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Preface

In this reprint, we gathered the latest developments in financial analysis and statistical learning,

along with practical applications.

Sathiyaraj et al. delved into the exponential stability of fractional-order large-scale neutral

stochastic delay systems with fractional Brownian motion, commonly used to model financial

phenomena due to their long memory property.

Wada and Kurosawa generalized the naive estimator of a Poisson regression model with

measurement errors, extending the assumptions beyond normal distributions for explanatory

variables.

Modeling non-payment counts as a renewal process involves examining the inter-arrival times

between events. Low and Ong introduced a method for numerically computing probabilities and the

renewal function based on Laplace transform inversion.

Deriving loss distribution from insurance data poses a challenge due to its skewed nature

with heavy tails and the presence of outliers. Mahdavi et al. made an extension of the weighted

exponential family, incorporating flexible features such as bimodality and a range of skewness and

kurtosis.

Stable distributions offer better modeling for high-volatility financial data. SenGupta and Roy

introduced a novel estimator for the index parameter using a trigonometric moment estimator based

on circular distributions.

Accurate loan default prediction is crucial for credit risk assessment. Dong et al. explored a

non-parametric approach with five machine learning classifiers on large datasets.

Çetin et al. analyzed factors influencing credit decision-making in Turkey’s dynamic service

sector post-2000, amid accelerated economic growth.

Wang et al. examined board gender diversity’s effect on firm performance using 1990 publicly

listed Japanese companies from 2006 to 2023.

The financial market poses challenges in identifying the distribution and stylized facts of time

series data. Dewick employed regression modeling to assess the goodness-of-fit between original and

generated time series models, aiding in model selection.

Ghosh et al. used the VineCopula package in R to analyze the dependence structure of real-life

insurance data.

Cao et al. reviewed recent advancements in understanding asymmetric correlations of asset

returns and explored their implications for hedging, diversification, and multifractal asymmetric

detrend cross-correlation analysis.

We hope this Special Volume proves valuable for graduate students and researchers in fields

related to financial analytics, business statistics, econometrics, insurance studies, and other relevant

areas.
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Abstract: Mathematics plays an important role in many fields of finance. In particular, it presents
theories and tools widely used in all areas of finance. Moreover, fractional Brownian motion (fBm)
and related stochastic systems have been used to model stock prices and other phenomena in finance
due to the long memory property of such systems. This manuscript provides the exponential stability
of fractional-order Large-Scale neutral stochastic delay systems with fBm. Based on fractional calculus
(FC), Rn stochastic space and Banach fixed point theory, sufficiently useful conditions are derived for
the existence of solution and exponential stability results. In this study, we tackle the nonlinear terms
of the considered systems by applying local assumptions. Finally, to verify the theoretical results, a
numerical simulation is provided.

Keywords: dynamic risk in asset pricing; exponential stability; finance modeling and derivatives;
fractional calculus; fractional Brownian motion; large dimensional problems; simulation and compu-
tation in long short-term memory; time delay

1. Introduction

Knowledge of mathematics, probability, statistics, and other analytical approaches
is essential to develop methods and theories in finance and to test their validity through
analysis of empirical real-world data. For example, mathematics, probability, and statistics
help develop pricing models for financial assets such as stocks, bonds, currencies, and
derivative securities and propose financially optimal strategies to decision makers based
on their preferences. Brownian motion is a mathematical process used to describe random
fluctuations in the stock market. It assumes that stock prices move randomly and follow
a random walk. It is a type of stochastic process which can often be seen to model the
movement of particles in a fluid or gas. However, Brownian motion is widely used in
finance to model the random walk of stock prices over time. To apply Brownian motion
in stock market modeling, the randomness of the price movement is used, as there is no
particular trend and direction. This randomness is then modeled as a series of random
steps, where each step represents a small change in the stock price. The size of each step is
determined by the stock volatility, which is a measure of how much the stock price tends
to oscillate over time. One important feature of Brownian motion is that it is a continuous
process, meaning that the stock price can take on any value within a certain range. This
makes it useful for modeling the behavior of stock prices over time, as it allows us to capture
the full range of possible outcomes. However, while Brownian motion can be a useful tool
for understanding the behavior of stock prices, it is not a perfect model. Stock prices can
be influenced by a wide range of factors, including news events, company performance,
and economic conditions. These factors can cause stock prices to move in ways that are not
easily captured by a simple model such as Brownian motion.
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The Hurst index has recently been introduced as a useful tool for assessing the memory
effect, frequently measured by the autocorrelation function Hurst (1951). H(0 < H < 1) is
a common way to represent the Hurst index.

(1) When 0 < H < 0.5, the time series exhibits a negative correlation and antipersistent
behaviour, or short-dependence memory.

(2) WhenH = 0.5, the time series is independent.
(3) When 0.5 < H < 1, the time series exhibits persistent behaviour, or long-dependence

memory.

The concept of fractional derivatives is not new, and FC has a long history of up
to three centuries. The number of FC-related publications increased significantly in the
later decades and mid-20th century. One of explanations for the high level of curiosity in
fractional differential equations (FDEs) is that they can be used to define a diverse range
of physical Hilfer (2000), chemical Oldham (2010), and biological Magin (2010) processes.
Fractional derivative plays an important role in memory and hereditary processes. Several
studies have been conducted to examine the long memory in the financial markets, since
memory effect is a significant feature in financial systems. FC can be found in a variety of
applications as a new branch of applied mathematics. Leibnitz, Caputo, Liouville, Riemann,
Euler, and others are credited with a significant amount of foundational mathematical
theory relevant to FC analysis. Nonetheless, throughout the last few decades, increasingly
compelling representations have been discovered in numerous engineering and science
disciplines (see Ortigueira (2011)). It should be highlighted that the existence hypothesis
of FDEs is committed to a considerable part of the recent studies (see Balachandran et al.
(2012); Nieto and Samet (2017); Singh et al. (2017); Tian and Nieto (2017)).

Recently, Bhaskar and Biswajit (2023) examined the effects of the steep surge in crude
oil price shock on the stock price returns and currency exchange rates of G7 countries,
namely Canada, France, Germany, Italy, Japan, the United Kingdom and the United States,
in the context of the Russia–Ukraine conflict. Regime switches in the empirical relation
between return dynamics and implied volatility in energy markets have been discussed
in Okawa (2023). Optimal combination of proportional and Stop-Loss reinsurance with
dependent claim and stochastic insurance premium have been studied in Sari et al. (2023).
Herding trend in working capital management practices: evidence from the non-financial
sector of Pakistan is analyzed in Farooq et al. (2023). Growth of venture firms under state
capitalism with Chinese characteristics: qualitative comparative analysis of fuzzy set is
discussed in Yun et al. (2023). In Li et al. (2014), the authors established a fractional-order
stochastic differential equation model to describe the effect of trend memory in financial
pricing.

While analyzing, there must be considerations for functional structures, ambient
noise, and temporal delays, which can be quite valuable when constructing further sen-
sible scientific models Mao (1997). The solution process for a stochastic fractional partial
differential equation driven by space–time white noise has been studied in Wu (2011).
The controllability of fractional and Hilfer fractional dynamical systems has been stud-
ied in Kumar et al. (2022a, 2022b, 2023). The relations between a singular system of
differential equations and a system with delays, and stability of fractional-order quasi-
linear impulsive integro-differential systems with multiple delays have been studied in
Dassios (2022); Kalidass et al. (2022).

Another type of noise exposure is continuous. This can be modeled using Levy
methods. In particular, methods based on Poisson random measures, as a common non-
Gaussian stochastic method, have already received a lot of attention in a variety of fields
and have been used to predict when demand for supply chain systems will increase Song
(2009). Mathematical modeling of one-sever m-form random queuing in a network system
is modeled in the stochastic environment problems Seo and Lee (2011), distribution patterns
of phone users in the service area of wireless links Taheri et al. (2010), as well as other
naturally occurring anomalies in a variety of areas Applebaum (2009). In Rockner and
Zhang (2007) the existence, uniqueness and huge deviation principle solutions to jump

2
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type stochastic evolution equations were investigated. Many researchers have recently
turned to FDEs as a useful tool for describing a variety of steady physical processes.

However, research into nonlinear FDE stability theory is still in its early phases, and
much more work in this field is possible. Recently, the theoretical notion of FDEs was thor-
oughly investigated, yielding several fundamental discoveries, including the stability theory.
In mathematical terms, stability theory is concerned with the convergence of differential
equation solutions under minor changes in the original data. The topic of stability is critical
in the study of FDEs, and many writers have addressed it (see Ahmed et al. (2007); Gao
and Yu (2005); Odibat (2010); Wang et al. (2012)). In any event, nonlinear FDEs are more
difficult to analyze for stability than conventional integer-order differential equations. Many
authors have been drawn to the study of nonlinear FDE stability theory during the last few
decades, and as a result, numerous approaches have been created. However, it is important
to emphasize that just a few steps have been carried out to study the durability of FDEs
using fixed point theorems. Burton and Zhang (2012) began a thorough investigation of
the stability properties of differential equations using fixed point theorems. Following that,
several authors used the fixed point method to establish sufficient conditions for the stability
of the differential systems (see Ren et al. (2017); Shen et al. (2020)). Based on the above
discussions, the exponential stability of FDEs with order α̃ ∈ ( 1

2 , 1) is considered through a
fixed point approach. It is envisaged that FDEs with fBM will be important for modeling
the chaotic behavior of stock prices and financial instruments. The exponential stability of
FDEs is an important property in analysis and application in financial systems.

This paper’s main contributions are as follows:

(i) A nonlinear fractional Large-Scale neutral stochastic delay system (NFSDS) is consid-
ered in Rn stochastic settings.

(ii) To determine the existence and uniqueness of a solution, the fixed point theorem and
local assumptions on the nonlinear portion are utilized.

(iii) The stability and exponential stability of a certain NFSDS are established by the use of
Hölder inequality and Gronwall’s inequality.

The following assertions outline the paper’s innovations and challenges and future
direction:

(i) Stability and exponential stability results for NFSDS are new in Rn stochastic settings.
(ii) Study of the exponential stability of the proposed system is not easy, taking the norm

estimation on nonlinear stochastic and Large-Scale neutral as the terms used in this
paper.

(iii) It is more difficult to validate the system’s weaker assumptions (1).

The following is an outline of the study: In Section 2, the model description and prelims
are given. Our major findings are proved in Sections 3 and 4. Finally, Section 5 presents an
illustration of the theory and Section 6 draws a conclusion.

2. System Description and Preliminaries

Consider the following NFSDS given by

C ¯̃Dα̃
[
xl(t)− g̃l(t, xl(t), xl(t− h̃(t)))

]
= ¯̌Alxl(t) + f̃l(t, xl(t), xl(t− h̃(t)))

+
∫ t

0
σ̃l(s, xl(s), xl(s− h̃(s)))dw(s)

+
∫ t

0
η̃l(s, xl(s), xl(s− h̃(s)))dwH(s),

xl(t) =ϕ(t), t ∈ [−h, 0], (1)

where t ∈ [0, T], 1
2 < α̃ < 1, xl(t) ∈ Rnl (l = 1 to N), 3 ∑N

l=1 nl = n and ¯̌Al is nl × nl
continuous matrix valued functions. Define Cnl = C([−h, 0],Rnl ), a Banach space of
continuous functions mapping from [−h, 0]→ Rnl . Define [0, T] := J, Further, g̃l : J×Cnl ×
Cnl −→ Rnl , f̃l : J×Cnl ×Cnl −→ Rnl , σ̃l : J×Cnl ×Cnl −→ Rnl×nl , η̃l : J×Cnl ×Cnl −→

3
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Rnl×nl are continuous functions which will be specified in the future. Moreover, wH(s) is a

fBm withH ∈ ( 1
2 , 1) which is defined by its stochastic representation

wH(s) :=
1

Γ
(
H+ 1

2

)
(∫ 0

−∞
[(t− s)H−

1
2 − (−s)H−

1
2 ]dw(s) +

∫ t

0
(t− s)H−

1
2 dw(s)

)

here Γ denotes the Gamma function Γ(α) :=
∫ ∞

0 yα−1 exp(−y)dy and 0 < H < 1 is called
the Hurst parameter (one can see the connection with the Hurst parameter for self-similar pro-
cesses).

Let us consider a probability space (Ω,F , P) with a probability measure P and w(t) =
(w1(t), w2(t), . . . , wn(t))T be an n−dimensional Wiener process defined on (Ω,F , P). Let

{Ft/t ∈ J} be the filtration generated by
{

w(s), wH(s) : 0 ≤ s ≤ t
}

defined on (Ω,F , P). Let
L2(Ω,Ft,Rnl ) denote the Hilbert space of all Ft-measurable square integrable random
variables with values in Rnl . Let LF2 (J,Rnl ) be the Hilbert space of all square integrable and

Ft-measurable processes with values of Rnl . Let B =
{
xl(t) : xl(t) ∈ C(J, L2(Ω,Ft,Rnl ))

}

be a Banach space of all continuous square integrable and Ft-adapted processes with
norm ‖xl‖2 = sup

t∈J
E‖xl(t)‖2 and ‖ϕ‖2 = max{E‖ϕ(t)‖2 : t ∈ [−h, 0]} for any t ≥ 0, any

given ϕ ∈ C([−h, 0],Rnl ) denotes the Banach space of continuous functions mapping from
[−h, 0] to Rnl . For more details on fractional calculus definitions, stochastic theory and
fBm, one can read our published paper Balasubramaniam et al. (2020); Sathiyaraj and
Balasubramaniam (2018); Sathiyaraj et al. (2019).

Definition 1. The Riemann–Liouville fractional operators (left sided) for ñ− 1 < α̃ < ñ for
fl : [0, ∞)→ R are as follows:

(I α̃
0+ fl)(x̃l) =

1
Γ(α̃)

x̃l∫

0

(x̃l − t)α̃−1 fl(t)dt.

(Dα̃
0+ fl)(x̃l) =Dñ(Iñ−α̃

0+ fl)(x̃l).

Definition 2. Podlubny (1998): The Caputo derivative for ñ− 1 < α̃ < ñ for fl : [0, ∞)→ R is
as follows:

CDα̃
t fl(t) =

1
Γ(ñ− α̃)

t∫

0

f ñl (s)
(t− s)α̃−ñ+1 ds.

and its Laplace transform is

L{CDα̃
t fl(t)}(s) = sα̃ fl(s)−

ñ−1

∑
l=0

f l(0+)sα̃−1−l .

Definition 3. Podlubny (1998): The two-parameter family of Mittag–Leffler function is given by

Eα̃,β(z) =
∞

∑
l=0

zl

Γ(lα̃ + β)
for α̃, β > 0.

The general Mittag–Leffler function satisfies the below identity
∫ ∞

0
e−ttβ−1Eα̃,β(t

α̃z)dt =
1

1− z
f or |z| < 1.

4
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The Laplace transform of two-parameter Mittag–Leffler function Eα̃,β(z) is described using the
following integral

∫ ∞

0
e−sttβ−1Eα̃,β(±atα̃)dt =

sα̃−β

(sα̃ ∓ a)
.

That is, L{tβ−1Eα̃,β(±atα̃)}(s) = sα̃−β

(sα̃∓a) .

Lemma 1. Kreyszig (1978): Suppose that the bounded linear operator Al : Rnl → Rnl is de-
termined on a Banach space. Take that ‖Al‖ < 1. Then (I − Al)

−1 is linear and bounded,
(I − Al)

−1 = ∑∞
i=0 Ai

l . Then, ‖(I − Al)
−1‖ ≤ (1− ‖Al‖)−1.

Lemma 2. Mao (1997): Let g̃l ∈ M2(J;Rd×m) 3

E
∫ T

0
|σ̃l(s)|pds < ∞. Then, E

∣∣∣∣
∫ T

0
σ̃l(s)dB(s)

∣∣∣∣
p

≤
( p(p− 1)

2

) p
2

T
p−2

2 E
T∫

0

|σ̃l(s)|pds

where p ≥ 2.

Lemma 3. Applebaum (2009): For any p ≥ 2, there exists ¯̌Ak > 0, such that

E sup
s∈[0,t]

∥∥∥∥
∫ s

0

∫ +∞

−∞
g̃k(ν, z)N̂(dν, dz)

∥∥∥∥
p
≤ ¯̌Ak

{
E
[(∫ t

0

∫ +∞

−∞
‖g̃k(s, z)‖2κ(dz)ds

) p
2
]

+E
[∫ t

0

∫ +∞

−∞
‖g̃k(s, z)‖pκ(dz)ds

]}
.

Definition 4. A normalized fBm wH = {wH(t) : 0 ≤ t < ∞} with 0 < H < 1 on (Ω,F , P) is
uniquely characterized by the following properties:

• wH(t) has stationary increments;

• wH(0) = 0, and EwH(t) = 0 for t ≥ 0;

• wH(t) has a Gaussian distribution for t > 0.

From the above three properties, it follows that the covariance function is given by

RH(s, t) = E
(

wH(s)w
H
(t)

)
=

1
2

{
t2H + s2H − |t− s|2H

}
for 0 < s ≤ t.

Definition 5. Seemab and Rehman (2018): The solution xl(t) = ϕ(t) of (1) is called stable, if
for every ε > 0 and t0 ≥ 0, ∃ δ = δ(t0, ε) > 0 3 |xl(t, xl0, t0)− ϕ(t)| < ε for |xl0 − ϕ(t0)| ≤
δ(t0, ε) and all t ≥ t0.

Definition 6. Equation (1) is said to be exponentially stable if ∃ µ is positive, 1 ≤M∗ 3 t ≥ 0,

E‖xl(t)‖2 ≤M∗e−µt.

5
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The solution of Equation (1) can be explained as follows

xl(t) =Eα̃(
¯̌Alt

α̃)
[

ϕ(0) + g̃l(0, ϕ(0))
]
+ g̃l(t, xl(t), xl(t− h̃(t)))

+

t∫

0

(t− s)α̃−1Eα̃,α̃(
¯̌Al(t− s)α̃)f̃l(s, xl(s), xl(s− h̃(s)))ds

+

t∫

0

(t− s)α̃−1Eα̃,α̃(
¯̌Al(t− s)α̃)




s∫

0

σ̃l(τ̃, xl(τ̃), xl(τ̃ − h̃(τ̃)))dw(τ̃)


ds

+

t∫

0

(t− s)α̃−1Eα̃,α̃(
¯̌Al(t− s)α̃) ¯̌Al g̃l(s, xl(s), xl(s− h̃(s)))ds

+

t∫

0

(t− s)α̃−1Eα̃,α̃(
¯̌Al(t− s)α̃)




s∫

0

η̃l(τ̃, xl(τ̃), xl(τ̃ − h̃(τ̃)))dwH(τ̃)


ds.

3. Existence and Uniqueness of Solutions

In this section, we show the existence and uniqueness of solutions and stability results.
As a result, we establish the below hypothesis:

(H1)For f̃l, σ̃l , g̃l ∃ q > 1 (constant) and Vf̃l
(·), Vσ̃l (·) and Vg̃l(·) ∈ Lq(J,R+) 3

(i) E‖f̃l(t, xl(t), xl(t− h̃(t)))− f̃l(t, yl(t), yl(t− h̃(t)))‖2 ≤ Vf̃l
(t) E‖xl(t)− yl(t)‖2

(ii) E‖σ̃l(t, xl(t), xl(t− h̃(t)))− σ̃l(t, yl(t), yl(t− h̃(t)))‖2 ≤ Vσ̃l (t) E‖xl(t)− yl(t)‖2

(iii) E‖g̃l(t, xl(t), xl(t− h̃(t)))− g̃l(t, yl(t), yl(t− h̃(t)))‖2 ≤ Vg̃l(t) E‖xl(t)− yl(t)‖2.

(iv) E‖
t∫

0
η̃l(τ̃, xl(τ̃), xl(τ̃ − h̃(τ̃)))dwH(τ̃) −

t∫
0

η̃l(τ̃, yl(τ̃), yl(τ̃ − h̃(τ̃)))dwH(τ̃)‖2

≤ 2Ht2H−1
∫ s

0 Vη̃l (t)E‖xl(t)− yl(t)‖2
L2 ds.

(H2)The below properties are true, for t ≥ 0, N1, N2 ≥ 1
(i) ‖Eα̃(

¯̌Alt
α̃)‖ ≤ N1e−ωt.

(ii) ‖Eα̃,α̃(
¯̌Al(t− s)α̃)‖ ≤ N2 e−ω(t−s).

(H3)∃ V̂f̃l
, V̂σ̃l (constants), and V̂g̃l 3

(i) E‖f̃l(t, xl(t), xl(t− h̃(t)))‖2 ≤ V̂f̃l
(1 +E‖xl(t)‖2)

(ii) E‖σ̃l(t, xl(t), xl(t− h̃(t)))‖2 ≤ V̂σ̃l (1 +E‖xl(t)‖2)

(iii) E‖g̃l(t, xl(t), xl(t− h̃(t)))‖2 ≤ V̂_̃l (1 +E‖xl(t)‖2).

(iv) E‖
t∫

0
η̃l(τ̃, xl(τ̃), xl(τ̃ − h̃(τ̃)))dwH(τ̃)‖2 ≤ 2Ht2H−1

∫ t
0 Vη̃l (s)E‖1 + xl(s)‖2

L2 ds.

In addition, we set

Q1 =5V̂g̃l + 10N2

(
1− e−2pωT

2pω

) 1
p
[

T2α̃−1

2α̃− 1
‖Vf̃l
‖Lq(J,R+) +

T2α̃

α̃2 ‖Vσ̃l‖Lq(J,R+)

+
T2α̃−1

2α̃− 1
¯̌Al‖Vg̃l‖Lq(J,R+) + 2Ht2H−1 T2α̃

α̃2 ‖Vη̃l‖Lq(J,R+)

]

Q2 =5V̂g̃l + 10N2

(
1− e−2ωT

2ω

)[
T2α̃−1

2α̃− 1
Rf̃l

+
T2α̃

α̃2 Rσ̃l +
T2α̃−1

2α̃− 1
¯̌Al Rg̃l + 2Ht2H−1 T2α̃

α̃2 Rη̃l

]
.

6
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Here, we take Rf̃l
= sup

t∈J
E‖f̃l(t, 0, 0)‖2, Rσ̃l = sup

t∈J
E‖σ̃l(t, 0, 0)‖2, Rg̃l =

sup
t∈J

E‖g̃l(t, 0, 0)‖2 and Rη̃l = sup
t∈J

E‖η̃l(t, 0, 0)‖2.

Theorem 1. Consider hypothesis (H1) and (H2) are true; then (1) has at least one solution
provided that

M2 :=4Vg̃l + 4N2

(
1− e−2pωT

2pω

) 1
p
[

T2α̃−1

2α̃− 1
‖Vf̃l
‖Lq(J,R+) +

T2α̃

α̃2 ‖Vσ̃l‖Lq(J,R+)

+
T2α̃−1

2α̃− 1
¯̌Al‖Vg̃l‖Lq(J,R+)+2Ht2H−1 T2α̃

α̃2 ‖Vη̃l‖Lq(J,R+)

]
< 1, (2)

where 1
p + 1

q = 1, p, q > 1 and xl ≡ 0 (the trivial solution) of Equation (1) are stable in B.

Proof. For each r ≥ 0, define Br = {xl(t) : xl(t) ∈ B;E‖xl(t)‖2 ≤ r} and then for each r,
Br is a bounded, closed and convex subset of B. Define the operator Φ : Br → Br

(Φxl)(t) =Eα̃(
¯̌Alt

α̃)
[

ϕ(0) + g̃l(0, ϕ(0))
]
+ g̃l(t, xl(t), xl(t− h̃(t)))

+

t∫

0

(t− s)α̃−1Eα̃,α̃(
¯̌Al(t− s)α̃)f̃l(s, xl(s), xl(s− h̃(s)))ds

+

t∫

0

(t− s)α̃−1Eα̃,α̃(
¯̌Al(t− s)α̃)




s∫

0

σ̃l(τ̃, xl(τ̃), xl(τ̃ − h̃(τ̃)))dw(τ̃)


ds

+

t∫

0

(t− s)α̃−1Eα̃,α̃(
¯̌Al(t− s)α̃) ¯̌Al g̃l(s, xl(s), xl(s− h̃(s)))ds

+

t∫

0

(t− s)α̃−1Eα̃,α̃(
¯̌Al(t− s)α̃)




s∫

0

η̃l(τ̃, xl(τ̃), xl(τ̃ − h̃(τ̃)))dwH(τ̃)


ds.

Step I: To prove that ∃ r ≥ 0 3 Φ(Br) ⊆ Br. Based on (H1), (H2) and Hölder inequality,
we get

E

∥∥∥∥∥

t∫

0

(t− s)α̃−1Eα̃,α̃(
¯̌Al(t− s)α̃)f̃l(s, xl(s), xl(s− h̃(s)))ds

∥∥∥∥∥

2

≤ T2α̃−1

2α̃− 1
N2

t∫

0

e−2ω(t−s)E‖f̃l(s, xl(s), xl(s− h̃(s)))− f̃l(s, 0, 0) + f̃l(s, 0, 0)‖2ds

≤ 2
T2α̃−1

2α̃− 1
N2

{ t∫

0

e−2ω(t−s)Vf̃l
(s)E‖xl(s)‖2ds+

t∫

0

e−2ω(t−s)E‖f̃l(s, 0, 0)‖2ds

}

≤ 2
T2α̃−1

2α̃− 1
N2

{( t∫

0

e−2pω(t−s)ds

) 1
p
( t∫

0

Vq
f̃l
(s)ds

) 1
q

E‖xl‖2 + Rf̃l

t∫

0

e−2ω(t−s)ds

}

≤ 2
T2α̃−1

2α̃− 1
N2

{(
1− e−2pωT

2pω

) 1
p

‖Vf̃l
‖Lq(J,R+)r + Rf̃l

(
1− e−2ωT

2ω

)}
.

7
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Similarly,

E

∥∥∥∥∥

t∫

0

(t− s)α̃−1Eα̃,α̃(
¯̌Al(t− s)α̃)




s∫

0

σ̃l(τ̃, xl(τ̃), xl(τ̃ − h̃(τ̃)))dw(τ̃)


ds

∥∥∥∥∥

2

≤ 2
T2α̃

α̃2 N2

{(
1− e−2pωT

2pω

) 1
p

‖Vσ̃l‖Lq(J,R+)r + Rσ̃l

(
1− e−2ωT

2ω

)}
,

E

∥∥∥∥∥

t∫

0

(t− s)α̃−1Eα̃,α̃(
¯̌Al(t− s)α̃) ¯̌Al g̃l(s, xl(s), xl(s− h̃(s)))ds

∥∥∥∥∥

2

≤ 2
T2α̃−1

2α̃− 1
N2

¯̌Al

{(
1− e−2pωT

2pω

) 1
p

‖Vg̃l‖Lq(J,R+)r + Rg̃l

(
1− e−2ωT

2ω

)}

and

E

∥∥∥∥∥

t∫

0

(t− s)α̃−1Eα̃,α̃(
¯̌Al(t− s)α̃)




s∫

0

η̃l(τ̃, xl(τ̃), xl(τ̃ − h̃(τ̃)))dwH(τ̃)


ds

∥∥∥∥∥

2

≤ 4Ht2H−1 T2α̃

α̃2 N2

{(
1− e−2pωT

2pω

) 1
p

‖Vη̃l‖Lq(J,R+)r + Rη̃l

(
1− e−2ωT

2ω

)}

Now,

E‖(Φxl)(t)‖2 ≤ 5

{
E‖Eα̃(

¯̌Alt
α̃)[ϕ(0) + g̃l(0, ϕ(0))]‖2 +E‖g̃l(t, xl(t), xl(t− h̃(t)))‖2

+E

∥∥∥∥∥

t∫

0

(t− s)α̃−1Eα̃,α̃(
¯̌Al(t− s)α̃)f̃l(s, xl(s), xl(s− h̃(s)))ds

∥∥∥∥∥

2

+E

∥∥∥∥∥

t∫

0

(t− s)α̃−1Eα̃,α̃(
¯̌Al(t− s)α̃)




s∫

0

σ̃l(τ̃, xl(τ̃), xl(τ̃ − h̃(τ̃)))dw(τ̃)


ds

∥∥∥∥∥

2

+E

∥∥∥∥∥

t∫

0

(t− s)α̃−1Eα̃,α̃(
¯̌Al(t− s)α̃) ¯̌Al g̃l(s, xl(s), xl(s− h̃(s)))ds

∥∥∥∥∥

2

+E

∥∥∥∥∥

t∫

0

(t− s)α̃−1Eα̃,α̃(
¯̌Al(t− s)α̃)




s∫

0

η̃l(τ̃, xl(τ̃), xl(τ̃ − h̃(τ̃)))dwH(τ̃)


ds

∥∥∥∥∥

2}

≤ 5

{
N1e−2ωTE‖ϕ(0) + g̃l(0, ϕ(0))‖2 + V̂g̃l (1 +E‖xl(t)‖2)

+ 2
T2α̃−1

2α̃− 1
N2

[(
1− e−2pωT

2pω

) 1
p T2α̃−1

2α̃− 1
r + Rf̃l

(
1− e−2ωT

2ω

)]

+ 2
T2α̃

α̃2 N2

[(
1− e−2pωT

2pω

) 1
p

‖Vσ̃l‖Lq(J,R+)r + Rσ̃l

(
1− e−2ωT

2ω

)]

8
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+ 2
T2α̃−1

2α̃− 1
N2

¯̌Al

[(
1− e−2pωT

2pω

) 1
p

‖Vg̃l‖Lq(J,R+)r + Rg̃l

(
1− e−2ωT

2ω

)]

+ 4Ht2H−1 T2α̃

α̃2 N2

{(
1− e−2pωT

2pω

) 1
p

‖Vη̃l‖Lq(J,R+)r + Rη̃l

(
1− e−2ωT

2ω

)}}

≤ 5N1e−2ωTE‖ϕ(0) + g̃l(0, ϕ(0))‖2 + 5V̂g̃l + 10N2

{(
1− e−2pωT

2pω

) 1
p

×
[

T2α̃−1

2α̃− 1
‖Vf̃l
‖Lq(J,R+) +

T2α̃

α̃2 ‖Vσ̃l‖Lq(J,R+) +
T2α̃−1

2α̃− 1
¯̌Al‖Vg̃l‖Lq(J,R+)

+ 2Ht2H−1 T2α̃

α̃2 ‖Vη̃l‖Lq(J,R+) +

}]}
r

+ 5V̂g̃l + 10N2

(
1− e−2ωT

2ω

)[
T2α̃−1

2α̃− 1
Rf̃l

+
T2α̃

α̃2 Rσ̃l +
T2α̃−1

2α̃− 1
¯̌Al Rg̃l + 2Ht2H−1 T2α̃

α̃2 Rη̃l

]

≤ 5N1e−2ωTE‖ϕ(0) + g̃l(0, ϕ(0))‖2 + Q2 + Q1r = r.

For, r = 5N1e−2ωTE‖ϕ(0)+g̃l(0,ϕ(0))‖2+Q2
(1−Q1)

, Q1 < 1. Hence, we obtain Φ(Br) ⊆ Br for such
an r.

Step II. To prove that Φ is a contraction.

Assume xl, yl ∈ Br. Using, (H1), (H2) and Hölder inequality, for every t ∈ J, we get

E‖(Φxl)(t)− (Φyl)(t)‖2

=E
{∥∥∥Eα̃(

¯̌Alt
α̃)[ϕ(0) + g̃l(0, ϕ(0))] + g̃l(s, xl(s), xl(s− h̃(s)))

+

t∫

0

(t− s)α̃−1Eα̃,α̃(
¯̌Al(t− s)α̃)f̃l(s, xl(s), xl(s− h̃(s)))ds

+

t∫

0

(t− s)α̃−1Eα̃,α̃(
¯̌Al(t− s)α̃)




s∫

0

σ̃l(τ̃, xl(τ̃), xl(τ̃ − h̃(τ̃)))dw(τ̃)


ds

+

t∫

0

(t− s)α̃−1Eα̃,α̃(
¯̌Al(t− s)α̃) ¯̌Al g̃l(s, xl(s), xl(s− h̃(s)))ds

+

t∫

0

(t− s)α̃−1Eα̃,α̃(
¯̌Al(t− s)α̃)




s∫

0

η̃l(τ̃, xl(τ̃), xl(τ̃ − h̃(τ̃)))dwH(τ̃)


ds

− Eα̃(
¯̌Alt

α̃)[ϕ(0) + g̃l(0, ϕ(0))]− g̃l(s, yl(s), yl(s− h̃(s)))

−
t∫

0

(t− s)α̃−1Eα̃,α̃(
¯̌Al(t− s)α̃)f̃l(s, yl(s), yl(s− h̃(s)))ds

−
t∫

0

(t− s)α̃−1Eα̃,α̃(
¯̌Al(t− s)α̃)




s∫

0

σ̃l(τ̃, yl(τ̃), yl(τ̃ − h̃(τ̃)))dw(τ̃)


ds

−
t∫

0

(t− s)α̃−1Eα̃,α̃(
¯̌Al(t− s)α̃) ¯̌Al g̃l(s, yl(s), yl(s− h̃(s)))ds

9
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−
t∫

0

(t− s)α̃−1Eα̃,α̃(
¯̌Al(t− s)α̃)




s∫

0

η̃l(τ̃, yl(τ̃), yl(τ̃ − h̃(τ̃)))dwH(τ̃)


ds

∥∥∥∥∥∥

2}

≤4

{
E
∥∥g̃l(s, x(s), x(s− h̃(s)))− g̃l(s, yl(s), yl(s− h̃(s)))

∥∥2

+E

∥∥∥∥∥∥

t∫

0

(t− s)α̃−1Eα̃,α̃(
¯̌Al(t− s)α̃)

[
f̃l(s, xl(s), xl(s− h̃(s)))− f̃l(s, yl(s), yl(s− h̃(s)))

]
ds
∥∥2

+E

∥∥∥∥∥∥

t∫

0

(t− s)α̃−1Eα̃,α̃(
¯̌Al(t− s)α̃)

×



s∫

0

(
σ̃l(τ̃, xl(τ̃), xl(τ̃ − h̃(τ̃)))− σ̃l(τ̃, yl(τ̃), yl(τ̃ − h̃(τ̃)))

)
dw(τ̃)


ds

∥∥∥∥∥∥

2

+E

∥∥∥∥∥∥

t∫

0

(t− s)α̃−1Eα̃,α̃(
¯̌Al(t− s)α̃) ¯̌Al

×
(
g̃l(s, xl(s), xl(s− h̃(s)))− g̃l(s, yl(s), yl(s− h̃(s)))

)
ds

+

t∫

0

(t− s)α̃−1Eα̃,α̃(
¯̌Al(t− s)α̃)

×



s∫

0

(
η̃l(τ̃, xl(τ̃), xl(τ̃ − h̃(τ̃)))− η̃l(τ̃, yl(τ̃), yl(τ̃ − h̃(τ̃)))

)
dwH(τ̃)


ds

∥∥∥∥∥∥

2}

≤ 4‖Vg̃l‖Lq(J,R+) + 4N2

(
1− e−2pωT

2pω

) 1
p
[

T2α̃−1

2α̃− 1
‖Vf̃l
‖Lq(J,R+) +

T2α̃

α̃2 ‖Vσ̃l‖Lq(J,R+)

+
T2α̃−1

2α̃− 1
¯̌Al‖Vg̃l‖Lq(J,R+) + 2Ht2H−1 T2α̃

α̃2 ‖Vη̃l‖Lq(J,R+)

]
E‖xl(t)− yl(t)‖2,

which reveals that

E‖(Φxl)(t)− (Φyl)(t)‖2 ≤M2E‖xl − yl‖2.

Using (2), we conclude that M2 < 1, which implies Φ is a contraction mapping with a
unique fixed point xl(t) ∈ Br, which is a solution of (1). Now, we prove the stability
conditions of (1)

For any given ε > 0, ∃ λ = ε(1−Q1)−Q2
5N1e−2ωT 3 ‖ϕ(0) + g̃l(0, ϕ(0))‖2 ≤ λ, which implies

10
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E‖xl(t)‖2 ≤ 5N1e−2ωTE‖ϕ(0) + g̃l(0, ϕ(0))‖2 + 10N2

{(
1− e−2pωT

2pω

) 1
p
[

T2α̃−1

2α̃− 1
‖Vf̃l
‖Lq(J,R+)

+
T2α̃

α̃2 ‖Vσ̃l‖Lq(J,R+) +
T2α̃−1

2α̃− 1
¯̌Al‖Vg̃l‖Lq(J,R+) + 2Ht2H−1 T2α̃

α̃2 ‖Vη̃l‖Lq(J,R+)

]}
r

+ 10N2

(
1− e−2ωT

2ω

)[
T2α̃−1

2α̃− 1
Rf̃l

+
T2α̃

α̃2 Rσ̃l +
T2α̃−1

2α̃− 1
¯̌Al Rg̃l + 2Ht2H−1 T2α̃

α̃2 Rη̃l

]

≤ 5N1e−2ωTλ + Q1r + Q2

r(1−Q1) ≤ 5N1e−2ωTλ + Q2

r ≤ ε.

Thus, the proof is over.

4. Exponential Stability

Theorem 2. If hypotheses (H2)− (H3) are true, then (1) is exponentially stable, provided that

ω > β = N2

[
T2α̃−1

2α̃− 1

(
V̂f̃l

+ ¯̌AlV̂g̃l

)
(1 + r) +

T2α̃

α̃2 V̂σ̃l (1 + r) + 2Ht2H−1 T2α̃

α̃2 V̂η̃l (1 + r)

]
. (3)

Proof.

E‖xl(t)‖2 ≤ 5e−2ωtN1E‖ϕ(0) + g̃l(0, ϕ(0))‖2 + 5N2e−2ωt

[
T2˜̃α−1

2α̃− 1
(1 + r)

[
V̂f̃l

+ ¯̌AlV̂g̃l

]

+
T2α̃

α̃2 V̂σ̃l (1 + r) + 2Ht2H−1 T2α̃

α̃2 V̂η̃l (1 + r)

] ∫ t

0
e2ωsds

E‖xl(t)‖2e2ωt ≤ 5N1E‖ϕ(0) + g̃l(0, ϕ(0))‖2 + 5N2

[
T2α̃−1

2α̃− 1
(1 + r)

[
V̂f̃l

+ ¯̌AlV̂g̃l

]

+
T2α̃

α̃2 V̂σ̃l (1 + r) + 2Ht2H−1 T2α̃

α̃2 V̂η̃l (1 + r)

] ∫ t

0
e2ωsds.

We get the result by using the Gronwall’s inequality

e2ωtE‖xl(t)‖2 ≤ 5N1E‖ϕ(0) + g̃l(0, ϕ(0))‖2

× exp

(
5N2

[(
V̂f̃l

+ ¯̌AlV̂g̃l

)
(1 + r) +

T2α̃

α̃2 V̂σ̃l (1 + r) + 2Ht2H−1 T2α̃

α̃2 V̂η̃l (1 + r)

]
t

)
.

Therefore,

E‖xl(t)‖2 ≤ME‖ϕ(0) + g̃l(0, ϕ(0))‖2 exp((−vt)).

where v = 2ω− 5β, M = 5N1. Thus, according to (3), (1) is exponentially stable in B. Thus,
the proof is over.

Remark 1. Existence, uniqueness, and stability of mild solutions for second-order neutral stochastic
evolution equations with infinite delay and Poisson jumps by the authors in Ren and Sakthivel
(2012) using successive approximation techniques. The uniqueness and existence of solutions, in
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addition to their controllability (relative), have been demonstrated using the fixed point approach
in Sathiyaraj and Balasubramaniam (2016). In Wang et al. (2017), the authors investigate the
controllability of a differential delay semilinear system with linear sections determined by matrices
(permutable). We proposed a new real concept of stability results in finite dimensional space in this
study by using weaker conditions for nonlinear terms.

5. Numerical Simulations

Consider the system of NFSDS described by

C ¯̃D0.6[xl1(t)− (−t+ 2)e−txl1(t)] = (0.1)xl1(t)− (3− t)
xl

2
1(t)

1− t
−
∫ t

0
sxl1(s)σl1dB1+

∫ t

0
3sxl1(s)ηl1dBH1 (4)

C ¯̃D0.6[xl2(t)− (2− t)xl2(t)e
−t] = −(0.1)xl2(t)− (3− t)

xl
3
2(t)

1− t
−
∫ t

0
sxl2(s)σl2dB2+

∫ t

0
5sxl2(s)ηl2dBH2 (5)

for t ∈ J1 = [0, 1] and 0.5 < α̃ < 1. Let us take

¯̌Al =

(
0.1 0
0 −0.1

)
, f̃l(t, xl(t), xl(t− h̃(t))) =


−(3− t)

xl
2
1(t)

1−t
−(3− t)

xl
3
2(t)

1−t


,

σ̃l(t, xl(t), xl(t− h̃(t))) =

(−txl1(t)σl1dB1
−txl2(t)σl2dB2

)
, g̃l(t, xl(t), xl(t− h̃(t))) =

(−(2− t)xl1(t)e−t

−(2− t)xl2(t)e−t

)
,

η̃l(t, xl(t), xl(t − h̃(t))) =

(
3txl1(t)ηl1dBH1
5txl2(t)ηl2dBH2

)
where, h̃ = 0.01, σl1 = 0.3, σl2 = 0.5 and

α̃ = 0.6.
Furthermore, it is easy to verify that for any xl(t), yl(t) ∈ R2.

(i). E‖f̃l(t, xk(t), xl(t− h̃(t)))− f̃l(t, yl(t), yl(t− h̃(t)))‖2 ≤ −(3− t)E‖xl(t)− yl(t)‖2

(ii). E‖σ̃l(t, xl(t), xl(t− h̃(t)))− σ̃l(t, yl(t), yl(t− h̃(t)))‖2 ≤ −0.5t E‖xl(t)− yl(t)‖2

(iii). E‖g̃l(t, xl(t), xl(t− h̃(t)))− g̃l(t, yl(t), yl(t− h̃(t)))‖2 ≤ −(2− t)E‖xl(t)− yl(t)‖2

(iv). E‖η̃l(t, xl(t), xl(t− h̃(t)))− η̃l(t, yl(t), yl(t− h̃(t)))‖2 ≤ 4tE‖xl(t)− yl(t)‖2.

Thus, f̃l, σ̃l and g̃l satisfies the assumption (H1), where we set Vf̃l
(·), Vσ̃l (·), Vg̃l(·) ∈ Lq(J1,R+).

Hence, all the conditions of Theorem 1 are satisfied. Hence, the fractional systems are
stable for J1. The Figures 1 and 2 show the related stability results for various values of ‘α̃‘.
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Figure 1. The systems (4)–(5) are stable at α̃ = 0.6.
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Figure 2. The systems (4)–(5) are stable at α̃ = 0.9.

Here, the delay response for the systems (4)–(5) is calculated for various values
α̃ = 0.6, 0.9 and the delay occurred at t = 2. Further, the nonlinear functions f̃l, σ̃l and g̃l are
continuous and satisfy the assumption (H1), and then using Theorem 1, the systems (4)–(5),
they are stable on [0, 100].

6. Conclusions and Future Research

In this paper, some useful and general conditions for exponential stability of NFSDS
with fBm has been derived. The existence and uniqueness of fixed points, as well as the
stability analysis of NFSDS, have been demonstrated. Finally, a numerical simulation was
provided to demonstrate the theoretical findings. Based on the application of fractional-
order stochastic financial modeling, the authors are interested in establishing the proposed
model by considering the exponential stability of fractional stochastic delay systems with
finance and stock price models and optimal control of stochastic insurance premium model
in the near future.
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Abstract: We generalize the naive estimator of a Poisson regression model with a measurement error
as discussed in Kukush et al. in 2004. The explanatory variable is not always normally distributed as
they assume. In this study, we assume that the explanatory variable and measurement error are not
limited to a normal distribution. We clarify the requirements for the existence of the naive estimator
and derive its asymptotic bias and asymptotic mean squared error (MSE). The requirements for the
existence of the naive estimator can be expressed using an implicit function, which the requirements
can be deduced by the characteristic of the Poisson regression models. In addition, using the implicit
function obtained from the system of equations of the Poisson regression models, we propose a
consistent estimator of the true parameter by correcting the bias of the naive estimator. As illustrative
examples, we present simulation studies that compare the performance of the naive estimator and
new estimator for a Gamma explanatory variable with a normal error or a Gamma error.

Keywords: Poisson regression model; error in variable; naive estimator; asymptotic bias

1. Introduction

We often cannot measure explanatory variables correctly in regression models because
an observation may not be performed properly. The estimation result may be distorted
when we estimate the model from data with measurement errors. We call models with
measurement errors in an explanatory variable Error in Variable (EIV) models. In addition,
actual phenomena often cannot be explained adequately by a simple linear structure, and
the estimation of non-linear models, especially generalized linear models, from data with
errors is a significant problem. Various studies have focused on non-linear EIV models (see,
for example, Box 1963; Geary 1953). Classical error models assume that an explanatory
variable is measured with independent stochastic errors (Kukush and Schneeweiss 2000).
Berkson error models assume that the explanatory variable is a controlled variable with
an error and that only the controlled variable can be measured (Burr 1988; Huwang and
Huang 2000). Approaches to EIV models vary according to the situation. In this paper, we
consider the former EIV. The corrected score function in Nakamura (1990) has been used
to estimate generalized linear models. In particular, the Poisson regression model is easy
to handle analytically in generalized linear models as we see later. Thus, we focus on the
Poisson regression model with measurement errors.

Approaches to a Poisson regression model with classical errors have been discussed
by Kukush et al. (2004), Shklyar and Schneeweiss (2005), Jiang and Ma (2020), Guo and
Li (2002), and so on. Kukush et al. (2004) described the statistical properties of the naive
estimator, corrected score estimator, and structural quasi score estimator of a Poisson
regression model with normally distributed explanatory variable and measurement errors.
Shklyar and Schneeweiss (2005) assumed an explanatory variable and a measurement error
with a multivariate normal distribution and compared the asymptotic covariance matrices
of the corrected score estimator, simple structural estimator, and structural quasi score
estimator of a Poisson regression model. Jiang and Ma (2020) assumed a high-dimensional
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explanatory variable with a multivariate normal error and proposed a new estimator
for a Poisson regression model by combining Lasso regression and the corrected score
function. Guo and Li (2002) assumed a Poisson regression model with classical errors and
proposed an estimator that is a generalization of the corrected score function discussed in
Nakamura (1990) for generally distributed errors; they derived the asymptotic normality of
the proposed estimator.

In this study, we generalize the naive estimator discussed in Kukush et al. (2004). They
reported the bias of the naive estimator, however, the explanatory variable is not always
normally distributed as they assume. In practice, the assumption of a normal distribution
is not realistic. Here, we assume that the explanatory variable and measurement error are
not limited to normal distributions. However, the naive estimator does not always exist
in every situation. Therefore, we clarify the requirements for the existence of the naive
estimator and derive its asymptotic bias. The constant vector to which the naive estimator
converges in probability does not coincide with the unknown parameter in the model.
Therefore, we propose a consistent estimator of the unknown parameter using the naive
estimator. It is obtained from a system of equations that represent the relationship between
the unknown parameter and constant vector. As illustrative examples, we present explicit
representations of the new estimator for a Gamma explanatory variable with a normal error
or a Gamma error.

In Section 2, we present the Poisson regression model with measurement errors and
the definition of the naive estimator and show that the naive estimator has an asymptotic
bias for the true parameter. In Section 3, we consider the requirements for the existence
of the naive estimator and derive its asymptotic bias and asymptotic mean squared er-
ror (MSE) assuming that the explanatory variable and measurement error are generally
distributed. In addition, we introduce application examples of a Gamma explanatory
variable with a normal error or a Gamma error. In Section 4, we propose the corrected
naive estimator as a consistent estimator of the true parameter under general distributions
and give application examples for a Gamma explanatory variable with a normal error or a
Gamma error. In Section 5, we present simulation studies that compare the performance
of the naive estimator and corrected naive estimator. In Section 6, we apply the naive and
corrected naive estimators to real data in two cases. Finally, discussions are presented in
Section 7.

2. Preliminary

In this section, we state the statistical model considered in this paper and the definition
of the naive estimator and show that the naive estimator has an asymptotic bias for the
true parameter.

2.1. Poisson Regression Models with an Error

We assume a single covariate Poisson regression model between the objective variable
Y and explanatory variable X

Y|X ∼ Po(exp(β0 + β1X)).

X can typically be correctly observed. We assume here that X has a stochastic error U as

W = X + U,

where U is supposed to be independent of (X, Y|X). We also assume that

(Yi, Xi, Ui) (i = 1, . . . , n) (1)

are independent and identically distributed samples of the distributions of (Y|X, X, U).
Although we can observe Y|X and W, we assume that X and U cannot be directly observed.
However, even if we know the family of the distributions of X and U, we can-not make a
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statistical inference regarding X and U if we can observe only W. Because U is the error
distribution, the mean of U is often zero, and we may suppose that we have empirical
information about the degree of error (the variance of U). Therefore, in this study, we
assume that the mean and variance of U are known. From the above assumption, Y and W
are independent for the given X.

fY,W|X(y, w|x) = fY,W,X(y, w, x)
fX(x)

=
fY,W,U(y, w, w− x)

fX(x)

=
fY,X(y, x) fU(w− x)

fX(x)
= fY|X(y|x) fW|X(w|x).

We use this conditional independence when we calculate the expectations.

2.2. The Naive Estimator

The naive estimator β̂
(N)

= (β̂
(N)
0 , β̂

(N)
1 )′ for β = (β0, β1)

′ is defined as the solution of
the equation

Sn(β̂
(N)|X ) = 02 =

(
0
0

)
, (2)

where

Sn(b|X ) =
1
n

n

∑
i=1
{Yi − exp(b0 + b1Wi)}(1, Wi)

′

is a function of indeterminant b = (b0, b1)
′ given X = (X1, . . . , Xn)′. The naive estimator

can be interpreted as the maximum likelihood estimator if we wrongly assume that Y|W ∼
Po(exp(β0 + β1W)) because (2) is the log-likelihood equation for Y|W ∼ Po(exp(β0 +
β1W)). The correct distribution of Y|W is

fY|W(y|w) =
1

fW(w)

∫

supp( fU)
fY|W,U(y|w, u) fU(u) fX(w− u)du

=
1

fW(w)

∫

supp( fU)
fY|X(y|w− u) fU(u) fX(w− u)du

=
1

fW(w)

∫

supp( fU)
Po(exp(β0 + β1(w− u))) fU(u) fX(w− u)du

assuming that U is independent of (X, Y|X). The right-hand side must be different from
Po(exp(β0 + β1W)) in general. If one ignores the error U and fits the likelihood estimation
using W instead of X, a biased estimator is obtained. In fact, by the law of large numbers,
we have

Sn(β̂
(N)|X ) =

1
n

n

∑
i=1
{Yi − exp(β̂

(N)
0 + β̂

(N)
1 Wi)}(1, Wi)

′

p−→ EX,W [EY|(X,W)[{Y− exp(β̂
(N)
0 + β̂

(N)
1 W)}(1, W)′]].

Thus, the naive estimator converges to b = (b0, b1)
′ which is the solution of the estimating

equation
EX,W [EY|(X,W)[{Y− exp(β̂

(N)
0 + β̂

(N)
1 W)}(1, W)′]] = 02. (3)

Equation (3) implies that for a given X

β̂
(N) p−→ b 6= β.

The solution b of the estimating equation is generally different from β.
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3. Properties of the Naive Estimator

In this section, we consider the requirements for the existence of the naive estimator
and derive its asymptotic bias and asymptotic MSE assuming that the explanatory variable
and measurement error are generally distributed. In addition, we introduce application
examples for a Gamma explanatory variable with a normal error or a Gamma error.

3.1. The Existence of the Naive Estimator

The naive estimator does not always exist for general random variables X and U.
Thus, we assume the existence of the expectation

EX,Y,W [{Y− exp(b0 + b1W)}(1, W)′]

as a requirement for the existence of the naive estimator. Consequently, the following four
expectations should exist.




E[Y] = EX [E[Y|X]] = EX [exp(β0 + β1X)] = eβ0 MX(β1),
E[exp(b0 + b1W)] = eb0E[eb1X+b1U ] = eb0 MX(b1)MU(b1),
E[YW] = EX [E[Y|X]E[W|X]] = EX [(X + E[U]) exp(β0 + β1X)]

= eβ0E[U]MX(β1) + eβ0E[Xeβ1X ]

= eβ0E[U]MX(β1) + eβ0∇MX(β1),
E[W exp(b0 + b1W)] = EX [EU [(X + U) exp(b0 + b1X + b1U)]]

= eb0E[Xeb1X ]MU(b1) + eb0E[Ueb1U ]MX(b1)

= eb0 MU(b1)∇MX(b1) + eb0 MX(b1)∇MU(b1).

(4)

Therefore, these expectations require that MX(β1), MX(b1), MU(b1) exist. This condition is
the requirement for the existence of the naive estimator. Here, we assume the existence of

MX(β1), MX(b1), MU(b1) (5)

for the distributions of X and U.

3.2. Asymptotic Bias of the Naive Estimator

The naive estimator satisfies

β̂
(N) p−→ b

and has an asymptotic bias for the true β. Here, we derive the asymptotic bias under
general conditions. From (3), we obtain two equations:

{
E[Y] = E[exp(b0 + b1W)],
E[YW] = E[W exp(b0 + b1W)].

(6)

From (4) with the above equalities, we have

eβ0 MX(β1) = eb0 MX(b1)MU(b1),

eβ0E[U]MX(β1) + eβ0∇MX(β1) = eb0(∇MX(b1))MU(b1) + eb0(∇MU(b1))MX(b1)

= eb0∇(MX(b1)MU(b1)) = eb0∇MW(b1).

Therefore, we use a transformation to obtain the following system of equations:




b0 = β0 + log
(

MX(β1)
MW (b1)

)
,

K′W(b1) = 1
MW (b1)

∇MW(b1) = E[U] + ∇MX(β1)
MX(β1)

,
(7)
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where KW is the cumulant generating function of W. Thus, b = (b0, b1)
′ is determined by

the solution of this system of equations. Therefore, the equation

K′W(b1) = E[U] +
∇MX(β1)

MX(β1)

should have a solution with respect to b1. Here, we set

G(β1, b1) := K′W(b1)− E[U]− K′X(β1).

We assume G(β1, b1) has zero in R2 and satisfies

∂G(β1, b1)

∂b1
= K′′W(b1) 6= 0.

G is continuously differentiable because we assume the existence of (5). Then, by the theo-
rem of implicit functions, there exists a unique C1-class function g that satisfies b1 = g(β1)
in the neighborhood of the zero of G. Using this expression, we write the asymptotic bias
of the naive estimator as

lim
n→∞

E[β̂(N)
0 − β0] = b0 − β0 = log

(
MX(β1)

MW ◦ g(β1)

)
,

lim
n→∞

E[β̂(N)
1 − β1] = b1 − β1 = g(β1)− β1.

We also derive the asymptotic MSE of the naive estimator. The MSE can be represented as
the sum of the squared bias and variance. The asymptotic variance of the naive estimator is
0 because the naive estimator is a consistent estimator of b. Thus, we obtain the asymptotic
MSE of the naive estimator as

lim
n→∞

E[(β̂
(N)
0 − β0)

2] = (b0 − β0)
2 =

(
log
(

MX(β1)

MW ◦ g(β1)

))2

,

lim
n→∞

E[(β̂
(N)
1 − β1)

2] = (b1 − β1)
2 = (g(β1)− β1)

2.

Therefore, the asymptotic bias is given by the following theorem assuming general distri-
butions.

Theorem 1. Let Y|X ∼ Po(exp(β0 + β1X)). Assume that W = X + U and U is independent of
(X, Y|X). Assume the existence of MX(β1), MX(b1), MU(b1). Let

G(β1, b1) := K′W(b1)− E[U]− K′X(β1).

Assume the function G has a zero in R2, namely there exist solutions with G(β1, b1) = 0, and
satisfies

∂G(β1, b1)

∂b1
= K′′W(b1) 6= 0.

Then, the asymptotic biases of the naive estimators β̂
(N)
0 and β̂

(N)
1 are given by

log
(

MX(β1)

MW ◦ g(β1)

)
and g(β1)− β1

respectively, where g is a C1-class function satisfying b1 = g(β1) in the neighborhood of the zero
of G. Furthermore, the asymptotic MSEs of the naive estimators β̂

(N)
0 and β̂

(N)
1 are given by their

squared asymptotic biases.

20



J. Risk Financial Manag. 2023, 16, 186

3.3. Examples

In this section, we present two type of examples. First, we assume that a Gamma
explanatory variable with a normal error. Let

X ∼ Γ(k, λ), U ∼ N(0, σ2),

where k > 0, λ > 0, 0 < σ2 < ∞. We apply the naive estimation under this condition. From
the assumptions of Theorem 1, we assume the existence of

MX(β1), MX(b1) and MU(b1).

Therefore, we obtain the parameter conditions

λ− β1 > 0, λ− b1 > 0.

Next, we derive b = (b0, b1)
′. Under this condition, we obtain

G(β1, b1) = K′W(b1)− E[U]− K′X(β1) =
k

λ− b1
+ σ2b1 −

k
λ− β1

.

Thus, the set of zeros of G is
{
(β1, b1) ∈ R2; β1 =

k + λσ2(λ− b1)

k + σ2(λ− b1)b1
b1

}
.

In addition,
∂G(β1, b1)

∂b1
=

k
(λ− b1)2 + σ2 > 0.

Therefore, G has a zero in R2 and satisfies ∂G(β1,b1)
∂b1

6= 0. From G(β1, b1) = 0, we obtain two
implicit functions

b(1)1 =
(λ− β1)λσ2 + k +

√
s

2(λ− β1)σ2 ,

b(2)1 =
(λ− β1)λσ2 + k−√s

2(λ− β1)σ2 ,

where s = (λ− β1)
2λ2σ4 + 2(λ− β1)(λ− 2β1)σ

2k + k2 > 0. Then, we obtain two expres-
sions of b0 corresponding to b1.

b(1)0 := β0 + log

(
MX(β1)

MW(b(1)1 )

)

= β0 + k log
(λ− β1)λσ2 − k−√s

2(λ− β1)2σ2

− (λ− β1)
2λ2σ4 + 2(λ− β1)

2σ2k + k2 + ((λ− β1)λσ2 + k)
√

s
4(λ− β1)2σ2 ,

b(2)0 := β0 + log

(
MX(β1)

MW(b(2)1 )

)

= β0 + k log
(λ− β1)λσ2 − k +

√
s

2(λ− β1)2σ2

− (λ− β1)
2λ2σ4 + 2(λ− β1)

2σ2k + k2 − ((λ− β1)λσ2 + k)
√

s
4(λ− β1)2σ2 .
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In addition,
s = ((λ− β1)λσ2 − k)2 + 4(λ− β1)

2σ2k;

therefore, s satisfies
√

s >| (λ − β1)λσ2 − k |. From the antilogarithm condition,
b = (b(2)0 , b(2)1 )′ is a solution of the system of Equation (6) in the range of R2. Thus,
the asymptotic biases are given by

b0 − β0 = k log
(λ− β1)λσ2 − k +

√
s

2(λ− β1)2σ2

− (λ− β1)
2λ2σ4 + 2(λ− β1)

2σ2k + k2 − ((λ− β1)λσ2 + k)
√

s
4(λ− β1)2σ2 ,

b1 − β1 =
λ

2
− β1 +

k−√s
2(λ− β1)σ2 .

Next, we present another example, Gamma explanatory variable with a Gamma error.
Let

X ∼ Γ(k1, λ), U ∼ Γ(k2, λ),

where k1 > 0, k2 > 0, λ > 0. We apply the naive estimation under this condition. From the
assumptions of Theorem 1, we assume the existence of

MX(β1), MX(b1) and MU(b1).

Therefore, we obtain the parameter conditions

λ− β1 > 0, λ− b1 > 0.

Next, we derive b = (b0, b1)
′. Under this condition, we obtain

G(β1, b1) =
k1 + k2

λ− b1
− k1

λ− β1
− k2

λ
.

Thus, the set of zeros of G is
{
(β1, b1) ∈ R2; b1 =

k1λβ1

k1λ + k2(λ− β1)

}
.

In addition,
∂G(β1, b1)

∂b1
=

k1 + k2

(λ− b1)2 > 0.

Therefore, G has a zero in R2 and satisfies ∂G(β1,b1)
∂b1

6= 0. From G(β1, b1) = 0, we obtain the
implicit function

b1 =
k1λβ1

k1λ + k2(λ− β1)
.

Thus, by Theorem 1, the asymptotic biases are given by

b0 − β0 = −k1 log(1− β1/λ) + (k1 + k2) log(1− b1/λ),

b1 − β1 = − k2(λ− β1)β1

k1λ + k2(λ− β1)
.

4. Corrected Naive Estimator

In this section, we propose a corrected naive estimator as a consistent estimator of
β under general distributions and give application examples for a Gamma explanatory
variable with a normal error or a Gamma error. From (7), we have the following system
of equations:
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β0 = b0 + log
(

MW(b1)

MX(β1)

)
,

G(β1, b1) = K′W(b1)− E[U]− K′X(β1) = 0.

By solving this system of equations for β0, β1 and replacing b = (b0, b1)
′ with the naive

estimator β̂
(N)

= (β̂
(N)
0 , β̂

(N)
1 )′, we obtain the consistent estimator of the true β. Here,

β̂
(N)

=

(
β̂
(N)
0

β̂
(N)
1

)
p−→ b =

(
b0
b1

)
.

Therefore,
β̂
(CN) p−→ β.

Thus, β̂
(CN)

is a consistent estimator of β. If G has zero in R2 and satisfies

∂G(β1, b1)

∂β1
= −K′′X(β1) 6= 0,

then, by the theorem of implicit functions, there exists a unique C1-class function h that
satisfies β1 = h(b1) in the neighborhood of the zero of G. We note that h is the inverse
function of g in Theorem 1. We propose a corrected naive estimator that is the consistent
estimator of the true β as follows.

Theorem 2. Let Y|X ∼ Po(exp(β0 + β1X)). Assume that W = X + U and U is independent of
(X, Y|X). Assume the existence of MX(β1), MX(b1), MU(b1). Let

G(β1, b1) := K′W(b1)− E[U]− K′X(β1).

Assume G has zero in R2 and satisfies

∂G(β1, b1)

∂β1
= −K′′X(β1) 6= 0.

Then, the corrected naive estimator β̂
(CN)

= (β̂
(CN)
0 , β̂

(CN)
1 )′, which corrects the bias of the naive

estimator β̂
(N)

= (β̂
(N)
0 , β̂

(N)
1 )′, is given by

β̂
(CN)
0 = β̂

(N)
0 + log

(
MW(β̂

(N)
1 )

MX(β̂
(CN)
1 )

)
,

β̂
(CN)
1 = h(β̂

(N)
1 ),

where h is a C1-class function satisfying β1 = h(b1) in the neighborhood of the zero of G. Further-
more, the corrected naive estimator is a consistent estimator of β.

Example 1. We derive the corrected naive estimator assuming

X ∼ Γ(k, λ), U ∼ N(0, σ2).

We obtain

G(β1, b1) =
k

λ− b1
+ σ2b1 −

k
λ− β1

,

∂G(β1, b1)

∂β1
= − k

(λ− β1)2 < 0.

23



J. Risk Financial Manag. 2023, 16, 186

G has zero in R2 and satisfies ∂G(β1,b1)
∂β1

6= 0. From G(β1, b1) = 0, we obtain the implicit function

β1 =
σ2λb2

1 − (k + λ2σ2)b1

σ2b2
1 − λσ2b1 − k

= h(b1).

Thus, by Theorem 2, the corrected naive estimator is given by

β̂
(CN)
0 = β̂

(N)
0 + log

(
MW(β̂

(N)
1 )

MX(β̂
(CN)
1 )

)

= β̂
(N)
0 +

1
2

β̂
(N)2
1 σ2 + k log(1− β̂

(CN)
1 /λ)− k log(1− β̂

(N)
1 /λ),

β̂
(CN)
1 = h(β̂

(N)
1 ) =

λσ2 β̂
(N)2
1 − (k + λ2σ2)β̂

(N)
1

σ2 β̂
(N)2
1 − λσ2 β̂

(N)
1 − k

.

Example 2. We derive the corrected naive estimator assuming

X ∼ Γ(k1, λ), U ∼ Γ(k2, λ).

We obtain

G(β1, b1) =
k1 + k2

λ− b1
− k1

λ− β1
− k2

λ
,

∂G(β1, b1)

∂β1
= − k1

(λ− β1)2 < 0.

G has zero in R2 and satisfies ∂G(β1,b1)
∂β1

6= 0. From G(β1, b1) = 0, we obtain the implicit function

β1 =
(k1 + k2)b1λ

k1λ + k2b1
= h(b1).

Thus, by Theorem 2, the corrected naive estimator is given by

β̂
(CN)
0 = β̂

(N)
0 + log

(
MW(β̂

(N)
1 )

MX(β̂
(CN)
1 )

)

= β̂
(N)
0 + k1 log(1− β̂

(CN)
1 /λ)− (k1 + k2) log(1− β̂

(N)
1 /λ),

β̂
(CN)
1 = h(β̂

(N)
1 ) =

(k1 + k2)β̂
(N)
1 λ

k1λ + k2 β̂
(N)
1

.

5. Simulation Studies

In this section, we present simulation studies that compare the performance of the
naive estimator and corrected naive estimator. We denote the sample size by n and the num-

ber of simulations by MC. We calculate the estimated bias for β̂
(N)

and β̂
(CN)

as follows:

̂
BIAS(β̂

(N)
) =

1
MC

MC

∑
i=1

β̂
(N)
i − β,

̂
BIAS(β̂

(CN)
) =

1
MC

MC

∑
i=1

β̂
(CN)
i − β,
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where β̂
(N)
i and β̂

(CN)
i represent the naive estimator and corrected naive estimator in the

ith time simulation, respectively. Similarly, we calculate the estimated MSE matrix for β̂
(N)

and β̂
(CN)

as follows:

̂
MSE(β̂

(N)
) =

1
MC

MC

∑
i=1

(β̂
(N)
i − β)(β̂

(N)
i − β)′,

̂
MSE(β̂

(CN)
) =

1
MC

MC

∑
i=1

(β̂
(CN)
i − β)(β̂

(CN)
i − β)′.

5.1. Case 1

We assume X ∼ Γ(k, λ), U ∼ N(0, σ2). Let β0 = 0.2, β1 = 0.3, k = 2, λ = 1.2,
n = 500, MC = 1000. We perform simulations with σ2 = 0.05, 0.5, 2. Note that we assume
that the true value of σ2 is known. We estimate k, λ in the formula of the corrected naive
estimator by the moment method in terms of W because the value of X cannot be directly
observed.

k̂ =

(
1
n

n

∑
i=1

wi

)
λ̂,

λ̂ =
1
n ∑n

i=1 wi
1
n ∑n

i=1(wi − w̄)2 − σ2
,

where wi (i = 1, . . . , n) is the samples of W.
Table 1 shows the estimated bias of the true β. Asy.Bias β̂0 and Asy.Bias β̂1 denote

the theoretical asymptotic biases of β̂
(N)
0 and β̂

(N)
1 , respectively, given in Theorem 1. The

bias correction of the naive estimator is performed by the corrected naive estimator. With
increasing σ2, the bias of the naive estimator increases. However, the bias of the corrected
naive estimator is small for large σ2.

Table 1. Estimated bias of a Gamma distribution with a Normal error.

Asy.Bias β̂0 ̂BIAS(β̂0) Asy.Bias β̂1 ̂BIAS(β̂1)

σ2 = 0.05
Naive 0.01111 0.01139 −0.005993 −0.007199

CN 0 0.00003532 0 0.0002603

σ2 = 0.5
Naive 0.09912 0.1025 −0.05297 −0.05582

CN 0 0.007817 0 0.0007142

σ2 = 2
Naive 0.2757 0.2774 −0.1454 −0.1472

CN 0 −0.009493 0 0.002736

Table 2 shows the estimated MSE of the true β. Asy.MSE β̂0 and Asy.MSE β̂1 denote
the theoretical asymptotic MSEs of β̂

(N)
0 and β̂

(N)
1 , respectively, given in Theorem 1. The

MSE of the corrected naive estimator is smaller than that of the naive estimator in all cases.

Table 2. Estimated MSE of a Gamma distribution with a normal error.

Asy.MSE β̂0 ̂MSE(β̂0) Asy.MSE β̂1 ̂MSE(β̂1)

σ2 = 0.05
Naive 0.0001235 0.003003 0.00003592 0.0004536

CN 0 0.002920 0 0.0004254

σ2 = 0.5
Naive 0.009824 0.01362 0.002806 0.003508

CN 0 0.003806 0 0.0006354

σ2 = 2
Naive 0.07600 0.08124 0.02115 0.02214

CN 0 0.01021 0 0.002160
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5.2. Case 2

We assume X ∼ Γ(k1, λ), U ∼ Γ(k2, λ). Let β0 = 0.2, β1 = 0.3, k1 = 2, λ = 1.2, n = 500,
MC = 1000. We perform simulations with k2 = 0.072, 0.72, 2.88. Similarly, we assume
that the true value of k2 is known. We estimate k1, λ in the formula of the corrected naive
estimator by the moment method in terms of W because the value of X cannot be directly
observed.

k̂1 =

(
1
n

n

∑
i=1

wi

)
λ̂− k2,

λ̂ =
1
n ∑n

i=1 wi
1
n ∑n

i=1(wi − w̄)2
,

where wi (i = 1, . . . , n) is the samples of W.
Table 3 shows the estimated bias of the true β. Similarly, the bias correction of the

naive estimator is performed by the corrected naive estimator. The bias of the corrected
naive estimator is small when the variance of the error is large. Table 4 shows the estimated
MSE of the true β. The MSE of the corrected naive estimator is also smaller than that of the
naive estimator.

Table 3. Estimated bias of a Gamma distribution with a Gamma error.

Asy.Bias β̂0 ̂BIAS(β̂0) Asy.Bias β̂1 ̂BIAS(β̂1)

k2 = 0.072 Naive −0.002634 −0.005415 −0.007887 −0.008874
CN 0 −0.0006636 0 0.0002777

k2 = 0.72 Naive −0.02090 −0.01725 −0.06378 −0.06475
CN 0 -0.0002963 0 −0.003184

k2 = 2.88 Naive −0.04953 −0.05439 −0.1558 −0.1569
CN 0 0.002954 0 −0.003224

Table 4. Estimated MSE of a Gamma distribution with a Gamma error.

Asy.MSE β̂0 ̂MSE(β̂0) Asy.MSE β̂1 ̂MSE(β̂1)

k2 = 0.072 Naive 0.08533 0.003109 0.000006940 0.0005384
CN 0 0.003074 0 0.0004743

k2 = 0.72 Naive 0.05580 0.005320 0.0004368 0.004894
CN 0 0.004457 0 0.0008818

k2 = 2.88 Naive 0.02080 0.01147 0.002453 0.02553
CN 0 0.007401 0 0.001963

6. Real Data Analysis

In this section, we apply the naive and corrected naive estimators to real data in two
cases. First, we consider football data provided by Understat (2014). In this work, we
focus on Goals and expected Goals (xG) in data on N = 24,580 matches over 6 seasons
between 2014–2015 and 2019–2020 from the Serie A, the Bundesliga, La Liga, the English
Premier League, Ligue 1, and the Russian Premier League. Detail, such as the types and
descriptions of the features, used in this section are provided in Table 5.

Table 5. Details of the variables.

Features Type Description

Goals counting number of goals scored in the
match

xG continuous
performance metric used to
evaluate football team and

player performance
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We use goals as an objective variable Y and xG as an explanatory variable X and
assume Y|X ∼ Po(exp(β0 + β1X)) as the true model. Thus, this Poisson regression model
refers to the extent to which expected goals (xG) explains (true) goals. We assume that the
true parameter β is obtained by the estimate from all N data.

As a diagnostic technique, we calculate a measure of goodness-of-fit to verify that
the dataset follows a Poisson regression model. Table 6 shows estimates of φ and RMcF
(McFadden 1974), where RMcF is the ratio of the log-likelihood estimate to the initial log-
likelihood. φ = V[Y|X]/E[Y|X] is an overdispersion parameter. We may consider that
overdispersion is not observed because φ = 1 equates to the standard Poisson regression
model. The estimated value of β is (−0.5225, 0.5308)′. Thus, we use this estimate as a true
value. We assume X (xG) ∼ Γ(k1, λ) and obtain estimates of k1, λ as k1 = 2.425, λ = 1.851
(see Figure 1).

Table 6. Estimates of φ and RMcF.

φ̂ R̂McF

0.8907 0.1589

0 1 2 3 4 5 6
xG
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Figure 1. Distribution of xG.

Expected goals (xG) is a performance metric used to represent the probability of a
scoring opportunity that may result in a goal. xG is typically calculated from shot data.
The measurer assigns a probability of scoring to a given shot and calculates the sum of
the probabilities over a single game as xG. Observation error may occur in subjective
evaluations. We can consider the situation that a high scorer happened to rate. Thus, we
assume that X includes a stochastic error U given as

W = X + U.

Because W must be a positive value, we choose a positive error by U ∼ Γ(k2, λ) with
k2 = k1/10, k1/3, k1. We sample 1000 random samples from among all N samples to obtain
the values of the estimates of βs. We repeat the estimations MC = 10,000 times to obtain
the Monte Carlo mean of βs. The bias is calculated by the difference between the Monte
Carlo mean and the true value.

Table 7 shows the estimated bias calculated by 10,000 simulations. The estimated bias
of the corrected naive estimator is smaller than that of the naive estimator in all cases.
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Table 7. Estimated bias and asymptotic bias in football data.

Asy.Bias β̂0 ̂BIAS(β̂0) Asy.Bias β̂1 ̂BIAS(β̂1)

k2 = k1/10 Naive −0.01148 −0.01337 −0.03534 −0.03471
CN 0 −0.001804 0 0.0006200

k2 = k1/3 Naive −0.03263 −0.02383 −0.1020 −0.1067
CN 0 0.008176 0 −0.005575

k2 = k1
Naive −0.06889 −0.04692 −0.2210 −0.2291

CN 0 0.01871 0 -0.01215

Next, we apply the naive and corrected naive estimators to financial data based on
data collected in the FinAccess survey conducted in 2019, provided by Kenya National
Bureau of Statistics (2019). In this study, we focus on the values labelled as finhealthscore
and Normalized Household weights, with a sample size of N = 8669. Details of the features
used in this section, such as their types and descriptions, are provided in Table 8.

Table 8. Details of the variables.

Features Type Description

finhealthscore counting Score of financial health for
households

Normalized Household
weights continuous Weighted and normalized

households

We use finhealthscore as an objective variable Y and normalized household weights
as an explanatory variable X and assume Y|X ∼ Po(exp(β0 + β1X)) as the true model. We
further assume that the true parameter β is obtained by the estimate from all N data.

As a diagnostic technique, we calculate a measure of goodness-of-fit to verify that
the dataset follows a Poisson regression model. Table 9 shows estimates of φ and RMcF
(McFadden 1974). Overdispersion tends to occur to some extent in this Poisson regres-
sion model because the estimate of φ is greater than 1. The estimated value of β is
(1.0442, 0.1568)′. As in the previous example, we regard the estimate as a true value.
We assume X ∼ Γ(k1, λ) and obtain estimates of k1, λ as k1 = 2.0746, λ = 2.0746 (see
Figure 2).

Table 9. Estimates of φ and RMcF.

φ̂ R̂McF

1.4360 0.4478

According to Kenya National Bureau of Statistics (2019), the data from the FinAccess
survey were weighted and adjusted for non-responses to obtain a representative dataset
at the national and county level. Thus, we may consider the situation that X exhibits a
stochastic error U as

W = X + U.

We assume a positive error by U ∼ Γ(k2, λ) with k2 = k1/10, k1/3, k1 because the distribu-
tion of normalized household weights is positive. We sample random 1000 samples from
among all N samples to obtain the values of the estimates of βs. We repeat the estimations
over MC = 10,000 iterations to obtain the Monte Carlo mean of βs. The bias is calculated by
the difference between the Monte Carlo mean and the true value.
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Figure 2. Distribution of normalized household weights.

Table 10 shows estimated bias calculated by 10,000 simulations. The estimated bias of
the corrected naive estimator is smaller than that of the naive estimator in all cases.

Table 10. Estimated bias and asymptotic bias in financial data.

Asy.Bias β̂0 ̂BIAS(β̂0) Asy.Bias β̂1 ̂BIAS(β̂1)

k2 = k1/10 Naive −0.0005704 −0.002225 −0.01327 −0.01207
CN 0 −0.001628 0 0.001275

k2 = k1/3 Naive −0.001581 −0.004088 −0.03694 −0.03522
CN 0 -0.002404 0 0.002119

k2 = k1
Naive −0.003204 −0.008314 −0.07534 −0.07283

CN 0 −0.004744 0 0.004338

7. Discussion

In this study, we have proposed a corrected naive estimator as a consistent estimator
for a Poisson regression model with a measurement error. Although Kukush et al. (2004)
showed that the naive estimator has an asymptotic bias, the authors did not provide a
method to correct this bias. Therefore, we developed an approach to estimate a Poisson
regression model with an error. In contrast, the authors of Kukush et al. (2004) also pro-
posed a corrected score estimator and a structural quasi-score estimator for a Poisson
regression model with an error. These estimators are score-based and consistent for un-
known parameters. Hence, a generalization of these estimators should be considered in
future research. In addition, the model considered in the present work is restricted in the
univariate case. Extending the explanatory variable to the multivariate case also remains a
challenge of note.
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Abstract: The number of non-payments is an indicator of delinquent behaviour in credit scoring,
hence its estimation and prediction are of interest. The modelling of the number of non-payments, as
count data, can be examined as a renewal process. In a renewal process, the number of events (such as
non-payments) which has occurred up to a fixed time t is intimately connected with the inter-arrival
times between the events. In the context of non-payments, the inter-arrival times correspond to
the time between two subsequent non-payments. The probability mass function and the renewal
function of the count distribution are often complicated, with terms involving factorial and gamma
functions, and thus their computation may encounter numerical difficulties. In this paper, with the
motivation of modelling the number of non-payments through a renewal process, a general method
for computing the probabilities and the renewal function based on numerical Laplace transform
inversion is discussed. This method is applied to some count distributions which are derived given
the distributions of the inter-arrival times. Parameter estimation with maximum likelihood estimation
is considered, with an application to a data set on number of non-payments from the literature.

Keywords: birth and renewal processes; loan default; non-payments; inter-arrival times; renewal
function; over and under dispersion; Laplace transform

1. Introduction

In credit scoring, default probabilities are often of interest to identify and manage
the risk of bad loans. However, evaluation of default probabilities alone is insufficient
to assess the risk and returns of bank funding (Dionne et al. 1996). Before an accepted
loan is classified as a bad loan, there would have been several non-payments which come
with costs incurred by reminders, collection, and other administrative charges. Therefore,
instead of classification of a loan as either good or bad, a flexible alternative approach
to risk evaluation is through the modelling of the number of non-payments (Karlis and
Rahmouni 2007). The number of non-payments, which is a primary indicator of delinquent
behaviour, are count data. Modelling of the counts of non-payments will be useful for
estimating the probability of default. The basic model for count data is the well-known
Poisson model which exhibits equi-dispersion where the mean is equal to its variance.
As such, the Poisson model is often found to be inadequate in the presence of over- or
under-dispersion. Various approaches have been proposed to extend or generalize the
Poisson distribution. Examples of such approaches are: mixture models for heterogeneity
(Gupta and Ong 2005), such as the negative binomial (NB) (Greenwood and Yule 1920)
and Poisson-inverse Gaussian (P-iG) (Holla 1967; Sankaran 1968), Lagrange expansion
generalization of the Poisson distribution (Consul and Jain 1973), and count distributions
from renewal processes where the time between events are non-exponential distributions
(Winkelmann 1995). In the context of modelling number of non-payments, truncated
count models (Dionne et al. 1996), Poisson finite mixtures (Karlis and Rahmouni 2007) and
non-parametric models (Mestiri and Farhat 2021) have been investigated in the literature.
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It is well-known that, in a renewal process, if the waiting times are exponential and
independent, we obtain the Poisson distribution for the event counts. In the context of
loan non-payments, the inter-arrival times refer to the duration between two subsequent
non-payments. Thomas et al. (2016) used Markov chains to model the payment patterns to
estimate recover rates. This renewal process approach to derive count distributions has
been considered by several researchers. Winkelmann (1995) derived the count distribution
when the inter-arrival time is an Erlang distribution. Other distributions which have been
considered by various authors to model the inter-arrival times are the gamma distribution
(Winkelmann 1995), Weibull distribution (McShane et al. 2008), which is very popular in
the field of reliability studies, Mittag-Leffler (Jose and Abraham 2011), Gumbel Type II
(Jose and Abraham 2013), and generalized Weibull (Ong et al. 2015); see Table 1. The count
distributions were mostly obtained using extensive numerical and analytical methods.
For example, McShane et al. (2008) and Jose and Abraham (2013) used the polynomial
expansion method to derive the count distribution for Weibull and Gumbel inter-arrival
times, respectively. A different approach by From (2004) is to use a family of generalized
Poisson distributions to approximate the renewal counting processes with Weibull, trun-
cated normal and exponentiated Weibull inter-arrival times. Baker and Kharrat (2017)
proposed the use of repeated convolutions of the discretized distributions with Richard
extrapolation as well as an adaptation of De Pril’s method to compute probabilities in event
count distributions from renewal processes. Nadarajah and Chan (2018) derived count
distributions arising from 13 different inter-arrival time distributions and studied their fit
to football home goals data using the algebraic manipulation package Maple. A similar per-
spective in the modelling of non-life insurance claims data was discussed by Maciak et al.
(2021) through infinitely stochastic processes and Lindholm and Zakrisson (2022).

Table 1. Some existing count distributions in renewal theory.

Inter-Arrival Time Distribution Probability Mass Function (pmf) of Corresponding Count Distribution

Gamma
Pr{N(t) = n} = G(αn, βt)− G(αn + α, βt),

G(αn, βt) = 1
Γ(nα)

∫ βt
0 unα−1e−udu

Weibull
Pr{N(t) = n} = ∑∞

j=n
(−1)j+n(λtc)jαn

j

Γ(cj+1) ,

α0
j =

Γ(cj+1)
Γ(j+1) , j = 0, 1, 2, . . . , αn+1

j = ∑
j−1
m=n αn

m
Γ(cj−cm+1)
Γ(j−m+1) ,

n = 0, 1, 2, . . . , j = n + 1, n + 2, n + 3, . . .

Mittag-Leffler Pr(N(t) = n) =
∞
∑

j=n

(
j
n

)
(−1)j−ntjα/Γ(1 + jα)

Gumble Type II

Pr{N(t) = n} =
∞
∑

j=n

(−1)(j+n)(bt−a)jδn
j

Γ(−aj+1) , a < 0

δ0
j =

Γ(−aj+1)
Γ(j+1) , j = 0, 1, 2, . . . δn+1

j = ∑
j−1
m=n δn

m
Γ(−aj+am+1)

Γ(j−m+1)
n = 0, 1, 2, . . . , j = n + 1, n + 2, n + 3, . . .

Generalized Weibull
Pr{N(t) = n} = (aα)n∑∞

p=0
(−a/λ)p

Γ(α(p+n)+1) tα(p+n)cn(p),

cn(p) = ∑
p
q=0

(
λ− 1

q

)
Γ(α(q + 1))cn−1(p− q), n ≥ 1, c0(p) =

(
λ
p

)
Γ(αp + 1)

The objectives of this paper are to propose the modelling of number of loan non-
payments through the renewal process approach and to examine the computation of the
pmf. Due to the rather involved computation of the probabilities mentioned previously, a
simple, general and efficient method of computing the probabilities of count distributions
arising from non-exponential inter-arrival time distributions of renewal processes is dis-
cussed to facilitate the statistical modelling. We consider the generalized Weibull, inverse
Gaussian and convolution of two gamma distributions due to their greater generality, as
they include, among others, the Weibull and gamma distributions as special cases. These
inter-arrival times’ distributions have flexible hazard functions so that the corresponding
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count distributions are able to cater for under-, equi- and over dispersion. This relationship
between the inter-arrival times’ hazard function and the dispersion of the corresponding
count distribution has been proven by Winkelmann (1995). We propose an easily imple-
mented and efficient method to compute the probabilities of the counts and, subsequently,
the renewal function (expected number of renewals), given the Laplace transform of the
inter-arrival times density function. The computation of the renewal function has been
extensively studied by various authors, for example, in the case of the Weibull renewal
function, see Smith and Leadbetter (1963); Constantine and Robinson (1997).

In Section 2, we briefly describe the relationship between the distribution of the inter-
arrival times and the count distribution, as well as some existing count distributions. We
focus on the case when the sequence of inter-arrival times is independent and identically
distributed, which gives rise to the renewal process. Count distributions arising from
inverse Gaussian and convolution of two gamma distributions as inter-arrival times are
considered. In these sections, we assume that the inter-arrival time Xi is independent and
identically distributed and we drop the index i from the notation, and thus X denotes the
inter-arrival time. The proposed method for the computation of the count probabilities
and its renewal function is discussed in Section 3. Section 4 details the application of the
distributions on a data set on number of non-payments from the literature. We perform pa-
rameter estimation using maximum likelihood estimation. Finally, a concluding discussion
is given in Section 5.

2. Modelling of Loan Non-Payment Counts
2.1. Count Distribution and Inter-Arrival Times Distribution

A counting process is a stochastic point process {N(t), t ≥ 0} where N(t) represents
the total number of events that have occurred by time t. In this paper, the number of events
corresponds to the number of non-payments. Let Sn denote the waiting time to (or arrival
time of) the nth non-payment, and Xn denote the time between the (n − 1)st and the n-th
non-payment of this process, i.e., two subsequent non-payments. In the rest of this paper,
Xn will be referred to as inter-arrival times. Therefore, S0 = 0 and Sn = ∑n

i=1 Xi, n ≥ 1. If
the sequence of inter-arrival times {X1, X2, . . . } is independent and identically distributed
as f (x) with cumulative distribution function (cdf) F(x), the counting process {N(t), t ≥ 0}
is known as a renewal process. In a renewal process, the distribution function of Sn can be
obtained as the n-fold convolution Fn(x) of the distribution of Xi and F0 (t) = 1. In this case,
the renewal function or expected number of non-payments E[N(t)] and the distribution of
N(t) can be obtained from the relationship N(t) ≥ n⇔ Sn ≤ t . As such, the probability
mass function (pmf) of the count distribution is

Pr{N(t) = n} = Pr{Sn ≤ t} − Pr{Sn+1 ≤ t} = Fn(t)− Fn+1(t), (1)

where n = 0, 1, . . . , and Fn(x) is the cdf of Sn. The renewal function is defined as

H(t) = E[N(t)] = ∑∞
i=1 Fi(t). (2)

A d example is, when the inter-arrival times are exponentially distributed, the counting
process is a Poisson process with intensity λ(t) = λ with pmf

Pr{N(t) = n} = e−λt(λt)n

n!
, n = 0, 1, 2, . . . .

The Laplace transform ϕ(s) of a function f (x) is defined as ϕ(s) =
∫ ∞

0 e−sx f (x)dx,
where s is a complex number. The Laplace transform exists for the function f (x) defined over
(0, ∞), whenever the integral converges. Since the inter-arrival times Xi’s are independent
and identically distributed, the Laplace transform of the arrival time Sn = ∑n

i=1 Xi is simply
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the n-fold convolution of the Laplace transform of Xi. Consequently, the Laplace transform
of the count distribution is derived as

ϕn(s) = L(Pr{N(t) = n}) = L(Fn(t)− Fn+1(t)) =
1− ϕ(s)

ϕ(s)
(ϕ(s))n, (3)

where ϕ(s) is the Laplace transform of the inter-arrival time’s probability density function
(pdf) f (x). On the other hand, the Laplace transform of (2) is L(E[N(t)]) = ϕ(s)

s
1

(1−ϕ(s)) ,
|ϕ(s)|< 1 .

In the existing literature, Poisson distribution and negative binomial distribution have
been proposed for modelling non-payments (Dionne et al. 1996). In the following sections,
we present alternative count distributions for modelling of non-payments examined from
the perspective of their inter-arrival times.

2.1.1. Count Distribution for Generalized Weibull Duration

The pdf of a generalized Weibull distribution is given as

f (x; α, α, λ) = aαxα−1(1− axα/λ)λ−1, (4)

for a, α > 0, x > 0 if λ ≤ 0 and 0 < x < (λ/a)1/α if λ > 0 (Mudholkar et al. 1996). An
important limiting case is the Weibull distribution when λ→∞, with pdf f (x; a, α, λ) =

aαxα−1e−axα
. We shall re-write the Weibull pdf as f (x; a, α, λ) =

(
λ
a

)( x
α

)λ−1e−
( x

α )λ

. The
generalized Weibull distribution has a flexible and closed form hazard function.

Ong et al. (2015) applied the Laplace transform technique and a formal Taylor ex-
pansion to derive the count distribution for generalized Weibull duration. The count
distribution has pmf given by

Pr{N(t) = n} = (aα)n∑∞
p=0

(−a/λ)p

Γ(α(p + n) + 1)
tα(p+n)cn(p), (5)

where cn(p) = ∑
p
q=0

(
λ− 1

q

)
Γ(α(q + 1))cn−1(p− q), n ≥ 1 and c0(p) =

(
λ
p

)
Γ(αp + 1).

When n = 0, Pr{N(t) = 0} = (1− atα/λ)λ. This count model is able to model under-,
equi- and over-dispersion, since the generalized Weibull hazard function can be increasing,
constant or decreasing. Special cases are as follows:

• When λ < 0 and α = 1, we obtain the count distribution with Lomax duration. Its pmf
is given by Ong et al. (2015) as

Pr{N(t) = n) = (at)n∑∞
p=0

(a/Γ)p

Γ(p + n + 1)
tpcn(p). (6)

• When λ→∞, we obtain the Weibull count distribution and Ong et al. (2015) gives its
pmf as

Pr{N(t) = n) = (aα)n∑∞
p=0

(−a)p

Γ(α(p + n) + 1)
tα(p+n)cn(p), (7)

where cn(p) = ∑
p
q=0

Γ(α(q+1))
Γ(q+1) cn−1(p− q), n ≥ 1 and c0(p) = Γ(αp+1)

Γ(p+1) . When n = 0,

Pr{N(t) = 0} = e−atα
. McShane et al. (2008) applied Taylor series approximation in

the derivation of the Weibull count pmf which they have found to be computationally
feasible.

• Furthermore, when α = 1, (5) reduces to the Poisson pmf.
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2.1.2. Count Distribution for Gamma Duration

Let X have a gamma distribution with pdf given by

f (x; α, β) =
βα

Γ(α)
xα−1e−βx (8)

for x > 0 and α, β > 0. It has mean E(X) = α/β and variance Var(X) = α/β2. The hazard
function of the gamma distribution is not available in closed form but its behaviour is
well-known as being monotonic increasing (α > 1), decreasing (α < 1) or constant (α = 1).
When α = 1, we obtain the exponential distribution. The Laplace transform of the gamma

distribution is given as ϕ(s) =
(

β
β+s

)α
. The gamma distribution has the advantage of

having a reproductive property, hence the arrival time Sn is also gamma distributed.
Winkelmann (1995) has studied the count process with gamma inter-arrival times and

gives its pmf as
Pr{N(t) = n} = G(αn, βt)− G(αn + α, βt) (9)

where G(αn, βt) = 1
Γ(nα)

∫ βt
0 unα−1e−udu, the integral is the lower incomplete gamma

function. Since the pmf is not available in closed form, Winkelmann (1995) suggested
using numerical methods for its computation. The gamma count distribution inherits
the properties of the gamma distribution’s hazard function; thus it is able to model over
dispersion (α < 1) and under dispersion (α > 1). Its expected value is given by E[N(t)] =
∑∞

i=1 G(αi, βt). Special cases are as follows:

• When α = 1, the count distribution simplifies to the Poisson distribution.
• For integer values of α, Winkelmann (1995) has derived the Erlangian count distribu-

tion with pmf given as

Pr{N(t) = n} = e−βt∑α−1
i=0

(βt)αn+i

(αn + i)!
, n = 0, 1, 2, . . . . (10)

2.1.3. Count Distribution for Convolution of Two Gamma Durations

If we represent the inter-arrival time X as a sum of two independent gamma random
variables, then X has a convolution of two gamma distributions. Its density function has
been studied by various authors; see Johnson et al. (2005) for a brief overview. We shall
adapt the density function given by Moschopoulos (1985) for the sum of n independent
gamma random variables, which is derived from the n-convolutions of the moment gen-
erating function. Let X = X1 + X2, where Xi, i = 1, 2, are distributed as gamma with
parameters αi and βi respectively. We obtain the density function of X as

f (x; ρ, β1) =

(
β1

β2

)α2

∑∞
k=0

δkxρ+k−1exp
(
− y

β1

)

Γ(ρ + k)β1
ρ+k (11)

for x > 0, αi > 0, βi > 0 where β1 = min(β1, β2), ρ = α1 + α2, δk+1 = 1
k+1 ∑k+1

i=1 iΓiδk+1−i for k

= 0, 1, 2, . . . , and Γk =

{
α2

(
1− β1

β2

)k
}

. The convolution of two gamma distributions has an

increasing hazard function when its two component distributions have an increasing hazard
function, but convolutions of two distributions, both with decreasing hazard function, may
give rise to a distribution with increasing hazard function. Therefore, we expect the count
distribution to be more flexible in modelling over-dispersed and under-dispersed count
data. As a special case, when α1 = α2 = 1, we obtain the convolution of two exponential
distributions which has an increasing hazard function.
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Proposition 1. If the inter-arrival time (duration) has a convolution of two gamma distributions
with pdf (3.1.1), the count distribution has pmf given by

Pr{N(t) = n} = Cn(t, α1, α2, β1, β2)− Cn+1(t, α1, α2, β1, β2), (12)

where Cn(t, α1, α2, β1, β2) = (βα1
1 βα2

2 )n
{

tn(α1+α2)

Γ(1+n(α1+α2))
Φ2(nα1, nα2; 1 + n(α1 + α2);−β1t,

−β2t)
}

and Φ2(b, b′; c; w, z) = ∑∞
k,l=0

(b)k(b′)l
(c)k+l

wkzl

k!l! .

2.1.4. Count Distribution for Inverse Gaussian Duration

The inverse Gaussian (IG) distribution is also known as the first passage time distri-
bution of Brownian motion with positive drift. Let X have an IG distribution with pdf
given by

f (x; µ, λ) =

√
λ

2π
x−

3
2 exp

{
−λ(x− µ)2

2µ2x

}
, (13)

for x > 0, where µ, λ > 0 (Johnson et al. 2005, p. 261). It is a unimodal distribution and
has applications in modelling survival period, service time, equipment lives, hospital stay
duration, employee service times and duration of strikes. Chhikara and Folks (1977) have
discussed the application of the inverse Gaussian distribution in reliability and showed that
the distribution has a non-monotonic hazard function with an almost increasing failure rate.
There are several parameterizations of the IG distributions, but we adopt this particular
one because it is expressed in terms of its mean E(X) = µ and λ is the scale parameter. The
shape of the distribution is determined by the ratio λ/µ and the pdf is highly skewed for
moderate values of this ratio. The Laplace transform is derived by Seshadri (1999) as

ϕ(s) = exp

{
λ

µ

(
1−

√
1 +

2sµ2

λ

)}
, s ≥ 0 (14)

when µ→∞, we obtain a one-parameter limiting form of IG, known as the distribution
of the first passage time of drift-free Brownian motion. Its pdf is given as f (x; λ) =√

λ
2π x−

3
2 exp

(
− λ

2x

)
with x > 0, where λ > 0 (Johnson et al. 2005). The expected value and

variance of this distribution are infinite. On the other hand, when µ = 1, the distribution is
also known as the Wald distribution.

The count distribution with inverse Gaussian inter-arrival times has also been pro-
posed (Nadarajah and Chan 2018) with the probability mass function given in terms of the
convolution of inter-arrival distributions Fn(x), involving the standard normal cumulative
distribution function. We derive an explicit expression for the inverse Gaussian count
distribution, given in the following proposition.

Proposition 2. If the inter-arrival time has an inverse Gaussian distribution with pdf (13), the
count distribution has pmf given by

Pr{N(t) = n} = ∑∞
k=0 ∑k

l=0
nk−l

(l + 1)!(k− l)!

(
λ

µ

)k+1

ck(m), (15)

where ck(m) = ∑k+1
m=0

(
k + 1

m

)
(−1)m

(
∑∞

ν=0

(m
2
ν

)
1

Γ(1−ν)

(
2µ2

λt

)ν
)

.

2.2. Computation of the Probabilities of Count Distribution

The computation of the probabilities for most of the count distributions, such as
the generalized Weibull count distribution (5), involves an infinite series and/or gamma
functions Γ(x), which tends to quickly numerically overflow. As such, we propose a
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computational method whereby the probability function of the counts can be recovered by
numerically inverting the Laplace transform (3). Using this method, given the inter-arrival
time distribution and its Laplace transform, we will be able to compute the corresponding
count probabilities.

For some common functions, the inverse Laplace transforms f (x) are readily available
from existing tables (Erdelyi et al. 1953). Otherwise, there are explicit formulae for inverting
a Laplace transform ϕ(s), such as the Bromwich inversion integral formula and the Post-
Widder inversion formula. In most cases, it is difficult to find an analytical expression for
the inverse Laplace transform using these formula and, therefore, a numerical inversion
is necessary. There are numerous methods for numerical inversion of Laplace transforms
in the existing literature; for a comprehensive review, see (Abate and Valkó 2004; Dubner
and Abate 1968). In our study, we use a numerical inversion algorithm which is based
on the Bromwich inversion integral and gives good results for smooth functions. The
algorithm was originally proposed by Dubner and Abate (1968), improved by Abate and
Whitt (1992) and discussed by Abate and Whitt (1995) and Abate et al. (2000) for the
numerical inversion of Laplace transforms of probability distributions. The Bromwich
inversion integral formula is given as

f (x) = L−1(ϕ(s)) = lim
R→∞

1
2πi

∫ a+iR

a−iR
ϕ(s)esxds, (16)

where a is another real number such that a > s0 and i =
√
−1. The numerical inversion

algorithm is developed by first applying the trapezoidal rule to the integral in (16), and
subsequently using a Fourier-series method for approximation. Based on the algorithm,
we obtain the following formula for computing the count probabilities

Pr{N(t) = n} = eA/2

2s
Re
(

ϕn

(
A
2s

))
+

eA/2

s ∑∞
k=1 (−1)kRe

(
ϕn

(
A + 2kπi

2s

))
, (17)

where ϕn(.) is as defined in (3).
The convergence of the infinite sum in (17) can be accelerated by applying the well-

known Euler’s algorithm for alternating series. Therefore, the count probabilities are
approximated using the following formula

Pr{N(t) = n} ≈∑m
k=0

(
m
k

)
2−msp+k(s), (18)

where sp(s) is the pth partial sum

sp(s) =
eA/2

2s
Re
(

ϕn

(
A
2s

))
+

eA/2

s ∑p
k=1 (−1)kRe

(
ϕn

(
A + 2kπi

2s

))
. (19)

The choice of A affects the discretization error which results from using the trapezoidal rule.
We use Abate and Whitt’s (1995) suggestion to set A = 18.4, p = 38 and m = 11. The value of
p may be increased when necessary. The algorithm can be implemented in programming
languages which provide for complex number computation, such as MATLAB©.

2.3. Renewal Function

There are many studies on the approximation of the renewal function. Using a
generalized cubic splining algorithm which provides piecewise polynomial approximations
to recursively defined convolution integrals, Baxter et al. (1982) has tabulated the renewal
function and variance function for renewal processes with gamma, inverse Gaussian,
lognormal, truncated normal and Weibull inter-arrival times. However, they noted that
the convergence of the algorithm is slow for some of the parameter values. Chaudhry et al.
(2013) took a slightly different approach by using the probability function obtained from
numerically inverting the Laplace transform in rational function form to calculate the
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renewal function and variance of several count distributions. They obtained the distribution
function, mean and variance of N(t) using the method of roots for numerically inverting
the Laplace transform when it can be expressed as a rational function. They also studied
the Padè approximation method to obtain an approximate rational function for the Laplace
transform when it is not a rational function. In addition, they used the Padè approximation
method prior to the roots method when the Laplace transform could not be expressed as a
rational function, such as in the case of gamma and inverse Gaussian distribution.

3. Numerical Results
3.1. Count Probabilities

To illustrate the accuracy of this numerical Laplace transform inversion method,
we apply it in calculating the count probabilities for generalized Weibull duration and
Erlangian duration and compare the values to those obtained using Formulas (5) and
(10), respectively. The formula in Equation (10) is in closed form and simple enough to
compute, hence there is no need to use the method which we propose here, but it serves as
a good example for this comparison. Since the Laplace transform of the generalized Weibull
density function is not available in closed form, we can approximate it using Gaussian
quadrature. The computed probabilities are presented in Table 2. The count probabilities
for generalized Weibull duration are computed when a = 1, α = 1 and λ = −2, t = 0.25 and
t = 1. For the Erlangian count distribution, we compute the probabilities when α = 2, β = 0.8,
t = 0.25 and t = 1. In all cases, we find that our approximation is accurate up to at least
seven decimal places. To illustrate the issue of overflowing which might occur, we present
the count probabilities for generalized Weibull duration when a = 2, α = 1 and λ = −2 and
t = 1 in Table 3. It is clear that, in this case, there is a numerical error in the computation of
the probabilities with Formula (5) when n = 1, 2 due to instability caused by the presence of
an infinite sum in Equation (5) and truncation error.

Table 2. Computation of probabilities for (a) generalized Weibull, and (b) Erlangian count distribu-
tions using the proposed method and pmf formula.

n

Pr{N(t) = n}
t = 0.25

Pr{N(t) = n}
t = 1

Proposed Method Pmf Formula Difference Proposed Method Pmf Formula Difference

0 0.790123462190233 0.790123456790123 5.4001 (−9) 0.444444446077630 0.444444444444444 1.6331 (−9)
1 0.185268558281666 0.185268554955749 3.3259 (−9) 0.341447772405153 0.341447770099717 2.3054 (−9)
2 0.022624019619715 0.022624018469588 1.1501 (−9) 0.152421254574663 0.152421252253988 2.3207 (−9)
3 0.001862447034136 0.001862446759278 2.7486 (−10) 0.047632000079489 0.047631998279757 1.7997 (−9)
4 0.000115528824677 0.000115528774610 5.0067 (−11) 0.011418307350013 0.011418306220399 1.1296 (−9)
5 0.000005746921940 0.000005746914580 7.3600 (−12) 0.002217009636005 0.002217009042290 5.9371 (−10)
6 0.000000238568216 0.000000238567310 9.0600 (−13) 0.000361439244000 0.000361438976100 2.6790 (−10)
7 0.000000008496400 0.000000008496304 9.0600 (−13) 0.000050759289875 0.000050759184107 1.0577 (−10)

(a) Generalized Weibull count distribution

n

Pr{N(t) = n}
t = 0.25

Pr{N(t) = n}
t = 1

Proposed Method Pmf Formula Difference Proposed Method Pmf Formula Difference

0 0.982476912658251 0.982476903693578 8.9647 (−9) 0.808792138560495 0.808792135410999 3.1495 (−9)
1 0.017466257275868 0.017466256065664 1.2102 (−9) 0.182128011589934 0.182128006788847 4.8011 (−9)
2 0.000056765366099 0.000056765332213 3.3886 (−11) 0.008895517173780 0.008895515278950 1.8948 (−9)
3 0.000000074855777 0.000000074855383 3.9400 (−13) 0.000182292662905 0.000182292332810 3.3009 (−10)
4 0.000000000053140 0.000000000053138 2.0000 (−15) 0.000002035889418 0.000002035857392 3.2026 (−11)
5 0.000000000000024 0.000000000000024 0.0000 0.000000014264304 0.000000014262333 1.9710 (−12)
6 0.000000000000000 0.000000000000000 0.0000 0.000000000068513 0.000000000068429 8.4000 (−14)
7 0.000000000000000 0.000000000000000 0.0000 0.000000000000241 0.000000000000239 1.9999 (−15)

(b) Erlangian count distribution
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Table 3. Count probabilities for generalized Weibull count distribution when a = 2, α = 1 and λ = −2
and t = 1.

n
Pr{N(t) = n}

Formula Proposed Inverse Laplace Transform Method

0 0.2500 0.2500
1 63.5982 0.2971
2 2.3327 0.2305
3 0.1839 0.1317
4 0.0604 0.0593
5 0.0220 0.0220
6 0.0069 0.0069
7 0.0019 0.0019

Using this proposed method, the count probabilities for convolution of two gamma
and inverse Gaussian inter-arrival distributions proposed in Section 2.2 can be easily
computed. Chaudhry et al. (2013) used the roots method and a Padè approximation
method for computing the count probabilities for several inter-arrival times distributions.
In Table 4, we compare the probability function of gamma, inverse Gaussian and Weibull
count distributions with those obtained by Chaudhry et al. (2013). We note that the
difference in the probabilities is at most two decimal places. In the case of Weibull count
distribution, we include only the results when t = 0.25, because the algorithm could not
converge for t = 0.60 and t = 1 when λ = 3, which are the other two values included by
Chaudhry et al. (2013). Convergence issues with the Weibull renewal function were also
discussed by Constantine and Robinson (1997) whereby they developed a convergent
damped exponential series by residue calculations of the Laplace transform of the renewal
integral equation for the Weibull renewal function when λ > 1.

Table 4. Computation of probabilities for (a) gamma, (b) inverse Gaussian, and (c) Weibull count
distributions for selected values of t using (i) proposed method, (ii) method of Chaudhry et al. (2013).

t
Pr(N(t) = 0) Pr(N(t) = 1) Pr(N(t) = 2) Pr(N(t) = 3) Pr(N(t) = 4)

(i) (ii) (i) (ii) (i) (ii) (i) (ii) (i) (ii)

0.1 0.6938 0.6871 0.2341 0.2385 0.0579 0.0602 0.0117 0.0119 0.0021 0.0019
0.4 0.4061 0.4071 0.3092 0.3088 0.1683 0.1677 0.0744 0.0743 0.0283 0.0284

1.25 0.1291 0.1291 0.1952 0.1951 0.2050 0.2050 0.1730 0.1730 0.1249 0.1249

(a) Gamma count distribution

t
Pr(N(t) = 0) Pr(N(t) = 1) Pr(N(t) = 2) Pr(N(t) = 3) Pr(N(t) = 4)

(i) (ii) (i) (ii) (i) (ii) (i) (ii) (i) (ii)

0.25 0.7394 0.7445 0.2497 0.2442 0.0108 0.0112 0.0001 0.0001 0.0000 0.0000
0.7 0.3377 0.3390 0.4070 0.4042 0.2044 0.2062 0.0460 0.0457 0.0047 0.0046
1.0 0.1623 0.1623 0.2865 0.2869 0.2871 0.2867 0.1763 0.1762 0.0681 0.0683

(b) Inverse Gaussian count distribution

t
Pr(N(t) = 0) Pr(N(t) = 1) Pr(N(t) = 2) Pr(N(t) = 3) Pr(N(t) = 4)

(i) (ii) (i) (ii) (i) (ii) (i) (ii) (i) (ii)

0.25 0.9845 0.9841 0.0155 0.0159 0.0000 0.0000 0.0000 - 0.0000 -

(c) Weibull count distribution

We compare the pmf of the two count distributions proposed in Sections 2.1.3 and 2.1.4
with the Poisson distribution. For comparison purposes, the mean for all of the distributions
is set to 2, i.e., E(N) = 2. Figure 1 compares the probability functions of the inverse Gaussian
count distribution with a Poisson distribution.
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Figure 1. Plots of Poisson and inverse Gaussian probabilities: (a) λ = 0.17, µ = 1 (over dispersion);
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Figure 2 compares the probability functions of the convolution of two gamma count
distribution with a Poisson distribution. The convolution of the two gamma count model
can model both over-dispersion and under-dispersion relative to the Poisson distribution.
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Figure 2. Plots of Poisson and convolution of two gamma probabilities: (a) α1 = 1.5, α2 = 1.9 (under
dispersion); (b) α1 = 0.2, α2 = 0.5 (over dispersion).

The convolution of two gamma distributions nests the special case of convolution
of two exponential distributions, that is, when α1 = α2 = 1. This two-component hypo
exponential count distribution with parameters β1 and β2 can model under-dispersion and
Figure 3 compares its probability function with a Poisson distribution.
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3.2. Renewal Function and Variance

Using the probability of the counts computed using our proposed method, we also
computed the renewal function and variance function for comparison with those obtained
by Chaudhry et al. (2013) and Baxter et al. (1982). The details are presented in Table 5.
In most cases, the values computed using our proposed method are closer to those of
Baxter et al. (1982). We note that Baxter et al. (1982) verified the accuracy of their extended
cubic splining algorithm through comparisons with previous tabulations for the Weibull
count distribution in the literature (see Baxter et al. 1982 for details) and a direct evaluation
of the incomplete gamma integral for the gamma count distribution.
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Table 5. Computation of renewal and variance functions for (a) gamma, (b) inverse Gaussian, and
(c) Weibull count distributions for selected values of t using (i) proposed method, (ii) method of
Baxter et al. (1982), and (iii) method of Chaudhry et al. (2013).

t
Renewal Function Variance Function

(i) (ii) (iii) (i) (ii) (iii)

0.1 0.3953 0.3933 0.4040 0.4580 0.4485 0.4623
0.4 1.0560 1.0550 1.0545 1.3954 1.3901 1.3970
1.25 2.6662 2.6653 2.6663 4.0491 4.0441 4.0487

(a) Gamma count distribution

t
Renewal Function Variance Function

(i) (ii) (iii) (i) (ii) (iii)

0.25 0.2716 0.2715 0.2669 0.2198 0.2200 0.2188
0.7 0.9739 0.9739 0.9736 0.7717 0.7718 0.7732
1.0 1.7636 1.7638 1.7635 1.5290 1.5293 1.5294

(b) Inverse Gaussian count distribution

t
Renewal Function Variance Function

(i) (ii) (iii) (i) (ii) (iii)

0.25 0.0155 0.0156 0.0159 0.0153 0.0154 0.0156

(c) Weibull count distribution

4. Real Data Analysis

Table 6 gives the distribution for the number of monthly non-payments for personal
loan in a sample of 2446 clients in a Spanish bank (Dionne et al. 1996). In personal loans,
small amounts of money are lent with a relatively short repayment or loan period. The
repayment schedule is typically on a monthly basis with a constant amount. The empir-
ical data has a sample mean of 1.109 and variance of 4.860, indicating presence of over
dispersion, hence a simple Poisson process may not be sufficient to model the counts. The
majority (68.1%) of the counts are zeroes, which correspond to clients who never missed
a payment, followed by 11.1% who missed one payment and a cumulative percentage of
11.4% who missed two to four payments. The count distributions are applied to fit this data
set. For the simple Poisson count process, observations with expected frequencies which
are less than 1.0 are grouped in one class. We also include the log-likelihood function and
Akaike information criterion (AIC) values for each fitted model in the tables.

The pmf of the count distributions is evaluated using the numerical inverse Laplace
transform method discussed in Section 2.2. The maximum likelihood (ML) estimates of the
parameters are obtained with numerical global optimization using the simulated annealing
algorithm (Goffe et al. 1994). For numerical stability, we transform the parameters for
the generalized Weibull count distributions to their corresponding reciprocals prior to
performing ML estimation. The ML estimates are given in Table 7.

The count distribution with generalized Weibull as the distribution for inter-arrival
times gives the best fit for the data presented in Table 6. Since the generalized Weibull
distribution does not have a closed form Laplace transform, the model fitting takes up a
significantly longer time. In the case of distributions with closed Laplace transform, the
convolution of two gamma count distribution gives the best fit. We also verify that the
convolution of the two exponentials count distribution gives the same fit as the simple
Poisson distribution, implying that this distribution is not suitable for over dispersed
count data. The inverse Gaussian distribution also gives a poor fit to this data set. This
coincides with the characteristic of inter-arrival time distributions, which has an increasing
hazard function.
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Table 6. Number of monthly non-payments for personal loan (Dionne et al. 1996).

Count Observed

Expected Frequencies

Exponential Gamma Convolution of
Two Exponentials

Convolution of
Two Gamma

Inverse
Gaussian Weibull Generalized

Weibull

0 1665 806.78 1159.28 806.78 1159.18 703.13 1156.51 1172.12
1 271 894.85 610.04 894.85 609.94 614.81 607.38 599.05
2 101 496.26 320.92 496.26 320.89 470.06 319.98 309.55
3 73 183.48 168.77 183.48 168.79 314.25 169.15 162.84
4 106 50.88 88.73 50.88 88.78 183.69 89.74 87.75
5 72 11.29 46.64 11.29 46.68 93.88 47.80 48.58
6 43 2.09 24.51 2.09 24.55 41.96 25.56 27.60
7 31 0.38 12.87 0.38 12.90 16.39 13.72 16.00
8 31 6.76 6.78 5.60 7.39 9.39
9 25 3.55 3.56 1.67 4.00 5.53

10 19 1.86 1.87 0.44 2.17 3.25
11 9 0.98 0.98 0.10 1.18 1.89

12 or
more 0 1.08 1.09 0.02 1.42 2.44

Total 2446.00 2446.00 2446.00 2446.00 2446.00 2446.00 2446.00

χ2 37,242.91 1111.77 37,242.91 1108.75 4057.66 1032.59 838.51

Log-likelihood −4954.79 −3569.93 −4954.79 −3569.49 −4231.06 −3558.13 −3511.39

AIC 9911.57 7143.85 9913.57 7146.99 8466.11 7118.27 7028.77

Table 7. ML estimates of the fitted distributions.

Inter-Arrival Distribution ML Estimates of Parameters

Exponential λ̂ = 1.1092
Gamma α̂ = 0.0136, β̂ = 0.0000

Convolution of two exponentials β1 = 1.1092, β2 → ∞
Convolution of two gamma α̂1 = 0.0097, β̂1 = 0.0000, α̂2 = 0.0000, β̂1 = 4.5611

Inverse Gaussian λ̂ = 0.1358, µ̂→ ∞
Weibull α̂ = 18.2613, λ̂ = 3.0684

Generalized Weibull â = 40.6405; α̂ = 1.0000, λ̂ = −0.2044

5. Discussion and Conclusions

This article examines the modelling of count data commonly encountered in finance
and risk management with count distributions arising from non-exponential inter-arrival
time distributions in a renewal process. A specific application example on modelling
of loan non-payments is presented. Since the number of non-payments and the lapsed
time between payments reflect a lender’s payment behaviour, models which account
for these data can assist in the development of further diagnostic techniques such as
loan default prediction and tools for early warning detection. Due to the complicated
calculations, computation of the probabilities arising from these distributions is investigated
and discussed in this paper. The inversion of the Laplace transform is proposed as a generic
method of computation, since the transforms have relatively simple forms compared to
the probabilities. The proposed method is compared with some existing techniques in
the literature.

When the Laplace transform of the inter-arrival time distribution is not available in
closed form, other methods to approximate the Laplace transform for numerical inversion
can be explored, such as the infinite series, Gaussian quadrature, Laguerre method and the
continued fractions technique. This will be considered elsewhere.
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455–58.

Seshadri, Vanamamalai. 1999. The Inverse Gaussian Distribution. Lecture Notes in Statistics. New York: Springer.
Smith, W. L., and M. Ross Leadbetter. 1963. On the Renewal Function for the Weibull Distribution. Technometrics 5: 393–96. [CrossRef]
Thomas, Lyn C., Anna Matuszyk, Mee Chi So, Christophe Mues, and Angela Moore. 2016. Modelling repayment patterns in the

collections process for unsecured consumer debt: A case study. European Journal of Operational Research 249: 476–86. [CrossRef]
Winkelmann, Rainer. 1995. Duration Dependence and Dispersion in Count-Data Models. Journal of Business & Economic Statistics

13: 467.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

44



����������
�������

Citation: Mahdavi, Abbas, Omid

Kharazmi, and Javier E.

Contreras-Reyes. 2022. On the

Contaminated Weighted Exponential

Distribution: Applications to

Modeling Insurance Claim Data.

Journal of Risk and Financial

Management 15: 500. https://

doi.org/10.3390/jrfm15110500

Academic Editors: Shuangzhe Liu,

Tiefeng Ma and Seng Huat Ong

Received: 21 September 2022

Accepted: 25 October 2022

Published: 27 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Risk and Financial
Management

Article

On the Contaminated Weighted Exponential Distribution:
Applications to Modeling Insurance Claim Data
Abbas Mahdavi 1 , Omid Kharazmi 1 and Javier E. Contreras-Reyes 2,*

1 Department of Statistics, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran
2 Instituto de Estadística, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
* Correspondence: jecontrr@uc.cl; Tel.: +56(32)-250-8242

Abstract: Deriving loss distribution from insurance data is a challenging task, as loss distribution is
strongly skewed with heavy tails with some levels of outliers. This paper extends the weighted expo-
nential (WE) family to the contaminated WE (CWE) family, which offers many flexible features, in-
cluding bimodality and a wide range of skewness and kurtosis. We adopt Expectation-Maximization
(EM) and Bayesian approaches to estimate the model, providing the likelihood and the priors for all
unknown parameters. Finally, two sets of claims data are analyzed to illustrate the efficiency of the
proposed method in detecting outliers.

Keywords: bayesian estimation; EM algorithm; Gibbs sampler; Mixture model; insurance claim data

1. Introduction
In many applied areas, particularly in finance and actuarial sciences, data are usually

positive, right-skewed, leptokurtic and multimodal (Cummins et al. 1990). To capture a
wide range of population heterogeneity and tail behavior, one practical way is to conduct
analyses over subsets of claims with distinct claim characteristics. But the approach falls
short of providing a full picture of claim dynamics. Classical distributions are not flexible
enough to cater to heavy-tailed datasets due to extreme values that are far from the other
observed data points. These unusual observations are usually called outliers. The presence
of outliers in the data may distort both the estimated model parameters and the model’s
goodness-of-fit. Recently, many authors have focused on a finite mixture approach that
shares the efficiency of parametric modeling and the flexibility of non-parametric density
estimation techniques. The flexibility of finite mixtures is accommodating various shapes
of insurance and economic data (Bernardi et al. 2012; Hennig and Liao 2013; Maruotti et al.
2016; Punzo et al. 2018).

Okhli and Nooghabi (2021) introduced the contaminated exponential (CE) distribution
as an alternative platform for analyzing positive-valued insurance datasets with some level
of outliers. The pdf of CE distribution with scale parameter λ and contamination factor θ is
defined as follows:

fCE(y; λ, θ, ω) = (1−ω)λe−λy + ωλθe−λθy, y > 0, λ > 0, (1)

where ω ∈ (0, 1) is the proportion of contaminated points. The Bayesian approach is
developed for computing the parameter estimates. It is demonstrated that the effect of
outliers is automatically reflected in the posterior distribution for any sample size. This
way, an outlier observation has the highest posterior probability of outlying, but the main
observations have a relatively small such probability, indicating that the CE model can
detect outliers well.

Weighted distributions are used to adjust the probabilities of events as observed
and recorded (Chung and Kim 2004; Gupta and Kirmani 1990; Larose and Dey 1996);
(Navarro et al. 2006). Patil (1991) proceeded from applications involving statistical ecology
to generate and review many useful general results concerning weighted distributions. Mild
outliers, on which this paper focuses, can be dealt with by using heavy-tailed distributions
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for data. Weighted distributions offer the flexibility needed for achieving mild outlier
robustness, while the usual distributions like exponential, gamma and Weibull models lack
sufficient fit. For more information and applications of weighted distributions see Patil and
Rao (1977).

A two-parameter weighted exponential (WE) distribution (Gupta and Kundu 2009)
was developed as a lifetime model which has been widely used in engineering, medicine
and insurance. The sensitive skewness parameter governs essentially the shape of the
probability density function (pdf) of the WE distribution. A random variable Y is said
to have a weighted exponential distribution with a shape parameter α > 0, and scale
parameter λ > 0, denoted by WE(α, λ), if its pdf is given by

fWE(y; α, λ) =

(
1 +

1
α

)
λe−λy(1− e−αλy), y > 0. (2)

In this paper, we introduce a class of contaminated weighted exponential (CWE)
distributions to account for all possible features of insurance and economic data. Crucially,
the CWE model is a two-component mixture in which one component, with a large prior
probability, represents the reference distribution, and another, with small prior probability
and inflated variability, represents the degree of contamination. For Bayesian inference, we
consider several asymmetric and symmetric loss functions like squared error loss, modified
squared error, precautionary, weighted squared error, linear exponential, general entropy,
and K-loss functions to estimate the parameters of the CWE model. Further, using the
independent prior distributions, Bayesian 95% credible and highest posterior density (HPD)
intervals (see Chen et al. 1999) are provided for each parameter of the proposed model.

The paper is organized as follows. Section 2 presents the CWE model and some illus-
trations of the density, skewness and kurtosis. In Sections 3 and 4, the EM algorithm and
Bayesian inference are respectively developed for CWE parameters. Section 5 illustrates
several simulations of proposed estimation methods of Sections 3 and 4. Sections 6 and 7
illustrates numerical examples for insurance data fitting using proposed estimation meth-
ods of Sections 3 and 4, respectively. Finally, discussions and conclusions are presented in
Section 8.

2. The CWE Model
The pdf of a CWE model with contamination factor θ can be written as

fCWE(y; α, λ, θ, ω) = (1−ω) fWE(y; α, λ) + ω fWE(y; α, λθ), (3)

where θ > 0 and ω ∈ [0, 1] denotes the proportion of outliers or unusual points and
Θ = (ω, α, λ, θ)> contains all model parameters. The CE model given in (1) is obtained as a
special case of (3) when α→ ∞. The effect of varying each parameter when one varies, but
keeping others fixed, is illustrated by a set of CWE densities shown in Figure 1. The plots
show that the distribution is more likely to be bimodal as ω increases, whereas flatness
parameter vector α controls tail behavior. This implies that the CWE model provides a
component of the WE distribution to capture the vast majority of small losses, whereas the
contaminated component accommodates clusters of larger losses with an enhanced tail
to capture extreme losses. Furthermore, the skewness and kurtosis 3D plots of the CWE
model for numerous values of α and θ with fixed λ = 1 are depicted in the Figure 2. The
fitting of this four-parameter CWE model via the likelihood approach is difficult because of
the log-likelihood function’s complexity. But the EM and Bayesian approaches can help.
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Figure 1. Density plots for different CWE distributions.
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Figure 2. 3D plots of skewness and kurtosis of CWE distribution for two fixed values of ω.
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3. Maximum Likelihood Estimation via EM Algorithm
The EM algorithm (Dempster et al. 1977) and some of its extraordinary variants such

as the expectation conditional maximization (ECM) algorithm (Meng and Rubin 1993) and
the expectation-conditional maximization either (ECME) algorithm (Liu and Rubin 1994)
are broadly applicable methods to carry out ML estimation for mixture distributions and
variety of incomplete-data problems (Aitkin and Wilson 1980; McLachlan and Krishnan
2007; Redner and Walker 1984). Mahdavi et al. (2021a, 2021b) and Cavieres et al. (2022) de-
veloped novel EM-based procedures designed under the selection mechanism to compute
the ML estimates of scale-shape mixtures of flexible generalized skew-normal and multi-
variate flexible skew-symmetric-normal distributions. Here, we develop a novel EM-based
procedure designed under the selection mechanism to compute the ML estimates of the
proposed model.

A random variable Y ∼WE(α, λ) is said to follow WE distribution with shape param-
eter α and scale parameter λ if it has the following stochastic selection representation:

Y d
= X0|U < 1, (4)

where U = X1/(αX0) and X0 and X1 are two independent exponential random variables
with mean 1/λ. To perform an EM-type algorithm for fitting the CWE model, we introduce
a latent variable τ = U|U < 1 based on (4). The joint pdf of (Y, τ)> is given by

fY,τ(y, τ) =
1

P(U < 1)
fX0,U(y, τ) =

(
1 +

1
α

)
fX0(y) fU|X0

(τ)

= (α + 1)λ2ye−λye−λατy, y > 0, 0 < τ < 1. (5)

Dividing (5) by (2) yields

fτ|Y(τ) =
αλye−αλyτ

1− e−αλy , 0 < τ < 1. (6)

Using (6), it is clear that

τ|Y = y ∼ TExp
(
αλy; (0, 1)

)
, (7)

where TExp
(
λ; (0, b)

)
represents the truncated exponential distribution with mean 1/λ on

interval (0, b).
Let us introduce an n-dimensional binary random variable γ = (γ1, . . . , γn)> where a

particular element γi is equal to 1 if Yi belongs to unusual observations and is equal to zero
otherwise. Note that, γi follows a Bernoulli random variable with success probability ω
denoted by γi ∼ Ber(ω).

Now, consider n independent random variables Y1, . . . , Yn, which are taken from a
mixture model (3) and latent variable τ = (τ1, . . . , τn)>, where Θ = (ω, α, λ, θ)> denotes
the unknown vector of parameters. Clearly,

Yi|(γi = 0) ∼WE(α, λ) and Yi|(γi = 1) ∼WE(α, λθ),
τi|(Yi = yi, γi = 0) ∼ TExp(αλyi; (0, 1)),
τi|(Yi = yi, γi = 1) ∼ TExp(αλθyi; (0, 1)).

According to (3) and (5), it is clear that

fYi ,τi |γi
(yi, τi) =

{
(α + 1)λ2yie−λyi e−λατiyi

i
}1−γi

{
(α + 1)λ2θ2yie−λθyi e−λθατiyi

}γi .
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The complete log-likelihood function of Θ given yc = (y>, τ>, . . . , γ>)> is

`c(Θ|yc) = ln
{

fY,γ,τ(y, γ, τ)
}
= ln

{
fγ(γ) fY,τ|γ(y, τ)

}

=
n

∑
i=1

{
γi ln ω + (1− γi) ln(1−ω) + ln(α + 1) + 2 ln λ + 2γi ln θ

−(1− γi)λyi − (1− γi)λατiyi − γiλθyi − γiλθατiyi

}
. (8)

To evaluate the Q-function, the necessary conditional expectations include

γ̂
(k)
i = E

(
γi|Yi = yi, Θ̂

(k))
=

ω̂(k) fWE(yi; α̂(k), λ̂(k)Θ̂
(k)

)

fCWE(yi; α̂(k), λ̂(k), Θ̂
(k)

)
,

τ̂
(k)
1i = E

(
(1− γi)τi|Yi = yi, Θ̂

(k))
= (1− γ̂

(k)
i )

(
1

α̂(k)λ̂(k)yi
− 1

eα̂(k)λ̂(k)yi − 1

)
,

τ̂
(k)
2i = E

(
γiτi|Yi = yi, Θ̂

(k))
= γ̂

(k)
i

(
1

α̂(k)λ̂(k) θ̂(k)yi
− 1

eα̂(k)λ̂θ̂(k)yi − 1

)
.

Therefore, the Q-function is given by

Q(Θ|Θ̂(k)
) =

n

∑
i=1

{
γ̂
(k)
i ln ω + (1− γ̂

(k)
i ) ln(1−ω) + ln(α̂(k) + 1) + 2 ln λ̂(k)

+2γ̂
(k)
i ln θ̂(k) − λ̂(k)(1− γ̂

(k)
i )yi − λ̂(k)α̂(k)τ̂

(k)
1i yi

−λ̂(k) θ̂(k)γ̂
(k)
i yi − λ̂(k) θ̂(k)α̂(k)τ̂

(k)
2i yi

}
. (9)

In summary, the implementation of the ECM algorithm proceeds as follows:

E-step: Given Θ = Θ̂
(k), compute γ̂

(k)
i , τ̂

(k)
1i and τ̂

(k)
2i for i = 1, . . . , n.

CM-step 1: Calculate

ω̂(k+1) =
1
n

n

∑
i=1

γ̂
(k)
i .

CM-step 2: Fix λ = λ̂(k), θ = θ̂(k) and update α̂(k) by maximizing (9) over α, which gives

α̂(k+1) =
n

λ̂(k) ∑n
i=1
(
τ̂
(k)
1i yi − θ̂(k)τ̂

(k)
2i yi

) − 1.

CM-step 3: Fix α = α̂(k+1), θ = θ̂(k) and update λ̂(k) by

λ̂(k+1) =
2n

∑n
i=1
{
(1− γ̂(k))yi + α̂(k+1)τ̂

(k)
1i yi + θ̂(k)γ̂

(k)
i yi + α̂(k+1) θ̂(k)τ̂2iyi

} .

CM-step 4: Fix α = α̂(k+1), λ = λ̂(k+1) and update θ̂(k) by

θ̂(k+1) =
2 ∑n

i=1 γ̂
(k)
i

λ̂(k+1) ∑n
i=1
{

γ̂
(k)
i yi + α̂(k+1)τ̂

(k)
2i yi}

.

This process is repeated until a suitable convergence rule is satisfied. The convergence
appears when the relative difference between two successive log-likelihood values is less
than tolerance (ε). In our numerical experiments, ε = 10−6 is used. An R code about EM
algorithm is available in Appendix A.
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4. Bayesian Inference
In this section, we discuss the Bayesian estimation for the CWE distribution parameters

in terms of several symmetric and asymmetric loss functions such as squared error loss
function (SELF), weighted squared error loss function (WSELF), modified squared error
loss function (MSELF), precautionary loss function (PLF) and K-loss function (KLF). The
considered loss functions and their Bayesian estimators with corresponding posterior risks
are reported in Table 1.

Table 1. Bayes estimator and posterior risk under several loss functions.

Loss Function L(ψ, δ) Bayes Estimator ψB Posterior Risk ρψ

SELF = (ψ− d)2 E(ψ|x) Var(ψ|x)
WSELF =

(ψ−d)2

ψ
(E(ψ−1|x))−1 E(ψ|x)− (E(ψ−1|x))−1

MSELF =
(

1− d
ψ

)2 E(ψ−1|x)
E(ψ−2|x) 1− E(ψ−1|x)2

E(ψ−2|x)
PLF =

(ψ−d)2

d

√
E(ψ2|x) 2

(√
E(ψ2|x)− E(ψ|x)

)

KLF =

(√
d
ψ −

√
ψ
d

) √
E(ψ|x)

E(ψ−1|x) 2
(√

E(ψ|x)E(ψ−1|x)− 1
)

For pertinent details about these loss functions, refer to Kharazmi et al. (2021, 2022)
and references therein.

4.1. Joint and Marginal Posterior Distributions
Assume that the parameters of the CWE distribution have independent prior dis-

tributions as follows: α ∼ Gamma(α0, α1), θ ∼ Gamma(θ0, θ1), λ ∼ Gamma(λ0, λ1), and
ω ∼ Beta(ω0, ω1), where all hyper-parameters are positive. Consequently, the joint prior
density is formulated as

π(α, λ, θ, ω) =
ωω0(1−ω)ω1 αα0

1 θθ0
1 λλ0

1
Beta(ω0, ω1)Γ(α0)Γ(θ0)Γ(λ0)

αα0−1θθ0−1λλ0e−(α1α+θ1θ+λ1λ).

For simplicity, we define function ζ as

ζ(α, θ, λ, ω) = αα0−1ββ0−1λλ0e−(α1α+β1β+λ1λ)ωω0(1−ω)ω1 .

From (10) and likelihood function L(data), the joint posterior distribution is

π∗(α, θ, λ, ω|data) ∝ π(α, θ, λ, ω) L(data).

Therefore, the exact joint posterior pdf is given by

π∗(α, θ, λ, ω|x) = K ζ(α, θ, λ, ω) L(x, Ψ), (10)

where

L(x; Ψ) =

[
λ

(
1 +

1
α

)]n n

∏
i=1

{
(1−ω)e−λxi (1− e−αλxi ) + ωθe−θλxi (1− e−αθλxi )

}
, (11)

Ψ = (α, θ, λ, ω) and K is a normalizing constant with form

K−1 =
∫ 1

0

∫ ∞

0

∫ ∞

0

∫ ∞

0
ζ(α, θ, λ, ω)L(x, ξ)∂α∂β∂λ∂ω.
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Moreover, the marginal posterior density of α, θ, λ and ω (assuming Ψ = (Ψ1, Ψ2, Ψ3,
Ψ4) = (α, θ, λ, ω)) can be expressed as

π(Ψi|x) =
{ ∫ 1

0

∫ ∞
0

∫ ∞
0 π∗(Ψ|x)∂Ψj∂Ψk∂Ψ4, i = 1, 2, 3,∫ ∞

0

∫ ∞
0

∫ ∞
0 π∗(Ψ|x)∂Ψ1∂Ψ2∂Ψ3, i = 4,

(12)

where j, k = 1, 2, 3, j 6= k 6= i and Ψi is the ith member of vector Ψ.

4.2. Bayesian Point Estimation
From the marginal posterior pdf in (12) and under framework of the loss functions

listed in Table 1, the Bayesian point estimation for parameter vector Ψ = (Ψ1, Ψ2, Ψ3, Ψ4) =
(α, θ, λ, ω) is formulated via minimizing the expectation of loss function with respect to the
marginal posterior pdf in (12) as follows:

argmin Cδ

∫ ∞

0
L(Ψi, δ)π(Ψi|x)∂Ψi. (13)

In practice, because of the intractable integral in (13), we can use the Gibbs sampler
(Geman and Geman 1984) or Metropolis-Hastings algorithms (Hastings 1970; Metropolis
et al. 1953) to generate posterior samples. We will argue this issue more precisely in
Section 4.5.

4.3. Credibility Interval
In the Bayesian framework, interval estimation is done via credibility interval concep-

tion. Consider parameter vector Ψ = (Ψ1, Ψ2, Ψ3, Ψ4) = (α, θ, λ, ω), which is associated
with CWE distribution and π(Ψj|x) the marginal posterior pdf of parameter Ψj, j = 1, 2, 3, 4,
as in (12). For a given value of η ∈ (0, 1), the (1− η)100% credibility interval CI(LΨj , UΨj)

is defined as
∫ ∞

LΨj

π(Ψj|x)∂Ψj = 1− η

2
, (14)

∫ ∞

UΨj

π(Ψj|x)∂Ψj =
η

2
. (15)

By considering relation (14) and (15), it is not feasible to obtain the explicit marginal pdf
from the joint posterior distribution. To overcome this difficulty, we use the Gibbs sampler
algorithm and generate posterior samples from the CWE distribution. Let Ψ1, . . . , Ψk

(where Ψi = (Ψi
1, Ψi

2, Ψi
3, Ψi

4)) be a posterior random sample of size k which is extracted
from the joint posterior pdf in (10). Using these samples, the marginal posterior pdf of Ψj
given x is defined by

1
K

K

∑
i=1

π∗(Ψj, Ψi
−j|x), j = 1, 2, 3, 4, (16)

where Ψi
−j represents the vector of posterior samples when the jth component is removed.

Inserting (16) in (15), it is possible to compute the credibility intervals for Ψj, j = 1, 2, 3, 4,
as follows

1
K

K

∑
i=1

∫ ∞

LΨj

π∗
(
Ψj, Ψi

−j|x
)
∂Ψj = 1− η

2
, (17)

1
K

K

∑
i=1

∫ ∞

UΨj

π∗
(
Ψj, Ψi

−j|x
)
∂Ψj =

η

2
. (18)
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4.4. Highest Posterior Density Interval
Highest posterior density (HPD) interval is a credibility interval under a specific

restriction. A (1− η)100% HPD interval for Ψj, j = 1, 2, 3, 4 is the simultaneous solution of
integral equations

1
K

K

∑
i=1

∫ UΨj

LΨj

π∗
(
Ψj, Ψi

−j|x
)
∂Ψj = 1− η, (19)

K

∑
i=1

π∗
(

LΨj , Ψi
−j|x

)
=

K

∑
i=1

π∗
(
UΨj , Ψi

−j|x
)
. (20)

4.5. Generating Posterior Samples
It is clear from Equations (10) and (12) that there are no explicit expressions for the

Bayesian point estimators under the loss functions in Table 1. Because of intractable in-
tegrals associated with joint posterior and marginal posterior distributions, we require
numerical software to solve the integral equations numerically via MCMC methods such as
the Metropolis-Hastings algorithm and Gibbs sampling (Contreras-Reyes et al. 2018). As-
suming general model f (x|ψ) is associated with parameter vector ψ = (ψ1, ψ2, . . . , ψp) and
observed data x, the joint posterior distribution is π(ψ1, ψ2, . . . , ψp|x). We also assume that

ψ0 = (ψ
(0)
1 , ψ

(0)
2 , . . . , ψ

(0)
p ) is the initial vector to start the Gibbs sampler (Quintero et al. 2017).

The steps for any iteration, say iteration k, are as follows:

• Starting with an initial estimate (ψ
(0)
1 , ψ

(0)
2 , . . . , ψ

(0)
p );

• draw ψk
1 from π

(
ψ1|ψk−1

2 , ψk−1
3 , . . . , ψk−1

p , x
)
;

• draw ψk
2 from π

(
ψ2|ψk

1, ψk−1
3 , . . . , ψk−1

p , x
)
; and so on down to

• draw ψk
p from π

(
ψp|ψk

1, ψk
2, . . . , ψk

p−1, x
)
.

In the case of the CWE distribution, by considering parameter vector Ψ = (α, θ, λ, ω)
and initial parameter vector Ψ0 = (α0, θ0, λ0, ω0), the posterior samples are extracted based
on Gibbs sampler where the full conditional distributions are

π
(
α|θk−1, λk−1, ωk−1, x

)
∝
(

α + 1
α

)n
αα0 e−α1α

n

∏
i=1

Υ(xi, Ψ), (21)

π
(
θ|αk−1, λk−1, ωk−1, x

)
∝ βθ0 e−θ1θ

n

∏
i=1

Υ(xi, Ψ), (22)

π
(
λ|αk−1, θk−1, ωk−1, x

)
∝ λλ0+ne−λ1λ

n

∏
i=1

Υ(xi, Ψ), (23)

and

π
(
ω|αk−1, θk−1, λk−1, x

)
∝ ωω0(1−ω)ω1

n

∏
i=1

Υ(xi, Ψ), (24)

where Υ(xi, Ψ) = (1−ω)e−λxi (1− e−αλxi ) + ωθe−θλxi (1− e−αθλxi ).
In practice, simulations related to Gibbs sampling can be done with special software

WinBUGS. This software was developed in 1997 to simulate data of complex posterior
distributions, where analytical or numerical integration techniques cannot be applied.
Moreover, Gibbs sampling processes can be carried out via OpenBUGS software, which is
an open source version of WinBUGS. Since there isn’t any prior information about hyper-
parameters in (10), we follow Congdon (2001) and the hyper-parameter values are set
as αi = θi = λi = ωi = 0.0001, i = 0, 1, so we can use the MCMC procedure to extract
posterior samples of (10) by means of Gibbs sampling process in OpenBUGS software.

5. Simulation Study: Recovery of the True Underlying Parameters
An experiment intends to investigate the ability of the proposed EM algorithm to

recover the true underlying parameters. We generate 5000 synthetic Monte Carlo samples
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of different sample sizes n = 30, 70, 100 and 200 from the CWE distribution and following
three parameter scenarios (each scenario corresponding to density plotted as “dotdash”
line in Figure 1):
Scenario 1: α = 0.5, λ = 1, θ = 2, ω = 0.2.
Scenario 2: α = 2, λ = 1, θ = 0.3, ω = 0.2.
Scenario 3: α = 0.5, λ = 1, θ = 0.3, ω = 0.6.

The accuracies of the parameter estimates are measured by computing the mean
absolute bias (MAB) and the root mean square error (RMSE), defined as

MAB =
1

5000

5000

∑
i=1
|θ̂i − θA| and RMSE =

√√√√ 1
5000

5000

∑
i=1

(θ̂i − θA)2,

where θ̂i denotes the prediction of a specific parameter at the i-th replication and θA
denotes the actual specific parameter value. Table 2 shows the simulation results for the
CWE distribution. As expected, the MAB and RMSE tend toward zero when the sample
size increases, showing empirically the consistency of the ML estimates obtained via the
EM algorithm.

Table 2. Simulation results, based on 5000 replications, to evaluate the EM algorithm under three
scenarios.

Sample Size
n = 30 n = 70 n = 100 n = 200

Parameter MAB RMSE MAB RMSE MAB RMSE MAB RMSE

Scenario 1

α 0.357 0.419 0.270 0.329 0.232 0.284 0.171 0.213
λ 0.204 0.259 0.139 0.176 0.118 0.150 0.083 0.104
θ 1.906 7.158 1.176 2.943 0.955 1.825 0.645 1.003
ω 0.094 0.148 0.073 0.109 0.065 0.093 0.050 0.069

Scenario 2

α 1.749 2.892 1.165 1.626 0.959 1.286 0.697 0.898
λ 0.308 0.419 0.197 0.259 0.163 0.213 0.115 0.148
θ 0.189 0.282 0.102 0.151 0.080 0.115 0.052 0.069
ω 0.118 0.158 0.098 0.126 0.088 0.112 0.069 0.087

Scenario 3

α 0.449 0.665 0.359 0.508 0.306 0.412 0.236 0.310
λ 0.366 0.564 0.229 0.323 0.187 0.252 0.132 0.172
θ 0.092 0.121 0.059 0.075 0.050 0.064 0.036 0.045
ω 0.169 0.204 0.126 0.155 0.109 0.135 0.082 0.102

6. Numerical Examples for Insurance Data Fitting
In this section, we evaluate the performance and various aspects of the proposed

model using insurance claims data. The proposed distribution is fitted to the data by
implementing the ECM algorithm described in Section 3. For the sake of comparison,
the reduced WE, CE and exponential (Exp) models are also fitted as sub-models of CWE
distribution. To compare how well the models fit the data, we adopt the Akaike information
criterion (AIC) (Akaike 1973) and the Bayesian information criterion (BIC) (Schwarz 1978),
defined as AIC = 2p− 2`max and BIC = p log n− 2`max, where p is the number of free
parameters in the model and `max the maximized log-likelihood value. For both AIC and
BIC, a smaller value indicates a better model fit.

The first dataset (DS1) comprises Danish fire losses analyzed in McNeil (1997). This
dataset is frequently used for comparison of methods; see Eling (2012) and references
therein. These data represent Danish fire losses in million Danish Krones and were collected
by a Danish reinsurance company. The dataset contains individual losses above 1 million
Danish Krones, a total of 2167 individual losses, covering the period from 3 January 1980 to
31 December 1990. Data are adjusted for inflation to reflect 1985 values and are available in
R packages evir and fExtremes.

The second dataset (DS2), analyzed by Cummins and Freifelder (1978), contains 80 fire
losses from 500 buildings a large university owned from 1951 to 1973. Cummins et al.
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(1990) found that the log-normal and gamma distributions did not have sufficient heavy
tails to model the data, so they considered the generalized beta of the second kind (GB2)
distribution.

Figure 3 presents two histograms for the considered datasets. Both histograms reveal a
typical feature of insurance claims data: a large number of small losses and a small number
of very large losses. Table 3 reports parameter estimates, standard error and model fit
criteria for all fitted models. Observing the Table 3, it is evident from the AIC and BIC
values that the CWE model provides better fit than other fitted models. The posterior
probability of each observation belonging to unusual observations is depicted in Figures 4
and 5, those reveal that the unusual data have the highest posterior probability and the
original data have small posterior probability, showing clearly the impact of outliers.
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Figure 3. Data histograms corresponding to DS1 and DS2 datasetes.
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Figure 4. Posterior probability that each observation is unusual, corresponding to DS1 dataset.
(Left) panel is for the first 2060 observations and (right) panel for the 107 last observations.
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Figure 5. Posterior probability that each observation is unusual, corresponding to the DS2 dataset.
Left panel is for the first 74 observations and right panel for the six last observations.

Table 3. Summary results from fitting various models to the data. The bold entries highlight the
smallest AIC and BIC values for each model.

Dataset Model λ̂ θ̂ α̂ ω̂ p `max AIC BIC

DS1

Exp 0.295 – – – 1 −4809.396 9620.792 9626.474
WE 0.350 – 4.420 – 2 −4576.327 9160.655 9183.379
CE 0.401 0.107 – 0.043 3 −4556.646 9119.292 9136.335

CWE 0.818 0.113 0.194 0.064 4 −4119.475 8246.950 8269.675

DS2

Exp 0.590× 10−5 – – – 1 −859.0414 1720.083 1722.465
WE 0.596× 10−4 – 103.667 – 2 −858.548 1725.096 1734.624
CE 0.223× 10−3 0.033 – 0.096 3 −796.815 1599.630 1606.776

CWE 0.258× 10−3 0.035 9.112 0.104 4 −793.087 1594.175 1603.703

7. Bayesian Numerical Results
We used an MCMC procedure based on 10,000 replicates with 1000 samples discarded

as burn-in to compute the Bayesian estimators. The corresponding Bayesian point esti-
mation and posterior risk based on DS1 and DS2 datasets are provided in Table 4. It can
be seen that for the both datasets, the resulting log-likelihood values (`max) are close to
the obtained ones by the EM-algorithm given in Table 3, indicating the efficiency of the
Bayesian approach to estimate the model parameters. It is noteworthy to mention that
the KLF and PLF loss functions yields the highest log-likelihood values for DS1 and DS2
datasets, respectively.

Table 5 provides 95% credible and HPD intervals for the parameters of the CWE
distribution. The posterior samples are extracted using Gibbs sampling technique. More-
over, we provide the posterior summary plots in Figures 6–8. These plots confirm that the
convergence of the Gibbs sampling process occurred.
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Table 4. Bayesian estimates and their posterior risks of the CWE distribution parameters under
different loss functions based on DS1 and DS2 datasets. The bold entries highlight the highest `max

values for each model.

Data DS1

Bayesian Estimation

Loss Function λ̂ (r
λ̂
) θ̂ (rθ̂) α̂ (rα̂) ω̂ (rω̂) `max

SELF 0.74215 (0.00119) 0.10790 (0.00006) 0.48874 (0.02041) 0.06219 (0.00004) −4120.942
WSELF 0.74054 (0.00160) 0.10734 (0.00056) 0.44265 (0.04609) 0.06150 (0.00068) −4120.876
MSELF 0.73894 (0.00216) 0.10677 (0.00527) 0.38906 (0.12106) 0.06081 (0.01121) −4121.926
PLF 0.74296 (0.00161) 0.10818 (0.00056) 0.50920 (0.04090) 0.06253 (0.00067) −4121.245
KLF 0.74135 (0.00217) 0.10762 (0.00525) 0.46513 (0.10154) 0.06184 (0.01109) −4120.797

Data DS2

Bayesian Estimation

Loss Function λ̂ (r
λ̂
) θ̂ (rθ̂) α̂ (rα̂) ω̂ (rω̂) `max

SELF 0.000275 (1.889× 10−9) 0.0366
(3.6× 10−5) 6.90240 (1.0208) 0.1038 (0.0019) −793.234

WSELF 0.000268 (6.411× 10−6) 0.0356 (0.0010) 6.75207 (0.1503) 0.0824 (0.0214) −793.4759
MSELF 0.000262 (0.022395) 0.0345 (0.0309) 6.60050 (0.0224) 0.0605 (0.2651) −794.104
PLF 0.000278 (6.821× 10−6) 0.0371 (0.0009) 6.97590 (0.1471) 0.1128 (0.0179) −793.208
KLF 0.000271 (0.023714) 0.0361 (0.0285) 6.82680 (0.0221) 0.0925 (0.2448) −809.881
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Figure 6. Plots of Bayesian analysis and performance of Gibbs sampling for DS1 dataset. Trace plots
of each CWE distribution parameter.
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Table 5. Credible and HPD intervals of parameters λ, θ, α and ω for DS1 and DS2 datasets.

Data DS1

Credible Interval HPD Interval

λ (0.7184, 0.7645) (0.6740, 0.8108)
θ (0.1025, 0.1132) (0.09299, 0.12300)
α (0.3901, 0.5777) (0.2336, 0.7923)
ω (0.05767, 0.06658) (0.04907, 0.07438)

Data DS2

Credible Interval HPD Interval

λ (0.00024, 0.00030) ( 0.00019, 0.00035)
θ (0.03269, 0.04018) (0.02322, 0.04958)
α (6.16500, 7.68300) (5.04200, 8.76500)
ω (0.07135, 0.12980) (0.03289,0.19750)
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Figure 7. Plots of Bayesian analysis and performance of Gibbs sampling for DS1 dataset. Autocorre-
lation plots of each CWE distribution parameter.

In order to avoid repetition in evaluation of the MCMC procedure in Bayesian analysis,
we just reported the Gelman–Rubin and Geweke–Raftery–Lewis diagnostics measures for
checking the convergence based on data set DS1 in Table 6. For more details on these
indexes see Lee et al. (2014). The Gelman–Rubin diagnostic is equal to 1 for parameters
λ, θ, α and ω. Hence, the chains could be accepted, and this indicates the estimates come
from a state space of the parameter, as depicted in Figure 9.
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Table 6. Diagnostics using the Gelman-Rubin and Geweke-Raftery-Lewis methods for parameters α,
β and λ based on DS1 dataset.

Parameter Gelman-Rubin Geweke (Z0.025 = ±1.96) Raftery-Lewis

λ 1 −0.5880 5.1
θ 1 0.3205 4.8
α 1 0.7607 5.01
ω 1 0.3679 4.632
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Figure 8. Plots of Bayesian analysis and performance of Gibbs sampling for DS1 dataset. Histogram
plots of each CWE distribution parameter.
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Figure 9. Gelman plot diagnostic for each CWE distribution parameter based on DS1 dataset.

58



J. Risk Financial Manag. 2022, 15, 500

From Table 6, Geweke–Raftery–Lewis test statistics for parameters λ, θ, α and ω
are −0.588, 0.320, 0.761 and 0.368, respectively. Therefore, also in this case, the chain is
acceptable, as shown in Figures 10 and 11. Moreover, the reported diagnostics statistics for
parameters α, β and λ based on the Geweke–Raftery–Lewis measure don’t show significant
correlations between estimates. Hence, the estimated values have good mixing.
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Figure 10. Geweke plot diagnostic (chain1) for each CWE distribution parameter based on
DS1 dataset.
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Figure 11. Geweke plot diagnostic (chain2) for each CWE distribution parameter based on
DS1 dataset.

8. Conclusions
This paper extended the WE distribution to a richer family, the CWE distribution, to

deal with data displaying large and positive skewness as well as a wide right tail. This
four-parameter model is a mixture of two WE distributions in which one has an enhanced
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scale and hence a thicker tail to capture extreme losses. EM and Bayesian computational
techniques were used to estimate parameters. The effectiveness and efficiency of the
EM algorithm were evaluated by conducting one simulation study. By analyzing two
real insurance claims datasets, we found that the CWE distribution outperformed the CE
distribution in terms of model fit. The result show that both EM and Bayesian approaches
are appropriate tools to estimate the model parameters. In addition, it is possible to consider
proposed distribution to fit lifetimes, and how the suggested algorithms will be adjusted in
case of truncated or censored data. Another application could be done in actuarial science
context; specifically, how CWE distribution could be employed to calculate the VaR and
TVaR (Bargès et al. 2009).
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Appendix A. R Code to Fit the CWE Distribution Using EM-Algorithm
EM.CWE <- function(y, om, al, la, th, iter.max = 500, tol=10^-6){
f.CWE <- function(y,om,al,la,th)
(1-om)*(al+1)/al*la*exp(-la*y)*(1-exp(-la*al*y))+om*(al+1)/al*th*la
*exp(-th*la*y)*(1-exp(-th*la*al*y))
n <- length(y); LL <- 1 ; dif <- 1 ; count <- 1
while ((dif > tol) & (count <= iter.max)) {
# E steps
gam <- om*(al+1)/al*th*la*exp(-th*la*y)*(1-exp(-th*la*al*y))/
f.CWE(y,om,al,la,th)
ta1 <- (1-gam)*(1/(la*al*y)-1/(exp(la*al*y)-1) )
ta2 <- gam*(1/(th*la*al*y)-1/(exp(th*la*al*y)-1) )
# M steps
om <- sum(gam)/n
al <- n/(la*sum(ta1*y+th*ta2*y))-1
la <- 2*n/sum((1-gam)*y+al*ta1*y+th*gam*y+al*th*ta2*y)
th <- (2*sum(gam))/(la*sum(gam*y+al*ta2*y))
LL.new <- sum(log(f.CWE(y,om,al,la,th)))
count <- count +1
dif <- abs(LL.new/LL-1)
}
print.foo <- function(x) print(x[1:8])
aic <- -2 * LL.new + 2 * 4
bic <- -2 * LL.new + log(n) * 4
Ret <-list(omega=om, alpha=al, lambda=la, theta=th, loglik=LL.new,
AIC=aic, BIC=bic, iter=count, out.prob=gam)
class(Ret) <- "foo"
return(Ret)
}

60



J. Risk Financial Manag. 2022, 15, 500

References
Aitkin, Murray, and Granville Tunnicliffe Wilson. 1980. Mixture models, outliers, and the em algorithm. Technometrics 22: 325–31.

[CrossRef]
Akaike, Hirotogu. 1973. Information theory as an extension of the maximum likelihood principle. In Second International Symposium on

Information Theory. Budapest: BNPBF Csaki Budapest, Academiai Kiado, Hungary.
Bargès, Mathieu, Hélène Cossette, and Etienne Marceau. 2009. TVaR-based capital allocation with copulas. Insurance: Mathematics and

Economics 45: 348–61. [CrossRef]
Bernardi, Mauro, Antonello Maruotti, and Lea Petrella. 2012. Skew mixture models for loss distributions: A bayesian approach.

Insurance: Mathematics and Economics 51: 617–23. [CrossRef]
Cavieres, Joaquin, German Ibacache-Pulgar, and Javier E. Contreras-Reyes. 2022. Thin plate spline model under skew-normal random

errors: Estimation and diagnostic analysis for spatial data. Journal of Statistical Computation and Simulation, in press. [CrossRef]
Chen, Ming-Hui, Joseph G. Ibrahim, and Debajyoti Sinha. 1999. A new bayesian model for survival data with a surviving fraction.

Journal of the American Statistical Association 94: 909–19. [CrossRef]
Chung, Younshik, and Chansoo Kim. 2004. Measuring robustness for weighted distributions: Bayesian perspective. Statistical Papers

45: 15–31. [CrossRef]
Congdon, Peter. 2001. Bayesian Statistical Modelling. New York: John Wiley & Sons.
Contreras-Reyes, Javier E., Freddy O. López Quintero, and Rodrigo Wiff. 2018. Bayesian modeling of individual growth variability

using back-calculation: Application to pink cusk-eel (Genypterus blacodes) off Chile. Ecological Modelling 385: 145–53. [CrossRef]
Cummins, J. David, Georges Dionne, James B. McDonald, and B. Michael Pritchett. 1990. Applications of the GB2 family of distributions

in modeling insurance loss processes. Insurance: Mathematics and Economics 9: 257–72. [CrossRef]
Cummins, J. David, and Leonard R. Freifelder. 1978. A comparative analysis of alternative maximum probable yearly aggregate loss

estimators. Journal of Risk and Insurance 45: 27–52. [CrossRef]
Dempster, Arthur P., Nan M. Laird, and Donald B. Rubin. 1977. Maximum likelihood from incomplete data via the EM algorithm.

Journal of the Royal Statistical Society: Series B (Methodological) 39: 1–22.
Eling, Martin. 2012. Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models? Insurance:

Mathematics and Economics 51: 239–48. [CrossRef]
Geman, Stuart, and Donald Geman. 1984. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE

Transactions on Pattern Analysis and Machine Intelligence 6: 721–41. [CrossRef] [PubMed]
Gupta, Ramesh C., and S. N. U. A. Kirmani. 1990. The role of weighted distributions in stochastic modeling. Communications in

Statistics-Theory and Methods 19: 3147–62. [CrossRef]
Gupta, Rameshwar D., and Debasis Kundu. 2009. A new class of weighted exponential distributions. Statistics 43: 621–34. [CrossRef]
Hastings, W. Keith. 1970. Monte carlo sampling methods using markov chains and their applications. Biometrika 57: 97–109. [CrossRef]
Hennig, Christian, and Tim F. Liao. 2013. How to find an appropriate clustering for mixed-type variables with application to

socioeconomic stratification. Journal of the Royal Statistical Society: Series C (Applied Statistics) 62: 309–69.
Kharazmi, Omid, Ali Saadati Nik, Behrang Chaboki, and Gauss M. Cordeiro. 2021. A novel method to generating two-sided class of

probability distributions. Applied Mathematical Modelling 95: 106–24. [CrossRef]
Kharazmi, Omid, G. G. Hamedani, and Gauss M. Cordeiro. 2022. Log-mean distribution: Applications to medical data, survival

regression, bayesian and non-bayesian discussion with MCMC algorithm. Journal of Applied Statistics 1–26. in press. [CrossRef]
Larose, Daniel T., and Dipak K. Dey. 1996. Weighted distributions viewed in the context of model selection: a bayesian perspective.

Test 5: 227–46. [CrossRef]
Lee, Cheol-Eung, Sang Ug Kim, and Sangho Lee. 2014. Time-dependent reliability analysis using bayesian MCMC on the reduction of

reservoir storage by sedimentation. Stochastic Environmental Research and Risk Assessment 28: 639–54. [CrossRef]
Liu, Chuanhai, and Donald B. Rubin. 1994. The ECME algorithm: A simple extension of EM and ECM with faster monotone

convergence. Biometrika 81: 633–48. [CrossRef]
Mahdavi, Abbas, Vahid Amirzadeh, Ahad Jamalizadeh, and Tsung-I. Lin. 2021a. Maximum likelihood estimation for scale-shape

mixtures of flexible generalized skew normal distributions via selection representation. Computational Statistics 36: 2201–30.
[CrossRef]

Mahdavi, Abbas, Vahid Amirzadeh, Ahad Jamalizadeh, and Tsung-I. Lin. 2021b. A multivariate flexible skew-symmetric-normal
distribution: Scale-shape mixtures and parameter estimation via selection representation. Symmetry 13: 1343. [CrossRef]

Maruotti, Antonello, Valentina Raponi, and Francesco Lagona. 2016. Handling endogeneity and nonnegativity in correlated random
effects models: Evidence from ambulatory expenditure. Biometrical Journal 58: 280–302. [CrossRef] [PubMed]

McLachlan, Geoffrey J., and Thriyambakam Krishnan. 2007. The EM Algorithm and Extensions. New York: John Wiley & Sons, vol. 382.
McNeil, Alexander J. 1997. Estimating the tails of loss severity distributions using extreme value theory. ASTIN Bulletin: The Journal of

the IAA 27: 117–37. [CrossRef]
Meng, Xiao-Li, and Donald B. Rubin. 1993. Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika

80: 267–78. [CrossRef]
Metropolis, Nicholas, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller. 1953. Equation of state

calculations by fast computing machines. The Journal of Chemical Physics 21: 1087–92. [CrossRef]
Navarro, Jorge, Jose M. Ruiz, and Yolanda Del Aguila. 2006. Multivariate weighted distributions: A review and some extensions.

Statistics 40: 51–64. [CrossRef]
Okhli, Kheirolah, and Mehdi Jabbari Nooghabi. 2021. On the contaminated exponential distribution: A theoretical bayesian approach

for modeling positive-valued insurance claim data with outliers. Applied Mathematics and Computation 392: 125712. [CrossRef]

61



J. Risk Financial Manag. 2022, 15, 500

Patil, Ganapati P, and C. R. Rao. 1977. The Weighted Distributions: A Survey and Their Applications. Applications of Statistics. Amsterdam:
North Holland, vol. 383, p. 405.

Patil, Ganapati P. 1991. Encountered data, statistical ecology, environmental statistics, and weighted distribution methods. Environ-
metrics 2: 377–423. [CrossRef]

Punzo, Antonio, Angelo Mazza, and Antonello Maruotti. 2018. Fitting insurance and economic data with outliers: A flexible approach
based on finite mixtures of contaminated gamma distributions. Journal of Applied Statistics 45: 2563–84. [CrossRef]

Lopez Quintero, Freddy Omar, Javier E. Contreras-Reyes, Rodrigo Wiff, and Reinaldo B. Arellano-Valle. 2017. Flexible bayesian
analysis of the von Bertalanffy growth function with the use of a log-skew-t distribution. Fishery Bulletin 115: 13–26. [CrossRef]

Redner, Richard A., and Homer F. Walker. 1984. Mixture densities, maximum likelihood and the EM algorithm. SIAM Review
26: 195–239. [CrossRef]

Schwarz, Gideon. 1978. Estimating the dimension of a model. The Annals of Statistics 6: 461–64. [CrossRef]

62



Citation: SenGupta, Ashis, and

Moumita Roy. 2023.

Circular-Statistics-Based Estimators

and Tests for the Index Parameter α

of Distributions for High-Volatility

Financial Markets. Journal of Risk and

Financial Management 16: 405.

https://doi.org/10.3390/

jrfm16090405

Academic Editors: Shigeyuki Hamori

and Robert Brooks

Received: 12 May 2023

Revised: 1 August 2023

Accepted: 7 August 2023

Published: 11 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Risk and Financial
Management

Article

Circular-Statistics-Based Estimators and Tests for the Index
Parameter α of Distributions for High-Volatility
Financial Markets
Ashis SenGupta 1,2,3,* and Moumita Roy 4,*

1 Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, India
2 Department of Population Health Sciences, MCG, Augusta University, Augusta, GA 30912-4900, USA
3 Department of Statistics, Middle East Technical University, Ankara 06800, Turkey
4 Department of Statistics, Midnapore College (Autonomous), Midnapore 721101, India
* Correspondence: amsseng@gmail.com (A.S.); mouroy.roy@gmail.com (M.R.)

Abstract: The distributions for highly volatile financial time-series data are playing an increasingly
important role in current financial scenarios and signal analyses. An important characteristic of
such a probability distribution is its tail behaviour, determined through its tail thickness. This can
be achieved by estimating the index parameter of the corresponding distribution. The normal and
Cauchy distributions, and, sometimes, a mixture of the normal and Cauchy distributions, are suitable
for modelling such financial data. The family of stable distributions can provide better modelling for
such financial data sets. Financial data in high-volatility markets may be better modelled, in many
cases, by the Linnik distribution in comparison to the stable distribution. This highly flexible family
of distributions is better capable of modelling the inflection points and tail behaviour compared to the
other existing models. The estimation of the tail thickness of heavy-tailed financial data is important
in the context of modelling. However, the new probability distributions do not admit any closed
analytical form of representation. Thus, novel methods need to be developed, as only a few can be
found in the literature. Here, we recall a recent novel method, developed by the authors, based on a
trigonometric moment estimator using circular distributions. The linear data may be transformed
to yield circular data. This transformation is solely for yielding a suitable estimator. Our aim in
this paper is to provide a review of the few existing methods, discuss some of their drawbacks, and
also provide a universal (∀α ∈ (0, 2]), efficient, and easily implementable estimator of α based on
the transformation mentioned above. Novel, circular-statistics-based tests for the index parameter
α of the stable and Linnik distributions are introduced and also exemplified with real-life financial
data. Two real-life data sets are analysed to exemplify the methods recommended and enhanced by
the authors.

Keywords: characteristic function-based estimator; estimation; fractional moment estimator; Hill esti-
mator; index parameter; trigonometric method of moment estimator; wrapped Linnik; wrapped stable

1. Introduction

In the modern era, there is an increasing need for modelling financial markets (and
engineering sciences, e.g., signal detection) with high volatility. An important characteristic
of such a probability distribution is its tail behaviour, determined through its tail thickness.
There is a need for modelling such financial data. High variability has also been a common
characteristic of modern circular data.

Corresponding circular distributions are characterised by heavy or long tails. The
normal and Cauchy distributions, and, sometimes, a mixture of the normal and Cauchy
distributions, are suitable for modelling such financial data. The family of stable distribu-
tions can provide better modelling for such financial data sets. Highly volatile financial
time-series data may be better modelled, in many cases, by the Linnik distribution in
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comparison to the stable distribution, e.g., see Anderson and Arnold (1993). This highly
flexible family of distributions is better capable of modelling the inflection points and tail
behaviour compared to the existing popular flexible symmetric unimodal models.

There have been a lot of studies establishing the use of the Linnik family of distri-
butions as a highly flexible, important, and useful family for modelling financial data.
However, its implementation for real-life data seems to have been somewhat restricted,
possibly because of the lack of a simple and efficient estimator of the parameter, particularly
that of the index parameter α. The estimation of the tail thickness of heavy-tailed financial
data using the index parameter α is important in the context of modelling.

Our aim in this paper is to provide a universal (for all α ∈ (0, 2]), efficient, and
easily implementable estimator of α after presenting a review of the few existing methods.
The issue behind the derivation is to study the advantages and also to point out the
shortcomings of some of the estimators and hence to obtain better estimators that eliminate
the effects of the shortcomings of the former ones.

We have observed that the circular-statistics-based estimators can be quite useful in this
context, which is enhanced in this paper. Circular statistics are obtained for circular data. In
many emerging real-life situations, we not only make observations on linear variables but
also on circular ones, that is, on angular propagations, orientations, directional movements,
and strictly periodic occurrences. Such data are referred to as directional data, which, in
two dimensions, are known as circular data. Linear data may be transformed into circular
data using the method of wrapping.

Here, we recall two highly flexible families of circular distributions, e.g., the wrapped
stable family, in Section 2, and the wrapped Linnik family in Section 3, and the novel,
universal, efficient, and easily implementable estimators of α derived from these are pre-
sented in Section 7. In Section 4, descriptions of the classical Hill estimator by Hill (1975),
and its generalisation by Brilhante et al. (2013), are presented. In Section 5, the fractional
moment estimator for the symmetric Linnik distribution proposed by Kozubowski (2001)
is reviewed. The fractional moment estimator of the characteristic exponent used to mea-
sure the tail thickness for skewed stable distributions, proposed by Kuruoglu (2001), is
particularised to obtain the same for the symmetric stable distribution in Section 5. In
Section 6, the characteristic function-based estimator proposed by Anderson and Arnold
(1993) is presented. In Section 7, the trigonometric method of moment estimators proposed
by SenGupta (1996) and SenGupta and Roy (2023) is presented, which is further modified
to obtain an improved estimator (as in SenGupta and Roy 2019, 2023) in Section 8. The
trigonometric method of moment estimation is exploited here for symmetric circular distri-
butions only. It can be used for asymmetric distributions as well. But the computations
involved are complicated and time consuming and hence are not considered here. In
Section 9, the performance of the estimators is discussed through extensive simulations,
focusing on their estimated mean bias and estimated root-mean-square errors, as presented
in Tables 1 and 2. In Section 10, the computed values of the estimators are obtained for two
real-life financial data sets, which are presented in Table 3. In Section 11, novel tests for the
index parameter α of the stable and Linnik distributions are introduced and also illustrated
with real-life financial data. Some discussions and conclusions on the different estimators
are provided in Section 12. In the Acknowledgement section, the authors express their
acknowledgements.

2. The Symmetric Stable and Wrapped Stable Family of Distributions

The regular symmetric stable distribution is defined through its characteristic function
given by

ψS(t) = exp(itµ− |σt|α), (1)

where µ is the location parameter, σ is the scale parameter, and α is the index or shape
parameter of the distribution.

Using Proposition 2.1 on page 31 of Jammalamadaka and SenGupta (2001), the follow-
ing theorem is obtained (see SenGupta and Roy 2023).
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Theorem 1. (a) The trigonometric moment of order p for a wrapped stable distribution corresponds
to the value of the characteristic function of the linear stable random variable at the integer value
p = 1, 2, . . . (b) The characteristic function of the wrapped stable random variable θ at the integer
p is

ψWS(p) = E[exp(ip(θ − µ))] = exp(ipµ− ρpα
), (2)

where ρ = exp(−σα), µ is the location parameter, σ is the scale parameter, α is the index parameter
and i =

√
(−1).

From the stable distribution, we can obtain the wrapped stable distribution (the
process of wrapping is explained by Jammalamadaka and SenGupta (2001)). Suppose that
θ1, θ2, . . . , θm are a random sample of size m drawn from the wrapped stable distribution
(provided by Jammalamadaka and SenGupta (2001)), whose probability density function is
given by

f (θ, ρ, α, µ) =
1

2π
[1 + 2

∞

∑
p=1

ρpα
cos p(θ − µ)] 0 < ρ ≤ 1, 0 < α ≤ 2, 0 < µ ≤ 2π. (3)

where p = 1, 2, . . . and the parameters explained as above.

3. The Symmetric Linnik and the Wrapped Linnik Family of Distributions

It was established by Pakes (1998) that the characteristic function of a symmetric (α)
Linnik (linear) distribution is given by

ψL(t) = exp(itµ)(1 + |tσ|α)−1. (4)

The density function cannot be written in an analytical form except for α = 2. The
wrapping of this distribution yields the wrapped symmetric α Linnik family of distributions.
However, this circular family differs from that of the symmetric wrapped stable family
and none of these families is a sub-family of the other. In particular, taking α = 2, for the
wrapped symmetric stable family one gets the wrapped Cauchy, while for the wrapped
symmetric Linnik family it gives the wrapped Laplace (double exponential) distribution.

Using Proposition 2.1 on page 31 of Jammalamadaka and SenGupta (2001), the follow-
ing theorem is obtained (see SenGupta and Roy 2023).

Theorem 2. (a) The trigonometric moment of order p for a wrapped Linnik distribution corresponds
to the value of the characteristic function of the linear Linnik random variable at the integer value p.
(b) The characteristic function of the wrapped Linnik random variable θ at the integer p is

ψWL(p) = E[exp(ip(θ − µ))] = exp(ipµ)(1 + (pσ)α)−1.

The probability density function of wrapped Linnik distribution is defined as

f (θ) =
1

2π
[1 + 2

∞

∑
p=1

((1 + (σp)α)−1) cos p(θ − µ)], (5)

where the parameter space is given by

Ω = Ω1 ∪Ω2,

Ω1 = {(α, σ, µ0) : 1 ≤ α ≤ 2, σ ≥ 1, 0 ≤ µ0 < 2π} and

Ω2 = {(α, σ, µ0) : 1 < α ≤ 2, σ < 1, 0 ≤ µ0 < 2π}.

We observe that these wrapped distributions preserve the parameter α for the corre-
sponding linear distributions.
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Without a loss of generality, we take µ = 0 and σ = 1 in the following. The index
parameter of the circular family of distributions plays an important role in determining the
thickness and hence the tail behaviour of the distribution. There are, in fact, four possible
names for the parameter α. Some interpret it as the tail thickness parameter or the index
parameter used to measure tail thickness mainly for heavy tailed distributions. Others
interpret it as the characteristic exponent when it is present in an exponential form in a
characteristic function. Sometimes, α is also defined as the shape parameter along with
its three other companions viz. location parameter µ, scale parameter σ, and skewness
parameter β. For this paper, we assume the symmetric case that is β = 0. Several estimators
of this parameter have been developed over time.

4. Hill Estimator and Its Generalisation

The classical Hill estimator (see Hill 1975; Dufour and Kurz-Kim 2010), is a simple
non-parametric estimator based on order statistics. Given a sample of n observations
X1, X2, . . . Xn the Hill estimator is defined as

α̂H =
[
(

1
k

k

∑
j=1

ln Xn+1−j:n)− ln Xn−k:n

]−1

with standard error

SD(α̂H) =
kα̂H

(k− 1)
√

k− 2
,

where k is the number of observations which lie on the tails of the distribution of interest
and is to be optimally chosen depending on the sample size, n, and tail thickness α, as
k = k(n, α) and Xj:n denotes the j-order statistic of the sample of size n.

The asymptotic normality of the classical Hill estimator is provided by Goldie and
Smith (1987) as √

k( ˆα−1
H − α−1)

L−→ N(0, α−2)

which leads to the following lemma

Lemma 1.
ˆαH − α

L−→ N
(

0,
1

α2k

)
.

This estimator uses the linear function of the order statistics and can be used to estimate
α ∈ [1, 2] only. Further, it is also “extremely sensitive” to the choice of the optimal number
of tail observations k, which itself is a function of the unknown index parameter α being
estimated.

The Hill estimator is scale invariant since it is defined in terms of the log of ratios but
not location invariant. Therefore, centering needs to be performed in order to address the
location invariance.

The classical Hill estimator is actually the logarithm of the geometric mean or the loga-
rithm of the mean of order p = 0 of a set of statistics. This estimator has been generalized
to a more general mean of order p ≥ 0 of the same set of statistics by Brilhante et al. (2013)
as follows:

α̂Hp =





(
1−A−p

p (k)
)

p , if p > 0

loge A0(k) ≡ α̂H , if p = 0,
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where the class of statistics Ap(k) is taken as the mean of order p of the statistics Uik
given by

Uik =
Xn+1−i:n
Xn−k:n

=
U(Yn+1−i:n)

U(Yn−k:n)
,

where U(.) is the generalized inverse function of the cumulative distribution function
F of X and using the distributional identity X = U(Y) with Y as a unit Pareto random
variable and

Ap(k) =





(
∑k

i=1 Up
ik

k

)1/p
, if p > 0

(
∏k

i=1 Uik

)1/k
, if p = 0 (6)

Under the first order condition that the generalized inverse function U(.) is of regular
variation with index α, the consistency of the generalized class of Hill estimators α̂Hp

is established, provided p < 1
α . In addition, under the assumption of the second order

condition, the asymptotic normality of α̂Hp can also be obtained (see Brilhante et al. 2013)
as

α̂Hp ≡d α +
σp(α)Zp(k)√

(k)
+ bp(α|ρ)A(n/k) + op

(
A(n/k)

)
,

holds for all p < 1
2α and Zp(k) is asymptotically standard normal and

σp(α) =
α(1− pα)√
(1− 2pα)

and bp(α|ρ) =
1− pα

1− pα− ρ
,

with ρ being the second-order parameter, controlling the rate of convergence for the first
order condition.

5. Fractional Moment Estimator

Another alternative estimator of the index parameter α is given by Kozubowski (2001)
as the usual method of moment estimator with fractional order. If x1, x2, . . . , xn are realiza-
tions from the symmetric Linnik distribution with index parameter α and scale parameter
σ, then the pth absolute moment is

e(p) = E|Y|p =
p(1− p)σpπ

αΓ(2− p) sin(πp/α) cos(πp/2)
,

where 0 < α ≤ 2 and 0 < p < α. As suggested in Kozubowski (2001), using suitable choices
of p as 1/2 and 1 and solving the respective equations, the fractional moment estimator
of the the index parameter α can be obtained. This estimator is valid only for α > 1. To
overcome this restriction, a universal and efficient estimator for both stable and Linnik
distributions will appear in our next works.

If x1, x2, . . . , xn are realizations from the symmetric stable distribution with index
parameter α, scale parameter σ, and location parameter 0, then the pth absolute moment
given by Kuruoglu (2001) is

E|Y|p =
Γ(
(

1− p
α

)
)

Γ(1− p)
|σ| p

α

cos
(

pπ
2

) ,
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where−1 < p < α, p 6= 1 and α 6= 1. Using the method of moments with the corresponding
sample moment,

Ap =
1
n

n

∑
i=1
|Xi|p

and applying the following property of gamma function,

Γ(p)
Γ(1− p)

=
π

sin(pπ)
, p 6= 1

the fractional moment estimator of the index parameter α can be obtained.

6. Characteristic Function-Based Estimator

The characteristic function-based estimator of the index parameter of symmetric
stable distribution (see Anderson and Arnold 1993) is obtained by the minimization of
the objective function (where location parameter µ = 0 and scale parameter σ unknown)
given by,

Î′s(α) =
n

∑
i=1

wi(η̂(zi)− exp(−|σzi|α))2, (6)

where

η̂(t) =
1
n

n

∑
j=1

cos(txj), t ∈ R

and x1, x2, . . . , xn are realizations from the symmetric stable(α) distribution with the the-
oretical characteristic function exp(−|σzi|α), zi is the ith zero of the mth degree Hermite
polynomial Hm(z) and

wi =
2m−1m!

√
m

(mHm−1(z))2 .

Similarly, the characteristic function-based estimator for that of the symmetric Linnik
distribution is obtained by the minimization of the objective function given by

Il(α, σ) =
n

∑
i=1

wi(η̂(zi)− (1 + |σzi|α)−1)2 (7)

subject to the constraints, 1 < α ≤ 2 and σ > 0, where x1, x2, . . . , xn are realizations from the
symmetric Linnik(α) distribution with the theoretical characteristic function (1 + |σzi|α)−1.

This estimator is consistent, as seen by Anderson and Arnold (1993). However, it can-
not be obtained explicitly and needs to be obtained by solving the estimating equations in
iterative methods such as the L-BFGS-B method used in R software (see Byrd et al. (1995)).

7. The Trigonometric Moment Estimator

It is known, in general, by Jammalamadaka and SenGupta (2001) that the characteristic
function of θ at the integer p is defined as,

ψθ(p) = E[exp(ip(θ − µ))] = αp + iβp

where αp = E cos p(θ − µ) and βp = E sin p(θ − µ).

Further by, Jammalamadaka and SenGupta (2001) we know that, for the p.d.f given by (3),

ψθ(p) = ρpα
.

Hence, E cos p(θ − µ) = ρpα
and E sin p(θ − µ) = 0
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Suppose θ1, θ2, . . . , θm are a random sample of size m drawn from the wrapped stable
density given by (3). We define

C̄1 =
1
m

m

∑
i=1

cos θi, C̄2 =
1
m

m

∑
i=1

cos 2θi, S̄1 =
1
m

m

∑
i=1

sin θi

and S̄2 =
1
m

m

∑
i=1

sin 2θi.

Then, we note that R̄1 =

√
C̄1

2
+ S̄1

2 and R̄2 =

√
C̄2

2
+ S̄2

2.

Using the method of trigonometric moments estimation, and equating R̄1 and R̄2 to
the corresponding functions of the theoretical trigonometric moments, we get the estimator
of the index parameter α of wrapped stable distribution (see SenGupta 1996):

ˆαWS =
1

ln 2
ln

ln R̄2

ln R̄1
.

Now, suppose θ1, θ2, . . . , θm are a random sample of size m drawn from the wrapped
Linnik density given by (5). Using the method of trigonometric moments estimation, and
equating the empirical trigonometric moments R̄1 and R̄2 to the corresponding theoretical
moments, we get the estimator of index parameter α of wrapped Linnik distribution (as
obtained for the wrapped stable distribution by SenGupta 1996),

ˆαWL =
ln[((1/R̄1 − 1)/(1/R̄2 − 1))]

ln(1/2)
,

where R̄j = 1
m ∑m

i=1 cos j(θi − θ̄), j = 1, 2 and θ̄ is the mean direction given by θ̄ =

arctan
(

S̄1
C̄1

)
. Note that R̄1 ≡ R̄.

The asymptotic normality of the estimators ˆαWS and ˆαWL have been established in the
following Theorems 3 and 4 respectively (see SenGupta and Roy 2019, 2023).

Theorem 3. √
m( ˆαWS − α)

L−→ N(0, γ′Σγ),

where
γ =

1
ln 2

(− cos µ0

ρ ln ρ
,

cos 2µ0

ρ2α ln ρ2α ,
− sin µ0

ρ ln ρ
,

sin 2µ0

ρ2α ln ρ2α

)′

and

γ′Σγ =
1

(ln 2)2

[
1 + ρ2α − 2ρ2

2(ρ ln ρ)2 +
1 + ρ4α − 2(ρ2α

)2

2(ρ2α ln ρ2α)2 +
2ρ2α+1 − ρ− ρ3α

ρ ln ρρ2α ln ρ2α

]
.

Theorem 4.
√

m( ˆαWL − α)
L→ N(0, γ′Σγ), where

γ = 1
ln(1/2)




− cos µ0(1+(σ)α)2

(σ)α

cos 2µ0(1+(2σ)α)2

(2σ)α

− sin µ0(1+(σ)α)2

(σ)α

sin 2µ0(1+(2σ)α)2

(2σ)α




and
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γ′Σγ =
1

(ln(1/2))2

[
− cos2 2µ0(1 + σα)(1 + (2σ)α)2

2ασ2α
+

cos2 2µ0(1 + σα)(1 + (2σ)α)

2ασ2α

+
(1 + (2σ)α)4

(2σ)2α
− (1 + (2σ)α)2

(2σ)2α
− sin2 2µ0(1 + σα)(1 + (2σ)α)2

2ασ2α

+
cos 3µ0 sin µ0 sin 2µ0(1 + σα)2(1 + (2σ)α)2

2ασ2α(1 + (3σ)α)
− (1 + (σ)α)2

(σ)2α
+

(1 + σα)(1 + (2σ)α)

2ασ2α

+
sin2 µ0(1 + σα)(1 + (2σ)α)

2ασ2α
− cos µ0 cos 2µ0 cos 3µ0(1 + σα)2(1 + (2σ)α)2

2ασ2α(1 + (3σ)α)

− 3 cos µ0 sin 2µ0 sin 3µ0(1 + σα)2(1 + (2σ)α)2

2α+1σ2α(1 + (3σ)α)
+

cos 2µ0(1 + σα)4

2σ2α
+

sin2 2µ0(1 + σα)4

2σ2α(1 + (2σ)α)

+
cos 2µ0(1 + σα)4

2σ2α(1 + (2σ)α)
− sin µ0 sin 3µ0 cos 2µ0(1 + σα)2(1 + (2σ)α)2

2ασ2α(1 + (3σ)α)

]
.

Where m denotes the sample size and Σ denotes the dispersion matrix of
(

C̄1, S̄1, C̄2, S̄2

)

in both the above theorems.
Unlike for the previous estimators where at the most simulation results were given for

the properties of the estimators, the asymptotic distributions obtained in the Theorems 3
and 4 establish rigorously the theoretical and the analytical properties of the trigonometric
moment estimators. The estimators can be shown to be consistent and asymptotically
normal(CAN) through the use of the theorems. Additionally, the usefulness of the theorems
is to provide a methodology to rigorously test for the index parameter α which is illustrated
in Section 11.

8. The Truncated Trigonometric Moment Estimator

The moment estimators ˆαWS and ˆαWL need not always remain in the support of the
true parameter α (that is (0,2]). Hence, the moment estimators proposed above need not be
proper estimators of α. Hence, the modified estimators for wrapped stable and wrapped
Linnik distribution free from this defect are, respectively, given by

ˆαttm
WS =

{
ˆαWS if 0 < ˆαWS < 2

2 if ˆαWS ≥ 2

and

ˆαttm
WL =





1 if ˆαWL ≤ 1
α̂ if 1 < ˆαWL < 2
2 if ˆαWL ≥ 2

(since the support of α excludes non-positive values).
The asymptotic normality of the modified truncated estimators ˆαttm

WS and ˆαttm
WL are

established, respectively, in the following theorems (see SenGupta and Roy 2019, 2023).
We have

Theorem 5.
( ˆαttm

WS − α)
L−→ N(0, V( ˆαttm

WS))

where V( ˆαttm
WS) = E( ˆαttm

WS
2
)− α2

where E( ˆαttm
WS

2
) = σ2

[
{a∗φ(a∗) − b∗φ(b∗) + Φ(b∗) − Φ(a∗)}

]
+ α2{Φ(b∗) − Φ(a∗)}+

2ασ{φ(a∗)− φ(b∗)}
where a∗= −α√

γ′Σγ
m

and b∗= 2−α√
γ′Σγ

m
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Theorem 6.
( ˆαttm

WL − α)
L−→ N(0, V( ˆαttm

WL))

where V( ˆαttm
WL) = E( ˆαttm

WL
2
)− α2

where E( ˆαttm
WL

2
) = Φ(a∗)+σ2

[
{a∗φ(a∗)− b∗φ(b∗)+Φ(b∗)−Φ(a∗)}

]
+ α2{Φ(b∗)−Φ(a∗)}

+2ασ{φ(a∗)− φ(b∗)}+ 4.[1−Φ(b∗)]
where a∗= 1−α√

γ′Σγ
m

and b∗= 2−α√
γ′Σγ

m

σ =

√
γ′Σγ

m

In both the above theorems, φ(.) and Φ(.) denote the p.d.f and c.d.f of a standard
normal variable respectively.

9. Efficiency of the Estimators

It is naturally of interest to see how close these estimators are. Here, we briefly discuss
this aspect with an empirical sample. The raw financial data can be transformed into
circular data by using the method of wrapping (see, e.g., page 31 of Jammalamadaka and
SenGupta (2001)). That is, for positive (linear) values, after dividing by 2π, we take the
remainder, while for negative (linear) values, we add 2π to the remainder to produce the
corresponding circular values in (0,2π]. The fractional moment estimator, as suggested
by Kozubowski (2001), for the Linnik distribution is valid when α > 1 and that, for
wrapped stable distribution, as suggested by Kuruoglu (2001), needs iterative techniques.
The properties of this estimator also need to be studied. The efficiency of the estimators
obtained using the four methods has been carried out, as suggested by the referees, by
including the estimated bias (through the mean bias) and the standard errors (through the
root mean square errors) of the estimators in Tables 1a,b and 2a,b. A comparison of the
performance of the truncated trigonometric moment estimator ˆαttm

WS is made with that of

the characteristic function-based estimator
ˆ

α
c f
WS of α of wrapped stable distribution based

on their mean bias and root mean square errors (RMSEs) for moderate sample sizes in

Table 1a,b. In Table 1a,b, a simulation is performed for the values of ˆαttm
WS and

ˆ
α

c f
WS, each with

sample size n = 30, 50, 80 and 100 when the skewness parameter β = 0. For each sample
size n, 1000 replications are made. A similar simulation is performed in Table 2a,b for a
comparison of the performance of the estimators of α of the wrapped Linnik distribution. It
can be observed from Tables 1a,b and 2a,b that the mean bias and the root mean square error
of the truncated trigonometric moment estimator of α is less than that of the characteristic
function-based estimator for most sample sizes, indicating the efficiency of the former over
the latter.

Table 1. (a) Data 1: Estimated bias (mean bias) and estimated standard error (RMSE) of the estimator
of α of wrapped stable distribution. (b) Data 2: Estimated bias (mean bias) and estimated standard
error (RMSE) of the estimator of α of wrapped stable distribution.

(a) Data 1

Sample Size Mean Bias ( ˆαttm
WS) Mean Bias (

ˆ
α

c f
WS) RMSE ( ˆαttm

WS) RMSE (
ˆ

α
c f
WS)

30 0.175 0.383 0.498 0.6697
50 0.1215 0.429 0.4286 0.667
80 0.014 0.457 0.363 0.656
100 0.029 0.478 0.3475 0.650
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Table 1. Cont.

(b) Data 2

Sample Size Mean Bias ( ˆαttm
WS) Mean Bias (

ˆ
α

c f
WS) RMSE ( ˆαttm

WS) RMSE (
ˆ

α
c f
WS)

30 0.009 1.087 0.267 1.341
50 0.179 1.138 0.438 1.353
80 0.128 1.225 0.552 1.384
100 0.042 1.236 0.141 1.389

Table 2. (a) Data 1: Estimated bias (mean bias) and estimated standard error (RMSE) of the estimator
of α of wrapped Linnik distribution; (b) Data 2: Estimated bias (mean bias) and estimated standard
error (RMSE) of the estimator of α of wrapped Linnik distribution.

(a) Data 1

Sample Size Mean Bias ( ˆαttm
WL) Mean Bias (

ˆ
α

c f
WL) RMSE ( ˆαttm

WL) RMSE (
ˆ

α
c f
WL)

30 0.491 0.287 0.812 0.583
50 0.058 0.215 0.058 0.482
80 0.190 0.201 0.396 0.451
100 0.191 0.188 0.392 0.425

(b) Data 1

Sample Size Mean Bias ( ˆαttm
WL) Mean Bias (

ˆ
α

c f
WL) RMSE ( ˆαttm

WL) RMSE (
ˆ

α
c f
WL)

30 0.085 0.478 0.641 0.682
50 0.034 0.483 0.565 0.664
80 0.017 0.519 0.478 0.664
100 0.013 0.552 0.428 0.666

10. Examples

In this section, we consider the wrapped stable and the wrapped Linnik densities as
possible underlying models of the financial data, on the Box–Jenkins common stock closing
price data of IBM taken from Box et al. (1976), with the characteristic function estimate
and the truncated trigonometric moment estimate, respectively. Further financial data
considered in this section, as an example, are the gold price data which were collected
per ounce in US dollars over the years 1980–2008. Gold is an important asset to mankind
and is hence important in financial market. Aggarwal and Lucey (2007) have suggested
some statistical procedures which provide the existence of psychological barriers in daily
gold prices and also in change of gold prices from day to day. The prices, being in
round numbers, present an obstacle with important effects on the conditional mean and
variance of the gold price series around psychological barriers. Mills (2004) studied the
properties of the daily gold price from 1971 to 2002 and found them to be characterised
by the presence of autocorrelation, volatility and 15-day scaling. The distribution of daily
returns of gold is highly leptokurtic and multi-period returns attain normality only after
235 days. Byström (2020) studied the link between happiness and gold price changes. He
observed that there is no significant correlation between happiness and gold price changes.
However, assuming the tails of the happiness distribution to be non-normal, the gold price
change seems to increase particularly on a person’s extremely unhappy days. However,
the log returns (as in the analysis of stock data by Anderson and Arnold (1993)) data of the
Indian gold market that we present here exhibit mild asymmetry, pronounced platykurtic
and quite small first-order autocorrelation properties, which motivated us to study the
symmetric Linnik distribution as an initial approximation of its distribution. The analysis of
stock price data is generally carried out on a difference of order 1 in relation to the original
series. So, denoting the original stock price data by xt, they undergo transformation as
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zt = 100(ln(xt)− ln(xt−1)) which is then wrapped by the process as mentioned above.
This transformation of log returns aims to achieve symmetry and reduce autocorrelation in
the transformed series (for details, refer to SenGupta and Roy 2019, 2023). The Box–Jenkins
data are denoted as data set 1, and the gold price data as data set 2, in the given tables. The
computed estimates of α are shown in Table 3. Note that the values of the estimators α̂ by
these two methods are quite different for each of the probability models. The values of the
estimators are not comparable between the two families of distributions. However, within
each family they determine a specific distribution. For example, an estimate of α close
to 1 indicates a Cauchy (wrapped Cauchy) distribution in the family of stable (wrapped
stable) distributions, while an estimate of α close to 2 indicates a Laplace (wrapped Laplace)
in the family of Linnik (wrapped Linnik) distributions. With real life data sets, the use of
these estimators can lead to quite different, possibly even contradictory, conclusions.

It can be observed from Figures 1 and 2 that the distribution of the log returns of the
Box–Jenkins data is, while that of the gold price data is approximately symmetric with a
certain amount of left skewness, whereas the gold price data are highly skewed in nature
and the Box–Jenkins price data are bimodal. Still, we have used both the gold price and
Box–Jenkins log return data sets as illustrations for our proposed estimators, as well as
to explore their properties. We also note that both the methods of estimation based on
trigonometric moments and characteristic function are not applicable to the two price data
sets, since the underlying assumptions of the model are violated by the data sets.

Figure 1. Histograms of Box–Jenkins price data and their logarithm return data.
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Figure 2. Histograms of gold price data and their logarithm return data.

Table 3. The estimates of α.

Data ˆαttm
WS

ˆαttm
W L

ˆ
α

c f
WS

ˆ
α

c f
W L

1 1.102854 1.941821 1.27487 2.0
2 0.3752206 1.263993 0.4149459 2.0

It can be observed from Table 3 that both the estimators are quite close to each other
for the Box–Jenkins log return data, since they are symmetric in nature. The two estimators
for the log return of the gold price data do not differ for wrapped stable distribution, but
there seems to be an appreciable difference for wrapped Linnik distribution due to their
differences in robustness against the asymmetric nature (e.g., the estimator of the location
parameter by the mean and median give similar values for symmetric distribution but
do not for asymmetric or skewed distribution, due to the difference in the robustness
properties of the estimators). Thus, it is necessary that the assumptions of the symmetry of
and independence in the data sets be verified in order to produce good estimates of the
parameter by our proposed estimators as above.

11. Novel Tests for α Based on Circular Statistics

We are presenting here, to the best of our knowledge, the maiden attempt of testing
for the index parameter of stable and Linnik distributions. Let x1, x2, . . . , xn be realizations
of symmetric stable (µ = 0, σ = 1, α) distribution. The choice of µ = 0 and σ = 1 are
justified, as given in Section 3. When the sample size n is large, we can use the asymptotic
distribution of ˆαttm

WS, as stated in Theorem 5, to perform the test for the null hypothesis
H0 : α = α0. Also, since the data have undergone logarithm ratio transformation, they are
thus scale invariant and hence we can take the scale parameter σ = 1 in the expression
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of the estimator of the variance, V̂( ˆαttm
WS) to perform the test. Thus, the test statistics are

given by
ˆαttm
WS − α0√
V̂( ˆαttm

WS)

−→ N(0, 1)

where ˆαttm
WS denotes the trigonometric truncated moment estimator of α for the data, assum-

ing a stable distribution.
Let x1, x2, . . . , xn be realizations of symmetric Linnik (µ = 0, σ = 1, α) distribution.

When the sample size n is large, we can use the asymptotic distribution of ˆαttm
WL, as stated

in Theorem 6, to perform the test for the null hypothesis H0 : α = α0. Also, since the data
have undergone logarithm ratio transformation, they are thu scale invariant and hence we

can take the scale parameter σ = 1 in the expression of estimator of the variance, V̂( ˆαttm
WL)

to perform the test. Thus, the test statistics are given by

ˆαttm
WL − α0√
V̂( ˆαttm

WL)

−→ N(0, 1)

where ˆαttm
WL denotes the trigonometric truncated moment estimator of α for the data assum-

ing the Linnik distribution. Depending on the alternative hypothesis, the cut-off points of
the tests can be determined from standard normal distribution tables.

A similar test can also be carried out based on a Hill estimator using Lemma 1, but it
is not studied here because the determination of k is complicated.
Example:

Anderson and Arnold (1993) have suggested the Linnik distribution for the financial
data on Box–Jenkins based on their characteristic function-based method of estimation. We
assume that the data come from a member of the Linnik family. In this family, the Linnik
distribution is characterized by α = 2. This has motivated us to rigorously verify their claim
based on the corresponding test H0 : α = 2 against the alternative hypothesis H1 : α < 2. As
per the suggestions of the referee, we perform a test for Laplace (a.k.a. double exponential)
distribution corresponding to α = 2 in the family of Linnik distributions. The test statistics
as defined above are given by

ˆαttm
WL − 2√
V̂( ˆαttm

WL)

The value of the test statistic is obtained as −0.3456217, implying that the null hypoth-
esis of the claim of double exponential distribution is accepted both at the 5%(1.645) and
1%(2.326) levels of significance.

The Laplace distribution has been earlier used on an adhoc basis by Anderson and
Arnold (1993) for the financial data on Box–Jenkins based on results of estimation. We
have established it formally by providing rigorous proof through testing procedure which
supports their findings.

12. Discussions and Conclusions

We have obtained a universal and efficient estimator of α which can be easily imple-
mented in practice. We have studied the various properties of the estimators, pointed
out their drawbacks and also obtained improved estimators eliminating these draw-
backs. We have also compared the efficiency of some estimators, as observed in the
above Tables 1 and 2. We have also introduced a novel method of testing for the index

75



J. Risk Financial Manag. 2023, 16, 405

parameter of the stable and Linnik distributions. We thus hope that this maiden attempt
will be useful for future analysis.
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Abstract: An accurate prediction of loan default is crucial in credit risk evaluation. A slight deviation
from true accuracy can often cause financial losses to lending institutes. This study describes the non-
parametric approach that compares five different machine learning classifiers combined with a focus
on sufficiently large datasets. It presents the findings on various standard performance measures
such as accuracy, precision, recall and F1 scores in addition to Receiver Operating Curve-Area Under
Curve (ROC-AUC). In this study, various data pre-processing techniques including normalization and
standardization, imputation of missing values and the handling of imbalanced data using SMOTE
will be discussed and implemented. Also, the study examines the use of hyper-parameters in various
classifiers. During the model construction phase, various pipelines feed data to the five machine
learning classifiers, and the performance results obtained from the five machine learning classifiers are
based on sampling with SMOTE or hyper-parameters versus without SMOTE and hyper-parameters.
Each classifier is compared to another in terms of accuracy during training and prediction phase based
on out-of-sample data. The 2 data sets used for this experiment contain 1000 and 30,000 observations,
respectively, of which the training/testing ratio is 80:20. The comparative results show that random
forest outperforms the other four classifiers both in training and actual prediction.

Keywords: financial data analysis; machine learning algorithms; loan default assessment; classification

1. Introduction

Financial institutions are facing increasing challenges in mitigating various kinds of
risks. In his “taxonomy of risks”, Christoffersen (2011) defines risks as market volatility,
liquidity, operational, credit and business risks. Due to uncertainties, financial risk evalua-
tion (FRE) is increasingly playing a pivotal role in ensuring organizations maximize their
profitability by minimizing losses due to a failure to mitigate risks. Noor and Abdalla (2014)
argue that there is a direct negative impact on profitability in proportion to unmitigated
risks. Hence, the primary approach of FRE is to identify risks in advance to allow for an
appropriate course of action before any investments or decisions can be made. As financial
risks evolve over time due to factors such as economic fluctuations, market conditions and
other factors beyond control, the evaluation process requires constant update to keep up
with market conditions.

Credit risk analysis undertaken in recent years mostly involves financial risk prediction.
For example, loan default analysis, which often comes in the form of binary classification
problems, has become an integral part of FRE. As financial institutions today are dealing
with millions of customers, the traditional human approach for loan approval processes
are no longer feasible. Moreover, with the advent of computing power today coupled
with the advancement of machine learning algorithms and the availability of large volume
of information, the world has entered the renaissance of computational modeling with
non-parametric classification methods and machine learning for loan default prediction
becoming widely adopted. It is worth noting that machine learning classification achieves
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an accuracy that directly increases the bottom line whilst providing instantaneous approval
decision through real-time decisions.

The use of advanced computing power and machine learning algorithms to predict
whether a loan is performing or non-performing (NPL) is increasingly essential for the
longevity of any lending institute. As the pool of consumers enlarges with proportional
increases in spending, the ability to provide early warnings by accurately predicting the
probability of defaulting a loan has become even more crucial. Deploying advanced
machine learning algorithms to identify patterns from large features in high-volume data
has become a mandatory process by banks to minimize the NPLs, and thus to increase their
profitability and consumers’ confidence.

In this study, we aim our attention at loan default detection as an element of credit risk
analysis through models built in k-nearest neighbour, naïve-bayes, decision tree, logistic
regression, and random forest. The intention is to answer the following questions:

• Is there a significant performance difference between the five machine learning algo-
rithms piping through Scikit-learn data transformation steps?

• Can the steps be repeated with the same level of consistency using different data sets
but similar analytics pipelines with data transformation?

The study is arranged in the following way:

• In Section 2, we briefly cover the background of the rise of statistical methods used
from the 60s to the 80s, primarily in the form of parametric approaches in predicting
bankruptcy. This section also covers how modern predictive techniques were born in
the 90s and beyond in conjunction with the availability of computing power, resulting
in the advancements of this field.

• In Section 3, we conduct a case study to illustrate the use of the five machine learning
algorithms to predict the loan default based on University of California at Irvine (UCI)
data set. In this section, we present the analytics life-cycle methodology with emphasis
on data pre-processing. It highlights the repeatability and validity of the methodology
in conducting research.

• In Section 4, we construct various models and measure them using various tools,
of which ROC-AUC is the main measurement. Other measurements are accuracy,
precision, F1 score, etc. In this section, we draw comparisons between five classifiers
and present the results neatly in various tables. We also present the out-of-sample
prediction results to validate model accuracy.

2. Related Work

It is imperative for financial institutes to detect NPLs in advance and segregate them
for further treatments. Unlike today, however, the ability to predict NPLs in the 60s was
not commonplace due to the fact that data mining and predictive capabilities were in their
embryonic state. During that era, financial analysis using a quantitative approach was in
its nascent form. Mathematical models and statistical methods were basic compared to
modern quantitative techniques. Apart from relying on studying a company’s financial
statements, most financial risks analysis primarily relied on fundamental analysis which
involves studying external factors such as market trends and economic indicators.

Beaver (1966) laid a foundation of groundbreaking work in accounting, earning himself
management using financial ratios. “Beaver’s Model” involved seminal univariate analysis
to predict corporate failure. Altman (1968) devised the “Altman Z-Score” to predict the
probability of whether a company will undergo bankruptcy. Beaver and Altman’s work
pioneered approaches to financial risk analysis for the next decade.

Finance-related prediction in the 1970s hinged on Altman’s Z-Score, which had gar-
nered popularity since the late 1960s. Although Altman’s work primarily involved predict-
ing bankruptcy, academics and researchers adapted the underlying principles to perform
prediction of risks to maintain financial health. The 1970s marked the emergence of modern
risk management concepts with financial institutes becoming aware of the importance of
identifying and managing various risk portfolios. The 1970s laid the groundwork for iden-
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tifying and understanding financial risk prediction and management. This development
was the beginning of the evolution of risk assessment methodologies and the adoption of
risk management practices together. The regulatory frameworks aimed to enhance stability
and resilience were set up by regulatory bodies.

Black and Scholes (1973) developed the Black–Scholes–Merton (BSM) model in 1973
which aimed to calculate the theoretical price of European-style options. The model uses
complex mathematical formulas and assumes standard normal distribution including loga-
rithms, standard deviations (precursor to Z-Score) and cumulative distribution functions.
The Black–Scholes–Merton model remains a foundation of today’s market risk assess-
ment and serves as a fundamental tool for pricing options. Although specific research
publications in the 1970s may not be common enough to be readily cited, many ideas,
concepts and methodologies established during that timeframe set the stage for subsequent
developments. Most notable is the gaining of traction of the quantitative approach to
credit risk modeling and scoring. The rise of algorithms such as regression, discriminant
analysis and logistic regression dominated the 1970s. The duo’s empirical results also
demonstrated how efficient regulatory policy should be formulated from the regression
outcomes. Deakin (1972), standing on the shoulders of Beaver and Altman, brought the
analysis one notch higher using a more complex, albeit discriminatory, analysis to improve
on the 20% error in misclassification of bankruptcy for the year prior. Deakin’s model of an
early warning system assumed a random draw of samples and used various financial ratios
and indicators including profitability ratios, efficiency ratios and liquidity ratios (amongst
others) to distinguish between troubled and healthy firms. Martin (1977) leveraged the
logit regression approach to predict the likelihood of banks experiencing financial distress.

The 1980s saw an increased focus on credit risk measurement within banking in-
dustries. Managing creditworthiness, credit exposures and the probabilities to default
were key research topics by researchers and practitioners. Ohlson took interest of White
and Turnbull’s unpublished work on systematically developed probabilistic estimates of
failures. Ohlson (1980) used the maximum likelihood estimation methodology, which is
a form of conditional logit model (logistic regression), to avoid the pitfall of well-known
issues associated with multivariate discriminant analysis (MDA) deployed in previous
studies. Ohlson’s model, primarily a parametric one (as most models were in that era),
provided advantages in that no assumptions must be made to account for prior probabili-
ties regarding bankruptcy and the distribution of predictors. Ohlson argued that Moody’s
manual, as relied on by previous works, could be flawed due to the fact that numerous
studies that derived financial ratios from the manual did not account for the timing of data
availability and the complexity in reconstructing balance sheet information from the highly
condensed report. In his concluding remark, Ohlson stated that the prediction power of
any model depends upon when the financial information is assumed to be available. West
(1985) combined the traditional parameter approach using a logit algorithm with factor
analysis. West’s work was promising, as the empirical results show the combination of the
two techniques closely matched the CAMEL rating system widely used by bank examiners
in that era.

The 1990s and 2000s saw the birth of some exciting machine learning algorithms.
Up until this point, most statistical methods used for credit assessment were related to
the parametric approach. The parametric algorithms mandate that the assumptions of
linearity, independence, or constant variance are met before meaningful analysis can be
derived. The birth of Adaptive Boosting can be indebted to the work of Freund and Schapire
(1997). The duo proposed that a strong classifier can be obtained by combining multiple
weak classifiers iteratively. Friedman (2001) devised a method to improve the predictive
accuracy by optimizing a loss function through iterative processes. Friedman’s gradient
boosting machine (GBM) builds the trees sequentially, with each tree correcting by fitting
the residuals of the previous trees. Friedman’s work was influential and subsequently
gave rise to other boosting variations, including XGBoost by Chen and Guestrin (2016)
and LightGBM by Ke et al. (2017). Breiman and Cutler (1993), however, proposed a way

79



J. Risk Financial Manag. 2024, 17, 50

to construct multiple independent decision trees during training, with each tree deriving
from a subset of training data and available features. Breiman’s (2001) random forest
model ensures that each tree is trained on a bootstrap sample of data (random sample
with replacement). The final prediction is made from aggregating the prediction from an
ensemble of diverse decision trees. Vapnik and Chervonenkis’ early work dated as far
back as the early 1960s in theory of pattern recognition, and statistical learning laid the
groundwork for their support vector machine (SVM). Vapnik’s (1999) algorithm is known
for the ability to classify both linear and non-linear data by finding the optimal hyperplane
that best separates various classes whilst maximizing the margin between them.

Contemporary literature works in predicting financial risk has mushroomed over the
past decade. Peng et al. (2011) suggest that a unique classification algorithm that could
achieve the best accuracy given different measures under various circumstances does not
exist. In their early attempts, Desai et al. (1996), and later West (2000), both proposed that
the performance of generic models such as linear discriminant were not a better performer
than customized models, except for a customized neural network. However, further studies
by Yobas et al. (2000) using linear discriminant, neural network, genetic algorithms and
decision tree concluded that the best performer was linear discriminant analysis. Due
to the inconsistencies of previous studies, Peng et al. (2011) suggested multiple criteria
decision making (MCDM), whereby a process to allow systematic ranking and selecting of
an appropriate classifier or cluster of classifiers should be at the forefront of classification
research. In the first ever academic study of Israeli mortgage, Feldman and Gross (2005)
applied the simple yet powerful classification and regression tree (CART) to 3035 mortgage
borrowers in Israel, including 33 features such as asset value, asset age, mortgage size,
number of applicants, income, etc. The goal was to classify between potential defaulters
and those unlikely to default. The distinct feature of CART that resulted in it being chosen
over its primary competitors is its ability to manage missing data. Khandani et al. (2010)
predicted the binary outcome that indicates whether an account is delinquent by 90 days
by including the time dimension of 3-, 6- or 12-month windows. Using a proprietary
dataset from a major bank, Khandani and others combined customer banking transactions
(expenditures, savings and debt repayments), debt-to-income ratios and credit bureau data
to improve the classification rates of credit card holders’ delinquencies and defaults. CART
was chosen as the non-parametric approach due to its ability to manage the non-linearity
nature of data and inherent explainability of the algorithm. Their work proved that the
time series properties of the machine learning prediction commensurate with realized
delinquency rates, with R2 of 85%. He suggested assigning weight in training data as
adaptive boosting to manage imbalanced class.

The rise of data gathering exercises made available hundreds or thousands of features
compounded with imbalanced data, posing an issue for traditional approaches. The
non-parametric approach burst onto the scene to manage the ever-increasing dimension,
imbalanced data and the non-linear nature of models. The 2000s saw a rise of applying
multi-layer neural networks and support vector machines (SVM) to financial prediction.
Atiya (2001) proposed a non-parametric approach using a novel neural network model and
was able to achieve accuracy of 3-year-ahead out-of-sample predictions between 81–85%
accuracy. Zhang et al. (1999) suggested that artificial neural networks outperformed logistic
regression. Huang et al. (2004) deployed backpropagation neural networks (BNN) and
SVMs to achieve an accuracy of 80%.

Although the majority of datasets used for the studies are propriety in nature, there
was little mention regarding the engagement of various data preparation techniques except
from the recent study of the importance of data pre-processing effects on machine learning
by Zelaya (2019) using the contemporary machine learning package such as Scikit-learn
popularized by Pedregosa et al. (2011). The modern machine learning packages with
full pipeline feature as shown by Varoquaux et al. (2015) are worth exploring. Equally
omitted is the implementation of techniques such as SMOTE to manage imbalanced class,
as proposed by Fernández et al. (2018), which is also worth further study.
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In this study, we aim our attention at loan default detection as an element of credit
risk analysis.

3. Case Study—Advanced Machine Learnings for Financial Risk Mitigation
3.1. Methodology—Computational Approach

In this study, the machine learning analytics cycle use Scikit-learn packages to im-
plement an analytics pipeline that includes data collection, data pre-processing, model
constructions and model performance comparisons. Matplotlib supplies graphing capabil-
ity to allow for the visual analysis of data.

Scikit-learn allows for the full analytics pipeline to specifically unravel the underlying
pattern in data sets, therefore resulting in the best fitting for various classifiers. The pipeline
contains end-to-end processes that performs these tasks: (i) ingest the data sets and perform
preliminary data analysis to identify missing values, outliers and imbalanced class—any
missing values will be imputed and imbalanced data is identified; (ii) standardize data
which includes scaling and normalization to ensure consistent model performance; (iii) en-
code categorical (nominal and ordinal) and one-hot-encode for predictors and label for
target variable; (iv) select top N most influential predictors and reduce total dimension to
the influential ones; (v) cross validate using k-fold stratified to ensure the ratio of imbalance
remains intact and subsequently treated by SMOTE as suggested by Chawla et al. (2002);
(vi) train and fit data using various distance- and tree-based classifiers; (vii) compare the
final performance measurements and report the most effective hyper-parameters.

Figure 1 illustrates the machine learning analytics life cycle implemented as an end-to-
end analytics pipeline using Scikit-learn’s pipeline capability.
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The machine learning lifecycle is implemented as Scikit-learn’s pipeline, easing the
foremost data pre-processing in missing value imputation with either the most frequent
value (categorical features) or standard mean/median (numeric variable). The analytics
pipeline detects outliers and imbalanced class, as well as manages the treatment of detection
further down the pipeline right before the actual model fitting. Next is to apply data
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standardization, which includes transforming the data into a common scale using Z-Score,
and normalize the data to a range between zero and one. The goal is to ensure data
consistency across various classifiers which will result in comparisons at similar scales,
thus improving model performance.

Subsequently, the analytics pipeline automatically detects the champion model (winner
of the best classifier) and reports the top N predictors that are most influential to the model.
The analytics pipeline finds the least influential predictors which subsequently truncated
to reduce the dimension whilst not affecting the performance of the models. The analytics
pipelines split the data into two sections with training and testing data segregated by a
ratio of 80:20. The analytics pipeline implements k-fold with stratification to ensure that the
imbalanced class stays intact. It also ensures a full data split throughout with little-to-no
possibility of a data leak. Finally, it trains and fits the data through the five classifiers. At
the end, it obtains the performance scores for final comparisons.

Apart from its stochastic nature, the research method is sound and repeatable, and re-
searchers can refer to it for further studies with various data sets applied to different classifiers.

3.2. Data Collection

This study uses two credit card client data sets obtained from UCI repository.
The first set is the payment data set obtained from one major bank in Taiwan from

2005, donated by Yeh and Lien (2009) and Yeh (2016) to the UCI data repository. The data
set holds 30,000 observations, of which 6636 are default payment (showed by variable id,
x24 as 1) whilst healthy payment occupies the remaining 23,364 observations. The data set
holds no duplicate and missing values. The Taiwan credit card payment data set shows
a strong skew (healthy:default ratio) due to imbalanced class of 77.88% to 22.12%. The
variable id, x24 is the target whilst it uses the remaining features (x1 to x23) as predictors
(Table 1).

Table 1. Dataset 1: Taiwan credit card client data set features and types.

Total Missing
Values

Taiwan Credit Data Set Features

Feature ID/Name Description Numeric/
Nominal/Ordinal

0 x1 (limit_bal)
Amount of the given credit (NT dollar): includes
both the individual consumer credit and his/her
family (supplementary) credit

Numeric

0 x2 (sex) Gender (1 = male, 2 = female). Numeric

0 x3 (education) Education (1 = graduate school, 2 = university,
3 = high school, 4 = others) Numeric

0 x4 (marriage) Marital status (1 = married, 2 = single, 3 = others) Numeric

0 x5 (age) Age (year) Numeric

0 x6–x11 (pay_1 to pay_6)

History of past payment. We tracked the past
monthly payment records (from April to September
2005) as follows: X6 = the repayment status in
September 2005, X7 = the repayment status in
August 2005,; X11 = the repayment status in April
2005. The measurement scale for the repayment
status is: −1 = pay duly, 1 = payment delay for one
month, 2 = payment delay for two months,;
8 = payment delay for eight months, 9 = payment
delay for nine months and above.

Numeric
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Table 1. Cont.

Total Missing
Values

Taiwan Credit Data Set Features

Feature ID/Name Description Numeric/
Nominal/Ordinal

0 x12–x17 (bill_amt1 to bill_amt6)

Amount of bill statement (NT dollar). X12 = amount
of bill statement in September 2005, X13 = amount of
bill statement in August 2005,; X17 = amount of bill
statement in April, 2005

Numeric

0 x18–x23 (pay_amt1 to pay_amt6)

Amount of previous payment (NT dollar).
X18 = amount paid in September 2005,
X19 = amount paid in August 2005,; X23 = amount
paid in April 2005

Numeric

0 x24 (default_payment_next_
month) Default or not (default = 1, health = 0) Numeric

This data set contains only numeric features. It is used as a control data set for the
analytics pipeline due to its larger set of observations. It will be used to validate the
analytics pipeline that includes data transformations.

The second set is a German credit card client data set obtained from UCI data repos-
itory, Hofmann (1994). It contains 1000 observations. The data set contains one target
variable with an imbalanced class ratio of 70% to 30% (no:yes ratio). The data set is void
of missing values and duplicates. Table 2 shows the data set features, description and
data types.

Table 2. Data Set 2: German credit card client data set features and types.

Total Missing
Values

German Credit Data Set Features

Feature Description Numeric/Nominal/Ordinal

0 checking_balance Status of existing checking account Ordinal
0 months_loan_duration Duration in months Numeric
0 credit_history Credit history Ordinal
0 purpose Purpose of loan Nominal
0 amount Credit amount Numeric
0 savings_balance Saving accounts/bonds Ordinal
0 employment_duration Present employment since Ordinal
0 percent_of_income Install rate (% of disposable income) Numeric
0 years_at_residence Present residence since Numeric
0 age Age in years Numeric
0 other_credit Other installment plans Nominal
0 housing Housing Situation Nominal
0 existing_loans_count Number of existing credits Numeric
0 job Job skill level Ordinal
0 dependents Number of dependents Numeric
0 phone Holding Telephone or not Nominal
0 default Default or not Nominal

This data set contains both numerical and categorical data and is used to train and test
various classifiers initially.

3.3. Visual Data Exploration

Either a classifier is parametric or non-parametric. Visual data exploration aids in
understanding data structure and nature, which includes the data distributions, correlations,
multi-collinearity and other patterns. Visual data exploration helps to identify anomalies
and outliers in the data set that can skew analysis and model accuracy. In particular, the
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involvement of logistic regression and naïve-bayes necessitate a thorough analysis of data
structure and patterns as these classifiers assume independence and linearity, amongst
other things. Table 3 reveals the correlation between numerical features.

Table 3. Correlation between numerical features—German credit data set.

Correction Matrix

C1 C2 C3 C4 C5 C6 C7

C1 1.0000 0.6250 0.0747 0.0341 −0.0361 −0.0113 −0.0238
C2 0.6250 1.0000 −0.2713 0.0289 0.0327 0.0208 0.0171
C3 0.0747 −0.2713 1.0000 0.0493 0.0583 0.0217 −0.0712
C4 0.0341 0.0289 0.0493 1.0000 0.2664 0.0896 0.0426
C5 −0.0361 0.0327 0.0583 0.2664 1.0000 0.1493 0.1182
C6 −0.0113 0.0208 0.0217 0.0896 0.1493 1.0000 0.1097
C7 −0.0238 0.0171 −0.0712 0.0426 0.1182 0.1097 1.0000

Note: C1—months_loan_duration, C2—amount, C3—percent_of_income, C4—years_at_residence, C5—age,
C6—existing_loans_count, C7—dependents.

As indicated in Table 3, the German credit data set has a low correlation between
features. The highest correlation is 0.6250 between “months loan duration” and “amount”.
It can be said that the correlation amongst other features is non-existent as indicated by
scatterplots in Figure 2. The only correlation of 0.6250 shows a positively trending linear
relationship. However, “age” and “percent of income” do not show a visual pattern and
therefore do not indicate a relationship with “months loan duration.”
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Further investigation into multicollinearity of the German credit data set (Table 4)
shows that the variance inflation factor (VIF) values between predictors are reasonable and
do not cause alarm.

Table 4. VIF—German credit data set.

Feature VIF

months_loan_duration 7.3588
amount 4.5758

percent_of_income 7.9587
years_at_residence 7.7354

age 10.9257
existing_loans_count 6.6793

dependents 8.7906
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The distribution of data can be considered partial-normal or normal (right skewed)
for only three predictors, as seen in Figure 3. The remaining numerical predictors are
dichotomous in nature.

J. Risk Financial Manag. 2024, 17, x FOR PEER REVIEW 9 of 19 
 

 

years_at_residence 7.7354 

age 10.9257 

existing_loans_count 6.6793 

dependents 8.7906 

The distribution of data can be considered partial-normal or normal (right skewed) 

for only three predictors, as seen in Figure 3. The remaining numerical predictors are di-

chotomous in nature. 

 

Figure 3. Data distributions—German credit data set. 

The final examination confirms that the German credit data set does not contain outliers 

or missing values. 

3.4. Data Pre-Processing 

The analytics pipelines correspond in a 1:1 ratio with the permutations of the test 

scenarios. The first analytics pipeline generates Permutation-1, the second generates Per-

mutation-2, etc. The goal of having various permutations is to achieve the best model per-

formance for the classifiers. 

The analytics pipelines apply standardization, including scaling and normalization 

to all analytics pipelines in this study. For example, the k-nearest neighbour being a dis-

tance-based classifier requires that the features contribute more equally to distance calcu-

lation, therefore enhancing model performance. The pipelines ensure that there is no un-

intentional data leakage between the training and testing data sets. 

After standardization, the analytics pipelines perform encoding (ordinal, one-hot 

and label encodings) for categorical features and class feature followed by imbalanced 

data treatment using SMOTE as investigated by Alam et al. (2020). Subsequently, the an-

alytics pipelines reduce the dimensions of features to the system default and a preset num-

ber, respectively. 

Prior to model training and fitting, the analytics pipelines implement a manual split 

of training/testing (80:20) data sets with stratification to ensure the imbalanced data ratio 

is intact. In search for the optimal hyper-parameters, the grid search function performs 

the 10-fold cross validations where data is split and internally evaluated for each fold. 

3.5. Model Construction and Evaluation 

During the model construction phase, the analytics pipeline includes the five classi-

fiers (k-nearest neighbour, naïve-bayes, decision tree, logistic regression and random for-

est). The final prepared and split data, after being fully cleansed, standardized and en-

coded, has become a training source to fit the models. The only distance-based classifier 

used in this study is k-nearest neighbour. K-nearest neighbour is a simple, non-parametric 

classifier that is not subservient to the Gaussian distributions and is robust to outliers. The 

curse of dimension takes effect with k-nearest neighbour in that it poses two challenges: 

Figure 3. Data distributions—German credit data set.

The final examination confirms that the German credit data set does not contain
outliers or missing values.

3.4. Data Pre-Processing

The analytics pipelines correspond in a 1:1 ratio with the permutations of the test
scenarios. The first analytics pipeline generates Permutation-1, the second generates
Permutation-2, etc. The goal of having various permutations is to achieve the best model
performance for the classifiers.

The analytics pipelines apply standardization, including scaling and normalization to
all analytics pipelines in this study. For example, the k-nearest neighbour being a distance-
based classifier requires that the features contribute more equally to distance calculation,
therefore enhancing model performance. The pipelines ensure that there is no unintentional
data leakage between the training and testing data sets.

After standardization, the analytics pipelines perform encoding (ordinal, one-hot
and label encodings) for categorical features and class feature followed by imbalanced
data treatment using SMOTE as investigated by Alam et al. (2020). Subsequently, the
analytics pipelines reduce the dimensions of features to the system default and a preset
number, respectively.

Prior to model training and fitting, the analytics pipelines implement a manual split
of training/testing (80:20) data sets with stratification to ensure the imbalanced data ratio
is intact. In search for the optimal hyper-parameters, the grid search function performs the
10-fold cross validations where data is split and internally evaluated for each fold.

3.5. Model Construction and Evaluation

During the model construction phase, the analytics pipeline includes the five classifiers
(k-nearest neighbour, naïve-bayes, decision tree, logistic regression and random forest).
The final prepared and split data, after being fully cleansed, standardized and encoded, has
become a training source to fit the models. The only distance-based classifier used in this
study is k-nearest neighbour. K-nearest neighbour is a simple, non-parametric classifier
that is not subservient to the Gaussian distributions and is robust to outliers. The curse
of dimension takes effect with k-nearest neighbour in that it poses two challenges: (i) it
increases computational challenges when high dimensions and large data sets are involved
and (ii) it degrades model accuracy when including irrelevant features.

The two tree-based methods are decision tree and random forest. Similar to k-nearest
neighbour, decision tree is a tree-based classifier and can manage non-linearity and outliers
well. Decision tree has an inherent ability to be unaffected by non-related features. However,
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the downside is that it tends to overfit. In this study, the analytics pipeline considers the tree-
depth hyper-parameter to ensure that the decision tree classifier does not overfit. Random
forest as an ensemble method inherits the strength from decision tree. Additionally, unlike
decision tree, it aggregates the prediction of multiple decision trees and offsets the tendency
to overfit.

Logistic regression and naïve-bayes are the only two parametric approaches used in
this study. That said, they are susceptible to independence assumptions, non-linearity
and outliers. In addition, imbalanced data affects naïve-bayes predictions. The analytics
pipeline includes the data pre-processing to ensure the training is conducive to fit using the
five classifiers, in particular, the parametric ones.

Table 5 illustrates the characteristics of the classifiers implemented in this study.

Table 5. High level characteristics of classifiers.

Classifier Type

Dependence (H/L) and Tolerance (H/L) for Various Characteristics

Dependence Tolerance

C1 C2 C3 C4 C5 C6 C7 C8 C9

k-nearest neighbour (knn) NP—DB L L L L L L L L B
naïve-bayes (nb) P—PB L H L L H H L H S
decision tree (dt) NP—TB L L L L H H H L S
logistic reg. (lr) P—PB L H L H L L L L B

random forest (rf) NP—TB L L L L H H H L S

Note: L—low, H—high. P—parametric, NP—non-parametric. DB—distance-based, TB—tree-based, PB—
probability-based. B—bigger size data, S—smaller size data. C1—normality, C2—independence, C3—
homoscedasticity, C4—linearity. C5—outliers, C6—multicollinearity, C7—irrelevant features. C8—imbalanced
class, C9—minimum sample size required for stable estimates.

Whilst these dependency and tolerance level are common in the statistical and machine
learning techniques, not all analyses require these assumptions to be met. Under certain
conditions, there are methods to relax these dependencies and increase tolerance for the
classifiers. Blatant ignorance of the requirements based on each classifier’s characteristic
will result in poor and unreliable models.

As far as model measurement is concerned, Han et al. (2022) outlined the limitations
of relying only on the rate of error as the default measurement as suggested by Jain et al.
(2000) and Nelson et al. (2003). Since most of dataset one (Taiwan credit card client) is
made up of non-risky value (77.88%), the error rate measurement is not appropriate as it
is insensitive to the classification accuracy. The main measurement in this study is AUC
despite the fact that Lobo et al. (2008) asserted that area under the receiver operating
characteristic (ROC) curve, known as AUC, has its own limitations. Furthermore, the study
includes error rate measurement which includes accuracy, precision, recall (sensitivity) and
F1 score for the sake of completeness.

Table 2 shows the four error rate-related measurements in model evaluations:

• Accuracy provides the proportion of correctly classified instances from the total in-
stances.

• Precision provides the ratio of true positive predictions versus the total number of
positive predictions made.

• Recall provides the proportion of actual positives correctly predicted by the model.
• F1 provides a balance mean of precision and recall that deals with imbalanced class.

Table 6 depicts the performance metrics used throughout the model comparisons.
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Table 6. Performance measurements.

Evaluation Metrics Formula

Accuracy Score TP+TN
TP+FN+TN+FP

Precision Score TP
TP+FP

Recall Score (Sensitivity) TP
TP+FN

F1 Score 2∗(Precision∗Recall)
(Precision+Recall)

Note: N—sample size, TP—true positive, FN—false negative, TN—true negative, FP—false positive.

All the scores used in this study are based on prediction results.

4. Results

The results of the experiments are made up of performance metrics in tabular and
graph formats as well as variables of importance in graph format. The results compare
the performances based on the two distinct data sets with three permutations of analytics
pipelines. Due to the stochastic nature of classifiers, the results differ slightly for each run.
The red dotted line for ROC-AUC graphs represents a random guess for random guess.

The analytics pipelines produce three permutations in search of the best performing
classifiers with their respective hyper-parameters. Tables 7–9 and Figures 4–6 list the
performance metrics for various permutations. All permutations include data cleansing
and standardization:

• Permutation-1—with or without SMOTE using the default hyper-parameters and
scoring using full features (all predictors).

• Permutation-2—with or without SMOTE using the best hyper-parameters and scoring
using full features (all predictors).

• Permutation-3—with or without SMOTE using the best hyper-parameters and scoring
using reduced features (best performing predictors).

Table 7. German credit card dataset—Permutation-1.

Default Hyper-Parameters

Full Features (without SMOTE) Full Features (with SMOTE)

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

knn 0.7000 0.5000 0.3333 0.4000 0.6746 0.6550 0.4536 0.7333 0.5605 0.7073
nb 0.6950 0.4912 0.4667 0.4786 0.7305 0.7100 0.5111 0.7667 0.6133 0.7408
dt 0.6550 0.4211 0.4000 0.4103 0.5821 0.6450 0.4068 0.4000 0.4034 0.5750
lr 0.7500 0.6250 0.4167 0.5000 0.7679 0.7300 0.5366 0.7333 0.6197 0.7630
rf 0.7800 0.7222 0.4333 0.5417 0.7748 0.7500 0.6087 0.4667 0.5283 0.7618

Note: M1—accuracy score, M2—precision score, M3—recall score, M4—F1 score, M5—AUC.

Table 8. German credit card dataset—Permutation-2.

Best Hyper-Parameters

Full Features (without SMOTE) Full Features (with SMOTE)

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

knn 0.7700 0.6667 0.4667 0.5490 0.8227 0.8550 0.6824 0.9667 0.8000 0.9670
nb 0.7200 0.5303 0.5833 0.5556 0.7420 0.7300 0.5333 0.8000 0.6400 0.7614
dt 0.7650 0.6857 0.4000 0.5053 0.7726 0.8250 0.6667 0.8333 0.7407 0.9115
lr 0.7750 0.6596 0.5167 0.5794 0.7979 0.7350 0.5412 0.7667 0.6345 0.7944
rf 0.8900 0.9318 0.6833 0.7885 0.9868 0.8900 0.8519 0.7667 0.8070 0.9457

Note: M1—accuracy score, M2—precision score, M3—recall score, M4—F1 score, M5—AUC.
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Table 9. German credit card dataset—Permutation-3.

Best Hyper-Parameters

Reduced Features (without SMOTE) Reduced Features (with SMOTE)

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

knn 0.765 0.6857 0.4000 0.5053 0.8221 0.770 0.5761 0.8833 0.6974 0.8801
nb 0.700 0.5000 0.1833 0.2683 0.6912 0.635 0.4253 0.6167 0.5034 0.6792
dt 0.720 0.5909 0.2167 0.3171 0.7274 0.770 0.6094 0.6500 0.6290 0.8206
lr 0.695 0.4762 0.1667 0.2469 0.6855 0.635 0.4316 0.6833 0.5290 0.6879
rf 0.875 0.9730 0.6000 0.7423 0.9677 0.835 0.6957 0.8000 0.7442 0.9141

Note: M1—accuracy score, M2—precision score, M3—recall score, M4—F1 score, M5—AUC.
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The tables and figures summarize the results:

• Table 7 and Figure 4—Permutation-1 by using German credit data set with the default
hyper-parameters and full features.

• Table 8, Figures 5 and 7—Permutation-2 by using German credit data set with the best
hyper-parameters and full features.

• Table 9, Figures 6 and 8—Permutation-3 by using German credit data set with the best
hyper-parameters and reduced features.

• Table 10, Figures 9 and 10—Permutation-2 using Taiwan credit data set with the best
hyper-parameters and full features.
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Table 10. Taiwan credit card dataset—performance measurement.

Best Hyper-Parameters

Full Features (without SMOTE) Full Features (with SMOTE)

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

knn 0.8265 0.7061 0.3693 0.4849 0.8262 0.8517 0.6046 0.9518 0.7395 0.9681
nb 0.7485 0.4479 0.5893 0.5089 0.7214 0.3915 0.2484 0.8644 0.3859 0.7100
dt 0.8243 0.6842 0.3821 0.4903 0.7312 0.7733 0.4889 0.5456 0.5157 0.7263
lr 0.8135 0.7441 0.2389 0.3617 0.7149 0.6860 0.3759 0.6360 0.4726 0.7140
rf 0.8433 0.7706 0.4152 0.5397 0.8951 0.9292 0.8292 0.8561 0.8424 0.9802

Note: M1—accuracy score, M2—precision score, M3—recall score, M4—F1 score, M5—AUC.
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The best hyper-parameters (with or without SMOTE) obtained for various classifiers
can be seen below:

• K-nearest neighbour—{‘kn__n_neighbours’: 7}
• Naïve-bayes—{‘nb__priors’: None, ‘nb__var_smoothing’: 1 × 10−9}
• Decision tree—{‘dt__max_depth’: 3, ‘dt__splitter’: ‘best’}
• Logistic regression—{‘lr__C’: 100, ‘lr__max_iter’: 1000}
• Random forest—{‘rf__max_features’: ‘sqrt’, ‘rf__max_samples’: 0.3, ‘rf__n_estimators’: 100}

The three permutations are graphical depictions of the performance metrics for vari-
ous classifiers.

The last two permutations identify most significant predictors (features of importance) for
decision tree and random forest classifiers. The other classifiers produce comparable results.

This study also involves a control data set (Taiwan credit card client) with larger data
(30,000 observations). The same analytics pipelines containing data transformations are
applied to the data with an identical split ratio, namely 80:20. The results of searching for
the best hyper-parameters with full features, ROC graph and most influential predictors
can be seen in Table 7, Figures 9 and 10 respectively.

First, it is observed that the default hyper-parameters perform poorly in both smaller
(Table 7) and bigger data (Table 10) sets. For example, the five metrics (accuracy, precision,
recall, F1 and AUC) hover below 0.8000 for the German credit data set. This shows that
the default hyper-parameters are not sufficiently tuned to uncover the hidden pattern
in both data sets. Using AUC as a more robust measurement, it is shown that k-nearest
neighbour and decision tree are the two worst performing classifiers with 0.6746 and 0.5821,
respectively, with untreated and imbalanced data. Interestingly, none of the five classifiers
perform better when imbalanced data is treated with SMOTE. Only k-nearest neighbour
improves marginally.

Much can be said regarding the full features from the German credit data set being
subjected to the best hyper-parameters search. Table 8 shows vast improvements for all five
classifiers. Without SMOTE, naïve-bayes is the worst performing classifier with modest
improvement alongside logistic regression. However, k-nearest neighbour, decision tree
and random forest improve greatly. With imbalanced treatment, k-nearest neighbour
improves further. However, the greatest improvement is decision tree which jumps from
0.7726 to 0.9115 followed by k-nearest neighbour which leaps from 0.8227 to 0.9670. What
is worth noting, however, is that random forest degrades slightly from 0.9868 to 0.9457. In
Permutation-2, both naïve-bayes and logistic regression are indifferent regardless of the
inclusion imbalanced data treatment in data pre-processing. The relevant features check
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(Figure 7) using the built-in features for decision tree and random forest show the few key
features are primarily between “checking balance”, “amount”, “months loan duration”,
“age”, “percent of income” and “years of residence.”

Permutation-3 (Table 9, Figures 6 and 8) differs with Permutation-2 in that it further
reduces most relevant features from nine to five, where Permutation-2’s nine features are
selected by system whilst Permutation-3 is configured to take the best five features. The
results are consistent as naïve-bayes and logistic regression are indifferent to imbalanced
data treatment whilst k-nearest neighbour and decision tree show big improvements from
0.8221 to 0.8801 and 0.7274 to 0.8206, respectively. The performance for random forest,
however, degrades slightly from 0.9677 to 0.9141. In general, the performance of models
using the five most relevant features are less optimal than the nine selected by the system.

Finally, comparing with a larger Taiwan credit data set and Permutation-2 (winner),
Table 10 and Figures 9 and 10 show that k-nearest neighbour and random forest are the
two best performing classifiers across the two data sets. Decision tree performs well in the
smaller German credit data set but worse when data is on a larger scale, as in the Taiwan
credit data set. Naïve-bayes and logistic regression are indifferent to either smaller or larger
data sets, with or without imbalanced data treatment.

5. Discussion

The three analytics pipeline permutations used to construct the five models based
on five classifiers contain data cleansing and standardization. It is worth noting that the
German credit data set contains categorical features and class labels that require encoding,
whilst the Taiwan credit data set contains only numeric features.

The main observations and possible explanations of model performance can be sum-
marized as follows:

• Using the default hyper-parameters for the five classifiers does not necessarily produce
the best performing metrics. As data sets have distinctive characteristics such as total
observations, complexity and patterns, it is rarely the best practice to use the default
hyper-parameters settings until certain tuning is implemented based on each data set.

• K-nearest neighbour and random forest perform consistently well across both data sets
either with or without imbalanced data treatment. However, k-nearest neighbour’s
execution time is a great magnitude faster than random forest. It is likely that random
forest requires more processing power and time due to the fact that it is a form
of ensemble.

• Naïve-bayes and logistic regression are indifferent to the volume of data sets and
imbalanced data treatment, and their performances are mediocre. It can also be
attributed to the sub-optimal hyper-parameters selected.

• Decision tree performs really well, which is at par with decision tree and random forest
in a smaller data set. However, with imbalanced data, it performs as the worst classifier
when a bigger Taiwan credit data set is used. It is highly likely that decision tree overfits
with smaller training and testing sets. Moreover, it can be seen that with a smaller data
set, decision tree achieves a high AUC score after imbalanced data treatment. This is
consistent with its characteristic of being sensitive to imbalanced data.

• The data processing step detects multicollinearity in Taiwan credit data set with all fea-
tures, “bill_amtX”’s VIF above 20 (between 20.8453 and 38.2155). The presence of mul-
ticollinearity in this data set affects only k-nearest neighbour and logistics regression.

• All analytics pipelines with various permutations include standardization which
includes scaling and normalization. Whilst k-nearest neighbour requires and benefits
from standardization, naïve-bayes, logistic regression, decision tree and random forest
are robust to standardization.

• Forcing the classifiers to pick a smaller set of relevant features will degrade the model
performance. This results in insufficient data, which will often affect model accuracy.

• In various scenarios, hyper-parameter selection will determine model performance
degradation or remain similar after imbalanced data treatment. It is important to
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note that apart from naïve-bayes classifier, which is based on probability, all other
classifiers are susceptible to imbalanced data. Due to the limitations of computing
resources, obtaining the best hyper-parameters for the larger Taiwan credit data set is
not achievable.

6. Further Studies

It is desirable to further study the effect to the classifiers using more refined analytics
pipelines such as the inclusion of non-standardized (non-scaling and non-normalizing)
approach that includes outliers and missing values in the data sets. The effect of multi-
collinearity to various classifiers can be explored further. The concept of volatility intro-
duced by Zelaya (2019), which involves including/excluding specific steps in the analytics
pipelines, requires further study.

Apart from SMOTE, the use of other treatments suggested by Alam et al. (2020) such
as random oversampling, ADASYN, k-means SMOTE, borderline-SMOTE and SMOTE-
Tomek is worth exploring since most classifiers, except naïve-bayes, perform sub-optimally
with the presence of imbalanced data. Despite the use of truncated singular-value de-
composition (truncatedSVD) in the study, the analytics pipelines will also benefit from
exploring other dimension reduction techniques including principal component analy-
sis (PCA), t-distributed stochastic neighbour embedding (t-SNE) and linear discriminant
analysis (LDA). Further study will benefit by delving into the decision-making criteria
used to determine the most relevant predictors for each classifier. Further explorations
should be conducted for classifiers using neural network, support vector machine and
other modern ensemble techniques such as gradient boosting, extreme gradient boosting
and light gradient boosting.

Finally, since achieving the best hyper-parameters for classifiers is key part of the study,
it will be worthwhile to include more computing resources to search for the most optimal
hyper-parameters for various classifiers. A failure to obtain sufficient system resources will
produce sub-optimal hyper-parameters.

7. Conclusions

This study highlights the distinctive characteristics of the five classifiers and how
they perform under different data pre-processing steps. The data pre-processing in this
study includes data cleansing, features encoding and selection, reduction of dimensions,
treatment of imbalanced data and cross validation of training/testing data sets. The final
comparisons of the five classifiers demonstrate that data pre-processing steps in conjunction
with the data size, complexity and patterns will determine the accuracy of certain classifiers.
For example, decision tree performs superbly (overfits) when data size is minor compared
to its poor performance when data volume is large. In contrast, the study also shows that
random forest does not tend to overfit even with the presence of imbalanced data. In short,
the study demonstrates that data distribution and size, multicollinearity, features relevance
and imbalanced class contribute to the final scores of models and each classifier reacts to
these factors differently (Table 5).

Equally important is the tuning of the hyper-parameters for respective classifiers, with
the study concluding that the default hyper-parameters perform sub-optimally. That
being said, investing in computing resources to derive the best hyper-parameters is
crucial for striving towards the best performing models and achieving cost savings for
lending institutes.

Finally, this study concludes that it is mandatory to apply data domain knowledge
prior to selecting a classifier of choice. This is primarily due to fact that a data set may have
a pattern that suits one classifier but not the other. Hence, it is imperative to understand by
unravelling the complexity and patterns of data sets prior to selecting, training and fitting
a model.
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Abstract: This study aims to analyze and generalize the factors influencing credit decision-making
in Turkey’s service sector, which has seen substantial growth and increased dynamism post-2000,
coinciding with accelerated economic development. The evolving competitive landscape and shifting
consumer purchasing perceptions have led companies within this sector to seek differentiation
strategies to attain a competitive edge. In this context, access to credit emerges as a crucial enabler
for companies to expand and capture market share. The research focuses on the financial and non-
financial characteristics of medium-sized service sector firms seeking credit, recognizing that both
sets of variables play a pivotal role in the credit allocation process conducted by banks. The core
of this study involves applying established assumption tests from extant literature, followed by an
extensive regression analysis. The primary objective of this analysis is to identify and underscore the
key financial and non-financial factors that significantly impact credit decisions in the service sector.
By examining these variables, the study seeks to contribute valuable insights into the credit decision-
making process, addressing the nuanced and varied nature of the service sector. This approach not
only provides a deeper understanding of the sector’s credit dynamics but also assists in formulating
more informed strategies for businesses seeking financial support within this evolving economic
landscape. The primary conclusion reached by the study is that non-financial variables exert a greater
influence on credit decision-making in the service sector compared to financial variables.

Keywords: credit decision; determinants of credit; qualitative variables; financials service sector

1. Introduction

Financial analysis plays a crucial role in understanding a company’s financial position
and performance. By evaluating financial statement accounts and comparing them to
established standards and industry averages, financial analysis allows for a comprehensive
assessment of a company’s liquidity, financial structure, profitability, and activities. These
kinds of analyses are also critical for understanding and assessing a company’s financial
health. This involves evaluating the relationships among accounts in financial statements
and interpreting them by comparing them with industry benchmarks and established
standards. Financial analysis is an essential tool for understanding and interpreting a
company’s financial statements (Konstantinidis et al. 2021).

Non-financial data collection and analysis are integral to credit assessment to deter-
mine the creditworthiness of borrowers and minimize credit risk (İş Bankası 2012; Vakıfbank
2011; Geçer 2014). Bolkvadze (2019) emphasizes the importance of analytical financial
tools in financial analysis, particularly in the study of business entities. Ceran (2019) used
financial ratios to predict non-performing loans (NPLs) in advance using artificial neural
networks. Mbona, Masimba, and Kong (Mbona and Yusheng 2019) highlight the signifi-
cance of financial statement analysis in understanding financial performance. Lam et al.
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(2021) propose an integrated entropy–fuzzy VIKOR model to evaluate the financial perfor-
mance of construction companies, identifying ECONBHD as the best-performing firm.

Credit-granting decisions have been extensively explored in academic literature, par-
ticularly with a focus on small and medium-sized Enterprises (SMEs). Traditionally, these
studies emphasize the importance of financial variables in credit decisions. Financial analy-
ses and ratios are key indicators of a firm’s creditworthiness. However, recent research has
also begun to stress the significance of non-financial variables (Jasevičienė et al. 2013).

Yan and Li (2023) introduced a credit risk prediction model for SMEs utilizing a
decision tree trained on data sets combined with a linear programming approach. By
integrating bank-specific constraints and objectives, the model aims to enhance the precision
of credit risk quantification for banks.

Other studies explained that modern firms aim to enhance shareholder value by mak-
ing decisions on various aspects, such as liquidity status, profitability, financial structure,
investment projects, and technological adaptability. Financing decisions can influence firm
value, with financial analysis providing information on ratio analysis, liquidity status,
financial structure, asset utilization efficiency, and profitability (Altuğ 2010).

Another study investigates the importance of non-financial information in credit deci-
sions, focusing on microentrepreneurs in China. It was discovered that non-financial data
such as business characteristics, personal traits, and social relationships play a substantial
role in the credit-granting process (Xu et al. 2019).

Similarly, Edem (2017) examined the role of non-financial data in making credit
decisions in Macedonian commercial banks. The study revealed that, in addition to financial
ratios, non-financial variables such as the company’s reputation, its relationship with the
bank, market conditions, and the legal framework had a significant impact on credit
decisions (Edem 2017).

Hossain (2023) reviewed the literature from 2016 to 2022 on Big Data analytics in
banking and found that IEEE (The Institute of Electrical and Electronics Engineers) is the
predominant publisher, with China as the major contributor. Hossain’s study highlights
Random Forest techniques as dominant in credit risk management in the financial services
sector while noting the need for further research on integrated algorithms.

Erdinç’s (2020) study investigated firm-specific and macroeconomic factors influencing
the profitability of manufacturing firms listed on Borsa Istanbul between 2009 and 2019.
A total of 129 firms were grouped by asset size, and 80 firms (20 large, 29 medium, and
31 small) were included in the analysis. Quarterly data from these firms were used, and
regression analysis was conducted. The dependent variables are the active profitability
rate, equity profitability rate, and pre-tax and interest profit (operational profitability) rates.
The independent variables are company size, liquidity, asset structure, total debt ratio
(leverage), GDP growth rate, and interest rates. The results of the research show a negative
impact of the leverage ratio and fixed asset ratio on all profitability ratios, while the GDP
growth rate had a positive effect (Erdinç 2020).

A systematic review of the literature provides a robust foundation for examining the
impact of financial and non-financial variables on the credit decisions of middle-market
companies in the service sector.

While the literature highlights the importance of both financial and non-financial
variables in credit decisions, there appears to be a gap in studies that specifically focus on
the service sector in Turkey. This study aims to fill this gap and provide a comprehensive
understanding of the factors influencing mid-segment companies’ credit decisions in the
service sector.

This study evaluates the impact of financial and non-financial features on the credit
decisions of SMEs in the service sector. The motivation behind this study lies in the
changing landscape of competition and consumer behavior, in which companies in the
service sector strive to differentiate themselves to gain a competitive edge.

Although academic studies exist on the attributes of companies affecting credit de-
cisions in Turkey, no study has been found to specifically reveal the attributes that are
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effective in the credit decisions of companies operating in the service sector. This finding
reveals a deficiency in existing literature.

Therefore, the findings of this study contribute to the existing research by shedding
light on certain financial and non-financial features that significantly affect credit decisions
for mid-segment service sector companies in Turkey. To accomplish this, we conducted a
comprehensive analysis of a diverse range of financial and non-financial variables. Statisti-
cal techniques and models are used to assess the relative importance and impact of these
variables on credit decisions.

This study emphasizes the pivotal importance of a multifaceted array of variables,
encompassing financial components, financial ratios, and non-financial data, in molding
the credit decisions of enterprises operating within the service sector. While a vast body of
literature has delved deeply into the importance of financial and non-financial variables
in credit decisions, what remains conspicuously under-explored is the specificity and
nuanced understanding of the service sector in Turkey, especially with respect to mid-sized
firms. Given the burgeoning role of the service sector in the Turkish economy and its
intricate interplay with global market dynamics, this research emerges not just as a filler
of an academic void but as an imperative. Our study is novel in its targeted focus on this
particular segment, offering insights that transcend conventional binary distinctions of
financial and non-financial variables. The contributions of this research are multifaceted.
First, it bridges a gap in understanding the unique dynamics of the Turkish service sector.
Second, it provides a granular analysis, juxtaposing a myriad of variables to ascertain
their influence on credit decisions. Last, our findings will serve as a pragmatic guide for
financial institutions, equipping them with a refined lens to evaluate creditworthiness.
We believe that this nuanced understanding can foster more resilient, sustainable, and
inclusive financial ecosystems in the region.

1.1. Financial Analysis

Financial analysis plays a vital role in financial decision-making by collecting and
interpreting data to evaluate the financial performance of businesses. This is important to
companies, banks, and governments because it provides a foundation for effective financial
planning. Planning activities cannot be conducted effectively without comprehensively
analyzing a company’s financial situation. Additionally, financial analysis is important for
governments and organizations that consider lending, partnering, taxing, and investing in
businesses.

Basic financial statements such as balance sheets and income statements were first
examined during the credit process. Other auxiliary tables were used to determine whether
the companies were suitable for credit.

1.2. Financial Statement Items and Ratios

Banks request financial and non-financial data from companies that apply for credit
during their credit processes. Non-financial data consists of information about the com-
pany’s standing with other banks and in the market, whereas financial data comprises
balance sheets and income statement items, financial ratios, and sectoral ratios. Financial
ratios are optional because they consist of balance sheet items. In other words, they vary
on a sectoral, regional, and firm basis. Therefore, depending on the company and sector,
different ratios can be produced and used for each credit evaluation.

Ratio analysis examines the partial relationships between items in financial statements
and provides information on the financial condition of a business. This ratio is a mathemati-
cal expression of the relationship between two items in financial statements. The calculated
ratios were typically expressed as percentages. It is possible to calculate a large number of
ratios to indicate the relationships among financial statement items. However, rather than
calculating a large number of ratios in a ratio analysis, it is more meaningful to focus on
the ratios that have meaningful relationships with each other.
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1.3. Non-Financial Analysis

Non-financial credit data, also known as intelligence data, are beneficial for getting to
know customers well and making accurate, quick, and safe decisions. If the demands of a
customer who is not well known cannot be met accurately and safely, the margin of error in
the decision to be made is high. When evaluating customer credit requests, it is necessary
to consider non-financial data to reach correct and safe decisions. The purposes of using
non-financial data in banking can be summarized as follows: to obtain information and
opinions about the general conditions of businesses, to discipline credit preparation based
on certain procedures and principles, and to ensure that credit risk is eliminated or reduced
by determining the business’s ability to pay.

There are a number of reasons why non-financial variables can be important predictors
of credit risk. First, non-financial variables can provide insights into borrowers’ motivations
and intentions. For example, a borrower who is unemployed and has a history of loan
default is more likely to default on a new loan than a borrower who is employed and has a
good credit history (World Bank 2014).

1.4. Credit

Economically, credit refers to the purchasing power of legal and real persons. The
main reason why various transactions that differ from each other are gathered under the
name of credit is because all of these transactions include providing “purchasing power” to
the other party (Yürük 2006, p. 63).

We examine the relationship between total credit volume and economic growth in two
ways. The first of these empirical studies is the evolution of credit volume as an indicator
of financial development or credit to the private sector as a ratio of gross domestic product,
and the second focuses on the relationship between direct credit volume and economic
growth. With the inferences of these studies and the increase in financial instruments
and institutions, the results show that financial development increases, and consequently,
economic growth is supported (Mercan 2013, p. 57).

1.5. Service Industry in Turkey

In the information age, and owing to the dynamic components of other sectors, services
are rapidly growing in importance in Turkey and the global economy. For these reasons,
Turkey has adopted a change in its sectoral structure in the planned development model
that has been implemented since the 1960s as an important objective, and plans have been
prepared within this framework. Since the 1980s, Turkey has increased industrial activities
while entering a period of globalization, and with the economic transformation of the 2000s,
the importance of the service sector and its role in the economy has increased (İnamoğlu
2013, p. 2).

In the first section of this study, credit, financial items, financial ratios, and non-
financial data are introduced, and the service sector is delineated. In the second section, the
study’s objectives, research design, data structure, hypotheses, detailed information about
the data set, sampling methods, and analytical techniques are elaborated. The third section
encompasses normality tests, correlation analysis, regression analysis, and hypothesis tests,
all serving the main objectives of the study. In the concluding section, the study’s key
takeaways are discussed, results are analyzed and interpreted, and recommendations for
future research are presented.

2. Methodology and Data
2.1. Aim of the Research

Financial and non-financial analyses play a significant role in credit decisions in the
service sector. Given the substantial impact of both types of analysis on credit decisions,
companies in today’s service sector not only seek credit from banks but also consider them
stakeholders for growth. Over the years, the symbiotic relationship between a company
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and a bank has had a considerable positive impact on the survival and growth of the
company as well as on the bank’s earnings.

This study evaluates the significance and impact of financial and non-financial analyses
on credit decisions in Turkey’s service sector. This study focuses on identifying the most
influential financial and non-financial variables among various options. This study aims to
ascertain which types of data—financial or non-financial—are more critical to banks’ credit
decisions. This study seeks to contribute to firms’ healthy growth strategies and efforts to
reduce non-performing loan (NPL) rates by understanding the effectiveness of the various
metrics and ratios used in banking practices.

The first section provides a brief introduction to the research topic and outlines its
objectives. The second part includes a literature review covering financial and non-financial
analyses, credit, and the service industry. This section establishes the theoretical frame-
work by elaborating on financial ratios and key non-financial variables and detailing their
importance in credit decision-making within the service sector.

The section on research design and methodology outlines the study’s purpose, scope,
methods, and model. Credit decisions serve as the dependent variable, whereas financial
and non-financial characteristics are selected as independent variables based on expert
opinions. The experts consulted four credit process analysts with at least five years of
experience in the bank from which the data were sourced. This section also describes the
data collection methods, metrics employed in the study, statistical analysis techniques, and
characteristics of the variables under investigation. The conclusion offers answers to the
research hypotheses and presents the major findings. We also discuss the contributions and
limitations of this study to the existing literature.

2.2. Research Methodology and Design

Qualitative and quantitative methods were used in this study. These methods are
forms of scientific research aimed at understanding research subjects in a relevant popula-
tion. Although the overall objectives of the quantitative and qualitative methods are similar,
their approaches and focus differ substantially. To elucidate the impact of financial ratios,
financial items, and non-financial data on credit decision-making, data from 530 companies
were collected from private banks. Subsequently, 34 factors were identified in the analysis.
Data were obtained from the bank system in compliance with all necessary ethical protocols,
and it was determined that the confidential nature of the data should be maintained and
not disclosed. After establishing these factors and completing the calculations, analyses
were performed to test the proposed hypotheses. The results clarify the influence of the
selected variables on credit decisions.

2.3. Hypotheses

1. H0a: Financial items do not have a significant effect on credit decisions in the Turkish service
sector.

2. H1a: Financial items have a significant effect on credit decisions in the Turkish service sector.

3. H0b: Financial ratios do not have a significant effect on credit decisions in the Turkish service sector.

4. H1b: Financial ratios have a significant effect on credit decisions in the Turkish service sector.

5. H0c: Non-financial data do not have a significant effect on credit decisions in the Turkish
service sector.

6. H1c: Non-financial data have a significant effect on credit decisions in the Turkish service sector.

7. H0d: Financial items, financial ratios, and non-financial data do not have a significant effect on
credit decisions in the Turkish service sector.
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8. H1d: Financial items, financial ratios, and non-financial data have a significant effect on credit
decisions in the Turkish service sector.

Figure 1 presents the framework for the hypotheses. This figure summarizes whether
Financial items, Financial ratios, and Non-financial items affect Credit Decisions. The col-
lective analysis of these groups of variables is also included under the label “All Variables”.
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2.4. Sampling, Data and Measures

This study explored the relationship between financial and non-financial variables
and credit decisions within Turkey’s service sector, focusing specifically on SMEs and
commercial firms. Systematic sampling was employed to select companies based on criteria
such as business segments, assets, and turnovers. The study incorporated 13 financial
variables, 12 financial ratio variables, and nine non-financial variables as independent
variables. These were selected through a review of existing literature and consultations
with experts from bank allocation departments (Erdinç 2020; İnamoğlu 2013; Ceran 2019).
Missing values were removed from the initial dataset of 1356 firms, resulting in a final
dataset comprising 530 data points. The scope of the study encompassed various sub-
sectors within the service industry, treating it as a holistic entity.

Figure 2 presents the research organization and offers a visual representation of the
theoretical model illustrating the relationship between credit decisions and financial/non-
financial variables. In this figure, 34 initial independent variables are categorized into three
distinct groups, and their full names are provided. The dependent variable in this study
was the credit decisions enacted by the banks. While some studies treat the credit decision
as a categorical variable, it is considered a numerical variable, particularly in hybrid studies
where both the credit decision and rate are predicted. For the purpose of this study, the
target variable was the amount of credit allocated to the firms; therefore, it was treated as a
numerical variable to enhance the sensitivity of the analysis.
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2.5. Statistical Methods Used in Data Analysis

The data analysis and hypothesis testing were performed using Python and SPSS
20.0 software packages. The analytical process began with preliminary assumption tests
for normality, followed by correlation and regression analyses, and ultimately, hypothesis
testing. Finally, the conclusions are presented in the final section.

The data distribution was examined using normality tests to determine the appropriate
analytical method. Given that the sample size exceeded 50, the Kolmogorov–Smirnov test
was used to assess data normality. However, recognizing the sensitivity of the test to large
sample sizes, we decided that exclusive reliance on these results could introduce bias.
Consequently, P–P/Q–Q plots were consulted as supplementary tools to corroborate the
findings of the normality tests.

A correlation analysis was performed to ascertain the relationships between the vari-
ables. The high correlations among the independent variables raised concerns about
multicollinearity, which were mitigated by removing highly correlated variables from
the analytical model. When deciding which variable to exclude, its relationship with the
dependent variable was considered. Also, the fixed effects model was used in this study.

In the employed model, the Bidirectional Elimination (or Stepwise Selection) method
was utilized for variable selection within the Stepwise approach. This was implemented
with the objective of establishing a refined set of variables for modeling, specifically by
eliminating the binary relationships among the variables. This process aims to ensure a
more robust and accurate model by focusing on the most relevant and impactful variables,
thereby enhancing the overall effectiveness of the modeling exercise.

102



J. Risk Financial Manag. 2023, 16, 487

3. Data Analysis and Research Findings

As the normality test, P–P/Q–Q plots were taken into consideration when deciding
whether the data was normally distributed or not. The credit decision variable is found to
have an approximately normal distribution.

3.1. Normality Analysis

Several methods are available to measure the normality of variables. The most com-
monly used methods are as follows.

• Shapiro–Wilk Test:

Null Hypothesis: The data follows a normal distribution.
Test Statististic (W):

W =

(
∑n

i=1 aix(i)
)2

∑n
i=1(xi − x)2

The test statistic W is calculated based on the ordered sample values x(i) and their
corresponding expected values ai under normality (Shapiro et al. 1968). Based on the
Shapiro–Wilk test, the data appeared to be normally distributed (Shapiro–Wilks Test Statis-
tic: 0.9944, p-value: 0.5009).

• Kolmogorov–Smirnov Test:

Null Hypothesis: The data follow a specific distribution (e.g., normal distribution).
Test Statistic (D):

D = max|Fn(x)− F(x)|
Test statistic D was calculated based on the maximum absolute difference between

the cumulative distribution function (CDF) Fn(x) of the observed data and the CDF Fn(x)
under the hypothesized distribution. The Kolmogorov–Smirnov test indicated that the
data were likely to be normally distributed (Kolmogorov–Smirnov Test Statistic: 0.0259,
p = 0.5046).

• P–P/Q–Q (Probability–Probability/Quantile–Quantile) plot:

P–P/Q–Q plots are utilized to assess the fit of a dataset to a normal distribution. The
PP plot compares observed cumulative probabilities with expected probabilities under
a normal distribution. Ideally, the plotted points should be aligned along a straight line,
indicating a normal distribution. Deviations from the straight line indicated a departure
from normality. These plots helped identify significant deviations from the normality of
the data. Figure 3 presents the corresponding plots for the dependent variable.

Figure 3 shows that credit decisions and independent variables exhibit an approximate
normal distribution.

The following steps were followed in the analyses.

• Correlation Analysis: The formula for Pearson’s correlation coefficient (r) between
two variables X and Y is given by

r =
∑
(
X− X

)(
Y−Y

)
√

∑
(
X− X

)2
∑
(
Y−Y

)2

where X and Y represent the means of variables X and Y, respectively.
• Multiple Regression Analysis: the formula for multiple linear regression is represented

as follows:
Y = β0 + β1X1 + β2X2 + . . . + βpXp + ε

where Y is the dependent variable, X1, X2, . . . , Xp is the independent variable,
β0, β1, β2, . . . , βp is the regression coefficient, and ε is the error term.
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• Adjusted R-squared (Coefficient of Determination): the formula for adjusted R-squared
(Adj R2) in the multiple regression analysis was calculated as

Adj_R2 = 1−
(
1− R2)(N − 1)

N − p− 1
,

where R2 = 1− ∑(Y−Ŷ)
2

∑(Y−Y)
2 and N are the total sample sizes; p is the number of inde-

pendent variables; Y represents the observed values of the dependent variable; Ŷ
represents the values predicted by the regression model; and Y represents the mean of
the dependent variable.
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represents the values predicted by the regression model; and Y  represents the mean of 
the dependent variable. 

3.2. Financial Item Analysis 
Correlation analysis was conducted to assess the relationships among these financial 

variables, thereby minimizing the issue of multicollinearity. Thirteen independent 
variables were initially considered in the Financial item category. Subsequent to this 

Figure 3. Normal P–P/Q–Q Plots of Credit Decisions.

3.2. Financial Item Analysis

Correlation analysis was conducted to assess the relationships among these financial
variables, thereby minimizing the issue of multicollinearity. Thirteen independent variables
were initially considered in the Financial item category. Subsequent to this evaluation,
variables with a Pearson correlation coefficient of ±0.80 or higher were scrutinized, and
it was decided to retain only one of the highly correlated pairs, removing the other from
the dataset. Notably, significant and strong correlations were observed between Assets
and Current Assets, Assets and Long-Term Liabilities, and Current Assets and Current
Liabilities (Pearson’s correlation coefficients were 0.842, 0.811, and 0.863, respectively; all
p = 0.000). Consequently, two variables—Current Assets and Long-Term Liabilities—were
excluded, and the analysis proceeded with 11 financial variables.

Multiple linear regression analysis using a Stepwise Method revealed that the eighth
model was statistically significant. The goodness of fit of the model was examined using
the coefficient of determination adjusted to the R2 values. Based on this evaluation, the
capability of the selected financial variables to explain the variations in credit decisions is
54%. The selected financial variables are assets, liquid assets, inventories, current liabilities,
equity, net working capital, net sales, previous net sales, the absolute value of the change in
net sales, net profits, and total liabilities. Additionally, a statistically significant relationship
is identified between credit decisions and several financial variables, including assets,
current liabilities, equity, net sales, previous net sales, the absolute value of the change
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in net sales, net sales, net profit, and total liabilities (p < 0.05). Conversely, no significant
relationship is observed between liquid assets, inventories, net working capital, and credit
decisions (p > 0.05).

Based on the regression analysis results presented in Table 1, a statistically significant
relationship is observed between credit decisions and financial item variables. The derived
model was deemed statistically significant (F = 75.143, p < 0.001). Additionally, the model
displayed no evidence of autocorrelation, as indicated by a Durbin–Watson statistic of 0.996.
Consequently, the model was deemed statistically robust and valid.

Table 1. Coefficients and Adj-R2 of Regression Model for Financial Items.

8. Model F Dependent
Variable Independent Variables B t p Adj-R2

F = 75.143
p = 0.000 Credit Decision

Constant −197,186 −2.488 0.013

0.536

Total Liabilities 0.146 7.720 0.000

Net Profit 0.417 8.871 0.000

Equity 0.206 4.952 0.000

Previous Net Sales −0.120 −7.026 0.000

Net Sales 0.084 5.596 0.000

Current Liabilities 0.182 5.084 0.000

Assets 0.061 −2.554 0.011

Absolute Value of Net
Sales–Previous Net Sales −0.076 −2.198 0.028

3.3. Financial Ratio Analysis

Data pertaining to the financial ratios of 530 companies in the service sector were
analyzed. Financial ratio variables, presumed to influence the dependent variable, were
employed in the analysis.

Correlation analysis was conducted to ascertain the relationship between the financial
ratio variables. This step mitigated the risk of multicollinearity among the independent vari-
ables. The dataset initially contains 12 independent variables in the financial ratio category.
Upon analysis, variables with a Pearson correlation coefficient of ±0.80 or higher were scru-
tinized, and one variable from each correlated pair was removed from the dataset. Specifi-
cally, a significant and strong correlation was observed between “Net Profit/Assets” and
“Current Liabilities/Net Profit” as well as between “Net Profit/Assets” and “Equity/Net
Profit” (Pearson Correlation = 0.856, p < 0.001; Pearson Correlation = 0.872, p < 0.001, re-
spectively). Consequently, one variable—net profit/assets—was excluded because of its
weaker association with the dependent variable.

A multiple linear regression analysis using the stepwise method was conducted to
elucidate the relationship between credit decisions and the financial ratio variables. The
fifth model was considered statistically significant. Key metrics, such as the relationship
coefficient, percentage of the dependent variable explained by the independent variables,
and adjusted R2 values, were examined. According to the results presented in Table 2, the
ability of the variables to explain the variations in credit decisions was 21%. The variables
are net sales/assets, current liabilities/net profit, long-term liabilities/absolute value of
net sales/previous net sales, long-term liabilities/net profit, net working capital/equity,
equity/net sales, equity/net profit, current assets/assets, net fit/net sales, total debt/net
sales, and total debt/net profit. Furthermore, a significant relationship is identified between
Current Liabilities/Net Profit, Long-Term Liabilities/Net Profit, Current Assets/Assets,
Total Debt/Net Sales, Total Debt/Net Profit, and Credit Decisions (p < 0.05). Conversely, no
significant relationship is observed between the variables net sales/assets, long-term liabili-
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ties/absolute value of net sales–previous net sales, net working capital/equity, equity/net
sales, equity/net profit, net profit/net sales, and credit decisions (p > 0.05).

Table 2. Coefficients and Adj-R2 of Regression Model for Financial Ratios.

5. Model F Dependent
Variable Independent Variables β T p Adj-R2

F = 28.510
p = 0.000 Credit Decision

Constant 925,721 4.245 0.000

0.214

Current Liabilities/Net Profit −197,123 10.023 0.000

Total Debt/Net Profit −80,574 −5.919 0.000

Long-Term Liabilities/Net
Profit −62,880 2.951 0.000

Current Assets/Assets 810,149 −2.464 0.014

Net Sales/Assets 127,067 2.118 0.035

Based on the results of the regression analysis presented in Table 2, a significant
relationship between credit decisions and financial ratio variables was observed. The
derived model was statistically significant (F = 28.510, p < 0.001). Additionally, a Durbin–
Watson statistic of 0.447 indicated no autocorrelation within the model. Thus, the model
was considered statistically valid.

3.4. Non-Financial Analysis

Data pertaining to non-financial variables from 530 companies in the service sector
were analyzed. Non-financial variables believed to influence the dependent variable were
included in the analysis. Correlation analysis was conducted to mitigate multicollinearity
among the independent variables. Out of nine initial non-financial variables, one was
removed due to a high correlation (±0.80 or above) with another variable. Specifically,
a significant and high correlation was found between “Cash Limit in Risk Center” and
“Cash Risk in Risk Center” (Pearson Correlation = 0.873, p = 0.01). Consequently, “Cash
Risk in Risk Center” was excluded from the dataset, resulting in eight variables for subse-
quent analyses.

A multiple linear regression analysis was conducted using a stepwise method to
ascertain the relationship between credit decisions and the remaining non-financial vari-
ables. The sixth model is statistically significant. Key statistics, such as the correlation
coefficient, explanatory power of the independent variables over the dependent variable,
and adjusted R2 values, were examined. According to these metrics, variables including
“Deposit Average in Banks Over the Last Year”, “Cash Limit in Risk Center”, “Number of
Banks with Limits in Risk Center”, “Current Class A Cash Collateral Amount”, “Current
Class B Cash Collateral Amount”, “Current Class C Cash Collateral Amount”, “Weighted
KKB Score” and “Current Signature Collateral Limit” accounted for 71% of the variance in
credit decisions. A significant relationship was found between “Cash Limit in Risk Center”,
“Number of Banks with Limits in Risk Center”, “Current Class A Cash Collateral Amount”,
“Current Class B Cash Collateral Amount”, “Current Class C Cash Collateral Amount”,
“Current Signature Collateral Limit” and the dependent variable, Credit Decision (p < 0.05).
No significant relationship was observed between the “average deposit in banks over the
last year”, “weighted KKB score,” and the dependent variable, credit decisions (p > 0.05).

According to the results of the regression analysis presented in Table 3, a significant
relationship is observed between credit decisions and non-financial variables. The derived
model was found to be statistically significant, as evidenced by an F-value of 217.73
and a p-value of less than 0.05 (p = 0.000). Additionally, the Durbin–Watson statistic of
1.442 indicates the absence of autocorrelation within the model. Based on these metrics, the
model was deemed statistically valid.
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Table 3. Coefficients and Adj-R2 of Regression Model for Non-Financial Data.

5. Model F Dependent
Variable Independent Variables β T p Adj-R2

F = 217.73
p = 0.000 Credit Decision

Constant 570,182 5.937 0.000

0.714

Current Class A Cash
Collateral Amount 0.974 28.23 0.000

Cash Limit in Risk Center 0.061 7.076 0.000

Weighted KKB Score 1.650 4.370 0.000

Current Class C Cash
Collateral Amount −1.313 −3.696 0.000

Number of Banks with Limits
in Risk Center −36,496 −2.880 0.004

Current Class B Cash
Collateral Amount 0.278 2.296 0.022

3.5. All Variable Groups Analysis

A comprehensive regression analysis, including all group variables, was performed.
Following prior regression analyses, data related to financial items, financial ratios,

and non-financial variables for the 530 companies operating in the service sector were
collectively analyzed. Multiple linear regression analysis is subsequently conducted to
evaluate the collective influence of financial and non-financial variables on credit decisions.
The variables are listed in Table 4.

Table 4. Classification of Significant Variables for Financial Items, Ratios, and Non-Financial Data.

All Significant Variables

Financial Items Financial Ratios Non-Financial Variables

Assets Net Sales/Assets Deposit Average in Banks
Last 1 Year

Liquid Assets Current Liabilities/Net Profit Cash Limit in Risk Center

Inventories
Long-Term Liabilities/Absolute

Value of Net Sales–Previous
Net Sales

Number of Banks with Limits in
Risk Center

Current Liabilities Long-Term
Liabilities/Net Profit

Current Class A Cash
Collateral Amount

Equity Net Working Capital/Equity Current Class B Cash
Collateral Amount

Net Working Capital Equity/Net Sales Current Class C Cash
Collateral Amount

Net Sales Equity/Net Profit Weighted KKB Score

Previous Net Sales Current Assets/Assets Current Signature Collateral Limit

Absolute Value of Net
Sales-Previous Net Sales Net Profit/Net Sales

Net Profit Total Debt/Net Sales

Total Liabilities Total Debt/Net Profit

From the preceding analyses, the variables deemed redundant and subsequently
removed included Current Assets and Long-Term Liabilities among the financial item
variables, net fit/assets among the financial ratio variables, and cash risk in risk centers
among Non-Financial Variables.
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Correlation analysis was performed to ascertain intervariable relationships. Based on
these results, the Weighted KKB Score was excluded from the Non-Financial Variables, and
the Equity variable was removed from the financial variables.

A comprehensive regression analysis is performed to assess the relationship between
credit decisions and the remaining variables. The eighth model was significant when using
the stepwise method. Key metrics, such as the relationship coefficient, proportion of the
dependent variable explained by the independent variables, and adjusted R-squared values,
were analyzed. According to the findings, the collective explanatory power of financial
items, financial ratios, and non-financial variables for the credit decision variable was 81%.
The analysis revealed significant associations between the Credit Decision variable and
several variables within Financial Items at a significance level of p < 0.05 (e.g., such as Assets,
Equity, Net Sales, Previous Net Sales, Net Profit, Total Liabilities); Financial ratios (e.g.,
such as Net Sales/Assets, Current Liabilities/Net Profit, Long-Term Liabilities/Net Profit,
Net Profit/Net Sales, Total Debt/Net Sales, Total Debt/Net Profit); and Non-Financial
variables (e.g., such as Cash Limit in Risk Center, Number of Banks with Limits in Risk
Center, Current Class A Cash Collateral Amount, Current Class C Cash Collateral Amount,
Weighted KKB Score, Current Signature Collateral Limit).

According to the regression analysis results presented in Table 5, a statistically sig-
nificant relationship is identified between credit decisions and financial items, financial
ratios, and non-financial factors. The model was confirmed to be statistically significant, as
evidenced by an F-value of 132.641 and a p-value less than 0.05 (p = 0.000). Additionally,
the absence of autocorrelation in the model was verified using a Durbin–Watson statistic of
1.710, confirming the statistical validity of the model.

Table 5. Coefficients and Adj-R2 of Regression Model for All Variables.

8. Model F Dependent
Variable Independent Variables B t p Adj-R2

F = 132.641
p = 0.000 Credit Decision

Constant 245,785 2.322 0.021

0.805

Current Class A Cash Collateral
Amount 0.682 18.025 0.000

Total Liabilities 0.152 8.596 0.000

Current Liabilities/Net Profit 85,375 7.533 0.000

Total Debt/Net Profit −50,288 −5.732 0.000

Net Profit 0.280 4.963 0.000

Net Profit/Net Sales −165,810 −3.097 0.002

Current Signature Collateral Limit 1.289 4.081 0.000

Previous Net Sales −0.019 −1.676 0.004

Net Sales 0.026 2.275 0.023

Number of Banks with Limits in
Risk Center −49,598 −4.540 0.000

Cash Limit in Risk Center 0.044 4.396 0.000

Assets 0.060 −4.867 0.000

Long-Term Liabilities/Net Profit 38,906 3.274 0.001

Net Sales/Assets 106,938 3.718 0.000

Current Class C Cash Collateral
Amount −0.886 −2.992 0.003

Total Debt/Net Sales −99,727 −2.314 0.021
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With a single unit increase in variables such as Current Class A Cash Collateral
Amount, Total Liabilities, Current Liabilities/Net Profit, Net Profit, Net Profit/Net Sales,
Current Signature Collateral Limit, Net Sales, Cash Limit in Risk Center, Assets, Long-Term
Liabilities/Net Profit, and Net Sales/Assets, credit decisions increased by coefficients of
0.682, 0.152, 85,375, 0.280, 165,810, 1.289, 0.026, 0.044, 0.060, 38,906, and 106,938, respectively.
Conversely, an increase of one unit in Total Debt/Net Profit, Previous Net Sales, Number
of Banks with Limits in Risk Centers, Current Class C Cash Collateral Amount, and Total
Debt/Net Sales resulted in a decrease in credit decisions, with coefficients of 50,288, 0.019,
49,598, 0.886, and 99,727, respectively.

The regression model was further corroborated through residual plot analysis, pre-
sented in Figure 4, which confirmed the absence of heteroskedasticity. The Jarque–Bera
test yielded a p-value of 0.0000, further bolstering the reliability of the regression analysis
employed in the study.
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The red dashed line in a residual plot represents the expected position of residuals if a
predictive model’s estimates are perfect. It serves as a benchmark for assessing the model’s
prediction accuracy, where deviations indicate prediction errors. Within the framework of
econometric modeling, the treatment of outliers is a topic that has generated significant
discourse. Outliers can profoundly influence the accuracy of regression estimates. The
literature typically divides the discussion on outliers into two distinct perspectives:

Econometric Perspective: From a purely statistical standpoint, outliers are observations
that notably deviate from the expected pattern of the data. These can unduly influence
the model’s performance and potentially lead to misleading interpretations. Quantitative
metrics, such as Cook’s distance, are employed to diagnose and assess the influence of
these outliers. When such outliers are identified, standard procedure in econometrics often
recommends their removal or adjustment, especially if their presence adversely affects the
model’s diagnostic tests and predictive accuracy.

Financial Realism Perspective: However, outliers often represent genuine economic
phenomena in financial econometrics. These outliers could be symptomatic of events
or processes that have genuine economic significance, such as unofficial balance sheet
adjustments, anomalous sales activities, or taxation anomalies. Removing these outliers
might enhance the statistical properties of the model but at the expense of omitting crucial
information about the underlying economic process. From this viewpoint, discarding such
outliers would strip the model of its ability to capture the full complexity and nuances of
the financial reality it seeks to represent.

In summary, while the conventional econometric approach prioritizes the statistical
integrity of the model, the financial realism perspective underscores the importance of
retaining economically meaningful outliers. Hence, the decision of whether or not to
remove outliers should not be based solely on statistical considerations. It is essential
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also to weigh the substantive economic context and the specific objectives of the analysis.
Furthermore, the impact of outliers needs to be quantified before deciding upon their
removal. Given these considerations, it was determined that retaining the outliers would
be more conducive to the objectives of the study.

In our analytical process, we also considered the impact of outliers on our regression
model. A version of the model was employed after removing these outliers. The results
were remarkably consistent with those obtained using the least squares estimation on
the full dataset. Given the similarity in outcomes and to maintain conciseness in our
presentation, we opted not to report the results of the outlier-removed model in detail
within this paper. However, it is worth noting that the presence or removal of outliers did
not significantly distort our main findings.

In the presence of outliers, one can employ robust regression techniques, for example,
robust M-estimation, among others. However, in this study, we confine ourselves to
classical least square estimation.

To further assess the integrity of the model, multicollinearity issues were examined
independently for the Financial Items, Financial Ratios, and Intelligence Data variable
groups. As evidenced by the Variance Inflation Factors (VIF) presented in Table 6, no VIF
values indicative of multicollinearity concerns were identified.

Table 6. Variance Inflation Factor (VIF) for each Variable.

Variable Name VIF Variable Name VIF Variable Name VIF

Total Liabilities 1.018321 Current Liabilities/Net
Profit 1.007908 Current Class A Cash

Collateral Amount 1.010088

Net Profit 1.016648 Total Debt/Net Profit 1.010269 Cash Limit in Risk
Center 1.013432

Equity 1.057124 Long-Term
Liabilities/Net Profit 1.019002 Weighted KKB Score 1.028962

Previous Net Sales 1.077362 Current Assets/Assets 1.217395 Current Class C Cash
Collateral Amount 1.055214

Net Sales 1.025715 Net Sales/Assets 1.1246 Number of Banks with
Limits in Risk Center 1.06382

Current Liabilities 1.01011 Current Class B Cash
Collateral Amount 1.27036

Assets 1.013703

Absolute Value of Net
Sales–Previous Net Sales 1.010068

4. Conclusions and Discussion
4.1. Findings and Results

Aligned with most commercial enterprises’ overarching objectives, banks primarily
aim to maximize profits. Historically, they have realized this goal through avenues like
funding businesses in the marketplace or treasury tool investments. Primarily, it is pos-
tulated that banks generate substantial revenue through market funding, coupled with
meticulous oversight of credit returns to mitigate the emergence of non-performing assets.
During this critical phase, a comprehensive evaluation of both financial and non-financial
data furnished by companies becomes instrumental in guiding credit allocation decisions
(Villalpando 2014).

The results indicate that both financial and non-financial data have a significant impact
on credit decisions. The analysis demonstrates that these data positively influence credit
decisions, with non-financial variables having the strongest effect, followed by financial and
financial ratio variables. Considering all variable groups, the regression analysis confirms
that evaluating these data together yields more effective credit decisions, with the highest
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model success rate compared with separate analyses. Thus, it can be concluded that the
financial and non-financial data provided by enterprises in Turkey have a positive effect on
their credit limits and the banks’ credit allocation decisions.

In juxtaposition with the extant literature that scrutinizes the influences of both finan-
cial and non-financial variables on credit determinations in specific sectors, the analytical
results of this study elucidate certain variables previously unexplored in such contexts yet
demonstrably impactful on credit decisions. Beyond confirming the findings of prior re-
search, these results introduce novel variables into the discourse. Given the heterogeneous
sub-sector distribution within the service industry, yet the financial congruities among
them, the introduction of these unprecedented financial and non-financial variables can
potentially enrich the credit decision-making paradigm within the sector (Melnyk et al.
2020; Ceran 2019).

For firms operating in the service sector, the establishment of robust, enduring, and
efficacious credit relationships with financial institutions necessitates the comprehensive
management of both financial and non-financial reputational factors. This involves the
meticulous maintenance of financial records, robustness of key financial metrics, and trans-
parency of non-financial data. Such strategic efforts contribute substantively to constructing
a favorable organizational image and reputation from a banking perspective. By show-
casing their management of both financial and non-financial variables, firms can position
themselves as credible and reliable partners for financial institutions, thereby facilitating
long-term, mutually beneficial relationships.

In conclusion, this study underscores the criticality of a multifaceted set of variables,
including financial items, financial ratios, and non-financial data, in shaping credit decisions
of enterprises in the service sector. These findings emphasize that firms must proactively
manage their financial and market reputations to forge durable and advantageous credit
affiliations with banks. By providing comprehensive and verifiable financial and non-
financial data, these enterprises can increase their creditworthiness, thereby extending
their access to higher credit limits and sustaining a continuum of support from financial
institutions.

A salient contribution of this study lies in its nuanced approach to disentangling
the intertwined influences of financial and non-financial data on credit determinations.
Unlike previous studies, which often conducted isolated examinations of these variables
or focused within narrow industry boundaries, the current research adopts a distinctive
approach by integrating these variables comprehensively, thereby yielding a more holistic
comprehension. Specifically, our findings illuminate the differential weightings banks ac-
cording to these data types, with non-financial metrics emerging as surprisingly dominant
determinants. This underscores a shifting paradigm in credit decision-making processes,
where subjective and qualitative indicators are increasingly pivotal. Moreover, by introduc-
ing previously uncharted financial and non-financial variables into the credit evaluation
matrix, this study advances the academic discourse and provides pragmatic insights for
the banking sector. The integration of these innovative variables serves not only as an
augmentation to the existing scholarly landscape but also equips financial institutions with
refined tools and metrics, optimizing their credit allocation endeavors.

As a result, this study’s insights offer significant implications for banks and policy-
makers, particularly in enhancing credit assessment models and fostering service sector
growth. Banks can utilize these findings to incorporate a wider range of non-financial
metrics in their credit evaluations, potentially improving risk assessment accuracy and
supporting viable enterprises. Policymakers could leverage these insights to develop poli-
cies promoting transparency in non-financial reporting, aiding in more informed credit
decisions, especially beneficial to SMEs.

4.2. Limitations and Future Study

Although insightful, this study had several limitations that warrant further discussion.
The analysis was confined to the service sector and based on limited sample size, thus
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constraining the generalizability of the findings beyond this specific industry. Furthermore,
this study focuses solely on the impact of variables on credit decisions, and there may be
limitations in the applicability of statistical methods to real-world scenarios. The missing
values in the dataset further complicate the interpretation of the results.

Notwithstanding these limitations, this study significantly augments the existing
literature by comprehensively examining the interplay between financial items, financial
ratios, and non-financial variables affecting credit decisions, a domain not extensively
explored in previous studies. This study offers both theoretical and empirical contributions
by illuminating how various financial and non-financial metrics influence credit decisions
within the SME segment of the Turkish service sector. These insights can serve as valuable
guides for financial institutions to design credit evaluation models based on the unique
characteristics of these enterprises.

A key contribution of this study is its nuanced exploration of the relationships between
multiple variables and credit decisions. This comprehensive approach not only fills a
research gap but also advances our understanding of the nuanced mechanisms driving
credit allocation in Turkey’s service sector. Additionally, a comparative analysis of the three
variable categories enriches the literature by delineating their relative impacts on credit
decisions and emphasizing the need for a multifaceted approach to credit evaluations.

Despite its narrow focus on SMEs in a specific sector, this study offers actionable
insights for financial institutions seeking to refine credit allocation mechanisms. This
underscores the importance of crafting credit evaluation models tailored to the idiosyncratic
needs and characteristics of SMEs in the service sector.

In conclusion, this study posits that non-financial variables have a more pronounced
influence on credit decisions than financial variables. This counterintuitive finding paves
the way for future research to further explore the relevance of non-financial metrics in credit
decision-making, a relatively underexplored area in the existing literature. Overall, this
study extends our understanding of the multifaceted influences on credit decisions in the
service sector and lays the groundwork for subsequent investigations in other industries.

Theoretically, this research challenges and extends existing credit allocation theories by
emphasizing non-financial variables, thereby enriching the literature on financial decision-
making. However, the study’s focus on Turkey’s service sector and a limited sample
size calls for further research in diverse settings to validate these findings universally.
Such explorations could broaden the theoretical and practical understanding of credit risk
assessments globally.
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Non-Performing Loans with the Support of Learning Artificial Intelligence within the Scope of Digitalization in Banking). Ph.D.
thesis, Marmara Üniversitesi, Social Science Institute, İstanbul, Turkey; pp. 122–28.
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Management and Economics Engineering 11: 189–208. [CrossRef]
Konstantinidis, Christos V., Anastasia Tsolaki, and Nikolaos Giovanis. 2021. Estimating Competitiveness Relations Between Firms of a

Multinational Group of Clothing And Footwear Manufacturing Industry In Greece. TEL 4: 789–802. [CrossRef]
Lam, Weng Siew, Weng Hoe Jaaman, and Kah Fai Liew. 2021. Performance Evaluation of Construction Companies Using Integrated

Entropy–fuzzy Vikor Model. Entropy 3: 320. [CrossRef] [PubMed]
Mbona, Reginald Masimba, and Kong Yusheng. 2019. Financial statement analysis: Principal component analysis (PCA) approach case

study on China telecoms industry. Asian Journal of Accounting Research 4: 233–45.
Melnyk, Mariana, Iryna Leshchukh, Tetyana Medynska, and Nadiya Rushchyshyn. 2020. Potential of the sector of financial services in

view of the socio-economic growth of Ukrainian regions. Economic Annals-XXI 185: 144–54.
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Abstract: Gender diversity is increasingly recognized as a critical element in corporate management.
However, existing research on its impact on firm performance demonstrates inconsistency in a
global context. This study employs 1990 publicly listed Japanese companies from 2006 to 2023 and
examines the effect of board gender diversity on firm performance in Japan. Findings from the
fixed-effects regression model revealed a significant negative impact of board gender diversity on
firm performance. This adverse correlation is more pronounced in smaller firms, those with greater
leverage and reduced institutional ownership, and regulated and consumer-focused industries,
particularly pre-COVID-19. The detrimental impact of board gender diversity on firm performance is
transmitted via corporate social responsibility and firm innovation instead of board independence
or CEO duality. Notably, the two-stage least squares estimation addresses potential endogeneity,
employing an equal opportunity policy as an instrumental variable. Moreover, the robustness of our
results is affirmed via the substitution of return on equity for return on assets as an indicator of firm
performance. Lastly, our analysis does not reveal a U-shaped nonlinear relationship between board
gender diversity and corporate performance. As Japan progressively promotes women’s participation
in corporate governance, this research bears significant implications for corporate leaders, investors,
and policymakers in Japan.

Keywords: gender diversity; firm performance; corporate governance; fixed-effects regression; two-
stage least squares; instrumental variable; Chow’s test; Japan

JEL Classification: G30; J16; M14

1. Introduction

Board attributes have consistently garnered extensive research interest as a pivotal
intrinsic element of corporate governance. Recently, the gender diversity of corporate
boards has elicited heightened academic focus. Credit Suisse’s (2021) Gender 3000 report
reveals that the global proportion of female directors on corporate boards escalated from
15.1% in 2015 to 24.0% in 2021, denoting a 59% augmentation. Specifically, this metric
surged from 3.6% to 11.5% in Japan, a 219% increase. In comparison, it rose from 23.5%
to 34.4% in Europe, while in North America, it advanced from 17.5% to 28.6% (Credit
Suisse 2021). Consequently, Japan emerges as the leader in accelerating gender diversity.
Its influence may diverge from that in Europe and North America. Thus, comprehending
the implications of board gender diversity in Japan is imperative.

In the present study, we delineate four motivations underpinning the investigation.
Firstly, Japan has witnessed an extraordinary surge in the ratio of female directors on
corporate boards over a notably condensed timeframe. Such accelerated evolution affords
a singular lens to examine the repercussions of this rapid alteration in board structure.
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EgonZehnder (2022) delineates that the presence of at least one female director on Japanese
boards has augmented by 21.4% relative to 2020, starkly contrasting to the global median
escalation of merely 4.7%, highlighting Japan’s significant progress in the recent two years.
Secondly, Japan’s corporate culture has traditionally been male-dominated, and patriarchal
norms often characterize its society. Therefore, the increasing presence of female directors
in such an environment could have different implications than in other countries with
different cultural and corporate dynamics. Thirdly, the Japanese administration has overtly
endeavored to bolster female participation in leadership roles. As per a draft plan by
the Gender Equality Bureau (Reynolds 2023), Japan aspires for women to constitute at
least 30% of corporate directorships by 2030. This governmental pledge and its ensuing
influence on corporate stewardship and efficacy present a fertile terrain for exploration.
Fourthly, Japan is one of the world’s largest economies. Understanding how gender
diversity impacts corporate performance in such a significant economy can offer valuable
insights for economic policies and corporate strategies within and outside Japan.

Numerous investigations have examined the influence of female directors on firm
performance, yet their conclusions vary, which are attributable to disparate societal norms,
attitudes toward women, and supportive policies across nations. A wealth of empirical
research indicates that board gender diversity positively correlates with firm performance.
Notably, Carter et al.’s (2003) analysis of 1000 Fortune-selected firms in 1997, Terjesen
et al.’s (2016) examination of 3876 publicly traded entities across 47 nations, and Liu et al.’s
(2014) study of over 2000 listed companies in China from 1999 to 2011 all affirm this
beneficial effect of female directorship on firm performance. Conversely, other studies
present differing views, suggesting female board members’ detrimental or negligible impact
on firm performance. For instance, Carter et al. (2010) identified no significant link between
female directors and the financial performance of major U.S. corporations. Adams and
Ferreira (2009) found a negative association and posited that increased gender diversity on
boards might lead to excessive governance in these firms.

While there is a considerable corpus of literature on board gender diversity, its specific
examination in Japan, especially concerning the influence of female directors on corpo-
rate performance, remains underexplored. Japan has recently shown a commitment to
enhancing female representation in boardrooms. Prime Minister Shinzo Abe, in his ad-
dress at the Global Leaders Meeting on Gender Equality and Women’s Empowerment on
27 September 2015, stated an objective to have women fill about 30% of leadership roles in
Japanese society by 2020. Nevertheless, this target was not attained by the designated year.
Morgan Stanley Capital International’s (2020) report suggests that maintaining the current
trajectory, achieving a 30% female representation on corporate boards might be realized
by 2029, with a potential to reach 50% by 2045. Nonetheless, Japan’s patriarchal societal
structure continues to present significant barriers to women’s professional ascension.

This study utilizes a sample of 1990 listed Japanese companies from 2006 to 2023
to explore the nexus between board gender diversity and corporate performance, offer-
ing novel insights into Japanese corporate governance. Our empirical findings, derived
from the fixed-effects regression model, indicate that board gender diversity adversely
affects corporate performance in Japan. This diversity is quantified by the proportion of
female directors and a binary variable denoting their presence on the board. To address
potential endogeneity, we apply a two-stage least squares (2SLS) regression model, which
corroborates the negative impact of board gender diversity on firm performance. This
outcome persists even when altering corporate performance metrics from return on assets
(ROA) to return on equity (ROE). In addition, our analysis does not reveal a nonlinear
quadratic relationship between board gender diversity and corporate performance. The
detrimental impact of board gender diversity on firm performance is more marked in
smaller companies compared to larger ones, in firms with higher leverage as opposed
to those with lower leverage, in firms with diminished institutional ownership relative
to those with augmented ownership, in regulated and consumer-oriented industries in
contrast to innovation-driven industries and was notably more pronounced pre-COVID-19
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than during the COVID-19 period. The mediating effects are more pronounced via environ-
mental, social, and governance (ESG) factors and weakly via research and development
(R&D) rather than board independence and CEO duality.

Our study contributes to the literature on corporate governance in Japan. Despite
numerous global studies exploring the correlation between board gender diversity and
corporate performance, the results remain inconsistent. Moreover, given Japan’s leading
pace in augmenting gender diversity, comprehending its gender-specific effects is vital.
However, this aspect has scarcely been the focus of academic scrutiny in Japan. Therefore,
our study addresses this gap in the literature concerning the influence of board gender
diversity on Japanese corporate performance. Additionally, how firm size, leverage, institu-
tional ownership, and sector classification moderate the impact of gender diversity on firm
performance in Japan remains unexplored. Furthermore, the COVID-19 pandemic, an un-
precedented global health emergency, necessitates additional exploration of its implications
for gender diversity and firm performance in Japan.

The subsequent sections of this paper are structured as follows: Section 2 presents
a background of corporate governance and board gender diversity in Japan. Section 3
examines the theoretical framework regarding the impact of board gender diversity on
firm performance. Section 4 delves into a review of the extant literature and formulates our
hypotheses. Section 5 delineates the data and regression models employed in our analysis.
Section 6 presents and discusses the regression results. Finally, Section 7 concludes our
research, synthesizing our findings and implications.

2. Background

Japanese corporate governance has traditionally emphasized long-term relationships
and consensual decision-making, epitomized by the “keiretsu” system (Aman et al. 2021).
Historically, Japan has adhered to a stakeholder-centric governance model, privileging
the needs of a broad array of stakeholders over shareholder primacy. Japanese firms
have been intricately connected with their primary banks, suppliers, and clients, fostering
robust, long-standing alliances. This interdependence between companies and stakeholders
has distinctly influenced Japan’s corporate governance, setting it apart from Western
countries. Nevertheless, Japan’s corporate governance landscape has witnessed substantial
transformations in response to evolving global contexts. Efforts have been made to align
Japanese corporate governance norms with global standards. The 2021 revision of Japan’s
Corporate Governance Code marked a significant step in this direction, enhancing board
independence, fostering diversity, and emphasizing sustainability and ESG considerations
(Sawaji 2021).

Augmenting board diversity can be attained by enhancing gender diversity. The
Japanese government has set a target of achieving 30% female representation on the boards
of companies listed on the prime market by 2030 (Reynolds 2023). The Global Gender
Gap Report 2023 indicates that Japan’s progress in gender equality lags behind its G7
counterparts (World Economic Forum 2023). In 2023, Japan scored 0.65 in the gender gap,
positioning it 125th among 146 countries assessed in the report. This figure is markedly
below the G7 average of 0.76. The gender inequality in Japan predominantly arises from
women’s limited participation in the workforce and scarce representation in political
spheres. Per World Bank’s (2023) data, the proportion of female to male labor force
participation escalated from 64% in 2000 to 76% in 2022. The Gender Equality Bureau’s
(2022) analysis of gender diversity reveals substantial progress: the proportion of Tokyo
Exchange-listed companies lacking female board members has markedly reduced, dropping
from 84% in 2013 to 18.7% in 2022. However, women occupied 21.3% of managerial roles
and a mere 6.2% of board positions in 2021 (Sawaji 2021). Furthermore, while the gender gap
in school enrollment is minimal, a significant gap persists in higher education, particularly
at the postgraduate level, where Japan reports the lowest proportion of female master’s
graduates among OECD countries (OECD 2023).

116



J. Risk Financial Manag. 2024, 17, 20

While Japan has exerted efforts to enhance corporate governance and advance gender
diversity, considerable progress is yet to be realized. Despite these initiatives, entrenched
gender norms and societal expectations remain impediments to enhancing gender diversity
(Binder et al. 2019). Cultural and infrastructural transformations are gradual processes,
necessitating persistent endeavors to guarantee enduring advancements in these domains.
The Japanese government might encounter obstacles in fulfilling the 30% female director-
ship objective by 2030, which is attributable to a limited pool of qualified female candidates.

3. Theoretical Framework
3.1. Resource Dependence Theory

Numerous theories address the influence of board gender diversity on corporate
performance. The resource dependence theory, a sociological and organizational concept,
argues that organizations require external resources for success and sustainability (Pfef-
fer and Salancik 1978). Consequently, companies strive to appoint directors capable of
providing these essential resources. Prior research indicates that boards with diverse mem-
bership amalgamate individuals with varied backgrounds, skills, experiences, expertise,
and viewpoints, creating a more extensive resource base. This diversity facilitates more
effective decision-making and improves corporate outcomes (Chan and Li 2008; Berger
et al. 2014; Delis et al. 2017; Kim and Starks 2016). As women increasingly contribute to
societal roles, female directors offer new resources, enabling firms to adapt to contemporary
challenges. For instance, Brahma et al. (2021) analyzed FTSE 100 companies in the UK
and observed a positive correlation between board gender diversity and firm performance.
From a legitimacy standpoint, a gender-diverse board potentially enhances a firm’s inter-
actions with stakeholders, including customers, employees, and communities. With the
growing prominence of female consumers, gender diversity on boards can help maintain
relationships with female clientele or comprehend female consumer purchasing patterns
(Süssmuth-Dyckerhoff et al. 2012).

3.2. Agency Theory

Agency theory, as proposed by Jensen and Meckling (1976), delves into potential
conflicts of interest arising from the division of ownership and control between principals
(shareholders) and agents (management). A critical function of directors is to alleviate these
agency issues via managerial monitoring. Within gender diversity, agency theory facilitates
an exploration into whether female directors enhance managerial monitoring efficiency.
One segment of literature posits that boardroom gender diversity positively influences
corporate performance due to increased vigilance from women directors, the introduction
of novel viewpoints, and the avoidance of entrenched “old boys’ networks” (Adams and
Ferreira 2009; Lara et al. 2017; Gul et al. 2011). Conversely, another body of literature
contends that board gender diversity adversely affects companies, attributed either to a
scarcity of suitably qualified female directors (Ahern and Dittmar 2012; Bøhren and Staubo
2014) or to potential over-monitoring by women directors (Adams and Ferreira 2009).

3.3. Behavioral Theory

The behavioral theory of the firm, as articulated by Cyert and March (1963), pro-
poses that firm decision-makers are constrained by their capabilities. Research on group
diversity suggests that member heterogeneity can stimulate information processing and
enhance problem-solving (Hoffman and Maier 1961; Van Knippenberg and Schippers 2007),
leading to heightened innovation efficiency and improved performance (Chen et al. 2018;
Alesina and La Ferrara 2005). However, counterarguments exist, contending that diversity
may escalate communication expenses and even foster conflicts, thereby deteriorating
performance (Wagner et al. 1984; Zenger and Lawrence 1989; Alesina and La Ferrara 2005).
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3.4. Critical Mass Theory

Critical mass theory emphasizes the need to attain minimum female representation
in the boardroom. This threshold, commonly termed critical mass, is deemed crucial for
an organization to reap the benefits of gender diversity (Kanter 1977). Absent from this
critical mass, including one or two women on a board might be perceived as tokenistic
or symbolic merely to satisfy regulatory requirements. As a result, the effectiveness and
influence of female directors can be diminished and marginalized in a predominantly male
boardroom (Schwartz-Ziv 2017; Konrad et al. 2008). Conversely, appointing three or more
women to a board yields more significant contributions and notable positive impacts (Owen
and Temesvary 2018). Recent research has pivoted toward identifying this threshold and
examining the veracity of the critical mass theory. The threshold is frequently defined as at
least three or 30% female directors, equating to roughly one-third of most boards (Torchia
et al. 2011; Joecks et al. 2013). In light of these findings, several countries are adopting
affirmative measures by implementing gender quotas of 30–40% in boardrooms (Terjesen
and Sealy 2016). Nonetheless, critics of these policies argue that companies remain dubious
about the efficacy of such regulations, their alignment with corporate structures, and the
variability in social, cultural, and legal nuances across different nations (Carter et al. 2010).

In summary, theoretical models forecast both advantageous and detrimental effects
of board gender diversity on corporate performance, with empirical studies yielding
mixed outcomes.

4. Literature Review and Hypotheses Development

The correlation between board gender diversity and corporate performance constitutes
a significant and debated topic. The subsequent sections comprehensively review pertinent
empirical research in this domain.

4.1. Positive Impact of Board Gender Diversity on Firm Performance

Numerous country-specific analyses substantiate the beneficial impact of board gender
diversity on corporate performance, with evidence from Mauritius (Mahadeo et al. 2012),
China (Liu et al. 2014), France (Sabatier 2015), the UK (Brahma et al. 2021), Russia (Garanina
and Muravyev 2021), and India (Sanan 2016; Sarkar and Selarka 2021). These empirical
investigations employ accounting performance measures such as ROA and ROE, market
performance metric Tobin’s Q (Tobin 1969), or a blend of these indicators to assess corporate
performance. They consistently illustrate a positive correlation between enhanced corporate
performance and an increased proportion of female directors on boards.

Findings from several multi-country investigations also indicate that gender diversity
on boards enhances corporate performance. Low et al. (2015) conducted an extensive
analysis of board diversification and corporate performance in East Asia, assessing firms
in Hong Kong, South Korea, Malaysia, and Singapore. Their study reveals a positive
influence of female directors on ROE, particularly in nations where cultural norms limit
women’s economic involvement. Belaounia et al. (2020), examining listed companies across
24 countries, ascertain that firms with a higher fraction of female directors exhibit superior
overall performance, with the addition of a female board member boosting ROA and
Tobin’s Q. Terjesen et al.’s (2016) research on companies from 47 countries demonstrates
that gender-diverse boards significantly enhance corporate performance, with increases
in the percentage of female directors correlating with improvements in Tobin’s Q and
ROA. Pucheta-Martínez and Gallego-Álvarez (2020) analyzed firms from 34 countries and
confirmed that the presence of women on boards is associated with better firm performance.
In light of the literature reviewed, we propose our first hypothesis.

Hypothesis 1. Board gender diversity has a positive impact on firm performance.
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4.2. Negative Impact of Board Gender Diversity on Firm Performance

Various empirical studies across different national contexts support the notion that
board gender diversity negatively impacts corporate performance. Shehata et al. (2017)
examine UK-listed companies using four gender diversity measures, all indicating a signifi-
cant negative correlation with corporate performance. Mirza et al. (2012) analyze a sample
of Pakistani companies, discovering negative correlations between female directorship and
performance indicators such as ROE and ROA, attributing this to potential information
deficits, risk aversion, and societal barriers women face. Similarly, Akram et al. (2020) ob-
serve that female directors in Pakistani firms lead to reduced corporate value. In Malaysia,
Ahmad et al. (2020) report that an increased proportion of female directors correlates with
a decline in ROA. Likewise, Lim et al. (2019) find a negative impact of female directors
on Tobin’s Q, and Abdullah (2014) identifies a significant negative relationship between
board gender diversity and ROA and Tobin’s Q. Based on the literature discussed above,
we propose our second hypothesis.

Hypothesis 2. Board gender diversity has a negative impact on firm performance.

4.3. Neutral Impact of Board Gender Diversity on Firm Performance

Country-specific investigations suggest a neutral link between board gender diversity
and corporate performance. Kagzi and Guha (2018), assessing listed Indian companies,
observe no significant influence of board gender diversity on company performance be-
fore and after implementing the 2013 Companies Act, which mandated certain levels of
board gender diversity. This finding aligns with earlier studies. Marinova et al. (2016),
examining firms in the Netherlands and Denmark, indicate that board gender diversity
bears no correlation with corporate performance. Yasser (2012), in an analysis of Pakistani
listed companies, detects no association between board gender diversity and corporate
performance. Likewise, research in other nations corroborates this absence of correlation.
In the United States, Carter et al. (2010) find no empirical evidence supporting a positive or
negative causal link between board gender diversity and corporate performance. Ararat
and Yurtoglu (2021) investigated Turkish-listed companies. They ascertained no effect of
female board presence on Tobin’s Q. Similarly, Unite et al. (2019), studying Philippine
companies, conclude that board gender diversity does not significantly affect ROA, ROE,
or Tobin’s Q. These observations underpin our third hypothesis.

Hypothesis 3. Board gender diversity has a neutral impact on firm performance.

While the scholarly community remains engaged with the effects of board gender
diversity on corporate performance, the vast array of empirical studies yields divergent
outcomes without a clear consensus. The existing research on the interplay between
corporate gender diversity and firm performance in Japan is notably scarce. For instance,
Nakagawa and Schreiber (2014), utilizing data from Toyo Keizai and Nikkei NEEDS on
745 Japanese-listed companies, identify a significant positive correlation between firm
performance and the ratio of female managers and gender diversity. However, their
dataset is dated and no longer reflective of Japan’s current gender diversity landscape.
Another investigation by Tanaka (2019) suggests that outside female directors enhance firm
performance, yet this study focuses primarily on the factors leading to female directorship
rather than their impact. Additionally, Tanaka’s research, covering the period from 2006
to 2015, does not represent more recent trends. Our study, examining Japanese firms in
the recent timeframe of 2006–2023, presents contrasting findings to the two studies above
by demonstrating a negative effect of board gender diversity on corporate performance
in Japan.

119



J. Risk Financial Manag. 2024, 17, 20

5. Research Design
5.1. Data Sample

The board composition and financial metrics of Japanese publicly traded firms were
extracted from Bloomberg Terminals. Table 1 summarizes the definitions of these variables.
The dataset obtained from Bloomberg includes ROA, ROE, market capitalization, total
assets, total debts, fixed assets, the total number of directors, the number of female directors,
the number of independent directors, the director age, the dual role of the CEO as board
chairman, the firm’s explicit commitment to non-discrimination practices, the cash holding,
the institutional ownership, R&D, and ESG scores. The final sample includes 25,363 firm-
year observations, spanning 2006 to 2023, representing 1990 Japanese entities listed on the
Tokyo Stock Exchange.

Table 1. Variable definitions.

Variable Definition

ROA The net income divided by the total assets.

ROE The net income divided by the shareholder’s equity.

MktCapChg The annual percentage change in the market capitalization.

FemaleFrac The number of female directors divided by the total number of directors

FemaleDum The dummy variable equals one in the presence of at least one female director and zero in its absence.

FirmSize The natural logarithm of the total assets.

FirmLev The total debts divided by the total assets.

Tangibility The fixed assets divided by the total assets.

BoardSize The total number of directors.

BoardInd The number of independent directors divided by the total number of directors.

DirAge The average director’s age.

Duality The dummy variable is set to one if the company’s CEO also serves as the board chair; alternatively, it takes a
value of zero.

EqOpp The dummy variable is assigned a value of one if the firm explicitly commits to non-discrimination against any
group of people; in other cases, it is set to zero.

CashHold The cash and cash equivalents divided by the total assets.

InstiOwn Institutional ownership measures the percentage of a company’s outstanding shares that institutional
investors hold.

RD The research and development expenditure divided by the net sales.

ESG A metric that evaluates a company’s performance in three key areas: environmental, social, and governance.

The table summarizes the definitions of the variables, where the variable names are italicized.

5.2. Fixed-Effects Model

In our analysis, we employed the fixed-effects model, Chow’s (1960) test, and the 2SLS
model to examine the effect of board gender diversity on corporate performance. Each
firm possesses distinct attributes, such as management style, corporate culture, or brand
reputation, which may not be directly quantifiable or observable. As shown below, the firm
fixed-effects model accommodates these unseen characteristics, presuming their constancy
over time.
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Per fi,t = β0 + β1Femalei,t + β2FirmSizei,t + β3FirmLevi,t + β4Tangibilityi,t
+β5BoardSizei,t + β6BoardIndi,t + β7DirAgei,t + β8Dualityi,t + FirmFE + εi,t

(1)

where the subscript i represents firm i, and the subscript t represents year t. Perf denotes
firm performance proxied by ROA or ROE. Female denotes the board gender diversity,
proxied by FemaleFrac or FemaleDum. FirmFE denotes the firm-fixed-effects. The definitions
for all other control variables in Equation (1) are provided in Table 1.

5.2.1. Dependent Variable

Per empirical research, ROA is widely utilized as a metric for corporate performance
(Adams and Ferreira 2009; Sanan 2016; Terjesen et al. 2016; Brahma et al. 2021; Sarkar and
Selarka 2021). Aligning with these studies, ROA is employed in our analysis to gauge firm
performance. As an accounting-based metric, ROA represents a company’s net income
proportion to its total assets. Barber and Lyon (1996) highlighted ROA’s merits in evaluating
corporate performance. They reveal that ROA facilitates comparative analysis of one
company’s performance against others. Furthermore, García-Meca et al. (2015) contended
that the application of ROA enables the examination of potential market irregularities that
might impede the complete, accurate reflection of information in stock prices.

Additionally, we utilize ROE for robustness assessments in measuring corporate per-
formance. ROE, another accounting-based metric, is the ratio of net income to shareholder’s
equity. This application of ROE aligns with preceding studies on firm performance (Low
et al. 2015; Sabatier 2015; Garanina and Muravyev 2021).

5.2.2. Explanatory Variables

Board gender diversity is measured via two approaches: (1) the proportion of female
directors on the board, calculated by dividing the number of female directors by the total
number of directors, and (2) the dummy variable, set to one in the presence of at least one
female director, and zero in its absence.

5.2.3. Control Variables

In our analysis, control variables are bifurcated into two classifications: firm character-
istics and board characteristics. The control variables about firm characteristics encompass
firm size, financial leverage, and asset tangibility. Those relating to board characteristics
include board size, board independence, average director age, and the dual role of the CEO
as board chairman.

The initial category of control variables pertains to firm characteristics. This research
quantifies firm size using the natural logarithm of total assets. Doğan (2013) demonstrated
a positive correlation between firm size and performance. Financial leverage, the debt ratio,
is calculated as total debts over total assets. Das et al. (2022) identified a negative influence
of firm leverage on performance. Asset tangibility is derived by dividing fixed assets by
total assets. Lee (2010) presented findings indicating a negative effect of fixed asset capital
intensity on firm performance.

The second set of control variables relates to board characteristics. Existing empirical
research demonstrates that board size adversely affects corporate performance. Conyon and
Peck (1998) showed that the correlation between board size and company performance is
typically negative. Guest (2009) similarly reported a significant negative effect of board size
on firm performance. The influence of independent directors on company performance has
been thoroughly investigated in corporate governance literature, yielding mixed outcomes
(Aluchna et al. 2020; Reguera-Alvarado and Bravo 2017; Zeng 2018).
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5.3. Chow’s Test

Chow’s (1960) test is a statistical test used to determine whether there are significant
differences in the intercepts and slopes of two linear regressions across different subgroups.
For example, in contrasting regression coefficients between small and large firm subgroups,
we designate the FSD as one for firms surpassing the median size in a given year and zero
for those below. Subsequently, we undertake the prescribed Chow’s test by integrating a
sequence of interactions with FSD.

Per fi,t = β0 + β1Femalei,t + β2FirmSizei,t + β3FirmLevi,t + β4Tangibilityi,t
+β5BoardSizei,t + β6BoardIndi,t + β7DirAgei,t + β8Dualityi,t
+θ0FSDi,t + θ1(FSDi,t × Femalei,t) + θ2(FSDi,t × FirmSizei,t) + θ3(FSDi,t × FirmLevi,t)
+θ4(FSDi,t × Tangibilityi,t) + θ5(FSDi,t × BoardSizei,t) + θ6(FSDi,t × BoardIndi,t)
+θ7(FSDi,t × DirAgei,t) + θ8(FSDi,t × Dualityi,t) + FirmFE + εi,t

(2)

Rather than evaluating the joint hypothesis that all θ values are null, we focus on
discerning the differential influence of gender diversity. Hence, we examine the null
hypothesis asserting θ1 equals zero and subsequently disclose corresponding F-values and
p-values. A comparable methodology is employed for other subgroup comparisons.

5.4. Instrumental Variables and 2SLS Model

An endogeneity issue may exist between board gender diversity and corporate per-
formance, suggesting a bidirectional causality: board gender diversity might influence
corporate performance, and conversely, corporate performance could impact board gender
diversity (Hermalin and Weisbach 2003; Adams and Ferreira 2009). In line with Carter et al.
(2003), we employed a 2SLS regression to tackle this endogeneity concern. The regression
equations are delineated as follows:

Femalei,t = β0 + β1EqOppi,t + β2FirmSizei,t + β3FirmLevi,t + β4Tangibilityi,t
+β5BoardSizei,t + β6BoardIndi,t + β7DirAgei,t + β8Dualityi,t + FirmFE + εi,t

(3)

Per fi,t = β0 + β1 ˆFemalei,t + β2FirmSizei,t + β3FirmLevi,t + β4Tangibilityi,t
+β5BoardSizei,t + β6BoardIndi,t + β7DirAgei,t + β8Dualityi,t + FirmFE + εi,t

(4)

where all variables remain identical to those in Equation (1), except EqOpp represents a
dummy variable assigned one if the firm explicitly pledges non-discrimination toward any
group and zero otherwise. In the first stage, Equation (3) employs regression to estimate
board gender diversity, utilizing the equal opportunity policy as the instrumental variable.
The second stage employs the predicted gender diversity from the first stage, ˆFemale, to
forecast firm performance in Equation (4). As Adams and Ferreira (2009) noted, identifying
an instrumental variable is challenging, given that other governance features pertinent to
endogenous issues are already incorporated in the performance regression. Our research
selects the equal opportunity policy as an instrumental variable. We posit that firms
actively pursuing non-discrimination policies are more inclined to appoint female directors,
reflecting a corporate culture less prone to gender bias and discrimination. Additionally,
the equal opportunity policy does not directly influence corporate performance.

5.5. Nonlinear Quadratic Model

Joecks et al.’s (2013) empirical investigation into the critical mass theory posited
that the link between board gender diversity and corporate performance is not linear,
potentially following a U-shaped pattern. This theory contends that the unique abilities
and skills women contribute to a group become significantly impactful only once their
representation reaches a certain critical threshold. Consequently, we explore the potential
for a U-shaped correlation between board gender diversity and corporate performance, as
delineated below.
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Per fi,t = β0 + β1FemaleFraci,t + β2FemaleFrac2
i,t + β3FirmSizei,t + β4FirmLevi,t

+β5Tangibilityi,t + β6BoardSizei,t + β7BoardIndi,t + β8DirAgei,t
+β9Dualityi,t + FirmFE + εi,t

(5)

where all variables remain identical to those in Equation (1), except FemaleFrac2 denotes the
squared term of FemaleFrac.

6. Empirical Results and Discussion
6.1. Descriptive Statistics

Table 2 presents the descriptive statistics for the variables under study. The mean ROA
is recorded at 3.81%, lower than its standard deviation of 4.69%. A meager 5.00% of board
directors are female, yet 35.0% of firms have at least one woman on their board. The average
financial leverage ratio is calculated to be 18.44%. Asset tangibility is noted at 25.86%.
Boards typically comprise about nine directors, with 23.12% classified as independent. The
average age of directors is approximately 59.57 years. About 52% of corporations have
adopted an equal opportunity policy. Lastly, the variance inflation factor test confirms no
multicollinearity concerns in this research, as indicated by all variance inflation factors
remaining under five.

Table 2. Descriptive statistics of variables.

Variable Obs. Mean Std. Dev. Min P25 Median P75 Max

ROA 25,363 3.813 4.693 −12.572 1.379 3.324 5.820 20.213
ROE 25,363 7.446 9.822 −37.329 3.659 7.114 11.439 37.418
MktCapChg 21,901 0.112 0.391 −0.548 −0.123 0.038 0.252 1.793
FemaleFrac 25,363 5.002 7.832 0.000 0.000 0.000 10.000 96.000
FemaleDum 25,363 0.350 0.477 0.000 0.000 0.000 1.000 1.000
FirmSize 25,363 11.588 1.832 7.925 10.346 11.346 12.615 16.635
FirmLev 25,363 18.443 17.044 0.000 3.615 14.309 28.722 68.934
Tangibility 25,363 25.859 18.254 0.324 11.463 24.256 37.059 76.667
BoardSize 25,363 8.972 2.879 4.000 7.000 9.000 11.000 18.000
BoardInd 25,363 23.122 16.838 0.000 10.000 22.222 33.333 66.667
DirAge 25,363 59.574 4.716 43.690 57.380 60.333 62.667 69.000
Duality 25,363 0.779 0.415 0.000 1.000 1.000 1.000 1.000
EqOpp 22,274 0.517 0.500 0.000 0.000 1.000 1.000 1.000
CashHold 25,363 18.706 14.211 1.402 8.423 14.919 24.751 70.160
InstiOwn 22,263 35.797 18.661 2.341 21.491 33.938 48.938 83.894
RD 23,450 1.707 2.749 0.000 0.000 0.509 2.391 15.640
ESG 5696 2.237 1.044 0.750 1.365 1.995 2.910 5.150

The table reports descriptive statistics of the variables, where the variable names are italicized.

Figure 1 illustrates the temporal progression of FemaleFrac from 2006 to 2023 among
Tokyo Exchange-listed firms. FemaleFrac is the ratio of female directors to the overall
director count. Accompanying standard error bars are also depicted. FemaleFrac remained
subdued until 2012 and escalated exponentially in the recent decade. Despite this rapid
growth, the overall level remains below 14% by 2023.
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Figure 1. Time evolution of the fraction of female board directors in Japan. 
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6.2. Fixed-Effects Regressions

Table 3 presents the regression outcomes from the firm fixed-effects model, follow-
ing Equation (1). Irrespective of being quantified by the proportion of female directors
or via a dummy variable, the findings indicate a negative association between board
gender diversity and corporate performance, with the gender diversity coefficient being
statistically significant at the 1% or 5% level. In terms of economic importance, a one stan-
dard deviation shift in FemaleFrac, amounting to 7.832%, correlates with a 0.10% decrease
(=7.832% × 0.013) in ROA, representing approximately 2.7% of the average ROA (3.813%).
Similarly, a transition of FemaleDum from zero to one corresponds to a 0.156% reduction
in ROA, equating to roughly 4.1% of the mean ROA. In summary, the negative impact
of board gender diversity on corporate performance is statistically substantial and bears
mediocre economic implications.

The reasons for the negative relationship between board gender diversity and firm
performance are manifold. Firstly, the presence of female directors may introduce en-
hanced supervision and excessive oversight, potentially undermining organizational effi-
cacy. Adams and Ferreira (2007) posited that increased oversight could disrupt the flow
of communication between directors and management during decision-making processes,
adversely impacting firm performance. Moreover, over-monitoring could erode share-
holder value (Almazan and Suarez 2003). Secondly, the social identity theory elucidates the
dynamics and implications of social identity, including categorizing personal and others’
characteristics, such as gender, skin tone, or ethnicity (Abrams and Hogg 2010). Within
the context of Japanese culture, women typically occupy comparatively lower status tiers
than men, potentially complicating communication and management of this demographic.
Female professionals often confront entrenched stereotypes and biases, prompting public
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skepticism regarding their leadership capabilities (Thomas 2018). Thirdly, Smith et al.
(2006) contended that a gender-diverse board is prone to conflicts, resulting in delayed
decision-making processes, whereas the market necessitates prompt reactions. Similarly,
Williams Phillips and O’Reilly (1998) argued that gender-diverse groups are more likely to
encounter affective conflicts, yielding detrimental effects on team dynamics.

Table 3. Fixed-effects regression results.

(1) (2)
ROA ROA

FemaleFrac −0.013 ***
(0.004)

FemaleDum −0.156 **
(0.065)

FirmSize 1.494 *** 1.478 ***
(0.088) (0.088)

FirmLev −0.181 *** −0.181 ***
(0.003) (0.003)

Tangibility −0.063 *** −0.063 ***
(0.005) (0.005)

BoardSize 0.034 *** 0.037 ***
(0.012) (0.012)

BoardInd 0.003 0.002
(0.002) (0.002)

DirAge −0.078 *** −0.076 ***
(0.010) (0.010)

Duality 0.018 0.022
(0.075) (0.075)

Constant −4.191 *** −4.141 ***
(1.044) (1.045)

Firm FE Yes Yes
Observations 25,363 25,363
R-squared 0.146 0.145

The table shows the fixed-effects regression results. The variable names are italicized. The standard errors are
reported below the estimated coefficients in parentheses. ***, **, and * denotes statistical significance level of 1%,
5%, and 10%, respectively.

6.3. Small vs. Large Firms

Table 4 bifurcates our dataset into two subsets based on firm sizes. The smaller firm
subsample includes companies whose size falls below the yearly median, while the larger
firm subsample comprises those exceeding the median. Subsequently, we apply the fixed-
effects regression in line with Equation (1) to these subsamples. The findings indicate
that board gender diversity, quantified by the fraction of female directors or as a dummy
variable, negatively influences corporate performance, but this effect is predominantly
observed in smaller firms. Within this context, the gender diversity coefficient is statistically
significant at 1%. Economically, a one standard deviation shift in FemaleFrac for smaller
firms correlates with a 0.22% reduction in ROA, which is 5.8% of the mean ROA. Altering
FemaleDum from zero to one in these firms associates with a 0.38% decrease in ROA,
amounting to 10.0% of the mean ROA. Chow’s test for the divergence between these two
coefficients is also significant at the 1% and 10% thresholds. Collectively, the results in
Table 4 suggest that the negative relationship between board gender diversity and corporate
performance is more pronounced in smaller-sized firms.
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Table 4. Small vs. large firms.

(1) (2) (3) (4)
Small Firms Large Firms Small Firms Large Firms

ROA ROA ROA ROA

FemaleFrac −0.028 *** 0.000
(0.006) (0.005)

FemaleDum −0.383 *** −0.103
(0.111) (0.075)

FirmSize 1.815 *** 1.405 *** 1.791 *** 1.438 ***
(0.141) (0.125) (0.141) (0.124)

FirmLev −0.203 *** −0.163 *** −0.204 *** −0.163 ***
(0.005) (0.004) (0.005) (0.004)

Tangibility −0.058 *** −0.067 *** −0.058 *** −0.067 ***
(0.007) (0.006) (0.007) (0.006)

BoardSize 0.087 *** 0.022 * 0.098 *** 0.023 *
(0.023) (0.013) (0.024) (0.013)

BoardInd −0.003 0.001 −0.004 0.003
(0.003) (0.003) (0.003) (0.003)

DirAge −0.114 *** −0.022 * −0.112 *** −0.024 *
(0.015) (0.013) (0.015) (0.013)

Duality 0.109 0.055 0.118 0.051
(0.151) (0.077) (0.151) (0.077)

Constant −3.381 ** −8.724 *** −3.345 ** −9.012 ***
(1.493) (1.643) (1.495) (1.645)

Firm FE Yes Yes Yes Yes
Observations 12,676 12,687 12,676 12,687
R-squared 0.149 0.158 0.148 0.158
Chow F-value 10.835 *** 3.739 *

The table shows the fixed-effects regression results for two subsamples based on the median firm size. The
variable names are italicized. The standard errors are reported below the estimated coefficients in parentheses.
Chow F-value, extracted from Chow’s test, assesses the null hypothesis of equal regression coefficients for the key
explanatory variable across two subgroups. ***, **, and * denotes statistical significance level of 1%, 5%, and 10%,
respectively.

6.4. Low vs. High Leverages

Table 5 divides our sample into two groups based on firm leverage, with firms annually
categorized by leverage levels. The lower leverage subset includes companies with leverage
below the median, and the higher leverage subset comprises those above the median.
We conducted the fixed-effects regression following Equation (1) for both subsets. The
coefficient for FemaleDum is insignificant for low-leverage firms but markedly negative at
the 1% threshold for high-leverage firms. Correspondingly, the coefficient for FemaleFrac is
more significant and more prominent in magnitude for high-leverage firms than those with
lower leverage. Chow’s test for the disparity between these two coefficients is significant
at 1%. Overall, the findings in Table 5 indicate that the negative impact of board gender
diversity on corporate performance is more pronounced in high-leverage firms.

Table 5. Low- vs. high-leverage firms.

(1) (2) (3) (4)
Low Leverage High Leverage Low Leverage High Leverage

ROA ROA ROA ROA

FemaleFrac −0.012 ** −0.021 ***
(0.006) (0.006)

FemaleDum −0.091 −0.315 ***
(0.093) (0.092)

FirmSize 2.050 *** 1.304 *** 2.020 *** 1.300 ***
(0.135) (0.126) (0.134) (0.126)

FirmLev −0.156 *** −0.198 *** −0.156 *** −0.199 ***
(0.011) (0.005) (0.011) (0.005)

Tangibility −0.087 *** −0.063 *** −0.087 *** −0.063 ***
(0.008) (0.006) (0.008) (0.006)

BoardSize 0.030 0.021 0.033 * 0.027
(0.018) (0.017) (0.018) (0.017)
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Table 5. Cont.

(1) (2) (3) (4)
Low Leverage High Leverage Low Leverage High Leverage

ROA ROA ROA ROA

BoardInd 0.007 ** −0.006 ** 0.005 * −0.007 **
(0.003) (0.003) (0.003) (0.003)

DirAge −0.140 *** −0.036 ** −0.137 *** −0.034 **
(0.014) (0.014) (0.014) (0.014)

Duality 0.043 0.052 0.051 0.052
(0.108) (0.106) (0.108) (0.106)

Constant −7.843 *** −2.282 −7.677 *** −2.366
(1.581) (1.511) (1.579) (1.514)

Firm FE Yes Yes Yes Yes
Observations 12,676 12,687 12,676 12,687
R-squared 0.067 0.168 0.067 0.168
Chow F-value 6.790 *** 7.416 ***

The table shows the fixed-effects regression results for two subsamples based on the median firm leverage. The
variable names are italicized. The standard errors are reported below the estimated coefficients in parentheses.
Chow F-value, extracted from Chow’s test, assesses the null hypothesis of equal regression coefficients for the key
explanatory variable across two subgroups. ***, **, and * denotes statistical significance level of 1%, 5%, and 10%,
respectively.

6.5. Low vs. High Cash Holding

Table 6 divides our sample into two groups based on the median cash holding in a
given year. We executed the fixed-effects regression per Equation (1) for each subgroup.
The results disclose a consistently negative coefficient for FemaleFrac, significant at the 1%
level for both low and high cash holdings. Nevertheless, Chow’s test for the disparity
between the two coefficients is insignificant. In contrast, the coefficient for FemaleDum is
significantly negative at the 1% level for low cash holding but proves insignificant for high
cash holding. Nevertheless, Chow’s test fails to exhibit a substantial divergence between
the two coefficients. Overall, cash holding does not appear to influence the negative effect
of gender diversity on corporate performance.

Table 6. Low vs. high cash holding.

(1) (2) (3) (4)
Low CashHold High CashHold Low CashHold High CashHold

ROA ROA ROA ROA

FemaleFrac −0.019 *** −0.018 ***
(0.005) (0.007)

FemaleDum −0.312 *** −0.144
(0.073) (0.112)

FirmSize 1.449 *** 1.682 *** 1.455 *** 1.644 ***
(0.120) (0.135) (0.120) (0.135)

FirmLev −0.155 *** −0.208 *** −0.155 *** −0.208 ***
(0.004) (0.006) (0.004) (0.006)

Tangibility −0.057 *** −0.067 *** −0.057 *** −0.067 ***
(0.006) (0.008) (0.006) (0.008)

BoardSize 0.042 *** 0.051 ** 0.047 *** 0.054 **
(0.013) (0.023) (0.013) (0.023)

BoardInd 0.003 0.002 0.004 0.000
(0.003) (0.003) (0.003) (0.003)

DirAge −0.009 −0.137 *** −0.008 −0.133 ***
(0.012) (0.015) (0.012) (0.015)

Duality −0.023 0.116 −0.027 0.128
(0.079) (0.141) (0.079) (0.141)

Constant −9.494 *** −1.745 −9.644 *** −1.602
(1.523) (1.511) (1.525) (1.512)

Firm FE Yes Yes Yes Yes
Observations 12676 12687 12676 12687
R-squared 0.165 0.138 0.165 0.138
Chow F-value 0.493 1.467

The table shows the fixed-effects regression results for two subsamples based on the median cash holding. The
variable names are italicized. The standard errors are reported below the estimated coefficients in parentheses.
Chow F-value, extracted from Chow’s test, assesses the null hypothesis of equal regression coefficients for the key
explanatory variable across two subgroups. ***, **, and * denotes statistical significance level of 1%, 5%, and 10%,
respectively.
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6.6. Low vs. High Institutional Ownership

Table 7 bifurcates our dataset into two cohorts based on the median institutional own-
ership in a specific year. We conducted a fixed-effects regression analysis in alignment with
Equation (1) for each subgroup. The findings indicate that the coefficients of FemaleFrac and
FemaleDum are markedly negative at the 1% significance level within the low institutional
ownership subset, yet they are not statistically significant for the high institutional owner-
ship group. Chow’s test for the divergence between these two coefficients is also significant
at the 1% threshold. It suggests that elevated institutional ownership might engender
intensified scrutiny by institutions, thereby eclipsing the governance impact attributable to
female directors.

Table 7. Low vs. high institutional ownership.

(1) (2) (3) (4)
Low InstiOwn High InstiOwn Low InstiOwn High InstiOwn

ROA ROA ROA ROA

FemaleFrac −0.035 *** −0.000
(0.007) (0.006)

FemaleDum −0.347 *** 0.011
(0.113) (0.086)

FirmSize 1.820 *** 1.586 *** 1.782 *** 1.583 ***
(0.154) (0.133) (0.154) (0.132)

FirmLev −0.188 *** −0.170 *** −0.189 *** −0.170 ***
(0.005) (0.005) (0.005) (0.005)

Tangibility −0.045 *** −0.081 *** −0.045 *** −0.081 ***
(0.008) (0.007) (0.008) (0.007)

BoardSize 0.054 ** −0.011 0.064 *** −0.011
(0.022) (0.017) (0.022) (0.017)

BoardInd 0.002 −0.008 *** −0.001 −0.008 ***
(0.003) (0.003) (0.003) (0.003)

DirAge −0.107 *** −0.060 *** −0.102 *** −0.060 ***
(0.016) (0.015) (0.016) (0.015)

Duality 0.048 0.162 * 0.057 0.162 *
(0.144) (0.095) (0.144) (0.095)

Constant −5.522 *** −6.383 *** −5.522 *** −6.355 ***
(1.701) (1.648) (1.704) (1.647)

Firm FE Yes Yes Yes Yes
Observations 11,129 11,134 11,129 11,134
R-squared 0.132 0.138 0.131 0.138
Chow F-value 14.007 *** 7.879 ***

The table shows the fixed-effects regression results for two subsamples based on the median institutional own-
ership. The variable names are italicized. The standard errors are reported below the estimated coefficients in
parentheses. Chow F-value, extracted from Chow’s test, assesses the null hypothesis of equal regression coefficients
for the key explanatory variable across two subgroups. ***, **, and * denotes statistical significance level of 1%,
5%, and 10%, respectively.

6.7. The Impact of COVID-19

Table 8 delineates the influence of the COVID-19 pandemic by dividing the sample
into pre-COVID-19 (2006–2019) and during-COVID-19 (2020–2023) subsets. We executed
the fixed-effects regression for both subsets according to Equation (1). The findings reveal
that before COVID-19, FemaleFrac had a significantly negative effect on firm performance
at the 1% level. During COVID-19, this negative relationship lost its significance. Chow’s
test for the divergence between these two coefficients is also significant at the 5% threshold.
FemaleDum is negatively significant at the 10% level pre-COVID-19 and becomes insignif-
icant during the COVID-19 period. This modest difference is further evidenced by the
insignificant outcome in Chow’s test. In summary, the detrimental impact of board gender
diversity on corporate performance was weakly more pronounced pre-COVID-19 than
during the pandemic.
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Table 8. Before vs. during COVID-19.

(1) (2) (3) (4)
Before

COVID-19
During

COVID-19
Before

COVID-19
During

COVID-19
ROA ROA ROA ROA

FemaleFrac −0.023 *** −0.005
(0.006) (0.008)

FemaleDum −0.157 * −0.152
(0.083) (0.147)

FirmSize 1.580 *** 5.511 *** 1.555 *** 5.531 ***
(0.109) (0.334) (0.109) (0.333)

FirmLev −0.175 *** −0.270 *** −0.175 *** −0.271 ***
(0.004) (0.010) (0.004) (0.010)

Tangibility −0.079 *** −0.156 *** −0.079 *** −0.156 ***
(0.006) (0.016) (0.006) (0.015)

BoardSize 0.047 *** 0.103 *** 0.050 *** 0.108 ***
(0.015) (0.036) (0.015) (0.036)

BoardInd 0.010 *** −0.007 0.009 *** −0.006
(0.003) (0.007) (0.003) (0.007)

DirAge −0.060 *** −0.046 * −0.056 *** −0.048 *
(0.012) (0.025) (0.012) (0.025)

Duality 0.063 −0.117 0.066 −0.117
(0.089) (0.185) (0.089) (0.185)

Constant −6.233 *** −49.453 *** −6.168 *** −49.624 ***
(1.315) (4.047) (1.316) (4.043)

Firm FE Yes Yes Yes Yes
Observations 18,153 7210 18,153 7210
R-squared 0.153 0.205 0.152 0.205
Chow F-value 3.879 ** 1.993

The table shows the fixed-effects regression results before and during the COVID-19 pandemic: 2006–2019 and
2020–2023. The variable names are italicized. The standard errors are reported below the estimated coefficients in
parentheses. Chow F-value, extracted from Chow’s test, assesses the null hypothesis of equal regression coefficients
for the key explanatory variable across two subgroups. ***, **, and * denotes statistical significance level of 1%,
5%, and 10%, respectively.

6.8. Different Industries

Table 9 exhibits the fixed-effects regression outcomes according to Equation (1) across
eleven disparate industries. The analysis reveals a substantial adverse effect of board gender
diversity on firm performance in the energy, materials, consumer discretionary, consumer
staples, and utilities sectors. Conversely, this impact is insignificant in the industrials, health
care, financials, information technology, communication services, and real estate sectors.
The former cluster of industries constitutes regulated and consumer-centric sectors. These
fields operate in regulated environments and are closely tied to consumer behaviors and
preferences. Diverse perspectives and governance practices can significantly influence their
performance, making them sensitive to board composition. In contrast, the latter group of
industries is characterized by their innovation-driven nature. Their performance might be
more influenced by technological innovation, market adaptability, and industry-specific
challenges rather than solely by board composition.
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6.9. Mediating Effects

Table 10 investigates the mediating effects employing a two-step regression methodol-
ogy. Concerning BoardInd in Columns 1 and 2, the manifested indirect effect stands at 0.004
(=1.268 × 0.003), juxtaposed with a direct effect of −0.013. The absence of a mediating effect
by board independence is inferred from their contrasting signs. Regarding CEO duality
in Columns 3 and 4, the indirect effect registers at −0.000054 (=−0.003 × 0.018), while the
direct effect maintains at −0.013. It suggests a negligible mediating impact of CEO duality.
Columns 5 and 7 indicate that board gender diversity exerts a notably positive influence
on firm innovation (RD) and corporate social responsibility (ESG). About RD in Columns
5 and 6, the indirect effect is −0.0022 (=0.003 × −0.742), against a direct effect of −0.012,
implying a mediating effect of RD at 15% (=0.0022/(0.0022 + 0.012)). For ESG in Columns 7
and 8, the indirect effect is calculated at −0.011 (=0.051 × −0.215), while the direct effect is
−0.005, indicating a mediating effect of ESG at 69% (=0.011/(0.011 + 0.005)). The findings
indicate a modest mediating role via RD and a more pronounced one through ESG, yet no
significant mediation is observed for BoardInd and Duality.

Table 10. Mediating effects.

(1) (2) (3) (4) (5) (6) (7) (8)
BoardInd ROA Duality ROA RD ROA ESG ROA

FemaleFrac 1.268 *** −0.013 *** −0.003 *** −0.013 *** 0.003 *** −0.012 *** 0.051 *** −0.005
(0.013) (0.004) (0.000) (0.004) (0.001) (0.004) (0.001) (0.010)

BoardInd 0.003 0.003 0.002 −0.010
(0.002) (0.002) (0.002) (0.007)

Duality 0.018 0.018 0.031 −0.017
(0.075) (0.075) (0.080) (0.173)

RD −0.742 ***
(0.033)

ESG −0.215 **
(0.105)

FirmSize 1.494 *** 1.494 *** 1.486 *** 2.822 ***
(0.088) (0.088) (0.092) (0.312)

FirmLev −0.181 *** −0.181 *** −0.184 *** −0.236 ***
(0.003) (0.003) (0.003) (0.010)

Tangibility −0.063 *** −0.063 *** −0.061 *** −0.120 ***
(0.005) (0.005) (0.005) (0.016)

BoardSize 0.034 *** 0.034 *** 0.033 *** −0.040
(0.012) (0.012) (0.013) (0.033)

DirAge −0.078 *** −0.078 *** −0.078 *** −0.024
(0.010) (0.010) (0.010) (0.027)

Constant 16.780 *** −4.191 *** 0.794 *** −4.191 *** 1.694 *** −2.304 ** 1.800 *** −20.635 ***
(0.098) (1.044) (0.002) (1.044) (0.006) (1.082) (0.013) (3.980)

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 25,363 25,363 25,363 25,363 23,450 23,450 5696 5696
R-squared 0.300 0.146 0.004 0.146 0.001 0.170 0.261 0.159

The table shows the fixed-effects regression results for the mediating effects of BoardInd, Duality, RD, and ESG.
The variable names are italicized. The standard errors are reported below the estimated coefficients in parentheses.
***, **, and * denotes statistical significance level of 1%, 5%, and 10%, respectively.

6.10. 2SLS Regressions

Table 11 explores the endogeneity issue concerning board gender diversity within the
fixed-effects regression framework. There exists the potential for higher firm performance
to affect board gender diversity inversely. Conversely, a third variable might simultane-
ously elevate board gender diversity and diminish firm performance, creating a perceived
negative correlation where none inherently exists. To reassess this dynamic, we introduce
an instrumental variable. Initially, we conducted a test for the endogeneity of regression
variables. The Hausman F test refutes the hypothesis of exogeneity at the 10% level, under-
scoring the need to address endogeneity and suggesting the 2SLS model’s superiority over
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ordinary least squares regression. Subsequently, we assess the strength of the instrumental
variable, the equal opportunity policy. According to Equation (3), Columns 1 and 3 of
Table 11 exhibit the instrumental variable’s significant effect on FemaleFrac and Female-
Dum, achieving statistical significance at the 1% level. The second-stage results, following
Equation (4) and displayed in Columns 2 and 4 of Table 11, indicate that predicted board
gender diversity adversely affects corporate performance, reaching a 1% level of statistical
significance, irrespective of whether it is measured by the percentage of female directors or
as a dummy variable.

Table 11. Two-stage least squares (2SLS) regression results.

(1) (2) (3) (4)
1st Stage 2nd Stage 1st Stage 2nd Stage

FemaleFrac ROA FemaleDum ROA

EqOpp 1.427 *** 0.100 ***
(0.110) (0.006)

Predicted
FemaleFrac −0.246 ***

(0.051)
Predicted
FemaleDum −3.187 ***

(0.649)
FirmSize 4.129 *** 2.718 *** 0.024 *** 2.458 ***

(0.163) (0.255) (0.002) (0.203)
FirmLev −0.002 −0.188 *** −0.001 *** −0.191 ***

(0.006) (0.004) (0.000) (0.004)
Tangibility −0.015 * −0.066 *** 0.001 *** −0.067 ***

(0.008) (0.006) (0.000) (0.006)
BoardSize −0.081 *** 0.024 * 0.023 *** 0.096 ***

(0.021) (0.015) (0.001) (0.018)
BoardInd 0.222 *** 0.059 *** 0.014 *** 0.049 ***

(0.004) (0.012) (0.000) (0.010)
DirAge −0.390 *** −0.176 *** −0.015 *** −0.147 ***

(0.017) (0.023) (0.001) (0.017)
Duality −0.809 *** −0.192 ** −0.014 * −0.156 *

(0.127) (0.094) (0.007) (0.089)
Constant −24.024 *** −12.424 *** 0.373 *** −11.562 ***

(1.980) (1.964) (0.041) (1.795)
Firm FE Yes Yes Yes Yes
Observations 22,274 22,274 22,274 22,274
R-squared 0.348 0.146 0.269 0.146

The table shows the 2SLS regression results using the equal opportunity policy as the instrumental variable. The
variable names are italicized. The standard errors are reported below the estimated coefficients in parentheses.
***, **, and * denotes statistical significance level of 1%, 5%, and 10%, respectively.

The 2SLS findings mitigate endogeneity concerns. Various factors could underlie the
negative impact of board gender diversity on firm performance. One plausible rationale
is that female directors might enact stricter supervision, potentially hampering company
performance, as posited by Adams and Ferreira (2009). Another hypothesis suggests that
gender-mixed groups may encounter more conflicts during decision-making processes,
consuming additional time and energy, thereby diminishing the competitive edge of firms
with gender-diverse boards (Lim et al. 2019). Additionally, the influence of gender stereo-
types, particularly in patriarchal societies like Japan, cannot be overlooked. Culturally,
women have historically been consigned to subordinate roles, facing barriers to accessing
educational resources. Moreover, prevalent stereotypes often paint women as uninformed,
aggressive, and overly emotional. Consequently, the presence of female directors on a
board might lead to negative investor perceptions and a loss of confidence in the firm,
ultimately adversely affecting corporate performance.
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6.11. Alternative Performance Measures

Columns 1 and 2 of Table 12 replace ROA with ROE in our analysis to examine
robustness, in line with Equation (1). These findings are in harmony with the previous
application of ROA for assessing corporate performance, as illustrated in Table 3. The
results demonstrate a negative association between board gender diversity and corporate
performance, statistically significant at the 1% level. The regression coefficients in Table 12
exhibit magnitudes surpassing those in Table 3, indicating enhanced economic significance.
Hence, we affirm that the negative relationship between board gender diversity and
corporate performance is robust with an alternative performance measure.

Table 12. Alternative performance measures.

(1) (2) (3) (4)
ROE ROE MktCapChg MktCapChg

FemaleFrac −0.038 *** −0.000
(0.010) (0.001)

FemaleDum −0.585 *** −0.001
(0.162) (0.009)

FirmSize 2.769 *** 2.750 *** −0.336 *** −0.336 ***
(0.219) (0.218) (0.012) (0.012)

FirmLev −0.323 *** −0.323 *** 0.006 *** 0.006 ***
(0.008) (0.008) (0.000) (0.000)

Tangibility −0.133 *** −0.133 *** 0.001 * 0.001 *
(0.012) (0.012) (0.001) (0.001)

BoardSize 0.086 *** 0.099 *** −0.006 *** −0.006 ***
(0.031) (0.031) (0.002) (0.002)

BoardInd −0.010 * −0.010 * −0.000 −0.000
(0.005) (0.005) (0.000) (0.000)

DirAge −0.158 *** −0.156 *** 0.002 * 0.002 *
(0.025) (0.025) (0.001) (0.001)

Duality −0.057 −0.053 0.018 * 0.018 *
(0.188) (0.188) (0.010) (0.010)

Constant −6.117 ** −6.154 ** 3.757 *** 3.758 ***
(2.604) (2.606) (0.147) (0.147)

Firm FE Yes Yes Yes Yes
Observations 25,363 25,363 21,901 21,901
R-squared 0.081 0.081 0.061 0.061

The table shows the fixed-effects regression results with alternative performance measures: ROE and MktCapChg.
The variable names are italicized. The standard errors are reported below the estimated coefficients in parentheses.
***, **, and * denotes statistical significance level of 1%, 5%, and 10%, respectively.

Table 12 also incorporates the percentage change in market capitalization as the de-
pendent variable. Nonetheless, the coefficients associated with FemaleFrac and FemaleDum
are insignificant. It likely reflects the distinction between accounting-based performance
measures (ROA and ROE) and market-based performance measures (market capitalization
variation). While ROA focuses on internal operational performance per accounting records,
market capitalization change is swayed by external market forces and expectations. Gender
diversity might have a more direct or observable impact on internal management practices
and policies (affecting ROA), but its influence on external market valuation (market capi-
talization change) could be less direct or be overshadowed by other factors. Alternatively,
accounting measures like ROA reflect current or short-term operational performance, while
market valuations often incorporate long-term expectations and growth potential.

6.12. Nonlinear Quadratic Regression

Zhang et al. (2023) employed nonlinear quadratic regression to demonstrate a convex
correlation between a CEO’s educational background and corporate risk-taking. Alfar
et al. (2023) uncover a nonlinear effect of gender diversity on firm performance in the
Palestine Exchange. Consequently, the association between board gender diversity and
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corporate performance in Japan may similarly be nonlinear. Table 13 presents the results of
nonlinear quadratic regression analyses following Equation (5). These findings indicate
that regardless of whether ROA or ROE is utilized to assess corporate performance, the pur-
ported quadratic relationship between board gender diversity and corporate performance
is not statistically significant. Consequently, we deduce that within our sample, there is
no evidence of a nonlinear quadratic relationship between board gender diversity and
corporate performance. Thus, the critical mass theory does not appear to be substantiated
by our study.

Table 13. Nonlinear quadratic regression results.

(1) (2)
ROA ROE

FemaleFrac −0.014 * −0.058 ***
(0.007) (0.017)

FemaleFrac2 0.000 0.001
(0.000) (0.001)

FirmSize 1.494 *** 2.784 ***
(0.088) (0.219)

FirmLev −0.181 *** −0.323 ***
(0.003) (0.008)

Tangibility −0.063 *** −0.133 ***
(0.005) (0.012)

BoardSize 0.034 *** 0.088 ***
(0.012) (0.031)

BoardInd 0.003 −0.009
(0.002) (0.005)

DirAge −0.078 *** −0.160 ***
(0.010) (0.025)

Duality 0.018 −0.060
(0.075) (0.188)

Constant −4.193 *** −6.205 **
(1.045) (2.604)

Firm FE Yes Yes
Observations 25,363 25,363
R-squared 0.146 0.081

The table shows the nonlinear quadratic regression results by adding the squared term of FemaleFrac. The variable
names are italicized. The standard errors are reported below the estimated coefficients in parentheses. ***, **, and
* denotes statistical significance level of 1%, 5%, and 10%, respectively.

According to the critical mass theory, the commonly accepted threshold is a minimum
of three or 30% female directors. Nevertheless, as illustrated in Figure 1, the average pro-
portion of female directors in Japanese firms significantly lags behind this 30% benchmark.
In data not presented, the frequency count of female directors reveals a mere 396 firm-year
observations out of 25,363 (1.6%) that meet or exceed the threshold of three female directors
in Japan. We conducted a robustness analysis for further validation by regressing ROA
against the number of female directors and its squared value. This analysis did not reveal
a nonlinear quadratic association. Therefore, the critical mass theory may not apply to
Japanese companies due to their low female directorship ratio.

6.13. Comparison with Other Countries

Examining the interplay between board gender diversity and corporate performance
in Japan versus other countries is imperative. A substantial portion of research reveals a
positive impact in Japan (Nakagawa and Schreiber 2014; Tanaka 2019), Mauritius (Mahadeo
et al. 2012), China (Liu et al. 2014), France (Sabatier 2015), the UK (Brahma et al. 2021),
Russia (Garanina and Muravyev 2021), India (Sanan 2016; Sarkar and Selarka 2021), East
Asian territories including Hong Kong, South Korea, Malaysia, and Singapore (Low et al.
2015), across 24 countries (Belaounia et al. 2020), 47 countries (Terjesen et al. 2016), and
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34 countries (Pucheta-Martínez and Gallego-Álvarez 2020). Conversely, a minority of
studies indicate a detrimental impact in the UK (Shehata et al. 2017), Pakistan (Mirza et al.
2012; Akram et al. 2020), and Malaysia (Ahmad et al. 2020; Abdullah 2014; Lim et al. 2019).
Additionally, limited investigations report a neutral influence in India (Kagzi and Guha
2018), the Netherlands and Denmark (Marinova et al. 2016), Pakistan (Yasser 2012), the
United States (Carter et al. 2010), Turkey (Ararat and Yurtoglu 2021), and the Philippines
(Unite et al. 2019). Notably, disparities exist even within the same nation, as evidenced
in the UK, the United States, and Malaysia. Our findings also diverge from established
outcomes for Japan based on earlier data (Nakagawa and Schreiber 2014; Tanaka 2019). It
is significant to acknowledge Japan’s distinctive context, characterized by a historically low
ratio of female directors and a remarkable increase in this ratio over the past decade within
a predominantly male-centric culture. Hence, a focused study on Japan can yield insights
beneficial for other nations with low female director representation and male-dominated
environments.

This research also offers pertinent implications for nations exhibiting similar limited fe-
male labor force participation patterns and lower gender gap indices. Firstly, the outcomes
afford valuable perspectives for such countries. Secondly, despite the distinctive nature
of Japanese corporate governance compared to Western standards, its robustness is ac-
knowledged. In this context of stringent corporate governance, enhanced gender diversity
may inadvertently foster excessive oversight, potentially detracting from organizational
performance. Our observations regarding the adverse effects of board gender diversity on
Japanese corporate performance align with prior analyses in jurisdictions characterized
by vigorous corporate governance regimes (Ahern and Dittmar 2012; Adams and Ferreira
2009). In contrast, inquiries in locales with lax corporate governance structures have docu-
mented beneficial impacts (Liu et al. 2014; Herdhayinta et al. 2021). Consequently, adopting
board gender diversity mandates a tailored approach by governments and corporations,
reflecting their unique circumstances. It is crucial to recognize the absence of a universally
applicable strategy.

Amid global institutional shifts, a reevaluation of corporate governance dynamics is
underway. Future research should focus on a dual approach: a macro-level multi-country
analysis and a micro-level study of Japanese corporate governance. Variations in the
impact of gender diversity on firm performance across nations are influenced by unique
national contexts (Terjesen and Singh 2008), with studies highlighting the varying effects of
gender diversity quotas on market and accounting performance (Atinc et al. 2021). Further
exploration is needed to understand the implementation of these global standards within
different social, cultural, and political frameworks (Ansari et al. 2010). Japan’s distinctive
labor market characteristics and the potential influence of women’s educational level and
board independence on firm performance warrant deeper investigation (Gull et al. 2018).
This nuanced approach will enhance understanding of gender diversity’s complex role in
corporate governance.

7. Conclusions

Board gender diversity and corporate governance structure have increasingly gar-
nered scholarly interest. While a substantial body of existing literature has investigated the
connection between female directors and corporate performance, findings indicate that the
influence of female directors on corporate performance varies across diverse national con-
texts and environments. This paper aimed to contribute novel insights into the relationship
between board gender diversity and corporate performance within the Japanese context, a
realm hitherto unexplored in prior research.

We employed a sample of 1990 publicly traded Japanese firms from 2006 to 2023 and
revealed that female directors significantly and negatively influence corporate performance
in Japan. This implies that companies with a higher proportion of female directors under-
perform relative to those with fewer or no female directors or that firms with at least one
female board member fare worse than those with exclusively male boards. This relationship
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is more pronounced in smaller firms with higher leverage or lower institutional ownership,
within regulated and consumer-oriented industries, and in the pre-COVID-19 period. To
address potential endogeneity between board gender diversity and firm performance,
we employed the 2SLS methodology. Our findings confirm the robustness of this result,
suggesting a causal direction from board gender diversity to firm performance rather than
vice versa. We also used ROE as an alternative performance metric. Our fundamental
conclusion remains robust. Our study did not identify a U-shaped relationship between
board gender diversity and firm performance.

The results of this study are relevant to corporate leaders, investors, and policymakers
in Japan. For Japanese policymakers, enacting the 2023 policies that require a 30% female
board membership by 2030 poses a significant challenge. There may be a necessity for
these policymakers to reassess or modify current regulations to alleviate potential adverse
effects on organizational performance. Consequently, it is recommended that policymakers
promote cooperative endeavors involving government, private sector entities, and non-
profit organizations to formulate an all-encompassing strategy that capitalizes on varied
viewpoints and resources. Corporate leaders are faced with the challenge of effectively
addressing the international standard of gender quotas. Merely meeting these quota
requirements does not automatically lead to the benefits associated with gender diversity. In
fact, it could potentially harm corporate performance (Adams and Ferreira 2009). The push
to comply with these policy mandates has increased the demand for experienced female
directors, surpassing the available pool (Carter et al. 2010). Consequently, this has led to
the appointment of less experienced second and third female directors, who may not fully
capitalize on the positive impacts on corporate performance (Claessens et al. 2000). Thus,
corporate leaders must focus on aligning women’s resources, expertise, and viewpoints
within the corporate governance framework, accentuating the substantial inclusion of
women’s contributions beyond their mere presence on the board. For investors, our
results indicate the necessity of meticulously considering the changing dynamics in gender
diversity regulations and policies. The 30% female board member target by 2030 may affect
investment choices, as companies adhering to these requirements could be perceived as
more socially responsible and aligned with global expectations. Nonetheless, financial
performance may not exhibit uniform progress; thus, investors should engage in more
informed investment strategies that align with their ethical standards and risk appetite.

Three potential reasons might explain the observed negative correlation between
board gender diversity and corporate performance: female directors could contribute
to excessive monitoring, boards with gender diversity might experience more conflicts
during decision-making and prevailing social stereotypes about women. Consequently,
firms should not anticipate an enhancement in performance merely by appointing female
directors. Nevertheless, our research has certain limitations. Firstly, the instrumental
variable employed, the equal opportunity policy, may not be the best choice. Future
research should consider more potent instrumental variables. Secondly, due to constraints
in data availability, our analysis included only a limited set of control variables. Future
investigations could benefit from using panel data encompassing a more extensive array of
control variables. Finally, this study focused on the nexus between board gender diversity
and performance within the Japanese cultural environment. The effects of gender diversity
on corporate performance may vary across policy and cultural environments. Hence,
cross-country comparisons are warranted in subsequent research endeavors.
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Abstract: The financial market is a complex system with chaotic behavior that can lead to wild swings
within the financial system. This can drive the system into a variety of interesting phenomenon such
as phase transitions, bubbles, and crashes, and so on. Of interest in financial modelling is identifying
the distribution and the stylized facts of a particular time series, as the distribution and stylized facts
can determine if volatility is present, resulting in financial risk and contagion. Regression modelling
has been used within this study as a methodology to identify the goodness-of-fit between the original
and generated time series model, which serves as a criterion for model selection. Different time
series modelling methods that include the common Box–Jenkins ARIMA, ARMA-GARCH type
methods, the Geometric Brownian Motion type models and Tsallis entropy based models when data
size permits, can use this methodology in model selection. Determining the time series distribution
and stylized facts has utility, as the distribution allows for further modelling opportunities such
as bivariate regression and copula modelling, apart from the usual forecasting. Determining the
distribution and stylized facts also allows for the identification of the parameters that are used
within a Geometric Brownian Motion forecasting model. This study has used the Carbon Emissions
Futures price between the dates of 1 May 2012 and 1 May 2022, to highlight this application of
regression modelling.
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1. Introduction

The financial market is a complex system that is the result of decisions of interacting
agents and traders who speculate and can act impulsively. This collective of chaotic
behavior can lead to wild swings within the financial system, Devi (2021). This can drive
the system into a variety of interesting phenomena such as phase transitions, bubbles, and
crashes and so on. Due to the 2008 financial crisis, there is a renewed interest in the choice
of an adequate error distribution, Hambuckers and Heuchenne (2017). More recently, the
2019–2022 crisis due to the COVID-19 pandemic, there is a need in the ability to identify
these effects and model this phenomenon.

As a result of these wild swings within the financial system, financial data should be
examined using the model specified by their probability distribution, with skewness and
excess kurtosis, Fukuda (2021). The appropriate modelling of the time series distribution,
being symmetric or asymmetric and in addition, the tail thickness of the distribution as
financial time series data is typically heavy tailed and contain time varying volatility,
Liu and Heyde (2008). Correct distribution specification of the stylized facts is important
as model misspecification can cause an overestimation of the kurtosis in the estimated
residuals, Hambuckers and Heuchenne (2017). These stylized facts are often used to
support investment decisions, Charpentire (2014).

Time series distributions are generally assumed to be approximately Normal, but the
distribution is likely to be of a Student-t or a skewed type distribution that describes a
heavy tail or tails. These discrepancies to a Normal distribution must be identified to allow
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for correct time series modelling, as deviations from a Normal distribution may indicate
volatility, leverage and drift.

Time series modelling methods are typically based on the Box–Jenkins Auto Regressive
(AR), the Auto Regressive Moving Average (ARMA) and the Auto Regressive Integrated
Moving Average (ARIMA) type models which are used for mean modelling. The Auto
Regressive Conditionally Heteroscedastic (ARCH) and Generalized Auto Regressive Condi-
tionally Heteroscedasticity (GARCH) type models are used for variance modelling. When
time series contains both mean and variance changes, these models can be combined, as
these typical models can be ARMA-ARCH or ARMA-GARCH type models. These methods
are mostly forecasting focused, as these models create a mathematical model to allow for
forecasting modelling.

Other methods available when modelling financial data can be the Geometric Brow-
nian Motion (GBM) type models and Entropy type models. The GBM (or Exponential
Brownian Motion) type models are based on a random walk which follows the Brownian
motion model. In undertaking a GBM, the identification of the initial distribution allows for
the identification of the parameters (µ, σ), that are used within the modelling methodology.
The entropy approach in modelling time series uses Tsallis entropy and can be used to
determine the underlying distribution using the q-Gaussian distribution, Tsallis (2017).

The contribution of this study is to explore the utility of using simple linear regression
modelling, Equation (1), as a goodness-of-fit criterion to identify a time series model
that represents the original dataset by modelling their distributions. Box-Jenkins and
Geometric Brownian Motion and Tsallis modelling methods were used as examples in
model selection by applying simple linear regression modelling. Identification of the
time series distribution also has the utility of allowing further modelling methods to be
applied. These include bivariate regression modelling (between two time series datasets),
Liu et al. (2020) and/or bivariate copula modelling, Dewick and Liu (2022) apart from the
usual forecasting applications.

yi = α + βxi + εi (1)

In Section 2, I provide common distributions used in financial modelling. In Section 3,
I provide an outline on time series modelling; In Section 4, I supply a time series modelling
application; In Section 5, I supply the modelling results; In Section 6, I give my conclusions.

2. Financial Distributions

Modelling the correct financial distribution when undertaking time series modelling
is a significant modelling component as financial time series distributions may contain
heavy (fat) tails, volatility clustering nonlinear dependence, Ghani and Rahim (2019). Sym-
metric distributions available are the Normal, Student-t, see Figure 1 and the q-Gaussian
distributions, see Figure 2 that uses Tsallis entropy.

Figure 1. Normal and Student−t Distributions.
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Figure 2. q−Gaussian Distributions.

The extreme losses which occurred in the financial crisis of 2008 highlighted the need
to determine the correct distribution. Risk management can be based on any statistical time
series model that captures the stylized facts, such as volatility clustering, skewness and tail
thickness of their distribution, Stoyanov et al. (2011). Modelling volatility is considered
a measure of risk, modelling and forecasting volatility is therefore important, Teräsvirta
(2009).

Within the literature it can be noted that certain distributions are used for different
financial modelling applications, Fukuda (2021). The Student-t distribution for modelling
exchange rates Figure 1, the Skewed Student-t Figure 3 for foreign exchange rates, the
Generalized Error distribution, Figure 4 for stock returns. The symmetrical Student-t
distribution Figure 1, is regarded as the most common and parsimonious model to use for
economic and financial data. The student-t distribution, Afuecheta et al. (2020) offers the
ability to fit the leptokurtic properties of financial data, and can describe subtle features
such as volatility clustering.

Figure 3. Skewed Student-t Distribution.

Figure 4. Generalized Error Distribution.

Apart from the symmetric distributions there are asymmetrical distributions such
as the skewed normal, skewed student-t see Figure 3 and the skewed Generalized Error
distribution, see Figure 4. As financial distributions are generally leptokurtosis distributions
which have heavy tails, Heyde and Liu (2001), they can be hyperbolic distributions. Extreme
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observations can extend to 6 ≥ standard deviations and can be of both interest and concern
and have tails which are asymptotically of a Pareto distribution, see Figure 5.

Figure 5. Pareto Distribution.

Initial modelling can identify the time series distribution which allows for appli-
cations within other modelling methods, such as bivariate regression, Liu et al. (2020)
and/or bivariate copula modelling, Dewick and Liu (2022) as examples. As time series
modelling is usually focused on forecasting, the time series data must be modelled to
obtain the mathematical model that represents the dataset that will enable forecasting to be
undertaken.

Financial Time Series Volatility, Leverage and Drift

The commonly used measure for risk within finance, Sheraz and Nasir (2021) is
the standard deviation of the return, known as volatility. Volatility means that there are
periods of time fluctuations followed by periods of calm, Abdulla and Dhaher Alwan
(2022). Volatility interprets market risk, and its prediction is vital for empirical pricing,
risk management, and portfolio selection, Sheraz and Nasir (2021). Furthermore, volatil-
ity can be broadly defined as the changeableness of the variable under consideration,
Bentes et al. (2008). Volatility is not constant over time, volatility is volatile. The volatility
can be measured in terms of the standard deviation σ, or variance σ2, with the larger σ2,
implying higher volatility and risk, Lim and Sek (2013) and is given by;

σ2 =
1

T − 1

T

∑
t=1

(Rt − µ)2 (2)

where: T is the time period, t denotes the time measures, µ and R are the mean return and
return, respectively, Sheraz and Nasir (2021).

Using the standard deviation σ, is the most popular measure of volatility. It has been
noted, Bentes et al. (2008) that Equation (2), has the advantage of being easy to estimate but
it has some drawbacks. These drawbacks include that large observations can overestimate
the volatility and it ignores the nonlinear dynamics. The main body or research recognizes
that the standard deviation is still the most popular method used measure.

A leverage effect is a negative correlation between shocks on returns and subsequent
shocks on volatility, Caporin and Costola (2019). A negative return shock can produce
an increase in volatility and a positive return shock produces a decrease in volatility. A
leverage effect can be a special case of asymmetry as under leverage, positive and negative
shocks have a different impact on the conditional variance. Often leverage is synonymous
for asymmetry and is a common viewpoint.

The leverage effect is often matched with the asymmetry of the GARCH models. This
however may not be totally reliable, as several GARCH models are not capable of showing
leverage affects. A leverage effect is a special case of asymmetry and has a different impact
on the conditional variance, Caporin and Costola (2019). Volatility and leverage effects are
two different stylized phenomena. There are different regimes proposed in determining
leverage effects within the literature and are outside the scope of this paper.
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Time series drift, also referred to as “concept drift” in which the underlying generating
process of the time series observations may change, making forecasting models obsolete,
Oliveira et al. (2017). The drift parameter in a differenced model is an estimate of the period-
to-period growth or stochastic “trend” which may or may not be significantly different.

3. Financial Time Series Models

Time series can be defined as a sequence of observations on one or more variables
over time. Time is an important dimension because past events can influence future events,
Liu et al. (2020). The challenges of time series modelling lie in constructing and applying the
appropriate model and data transformations, Charpentire (2014). Financial time series data
is non-stationary by nature which needs to be modelled out when modelling using the Box-
Jerkins methods. The Box–Jenkins methods consist of ARCH, ARMA or the ARIMA type
models for mean modelling, and AR or GARCH type models to model the variance, known
as the conditional volatility. When financial time series contains both non-stationarity and
volatility these models can be combined, such as the ARMA-GARCH type models as an
example. Within the literature, the GARCH type models are considered the best models for
forecasting stock market volatility, Lim and Sek (2013).

The AR and the ARCH models can be considered as “bursty”, short bursts of variance,
then back to the mean, with the GARCH model contains larger “bursts”, longer periods
of variance, then back to the mean. These models are based on the standard deviation or
variance of the time series data, Bentes et al. (2008). The GARCH models are frequently
used for modelling stock price volatility, with the GARCH(1,1) being the most widely used.
The GARCH(1,1) model is used under the assumption of t-Student distribution.

Another financial time series modelling approach is to use the GBM type models. GBM
is a stochastic differential equation with time dependent drift and diffusion parameters.
The GBM is often described as a stochastic model with continuous time, where the random
variable follows the Geometric Brownian motion, Agustini et al. (2018). Financial modelling
using a GBM model may require many simulations to obtain a GBM model that matches
the time series dataset.

Additionally, undertaken within this study is the use of Tsallis entropy to generate
a q-Gaussian distribution that can give an indication of the fat or thin tails within the
datasets distribution. A limiting factor in using entropy-based methods is that the entropy
method requires a large amount of data. A reliable fitting of a q-Gaussian distribution
to the empirical data, a large amount of data is needed as fitting return stock volumes, a
Tsallis q-Gaussian distribution requires 106 data points, see de Santa Helena et al. (2018).

3.1. Box–Jenkins Time Series Model Notation

Box–Jenkins time series models typically consist of AR models and MA models type
models and may contain combinations of these. These ARMA type models specifies the
conditional mean of the process and the GARCH type models specifies the conditional
variance of the process, with the models being defined by their notation. These time series
models typically consist of AR and MA type models.

The basic Box–Jenkins ARIMA model is a non-seasonal model with the notation
as ARIMA(p, d, q) model, with p; the auto regressive part, d being the degree of first
differencing and q, the order of the moving average. The ARIMA seasonal model is
given as:

ARIMA = (p, d, q)︸ ︷︷ ︸
Nonseasonal Part

+ (P, D, Q)m︸ ︷︷ ︸
Seasonal Part

(3)

where: m = length of seasonality, seasonal period time points.
The ARMA model is given as ARMA(p, q). If an ARIMA model contained no nonsea-

sonal differences d < 0, an ARMA(p, q) model can be used. Therefore an ARIMA(p, 0, q) =
ARMA(p, q), Wheelwright et al. (1998). The GARCH model is given as GARCH(p, q),
where p is the number of lag variances to include and q, is the number of lag residual errors
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to include in the GARCH model. For a GARCH where p = 0, this reduces the model to an
ARCH(q) model, Bollerslev (1986).

3.2. GARCH Type Models

GARCH type models are used to analyze and forecast volatility, Charpentire (2014).
The ARCH model describes a volatile variance over time and has all past error terms.
The ARCH model is effective for any time series that has increased or decreased variance,
Sheraz and Nasir (2021).

The GARCH model is an extension of the ARCH model, Charles and Darné (2019)
allowing the conditional variance to be dependent on the previous lags. The GARCH model
is widely used to estimate the non-constant volatility, depending on time and provides a
good approximation for smooth and persistent changes in volatility, Hongweingjan and
Thongtha (2021). If the decay rate is too rapid compared to what is typically observed
in financial time series a GARCH model is required, Teräsvirta (2009). The conditional
variance that describes an ARCH model of order q, can be defined as:

ht = α0 +
q

∑
j=1

αjε
2
t−1 (4)

where: α0 > 0, αj ≥ 0, j = 1, ...q− 1 and αq > 0. The observed random variable yt and
ut(yt) = E{yt|Ft−1} and εt is a random variable that has a mean and variance on the
information set Ft−1 = 0, with the conditional variance being ht = E{ε2

t |Ft−1}, Teräsvirta
(2009).

There are variations and a rich abundance of families of GARCH type models which
are popular, Sheraz and Nasir (2021) as they are flexible to capture the volatility clustering,
also the GARCH type models can capture asymmetries within the data, Abdulla and
Dhaher Alwan (2022). The family of GARCH models include, but are not limited to
the EGARCH, which is the Exponential GARCH, GJR-GARCH, which is the Glosten-
Jagannathan-Runkle GARCH and TGARCH, which is the Threshold GARCH type models.
The most popular GARCH model is the GARCH(1,1) model where p = q = 1, Teräsvirta
(2009). The GARCH(p, q) models with p, q ≥ 2, are rare in practice.

SGARCH–The SGARCH or standard (ordinary) GARCH assumes symmetric effects
on volatility, it assumes normality condition for errors, Sheraz and Nasir (2021). As a
result, the standard GARCH fails to account for excessive skewness or kurtosis within the
modelled distribution. The conditional variance that describes GARCH models can be
defined as, Teräsvirta (2009):

ht = α0 +
p

∑
i=1

αjε
2
t−1 +

q

∑
j=1

β jht−1 for t ∈ Z (5)

The standard first-order model GARCH model, GARCH(1, 1) is the most common in
practice and the conditional variance (ht = σ2

t ) can be given as, Sheraz and Nasir (2021):

σ2
t = w + αε2

t−1 + βσ2
t−1 (6)

where: Z are iid random variables, w = α0 and w > 0, α ≥ 0, β1 ≥ 0, are real parameters
and ensures that σ2 > 0.

EGARCH–The exponential EGARCH is another popular GARCH model, Teräsvirta
(2009) and does not allow for negative volatility. The EGARCH was proposed to model the
financial models leverage effects, Sheraz and Nasir (2021), with the family of EGARCH(p, q)
models can be defined as, Teräsvirta (2009):

ln ht = α0 +
p

∑
i=1

gj(zt−j) +
q

∑
j=1

β j ln ht−j (7)
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The standard first-order model EGARCH model, EGARCH(1, 1) can be given as,
Sheraz and Nasir (2021):

ln(σ2
t ) = w + α1(|Zt−1| − E(|Zt−1|)) + β1 ln(σ2

t−1) + γ1Zt−1 (8)

where: β j is a persistence parameter, α1 ≥ 0, β1 ≥ 0, |γ1| < 1, and w > 0, and α1 and γ1
represents the sign and leverage effects. The EGARCH can capture serial dependence and
leverage effects in the returns, with the returns being stationary if 0 < β1 < 1.

GJR-GARCH–The GJR-GARCH models are used to model positive and negative
shocks on the conditional variance asymmetrically. Applications of the GJR-GARCH is to
capture the negative correlation between returns and volatility, Sheraz and Nasir (2021).
The conditional variance that describes a GJR-GARCH model can be defined as, Teräsvirta
(2009):

ht = α0 +
p

∑
i=1
{αj + δj I(εt−j > 0)}ε2

tj +
q

∑
j=1

β j ln ht−j (9)

The standard first-order model GJR-GARCH model, GJR-GARCH(1, 1) can be given as,
Sheraz and Nasir (2021):

σ2
t = w + (α1 + γ1 It−1)ε

2
t−1 + β1σ2

t−1 (10)

where: α1 > 0, β1 > 0, γ1 > 0, w > 0 and γ indicates the asymmetry of returns. The It−1
assumes value equals to 1 for η2

t−1 < 0 (negative-shock), and zero otherwise. For positive
and significant γ1, a leverage effect exists.

TGARCH–The threshold GARCH is similar to the GJR model, different only because
of the standard deviation, instead of the variance. The TGARCH allows for the analysis of
negative and positive return shocks on the volatility, Lim and Sek (2013) with the family of
TGARCH(p, q) models can be defined as, Teräsvirta (2009):

h1/2
t = α0 +

p

∑
i=1

(α+j ε+t−j − α−j ε−t−j) +
q

∑
j=1

β j ln h1/2
t−j (11)

The standard first-order model TGARCH model, TGARCH(1, 1) can be given as, Sheraz
and Nasi Sheraz and Nasir (2021):

σ2
t = w + (α1 + γ1 It−1)ε

2
t−1 + β1σ2

t−1 (12)

where: α1+ ≥ 0, α1− ≥ 0, β1 ≥ 0, and w > 0 are real numbers. The volatility depends on
both the modulus and the sign of the past returns through α1,+ and α1,−.

3.3. Geometric Brownian Motion Type Models

The Option pricing industry was largely fueled by the success of Black and Scholes
(1973), in obtaining an analytical pricing formula for European Options under the Geometric
Brownian Motion (GBM) model, Heyde and Liu (2001). The GBM process can be defined
as a stochastic process where Xt ≥ 0, Khamis et al. (2017). Black and Scholes postulated a
log normal model for stock prices, Heyde et al. (2001), and that the stock returns process Xt
is given by:

Xt = log
St

St−1
(13)
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A stochastic process St, is said to follow a GBM if it satisfies the following stochastic
differential equation, where µ is the percentage drift and σ is the percentage volatility, for
arbitrary initial values of S0, Ermogenous (2006):

dSt = St(µdt + σdBt) (14)

With the analytical solution given as:

dSt = S0e(µ−
σ2
2 )t+σdBt (15)

If the stochastic process, Islam and Nguye (2021) is defined as Xt = log St and {W(t) : 0 ≤
t ≤ T} it is a standard Brownian motion on [0, T] then:

dSt = µStdt + σStdWt (16)

For any time t > 0, the differential can be written as:

log St = log S0 +

(
µ− 1

2
σ2
)

t + σWt, or (17)

St = S0e(µ−
1
2 σ2)t+σWt (18)

For a time set, t0 = 0 < t1 < t2... < tn, a stock price S(t) at time t0, T1, ..., tn can be generated
by, Islam and Nguye (2021);

S(ti+1) = S(ti)e
(µ 1

2 θ2)(ti+1−ti)+σ
√
(t

i+1−ti )Zi+1
(19)

where: Z1, Z2, ..., Zn are iid standard normals and the time interval ti+1 − ti = 1 for all
i = 0, (n− 1), since predicting next day price is given as;

S(ti+1) = S(ti)e(µ−
1
2 σ2)+σZi+1 (20)

where: µ is the amount of change over time (called the drift), and σ is the volatility.

3.4. Tsallis Entropy Type Models

Using an entropy approach to time series modelling is through the use of the concept
of Tsallis entropy which captures the nature of volatility, Bentes et al. (2008). The entropy
process consists of using Tsallis entropy models which is based on Shannon’s entropy. The
term entropy can be viewed as the measure of disorder, uncertainty, or ignorance, Sheraz
and Nasir (2021) of a system which also resembles the features associated with the stock
market with entropy being used to study stock market volatility, Bentes et al. (2008). The
Shannon entropy corresponding to a discrete random variable X, of probability measure
P = {p1, p2, ..., pn}, can be defined as;

S(X) = −
n

∑
i=1

pi ln pi (21)

Tsallis derived a generalized form of entropy, known as Tsallis entropy,
Bentes et al. (2008). When the entropy takes a non-additive form that involves a pa-
rameter q, this reduces the entropy in the limit of q = 1, which is referred to as Tsallis
statistics, Kapusta (2021). Tsallis entropy is a non-extensive entropy, Sheraz and Nasir
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(2021). The Shannon entropy recovers as q → 1, where q is the parameter of the Tsallis
entropy. The Tsallis entropy is defined as;

Sq(X) =
1−∑m

i=1 pq
i

q− 1
(22)

Tsallis entropy under the constraint of normalization and variance, Sato (2010) leads to
a q-Gaussian distribution and the q-Gaussian distribution has power-law tails when q > 1,
as shown at Figure 4. The underlying statistical dynamics is Gaussian if q = 1, Pavlos et al.
(2014). As the system moves away from equilibrium, the underlying statistical dynamics
become non-Gaussian, q 6= 1. A normal diffusion is when q = 1, anomalous sub-diffusion
(resulting from thin tails) for q < 1 and super-diffusion (resulting from heavy tails) for
1 < q < 3, Tsallis (2017). As the value of the parameter q decreases to 1, the frequency of
the data decreases and values where 1 ≤ q ≤ 2 emphasize highly volatile signals, Sheraz
and Nasir (2021).

4. A Financial Time Series Modelling Application

The financial Carbon Emissions Futures price between the dates of 1 May 2012 and 1
May 2022 which is shown at Figure 6, has been modelled using the Box–Jenkins, GBM and
the Tsallis time series modelling methods. Modelling to determine the datasets distribution
and undertaking simple linear regression modelling allows for a goodness-of-fit assessment
between the original and generated time series models, which can serve as a criterion for
model selection.

Figure 6. Time Series Plot.

4.1. Determining the Initial Distribution

Determining the time series distribution was undertaken using the Box-Jenkins
methodology to stabilize the time series dataset, see Figure 7. The resulting distribu-
tion of the log-differenced residual distribution at Figure 8, shows that the residuals are
normal slightly skewed with a long thin tail. The log-differenced results of the Carbon
Emissions price distribution at Table 1, produced a mean µ̂ = 0.0024 and the standard
deviation σ̂ = 0.0681 indicates a low level of dispersion. The kurtosis of the distribution
suggests that low values of the Carbon price resulted in volatility, see Figures 8 and 9.

149



J. Risk Financial Manag. 2022, 15, 461

Figure 7. Log−Differenced Residuals.

Figure 8. Log−Differenced Residual Distribution.

Figure 9. Log−Differenced Residual Q-Q Plot.

Table 1. Modelling Results.

Model µ̂ σ̂ Intercept Slope Std Error R2 p-Value AIC BIC

Log-diff. 0.002 0.068 −0.011 0.000 0.068 0.011 0.007 −1457.4 −1444.4

ARIMA 0.000 0.084 0.000 0.000 0.084 −0.002 0.986 −1206.6 −1193.6
SGARCH 0.061 0.999 −0.156 0.001 0.993 0.014 0.003 1627.4 1640.4
TGARCH 0.026 1.000 −0.237 0.001 0.990 0.021 0.000 1624.3 1637.4
GJR-GARCH 0.057 1.036 −0.323 0.001 1.013 0.043 0.000 1651.1 1664.1
GBM 0.002 0.068 −0.006 0.000 0.063 0.011 0.011 −1532.1 −1519.0
Tsallis 0.033 0.806 −0.452 0.000 0.890 0.001 0.644 725.8 736.6

The distribution at Figure 8, is the time series distribution for the Carbon price. Further
modelling is required in constructing a mathematical model that will allow for forecasting.
The distribution at Figure 8, can be used within a bivariate regression model, Liu et al.
(2020) and/or a bivariate copula model, Dewick and Liu (2022) if required.

Regression modelling has been used as a methodology in determining a suitable
distribution that represents the initial distribution, see Figure 8 which can be used in model
selection. The regression model for the initial distribution is shown at Figure 10, with the
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results shown at Table 1. This allows the initial distribution to be used as a baseline in
comparing other distributions produced from using the Box-Jenkins, Geometric Brownian
Motion and Tsallis methods.

Figure 10. Regression Plot for the Log−Differenced Residual Distribution.

4.2. Box–Jenkins Time Series Modelling Methodology

The Autocorrelation Function (ACF) and the Partial Autocorrelation Function (PACF)
plots identified at Figure 11, shows that there is a persistence of volatility, therefore a
GARCH type model is required.

Figure 11. ACF and PACF of the Log−Differenced Carbon Emissions Dataset.

Initial ARIMA modelling of the dataset at Figure 6, was undertaken using the R
package function auto.arima and gave the best fitting model as: ARIMA(1, 2, 0). Further
modelling was undertaken using the R package function rugarch. This package produced
the best fitting models as: SGARCH(1, 0, 2)(2, 1), TGARCH(1, 0, 2)(1, 1) and the GJR-
GARCH(1, 0, 2)(2, 1). These models were modeled for their distributions and regression
modelling was undertaken. The TGARCH model residuals and Q-Q plot is shown at
Figures 12 and 13. Further GARCH type models could also have been used but this paper
has used the ones shown as examples.

Figure 12. TGARCH Model Residual Distribution.
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Figure 13. TGARCH Residual Distribution Q−Q Plot.

Simple linear regression modelling using the original and TGARCH distributions, see
Equation (1), are shown at Figures 10 and 14. The results for all the modelled distributions
using simple linear regression undertaken are given at Table 1.

Figure 14. Regression Plot for the TGARCH Residual Distribution.

Overall, the results show that the time series distribution is symmetric. The lower tail
being thin, suggests that the skew represents rare events. This is highlighted in comparing
the Q-Q plots similarities at Figures 9 and 13.

4.3. Time Series Brownian Motion Results

A Time Series Geometric Brownian Motion simulation was undertaken with input
parameters for the GBM being identified using the initial Box-Jenkins model results
(µ̂ = 0.0024, σ̂ = 0.0681), shown at Figure 8. To allow for the simulation to represent
the dataset, hundreds of simulations Khamis et al. (2017), may be required. GBM simu-
lations tend to fluctuate wildly, this is highlighted at Figure 15, as 518 simulations were
required to produce the better fitting model which is shown at Figure 16.

Figure 15. GBM Simulation No.105.
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Figure 16. GBM Simulation No.518.

The Geometric Brownian Motion model required the distribution required to be log-
differenced to stabilize the data using the same methodology shown at Figures 7 and 8. The
simple linear regression modelling results for the Geometric Brownian Motion are given at
Table 1.

4.4. Tsallis Entropy Results

A Tsallis entropy estimation was undertaken using the R package q-Gaussian, de Santa
Helena and de Lim (2018). This R package allows for the calculation of the Tsallis q value
in determining the q-Gaussian distribution see Figure 2, that would indicate if the time
series distribution contained fat or thin tails. The simple linear regression model for the
Tsallis modelling results is at Table 1.

The R package tsallisexp is a package that can be used to determine the quality of fit to
an exponential distribution, as q→ 1, an exponential distribution is obtained, Shalizi and
Dutang (2021). Due to the small dataset size 575 data points, far less than what is required,
106 data points. Entropy Modelling is a methodology that can be easily undertaken should
a large enough dataset be available.

5. Modelling Results Summary

Simple linear regression was undertaken on the resulting distributions shown at
Table 1. The results show the GBM model, Figure 16 gave the best modelling results
that matched the original log-differenced dataset. The results also shows that modelling
using the GARCH family, the TGARCH model bests goodness-of-fit with the original log-
differenced dataset as there is slight volatility. This slight volatility (skew) was highlighted
within the original distribution at Figures 8 and 9.

6. Conclusions

This study has modelled time series data using three different modelling methods in
identifying the underlying distribution that can result due to the different phenomenon
that affect the financial market. The purpose and utility of determining the underlying
distribution is three-fold, firstly, these distributions can be used with regression modelling
as a goodness-of-fit criterion when undertaking forecasting modelling. Secondly, the
distribution can be applied in other modelling methods, such as regression and copula
modelling. Thirdly, by understanding the initial distribution of the dataset will give insight
to the possible presents of volatility (and leverage affects) and drift that can result from
different phenomenon’s acting within the financial market.

Using Tsallis entropy for time series modelling could be a good option in determining
the distribution, however it does require a large dataset (106), which may not be practically
available. This study used Tsallis Entropy modelling in determining the q-Gaussian distri-
bution, but it failed to reproduce the valid results. It is unsure how small a dataset could be
to produce a q-Gaussian distribution with reasonable accuracy in determining the under-
lying distribution using this application, this could be a topic for further research. In an
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environment using Big-Data, Tsallis entropy could be a quick methodology in identifying
the underlying distribution.

Future applications may include that time series modelling, not just be focused on
determining a predictive forecasting model, but rather being more focused on determining
and identifying the underlying distribution and parameters which aids in model selection
by using regression methods, then proceed to either other modelling methods, such as
regression, copula modelling or to forecasting methods and methodologies.

Limitations of this study is that only a few GARCH type models were used, being
the SGARCH, TGARCH and GJR-GARCH type models. This study has highlighted that
there are many GARCH type models that can be used. Familiarity for all the GARCH type
models should be obtained that will allow for the modelling the stylized facts from the
time series distribution.
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Abstract: Copulas are a quite flexible and useful tool for modeling the dependence structure between
two or more variables or components of bivariate and multivariate vectors, in particular, to predict
losses in insurance and finance. In this article, we use the VineCopula package in R to study the
dependence structure of some well-known real-life insurance data and identify the best bivariate
copula in each case. Associated structural properties of these bivariate copulas are also discussed
with a major focus on their tail dependence structure. This study shows that certain types of
Archimedean copula with the heavy tail dependence property are a reasonable framework to start
in terms modeling insurance claim data both in the bivariate as well as in the case of multivariate
domains as appropriate.

Keywords: bivariate copula; measures of association; dependence modeling; Kendall’s τ; Blomqvist’s β

1. Introduction

Modeling insurance data via copula is not new in the literature. For example, Alexeev
et al. (2021) studied dependence among insurance claims arising from different lines of
business via copula. Shi et al. (2016) discussed a multilevel modeling of insurance claims
using copula. Pfeifer and Neslehova (2003) discussed at length in a survey paper the role
of copula in modeling dependence in finance and insurance. In exploring dependence
structures related to insurance (from any business domain, such as healthcare sector,
travel industry, etc.) one pertinent aspect is the assessment of various types of risk (for
example, portfolio risk) arising out of each of these domains. There is no denying of the
fact that without the proper assessment of risk, insurance coverage to public and private
property/organization (as the case may be) as well as for individuals associated cannot be
evaluated effectively. Consequently, in the literature, there are several instances of using
bivariate and/or multivariate copula and studying their tail dependence behavior. For a
detailed study on copula and associated bivariate (as well as multivariate) dependence
based on copula theory, see the books by Joe (1997) and Nelsen (2006). A non-exhaustive
list of such references may be cited as follows. Mensi et al. (2017) has discussed via a
wavelet-based copula approach the dependence structure across oil, wheat, and corn.
The authors have established time varying asymmetric tail dependence (at different time
zones) between the pair of cereals as well as between oil and the two cereals. Naeem et al.
(2021) studied the asymmetric and extreme tail dependence between five energy markets
and green bonds using a time-varying optimal copula. This serves as a motivation for the
current work. In this article, we focus on studying the dependence structure between two
components resulting from insurance claim datasets. Specifically, we consider Australian
automobile insurance data and the Swedish motor insurance data. There is little or no
evidence of studying automobile insurance data that are asymmetric in nature via copula.
This is another motivation to carry out this work. These datasets are selected from a wide
collection of CAS datasets available in R. Here, we consider a copula-based modeling of
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insurance claims data, especially the tail dependence and through a specific selection criteria
in R, popularly known as the VineCopula package, to select the best fitted copula in each of
these datasets. This paper investigates dependence among insurance claims arising from
the auto industry with datasets selected from two different countries. Interestingly, for the
first dataset, the Australian automobile insurance data, we examine the dependence among
(pairwise) four different variables; each such comparison is useful in the context of claims
assessed from the insured as well as the insurer. The details are provided in each model
description in Section 3. For a detailed study on the use of copula, see Shi et al. (2016) and the
references cited therein. The second dataset is taken from two different countries on motor
insurance claims. In this case, we study the tail dependence between claims submitted
and the number of insured motorists. When modeling dependency between components
of insurance claims using copula, we aim to select copulas that are capable of generating
upper- and or lower-tail dependence, that is, when several components of the insurance
claims have a strong tendency to exhibit extreme losses simultaneously. We expect that the
outcomes of this study provide valuable insights with regards to the nature of dependence
and satisfy one of the primary objectives of the general insurance providers aiming at
assessing total risk of an aggregate portfolio of losses when components of insurance are
correlated. General insurance (for example, property–casualty) protects individuals and
organizations from financial losses due to property damage or legal liabilities, in our case,
due to auto accident. Consequently, it allows policyholders to exchange the risk of a large
loss for the certainty of smaller periodic payments of premiums. Next, insurers allocates
the bulk of premium dollars into investment and claims payments. As it is for an insurer
to manage its investment portfolio, it is equally important for the insurer to manage its
claim portfolio. It is the counterpart of asset management for the claims on the insurer’s
book. Claim management is the analytics of insurance costs. It requires applying statistical
techniques in the analysis and interpretation of the claims data. In the data-driven industry
of general insurance, claim management provides useful insights for insurers to make
better business decisions. From the above, it is quite evident as to why a study of insurance
claims via copula is important.

In this article, we aim to model the dependence structure (in the bivariate domain)
of data arising out of financial domains, precisely, from the insurance domain via cop-
ula. Insurance data from the automobile sector are selected for these purposes that are
asymmetric in nature. We consider the application of vine copulas (in two dimensions) for
several types of insurance data which are asymmetric in nature by utilizing the Vine Copula
package in R. It appears that the resultant most appropriate bivariate copulas are members
of the C and D-vine copulas, and among them, some are Archimedean as well. A vine
copula is a copula constructed from a set of d(d−1)

2 bivariate copulas by using successive
mixing according to a tree structure on finite indexes 1, · · · , d. Depending on the types of
trees, various vine copulas can be constructed. The remainder of the paper is organized
as follows. In Section 2, we discuss some basic definitions and useful preliminaries on
copula theory. In Section 3, we discuss in details two different datasets, subsequently fitting
an appropriate bivariate copula to each of them. In Section 4, we discuss some useful
structural properties of these copulas, in particular tail dependence structures that are
pertinent in the study of insurance claims dependence structure. Finally, some concluding
remarks are made in Section 5.

2. Bivariate Copula and Its Properties

We begin this section by reviewing some basic definitions and concepts related to
copula. The utility of Sklar’s theorem is that the modeling of the marginal distributions
can be conveniently and efficiently separated from the dependence modeling in terms of
the copula. Interestingly, the major task that lies in practical applications is how to identify
this copula. For the bivariate case, a rich collection of copula families is available and
well-investigated (see, for details, Joe 1997; Nelsen 2006). Sklar’s theorem establishes the
link between multivariate distribution functions and their univariate margins. We state
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this theorem at first. Let F be the p-dimensional distribution function of the random vector
X =

(
X1, · · · , Xp

)T with marginals F1, · · · , Fp. Then, there exists a copula C such that for

all x =
(
x1, · · · , xp

)T ∈ [−∞, ∞]p,

F(x) = C
(

F1(x1), · · · , Fp(xp)
)
. (1)

Note that C is unique if F1, · · · , Fp are continuous. Conversely, if C is a copula and F1, · · · , Fp
are distribution functions, then the function F defined by (1) is a joint distribution function
with marginals F1, · · · , Fp. Precisely, C can be interpreted as the distribution function of a p-
dimensional random variable on [0, 1]p with uniform marginals. Associated densities are
denoted by a lower case c. In addition, the random variables X1, · · · , Xp are assumed to be
continuous in the following. By setting p = 2, one may easily obtain a bivariate version of
the Sklar’s theorem as a special case.

We now provide some basic properties of a copula. For details on this, see Nelsen
(1999, 2006).

Definition 1. A copula is a function C whose domain is the entire unit square with the follow-
ing properties:

1. C(u, 0) = C(0, v) = 0, for all (u, v) ∈ [0, 1].
2. C(u, 1) = C(1, u) = u, for all (u, v) ∈ [0, 1].
3. C(u1, v1) − C(u1, v2) − C(u2, v1) + C(u2, v2) ≥ 0, for all (u1, v1, u2, v2) ∈ [0, 1]. for

every u1 ≤ u2, v1 ≤ v2.

Sklar (1973) established that any bivariate distribution function, say, FXY(x, y), can be
represented as a function of its marginals, say, FX(x) and FY(y), by using a two-dimensional
copula C(., .) in the following way:

FXY(x, y) = C(FX(x), FY(y)).

If FX(x) and FY(y) are absolutely continuous, then the associated copula C is unique.
Moreover, C(u, v) is ordinarily invariant, which implies that if δ(x) and Φ(y) are strictly
increasing functions, the copula of (δ(X), Φ(Y)) is also that of (X, Y). Therefore, both the
marginals of FXY(x, y) are absolutely continuous. Then, by selection of δ(x) = FX(x) and
Φ(y) = FY(y), we can say that every copula is a distribution function whose marginals
are uniform on the interval [0, 1]. Consequently, it represents the dependence structure
between two variables by eliminating the influence of the marginals, and hence of any
monotone transformation on the marginals.

Dependence Structures

Copulas are instrumental in understanding the dependence between random variables.
With them, we can separate the underlying dependence from the marginal distributions.
It is well-known that a copula which characterizes dependence is invariant under strictly
monotone transformations; subsequently, a better global measure of dependence would also
be invariant under such transformations. Among other dependence measures, Kendall’s τ
and Spearman’s ρ are invariant under strictly increasing transformations, and, as we see in
the next, they can be expressed in terms of the associated copula.

• Kendall’s τ: Kendall’s τ measures the amount of concordance present in a bivariate
distribution. Suppose that (X, Y) and (X̃, Ỹ) are two pairs of random variables from
a joint distribution function. We say that these pairs are concordant if large values
of one tend to be associated with large values of the other and small values of one
tend to be associated with small values of the other. The pairs are called discordant
if large goes with small or vice versa. Algebraically, we have concordant pairs if(

X− X̃
)(

Y− Ỹ
)
> 0 and discordant pairs if we reverse the inequality. The formal

definition is:
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τ(X, Y) = P
{((

X− X̃
)(

Y− Ỹ
)
> 0

)}
− P

{(
(X− X̃)(Y− Ỹ) < 0

)}
,

where
(
X̃, Ỹ

)
is an independent copy of (X, Y). Let X and Y be continuous random

variables with copula C. Then, Kendall’s τ is given by

τ(X, Y) = 4
∫∫

[0,1]2
C(u, v)dC(u, v)− 1. (2)

• Spearman’s ρ: Let X and Y be continuous random variables with copula C. Then,
Spearman’s ρs is given by

ρs = 12
∫∫

[0,1]2
C(u, v)dudv− 3. (3)

Alternatively, ρs can be written as ρs = 12
∫ 1

0

∫ 1
0 [C(u, v)− uv]dudv. Moreover, as men-

tioned earlier, one can equivalently show that ρs(U, V) = ρ(F1(X), F2(Y)).

• Tail dependence property: Let X and Y be two continuous r.v.’s with X ∼ F, and
Y ∼ G. The upper-tail dependence coefficient (parameter) λU is the limit (if it exists)
of the conditional probability that Y is greater than the 100α th percentile of G given
that X is greater than the 100α th percentile of F as α approaches 1.

λU = lim
α↑1

P
(

Y > G−1(α)|X > F−1(α)
)

. (4)

If λU > 0, then X and Y are upper-tail dependent and asymptotically independent
otherwise. Similarly, the lower-tail dependence coefficient is defined as

λL = lim
α↓0

P
(

Y ≤ G−1(α)|X ≤ F−1(α)
)

. (5)

Let, C be the copula of X and Y. Then, equivalently, we can write

λU = limu↓0
C̃(u,u)

u , and λL = limu↓0
C(u,u)

u where C̃(u, u) is the corresponding joint
survival function given by

C̃(u, u) = 1− 2u + C(u, u).

• Blomqvist’s β: Suppose that X̃n and Ỹn are the medians of the samples X1, · · · , Xn and
Y1, · · · , Yn, respectively. In order to summarize information about the dependence be-
tween X and Y, Blomqvist (1950) suggested dividing the x− y plane into four regions
by drawing the lines x = X̃n and y = Ỹn and comparing the following quantities:

– n1 : the number of points lying in either the lower left quadrant or the upper right
quadrant;

– n2 : the number of points in either the upper left quadrant or the lower right
quadrant.

Consequently, the definition of βn, which is equivalently called Blomqvist’s beta, is
given by

βn =
n1 − n2

n1 + n2
= −1 + 2

n1

n1 + n2
.

If n is even, then no sample point falls on either of the lines x = X̃n and y = Ỹn, and
it follows that both n1 and n2 are even. If n is odd, however, then either one or two
sample points lie on the lines defined by the sample medians. In the case of a single
point lying on a median, Blomqvist (1950) proposed not to count the point altogether.
In the latter case, one point has to fall on each line: one of them is assigned to the
quadrant touched by the two points, and the other is not counted. This allows both n1
and n2 to remain even. The population analogue of βn is
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β = P[(X− x̃)(Y− ỹ) > 0]− P[(X− x̃)(Y− ỹ) < 0],

where x̃ and ỹ denote the population medians of X and Y, respectively. Next, on using
the facts that

–

P[(X− x̃)(Y− ỹ) > 0] = P[(X− x̃) > 0, (Y− ỹ) > 0]

+P[(X− x̃) < 0, (Y− ỹ) < 0];

and P[X > x̃, Y > ỹ] = Pr[X < x̃, Y < ỹ];
– From the fundamental Sklar’s (1959) theorem H(x, y) = C(F(x), G(y)); one

can write

β = 4C
(

1
2

,
1
2

)
− 1. (6)

As β is only a function of C, it is possible to write it in terms of α whenever C ∈ Cα,
where α is the set of parameters associated with the copula C.

• Left-Tail decreasing property and Right-Tail increasing property: Nelsen (1999)
showed that X(Y) is left-tail decreasing i.e., LTD(Y|X) and LTD(X|Y) if and only if
for all u, u′, v, v′ such that 0 < u ≤ u′ ≤ 1 and 0 < v ≤ v′ ≤ 1, if C(u,v)

uv ≥ C(u′ ,v′)
u′v′ .

Again, from Nelsen (2006), Theorem 5.2.5, X(Y) is right-tail increasing if

– RTI(Y|X) if and only if for any v ∈ (0, 1) 1−u−v+C(u,v)
1−u is nondecreasing in u.

– RTI(Y|X) if and only if for any u ∈ (0, 1) 1−u−v+C(u,v)
1−v is nondecreasing in v.

For an alternative criteria see (Nelsen 2006, p. 197, Theorem 5.2.12 and Corollary 5.2.11).
Moreover, regarding stochastically increasing, left-tail decreasing and right-tail in-
creasing properties, we provide the following equivalent conditions (see, Nelsen 2006,
p. 197, Corollary 5.2.11 and Theorem 5.2.12), which are utilized later on in determining
the dependence structure for the best fitted bivariate copula:

In the next, we discuss the stochastic increasing (SI) property for a copula beginning
with the definition given in the following result.
Result 1. Let X and Y be continuous random variables with a copula C. Then

– SI(Y|X) if and only if for any v ∈ [0, 1], C(u, v) is a concave function of u;
– SI(X|Y) if and only if for any u ∈ [0, 1], C(u, v) is a concave function of v.

Result 2. Let X and Y be continuous random variables with a copula C. Then:

– SI(Y|X), then LTD(Y|X) and RTI(Y|X),
– SI(X|Y), then LTD(X|Y) and RTI(X|Y).
Regarding the LTD (RTI) property, they are also discussed in Section 4 In the next

section, we briefly discuss the types of insurance data selected for our study and associated
goodness of fit based on a best-fitted bivariate copula for each of the scenarios considered
in this paper.

3. Application to Insurance Data
3.1. Data and Variable Selection

We particularly focus on insurance claim data that are related to auto/motor accidents.
The reason for selecting this specific domain is already established in the introduction.
All of the datasets referred to in this paper can be found in the Computational Actuarial
Science collection and are accessible through the “CASdatasets” package in R. Additionally,
we used the “VineCopula” package to find the best-fitted copula model for each pair of
variables in each dataset used. The “VineCopula” package takes the selected variables and
finds the best copula model from the families available in the package. This choice of copula
is based on test diagnostics such as AIC, BIC, and the log-likelihood value. A generic R-code
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based on the Vine Copula package which is used for selecting the best possible bivariate
copula on the different insurance datasets is provided in the Appendix A. The next section
details how the variables from each dataset were selected and the associated best-fitted
bivariate copula models.

3.1.1. Dataset 1 (Australian Automobile Claim Data)

This dataset records the number of third-party claims in a 12 month period between
1984 and 1986 in each of the 176 local government areas in New South Wales, Australia. Ad-
ditionally, the dataset includes the name of the local government, the number of third-party
claims filed, the number of people killed or injured in automobile accidents, the population
size, and the population density. Australia is historically known for its low population
density. This is due to extreme climate of the continent. With this in mind, we decided to
include the population size of each city in New South Wales as opposed to the population
density because the density is skewed by the lack of inhabitants in Australia. For this
dataset, we plan to study dependence measure among 4 different variables in pairwise
comparison structure. We argue that the selection of these pairwise comparisons are legit-
imate in nature. The Table 1 below provides a key for the abbreviations we use for each
variable throughout our study.

Table 1. Variable description.

Abbreviation Variable

ACC Number of accidents

TPC Number of third-party claims filed

K/I Number of people killed or injured in an accident

Pop Population of the area

Furthermore, in each of these bivariate modeling setups, we provide scatterplots (on
actual values as well as on a logarithmic scale) to have an initial glimpse of their dependence
structure. The scatterplot based on a log transformation of the original variable is due to the
fact that in visualizing numerical data which ranges over several magnitudes, conventional
wisdom says that a log transformation of the data can often result in a better visualization.
As such, the scatterplots in logarithmic scale are also provided to see the skewness of the
original data values. Next, we provide each pairwise model description to be considered in
our analysis.

Model 1 (AUS 1): The first pair of variables that were selected were the number of
accidents (ACC) and the population size (POP). These were chosen because we expected
more accidents to occur in regions with a higher population relatively speaking. From the
scatterplot in Figures 1 and 2, it appears that there exists a strong linear relationship between
these two variables, which is also supported by the associated Kendall’s τ and Spearman’s
ρ values in Table 2 (Column 4, 5, Row 1).
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Figure 1. Scatterplot of the Model 1 data.

Figure 2. Scatterplot of the Model 1 data (on a natural log scale).

Model 2 (AUS 2): In this model, we consider the two concomitant variables under
study, namely the number of Third-Party Claims filed (TPC) and POP. TPC happens if a
driver’s negligence results in the injury or death of another driver; the affected party or
their family have the ability to file a claim against the guilty driver’s insurance company.
We consider studying the dependence between TPC and the population of a given region
in Australia because one would expect a larger volume of third-party claims to be filed in
regions with higher populations. Needless to say, this is a good source of information for
car insurance providers. From the scatterplot in Figures 3 and 4, it appears that there exists
a strong linear relationship between these two variables, which is also supported by the
associated Kendall’s τ and Spearman’s ρ values in Table 2 (Column 4, 5, Row 2).

Model 3 (AUS 3): Next, we consider studying the dependence of a region’s population
(POP) and the number of people killed or injured in an accident (K/I). Once we discovered
that there was a strong dependence relationship between the number of third-party claims
and the population size of a region, we realized that since third-party claims are a result of
accidents with injuries involved, the number of people killed or injured could be greater in
higher-populated areas where more third-party claims are filed. From the scatterplot in
Figures 5 and 6, it appears that there exists a strong linear relationship between these two
variables, which is also supported by the associated Kendall’s τ and Spearman’s ρ values
in Table 2 (Column 4, 5, Row 3).
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Figure 3. Scatterplot of the Model 2 data.

Figure 4. Scatterplot of the Model 2 data (on a natural log scale).

Figure 5. Scatterplot of the Model 4 data.
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Figure 6. Scatterplot of the Model 4 data (on a natural log scale).

Model 4 (AUS 4): In this model, we consider studying the level of dependence
between the number of people injured or killed in an automobile accident (K/I) and the
corresponding number of third-party claims filed (TPC). As defined above in Model 2,
third-party claims are filed in the event of an accident in which other drivers suffer injury
from the negligence of another. While injury and death are not exclusive to the third party,
we found a positive trend in the scatterplot of these two variables (Figures 7 and 8). Hence,
we chose to fit a copula to these two concomitant variables.

The non-exhaustive reasons for selecting four different models are as follows:

• For multicomponent insurance claim data, instead of a single representative value
for the tail dependence measure, which would not reveal the partial dependence
structure(s), it is better to observe the tail dependence structure pairwise. This way,
one can eliminate to some extent the effect of lurking variable(s).

• Pairwise dependence measures help to identify (possibly one way or the other) which
of the two components would be the most important to influence the associated
portfolio risk.

• A class of bivariate copulas can be listed adequately for dealing with such types
asymmetric insurance data, for example, where a specific class of extreme-value
copulas or Archimedean copulas could be useful.

Figure 7. Scatterplot of the Model 4 data.
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Figure 8. Scatterplot of the Model 4 data (on a natural log scale).

3.1.2. Dataset 2 (Swedish Motor Insurance Data)

This dataset represents the insurance information of 2182 motorists collected by the
Swedish Committee on the Analysis of Risk Premium in 1977. It consists of the number
of kilometers driven by a motorist (grouped into 5 categories), the geographical zone
of a vehicle (grouped into 7 categories), the bonus variable (grouped into 7 categories),
the make of the vehicle, the number of years that a motorist has been insured, the number
of claims a motorist has filed, and the sum of the payments made by a motorist. We
excluded the geographic zone and make of the vehicle variables from our consideration
because while they are quantitatively defined, they describe qualitative variables and do
not have a defined ordering. Due to the way the kilometers’ variable was defined, we were
unable to come up with a model that showed a large amount of dependence, so the results
of that model are excluded from this paper. Instead, we chose to study the dependence
and subsequently search for the best possible bivariate copula model with the following
variables of interest:

1. X1: Insured (number of years a motorist has been insured).
2. X2: Claims (sum of claim payments).

The scatterplots in Figures 9 and 10 show a linear relationship between the variables.

Figure 9. Scatterplot of the Swedish motor data.
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Figure 10. Scatterplot of the Swedish motor data (on a natural log scale).

The Tables 2 and 3 below detail the results for each model. Note that all of these
computations were performed in R.

Table 2. Level of dependence between model variables.

Dataset/Model X1 X2 Kendall’s τ Spearman’s ρ

AUS 1 ACC Population 0.8123 0.9452

AUS 2 TPC Population 0.8078 0.9479

AUS 3 K/I Population 0.7981 0.9373

AUS 4 K/I TPC 0.8372 0.9611

Swedish Motor Policy Holder
Years

Sum of
Payments 0.7411 0.9030

Table 3. Model diagnostics and goodness of fit statistics.

Dataset/Model Best-Fitted
Copula

Parameter
Estimates AIC BIC Log

Likelihood

AUS
1/Model 1 Frank (18.42) −377.38 −374.21 189.69

AUS
2/Model 2 Frank (18.33) −376.58 −373.41 189.29

AUS
3/Model 3 Tawn 1 (5.01, 0.95) −373.11 −366.76 188.55

AUS
4/Model 4 Student t (0.96, 4.61) −442.33 −435.99 223.16

Swedish
Motor BB6 (1.59, 2.81) −4095.96 −4084.58 2049.98

Table 2 outlines the level of concordance between each pair of variables in each model.
When two variables are concordant, this means that higher values of one variable are asso-
ciated with higher values of the other and vice versa for lower values. If these coefficients
are closer to 0, this indicates low dependence or even independence. Conversely, if these
coefficients are closer to 1, it tells us that the variables are dependent upon one another.
From Table 2, we see that each pair of variables exhibits a strong level of dependence, since
the concordance coefficients are close to 1. Table 3 represents various model diagnostics
along with parameter estimates corresponding to the best-fitted bivariate copula. We expect
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the AIC and BIC to be minimal and the log likelihood to be maximal. Each copula shown
in Table 3 represents the best fit for the pair of variables that were being tested according to
the AIC, BIC, and log-likelihood criteria. The c.d.f. and p.d.f. plots corresponding to the
best-fitted bivariate copulas listed in Table 3 are also provided in the Figures 11–14.

Figure 11. Gaussian(0.8) c.d.f. and p.d.f.

Figure 12. Frank c.d.f. and p.d.f. with α = 18.42.

Figure 13. Frank c.d.f. and p.d.f. with α = 18.33.
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Figure 14. BB6 c.d.f. and p.d.f. with θ = 1.59 and δ = 2.81.

4. Structural Properties of the Fitted Bivariate Copula

This section presents the analysis of certain structural properties of the copulas. We
begin our discussion with the Tawn type-1 copula.

4.1. Tawn Type-1 Copula

We can say the following regarding Tawn type-1 copula that was found to be the
best-fitted bivariate copula for Model 3 from the dataset 1:

• The Tawn copula is a nonexchangeable extension of the Gumbel copula with three
parameters (also known as the asymmetric logistic copula).

• Tawn copula’s definition is based around so-called Pickands dependence functions, see
Franc et al. (2011) for pertinent details. Equation (4) in Franc et al. (2011) presents the
way one can compute the density in the probability space using a Pickands function M:

C(u, v) = (u, v)A(w),

with w =
log(u)

log(uv) .

• The Tawn copula’s Pickand function can be written as

M(t) = (1− ψ2)(1− t) + (1− ψ1)t +
[
(ψ1(1− t))θ + (ψ2)

θ
]1/θ

,

with t ∈ [0, 1], 0 ≤ ψ1, ψ2 ≤ 1, and θ ∈ [1, ∞). The Tawn copula is in actuality a
Gumbel copula with two additional asymmetry parameters: ψ1 and ψ2. If we set ψ1
and ψ2 equal to unity, the Gumbel copula is obtained. In the VineCopula package in R,
the Tawn type-1 copula refers to ψ1 = 1.

• For this copula, the lower-tail dependent λL = 0. The corresponding upper-tail
dependent λU = 0.8288, for the AUS3/Model 3 data for which Tawn type-1 copula
appeared to be the best fit.

4.2. Frank Copula

The Frank copula (see, Nadarajah et al. 2017) has the following form:

C(u, v) = logα

[
1 +

(αu − 1)(αv − 1)
α− 1

]
,

for α > 0. In this case, the positive dependence corresponds to 0 < α < 1, independence
corresponds to α → 1, and negative dependence corresponds to α > 1. Next, for this
bivariate copula, we can write the following:

• The associated dual of the copula is denoted by C̃(u, v) and is given by
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C̃(u, v) = u + v− C(u, v) = u + v− logα

[
1 +

(αu − 1)(αv − 1)
α− 1

]
,

• Again, the associated co-copula denoted by C∗(u, v) and is given by

C∗(u, v) = 1− C(1− u, 1− v) = 1− logα

[
1 +

(
α1−u − 1

)(
α1−v − 1

)

α− 1

]
.

For the bivariate Frank copula, we have the following:

• The Kendall’s τ will be τ = 4
[

3 log(α)(−2 log(1−α)+log(α)+2)−6Li2(α)+π2

6 log2(α)

]
− 1,

where Li2(α) is the PolyLog function (on using Mathematica).
• The Spearman’s ρ will be

ρ =
∫ 1

0

v((1− α) log(α− 1)αv + (α− 1)αv log((α− 1)αv)− α log(α)(αv − 1))
log(α)(αv − 1)(αv − α)

dv− 3.

• The Blomqvist’s β expression will be

β = 4 logα

[
1 +

(
α

1
2−1
)2

α− 1

]
.

Tail dependence property of the bivariate Frank copula:
• For the upper-tail dependence (using L’Hôpital’s rule)

λU = lim
u↑1

1− 2u + logα

[
1 + (αu−1)2

α−1

]

1− u

H
= − lim

u↑1

(
− 2 +

(
1

1 + (αu−1)2

α−1

)(
2(αu − 1)(αu log α)

(α− 1) log α

))

= 0.

Therefore, Frank’s copula is upper-tail dependent. Next, we determine if it is lower-tail
dependent. Consider the limit

λL = lim
u↓0

logα

[
1 + (αu−1)2

α−1
]

u

H
= lim

u↓0
2(αu − 1)(αu)(log α)2

1 + (αu−1)2

α−1

= 0,

again, on using L’Hôpital’s rule. Consequently, the Frank copula is also lower-tail
independent. Therefore, the bivariate Frank copula is asymptotically independent.

LTD and RTI property of the bivariate Frank copula:
Consider the following:

∂2

∂u2 Cα(u, v) = − log(α)αu(αv − 1)(αv − α)

(α− αu + αu+v − αv)2 .

Therefore, ∂2

∂u2 Cα(u, v) ≤ 0 for 0 < α < 1; thus, Cα(u, v) is a concave function of u
for 0 < α < 1. It follows that if X and Y are continuous with the Frank family cop-
ula, then SI(Y|X) (and by symmetry SI(X|Y) as well). Again, from Theorem 5.2.12
(Nelsen (2006)) this implies the associated BB8 family copula also holds the LTD and
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RTI property, i.e., LTD(Y|X) and RTI(Y|X), and because of symmetry, LTD(X|Y) and
RTI(X|Y).

Furthermore, we see that both models are highly correlated in the center of their re-
spective distributions. The Table 4 below summarizes the dependence structures discussed
above and displays the generator function of this particular copula:

Table 4. Dependence of the Frank copula.

Generator Function φ(t) = − log
(

exp(−αt)−1
exp(−α)−1

)

Blomqvist β (AUS 1) 0.9348

Blomqvist β (AUS 2) 0.9329

Upper-Tail Dependence 0

Lower-Tail Dependence 0

Kendall’s τ given earlier

4.3. Bivariate t Copula

The t copula (see Embrechts et al. (2001) or Fang and Fang (2002) and the references
cited therein) can be thought of as representing the dependence structure implicit in a
multivariate t distribution. The two-dimensional unique t copula associated with a bivariate
random vector Y = (Y1, Y2)

T , is given by

Ct
δ(u, v) =

∫ t−1
δ (u)

−∞

∫ t−1
δ (v)

−∞

Γ((δ + 2)/2)

Γ(δ/2)
√
{(πδ)2|Σ|}

[
1 +

yTΣ−1y
δ

]− δ+2
2

dy1dy2,

where t−1
δ (.) denotes the quantile function of a standard univariate tδ(.) distribution.

Furthermore, Σ is the correlation matrix given by

Σ =

[
1 ρ
ρ 1

]
,

where ρ is the correlation coefficient between Y1, and Y2. The determinant of this matrix,
denoted by |Σ|, is given by |Σ| = 1− ρ2. Next, one may verify the following regarding the
dependence structure for a bivariate t copula

• Kendall’s τ will be

τ =
2
π

arcsin ρ,

for the proof, see Fang and Fang (2002).
• The tail dependence coefficient (associated with a bivariate t copula as given earlier) λ

is given by

λ = 2tδ+1

(
−
√
{δ + 1}

√
{1− ρ}√

{1 + ρ}

)
,

where tδ+1 is the univariate central student t distribution with (δ + 1) degrees of
freedom and ρ is the correlation coefficient. It is important to note that a student
t-copula may exhibit both the positive and negative tail dependence, although the
“overall” association is negative ρ < 0. Furthermore, a student t-copula with a large
value of δ tends to have a 0 tail dependence even though the correlation is 0. The t-
copula can capture the asymptotic dependence even when the variables are negatively
(inversely) associated (see, Embrechts et al. 2001). In the t-copula formula, as δ
increases, the tail dependence weakens, and thus, the probability of occurrence of
extreme values reduces.
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For illustrative purposes, we provide the following picture in Figure 15 (generated
through the https://copulatheque.shinyapps.io/copulas/ (accessed on 15 June 2022)
created by BenGraeler) showing a student t-copula with ρ = −0.3 and δ = 1, which
gives the value of Kendall’s τ = −0.19 and upper- and lower-tail dependence of
λ = 0.19.

Figure 15. Student t − copula density with δ = 2 and with Kendall’s τ = −0.19.

The estimation of a student t-copula is quite difficult. Noticeably, the marginal tails
(for bivariate and/or multivariate data distributions) of financial data are usually
heavy tailed, and hence this should be fitted by a t-distribution and not by a Gaussian
distribution. In addition, the dependence in joint extremes of bivariate and/or multi-
variate financial data suggests a dependence structure allowing for tail dependence.
Consequently, the use of t-copulas has become popular for modeling dependencies
in financial data. Some recent applications have been: analysis of nonlinear and
asymmetric dependence in the German equity market Sun et al. (2008); estimation of
large portfolio loss probabilities Chan and Kroese (2010); and risk modeling for future
cash flow Pettere and Kollo (2011). See also Dakovic and Czado (2011).
One may subsequently obtain the expressions for the upper-tail as well as lower-
tail dependence from the above. For details, see (Demarta and McNeil 2005, p. 4,
Proposition 1).

4.4. BB6 (Joe–Gumbel) Copula
The BB6 copula (see Joe 1997) has the following form:

C(u, v) = 1−
(
1− exp(−[(− log(1− uθ))δ + (− log(1− vθ))δ]

1
δ ))

1
θ , u ≥ 0, v ≤ 1, θ ≥ 1, δ ≥ 1.

where u = 1− u and v = 1− v.
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Tail dependence property of the bivariate BB6 copula
The lower-tail and upper-tail dependence coefficients can be calculated using the same

methodology that we used for the Frank copula. For the upper-tail dependence coefficient,
we obtain the following:

λU = lim
u↑1

1− 2u + 1−
(
1− exp(−[2(− log(1− uθ))δ]))

1
θ

1− u
H
= lim

u↑1
2− 2

1
δ (1− u)θ−1 exp [2

1
δ log(1− (1− u)θ)](1− exp [2

1
δ log(1− (1− u)δ])

1
θ−1 = 2− 2

1
θδ .

Similarly, for the lower-tail dependence coefficient:

λL = lim
u↓0

1−
(
1− exp(−[2(− log(1− uθ))δ]))

1
θ

u
H
= lim

u↓0
2

1
δ (1− u)θ−1 exp [2

1
δ log(1− (1− u)θ)](1− exp [2

1
δ log(1− (1− u)δ])

1
θ−1 = 0.

Therefore, the BB6 copula is not asymptotically independent. However, from the given
expression for λU , it is quite clear that as both θ and δ are close to 1, λU is close to zero. This
would imply that the BB6 copula is asymptotically independent in such a case. Furthermore,
from the expression for λU , it appears that as the values of δ and θ increases, the value of
λU increases. This implies the fact that this copula might not be that useful to model the
dependence structure for financial data in general, as such tend to exhibit tail dependence,
especially lower-tail dependence. However, if the data suggests that the estimated values
of the parameters δ and θ are larger than one, then it may be utilized to model financial
data, such as insurance data that exhibit some amount of tail dependence.

LTD and RTI property of the bivariate Frank copula:
Consider the following:

∂2

∂u2 Cθ,δ(u, v)

=



(
(1− u)θ − 1

)2
(

exp

(((
− log

(
1− (1− u)θ

))δ
+
(
− log

(
1− (1− v)θ

))δ
) 1

δ

)
− 1

)2

−1

×
[

A1 × A2

{
A3 + (1− u)θ × (B1 + B2 + B3)

}]
,

where

A1 = (1− u)θ−2
(
− log

(
1− (1− u)θ

))δ−2

×
[

1− exp

(
−
((
− log

(
1− (1− u)θ

))δ
+
(
− log

(
1− (1− v)θ

))δ
) 1

δ

)] 1
θ

,

A2 =

[(
− log

(
1− (1− u)θ

))δ
+
(
− log

(
1− (1− v)θ

))δ
] 1

δ−2
,

A3 =
(

θ + (1− u)θ − 1
)

log
(

1− (1− u)θ
)((
− log

(
1− (1− u)θ

))δ
+
(
− log

(
1− (1− v)θ

))δ
)

×
[

exp

(((
− log

(
1− (1− u)θ

))δ
+
(
− log

(
1− (1− v)θ

))δ
) 1

δ

)
− 1

]
,

B1 = −
(
− log

(
1− (1− u)θ

))δ
((
− log

(
1− (1− u)θ

))δ
+
(
− log

(
1− (1− v)θ

))δ
) 1

δ

,
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B2 = θ

[(
− log

(
1− (1− u)θ

))δ
((
− log

(
1− (1− u)θ

))δ
+
(
− log

(
1− (1− v)θ

))δ
) 1

δ

−δ
(
− log

(
1− (1− v)θ

))δ
+
(
− log

(
1− (1− v)θ

))δ
]

× exp

(((
− log

(
1− (1− u)θ

))δ
+
(
− log

(
1− (1− v)θ

))δ
) 1

δ

)
,

B3 = (δ− 1)θ
(
− log

(
1− (1− v)θ

))δ
.

Therefore, ∂2

∂u2 Cθ,δ(u, v) ≤ 0 for θ > 1 and for any δ ≥ 1; thus, Cθ,δ(u, v) is a concave
function of u for θ > 1 and for any δ ≥ 1. It follows that if X and Y are continuous with
the BB6 family copula, then SI(Y|X) (and by symmetry SI(X|Y) as well). Again, from
Theorem 5.2.12 (Nelsen 2006, p. 197) this implies the associated BB8 family copula also
holds the LTD and RTI property, i.e., LTD(Y|X) and RTI(Y|X) and because of symmetry
LTD(X|Y) and RTI(X|Y). Note that for 0 < θ ≤ 1, it is inconclusive for this copula
family. In Table 5, below, we provide the the summary of the dependence measures for the
BB6 copula for the Swedish motor insurance data.

Table 5. Dependence structures of the BB6 copula for the Swedish motor insurance data.

Generator Function φ(t) = (− log[1 − (1 − t)θ])δ

Blomqvist Beta (General)
β = 4

(
1−

(
1− e−[(− log(1− 1

2
θ
))δ+(− log(1− 1

2
θ
))δ ]

1
δ

) 1
θ
)

Blomqvist β (Swedish Auto) 0.7397

Upper-Tail (Swedish Auto) 2− 2
1
δθ = 0.8321

Lower-Tail Dependence 0

Kendall’s τ 1 + 4
δθ

∫ 1
0 (− log(1− (1− t)θ)(1− t)(1− (1− t)−θ)dt

5. Concluding Discussion and Remarks

In this article, we considered several well-known bivariate copulas, including the
Tawn type-1, Frank, and BB6 families of copula based on the R package VineCopula for
fitting two well-known insurance datasets arising out of automobile insurance. In addition,
we also provided several useful structural properties of the selected bivariate copulas such
as the LTD and RTI property, primarily focusing on the tail dependence properties, which
are very important for studying dependence for insurance claims. This study shows that
certain types of Archimedean copula with heavy tail dependence property are a reasonable
framework to start with in terms of modeling insurance claim data, both in the bivariate as
well as in the case of multivariate domains as appropriate. The goodness-of-fit statistics are
provided in terms of AIC and BIC values as well as the log-likelihood values. As future
research, we will be focusing on datasets from other domains (such as health care data),
and we will consider the fitting to a trivariate and in higher dimensions as well based on
the vine copula methodology. We will report our findings in a separate article. The tail-
dependence coefficient has several applications, including: validation and verification
of weather and climate models in reproducing extreme events; analysis of simultaneous
extremes; probabilistic assessment of occurrences of extremes; and understanding climate
variability. For example, by deriving tail-dependence coefficients for simulations of a
numerical weather prediction model or a climate model, one can evaluate whether these
models produces dependencies as seen in the observations. These approaches are not
limited to precipitation, they also include a wide variety of earth science variables. This
study of extreme tail dependence on local, regional, and global scales can assist in planning
and policy making as well as validating numerical models, thus providing a valuable tool
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for understanding how extreme events impact society. For future policy implementation
out of this study, one may mention the following:

• Classes of extreme values of copulas (such as Tawn type-1, Frank, and BB6) are useful
in modeling dependence for insurance claim data from the automobile industry that
are asymmetric in nature.

• All the fitted bivariate copulas have one property in common, which is the nonzero
value of the upper-tail dependence measure. This implies the fact that one observes an
extremely large value for one component together with an extremely large value for the
other component, a feature which is expected for insurance claim dataset-generated
dependence structure. As a consequence, one can start with bivariate and multivariate
copulas (as the case may be) that have a nonzero value of the upper-tail dependence
measure λU when examining the dependence structure related to insurance claim
data from the automobile industry.

• As a future study, it will be interesting to see whether such a class of extreme value
copulas can be useful for insurance claims from other industries. Furthermore, for port-
folio risk assessment, the effectiveness of such classes of copulas would be the subject
matter of future research.
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Appendix A. R Package: Vine Copula

Here, we provide a generic R-code based on the Vine Copula package which is used in
the main body of the text for selecting the best possible bivariate copula of the four different
insurance datasets:

i n s t a l l . packages ( " copula " )
l i b r a r y ( " copula " )

m<−pobs ( a )
n<−pobs ( b )
i n s t a l l . packages ( " VineCopula " )
l i b r a r y ( " VineCopula " )
selectedCopula <− BiCopSelect (m, n , f a m i l y s e t = NA)
summary ( se lectedCopula )

Remark A1. In the above code, a and b are the transformed (on a log (to the base e) scale) variable
values corresponding to two components of the associated bivariate data.

The best-fitted bivariate copulas mentioned here do not possess a closed form of
expression in terms of their density function (i.e., the p.d.f.). However, in order to obtain
the p.d.f. of each of these copulas, one may use R. Next, we provide an example as to how
one can simulate from the p.d.f. of a Survival BB1 copula with specific parameter choices
in R.
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Simulate from a b i v a r i a t e r o t a t e d BB1 copula
(180 degrees ; ‘ ‘ s u r v i v a l BB1 ’ ’ )
i n s t a l l . packages ( " VineCopula " )
l i b r a r y ( " VineCopula " )

SBB1<− BiCop ( family = 17 , par =0 .63 , par2 = 1 . 0 9 )
sim<− BiCopSim ( 1 0 0 0 , SBB1 )
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Cristian Gherghina and

Robert Brooks

Received: 9 January 2023

Revised: 18 February 2023

Accepted: 7 March 2023

Published: 9 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Risk and Financial
Management

Review

On Asymmetric Correlations and Their Applications in
Financial Markets
Linyu Cao 1, Ruili Sun 1,*, Tiefeng Ma 2 and Conan Liu 3

1 College of Mathematics and Information Science, Zhengzhou University of Light Industry,
Zhengzhou 450001, China

2 School of Statistics, Southwestern University of Finance and Economics, Chengdu 611130, China
3 UNSW Business School, University of New South Wales, Sydney, NSW 2052, Australia
* Correspondence: sunruili2009@163.com

Abstract: Progress on asymmetric correlations of asset returns has recently advanced considerably.
Asymmetric correlations can cause problems in hedging effectiveness and overstate the value of
diversification. Furthermore, considering the asymmetric correlations in portfolio construction
significantly enhances performance. The purpose of this paper is to trace developments and identify
areas that require further research. We examine three aspects of asymmetric correlations: first, the
existence of asymmetric correlations between asset returns and their significance tests; second, the
test on the existence of asymmetric correlations between different markets and financial assets; and
third, the root cause analysis of asymmetric correlations. In the first part, the contents of extreme
value theory, the H statistic and a model-free test are covered. In the second part, commonly used
models such as copula and GARCH are included. In addition to the GARCH and copula formulations,
many other methods are included, such as regime switching, the Markov switching model, and
the multifractal asymmetric detrend cross-correlation analysis method. In addition, we compare
the advantages and differences between the models. In the third part, the causes of asymmetry are
discussed, for example, higher common fundamental risk, correlation of individual fundamental risk,
and so on.

Keywords: asymmetric correlation; statistical test; copula; GARCH

1. Introduction

Several recent studies corroborating asset returns have three asymmetric characteris-
tics: the asymmetries in volatility, correlations, and betas. Notably, Black (1976) was the
first researcher to consider asymmetry in volatility. Since then, asymmetric GARCH-type
models have become popular when investigating the characteristics of financial time series,
and a significant number of asymmetric GARCH models have been proposed (Choy et al.
2012). In addition, there is notable relevance between beta coefficients and asset pricing
theories, and beta coefficients help to understand the riskiness of the associated asset stocks
(Hong et al. 2007); see Ball and Kothari (1989), Conrad et al. (1991), and Bekaert and Wu
(2000) for literature covering asymmetries in the betas.

This paper focuses on asymmetric correlations, the study of which is important for
three reasons. Firstly, hedging mainly depends on the correlations between assets and
financial instruments, and the existence of asymmetric correlations may lead to problems
in hedging effectiveness (Hong et al. 2007). Second, in an optimal portfolio selection
problem, if all stocks tend to fall with the decline of the market, the value of diversification
may be exaggerated without considering the increase of downside correlations (Ang and
Chen 2002). Third, taking the asymmetric correlations into account enhances the portfolio
performance significantly (Taamouti and Tsafack 2009).

Let {r1t, r2t} denote two assets returns during time period t. For convenience of
computation and statistical analysis, the returns are normalized to zero mean and unit
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variance. Using the same notation as in Longin and Solnik (2001), Ang and Chen (2002),
and Hong et al. (2007), we define the exceeding correlation at a given level c as follows:

ρ+(c) = corr(r1t, r2t|r1t > c, r2t > c ),
ρ−(c) = corr(r1t, r2t|r1t < −c, r2t < −c ),

where ρ+(c) measures the correlation between two returns above a certain exceedance
level c, and ρ−(c) measures the correlation below a certain exceedance level c. Additionally,
ρ+(c) represents the correlation during market upturns, and ρ−(c) denotes the correlation
during downturns.

If ρ+(c) = ρ−(c) for all c ≥ 0, the correlation between the positive returns are the
same as those with negative returns. This is called symmetric correlation. However, if
ρ+(c) 6= ρ−(c) for all c ≥ 0, then there are asymmetric correlations. Specifically, certain
literature on co-movement also indicates asymmetric correlations.

The asymmetric correlations of Austrian, Belgian, and Italian government bonds with
US government bonds from January 1976 to March 2010 are shown in Figure 1, taken from
Ozsoy (2013). On the one hand, the three curves share some similar patterns, indicating
these countries’ exhibit larger conditional correlations on the negative standardized ex-
ceedances than those on the positive standardized exceedances. On the other hand, they
differ from each other with Belgium’s conditional correlations intersecting Austria’s at
standardized exceedances of 0 and about 0.038, and with Italy’s conditional correlations at
the bottom.
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This paper is organized as follows. In Section 2, we outline the existence of asymmetric
correlations of asset returns and its significance test. In Section 3, we review the test on
the existence of asymmetric correlations between different markets and financial assets. In
Section 4, we present the root cause analysis of asymmetric correlations. In Section 5, we
provide our conclusions of this study and directions for future research.

2. Existence of Asymmetric Correlations

From the introduction, it is clear that asymmetric correlations are a crucial topic in
the research of portfolio selection-related issues. Therefore, in this section, we review the
discovery of asymmetric correlations and their existence tests. We then summarize and
provide some problems worthy of comprehensive study.
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2.1. Literatures Review

In this subsection, we consider the existing research on asymmetric correlations. Some
important literature is shown in Table 1.

Table 1. Selected work on existence of asymmetric correlations.

Author (Year) Paper Title

Longin and Solnik (2001) Extreme Correlation of International Equity Markets

Ang and Chen (2002) Asymmetric Correlations of Equity Portfolios

Campbell et al. (2002) Increased Correlation in Bear Markets

Hong et al. (2007) Asymmetries in Stock Returns: Statistical Tests and
Economic Evaluation

Pan et al. (2014) Testing Asymmetric Correlations in Stock Returns via
Empirical Likelihood Method

Jondeau (2016) Asymmetry in Tail Dependence in Equity Portfolios

Erb et al. (1994) considered the behavior of correlation over time and predicting
correlation to be of importance. Therefore, the changing international correlations in the G7
countries were investigated, and the results showed that correlations during recessions were
higher than those during periods of growth, and that correlations were not symmetrical in
up and down markets.

In order to verify the hypothesis that the correlation between international equity
markets increases during fluctuation periods, Longin and Solnik (2001) used extreme
value theory to model the tail of multivariate distribution, derived the extreme correlation
distribution of the broad category distributions, and found that correlation was related to
the market trend and that correlation increased in bear markets. Since Longin and Solnik
(2001), asymmetric correlations have garnered more and more research attention.

However, Forbes and Rigobon (2002) found that a correlation calculated conditional
on some variables was a biased estimator for the corresponding unconditional correlation.

Ang and Chen (2002) found that correlations between U.S. stocks and the aggregate
U.S. market were much greater during declines than during market rallies. A new H
statistic was developed to test conditional correlation asymmetries, which could correct for
conditioning biases. Moreover, they established several empirical models about asymmetric
correlation in the U.S. equity market. The results showed that mall stocks, value stocks,
and past loser stocks had more asymmetric movements, and that stocks with lower betas
exhibited greater asymmetric correlations by controlling for size.

To overcome estimator bias for implied correlation, Campbell et al. (2002) derived
the quantile correlation estimator, which, based on the quantiles of the multivariate dis-
tribution, used the unbiased quantile correlation estimates to explore the correlations in
international equity markets, and found that correlation in international equity returns
increased significantly in bear markets.

Hong et al. (2007) emphasized that the H statistic proposed by Ang and Chen (2002)
only answered the question of whether the asymmetry could be explicated by a given
mode. Therefore, Hong et al. (2007) provided a model-free test for asymmetric correlations
of stock returns in which stocks fluctuated with the market more often when the market fell
than when it rose; the test also had a simple asymptotic chi-square distribution and could
easily be applied to test the symmetries of beta and covariance. There existed significant
asymmetries in size and momentum portfolios. To account for parameter and model
uncertainties, a Bayesian framework was proposed to model them and evaluate their
economic value. The results showed that taking the asymmetric characteristics of assets
into consideration could significantly improve the performance of portfolio selection.

To investigate the robustness of recent empirical results that indicated a structural
breakdown of correlation, Campbell et al. (2008) derived theoretical truncated and ex-
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ceedance correlations, evaluated the performance of the truncated and exceedance correla-
tion estimators, and found important asymmetry evidence of the conditional correlation
functions.

Based on detrended fluctuation analysis (DFA), Alvarez-Ramirez et al. (2009) devel-
oped a DFA extension to study asymmetric correlations in nonstationary time-series, and
the DFA version separated positive trends and negative trends to analyze the individual
contributions to the overall scaling behavior. The results showed that the asymmetries of
three different time-series were scale-dependent, and that there were different correlation
properties depending on whether the signal trending was positive or negative.

Based on a conditional version of Kendall’s tau and copula method, Manner (2010)
proposed two tests for symmetric dependence; these tests outperformed the one proposed
by Hong et al. (2007) in a Monte Carlo study. When the tests were applied to stock market
returns and quarterly US GNP and unemployment data, the results showed that there was
evidence of asymmetries and nonlinearities.

Livan and Rebecchi (2012) investigated the spectral properties of correlation matrices
between distinct statistical systems, in which the correlation matrices were intrinsically
nonsymmetrical, and extended the spectral analyses to the realm of complex eigenvalues.
Random matrix theory was used to differentiate the noise and nontrivial correlation struc-
tures. The above results were applied to study the asymmetric correlation matrix of daily
prices of the US and UK stock exchanges.

In order to analyze the asymmetric correlation of sovereign bond yield dynamics
between eight Eurozone countries pair-wise, Dajčman (2013a) provided a dynamic version
of the test proposed by Hong et al. (2007) and identified time periods when the correlation of
Eurozone sovereign bond yield dynamics became asymmetric. They found that correlation
between the positive and the negative yield dynamics between sovereign bonds became
asymmetric after the start of the Eurozone debt crisis.

Pan et al. (2014) stressed that the model-free test proposed by Hong et al. (2007)
seemed to be under-rejected in the size value and had low power in a finite sample.
Therefore, they used an empirical likelihood method to conduct a model-free statistic that
could test asymmetric correlations of stock returns, corrected the size performance using
a bootstrap method, which improved the performance of Hong et al.’s (2007) test, and
analyzed the asymmetric correlations of the China stock market and international stock
markets, respectively. The results showed that asymmetric correlations occurred in the
China stock market and international stock markets.

Jondeau (2016) considered that standard nonparametric measures of tail dependence
had poor finite-sample properties in view of the limited number of observations in the tails
of a joint distribution. Therefore, Jondeau (2016) developed a parametric model to measure
and test asymmetry in tail dependence based on a multivariate noncentral t distribution.
The proposed model accommodated situations in which the volatilities or the correlations
between different asset returns changed over time. Applying the above model to real
data, they found that the correlation between the international markets and Fama–French
portfolios in bear markets was greater than that in bull markets.

Based on the statistic originally proposed by Hong et al. (2007), Alcock and Hatherley
(2016) used a linear (β) dependence invariant metric to investigate the price of asymmetric
dependence on the cross section of Wall Street stocks, and found that the existence of
asymmetric dependence between the firm’s returns and those of the market would lead
to corresponding price discounts or premiums, and that failing to recognize the impact
of asymmetric dependence of the cost of capital may cause low pricing or insufficient
subscription of public capital offerings.

Miyazaki and Hamori (2016) implemented the model-free test proposed by Hong et al.
(2007) to study the asymmetric cross-asset correlations of the gold market. The results
showed that gold exhibited asymmetric correlation with stocks and the US dollar, and
by dividing the sample into three characteristic periods, the exceedance correlation also
exhibited significant time variation even under similar market stress of the same asset pairs.
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Jiang et al. (2018a) emphasized that the test proposed by Hong et al. (2007) did not
solve asymmetry problems beyond the second moment and had low power. Therefore, to
measure the asymmetric co-movement between returns on a single asset and the market
returns, they proposed a model-free entropy measure, which provided a direct test for
asymmetry in the joint distribution, generalizing the correlation-based test proposed by
Hong et al. (2007). The results showed that many common portfolios such as size, book
value, and momentum portfolios had significant asymmetry in statistics.

Jiang et al. (2018b) considered that the test proposed by Hong et al. (2007) captured
only linear dependence. To characterize the general asymmetric dependence between
two random variables, they proposed a modified information measure, provided a test of
asymmetric dependence and examined its finite sample performance. The results showed
that common stock portfolios and market returns in the US and other similarly developed
countries existed obvious asymmetric correlations, and when these markets were in a
downturn, they exhibited higher correlation with each other.

2.2. Conclusions and Further Research

Erb et al. (1994) and Longin and Solnik (2001) played a pioneering role in the discovery
of asymmetric correlations. However, Forbes and Rigobon (2002) found that there existed
conditioning biases in the estimation of correlation. To correct the biases of correlation,
Ang and Chen (2002), Campbell et al. (2002), and Hong et al. (2007) proposed a new H
statistic, quantile correlation estimator, and a model-free test, respectively. Furthermore,
Campbell et al. (2008) derived theoretical truncated and exceedance correlations to verify
the robustness of recent empirical results. The other studies are mostly based on the
research of Hong et al. (2007) and improve some of its shortcomings such as low power in
a finite sample, or linear dependence.

However, there are still some problems worth considering and studying in the verifi-
cation of the existence of asymmetric correlations. First, does the exceedance level c affect
the results of all the test statistics mentioned above? If so, how does the exceedance level
affect the results? How do we choose a reasonable and accurate exceedance level? Second,
as pointed out by Dajčman (2013a), the model-free test proposed by Hong et al. (2007)
depends on the time interval. The interesting question is whether the model-free test is
consistent with the time interval and whether there are certain methods and criteria for the
selection of time intervals.

3. Asymmetric Correlations between Different Markets and Financial Assets

With the discovery of asymmetric correlations, especially the corresponding asymmet-
ric correlation test statistics, more and more scholars are beginning to pay attention to the
asymmetric correlations of asset returns. In the research of asymmetric correlations, the
two most used models are GARCH family models and copula. In the first two subsections,
we focus on asymmetric GARCH family models and copula. In the third subsection, we
introduce some other research methods related to asymmetric correlations. Finally, we
make a summary and comparative analysis, and put forward some new and open issues
worth studying.

3.1. Asymmetric GARCH Formulations

In this subsection, we first review the development of GARCH family models. Then,
we represent the use of GARCH formulation in capturing the asymmetric correlations
between different financial markets. Some pioneering research is summarized in Table 2,
shown below.
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Table 2. Selected works on correlation/covariance and GARCH.

Author (Year) Paper Title

Engle (1982) Autoregressive Conditional Heteroscedasticity and
Estimates of UK Inflation

Bollerslev (1986) Generalized Autoregressive Conditional Heteroscedasticity

Bollerslev (1990) Modelling the Coherence in Short-run Nominal Exchange
Rates: A Multivariate Generalized ARCH Model

Engle and Kroner (1995) Multivariate Simultaneous Generalized ARCH

Tse and Tsui (2002) A Multivariate Generalized Autoregressive Conditional
Heteroscedasticity Model with Time-varying Correlations

Engle (2002)
Dynamic Conditional Correlation (DCC): A Simple Class of

Multivariate Generalized Autoregressive Conditional
Heteroskedasticity Models

Cappiello et al. (2006) Asymmetric Dynamics in the Correlations of Global Equity
and Bond Returns

Wang and Nie (2016) Research of Asymmetric Dynamics in the Correlations of the
Chinese Stock Markets

Chen et al. (2021) On a Bivariate Hysteretic AR-GARCH Model with
Conditional Asymmetry in Correlations

Engle (1982) first introduced the autoregressive conditional heteroscedasticity (ARCH)
model, and Bollerslev (1986) subsequently extended the ARCH model to the generalized
autoregressive conditional heteroskedasticity (GARCH) model. Bollerslev et al. (1988)
proposed a multivariate GARCH (MGARCH) model and used it to estimate the earnings
of bills, bonds, and stocks. To ensure that the conditional covariance was positive definite,
Bollerslev (1990) proposed the constant conditional correlations (CCC) MGARCH model.
However, many researchers found that practical financial data violated certain assump-
tions of the CCC MGARCH model. Engle and Kroner (1995) proposed a BEKK method
for multivariate ARCH processes and derived the sufficiency constraints to ensure the
conditional covariance matrices were positive definite. Kroner and Ng (1998) compared the
restrictions of VECH, BEKK, factor ARCH, and CCC GARCH models; introduced a group
of robust conditional moment tests to check whether the model was specified properly;
and proposed a generalized adoption model that allowed for asymmetric influences on
the variances and covariances. Many researchers have found that the correlation is not
invariant, which means the correlation is time-varying. Tse and Tsui (2002) proposed a
MGARCH model whose correlation could be changed over time, in which they decom-
posed the conditional variance–covariance matrix into a product of two parts: one was a
conditional variance matrix, and the other was a conditional correlation coefficient matrix.
They also stuck each term of the conditional variance matrix to a single variable GARCH
model and engineered each element of the conditional correlation coefficient matrix to
follow an ARMA model. Meanwhile, Engle (2002) suggested a DCC MGARCH model to
estimate time-varying correlations. Since then, GARCH family models and its generations,
especially the asymmetric version of the DCC MGARCH model, have been widely used in
asymmetric correlations measurement and testing. For additional GARCH family models,
see, e.g., Liu and Heyde (2008), Liu and Neudecker (2009), and Dewick (2022).

Next, let us briefly introduce the asymmetry generalized dynamic conditional correla-
tion multivariate GARCH (AG-DCC-MVGARCH) model. Assume rt is the p-dimensional
asset returns at time t. Then, rt obeys the multivariate normal distribution

rt|Ωt−1 ∼ N(0, Ht),
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where Ωt−1 represents the information set at time t − 1; Ht is the conditional variance–
covariance matrix; and it can be decomposed as

Ht = DtRtDt,

where Dt is a p× p diagonal variance matrix of asset returns; Dt = diag
{√

hi,t
}

; hi,t is
the time-varying variance obtained from the single-variable GARCH model; Rt is the
time-varying conditional correlation coefficient matrix defined as

Rt = Q∗−1
t QtQ∗−1

t ,
Qt =

(
Q− A′QA− B′QB− G′NG

)
+ A′εt−1εt−1

′A + B′Qt−1B + G′ηt−1ηt−1
′G,

where Q∗t is a diagonal matrix; Q∗t =
[√qi,i,t

]
, qi,i,t is the corresponding diagonal element of

Qt; A, B, and G are p× p parameter matrices; εi,t =
ri,t√

hi,t
, Q is the unconditional covariance

matrix of εi,t; ηi,t = I[εi,t] ◦ εi,t, I[·] is the indicator function; ◦ is the Hadamard product;
N is the unconditional variance–covariance matrix of ηi,t and can capture the asymmetric
characteristics of conditional correlation.

Butler and Joaquin (2002) used three popular bivariate distributions (the normal, Risk-
Metrics’ restricted GARCH(1,1) distribution) to investigate the correlations with monthly
returns observed in bear, calm, and bull markets. The results showed that the correlation
during the market declines was obviously higher than that predicted by the normal dis-
tribution and RiskMetrics distributions, and the correlation during the bear market was
significantly higher than that during bull market.

Kearney and Potì (2005) focused on country-level market index correlations, applied
the symmetric and asymmetric version of the DCC MGARCH model to capture dynamic
correlations, and found mixed evidence of asymmetric correlation reactions to news types
simulated by the traditional asymmetric DCC MGARCH formulations.

Cappiello et al. (2006) implemented an asymmetric version of the DCC MGARCH
model proposed by Engle (2002) to investigate asymmetric correlations in international
capital stock and bond returns. The results illustrated that both bonds and international
capital stock exhibited asymmetric correlation.

In the presence of asymmetry in the tail dependence, Tsafack (2009) considered that the
DCC MGARCH model was a symmetric model, and that symmetrical portfolio models of
this kind would cause investors to undervalue the value at risk (VaR) or expected shortfall
(ES) of the portfolio, concluding that it was important to adopt an asymmetric portfolio
model, e.g., the Gumbel copula, to deal with the asymmetric correlation problem.

To study the correlation between some notable indices and bonds in the United States,
Yang et al. (2010) applied an asymmetric generalized DCC MGARCH model to a series
of daily data, such as the S&P 500 and corporate bonds, and their real estate counterparts.
They found that the correlation between REIT and stock returns exhibited asymmetries.

Horvath and Poldauf (2012) used multivariate GARCH models to investigate the
co-movements of certain stock markets among various countries. The results showed that
during 2008–2010, the correlation between stock returns increased, and that the correlation
between the stock markets in the US and China was basically zero before the crisis, but
slightly increased during the crisis.

Choy et al. (2012) used a bivariate GARCH model with DCC and leverage effect to
model financial data, and proposed a new modified multivariate t-distribution, which
offered independent marginal Student-t distributions, to highlight the relationship between
different stock returns. The empirical study showed that the correlations between the oil
price shocks and stock returns from 2008 to 2009 increased significantly.

Chen (2013) employed the asymmetry generalized dynamic conditional correlation
multivariate GARCH (AG-DCC-MVGARCH) model, quasi-maximum likelihood estima-
tion, and LR test to investigate the asymmetric and dynamic correlation of stock returns in
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the US and China, and found that the correlation between different stock returns enhanced
during bear markets.

Toyoshima and Hamori (2013) used the asymmetric DCC MGARCH model to describe
the correlation of stock markets in Japan and Singapore, and found that financial integration
had advanced due to the Japan–Singapore Economic Partnership Agreement, and that the
investment portfolio in Asia had increased since the recent global financial crisis.

Gjika and Horváth (2013) used the asymmetric DCC MGARCH model to study stock
market co-movements in central Europe. The results showed that the correlations increased
over time, and that the stock markets exhibited asymmetric correlations to a certain degree.

Since the mean variance model was the most important model in the portfolio opti-
mization, Kalotychou et al. (2014) explored its economic value in modeling conditional
correlations and evaluated its dynamic strategies. They found that, by characterizing the
change of correlation properly, fund managers could improve risk-adjusted returns by
accurately capturing correlation time variation.

El Abed (2016) adopted a multivariate asymmetric DCC EGRACH framework to
investigate the correlations of US dollar exchange rates and three European stock prices,
and found that there were asymmetric responses in correlations, and that the correlation
between exchange rates and stock prices increased during times of crisis.

Chen (2016) used the AG-DCC-MGARCH model to analyze the correlations among
the four main stock markets in China and the impacts of the major economic events on
the dynamics of the correlation coefficients of the four main stock markets. The results
showed that the conditional correlations between Hong Kong and Shanghai, Hong Kong
and Shenzhen, and Shanghai and Shenzhen were asymmetric.

Wang and Nie (2016) built EGARCH and an asymmetric version of the DCC MGARCH
model to investigate dynamics and asymmetries in conditional variance and correlations in
the Chinese stock markets. They found that A and B shares significantly existed dynamics
and asymmetry in conditional correlation.

By generalizing the time-varying conditional correlation model proposed by Tse and
Tsui (2002), Chen et al. (2021) suggested a new MHAR-A-GARCH-T model and used it to
investigate the correlations with conditionally dynamic asymmetric structure. Moreover, by
employing an adaptive Bayesian MCMC method, they found that adopting the asymmetric
effects made a difference in estimation of dynamic correlations.

3.2. Copula Formulations

In this subsection, we first review the advancement of copula, and then introduce the
application of copula in asymmetric correlations.

Sklar (1959) proposed copula to verify the structure of dependency, especially the
latent nonlinear correlation. Many researchers find that copula works well in capturing the
correlation of financial data, so it is widely used in correlation measurement of financial
data (Embrechts 1999). Since then, different copulas have been developed and are used in
financial data exploration (Mashal and Zeevi 2002; Van den Goorbergh et al. 2005; Bartram
et al. 2007; Chen and Tu 2013; Pastpipatkul et al. 2018). For more details about copula and
its applications, see, e.g., Dewick and Liu (2022). Some important publications are listed in
Table 3.
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Table 3. Selected works on copula.

Author (Year) Paper

Sklar (1959) Fonctions Derépartitionàn Dimensions et Leurs Marges

Embrechts (1999) An Introduction to Copulas

Mashal and Zeevi (2002) Beyond Correlation: Extreme Co-movements between
Financial Assets

Patton (2006) Modelling Asymmetric Exchange Rate Dependence

Christoffersen et al. (2012) Is the Potential for International Diversification
Disappearing? A Dynamic Copula Approach
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Patton (2004) considered the portfolio selection problem for investors with constant
relative risk aversion, used models that could depict fourth order time-varying moments,
and constructed time-varying dependence structure models allowing for different depen-
dencies during bear markets and bull markets using copula theory. They found that the
understanding of higher moments and asymmetric dependence would, in some cases, bring
significant economic and statistical benefits to investors without short-selling restrictions.

Based on the GARCH model and regime-switching (RS) copula function, Wei and
Zhang (2005) constructed the RS-copula–GARCH model to investigate the asymmetric tail
dependence structure in Chinese stock markets and found that tail dependence structure
of Shanghai and Shenzhen stock markets were asymmetric, and that RS-copula–GARCH
model was superior to static copula model in describing dependence.

To test asymmetry of dependence between the German mark and the Japanese yen,
Patton (2006) generalized the copulas theory to adopt conditioning variables and built
conditional dependence models to fit the dependence of these exchange rates. The results
showed that the exchange rates were more correlated when depreciating against the dollar
than when appreciating.

To capture time-varying and nonlinear relationships among European stock markets,
Bartram et al. (2007) used a time-varying copula model in which a GARCH formulation us-
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ing a Gloston Jagannatha Runkle-generalized autoregressive conditional heteroskedasticity-
moving average-t model was used to model the marginal distributions and the Gaus-
sian copula was adopted to model the joint distribution. The results showed that mar-
ket dependence increased after the introduction of the common currency only for large
equity markets.

In order to investigate the dual dependence of exchange rates against the dollar,
Boero et al. (2011) employed nonparametric plots and a robust semiparametric method to
obtain the copula function. The results showed that the model captured asymmetric tail
dependence well.

Using four parametric copulas to model the dependence structure at different invest-
ment horizons, Kang et al. (2010) reexamined the asymmetric correlations within hedge
fund returns and market returns at a range of investment, and found that the dependence
asymmetry was not limited to a specific time range but emerged clearly at all investment
periods, and that the size of asymmetry was not invariable to the investment period, and
its degree decreased significantly with the extension of investment period.

Garcia and Tsafack (2011) proposed an alternative RS copula of extreme dependence
asymmetry. The copula-based model included one normal regime where dependence was
symmetric and a second regime in which it was characterized by asymmetric dependence.
Applying the above model to the capital stock and bond markets, they observed significant
asymmetric behavior between different markets.

Christoffersen et al. (2012) considered that international equity markets were charac-
terized by nonlinear dependence and asymmetries, proposed a new dynamic asymmetric
copula model that allowed for asymmetric and dynamic tail dependence, and found that
correlations had increased significantly in all markets.

To investigate the asymmetric dependence of financial data, Uhm et al. (2012) em-
ployed the copula approach for directional dependence. They found that the exchange
rates correlation between the Republic of Korea and Japan was asymmetric due to the
influence of the 2008 financial crisis and concluded that the direction-dependent copula
method could be supplemented to interpret the asymmetric dependence.

Cho and Lee (2022) considered that default probabilities of credit portfolios were
seriously affected by system risk, so they used the GJR-GARCH model and copula method
to fit the volatility and dependence, respectively, proposing a new time-varying credit risk
model. The results showed that the suggested model outperformed the existing model,
and that there was strong evidence to show the existence of asymmetric correlation of
asset returns.

3.3. Other Asymmetric Formulations

Except the GARCH and copula formulations, many other methods are used to explore
the asymmetric correlations, such as regime switching, the Markov switching model, and
the multifractal asymmetric detrend cross-correlation analysis method (MF-ADCCA).

In order to characterize the risk and return in risk arbitrage, Mitchell and Pulvino
(2001) used piecewise linear regressions to analyze 4750 mergers from 1963 to 1998. The
results showed that risk arbitrage returns in most environments were uncorrelated with
market returns, and that the correlation between market returns and risk arbitrage returns
increased dramatically during market downturn.

The existence of asymmetric correlation made investors question the correctness of
international diversification. In order to investigate the above result, Ang and Bekaert
(2002) introduced RS model to deal with the asset allocation problem within a dynamic
international situation and found that international diversification was still useful under
regime changes.

Yuan (2005) presented a rational expectations equilibrium model to cope with the
determinants of asset market crises and contagion. They found that market return distri-
butions were asymmetric and that correlations between different asset returns tended to
increase during crashes.
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Michayluk et al. (2006) examined the volatility spillover effects and the inherent
correlation among the US- and UK-securitized real estate indices, and found the correlation
of different markets exhibited asymmetry.

To verify whether asymmetric correlations existed and determine the explanation of
asymmetry, Taamouti and Tsafack (2009) used the generalized impulse response function
under an autoregressive model framework to quantify the relationship among return,
volatility, and correlation, and tested the asymmetric correlations between return and
volatility against correlation. The results showed that considering the asymmetric correla-
tion between return and correlation could obtain improved financial gain.

Abid and Bahloul (2011) used the discrete time Markov switching model to analyze
the behavior of equity returns correlations, investigated the effect of this behavior on
international portfolio allocation, and found that the correlations in a bear market showed
obvious difference with correlations in the bull market.

Lee et al. (2011) examined the performance of asset correlation with the market returns
in the asymptotic single risk factor (ASRF) approach of the Basel II accord on regulatory
capital requirement and found that asset correlations were asymmetric.

By comparing the equity market in Croatia in good (bull, clam) and bad (bear, tur-
bulent) market conditions, Kunovac (2012) found that correlations between stock prices
during bear markets more than doubled those exhibited during bull markets. In addition,
they found that the losses might occur if the asymmetry was ignored in practice by the
research of taking asymmetric correlation into consideration and assessing the performance
of the portfolio selection model.

Cao et al. (2013) used asymmetric multifractal detrended fluctuation analysis to test
the asymmetry of China’s stock markets in the upward or downward trend. They found
that asymmetric correlation was more obvious in large fluctuations.

Dajčman (2013b) examined the asymmetric correlation pair-wise between the Euro-
zone’s stock market returns, and investigated if the results were sensitive to a time span
of returns. The results showed the asymmetric correlation test relied on the time span
of returns.

By using the Chinese market data, Cao et al. (2014) proposed the MF-ADCCA model
to study the asymmetric correlations in stock and exchange market. The empirical results
showed that there was asymmetric cross-correlation between Chinese stock market and the
Chinese RMB exchange market.

Based on theoretical derivation, Chen et al. (2014) studied the time varying correlation
between the Chinese stock market and the broader macroeconomy. The results showed
that there was indeed asymmetric correlation between the Chinese stock market and
global economies.

To verify whether the strength of the co-movements caused by market declines and
market rallies were significantly different, Li (2014) developed a nonparametric test, and
the proposed test could be applied to verify whether there were asymmetric co-movements
resulting from a linear or nonlinear dependence. The results showed significant evidence of
asymmetric co-movements in the stock markets of the U.S. and other developed countries.

To study the correlation of gold prices and oil prices with COVID-19, Mensi et al. (2020)
used the asymmetric multifractal detrended fluctuation analysis (A-MF-DFA) method
to investigate the impacts between them and found obvious evidence of asymmetric
multifractality that increased as the fractality scale increased.

Kristjanpoller et al. (2020) used the MF-ADCCA approach to study asymmetric
multifractality and found significant evidence of asymmetric multifractality in the cross-
correlation between five main cryptocurrencies and six equity ETFs.

Based on the autoregressive distributed lag model, Thampanya et al. (2020) inves-
tigated the asymmetric influences of gold and cryptocurrency returns on the Thai stock
market, and studied whether hedging functions of gold or cryptocurrency were still ef-
fective in the event of a stock market decline or rally. The results showed that gold and
cryptocurrencies were not good tools for stock market hedging.
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Given the fact that industry and market portfolios showed the asymmetry in corre-
lations, Kim et al. (2021) developed a novel optimal consumption and portfolio selection
framework and found that neglecting asymmetric correlations could cause loss to investors.

Xu et al. (2021) used the multifractal cross-correlation analysis method to investigate
the asymmetric cross-correlations between international stock markets such as the China
and US markets. The empirical results showed that the cross-correlations between markets
were asymmetric, and that the cross-correlations were more stable and stronger in bear
markets than those exhibited in bull markets.

Chuang et al. (2022) suggested nonparametric tests to verify asymmetric co-movements,
applied them to daily return of SP 500 and 29 individual stocks, and found that most stock
returns showed the showed asymmetric co-movements.

3.4. Conclusions and Further Research

Since Bollerslev et al. (1988) proposed the MGARCH model, MGARCH is widely
used in the research of multiple asset returns. In particular, DCC model proposed by Engle
(2002), a new family of multivariate GARCH models, constructs the model based on using
the MGARCH model to study asymmetric correlation. Much of the research on asymmetric
correlations based on GARCH model use the asymmetric version of DCC model.

Copula has unique advantages in the study of correlation, especially for nonlinear
relationships. In the research of asymmetric correlations, copula is often combined with
other models, such as GARCH model and regime switching.

In addition, regime switching, the Markov switching model, and the MF-ADCCA
model are also used to investigate asymmetric correlations.

Through the review of research on asymmetric correlations, we compare the difference
and advantages of the aforementioned models:

(a) GARCH family models are usually used to interpret covariance asymmetry. The
most used GARCH family model with asymmetric correlation is an asymmetric version
of DCC model proposed by Engle (2002). The asymmetric DCC MGARCH model could
consider the asymmetric effects on conditional second moments, adopt asymmetric dynam-
ics in the correlation as well as the asymmetric response in variances, and accommodate
different news impact patterns for correlations between different assets. However, tradi-
tional GARCH family models are constructed using the conditionally normal distribution
assumption of asset returns, have too many unknown parameters to estimate, and usually
impose limited scope or significant parameter restrictions.

(b) Copula is a more effective measurement of dependence between multivariate vari-
ables; since the joint distribution is nonelliptical the conventional correlation cannot capture
the dependence structure appropriately. In addition, when decomposing multivariate
distribution into marginal distributions, copula can construct a better distribution of stock
returns than existing multivariate distributions. However, copula needs the assumption of
marginal distributions and needs to specify an affirmatory dependence structure about the
asset returns.

(c) The multivariate regime switching model is a useful parametric alternative to cop-
ula models. In the regime switching model, the Markov switching model is a special case of
regime switching model in which the discrete state variable follows a Markov chain process.
The regime switching model is versatile and effective in capturing nonlinear relationships.
However, the regime switching model assumes that the observations come from a mixture
of parametric distributions and constant transition probabilities for the unobserved states.
Furthermore, the identification of the number of regimes is also important but difficult.
Both copula and regime switching models are usually combined with other models, such
as the GARCH model.

(d) The multifractal asymmetric detrend cross-correlation analysis method is model-
free and easy to implement. It can be used to analyze the nonlinear and highly volatile
nature of and investigate asymmetric multifractality between financial time series data.
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4. Root Cause Analysis of Asymmetric Correlations
4.1. Literature Review

As the asymmetric correlations garner the attention of many researchers, the root cause
of asymmetric correlations also increases in popularity. To our knowledge, we classify
the literature on the root cause of asymmetric correlations into four categories: the first is
cashflow related causes, the second is firm-level return dispersions, the third is skewness-
related causes, the fourth is other causes. Some important publications on root cause of
asymmetric correlations are listed in Table 4.

Table 4. Selected works on root cause of asymmetric correlations.

Author (Year) Paper

Yu and Wu (2001) Economic Sources of Asymmetric Cross-correlation among
Stock Returns

Demirer and Lien (2004) Firm-level Return Dispersion and Correlation Asymmetry:
Challenges for Portfolio Diversification

Ding et al. (2011) Asymmetric Correlations in Equity Returns: a
Fundamental-based Explanation

Albuquerque (2012) Skewness in Stock Returns: Reconciling the Evidence on Firm
Versus Aggregate Returns

Chung et al. (2019) What Causes the Asymmetric Correlation in Stock Returns

Campbell (1991) and Vuolteenaho (2002) showed that stock returns could be decom-
posed into the following components: the expected return, shocks to expected cashflows,
and shocks to discount rates. However, Vuolteenaho (2002) and Campbell and Vuolteenaho
(2004) found that the first two components of stock returns were related, and pointed out
that stock returns were caused by cashflow news. Therefore, cash flow related causes
are first investigated. Yu and Wu (2001) suggested an alternative framework to explain
and verify major causes of asymmetric cross-correlation and found the asymmetric cross-
correlation was mostly attributed to differences in sensitivity of stock prices to market
information and the differences in quality of cash flow information of differently sized
firms. Chung et al. (2019) considered the latent causes of the asymmetric correlation in
stock returns. They found that the correlation of firms’ cash flow news variable and other
accounting measures of firm performance was asymmetric, and that only the asymmetric
correlation in firm performance could explain the asymmetric correlation in stock returns.

Unlike the cashflow-related causes, firm-level return dispersions were only studied by
Demirer and Lien (2004). Demirer and Lien (2004) studied the question of whether firm-
level return dispersions could explain asymmetric correlations in stock returns significantly.
The results showed that asymmetric correlations were correlated with asymmetric firm-
level return dispersions, and that portfolio managers need to take the asymmetry in return
correlation and firm-level return dispersions into account.

Skewness of financial data is another cause of asymmetric correlations. Emphasiz-
ing that significant literature explained aggregate stock market returns, displayed nega-
tive skewness, and ignored the fact that firm stock returns displayed positive skewness,
Albuquerque (2012) provided a unified theory, built a stationary asset pricing model of
firm announcement events, and found that cross-sectional heterogeneity could result in
asymmetric correlations in stock returns. Chung and Kim (2017) thought that asymmet-
ric correlations led to negative skewness of portfolios, provided asymmetric correlation
measurements by using portfolio skewness, and found that asymmetric correlation was
generated at the asset level of individual firms.

The other causes of asymmetric correlations include increasing common fundamental
risk, investor sentiment, variance and earning price ratio, and so on. However, they can
only partially explain the asymmetric correlation. Ding et al. (2011) offered an explanation

188



J. Risk Financial Manag. 2023, 16, 187

to the potential fundamental causes of the asymmetric correlations of stock portfolio returns.
They found that several sources caused the asymmetry during market decline, such as
increasing common fundamental risk, and they also concluded that these key factors were
only part of the causes of asymmetric correlation. Wang et al. (2021) considered that the
tests proposed to verify the existence of asymmetric correlations in previous literature could
not be used in practical investment due to the natures of time-varying and unpredictable
of asymmetric correlations. Therefore, they constructed a unified state–space model to
measure in-sample and out-of-sample asymmetric correlations. They found that there were
many factors that resulted in asymmetric correlations, such as investor sentiment, variance
and price-to-earnings ratio, but they all could not fully explain the asymmetric correlation.

4.2. Conclusions and Further Research

Through the above review, we can see that researchers have conducted extensive
research on the causes of asymmetric correlations and that various factors may cause or
partially cause the asymmetric phenomenon of asset return. In our view, the financial
market is rapidly changing. Therefore, during different periods of time, especially with
the different financial policy guidance of each country, the causes for the asymmetry
of asset returns may not be unique and certain; that is, different periods of time and
different countries have different causes. There may not be a uniform determining cause
for the asymmetric correlations of asset return, but there is a common applicable research
framework, which can contain various causes and methods that need to be verified one by
one according to the actual situation.

5. Conclusions

Since Markowitz (1952), the portfolio selection problem has been a hot topic. However,
when the asset returns show asymmetry in the correlations, the portfolio selection problem
should be reconsidered seriously. Therefore, asymmetric correlations of stock returns play
an important role in portfolio selection and risk management. In this paper, we review the
development and application of asymmetric correlations in financial markets and identify
the directions for future research. This review focuses on three aspects: (a) the existence of
asymmetric correlations between stock returns and its significance test; (b) the test on the
existence of asymmetric correlations between different markets and financial assets; (c) the
root cause analysis of asymmetric correlations.

Abundant empirical research verifies that the correlations of stock returns are higher in
bear markets than in bull markets. Longin and Solnik (2001) are among the first to show the
existence of asymmetric correlations after controlling for bias resulting from conditioning.
The relevant methods and tools used on testing the existence of asymmetric correlations
are extreme value theory, quantile, Kendall’s tau, the copula method, detrended fluctuation
analysis, etc. For the test on the existence of asymmetric correlations, GARCH family
models and the copula method are two main methods. In addition, regime switching, the
Markov switching model, and multifractal asymmetric detrend cross-correlation analysis
method are also important tools. Asymmetric correlations also become a stylized fact of
asset returns. In order to deepen the study of asymmetric correlations, the root causes of
asymmetric correlations have also attracted the interest of researchers. According to the
contents of root causes of asymmetric correlations, we divide them into four categories: the
cash flow related causes, the firm-level return dispersions, the skewness related causes and
other causes.

However, there are still many open issues worthy of consideration and research. For
example, for the hypothesis testing of asymmetric correlations, how does the exceedance
level affect the results of all the test statistics mentioned above, and how can we choose a
reasonable and accurate exceedance level? In addition, Kang et al. (2010) found that the
dependence of asymmetry was not limited to a specific time range but emerged clearly at
all investment periods, that the size of asymmetry was not invariable to the investment
period, and its degree decreased significantly with the extension of an investment period.
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Is there an appropriate way to measure the change degree of the size of asymmetry? Is the
change degree of the size of asymmetry linear or nonlinear?

As mentioned at the beginning of this paper, the asset returns do exist asymmetrically
in the volatility and correlations, but will the performance of portfolio selection be improved
by taking the asymmetry in the volatility and correlations into account simultaneously?
In addition, it is well known that the rolling window method proposed by DeMiguel
and Nogales (2009) is widely used in testing the performance of portfolio selection. If
we combine the above two methods and apply them to the portfolio selection problem,
how can we detect the upturns and downturns of asset returns pairwise for a certain
time window?

As to the cause of asymmetric correlations, how do we build a common applicable
research framework, which can contain various causes and methods that need to be verified
one by one according to the actual situation?

The asymmetric correlations only measure the asymmetry in terms of time; however,
we consider that the asymmetry in correlation has two levels: the first is the time level, the
second is the individual level, which means the asymmetry in different asset returns. For
instance, on the stock market, the leader stock in one industry has a significant positive
impact on other stocks, while other stocks in the same industry have a rather small positive
impact on the leader stock. How do we measure the asymmetry at an individual level
and combine the asymmetry in two levels of asset returns? Moreover, Chatterjee (2021)
introduced a simple new rank correlation coefficient, which is not symmetric in two random
variables. How can we use it in the portfolio selection problem?
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Dajčman, Silvo. 2013a. A formal test of asymmetric correlation in stock market returns and the relevance of time interval of returns—A

case of Eurozone stock markets. Acta Polytechnica Hungarica 10: 9–19.
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