 2

Enter the case recorded on day 100> 0
1,234,456 %89 10

(5, 10, 20, 40, 60, 30, 15, 7, 2, 0]

lre18 Cok

Covid case graph

Number of cases

20

10
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Example 7.103 Write a Python program to calculate Electricity consumption bill.

The problem statement is given below.
Problem statement:

Get the input from the user.

The first 100 units are free.

The next 100 units it costs 1.5rs per unit.

For the next 300 units it costs 3rs per unit.

For more than 500 units, the first 100 units are free, the next 100 units costs 3.50rs
per unit, the next 300 units costs 4.60rs per unit and the rest of the units used costs
6.60rs per unit.

Program

unit=int(input("Enter the amount of units used» "))
cal=unit
cost=0
if unit>0 and unit<=100:
print("the first 100 unit is free")
elif unit>100 and unit<=200:
unit=unit-100
cost=unit*1.5
elif unit>200 and unit<=500:
unit=unit-200
cost=(unit*3)+(100*2)
elif unit>500:
unit=unit-500
cost=(unit*6.60)+(100*3.50)+(300*4.60)
else:
print("Invalid input")
print(f"The total electricity bill amount you have to pay for cal units is Rs.cost")

Output 1:

Enter the amount of units used» 248

The total electricity bill amount you have to pay for 248 units is Rs.344
Output 2:

Enter the amount of units used» 576

The total electricity bill amount you have to pay for 576 units is Rs.2231.6

Example 7.104 Write a Python program to implement a line graph for the given
points (10,10), (20,78), (30,40), (40,45), (50,20), (60,60), (70,30), (80,20), (90,90),
(100,10).
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Program

#open cmd

#pip install matplotlib

import matplotlib.pyplot as plt
x=[10,20,30,40,50,60,70,80,90,100]
y=[10,78,30,45,20,60,30,20,90,10]
plt.plot(x, y)

plt.show()

Output:

The graph of distance between points is shown in Fig.7.32.

Example 7.105 Write a Python program to manage retail shop billing system with
orders of technical items.

Program:

product_name=[]

product_quantity=[]

product_price=[]

company_name="Retail Store’

company_address="Malik street,maathur’

company_city="Trichy’

message="Thanks for shopping with us today!’

length=int(input("Enter the number of product purchased»> "))

for i in range(length):
product_name.append(input("Enter the product name: "))
product_quantity.append(int(input("Enter the product quantity: ")))
product_price.append(int(input("Enter the product price: ")))

print("\n\t\t#### BILL ####")

print("*"*50)

print("\t\t{ }".format(company_name.title()))

print("\t\t{ }".format(company_address.title()))

print("\t\t{ }".format(company_city.title()))

print("*"*50)

print("\tProduct Name\t Qantity \tPrice")

print("-"*50)

i=0

for i in range(length):
print("\t",product_name[i],"\t",product_quantity[i],"\t\t",product_price[i])

print("="*50)

print("\t\t\t\tTotal")

total=0

i=0

for i in range(length):
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4 “IDLE Shell 3,101 - 0 X

File Edit Shell Debug Options Window Help
Python 3.10.1 (vags/v3.10.1:2cd268a, Dec 6 2021, 19:10:37) [MSC v.1929 64 b1 ~
t (AND64)] on win32
Type "help®™, "copyright®, "credits™ or "license()”™ for more information.
>3
= RESTART: C:\Users\Unknown._.Dreamer\ippDatallLocall\Programs\Python)Python310
\mathplot.py
Ln5 Cok0|
& Figure 1 - 0 X
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Fig. 7.32 Graph of distance between two points of Example 7.104
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total+=(product_price[i]*product_quantity[i])
print("\t\t\t\tRs.{ }".format(total))
print("="*50)
print("\n\t{ }\n".format(message))
print("*"*50)

Output:

A IDLE Shell 3101 - 0 X
file Edt Shell Debug Options Window Help
Python 3.10.1 (tags/v3.10.1:2cd268a, Dec 6 2021, 19:10:37) [MSC v.1929 64 bit (AMDE4)] on wind2
Type "help®, "copyright”, "credits™ or "license()" for more information.
ey
= RESTART: C:/Users/Unknown. .Dreamer/AppDate/Local/Programs/Python/Python310/bill 1.0.py
Enter the muber of product purchased>> 3
Enter the product name: Laptop
Enter the product quantity: 8
Enter the product price: 45000
Enter the product name: Feyboard
Enter the product quamtity: 15
Enter the product price: 1200
Enter the product name: Webcam
Enter the product quantity: 12
Enter the product price: 8500

#8855 BILL &8ss

I TTITEEEITITITERTICTIARRISCRSARSTLLASIRRSLRS

Retail Store
Nalik Street, Naathur

Trichy
TrrERRRRERRRRRERRRRERRRRRRRRRRIRRRERRORRRRRRRROROEY
Product Name Qantity Price
Laptop 8 45000
Feyboard 15 1200
Vebcan 12 8500
Total
Rs. 480000

Thanks for shopping with us today!

P IEEEEITIEETEITETIEETICTIATRTERTIRRRTICRSRRRSLRS

e

Ln:35 Cok0

Example 7.106 Write a Python program for Signal Processing on Graphs.

Program:

#pip install pygsp

#pip install numpy

from pygsp import graphs, filters
G = graphs.Logo()
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LogoGSP
G.N=1130 nodes, G.Ne=3131 edges

#l €3 +al= B waxm

p Sicie.

164806

Fig. 7.33 Output response of Example 7.106

G.estimate_Ilmax()

g = filters.Heat(G, tau=100)

import numpy as np

DELTAS = [20, 30, 1090]

s = np.zeros(G.N)

s[DELTAS] =1

s = g filter(s)

G.plot_signal(s, highlight=DELTAS, backend="matplotlib’)

Output:
The signal processing plot is shown in Fig.7.33.

Example 7.107 Develop a Python program for logical gates

Program:

def AND (a, b):
ifa==landb==1:
return True
else:
return False

def NAND (a, b):

ifa==landb==1:
return False
else:

return True
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def OR(a, b):
ifa==1orb==1:
return True
else:
return False

def XOR (a, b):

ifa!=b:
return True
else:

return False

def NOT(a):
return not a

def NOR(a, b):

if(a == 0) and (b == 0):
return True

elif(a==0) and (b == 1):
return False

elif(a==1) and (b == 0):
return False

elifta==1) and (b==1):
return False

def XNOR(a,b):
if(a ==b):
return True
else:
return False
while True:
print(”’
1.AND Gate
2.0R Gate
3.NAND Gate
4 NOR Gate
5.XOR Gate
6.XNOR Gate
7.NOT Gate
8,Exit
™)
a=int(input("Enter the Choice» "))
if a==1:
print("Enter *1” for Ture and 0’ for false")
a=int(input("Enter the first condition: "))

699
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b=int(input("Enter the second condition: "))
print(AND(a,b))

elif a==2:
print("Enter *1” for Ture and 0’ for false")
a=int(input("Enter the first condition: "))
b=int(input("Enter the second condition: "))
print(OR(a,b))

elif a==3:
print("Enter *1” for Ture and 0’ for false")
a=int(input("Enter the first condition: "))
b=int(input("Enter the second condition: "))
print(NAND(a,b))

elif a==4:
print("Enter *1” for Ture and 0’ for false")
a=int(input("Enter the first condition: "))
b=int(input("Enter the second condition: "))
print(NOR(a,b))

elif a==5:
print("Enter *1” for Ture and 0’ for false")
a=int(input("Enter the first condition: "))
b=int(input("Enter the second condition: "))
print(XOR(a,b))

elif a==6:
print("Enter *1” for Ture and 0’ for false")
a=int(input("Enter the first condition: "))
b=int(input("Enter the second condition: "))
print(XNOR(a,b))

elif a==7:
print("Enter ’ 1’ for Ture and 0’ for false")
a=int(input("Enter the first condition: "))
b=int(input("Enter the second condition: "))

print(NOT(a,b))
elif a==8:
print("-"*20)
break
else:

print("Invalid Input")
print()
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Output:

1.AND Gate
2.0R Gate
3.NAND Gate
4 _NOR Gate
5.X0R Gate
6.XNOR Gate
7.NOT Gate
8,Exit

Enter the Choice>> 1

Enter 'l' for Ture and '0' for false

Enter the first condition: 1
Enter the second condition: 1
True

.AND Gate
.OR Gate
.NAND Gate
.NOR Gate
.XOR Gate
.XNOR Gate
.NOT Gate
(Exit

WD~ o U WM

Enter the Choice>> 2

Enter 'l' for Ture and '0' for false

Enter the first condition: 1
Enter the second condition: 0
True

Example 7.108 Write a Python program to calculate the employee salary.

Program:

e_name=input("Enter the name of Employee \n")
c_name=input("Enter the company name \n")
salary=float(input("Enter the salary of Employee \n"))
if(salary>50000):

tax=0.15%salary

netsalary=salary-tax

print("The net salary of "+e_name+" worked in " +c_name+ " is",netsalary)

else:
netsalary=salary
print("No taxalbe Amount")

print("The net salary of "+e_name+" worked in " +c_name+ " is",salary)
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Output:
Enter the name of Employee
John
Enter the company name
JO SOFT
Enter the salary of Employee
80000
The net salary of John worked in JO SOFT is 68000.0
>>>
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