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Preface

In this reprint, we gathered the latest developments in financial analysis and statistical learning,
along with practical applications.

Sathiyaraj et al. delved into the exponential stability of fractional-order large-scale neutral
stochastic delay systems with fractional Brownian motion, commonly used to model financial
phenomena due to their long memory property.

Wada and Kurosawa generalized the naive estimator of a Poisson regression model with
measurement errors, extending the assumptions beyond normal distributions for explanatory
variables.

Modeling non-payment counts as a renewal process involves examining the inter-arrival times
between events. Low and Ong introduced a method for numerically computing probabilities and the
renewal function based on Laplace transform inversion.

Deriving loss distribution from insurance data poses a challenge due to its skewed nature
with heavy tails and the presence of outliers. Mahdavi et al. made an extension of the weighted
exponential family, incorporating flexible features such as bimodality and a range of skewness and
kurtosis.

Stable distributions offer better modeling for high-volatility financial data. SenGupta and Roy
introduced a novel estimator for the index parameter using a trigonometric moment estimator based
on circular distributions.

Accurate loan default prediction is crucial for credit risk assessment. Dong et al. explored a
non-parametric approach with five machine learning classifiers on large datasets.

Cetin et al. analyzed factors influencing credit decision-making in Turkey’s dynamic service
sector post-2000, amid accelerated economic growth.

Wang et al. examined board gender diversity’s effect on firm performance using 1990 publicly
listed Japanese companies from 2006 to 2023.

The financial market poses challenges in identifying the distribution and stylized facts of time
series data. Dewick employed regression modeling to assess the goodness-of-fit between original and
generated time series models, aiding in model selection.

Ghosh et al. used the VineCopula package in R to analyze the dependence structure of real-life
insurance data.

Cao et al. reviewed recent advancements in understanding asymmetric correlations of asset
returns and explored their implications for hedging, diversification, and multifractal asymmetric
detrend cross-correlation analysis.

We hope this Special Volume proves valuable for graduate students and researchers in fields
related to financial analytics, business statistics, econometrics, insurance studies, and other relevant
areas.

Finally, we express our appreciation to Boris Buchmann, Manuel Galea, Roger Gay, Shigeyuki
Hamori, Kazuhiko Kakamu, Takeaki Kariya, Victor Leiva, Yonghui Liu, Changyu Lu, Ross Maller,
Gilberto Paula, Milind Sathye, Kunio Shimizu, Zari Rachev, Lei Shi, Ken Siu, Hailiang Yang, and
Fukang Zhu for their strong encouragement and support. We also extend our gratitude to all the

authors and reviewers for their significant contributions.

Shuangzhe Liu, Tiefeng Ma, and Seng Huat Ong
Editors

ix






Journal of

Risk and Financial

Management

Article

Exponential Stability of Fractional Large-Scale Neutral
Stochastic Delay Systems with Fractional Brownian Motion

T. Sathiyaraj *{, T. Ambika ? and Ong Seng Huat 3

check for
updates

Citation: Sathiyaraj, T., T. Ambika,
and Ong Seng Huat. 2023.
Exponential Stability of Fractional
Large-Scale Neutral Stochastic Delay
Systems with Fractional Brownian
Motion. Journal of Risk and Financial
Management 16: 278. https://
doi.org/10.3390/jrfm16050278

Academic Editor: Thanasis Stengos

Received: 31 January 2023
Revised: 5 March 2023
Accepted: 17 May 2023
Published: 19 May 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Institute of Actuarial Science and Data Analytics, UCSI University, Kuala Lumpur 56000, Malaysia
Department of Computer Science, Rev. Jacob Memorial Christian College, Dindigul 624612, India
Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia
Correspondence: sathiyarajl33@gmail.com

@ N =

Abstract: Mathematics plays an important role in many fields of finance. In particular, it presents
theories and tools widely used in all areas of finance. Moreover, fractional Brownian motion (fBm)
and related stochastic systems have been used to model stock prices and other phenomena in finance
due to the long memory property of such systems. This manuscript provides the exponential stability
of fractional-order Large-Scale neutral stochastic delay systems with fBm. Based on fractional calculus
(FC), R" stochastic space and Banach fixed point theory, sufficiently useful conditions are derived for
the existence of solution and exponential stability results. In this study, we tackle the nonlinear terms
of the considered systems by applying local assumptions. Finally, to verify the theoretical results, a
numerical simulation is provided.

Keywords: dynamic risk in asset pricing; exponential stability; finance modeling and derivatives;
fractional calculus; fractional Brownian motion; large dimensional problems; simulation and compu-
tation in long short-term memory; time delay

1. Introduction

Knowledge of mathematics, probability, statistics, and other analytical approaches
is essential to develop methods and theories in finance and to test their validity through
analysis of empirical real-world data. For example, mathematics, probability, and statistics
help develop pricing models for financial assets such as stocks, bonds, currencies, and
derivative securities and propose financially optimal strategies to decision makers based
on their preferences. Brownian motion is a mathematical process used to describe random
fluctuations in the stock market. It assumes that stock prices move randomly and follow
a random walk. It is a type of stochastic process which can often be seen to model the
movement of particles in a fluid or gas. However, Brownian motion is widely used in
finance to model the random walk of stock prices over time. To apply Brownian motion
in stock market modeling, the randomness of the price movement is used, as there is no
particular trend and direction. This randomness is then modeled as a series of random
steps, where each step represents a small change in the stock price. The size of each step is
determined by the stock volatility, which is a measure of how much the stock price tends
to oscillate over time. One important feature of Brownian motion is that it is a continuous
process, meaning that the stock price can take on any value within a certain range. This
makes it useful for modeling the behavior of stock prices over time, as it allows us to capture
the full range of possible outcomes. However, while Brownian motion can be a useful tool
for understanding the behavior of stock prices, it is not a perfect model. Stock prices can
be influenced by a wide range of factors, including news events, company performance,
and economic conditions. These factors can cause stock prices to move in ways that are not
easily captured by a simple model such as Brownian motion.
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The Hurst index has recently been introduced as a useful tool for assessing the memory
effect, frequently measured by the autocorrelation function Hurst (1951). H(0 < H < 1) is
a common way to represent the Hurst index.

(1) When 0 < H < 0.5, the time series exhibits a negative correlation and antipersistent
behaviour, or short-dependence memory.

(2) When H = 0.5, the time series is independent.

(3) When 0.5 < H < 1, the time series exhibits persistent behaviour, or long-dependence
memory.

The concept of fractional derivatives is not new, and FC has a long history of up
to three centuries. The number of FC-related publications increased significantly in the
later decades and mid-20th century. One of explanations for the high level of curiosity in
fractional differential equations (FDEs) is that they can be used to define a diverse range
of physical Hilfer (2000), chemical Oldham (2010), and biological Magin (2010) processes.
Fractional derivative plays an important role in memory and hereditary processes. Several
studies have been conducted to examine the long memory in the financial markets, since
memory effect is a significant feature in financial systems. FC can be found in a variety of
applications as a new branch of applied mathematics. Leibnitz, Caputo, Liouville, Riemann,
Euler, and others are credited with a significant amount of foundational mathematical
theory relevant to FC analysis. Nonetheless, throughout the last few decades, increasingly
compelling representations have been discovered in numerous engineering and science
disciplines (see Ortigueira (2011)). It should be highlighted that the existence hypothesis
of FDEs is committed to a considerable part of the recent studies (see Balachandran et al.
(2012); Nieto and Samet (2017); Singh et al. (2017); Tian and Nieto (2017)).

Recently, Bhaskar and Biswajit (2023) examined the effects of the steep surge in crude
oil price shock on the stock price returns and currency exchange rates of G7 countries,
namely Canada, France, Germany, Italy, Japan, the United Kingdom and the United States,
in the context of the Russia—Ukraine conflict. Regime switches in the empirical relation
between return dynamics and implied volatility in energy markets have been discussed
in Okawa (2023). Optimal combination of proportional and Stop-Loss reinsurance with
dependent claim and stochastic insurance premium have been studied in Sari et al. (2023).
Herding trend in working capital management practices: evidence from the non-financial
sector of Pakistan is analyzed in Farooq et al. (2023). Growth of venture firms under state
capitalism with Chinese characteristics: qualitative comparative analysis of fuzzy set is
discussed in Yun et al. (2023). In Li et al. (2014), the authors established a fractional-order
stochastic differential equation model to describe the effect of trend memory in financial
pricing.

While analyzing, there must be considerations for functional structures, ambient
noise, and temporal delays, which can be quite valuable when constructing further sen-
sible scientific models Mao (1997). The solution process for a stochastic fractional partial
differential equation driven by space-time white noise has been studied in Wu (2011).
The controllability of fractional and Hilfer fractional dynamical systems has been stud-
ied in Kumar et al. (2022a, 2022b, 2023). The relations between a singular system of
differential equations and a system with delays, and stability of fractional-order quasi-
linear impulsive integro-differential systems with multiple delays have been studied in
Dassios (2022); Kalidass et al. (2022).

Another type of noise exposure is continuous. This can be modeled using Levy
methods. In particular, methods based on Poisson random measures, as a common non-
Gaussian stochastic method, have already received a lot of attention in a variety of fields
and have been used to predict when demand for supply chain systems will increase Song
(2009). Mathematical modeling of one-sever m-form random queuing in a network system
is modeled in the stochastic environment problems Seo and Lee (2011), distribution patterns
of phone users in the service area of wireless links Taheri et al. (2010), as well as other
naturally occurring anomalies in a variety of areas Applebaum (2009). In Rockner and
Zhang (2007) the existence, uniqueness and huge deviation principle solutions to jump
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type stochastic evolution equations were investigated. Many researchers have recently
turned to FDEs as a useful tool for describing a variety of steady physical processes.

However, research into nonlinear FDE stability theory is still in its early phases, and
much more work in this field is possible. Recently, the theoretical notion of FDEs was thor-
oughly investigated, yielding several fundamental discoveries, including the stability theory.
In mathematical terms, stability theory is concerned with the convergence of differential
equation solutions under minor changes in the original data. The topic of stability is critical
in the study of FDEs, and many writers have addressed it (see Ahmed et al. (2007); Gao
and Yu (2005); Odibat (2010); Wang et al. (2012)). In any event, nonlinear FDEs are more
difficult to analyze for stability than conventional integer-order differential equations. Many
authors have been drawn to the study of nonlinear FDE stability theory during the last few
decades, and as a result, numerous approaches have been created. However, it is important
to emphasize that just a few steps have been carried out to study the durability of FDEs
using fixed point theorems. Burton and Zhang (2012) began a thorough investigation of
the stability properties of differential equations using fixed point theorems. Following that,
several authors used the fixed point method to establish sufficient conditions for the stability
of the differential systems (see Ren et al. (2017); Shen et al. (2020)). Based on the above
discussions, the exponential stability of FDEs with order & € (%, 1) is considered through a
fixed point approach. It is envisaged that FDEs with fBM will be important for modeling
the chaotic behavior of stock prices and financial instruments. The exponential stability of
FDEs is an important property in analysis and application in financial systems.

This paper’s main contributions are as follows:

(i) A nonlinear fractional Large-Scale neutral stochastic delay system (NFSDS) is consid-
ered in R” stochastic settings.

(ii) To determine the existence and uniqueness of a solution, the fixed point theorem and
local assumptions on the nonlinear portion are utilized.

(iii) The stability and exponential stability of a certain NFSDS are established by the use of
Holder inequality and Gronwall’s inequality.

The following assertions outline the paper’s innovations and challenges and future
direction:

(i) Stability and exponential stability results for NFSDS are new in R" stochastic settings.
(if) Study of the exponential stability of the proposed system is not easy, taking the norm
estimation on nonlinear stochastic and Large-Scale neutral as the terms used in this

paper.

(iii) It is more difficult to validate the system’s weaker assumptions (1).

The following is an outline of the study: In Section 2, the model description and prelims
are given. Our major findings are proved in Sections 3 and 4. Finally, Section 5 presents an
illustration of the theory and Section 6 draws a conclusion.

2. System Description and Preliminaries
Consider the following NFSDS given by

ﬁﬁ [ ( ) - §|(t,X| (t),X|(t - ﬁ(t)))} :.qu(t) +ﬁ(t,x| (t),X|(t — h(t)))
+ /t (7'1(S,X| (S),X| (5 - H(S)))dw(s)

+/ (s, x(),xi(s — R(s))dwl?,
x(t) =¢(t), te[=h0] @)
wheret € [0,T], J <& < 1,x(t) e R" (I =1t N), > YN, n =mnand Ay is ny x ny
continuous matrix valued functions. Define C" = C([—h, ] R™), a Banach space of

continuous functions mapping from [—h, 0] — R™. Define [0, T] := ], Further, g : ] x C" x
C — R", f: Jx C x C" — R™, G : [ x C" x CM — R™*M, g7 1 [ x C x C" —
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R™*™ are continuous functions which will be specified in the future. Moreover, wg) isa

fBm with H € (%, 1) which is defined by its stochastic representation

W@>ﬁ=r(Hf%%)(/inut—sﬁf%-—<—@Hﬂdw@>+34%t—sﬂf%dw@>)

here T denotes the Gamma function I'(« fo “lexp(—y)dyand 0 < H < 1is called
the Hurst parameter (one can see the Connectlon w1th the Hurst parameter for self-similar pro-
cesses).

Let us consider a probability space (Q), F, P) with a probability measure P and w(t) =
(w1 (t),wy(t),..., w,(t))7 be an n—dimensional Wiener process defined on (Q, F, P). Let

{Ft/t € J} be the filtration generated by {w(s),wg) :0<s< t} defined on (Q), F, P). Let

Ly(Q), Ft,R™) denote the Hilbert space of all Fi-measurable square integrable random
variables with values in R™. Let L3 (], R™) be the Hilbert space of all square integrable and

Fi-measurable processes with values of R™. Let B = {x| (t) : x(t) € C(J, La(Q), F, R”l))}

be a Banach space of all continuous square integrable and Fi-adapted processes with

norm ||x||? = sup E||x(t)|? and ||¢|> = max{E|¢(t)||> : t € [~h,0]} for any t > 0, any
te]

given ¢ € C([—h,0],R™) denotes the Banach space of continuous functions mapping from

[—h,0] to R™. For more details on fractional calculus definitions, stochastic theory and

fBm, one can read our published paper Balasubramaniam et al. (2020); Sathiyaraj and

Balasubramaniam (2018); Sathiyaraj et al. (2019).

Definition 1. The Riemann—Liouville fractional operators (left sided) for i —1 < & < # for
f1:10,00) — Rare as follows:

(I5 fi)(R) = (% —t)* 1 fi(t)dt

(@)
(DG f1) (1) =D"(Ig3 " f1) ()

Definition 2. Podlubny (1998): The Caputo derivative for i —1 < & < f for f; : [0,00) — R is
as follows:

O\_x

—

t (
D) = iy | g
0
and its Laplace transform is
L{EDEfi(1)}(s) = s*fi(s) Zﬁ@*“ll

Definition 3. Podlubny (1998): The two-parameter family of Mittag-Leffler function is given by

7

@+ p) for&, g > 0.

ME%

Eap(2)

The general Mittag—Leffler function satisfies the below identity

[e0] - 1
—typ-1
/0 e HP Eap(tiz)dt = - for|z] < 1.
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The Laplace transform of two-parameter Mittag—Leffler function & g(z) is described using the
following integral

si=p
(s*Fa)

/ e St 1E, g(Lat)dt =
0

. _ % i—p
That is, L{tP 15&,/5(j:at"‘)}(s) = (:&w).
Lemma 1. Kreyszig (1978): Suppose that the bounded linear operator A; : R™ — R™ is de-
termined on a Banach space. Take that ||A;|| < 1. Then (I — A;)~1 is linear and bounded,
(I— A~ =E20Aj Then, [|(I-Ap ' < @A™

Lemma 2. Mao (1997): Let g € M?(J;R4*™) 5

p

E [ (6(s)d nen, B| [ /(s)d <*’(P_1)g”T’Z]ET~ Pd
/O|(7[(s)| s < oo. Then, ‘/O a(s)aB(s)| < (B2 2)°T /|(71(s)| s

where p > 2.

Lemma 3. Applebaum (2009): For any p > 2, there exists .Z[k > 0, such that

/ /+oo (v,z)N(dv, dz) ’ < .Z[k{]E </0t /::o ||g"k(5,z)||2;<(dz)ds> g]
B[ [ lats 2 Pe(as }

Definition 4. A normalized fBm w’ = {wzf) :0<t<oo}with0 <H <1lon (Q,F,P)is
uniquely characterized by the following properties:

E sup
se(0,t]

. (H) has stationary increments;
. w(o)fo andEwH—Ofort>O
. Z-f[) has a Gaussian distribution for t > 0.

From the above three properties, it follows that the covariance function is given by
1
Ry (s, t) = ]E(wzg)wﬁ)) = E{tZH +2H )t —s|2H}for0 <s <t
Definition 5. Seemab and Rehman (2018): The solution x(t) = ¢(t) of (1) is called stable, if
for every e > 0and tg > 0,36 = 6(tg,€) > 03 [x(t,x19,t0) — @(t)| < € for [xjg — @(to)| <
4(tg, €) and all t > to.
Definition 6. Equation (1) is said to be exponentially stable if 3 y is positive, 1 < M* 3t > 0,

Elx (1) < M'e ",
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The solution of Equation (1) can be explained as follows

x1(t) =€ (At®) [9(0) + &1(0, 9(0))| +&i(t,x(8),x(t A1)

t

+ [ (At = 9 )il x )0 (s ~ ()ds

0

+/(t—s)&_151m (t—s)F [/ ), % (% — (f)))dw(f)]ds
0 0

[t =9 M (Al = ) A (s, x(5), 3 (5 = R(s)))ds

0

+/(t—s)5‘_15a,a(¢z_(l(tfs)5‘) {/ (%, % (8), (T — ﬁ(f)))dwg)] ds.
0 0

3. Existence and Uniqueness of Solutions

In this section, we show the existence and uniqueness of solutions and stability results.
As a result, we establish the below hypothesis:

(Hyp)For f, 7, g 3 q > 1 (constant) and Vi (1), Vg () and Vg () € L1(],R™) >

@) Effitx(t),x(t—h(t) —filtwn(), yl(t— NN < Vi (2) Elx(t) — w2
(i) Bl (t,x(t),x(t—h(t)) = ity (1), yi(t = h(©)[I* < Vi (t) Eflx (1) —wi(0)[?
(iii) IE||g~|(t xi(t),x(t —h(t))) — g|(t y|( ), w(t— h(t)[1> < Vg (t) Ellx(t) —yi(t)[I*
) EIL £ 0(8) (=Rl = [ (e (D) = )l P
< 2’Ht2” Y s Vi (DE||x (t )—y|( )Hz dS
(Hy) The b?low properties are true, fort > 0, Ny, N, >1
@ & (A < Npemt.
() [|€aa(Ai(t —5))|| < Npemlt=s),
(H3) 3 Vﬁ , \7@ (constants), and Vg >
() Effi(tx(t),x(t—h()]* < ‘71, (1+E[x ()%
(i) E[(tx(t),x(t—h(©))[* < Ve (1+E[x(0)]?)
(iii) E[g(t,x(t),x(t —=h(2)]*> < V4 (1+E[x(t)[?).
(iv) E| bfﬁz(frxl(f)/xl(f— h(7)))dwlt 1> < 2HZHT [§ V5 (S)E||1 +(s)[[Fds.

In addition, we set

20

T28—-1
TIVallogre) + 22 IValla g re)

20 —

. 1 — ¢~ 2pwT %
Q1 =5Vg + 10N, 2pw

TZ&—l _ 41 TZ&
+ﬁAl||Vg“|||m(],R+) + 2Ht &THVWEHLW(LRH
N 1— e*ZwT T25c71 TZE( TZ&fl _ 21 T
Q> :5Vg~| + 10N2< 2w > [25‘ — 1Rf~| + &TR@ + mAlel + 2Ht R’71 .



J. Risk Financial Manag. 2023, 16, 278

Here, we take Rp = supE[fi(t,0,0)]|>,Rs, = supE|d(t,0,0)[> Rg =
teJ tef
sup E[|g(t,0,0)|* and Ry, = sup E[[77(t,0,0)|1>
teJ te]

Theorem 1. Consider hypothesis (Hy) and (Hy) are true; then (1) has at least one solution
provided that

1
1 — e 2pwT \ 7 | T28~1 T2&
M, :=4Vy +4N2< 2p ) T HVﬁHUi JR+) ?HVﬁHM(],Rﬂ
TZchl _ H-1 TZE(
+ 2567_1“2[1||V§|||L'7(],R+)+2Ht ﬁ“vm lagry| <1, ()

where % + % =1, p,g > 1and x| = 0 (the trivial solution) of Equation (1) are stable in B.

Proof. For each r > 0, define B, = {x(t) : x(t) € B;E|jx(t)||*> < r} and then for each r,
B is a bounded, closed and convex subset of B. Define the operator ® : B, — B,

(@x)(t) =Ex (Ait") [ 9(0) + & (0, 9(0))| +&i(e (1), (e~ h(t))

+ [t =9 1At = 5)")i(5,x1(5), (s — R(s)))ds

0

+ /(t — )W e (A (t —5)Y) [/ (T, %(T),x (T — ﬁ(%)))dw(f)] ds
0

0
+ / (t =) &aa(Ai(t— ") Aigi(s,x(s), (s — h(s)))ds
0
T /(t — )" s (At —s)Y) [/ (T, x (1), x(T — ﬁ(f)))dwé)] ds
0 0

Step I: To prove that 37 > 05 ®(B,) C B,. Based on (H;), (H;) and Holder inequality,
we get

E|l [ (=" TaalAi(t = 9))ilsx(s), (s~ R(s)))ds
0

261 !
< 27[;_ % [ 2RI G0(8) 55— R() ~ s 00) s 0.0
t
2~_1 {/e WV (s)E|x(s) ||2ds+/ “20(t=S)R||f (s, 0, 0)||2ds}
0
t 1 t
{(/ezp‘“t s) ) (/Vq s> E|jx|? +Rf|/ez“’(ts)ds}
0 0
TZ:X 1 1— 872 pwT 1— 6720"T
{( ) Ve [l +) 7+Rﬂ<2w>}~
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Similarly,

1
T25¢—1 _ 1— e—2pa1T 4 1— E—ZwT
SZZ&_1N2A1{< 2pw Ve llLsgr+)r + Re Thw

and
t 7 2
E|l [ (=9 a(di(—9)%) [/ M (), (T - “(f)))dwz)] i
0 0
1
T2 1—e 2T\ 7 Lo
2H—
< 4Ht 1542N2{< 2pw ) ||Vm||m(1,R*>r+R’7’<2‘“>}
Now,

E||(@x)(t)[|* < 5{E||55c(/_(zt&)[€0( ) + 810, p(0))]]1> + Ell& (t, xi(t),x(t — h(t)))]*

2

+E|| [ (t—s)* 15“(./1 (t—s)Mfi(s,x(s),x (s — h(s)))ds

2

(t— )" Eal At —5)) [/ a1(T,%(T), 3 (T — F1(f)))dW(f)] ds

0

+E

2

HE| [ (=) EaalAi(t = )" Aigi(s,x(s),xi(s — A(s)))ds

+E

O, O, O, O~
|

< 5{N1€_2°"TE||(P(O) +81(0,9(0) > + Vg (1+Elx(t)])
1
TZ&—l 1— e—2pr p TZd—l 1— e—ZwT
+22&—1N2K 2pw =1 TR T 2w

1
TZ& 1_672pr P 1_672wT
“WK T ) Wallusgzeyr+ Ra 55—
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1
TZD'(*] _ 1— g*ZP‘UT p 1— e*ZwT
+22&71N2/[1 Kpr Vg llapr+)r + R T ow

1
T25¢ 1— 672pr 4 1— 672wT
2H—1
+ 4Ht 542N2{<2pw> Vi llLagr e yr =+ R <2w
1

20T . 2 | =T 1—e 2l
< 5Nje Ell¢(0) +&/(0, ¢(0))| + 5Vg + 10N 7

Tsz 1 TZ& TZE(—l -
w1 H VillLagre) + &THV&;HM(],W)+2&7_1AI||V§|||M(],R+)

}r

TZE(—] T?.Eé TZ&—]
2& —1 Ry + R"l * o

2H 27{*1L2& Vs
+ 27Ht 2 [ Villzag ey +

N 1— e—ZwT
5Vg + 10N
+oVe + 100 2w

TR
JZ(,RgI +2HeH

I Ry,

< 5N1e T ¢(0) + & (0, 9(0)[|* + Q2 + Qir = 1.

—2wT 5 2
For, r = SN E”"’E(l))ngl'gO’@(O))l' +Q2, Q1 < 1. Hence, we obtain ®(B,) C B, for such
anr.

Step II. To prove that @ is a contraction.

Assume x),y| € B,. Using, (H;), (Hz) and Holder inequality, for every t € |, we get
E[[(®x)(t) — (@y) (1)

ZE{ Ex(Ait)[9(0) + &(0, 9(0))] + & (s, x1(s), x1(s — A(s)))
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0
X (gl(srxl (s),xi(s—h(s))) — &(s,yi(s),yi(s — H(S))))ds

1— e—prT P TZ&—l TZ&
< 4[|Vg g r+) +4N2 ’ 2&_1‘|‘/ﬁ|lL‘7(],R+)+&THV51HL'7(],R+)

20

T2l o a1 T
— 1Al||Vg‘|||m(],R+) + 2Ht &THVWYHM(],RH

+25¢

Elx(t) =),

which reveals that
E[[(®x)(t) — (®y)(1)]|* <ME[x — yi|*.

Using (2), we conclude that M, < 1, which implies ® is a contraction mapping with a
unique fixed point x|(t) € By, which is a solution of (1). Now, we prove the stability
conditions of (1)

For any givene > 0,3\ = f1-Qu)-0s 5 l9(0) + & (0, 9(0))||> < A, which implies

5N1672wT

10
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==

2 —2wT N 2 1—e2ptl
Elx(t) |7 < 5N1e " E[|¢(0) + & (0, ¢(0)) ||~ + 10N 2p

T21x 1

T H VillLagr+)
T TZ& o1 T

- ZAS) +5 -’Z(l||Vg|HL‘7 (JR+) T 2Ht ”Vm”m (JRF)

1_ esz> l T28—1 T2 T2i—1

; T2
_ - . 2H-1
o 71 Re T 5z Ra + 57— AiRg + 2HE T = Ry,

+ 10N, (

< 5N1e 2TA + Qir + Qy
r(1—Qp) <5Nje 2TA+Q,
r<e.

Thus, the proof is over. [

4. Exponential Stability
Theorem 2. If hypotheses (Hy) — (Hg) are true, then (1) is exponentially stable, provided that

26 —1 2&

PO T2% T?%
a)>/3:N2[25‘_1(Vﬂ+AZVg~I>(1+r)+ Vo (1 +71) + 2H* M~ 1“ Vi (1+71)]. 3)

Proof.

B TZchl
Elba(0)[ < 502 NiE[[9(0) + &(0, 9(0)) | + 5Nae > [ a1 (141 [V + 4,7

t
/ eZwsds
0

(1+7) [‘71?' + jl‘?g]}

t
/ e2ws s,
0

20 T R
Vgl(1+r)+27-Lt2H ! = Vi (1+7)

28—1

E||x(t)[|*¢** < 5N1E[|¢(0) + & (0, ¢(0)) 1> +5N2 | 57

T2 Tl
Vgl(1+r)+27-LtH — Vi (1+7)

We get the result by using the Gronwall’s inequality

' E||x (1)[1* < 5N1E[|9(0) + &/(0, ¢(0))]|*

PP T2 ) 1ir2
(Vﬁ+AlVgl)(1+r)+ Vs, (14 7) + 2HE2H~

X exp <5N2 j(L+7)

)

Therefore,

El[lx(t) ][> <ME[¢(0) + &0, ¢(0))[|* exp((—ot)).

where v = 2w — 58, M = 5Nj. Thus, according to (3), (1) is exponentially stable in 3. Thus,
the proof is over. O

Remark 1. Existence, uniqueness, and stability of mild solutions for second-order neutral stochastic

evolution equations with infinite delay and Poisson jumps by the authors in Ren and Sakthivel
(2012) using successive approximation techniques. The uniqueness and existence of solutions, in
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addition to their controllability (relative), have been demonstrated using the fixed point approach
in Sathiyaraj and Balasubramaniam (2016). In Wang et al. (2017), the authors investigate the
controllability of a differential delay semilinear system with linear sections determined by matrices
(permutable). We proposed a new real concept of stability results in finite dimensional space in this
study by using weaker conditions for nonlinear terms.

5. Numerical Simulations
Consider the system of NFSDS described by

- x|2 t t
B0y () — (-t +2)e (0] = D) = -3 o @it [ss (mnast @
CDO iy (t) — (2= thxpp(t)e ] = —(0.1)xp(t) — (3 — t));lzjt) - /Ot sx15(s)012d By + /Ot 5sx1 () 11124 B! ®)

fort € J; =[0,1] and 0.5 < & < 1. Let us take

_ ia x3(t)
A= (G 0,) temmut—ion = | ~B7Y0 ),

(f'l(t,X|(t),x|(t_F|(t))) ( tXHEt; 1dBl>

x5 (t)012d By

0
<
~—~
(s
S—
X
~—~
[ d
|
=g}
—
—+
SN—
SN—
S—
Il
7N
|
—~
N
|
(s
SN—
X
—_
~—~
(s
SN—
I3
I8
~_
<

(0l ) = (30
a=0.6.

Furthermore, it is easy to verify that for any x(t), y|(t)

(t)ﬂlldBl o B B
(t) 1104 B3t where, h = 0.01, ;1 = 0.3, 0 = 0.5 and

m
7
N

(1) BlIf (6, (£), (e = h(t))) = fityi(t), vt = h(t) > < =B = t)E[xi(t) = (1)
(). B[} (t, % (1), xi(t = h(t))) = ar(t i (1), yi(t = h(©)II? < 0.5t Elx(t) — (1)
(i) El|g(t,(t), x(t = h(t))) = & (i) n(t =) > < (2= E[x(t) — n(v)|?
(i0). B[l (t, (), % (t = () = 71 (t, yi(t), yi(t = () |? < 4E[pa(t) —wn(t)|%

Thus, f|, 7 and g satisfies the assumption (Hj ), where we set Vi (), Ve (), Vg () € L1(Jh, RT).
Hence, all the conditions of Theorem 1 are satisfied. Hence, the fractional systems are
stable for J;. The Figures 1 and 2 show the related stability results for various values of ‘&’

Fractional order a =0.6
0.3

T
—x,0
—x,(0)
0.25(—
03 Delay response x 10*3 Stochastic nature
- 2
oof] ) .
0.1 0
= 0.15[ —
< o \_____—— -1
Bl
= -0.1 -2
<01 0 05 1 15 2 25 3 49 49.2 49.4 49.6 49.8 50 -
0.05— L —
o~ [
~0.05 | I I I | I I I |
0 10 20 30 40 50 60 70 80 90 100

tsec

Figure 1. The systems (4)—(5) are stable at & = 0.6.
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Here, the delay response for the systems (4)—(5) is calculated for various values
& = 0.6,0.9 and the delay occurred at t = 2. Further, the nonlinear functions fi, 5 and g are
continuous and satisfy the assumption (Hj), and then using Theorem 1, the systems (4)—(5),
they are stable on [0,100].

6. Conclusions and Future Research

In this paper, some useful and general conditions for exponential stability of NFSDS
with fBm has been derived. The existence and uniqueness of fixed points, as well as the
stability analysis of NFSDS, have been demonstrated. Finally, a numerical simulation was
provided to demonstrate the theoretical findings. Based on the application of fractional-
order stochastic financial modeling, the authors are interested in establishing the proposed
model by considering the exponential stability of fractional stochastic delay systems with
finance and stock price models and optimal control of stochastic insurance premium model
in the near future.
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Abstract: We generalize the naive estimator of a Poisson regression model with a measurement error
as discussed in Kukush et al. in 2004. The explanatory variable is not always normally distributed as
they assume. In this study, we assume that the explanatory variable and measurement error are not
limited to a normal distribution. We clarify the requirements for the existence of the naive estimator
and derive its asymptotic bias and asymptotic mean squared error (MSE). The requirements for the
existence of the naive estimator can be expressed using an implicit function, which the requirements
can be deduced by the characteristic of the Poisson regression models. In addition, using the implicit
function obtained from the system of equations of the Poisson regression models, we propose a
consistent estimator of the true parameter by correcting the bias of the naive estimator. As illustrative
examples, we present simulation studies that compare the performance of the naive estimator and
new estimator for a Gamma explanatory variable with a normal error or a Gamma error.

Keywords: Poisson regression model; error in variable; naive estimator; asymptotic bias

1. Introduction

We often cannot measure explanatory variables correctly in regression models because
an observation may not be performed properly. The estimation result may be distorted
when we estimate the model from data with measurement errors. We call models with
measurement errors in an explanatory variable Error in Variable (EIV) models. In addition,
actual phenomena often cannot be explained adequately by a simple linear structure, and
the estimation of non-linear models, especially generalized linear models, from data with
errors is a significant problem. Various studies have focused on non-linear EIV models (see,
for example, Box 1963; Geary 1953). Classical error models assume that an explanatory
variable is measured with independent stochastic errors (Kukush and Schneeweiss 2000).
Berkson error models assume that the explanatory variable is a controlled variable with
an error and that only the controlled variable can be measured (Burr 1988; Huwang and
Huang 2000). Approaches to EIV models vary according to the situation. In this paper, we
consider the former EIV. The corrected score function in Nakamura (1990) has been used
to estimate generalized linear models. In particular, the Poisson regression model is easy
to handle analytically in generalized linear models as we see later. Thus, we focus on the
Poisson regression model with measurement errors.

Approaches to a Poisson regression model with classical errors have been discussed
by Kukush et al. (2004), Shklyar and Schneeweiss (2005), Jiang and Ma (2020), Guo and
Li (2002), and so on. Kukush et al. (2004) described the statistical properties of the naive
estimator, corrected score estimator, and structural quasi score estimator of a Poisson
regression model with normally distributed explanatory variable and measurement errors.
Shklyar and Schneeweiss (2005) assumed an explanatory variable and a measurement error
with a multivariate normal distribution and compared the asymptotic covariance matrices
of the corrected score estimator, simple structural estimator, and structural quasi score
estimator of a Poisson regression model. Jiang and Ma (2020) assumed a high-dimensional
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explanatory variable with a multivariate normal error and proposed a new estimator
for a Poisson regression model by combining Lasso regression and the corrected score
function. Guo and Li (2002) assumed a Poisson regression model with classical errors and
proposed an estimator that is a generalization of the corrected score function discussed in
Nakamura (1990) for generally distributed errors; they derived the asymptotic normality of
the proposed estimator.

In this study, we generalize the naive estimator discussed in Kukush et al. (2004). They
reported the bias of the naive estimator, however, the explanatory variable is not always
normally distributed as they assume. In practice, the assumption of a normal distribution
is not realistic. Here, we assume that the explanatory variable and measurement error are
not limited to normal distributions. However, the naive estimator does not always exist
in every situation. Therefore, we clarify the requirements for the existence of the naive
estimator and derive its asymptotic bias. The constant vector to which the naive estimator
converges in probability does not coincide with the unknown parameter in the model.
Therefore, we propose a consistent estimator of the unknown parameter using the naive
estimator. It is obtained from a system of equations that represent the relationship between
the unknown parameter and constant vector. As illustrative examples, we present explicit
representations of the new estimator for a Gamma explanatory variable with a normal error
or a Gamma error.

In Section 2, we present the Poisson regression model with measurement errors and
the definition of the naive estimator and show that the naive estimator has an asymptotic
bias for the true parameter. In Section 3, we consider the requirements for the existence
of the naive estimator and derive its asymptotic bias and asymptotic mean squared er-
ror (MSE) assuming that the explanatory variable and measurement error are generally
distributed. In addition, we introduce application examples of a Gamma explanatory
variable with a normal error or a Gamma error. In Section 4, we propose the corrected
naive estimator as a consistent estimator of the true parameter under general distributions
and give application examples for a Gamma explanatory variable with a normal error or a
Gamma error. In Section 5, we present simulation studies that compare the performance
of the naive estimator and corrected naive estimator. In Section 6, we apply the naive and
corrected naive estimators to real data in two cases. Finally, discussions are presented in
Section 7.

2. Preliminary

In this section, we state the statistical model considered in this paper and the definition
of the naive estimator and show that the naive estimator has an asymptotic bias for the
true parameter.

2.1. Poisson Regression Models with an Error

We assume a single covariate Poisson regression model between the objective variable
Y and explanatory variable X

YIX ~ Po(exp(Bo + B1X)).
X can typically be correctly observed. We assume here that X has a stochastic error U as
W=X+1,
where U is supposed to be independent of (X, Y|X). We also assume that
(Y, X, Uj) (i=1,...,n) (1)

are independent and identically distributed samples of the distributions of (Y|X, X, U).
Although we can observe Y| X and W, we assume that X and U cannot be directly observed.
However, even if we know the family of the distributions of X and U, we can-not make a
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statistical inference regarding X and U if we can observe only W. Because U is the error
distribution, the mean of U is often zero, and we may suppose that we have empirical
information about the degree of error (the variance of U). Therefore, in this study, we
assume that the mean and variance of U are known. From the above assumption, Y and W
are independent for the given X.

frwxy,w,x)  fywuly,ww—x)

Frwix (v, wlx) = fx(x) fx(x)
- fhx(%}fif(c;’)(w_x) = frix Wlx) fw x (w]x).

We use this conditional independence when we calculate the expectations.

2.2. The Naive Estimator

The naive estimator B(N) = (B((]N), ﬁgN))’ for B = (Bo, B1)’ is defined as the solution of
the equation

su(p™10) =0~ (¢ ), @

where
Sn(b|X) = Z{Y —exp(bo + b1 W)} (1, W;)

is a function of indeterminant b = (by, b;)’ given X = (X3, ..., X»)’. The naive estimator
can be interpreted as the maximum likelihood estimator if we wrongly assume that Y|W ~
Po(exp(Bo + B1W)) because (2) is the log-likelihood equation for Y|W ~ Po(exp(Bo +
B1W)). The correct distribution of Y|W is

Frwlho) = £ [ (vl fula) (e — u)d

(
fwl(w) /supp frix(ylw —u) fuu) fx(w — u)du
fwl(w) /supp (fu) Po(exp(Bo + p1(w — u))) fu(u) fx(w — u)du

assuming that U is independent of (X, Y|X). The right-hand side must be different from
Po(exp(Bo + B1W)) in general. If one ignores the error U and fits the likelihood estimation
using W instead of X, a biased estimator is obtained. In fact, by the law of large numbers,
we have

/\

S.(B™|x Z{Y—exp + MW A, Wy

5 Exw [y [{Y — exp(ByY + B W) 11, w)'])
Thus, the naive estimator converges to b = (bp, by )’ which is the solution of the estimating

equation

~

Exav By o) Y = exp (B + B W) HL W)')) = 0. Q
Equation (3) implies that for a given X’

BY Lov#p

The solution b of the estimating equation is generally different from .

18



J. Risk Financial Manag. 2023, 16, 186

3. Properties of the Naive Estimator

In this section, we consider the requirements for the existence of the naive estimator
and derive its asymptotic bias and asymptotic MSE assuming that the explanatory variable
and measurement error are generally distributed. In addition, we introduce application
examples for a Gamma explanatory variable with a normal error or a Gamma error.

3.1. The Existence of the Naive Estimator

The naive estimator does not always exist for general random variables X and U.
Thus, we assume the existence of the expectation

Ex,y,w[{Y —exp(by + b1 W)} (1, W)']

as a requirement for the existence of the naive estimator. Consequently, the following four
expectations should exist.

E[Y] = Ex[E[Y|X]] = Ex[exp(Bo + p1X)] = ePoMx(B1),
Elexp(by +01W)] = eWE[e" X TU] = b My (b1) My (br),
E[YW] = Ex[E[Y|X]E[W|X]] = Ex[(X + E[U]) exp(Bo + p1X)]

= ePOE[U]Mx(B1) + ePOE[XeP1X]

= ePE[U]Mx (1) + POV Mx(B1),
E[Wexp(bp +b1W)] = Ex[Ey[(X+ U)exp(by+ b1 X + b1U)]]

= eWE[Xe XMy (by) + e E[Ueh Y] My (by)

= e My (b1) VMx (by) + P Mx (by) V My (by).

(4)

Therefore, these expectations require that Mx (B1), Mx (b1), My (by) exist. This condition is
the requirement for the existence of the naive estimator. Here, we assume the existence of

Mx(B1), Mx (b1), My (by) (5)
for the distributions of X and U.

3.2. Asymptotic Bias of the Naive Estimator

The naive estimator satisfies

Yy

and has an asymptotic bias for the true . Here, we derive the asymptotic bias under
general conditions. From (3), we obtain two equations:

E[Y] = Elexp(bp + b1 W)], ©)
E[YW] =E[Wexp(by+bW)].
From (4) with the above equalities, we have
6ﬁOMx(,51) = 6h0Mx(b1)Mu(b1),
ePOE[U]Mx (B1) + POV Mx(B1) = €™ (VMx(b1)) My (br) + €™ (V My (b1)) M (b1)
= PV (M (b)) Mu(br)) = eV M (by).
Therefore, we use a transformation to obtain the following system of equations:
M
b = potlog(3ihs). )
— _1 = VMx(B1)
Kiy(0) = sk ¥ Miw(01) = BIU) + ShSE,
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where Kyy is the cumulant generating function of W. Thus, b = (by, b1)’ is determined by
the solution of this system of equations. Therefore, the equation

VMx(B1)
Mx(B1)

should have a solution with respect to b;. Here, we set

Ky (b1) = E[U] +

G(P1,b1) := Ky (b1) — E[U] — Kx (B1)-
We assume G (1, b1) has zero in R? and satisfies

ac(fbll,m) = Kjy (1) £0.

G is continuously differentiable because we assume the existence of (5). Then, by the theo-
rem of implicit functions, there exists a unique C'-class function g that satisfies b; = ¢(B1)
in the neighborhood of the zero of G. Using this expression, we write the asymptotic bias
of the naive estimator as

tim B[R — Bo] = bo — Po = 10g<M?<(/31))

n—sco Mwog(,Bl)
Jim BB — il = b1 — 1 = g(b1) — .

We also derive the asymptotic MSE of the naive estimator. The MSE can be represented as
the sum of the squared bias and variance. The asymptotic variance of the naive estimator is
0 because the naive estimator is a consistent estimator of b. Thus, we obtain the asymptotic
MSE of the naive estimator as

tim E[(BS") — B0)?] = (bo — Bo)* = <1°g<MX(ﬁl)))>2'

n—00 MWOg(ﬁl
lim E[(B") — 1)) = (01— 1) = (3(B1) — pr)”

Therefore, the asymptotic bias is given by the following theorem assuming general distri-
butions.

Theorem 1. Let Y|X ~ Po(exp(Bo + B1X)). Assume that W = X + U and U is independent of
(X,Y|X). Assume the existence of Mx(B1), Mx(b1), My;(by). Let

G(P1,b1) := Ky (b1) — E[U] — Kx (B1)-

Assume the function G has a zero in R?, namely there exist solutions with G(B1,b1) = 0, and
satisfies
9G(p1,b1)

o

Then, the asymptotic biases of the naive estimators ﬁéN) and ,BgN) are given by

Mx(B1)
IOg<Mwog(ﬁ1)

respectively, where g is a C'~class function satisfying by = g(B1) in the neighborhood of the zero

) and  ¢(B1) — p1

of G. Furthermore, the asymptotic MSEs of the naive estimators ﬁ(()N) and ﬁEN) are given by their
squared asymptotic biases.
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3.3. Examples

In this section, we present two type of examples. First, we assume that a Gamma
explanatory variable with a normal error. Let

X ~T(kA), U~ N(0,02),

where k > 0,A > 0,0 < 0 < co. We apply the naive estimation under this condition. From
the assumptions of Theorem 1, we assume the existence of

MX(,Bl)/ Mx(bl) and Mu(b1).
Therefore, we obtain the parameter conditions
A—=pB1 >0, A—-b;>0.

Next, we derive b = (bg, by)’. Under this condition, we obtain

(B, bn) = Kig(br) — B — K(pr) = 12+ 0% =

Thus, the set of zeros of G is

. k+ A2 (A —by)
{(ﬁllbl) SR pr = k+0%(A —b1)by bl}.

In addition,

0G(B1,b1) k 5
b, _(A—b1)2+a > 0.

Therefore, G has a zero in R? and satisfies %bll’bl) # 0. From G(B1,b1) = 0, we obtain two
implicit functions

p0 _ (A= BOAC +k+ /5
o _

2(A — B1)o?
@ _ (A—=B)Ac? +k—+/s
to 2(A — B1)o?

where s = (A — B1)2A%0* + 2(A — B1) (A — 2B1)0%k + k? > 0. Then, we obtain two expres-
sions of by corresponding to b;.

(1) ._ Mx(B1)
by’ = ﬁ0+log<M NEY

W( 1 )
A—PB)Ac? —k —
— o+ Klog ¢ 2@_‘7[31)202 Vs
(A — B1)2A20% +2(A — B1)20%k + K2 + (A — B1)Ac? + k) /5
B 4(A = 1702 '
b i g1 Mx<ﬁl>>
0 ‘BO+ Og<MW(b§2))
A= Bi)Aoc2 —k
:,30+klog( 2'[2;\)_21)20;_#
(A — B1)2A20% +2(A — B1)20%k + k2 — (A — B1)Ac? + k) /5

4(A — B1)?0?
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In addition,
s = ((A = B1)Ac? —k)> +4(A — B1)*%k;

therefore, s satisfies \/s >| (A — B1)A¢?> —k |. From the antilogarithm condition,

b = (béz), bgz))’ is a solution of the system of Equation (6) in the range of R?. Thus,
the asymptotic biases are given by

(A=B)Ac? —k+ 5

bO_,BO :klog

2(A = B1)?0?
(A= B A%t +2(A — B1)20%k + K — (A= B1)AR + k)5
4(A = B1)%0? ’
k—/s

A
bl_ﬁlza_ﬁl+W.

Next, we present another example, Gamma explanatory variable with a Gamma error.
Let
X ~T(k,A), U~T(kp,A),

where k1 > 0,ky > 0,A > 0. We apply the naive estimation under this condition. From the
assumptions of Theorem 1, we assume the existence of

Mx(B1), Mx(by) and My (by).
Therefore, we obtain the parameter conditions
A—=pB1 >0, A—b;>0.
Next, we derive b = (b, b1)’. Under this condition, we obtain

k]‘f‘kzi kq 7k72
A—b A—pB A

G(B1,b1) =

Thus, the set of zeros of G is

o ki AB
{(ﬁl,bl) € R% by = k1/\+liz(/\lf B1) }

In addition,
oG(B1,b1)  ki+k
b by

Therefore, G has a zero in R? and satisfies % # 0. From G(B1,b1) = 0, we obtain the
implicit function '
_ kiAB1

kiA +ko(A = B1)°

Thus, by Theorem 1, the asymptotic biases are given by

by

bo — Bo = —kilog(1l — B1/A) + (k1 + k2) log(1 — by /A7),

_ ko(A —B1)B
b= B = i él)'

4. Corrected Naive Estimator

In this section, we propose a corrected naive estimator as a consistent estimator of
B under general distributions and give application examples for a Gamma explanatory
variable with a normal error or a Gamma error. From (7), we have the following system
of equations:
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po=to 1oy )

G(B1,b1) = Kyy(b1) — E[U] — K (B1) = 0.

By solving this system of equations for By, 1 and replacing b = (by, by)" with the naive

. ~(N 5 5 . . .
estimator ,B( ) = ( ,BéN), ‘BgN) )’, we obtain the consistent estimator of the true B. Here,

4N
() e ()
Therefore,
pY LB
Thus, B(CN) is a consistent estimator of B. If G has zero in R? and satisfies
9G(B1,b1)

B = —K%(B1) #0,

then, by the theorem of implicit functions, there exists a unique C!-class function & that
satisfies B = h(b1) in the neighborhood of the zero of G. We note that & is the inverse
function of g in Theorem 1. We propose a corrected naive estimator that is the consistent
estimator of the true B as follows.

Theorem 2. Let Y|X ~ Po(exp(Bo + B1X)). Assume that W = X + U and U is independent of
(X,Y|X). Assume the existence of Mx(B1), Mx(b1), My;(by). Let

G(PB1,b1) := Ky (b1) — E[U] — Kx(B1)-

Assume G has zero in R? and satisfies

G (ﬁ 1, bl) 1"
—0 - =K 0.
a,Bl X (181 ) 7&
Then, the corrected naive estimator B(CN) = E(()CN), BgCN) )/, which corrects the bias of the naive

estimator B(N) = (A((]N), EgN))’, is given by

where h is a C'~class function satisfying By = h(by) in the neighborhood of the zero of G. Further-
more, the corrected naive estimator is a consistent estimator of B.

Example 1. We derive the corrected naive estimator assuming

X ~T(k,A),U ~ N(0,02).

We obtain
_k 5 k
G(,Bllbl) = rbl + 0y m,
dG(B1,b1) k
= — < 0.
9B (A = B1)?
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G has zero in R? and satisfies %ﬁl{bl) # 0. From G(B1,b1) = 0, we obtain the implicit function

oAb — (k+ A%0%)by

= — h b .
hi 022 — Ao2by — k (br)
Thus, by Theorem 2, the corrected naive estimator is given by
(N)
A(CN) _ A(N Mw(Bi)
ﬁé ) :ﬁ(() )+10g< A((le) >
Mx(f17)
A 15 A A
=B + gﬁ o? +klog(1— BN /) — klog(1 - BV /1),
23(N)2 2,2\ gN)
A(CN A(N o*By " — (k+2%0)B
N =) = !

2 s(N
‘72/31 e )“7255 )
Example 2. We derive the corrected naive estimator assuming

X ~ T(k1,A), U ~ T(ka, A).

We obtain
ki +k B kq B kj
0G(B1,b1) k1
= — < 0.
91 (A —p1)?

G has zero in R? and satisfies %ﬁl{hl) # 0. From G(B1,b1) = 0, we obtain the implicit function

(ki +k2)b1 A

ST

Thus, by Theorem 2, the corrected naive estimator is given by

a(N)
A(CN) _ a(N) Mw(p;")
Bo = Bo ‘Hog(A
Mx (BN
= BN +kylog(1 — BN /A) — (ky + ko) log(1 — BV /1),
A(CN) _ ANy, _ (ki + k2)pVA
P1 =h(p; ) = N
kiA + kZ’B
5. Simulation Studies

In this section, we present simulation studies that compare the performance of the
naive estimator and corrected naive estimator. We denote the sample size by # and the num-

ber of simulations by MC. We calculate the estimated bias for B(N) and B(CN) as follows:

/\N 1 MC
BIAS(ﬁ( ) MC Z ﬁl ’
1 MC

BIAS(B = i . Zﬂl
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~(N ~(CN . . . . .
where ,Bl( ) and :31( ) represent the naive estimator and corrected naive estimator in the
. . . . . .. . . ~(N
ith time simulation, respectively. Similarly, we calculate the estimated MSE matrix for ,B( )

and B(CN) as follows:

Nﬁﬂﬁm)=ﬁ%gﬂﬂm—ﬁxﬂm—ﬂ%
- = MC
MSE(ﬁ(CN) Z\/}C Z (CN (CN} - ‘B)/

5.1. Case 1

We assume X ~ T'(k,A),U ~ N(0,0%). Let Bp = 02,81 = 03,k = 2,A = 1.2,
n = 500, MC = 1000. We perform simulations with o2 = 0.05,0.5,2. Note that we assume
that the true value of 02 is known. We estimate k, A in the formula of the corrected naive
estimator by the moment method in terms of W because the value of X cannot be directly

observed.
~ 1 & N
k= — Z w; /\,
i3
1 Z -1 Wi

A=
T — @) — o

where w; (i =1,...,n) is the samples of W.
Table 1 shows the estimated bias of the true B. Asy.Bias By and Asy.Bias 3; denote

the theoretical asymptotic biases of B(()N) and ﬁgN), respectively, given in Theorem 1. The
bias correction of the naive estimator is performed by the corrected naive estimator. With
increasing 02, the bias of the naive estimator increases. However, the bias of the corrected
naive estimator is small for large o2

Table 1. Estimated bias of a Gamma distribution with a Normal error.

Asy.Bias f BIAS (Bo) Asy.Bias f1 BIAS(f1)

0.05 Naive 0.01111 0.01139 —0.005993 —0.007199

o =5 CN 0 0.00003532 0 0.0002603
o2 =05 Naive 0.09912 0.1025 —0.05297 —0.05582
CN 0 0.007817 0 0.0007142

2 =2 Naive 0.2757 0.2774 —0.1454 —0.1472
CN 0 —0.009493 0 0.002736

Table 2 shows the estimated MSE of the true 8. Asy.MSE B and Asy.MSE j3; denote

the theoretical asymptotic MSEs of ﬁ(()N) and ,BSN) , respectively, given in Theorem 1. The
MSE of the corrected naive estimator is smaller than that of the naive estimator in all cases.

Table 2. Estimated MSE of a Gamma distribution with a normal error.

AsyMSEfy  MSE(B,) AsyMSEBi  MSE(f:)

o2 — 0.05 Naive 0.0001235 0.003003 0.00003592 0.0004536
CN 0 0.002920 0 0.0004254

o2 =05 Naive 0.009824 0.01362 0.002806 0.003508
CN 0 0.003806 0 0.0006354

2 =2 Naive 0.07600 0.08124 0.02115 0.02214
CN 0 0.01021 0 0.002160
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5.2. Case 2

We assume X ~ I'(ky,A), U ~ T'(kp, A). Let By = 0.2, 81 = 0.3,k =2,A = 1.2,n = 500,
MC = 1000. We perform simulations with k; = 0.072,0.72,2.88. Similarly, we assume
that the true value of k; is known. We estimate k1, A in the formula of the corrected naive
estimator by the moment method in terms of W because the value of X cannot be directly

observed.
~ 1 & ~
ky = - Y wi |A—ky,

i=1
1 yvn
n Y w;

A= ,
% Yy (w; — )2

where w; (i =1,...,n) is the samples of W.

Table 3 shows the estimated bias of the true B. Similarly, the bias correction of the
naive estimator is performed by the corrected naive estimator. The bias of the corrected
naive estimator is small when the variance of the error is large. Table 4 shows the estimated
MSE of the true B. The MSE of the corrected naive estimator is also smaller than that of the
naive estimator.

Table 3. Estimated bias of a Gamma distribution with a Gamma error.

Asy.Bias f BIAS (Bo) Asy.Bias f1 BIAS(f1)

ky = 0.072 Naive —0.002634 —0.005415 —0.007887 —0.008874
CN 0 —0.0006636 0 0.0002777

ky = 0.72 Naive —0.02090 —0.01725 —0.06378 —0.06475
CN 0 -0.0002963 0 —0.003184

ky = 2.88 Naive —0.04953 —0.05439 —0.1558 —0.1569
CN 0 0.002954 0 —0.003224

Table 4. Estimated MSE of a Gamma distribution with a Gamma error.

Asy.MSE By MSE(Bo) Asy.MSE B MSE(1)
ky = 0.072 Naive 0.08533 0.003109 0.000006940 0.0005384
CN 0 0.003074 0 0.0004743

ky = 0.72 Naive 0.05580 0.005320 0.0004368 0.004894
’ CN 0 0.004457 0 0.0008818

ky = 2.88 Naive 0.02080 0.01147 0.002453 0.02553
' CN 0 0.007401 0 0.001963

6. Real Data Analysis

In this section, we apply the naive and corrected naive estimators to real data in two
cases. First, we consider football data provided by Understat (2014). In this work, we
focus on Goals and expected Goals (xG) in data on N = 24,580 matches over 6 seasons
between 2014-2015 and 2019-2020 from the Serie A, the Bundesliga, La Liga, the English
Premier League, Ligue 1, and the Russian Premier League. Detail, such as the types and
descriptions of the features, used in this section are provided in Table 5.

Table 5. Details of the variables.

Features Type Description
. number of goals scored in the
Goals counting
match
performance metric used to
xG continuous evaluate football team and

player performance
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We use goals as an objective variable Y and xG as an explanatory variable X and
assume Y|X ~ Po(exp(Bo + f1X)) as the true model. Thus, this Poisson regression model
refers to the extent to which expected goals (xG) explains (true) goals. We assume that the
true parameter B is obtained by the estimate from all N data.

As a diagnostic technique, we calculate a measure of goodness-of-fit to verify that
the dataset follows a Poisson regression model. Table 6 shows estimates of ¢ and Rps.r
(McFadden 1974), where RF is the ratio of the log-likelihood estimate to the initial log-
likelihood. ¢ = V[Y|X]/E[Y|X] is an overdispersion parameter. We may consider that
overdispersion is not observed because ¢ = 1 equates to the standard Poisson regression
model. The estimated value of B is (—0.5225,0.5308)’. Thus, we use this estimate as a true
value. We assume X (xG) ~ T'(k1, A) and obtain estimates of k1, A as k; = 2.425, A = 1.851
(see Figure 1).

Table 6. Estimates of ¢ and Ry.r.

¢ Ry
0.8907 0.1589
1.0
Il xG
pdf
0.8 1

density

Figure 1. Distribution of xG.

Expected goals (xG) is a performance metric used to represent the probability of a
scoring opportunity that may result in a goal. xG is typically calculated from shot data.
The measurer assigns a probability of scoring to a given shot and calculates the sum of
the probabilities over a single game as xG. Observation error may occur in subjective
evaluations. We can consider the situation that a high scorer happened to rate. Thus, we
assume that X includes a stochastic error U given as

W=X+U.

Because W must be a positive value, we choose a positive error by U ~ T'(kp, A) with
ko = k1/10, k1 /3, k1. We sample 1000 random samples from among all N samples to obtain
the values of the estimates of Bs. We repeat the estimations MC = 10,000 times to obtain
the Monte Carlo mean of Bs. The bias is calculated by the difference between the Monte
Carlo mean and the true value.

Table 7 shows the estimated bias calculated by 10,000 simulations. The estimated bias
of the corrected naive estimator is smaller than that of the naive estimator in all cases.
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Table 7. Estimated bias and asymptotic bias in football data.

Asy.Bias f BIAS(Bo) Asy.Bias f1 BIAS(f1)

Ky — k1 /10 Naive —0.01148 —0.01337 —0.03534 —0.03471
2= M CN 0 —0.001804 0 0.0006200
ko — k1 /3 Naive —0.03263 —0.02383 —0.1020 —0.1067
2= M CN 0 0.008176 0 —0.005575
o — Naive —0.06889 —0.04692 —0.2210 —0.2291

2=" CN 0 0.01871 0 -0.01215

Next, we apply the naive and corrected naive estimators to financial data based on
data collected in the FinAccess survey conducted in 2019, provided by Kenya National
Bureau of Statistics (2019). In this study, we focus on the values labelled as finhealthscore
and Normalized Household weights, with a sample size of N = 8669. Details of the features
used in this section, such as their types and descriptions, are provided in Table 8.

Table 8. Details of the variables.

Features Type Description
. . Score of financial health for
finhealthscore counting households
Normalized Household . Weighted and normalized
. continuous
weights households

We use finhealthscore as an objective variable Y and normalized household weights
as an explanatory variable X and assume Y|X ~ Po(exp(Bo + B1X)) as the true model. We
further assume that the true parameter g is obtained by the estimate from all N data.

As a diagnostic technique, we calculate a measure of goodness-of-fit to verify that
the dataset follows a Poisson regression model. Table 9 shows estimates of ¢ and Rpscr
(McFadden 1974). Overdispersion tends to occur to some extent in this Poisson regres-
sion model because the estimate of ¢ is greater than 1. The estimated value of B is
(1.0442,0.1568)'. As in the previous example, we regard the estimate as a true value.
We assume X ~ TI'(k;,A) and obtain estimates of ki, A as k; = 2.0746, A = 2.0746 (see
Figure 2).

Table 9. Estimates of ¢ and Ry ..

~ —

¢ Ry
1.4360 0.4478

According to Kenya National Bureau of Statistics (2019), the data from the FinAccess
survey were weighted and adjusted for non-responses to obtain a representative dataset
at the national and county level. Thus, we may consider the situation that X exhibits a
stochastic error U as

W=X+U.

We assume a positive error by U ~ T'(kp, A) with ky = k1/10, k1 /3, k1 because the distribu-
tion of normalized household weights is positive. We sample random 1000 samples from
among all N samples to obtain the values of the estimates of Bs. We repeat the estimations
over MC = 10,000 iterations to obtain the Monte Carlo mean of Bs. The bias is calculated by
the difference between the Monte Carlo mean and the true value.
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Figure 2. Distribution of normalized household weights.

Table 10 shows estimated bias calculated by 10,000 simulations. The estimated bias of
the corrected naive estimator is smaller than that of the naive estimator in all cases.

Table 10. Estimated bias and asymptotic bias in financial data.

Asy.Bias f BIAS(By)  AsyBias B BIAS(f1)

ky = k; /10 Naive —0.0005704 —0.002225 —0.01327 —0.01207
CN 0 —0.001628 0 0.001275

ky = ky /3 Naive —0.001581 —0.004088 —0.03694 —0.03522
CN 0 -0.002404 0 0.002119

ky = ky Naive —0.003204 —0.008314 —0.07534 —0.07283
CN 0 —0.004744 0 0.004338

7. Discussion

In this study, we have proposed a corrected naive estimator as a consistent estimator
for a Poisson regression model with a measurement error. Although Kukush et al. (2004)
showed that the naive estimator has an asymptotic bias, the authors did not provide a
method to correct this bias. Therefore, we developed an approach to estimate a Poisson
regression model with an error. In contrast, the authors of Kukush et al. (2004) also pro-
posed a corrected score estimator and a structural quasi-score estimator for a Poisson
regression model with an error. These estimators are score-based and consistent for un-
known parameters. Hence, a generalization of these estimators should be considered in
future research. In addition, the model considered in the present work is restricted in the
univariate case. Extending the explanatory variable to the multivariate case also remains a
challenge of note.
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Abstract: The number of non-payments is an indicator of delinquent behaviour in credit scoring,
hence its estimation and prediction are of interest. The modelling of the number of non-payments, as
count data, can be examined as a renewal process. In a renewal process, the number of events (such as
non-payments) which has occurred up to a fixed time ¢ is intimately connected with the inter-arrival
times between the events. In the context of non-payments, the inter-arrival times correspond to
the time between two subsequent non-payments. The probability mass function and the renewal
function of the count distribution are often complicated, with terms involving factorial and gamma
functions, and thus their computation may encounter numerical difficulties. In this paper, with the
motivation of modelling the number of non-payments through a renewal process, a general method
for computing the probabilities and the renewal function based on numerical Laplace transform
inversion is discussed. This method is applied to some count distributions which are derived given
the distributions of the inter-arrival times. Parameter estimation with maximum likelihood estimation
is considered, with an application to a data set on number of non-payments from the literature.

Keywords: birth and renewal processes; loan default; non-payments; inter-arrival times; renewal
function; over and under dispersion; Laplace transform

1. Introduction

In credit scoring, default probabilities are often of interest to identify and manage
the risk of bad loans. However, evaluation of default probabilities alone is insufficient
to assess the risk and returns of bank funding (Dionne et al. 1996). Before an accepted
loan is classified as a bad loan, there would have been several non-payments which come
with costs incurred by reminders, collection, and other administrative charges. Therefore,
instead of classification of a loan as either good or bad, a flexible alternative approach
to risk evaluation is through the modelling of the number of non-payments (Karlis and
Rahmouni 2007). The number of non-payments, which is a primary indicator of delinquent
behaviour, are count data. Modelling of the counts of non-payments will be useful for
estimating the probability of default. The basic model for count data is the well-known
Poisson model which exhibits equi-dispersion where the mean is equal to its variance.
As such, the Poisson model is often found to be inadequate in the presence of over- or
under-dispersion. Various approaches have been proposed to extend or generalize the
Poisson distribution. Examples of such approaches are: mixture models for heterogeneity
(Gupta and Ong 2005), such as the negative binomial (NB) (Greenwood and Yule 1920)
and Poisson-inverse Gaussian (P-iG) (Holla 1967; Sankaran 1968), Lagrange expansion
generalization of the Poisson distribution (Consul and Jain 1973), and count distributions
from renewal processes where the time between events are non-exponential distributions
(Winkelmann 1995). In the context of modelling number of non-payments, truncated
count models (Dionne et al. 1996), Poisson finite mixtures (Karlis and Rahmouni 2007) and
non-parametric models (Mestiri and Farhat 2021) have been investigated in the literature.
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It is well-known that, in a renewal process, if the waiting times are exponential and
independent, we obtain the Poisson distribution for the event counts. In the context of
loan non-payments, the inter-arrival times refer to the duration between two subsequent
non-payments. Thomas et al. (2016) used Markov chains to model the payment patterns to
estimate recover rates. This renewal process approach to derive count distributions has
been considered by several researchers. Winkelmann (1995) derived the count distribution
when the inter-arrival time is an Erlang distribution. Other distributions which have been
considered by various authors to model the inter-arrival times are the gamma distribution
(Winkelmann 1995), Weibull distribution (McShane et al. 2008), which is very popular in
the field of reliability studies, Mittag-Leffler (Jose and Abraham 2011), Gumbel Type II
(Jose and Abraham 2013), and generalized Weibull (Ong et al. 2015); see Table 1. The count
distributions were mostly obtained using extensive numerical and analytical methods.
For example, McShane et al. (2008) and Jose and Abraham (2013) used the polynomial
expansion method to derive the count distribution for Weibull and Gumbel inter-arrival
times, respectively. A different approach by From (2004) is to use a family of generalized
Poisson distributions to approximate the renewal counting processes with Weibull, trun-
cated normal and exponentiated Weibull inter-arrival times. Baker and Kharrat (2017)
proposed the use of repeated convolutions of the discretized distributions with Richard
extrapolation as well as an adaptation of De Pril’s method to compute probabilities in event
count distributions from renewal processes. Nadarajah and Chan (2018) derived count
distributions arising from 13 different inter-arrival time distributions and studied their fit
to football home goals data using the algebraic manipulation package Maple. A similar per-
spective in the modelling of non-life insurance claims data was discussed by Maciak et al.
(2021) through infinitely stochastic processes and Lindholm and Zakrisson (2022).

Table 1. Some existing count distributions in renewal theory.

Inter-Arrival Time Distribution Probability Mass Function (pmf) of Corresponding Count Distribution
Gamma Pr{N( )= ”} = G(an, Bt) — G(an + a, Bt),
G(an, Bt u —Udy
1 er) Oﬁt na—1,—uq
1) (A o
Pr{N(t) =n} = ):] ., W’
Weibull

0_ I(cj+1) - _ I'(cj—cm+1)
o = F(j+1)’] 0,1,2,..., Z %7”] s
n:0,1,2,...,j:n+1,n+2,n+3

Mittag-Leffler

(o)

Pr(N(t) =n) = ¥ (Z;)(—l)j*"ff”‘/f’(l +ja)

j=n

[} ( )””)(bt )](5]{;

PV{N(t) :1’1} :]En ( u]+1) ,a <0
Gumble Type II 0 I'(—aj+1) - 41 i1 I'(—aj+am+1)
(5]: F(j+1) ,]20,1,2,...57 Z (Snw
n=0,1,2,...,j=n+1,n+2,n+3,..
Pr{N(t) = n} = (a0)"y%_o YA palptnle, (p),
Generalized Weibull P=0 Ta(p+n)+1) P

ap) = Zho (M, )@+ e -9 = L) = () rap+)

The objectives of this paper are to propose the modelling of number of loan non-
payments through the renewal process approach and to examine the computation of the
pmf. Due to the rather involved computation of the probabilities mentioned previously, a
simple, general and efficient method of computing the probabilities of count distributions
arising from non-exponential inter-arrival time distributions of renewal processes is dis-
cussed to facilitate the statistical modelling. We consider the generalized Weibull, inverse
Gaussian and convolution of two gamma distributions due to their greater generality, as
they include, among others, the Weibull and gamma distributions as special cases. These
inter-arrival times’ distributions have flexible hazard functions so that the corresponding
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count distributions are able to cater for under-, equi- and over dispersion. This relationship
between the inter-arrival times’ hazard function and the dispersion of the corresponding
count distribution has been proven by Winkelmann (1995). We propose an easily imple-
mented and efficient method to compute the probabilities of the counts and, subsequently,
the renewal function (expected number of renewals), given the Laplace transform of the
inter-arrival times density function. The computation of the renewal function has been
extensively studied by various authors, for example, in the case of the Weibull renewal
function, see Smith and Leadbetter (1963); Constantine and Robinson (1997).

In Section 2, we briefly describe the relationship between the distribution of the inter-
arrival times and the count distribution, as well as some existing count distributions. We
focus on the case when the sequence of inter-arrival times is independent and identically
distributed, which gives rise to the renewal process. Count distributions arising from
inverse Gaussian and convolution of two gamma distributions as inter-arrival times are
considered. In these sections, we assume that the inter-arrival time X is independent and
identically distributed and we drop the index 7 from the notation, and thus X denotes the
inter-arrival time. The proposed method for the computation of the count probabilities
and its renewal function is discussed in Section 3. Section 4 details the application of the
distributions on a data set on number of non-payments from the literature. We perform pa-
rameter estimation using maximum likelihood estimation. Finally, a concluding discussion
is given in Section 5.

2. Modelling of Loan Non-Payment Counts
2.1. Count Distribution and Inter-Arrival Times Distribution

A counting process is a stochastic point process {N(t),t > 0} where N(t) represents
the total number of events that have occurred by time ¢. In this paper, the number of events
corresponds to the number of non-payments. Let S, denote the waiting time to (or arrival
time of) the nth non-payment, and X, denote the time between the (n — 1)st and the n-th
non-payment of this process, i.e., two subsequent non-payments. In the rest of this paper,
X, will be referred to as inter-arrival times. Therefore, S =0and S, = };' | X;, n > 1. If
the sequence of inter-arrival times {X1, X5, ... } is independent and identically distributed
as f(x) with cumulative distribution function (cdf) F(x), the counting process {N(t),t > 0}
is known as a renewal process. In a renewal process, the distribution function of S, can be
obtained as the n-fold convolution F,(x) of the distribution of X; and Fy (f) = 1. In this case,
the renewal function or expected number of non-payments E[N(f)] and the distribution of
N(t) can be obtained from the relationship N(t) > n < S, < t. As such, the probability
mass function (pmf) of the count distribution is

Pr{N(t) =n} = Pr{S, <t} — Pr{S, 41 <t} = F,(f) — Fy1(t), 1)
wheren=0,1,...,and F,(x) is the cdf of S,,. The renewal function is defined as
H(t) = E[N(1)] = Y | (). )

A d example is, when the inter-arrival times are exponentially distributed, the counting
process is a Poisson process with intensity A(f) = A with pmf

—At n
Pr{N(t) = n} = # n=0,12,....

The Laplace transform ¢(s) of a function f(x) is defined as ¢(s) = [;° e f(x)dx,
where s is a complex number. The Laplace transform exists for the function f(x) defined over
(0, o0), whenever the integral converges. Since the inter-arrival times X;’s are independent
and identically distributed, the Laplace transform of the arrival time S, = Y/ ; X; is simply
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the n-fold convolution of the Laplace transform of X;. Consequently, the Laplace transform
of the count distribution is derived as

1-9(s)

pu(s) = LPrN() = n}) = LEA(6) ~ Fua (1) = —_ &

(¢(s))", ®)
where ¢(s) is the Laplace transform of the inter-arrival time’s probability density function
(pdf) f(x). On the other hand, the Laplace transform of (2) is L(E[N(t)]) = @m,
lp(s)[< 1.

In the existing literature, Poisson distribution and negative binomial distribution have
been proposed for modelling non-payments (Dionne et al. 1996). In the following sections,
we present alternative count distributions for modelling of non-payments examined from
the perspective of their inter-arrival times.

2.1.1. Count Distribution for Generalized Weibull Duration
The pdf of a generalized Weibull distribution is given as

floa,a )= anx® (1 —ax®/A)M 1, 4)

fora,a >0, x >0if A <0and 0 < x < (/\/a)l/”‘ if A > 0 (Mudholkar et al. 1996). An
important limiting case is the Weibull distribution when A—o0, with pdf f(x;a,a,A) =

x\A
anx*~1e=®" We shall re-write the Weibull pdf as f(x;a,&,A) = (%) (g))‘_le_m . The
generalized Weibull distribution has a flexible and closed form hazard function.

Ong et al. (2015) applied the Laplace transform technique and a formal Taylor ex-

pansion to derive the count distribution for generalized Weibull duration. The count
distribution has pmf given by

PrN() = 1} = (a0)" g e st ), ®

where ¢, (p) = ZZ:O <)t ; 1)T(0¢(q +1))cy—1(p—q),n > 1and co(p) = (;})F(zxp +1).

When 1 =0, Pr{N(t) = 0} = (1 — at®*/A)*. This count model is able to model under-,
equi- and over-dispersion, since the generalized Weibull hazard function can be increasing,
constant or decreasing. Special cases are as follows:

e When A <0and & =1, we obtain the count distribution with Lomax duration. Its pmf
is given by Ong et al. (2015) as

PHN(E) =) = (@' T gy () ©

—_——t
p+n+1)

e  When A—co, we obtain the Weibull count distribution and Ong et al. (2015) gives its
pmf as

PEN() =) = @) E g oy e ) Q

where ¢, (p) = Zq 0 Tl)))cn,l(p —q),n > land co(p) = (E)f:ll)) When n =0,

Pr{N(t) = 0} = e~*". McShane et al. (2008) applied Taylor series approximation in
the derivation of the Weibull count pmf which they have found to be computationally
feasible.

e  Furthermore, when « =1, (5) reduces to the Poisson pmf.
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2.1.2. Count Distribution for Gamma Duration

Let X have a gamma distribution with pdf given by

(@)

for x >0 and «, B > 0. It has mean E(X) = «/f and variance Var(X) = «/B%. The hazard
function of the gamma distribution is not available in closed form but its behaviour is
well-known as being monotonic increasing (« > 1), decreasing (« < 1) or constant (« = 1).
When « = 1, we obtain the exponential distribution. The Laplace transform of the gamma

B
p+s

having a reproductive property, hence the arrival time S, is also gamma distributed.
Winkelmann (1995) has studied the count process with gamma inter-arrival times and
gives its pmf as

xtxflelex (8)

floeB) = ¢

distribution is given as ¢(s) = ( )a. The gamma distribution has the advantage of

Pr{N(t) = n} = G(an, Bt) — G(an + a, Bt) 9)
where G(an, ft) = I,(i“) 0/5 fune—le=udy, the integral is the lower incomplete gamma

function. Since the pmf is not available in closed form, Winkelmann (1995) suggested
using numerical methods for its computation. The gamma count distribution inherits
the properties of the gamma distribution’s hazard function; thus it is able to model over
dispersion (« < 1) and under dispersion (a > 1). Its expected value is given by E[N(t)]| =
Y01 G(ai, Bt). Special cases are as follows:

e  When « = 1, the count distribution simplifies to the Poisson distribution.
e  For integer values of a, Winkelmann (1995) has derived the Erlangian count distribu-
tion with pmf given as

an—+i
PrN(t) = n} = e F1y " %n —01,2,.... (10)

2.1.3. Count Distribution for Convolution of Two Gamma Durations

If we represent the inter-arrival time X as a sum of two independent gamma random
variables, then X has a convolution of two gamma distributions. Its density function has
been studied by various authors; see Johnson et al. (2005) for a brief overview. We shall
adapt the density function given by Moschopoulos (1985) for the sum of n independent
gamma random variables, which is derived from the n-convolutions of the moment gen-
erating function. Let X = X; 4 X5, where X;, i = 1, 2, are distributed as gamma with
parameters «; and f; respectively. We obtain the density function of X as

. (B o _ (5kxp+k_1exp(—ﬁy—l>
f(x,p/ﬁl)—(ﬁ) Lo Tt KB (11)

forx>0,a; >0, :Bi > 0 where ‘31 = mm(ﬁl, ‘32), 0 =ua1+ay, §k+1 = ﬁzi(il lFi(skJrl,i fork
k

=0,1,2,... ,and [} = {Dcz ( - %) } The convolution of two gamma distributions has an
increasing hazard function when its two component distributions have an increasing hazard
function, but convolutions of two distributions, both with decreasing hazard function, may
give rise to a distribution with increasing hazard function. Therefore, we expect the count
distribution to be more flexible in modelling over-dispersed and under-dispersed count
data. As a special case, when a1 = ay = 1, we obtain the convolution of two exponential
distributions which has an increasing hazard function.
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Proposition 1. If the inter-arrival time (duration) has a convolution of two gamma distributions
with pdf (3.1.1), the count distribution has pmf given by

Pr{N(t) - n} - Cn(t/ x1,%2, ,81/ ﬁZ) - Cn-l—l(t/al/“Z/ ,81/ ﬁZ)/ (12)
_ a1 pio\n grler+ag) . .
where Cu(t,an, a2, B1,B2) = (B1'B’)"\ Firniragy L2, naa; 1+ n(ag + az); —pat,

)

_/32t)} and @ (b,b'; c;w,2) = Y5 (D) (b)) wh2!

Okt KT

2.1.4. Count Distribution for Inverse Gaussian Duration

The inverse Gaussian (IG) distribution is also known as the first passage time distri-
bution of Brownian motion with positive drift. Let X have an IG distribution with pdf

given by
vl A A—p)?
i) =/ 5=z zexp{ 2| (13)

for x > 0, where p, A > 0 (Johnson et al. 2005, p. 261). It is a unimodal distribution and
has applications in modelling survival period, service time, equipment lives, hospital stay
duration, employee service times and duration of strikes. Chhikara and Folks (1977) have
discussed the application of the inverse Gaussian distribution in reliability and showed that
the distribution has a non-monotonic hazard function with an almost increasing failure rate.
There are several parameterizations of the IG distributions, but we adopt this particular
one because it is expressed in terms of its mean E(X) = y and A is the scale parameter. The
shape of the distribution is determined by the ratio A/ and the pdf is highly skewed for
moderate values of this ratio. The Laplace transform is derived by Seshadri (1999) as

4’(5)—9XP{;\<1— 1+2T2> },s>0 (14)

when p— 00, we obtain a one-parameter limiting form of IG, known as the distribution
of the first passage time of drift-free Brownian motion. Its pdf is given as f(x;A) =

ﬁx’%exp (— %) with x > 0, where A > 0 (Johnson et al. 2005). The expected value and

variance of this distribution are infinite. On the other hand, when y = 1, the distribution is
also known as the Wald distribution.

The count distribution with inverse Gaussian inter-arrival times has also been pro-
posed (Nadarajah and Chan 2018) with the probability mass function given in terms of the
convolution of inter-arrival distributions F,(x), involving the standard normal cumulative
distribution function. We derive an explicit expression for the inverse Gaussian count
distribution, given in the following proposition.

Proposition 2. If the inter-arrival time has an inverse Gaussian distribution with pdf (13), the
count distribution has pmf given by

N e 1 K
Pr{N(t) =n} =Y ", Z;;O T+ D=1 (V) ck(m), (15)

k+1 ol 2\Y
where c(m) —Z’;’_lo( :1 )(—1)m<230—0<12/)r(1ly)(2)\yt) )

2.2. Computation of the Probabilities of Count Distribution

The computation of the probabilities for most of the count distributions, such as
the generalized Weibull count distribution (5), involves an infinite series and/or gamma
functions I'(x), which tends to quickly numerically overflow. As such, we propose a
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computational method whereby the probability function of the counts can be recovered by
numerically inverting the Laplace transform (3). Using this method, given the inter-arrival
time distribution and its Laplace transform, we will be able to compute the corresponding
count probabilities.

For some common functions, the inverse Laplace transforms f(x) are readily available
from existing tables (Erdelyi et al. 1953). Otherwise, there are explicit formulae for inverting
a Laplace transform ¢(s), such as the Bromwich inversion integral formula and the Post-
Widder inversion formula. In most cases, it is difficult to find an analytical expression for
the inverse Laplace transform using these formula and, therefore, a numerical inversion
is necessary. There are numerous methods for numerical inversion of Laplace transforms
in the existing literature; for a comprehensive review, see (Abate and Valké 2004; Dubner
and Abate 1968). In our study, we use a numerical inversion algorithm which is based
on the Bromwich inversion integral and gives good results for smooth functions. The
algorithm was originally proposed by Dubner and Abate (1968), improved by Abate and
Whitt (1992) and discussed by Abate and Whitt (1995) and Abate et al. (2000) for the
numerical inversion of Laplace transforms of probability distributions. The Bromwich
inversion integral formula is given as

) 1 a+iR
f) = L7 p(e) = Jim — [ “g(s)eds, (16)

where 7 is another real number such that a > sy and i = /—1. The numerical inversion
algorithm is developed by first applying the trapezoidal rule to the integral in (16), and
subsequently using a Fourier-series method for approximation. Based on the algorithm,
we obtain the following formula for computing the count probabilities

A/2 A/2 ]
Pr{N(t) =n} = ezsRe(q)n (i)) + %Z;ozl (—1)kR€<§0n (A+2§I<m>>/ (17)

where ¢, (.) is as defined in (3).

The convergence of the infinite sum in (17) can be accelerated by applying the well-
known Euler’s algorithm for alternating series. Therefore, the count probabilities are
approximated using the following formula

Pr{N(t)=n}~) " <7:) 27", 1k (s), (18)

where s, (s) is the pth partial sum

Al2 A A/2 A + ki
sp(s) = %Re (an (25>) + %25:1 (1)kRe(§9n <+25m>) (19)

The choice of A affects the discretization error which results from using the trapezoidal rule.
We use Abate and Whitt’s (1995) suggestion to set A = 18.4, p = 38 and m = 11. The value of
p may be increased when necessary. The algorithm can be implemented in programming
languages which provide for complex number computation, such as MATLAB®.

2.3. Renewal Function

There are many studies on the approximation of the renewal function. Using a
generalized cubic splining algorithm which provides piecewise polynomial approximations
to recursively defined convolution integrals, Baxter et al. (1982) has tabulated the renewal
function and variance function for renewal processes with gamma, inverse Gaussian,
lognormal, truncated normal and Weibull inter-arrival times. However, they noted that
the convergence of the algorithm is slow for some of the parameter values. Chaudhry et al.
(2013) took a slightly different approach by using the probability function obtained from
numerically inverting the Laplace transform in rational function form to calculate the
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renewal function and variance of several count distributions. They obtained the distribution
function, mean and variance of N(t) using the method of roots for numerically inverting
the Laplace transform when it can be expressed as a rational function. They also studied
the Padé approximation method to obtain an approximate rational function for the Laplace
transform when it is not a rational function. In addition, they used the Padé approximation
method prior to the roots method when the Laplace transform could not be expressed as a
rational function, such as in the case of gamma and inverse Gaussian distribution.

3. Numerical Results
3.1. Count Probabilities

To illustrate the accuracy of this numerical Laplace transform inversion method,
we apply it in calculating the count probabilities for generalized Weibull duration and
Erlangian duration and compare the values to those obtained using Formulas (5) and
(10), respectively. The formula in Equation (10) is in closed form and simple enough to
compute, hence there is no need to use the method which we propose here, but it serves as
a good example for this comparison. Since the Laplace transform of the generalized Weibull
density function is not available in closed form, we can approximate it using Gaussian
quadrature. The computed probabilities are presented in Table 2. The count probabilities
for generalized Weibull duration are computed whena=1,a=1and A = —-2,t=0.25 and
t = 1. For the Erlangian count distribution, we compute the probabilities when a =2, =0.8,
t=0.25and t = 1. In all cases, we find that our approximation is accurate up to at least
seven decimal places. To illustrate the issue of overflowing which might occur, we present
the count probabilities for generalized Weibull duration whena=2,a =1and A = -2 and
t =11in Table 3. It is clear that, in this case, there is a numerical error in the computation of
the probabilities with Formula (5) when n = 1, 2 due to instability caused by the presence of
an infinite sum in Equation (5) and truncation error.

Table 2. Computation of probabilities for (a) generalized Weibull, and (b) Erlangian count distribu-

tions using the proposed method and pmf formula.

Pr{N(t) = n} Pr{N(t) = n}

" t=0.25 t=1

Proposed Method Pmf Formula Difference Proposed Method Pmf Formula Difference
0 0.790123462190233  0.790123456790123 5.4001 (—9) 0.444444446077630  0.444444444444444 1.6331 (—9)
1 0.185268558281666  0.185268554955749 3.3259 (—9) 0.341447772405153  0.341447770099717 2.3054 (—9)
2 0.022624019619715  0.022624018469588 1.1501 (—9) 0.152421254574663  0.152421252253988 2.3207 (—9)
3 0.001862447034136  0.001862446759278 2.7486 (—10) 0.047632000079489  0.047631998279757 1.7997 (—9)
4 0.000115528824677  0.000115528774610 5.0067 (—11) 0.011418307350013  0.011418306220399 1.1296 (—9)
5 0.000005746921940  0.000005746914580 7.3600 (—12) 0.002217009636005  0.002217009042290 5.9371 (—10)
6 0.000000238568216  0.000000238567310 9.0600 (—13) 0.000361439244000  0.000361438976100 2.6790 (—10)
7 0.000000008496400  0.000000008496304 9.0600 (—13) 0.000050759289875  0.000050759184107 1.0577 (—10)

(a) Generalized Weibull count distribution
Pr{N(t) = n} Pr{N(t) = n}

n t=0.25 t=1

Proposed Method Pmf Formula Difference Proposed Method Pmf Formula Difference
0 0.982476912658251  0.982476903693578 8.9647 (—9) 0.808792138560495  0.808792135410999 3.1495 (—9)
1 0.017466257275868  0.017466256065664 1.2102 (—9) 0.182128011589934  (.182128006788847 4.8011 (—9)
2 0.000056765366099  0.000056765332213 3.3886 (—11) 0.008895517173780  0.008895515278950 1.8948 (—9)
3 0.000000074855777  0.000000074855383 3.9400 (—13) 0.000182292662905  0.000182292332810 3.3009 (—10)
4 0.000000000053140  0.000000000053138 2.0000 (—15) 0.000002035889418  0.000002035857392 3.2026 (—11)
5 0.000000000000024  0.000000000000024 0.0000 0.000000014264304  0.000000014262333 1.9710 (—12)
6 0.000000000000000  0.000000000000000 0.0000 0.000000000068513  0.000000000068429 8.4000 (—14)
7 0.000000000000000  0.000000000000000 0.0000 0.000000000000241  0.000000000000239 1.9999 (—15)

(b) Erlangian count distribution
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Table 3. Count probabilities for generalized Weibull count distribution whena=2,x =1and A = -2
and ¢t =1.

Pr{N(t) = n}
" Formula Proposed Inverse Laplace Transform Method
0 0.2500 0.2500
1 63.5982 0.2971
2 2.3327 0.2305
3 0.1839 0.1317
4 0.0604 0.0593
5 0.0220 0.0220
6 0.0069 0.0069
7 0.0019 0.0019

Using this proposed method, the count probabilities for convolution of two gamma
and inverse Gaussian inter-arrival distributions proposed in Section 2.2 can be easily
computed. Chaudhry et al. (2013) used the roots method and a Padé approximation
method for computing the count probabilities for several inter-arrival times distributions.
In Table 4, we compare the probability function of gamma, inverse Gaussian and Weibull
count distributions with those obtained by Chaudhry et al. (2013). We note that the
difference in the probabilities is at most two decimal places. In the case of Weibull count
distribution, we include only the results when ¢ = 0.25, because the algorithm could not
converge for t = 0.60 and t = 1 when A = 3, which are the other two values included by
Chaudhry et al. (2013). Convergence issues with the Weibull renewal function were also
discussed by Constantine and Robinson (1997) whereby they developed a convergent
damped exponential series by residue calculations of the Laplace transform of the renewal
integral equation for the Weibull renewal function when A > 1.

Table 4. Computation of probabilities for (a) gamma, (b) inverse Gaussian, and (c) Weibull count
distributions for selected values of ¢ using (i) proposed method, (ii) method of Chaudhry et al. (2013).

Pr(N() = 0) Pr(N@#) =1) Pr(N(t) =2) Pr(N(t) = 3) Pr(N(t) = 4)
@) (ii) @ (ii) @) (ii) @ (ii) @) (ii)
0.1 0.6938 0.6871 0.2341 0.2385 0.0579 0.0602 0.0117 0.0119 0.0021 0.0019
04 0.4061 0.4071 0.3092 0.3088 0.1683 0.1677 0.0744 0.0743 0.0283 0.0284
1.25 0.1291 0.1291 0.1952 0.1951 0.2050 0.2050 0.1730 0.1730 0.1249 0.1249
(a) Gamma count distribution
Pr(N(t) = 0) Pr(N@#) =1) Pr(N(t) =2) Pr(N() = 3) Pr(N(t) =4)
@) (ii) 6] (ii) @) (ii) @ (ii) @) (ii)
0.25 0.7394 0.7445 0.2497 0.2442 0.0108 0.0112 0.0001 0.0001 0.0000 0.0000
0.7 0.3377 0.3390 0.4070 0.4042 0.2044 0.2062 0.0460 0.0457 0.0047 0.0046
1.0 0.1623 0.1623 0.2865 0.2869 0.2871 0.2867 0.1763 0.1762 0.0681 0.0683
(b) Inverse Gaussian count distribution
Pr(N(¥) = 0) Pr(N(#) =1) Pr(N(t) = 2) Pr(N(#) = 3) Pr(N(t) =4)
@) (ii) @ (ii) @) (ii) @ (ii) @) (ii)
0.25 0.9845 0.9841 0.0155 0.0159 0.0000 0.0000 0.0000 - 0.0000 -

(c) Weibull count distribution

We compare the pmf of the two count distributions proposed in Sections 2.1.3 and 2.1.4
with the Poisson distribution. For comparison purposes, the mean for all of the distributions
is set to 2, i.e., E(N) = 2. Figure 1 compares the probability functions of the inverse Gaussian
count distribution with a Poisson distribution.
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(b)

Figure 1. Plots of Poisson and inverse Gaussian probabilities: (a) A = 0.17, u = 1 (over dispersion);
(b) A =1, u = 0.438 (under dispersion).

Figure 2 compares the probability functions of the convolution of two gamma count
distribution with a Poisson distribution. The convolution of the two gamma count model
can model both over-dispersion and under-dispersion relative to the Poisson distribution.

(S conential
I convoluticn of Tve Gamma

(£ cponential
I Convolution of Tvo Gamma

Figure 2. Plots of Poisson and convolution of two gamma probabilities: (a) a1 = 1.5, ap = 1.9 (under
dispersion); (b) a1 = 0.2, ay = 0.5 (over dispersion).

The convolution of two gamma distributions nests the special case of convolution
of two exponential distributions, that is, when & = ay = 1. This two-component hypo
exponential count distribution with parameters 1 and B, can model under-dispersion and
Figure 3 compares its probability function with a Poisson distribution.

I = ponential
onvolution of Two Exponentials
Conwlution of Two Exponential

Figure 3. Plot of Poisson and convolution of two exponentials probabilities: f1 = 4.2, , = 4.85
(under dispersion).

3.2. Renewal Function and Variance

Using the probability of the counts computed using our proposed method, we also
computed the renewal function and variance function for comparison with those obtained
by Chaudhry et al. (2013) and Baxter et al. (1982). The details are presented in Table 5.
In most cases, the values computed using our proposed method are closer to those of
Baxter et al. (1982). We note that Baxter et al. (1982) verified the accuracy of their extended
cubic splining algorithm through comparisons with previous tabulations for the Weibull
count distribution in the literature (see Baxter et al. 1982 for details) and a direct evaluation
of the incomplete gamma integral for the gamma count distribution.
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Table 5. Computation of renewal and variance functions for (a) gamma, (b) inverse Gaussian, and
(c) Weibull count distributions for selected values of t using (i) proposed method, (ii) method of
Baxter et al. (1982), and (iii) method of Chaudhry et al. (2013).

Renewal Function Variance Function
t
@ (if) (iii) @ (ii) (iii)
0.1 0.3953 0.3933 0.4040 0.4580 0.4485 0.4623
0.4 1.0560 1.0550 1.0545 1.3954 1.3901 1.3970
1.25 2.6662 2.6653 2.6663 4.0491 4.0441 4.0487
(a) Gamma count distribution
Renewal Function Variance Function
t
@ (ii) (iid) @ (ii) (iii)
0.25 0.2716 0.2715 0.2669 0.2198 0.2200 0.2188
0.7 0.9739 0.9739 0.9736 0.7717 0.7718 0.7732
1.0 1.7636 1.7638 1.7635 1.5290 1.5293 1.5294
(b) Inverse Gaussian count distribution
Renewal Function Variance Function
t
@ (i) (iii) @) (ii) (iif)
0.25 0.0155 0.0156 0.0159 0.0153 0.0154 0.0156

(c) Weibull count distribution

4. Real Data Analysis

Table 6 gives the distribution for the number of monthly non-payments for personal
loan in a sample of 2446 clients in a Spanish bank (Dionne et al. 1996). In personal loans,
small amounts of money are lent with a relatively short repayment or loan period. The
repayment schedule is typically on a monthly basis with a constant amount. The empir-
ical data has a sample mean of 1.109 and variance of 4.860, indicating presence of over
dispersion, hence a simple Poisson process may not be sufficient to model the counts. The
majority (68.1%) of the counts are zeroes, which correspond to clients who never missed
a payment, followed by 11.1% who missed one payment and a cumulative percentage of
11.4% who missed two to four payments. The count distributions are applied to fit this data
set. For the simple Poisson count process, observations with expected frequencies which
are less than 1.0 are grouped in one class. We also include the log-likelihood function and
Akaike information criterion (AIC) values for each fitted model in the tables.

The pmf of the count distributions is evaluated using the numerical inverse Laplace
transform method discussed in Section 2.2. The maximum likelihood (ML) estimates of the
parameters are obtained with numerical global optimization using the simulated annealing
algorithm (Goffe et al. 1994). For numerical stability, we transform the parameters for
the generalized Weibull count distributions to their corresponding reciprocals prior to
performing ML estimation. The ML estimates are given in Table 7.

The count distribution with generalized Weibull as the distribution for inter-arrival
times gives the best fit for the data presented in Table 6. Since the generalized Weibull
distribution does not have a closed form Laplace transform, the model fitting takes up a
significantly longer time. In the case of distributions with closed Laplace transform, the
convolution of two gamma count distribution gives the best fit. We also verify that the
convolution of the two exponentials count distribution gives the same fit as the simple
Poisson distribution, implying that this distribution is not suitable for over dispersed
count data. The inverse Gaussian distribution also gives a poor fit to this data set. This
coincides with the characteristic of inter-arrival time distributions, which has an increasing
hazard function.
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Table 6. Number of monthly non-payments for personal loan (Dionne et al. 1996).

Expected Frequencies

Count  Observed Exvonential Gamm Convolution of Convolution of Inverse Weibull Generalized
ponentia amma Two Exponentials Two Gamma Gaussian ebu Weibull
0 1665 806.78 1159.28 806.78 1159.18 703.13 1156.51 1172.12
1 271 894.85 610.04 894.85 609.94 614.81 607.38 599.05
2 101 496.26 320.92 496.26 320.89 470.06 319.98 309.55
3 73 183.48 168.77 183.48 168.79 314.25 169.15 162.84
4 106 50.88 88.73 50.88 88.78 183.69 89.74 87.75
5 72 11.29 46.64 11.29 46.68 93.88 47.80 48.58
6 43 2.09 2451 2.09 24.55 41.96 25.56 27.60
7 31 0.38 12.87 0.38 12.90 16.39 13.72 16.00
8 31 6.76 6.78 5.60 7.39 9.39
9 25 3.55 3.56 1.67 4.00 5.53
10 19 1.86 1.87 0.44 2.17 3.25
11 9 0.98 0.98 0.10 1.18 1.89
12or 0 1.08 1.09 0.02 1.42 2.44
more
Total 2446.00 2446.00 2446.00 2446.00 2446.00 2446.00 2446.00
XZ 37,242.91 1111.77 37,242.91 1108.75 4057.66 1032.59 838.51
Log-likelihood —4954.79 —3569.93 —4954.79 —3569.49 —423106 355813 351139
AIC 9911.57 7143.85 9913.57 7146.99 8466.11 7118.27 7028.77

Table 7. ML estimates of the fitted distributions.

Inter-Arrival Distribution ML Estimates of Parameters
Exponential A =1.1092
Gamma & = 0.0136, B = 0.0000
Convolution of two exponentials B1 =1.1092, Bp — o0
Convolution of two gamma &y = 0.0097, 31 = 0.0000, &, = 0.0000, B; = 4.5611
Inverse Gaussian A =0.1358, fi — 0
Weibull & = 18.2613,A = 3.0684
Generalized Weibull 4 = 40.6405; & = 1.0000,A = —0.2044

5. Discussion and Conclusions

This article examines the modelling of count data commonly encountered in finance
and risk management with count distributions arising from non-exponential inter-arrival
time distributions in a renewal process. A specific application example on modelling
of loan non-payments is presented. Since the number of non-payments and the lapsed
time between payments reflect a lender’s payment behaviour, models which account
for these data can assist in the development of further diagnostic techniques such as
loan default prediction and tools for early warning detection. Due to the complicated
calculations, computation of the probabilities arising from these distributions is investigated
and discussed in this paper. The inversion of the Laplace transform is proposed as a generic
method of computation, since the transforms have relatively simple forms compared to
the probabilities. The proposed method is compared with some existing techniques in
the literature.

When the Laplace transform of the inter-arrival time distribution is not available in
closed form, other methods to approximate the Laplace transform for numerical inversion
can be explored, such as the infinite series, Gaussian quadrature, Laguerre method and the
continued fractions technique. This will be considered elsewhere.
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Abstract: Deriving loss distribution from insurance data is a challenging task, as loss distribution is
strongly skewed with heavy tails with some levels of outliers. This paper extends the weighted expo-
nential (WE) family to the contaminated WE (CWE) family, which offers many flexible features, in-
cluding bimodality and a wide range of skewness and kurtosis. We adopt Expectation-Maximization
(EM) and Bayesian approaches to estimate the model, providing the likelihood and the priors for all
unknown parameters. Finally, two sets of claims data are analyzed to illustrate the efficiency of the
proposed method in detecting outliers.

Keywords: bayesian estimation; EM algorithm; Gibbs sampler; Mixture model; insurance claim data

1. Introduction

In many applied areas, particularly in finance and actuarial sciences, data are usually
positive, right-skewed, leptokurtic and multimodal (Cummins et al. 1990). To capture a
wide range of population heterogeneity and tail behavior, one practical way is to conduct
analyses over subsets of claims with distinct claim characteristics. But the approach falls
short of providing a full picture of claim dynamics. Classical distributions are not flexible
enough to cater to heavy-tailed datasets due to extreme values that are far from the other
observed data points. These unusual observations are usually called outliers. The presence
of outliers in the data may distort both the estimated model parameters and the model’s
goodness-of-fit. Recently, many authors have focused on a finite mixture approach that
shares the efficiency of parametric modeling and the flexibility of non-parametric density
estimation techniques. The flexibility of finite mixtures is accommodating various shapes
of insurance and economic data (Bernardi et al. 2012; Hennig and Liao 2013; Maruotti et al.
2016; Punzo et al. 2018).

Okhli and Nooghabi (2021) introduced the contaminated exponential (CE) distribution
as an alternative platform for analyzing positive-valued insurance datasets with some level
of outliers. The pdf of CE distribution with scale parameter A and contamination factor 6 is
defined as follows:

fee(y A, 0,w) = (1 — w)re™ 4 wAe ™%, 4y >0, A >0, (1)

where w € (0,1) is the proportion of contaminated points. The Bayesian approach is
developed for computing the parameter estimates. It is demonstrated that the effect of
outliers is automatically reflected in the posterior distribution for any sample size. This
way, an outlier observation has the highest posterior probability of outlying, but the main
observations have a relatively small such probability, indicating that the CE model can
detect outliers well.

Weighted distributions are used to adjust the probabilities of events as observed
and recorded (Chung and Kim 2004; Gupta and Kirmani 1990; Larose and Dey 1996);
(Navarro et al. 2006). Patil (1991) proceeded from applications involving statistical ecology
to generate and review many useful general results concerning weighted distributions. Mild
outliers, on which this paper focuses, can be dealt with by using heavy-tailed distributions
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for data. Weighted distributions offer the flexibility needed for achieving mild outlier
robustness, while the usual distributions like exponential, gamma and Weibull models lack
sufficient fit. For more information and applications of weighted distributions see Patil and
Rao (1977).

A two-parameter weighted exponential (WE) distribution (Gupta and Kundu 2009)
was developed as a lifetime model which has been widely used in engineering, medicine
and insurance. The sensitive skewness parameter governs essentially the shape of the
probability density function (pdf) of the WE distribution. A random variable Y is said
to have a weighted exponential distribution with a shape parameter & > 0, and scale
parameter A > 0, denoted by WE(«, A), if its pdf is given by

fwe(y;a,A) = (1 + i)Ae‘Ay(l —e M), y>0. )

In this paper, we introduce a class of contaminated weighted exponential (CWE)
distributions to account for all possible features of insurance and economic data. Crucially,
the CWE model is a two-component mixture in which one component, with a large prior
probability, represents the reference distribution, and another, with small prior probability
and inflated variability, represents the degree of contamination. For Bayesian inference, we
consider several asymmetric and symmetric loss functions like squared error loss, modified
squared error, precautionary, weighted squared error, linear exponential, general entropy,
and K-loss functions to estimate the parameters of the CWE model. Further, using the
independent prior distributions, Bayesian 95% credible and highest posterior density (HPD)
intervals (see Chen et al. 1999) are provided for each parameter of the proposed model.

The paper is organized as follows. Section 2 presents the CWE model and some illus-
trations of the density, skewness and kurtosis. In Sections 3 and 4, the EM algorithm and
Bayesian inference are respectively developed for CWE parameters. Section 5 illustrates
several simulations of proposed estimation methods of Sections 3 and 4. Sections 6 and 7
illustrates numerical examples for insurance data fitting using proposed estimation meth-
ods of Sections 3 and 4, respectively. Finally, discussions and conclusions are presented in
Section 8.

2. The CWE Model
The pdf of a CWE model with contamination factor 6 can be written as

fewe(ya, A, 0,0) = (1 —w) fwe(y; 2, A) + wfwe(y; &, A9), 3)

where § > 0 and w € [0,1] denotes the proportion of outliers or unusual points and
0= (w,ua A, (9)T contains all model parameters. The CE model given in (1) is obtained as a
special case of (3) when & — oo. The effect of varying each parameter when one varies, but
keeping others fixed, is illustrated by a set of CWE densities shown in Figure 1. The plots
show that the distribution is more likely to be bimodal as w increases, whereas flatness
parameter vector a controls tail behavior. This implies that the CWE model provides a
component of the WE distribution to capture the vast majority of small losses, whereas the
contaminated component accommodates clusters of larger losses with an enhanced tail
to capture extreme losses. Furthermore, the skewness and kurtosis 3D plots of the CWE
model for numerous values of « and # with fixed A = 1 are depicted in the Figure 2. The
fitting of this four-parameter CWE model via the likelihood approach is difficult because of
the log-likelihood function’s complexity. But the EM and Bayesian approaches can help.
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Figure 2. 3D plots of skewness and kurtosis of CWE distribution for two fixed values of w.
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3. Maximum Likelihood Estimation via EM Algorithm

The EM algorithm (Dempster et al. 1977) and some of its extraordinary variants such
as the expectation conditional maximization (ECM) algorithm (Meng and Rubin 1993) and
the expectation-conditional maximization either (ECME) algorithm (Liu and Rubin 1994)
are broadly applicable methods to carry out ML estimation for mixture distributions and
variety of incomplete-data problems (Aitkin and Wilson 1980; McLachlan and Krishnan
2007; Redner and Walker 1984). Mahdavi et al. (2021a, 2021b) and Cavieres et al. (2022) de-
veloped novel EM-based procedures designed under the selection mechanism to compute
the ML estimates of scale-shape mixtures of flexible generalized skew-normal and multi-
variate flexible skew-symmetric-normal distributions. Here, we develop a novel EM-based
procedure designed under the selection mechanism to compute the ML estimates of the
proposed model.

A random variable Y ~ WE(a, A) is said to follow WE distribution with shape param-
eter & and scale parameter A if it has the following stochastic selection representation:

YL xo|u<1, )

where U = X;/(aXp) and Xp and X; are two independent exponential random variables
with mean 1/A. To perform an EM-type algorithm for fitting the CWE model, we introduce
a latent variable T = U|U < 1 based on (4). The joint pdf of (Y,7) " is given by

Fraln®) = grgeyrouls D) = (141 ) fa @i ()
= (a+ 1)/\2ye_Aye_A’”y, y>0, 0<7<l (5)
Dividing (5) by (2) yields
fey(7) = M, 0<t<l (6)
Using (6), it is clear that
T|Y =y ~ TExp(aAy; (0,1)), (7)

where TExp(A; (0,b)) represents the truncated exponential distribution with mean 1/A on
interval (0,b).

Let us introduce an n-dimensional binary random variable oy = (y1,...,7,) ' wherea
particular element -; is equal to 1 if Y; belongs to unusual observations and is equal to zero
otherwise. Note that, 7; follows a Bernoulli random variable with success probability w
denoted by 7; ~ Ber(w).

Now, consider n independent random variables Y, ..., Y, which are taken from a
mixture model (3) and latent variable T = (t,...,7,) ", where ® = (w, &, A,0) " denotes
the unknown vector of parameters. Clearly,

)T

Yil(yi=0) ~WE(g,A) and  Y;|(7i=1) ~ WE(&,A9),
T|(Yi =yi,7i=0) ~ TExp(ady;(0,1)),
Gl(Yi=yi,vi=1) ~ TExp(aAby;(0,1)).

According to (3) and (5), it is clear that

Py i) = { (e + 1) A2y Wi, TN (o 4 1) 22020 A0 MO0Ti T
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T T T

The complete log-likelihood function of ® giveny, = (y',T',...,y

KC(®|YC) = In {fY,’y,r(YI'Y/ } In {fv fY -r\'y(Y/ )}
= i{'yilnw—i—(l—'yi)ln(l—w)+1n(oc—|—l)+21n/\+2'yiln6
i=1

—(1=7)Ayi — (1 = 1) Aatiy; — 7iAOy; — ’Yi/WtXTiyi}- ®)
To evaluate the Q-function, the necessary conditional expectations include

w® fWE(}/z,@(k) ;\(k)@(k))

. A (k
%(k) = E(nlYi= yi,®( )) NG
fewe(yi;a®), A0, 6
A(k A (k) 1
Tl(i) = E(Q—7)ulYi=vi,0 < GG Ay, 1),
NG v ()_A() _
% = E(nmlYi=v,0") =% <&(k);\(k)é(k)yi JrCH ( Dy _ 1)'

Therefore, the Q-function is given by

Qe6") =Y { 9w+ 1 -49)In(1 - w) + In@® +1) + 2In AK

i=1
+240 o0 — A0 (1 — 40y, AW £0y,

l

300458y _ 3 0g05 0k )Tz(f‘)yl} ©)

In summary, the implementation of the ECM algorithm proceeds as follows:

E-step: Given © = @)(k), compute ”yl(k) , fl(z) and Tz( ) fori=1,...,n.
CM-step 1: Calculate

k1) — 1 70,
n

M:

1

=

CM-step 2: Fix A = A(K), § = § ) and update &%) by maximizing (9) over a, which gives

&(k+1) — n -1
A PENT Ay Ak :
ARy (71(1' )Vi - H(k)TZ(i )Vi)

CM-step 3: Fix « = 2kt1), 9 = §K) and update A(¥) by
2n

A (k+1) )
1 L= 40y + a2y, 4 00040y, + 2D 2y, )

CM-step 4: Fix a = &k, A = A(k+1) and update §) b

(k)
glk+1) _ 2Y ’Yz(

~ " (K :
Al {71' Yi +"‘(k+1)Tz(i)3/i}

This process is repeated until a suitable convergence rule is satisfied. The convergence
appears when the relative difference between two successive log-likelihood values is less
than tolerance (€). In our numerical experiments, € = 10~ is used. An R code about EM
algorithm is available in Appendix A.
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4. Bayesian Inference

In this section, we discuss the Bayesian estimation for the CWE distribution parameters
in terms of several symmetric and asymmetric loss functions such as squared error loss
function (SELF), weighted squared error loss function (WSELF), modified squared error
loss function (MSELF), precautionary loss function (PLF) and K-loss function (KLF). The
considered loss functions and their Bayesian estimators with corresponding posterior risks
are reported in Table 1.

Table 1. Bayes estimator and posterior risk under several loss functions.

Loss Function L(, 5) Bayes Estimator ¢ Posterior Risk py
SELF = (p —d)? E(y|x) Var([x)
—d) I _ . _
WSELF = W0 (E(p~ ")~ E(ylx) = (E(p~x) ™!
— d)? E(y|x) _ E@'x)?
MSELF = (1*&) E(y ) 1= Fg)
pLF = W=4) E(y?[x) 2(VE@x) - E(ylx) )
E(¢|x) —TJx) —
KLE — ( %_ 15) i) 2( E(|x)E(p~1[x) 1)

For pertinent details about these loss functions, refer to Kharazmi et al. (2021, 2022)
and references therein.

4.1. Joint and Marginal Posterior Distributions

Assume that the parameters of the CWE distribution have independent prior dis-
tributions as follows: a ~ Gamma(ag, a1), 0 ~ Gamma(6y,601), A ~ Gamma(Ag, A1), and
w ~ Beta(wy, wy ), where all hyper-parameters are positive. Consequently, the joint prior
density is formulated as

00 4 A
W0 (1 — w)@W1450970 10
(e, A 0,w) = ( )1 0 M a0~ 1901 Aoo—(a1a+010+2A14)

Beta(wo, w1)T'(ao)T(60)T (Ao)

For simplicity, we define function { as
7(a,6,7, w) = a0~ pPo—T fhoe=(matpiftAid) w0 (1 — gy)@r,
From (10) and likelihood function L(data), the joint posterior distribution is
m*(a,0, A, w|data) « 7(a,0, A, w) L(data).
Therefore, the exact joint posterior pdf is given by
™, 0,A,w|x) = Ki(x6,A,w)L(xY), (10)

where

Lx;¥) = [)\ <1 + i)} ' ﬁ {(1 — w)e Mi(1 — e7 M) - whe i1 — e 0M) }, (11)

i=1

Y = («,0, A, w) and K is a normalizing constant with form

I /01 /Ooo /Ooo /O'oo Z(a,6, 7, ) L(x, &)909BoNw.
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Moreover, the marginal posterior density of &, 8, A and w (assuming ¥ = (¥4, ¥, ¥,
Y,) = («,6,A,w)) can be expressed as

¥ oo Jo e (Flx) a0 ¥,¥s, i=1,23, \
T = { Jo Jo Joo T (¥lx) 8‘F18T28T3, i=4, (12)

where j,k =1,2,3,j # k # i and ¥, is the ith member of vector ¥.

4.2. Bayesian Point Estimation

From the marginal posterior pdf in (12) and under framework of the loss functions
listed in Table 1, the Bayesian point estimation for parameter vector ¥ = (¥1, ¥, ¥3, ¥4) =
(a,0, A, w) is formulated via minimizing the expectation of loss function with respect to the
marginal posterior pdf in (12) as follows:

argmin C; /0 Y L(Y,, 6) 7 (¥i]x)aY. (13)

In practice, because of the intractable integral in (13), we can use the Gibbs sampler
(Geman and Geman 1984) or Metropolis-Hastings algorithms (Hastings 1970; Metropolis
et al. 1953) to generate posterior samples. We will argue this issue more precisely in
Section 4.5.

4.3. Credibility Interval

In the Bayesian framework, interval estimation is done via credibility interval concep-
tion. Consider parameter vector ¥ = (¥, ¥2, ¥3, ¥4) = (,60, A, w), which is associated
with CWE distribution and n(‘I’j |x) the marginal posterior pdf of parameter Y, j=1234,
as in (12). For a given value of 7 € (0,1), the (1 — #)100% credibility interval CI (nyj, nyj)
is defined as

= gy — 11
| atymey; = 1-1, (14)

¥
/ (¥j[x)0¥; =
Uy,

By considering relation (14) and (15), it is not feasible to obtain the explicit marginal pdf
from the joint posterior distribution. To overcome this difficulty, we use the Gibbs sampler
algorithm and generate posterior samples from the CWE distribution. Let ¥?,..., ¥*
(where yi— (‘I"il,‘I’é, ‘I’é,‘l"i)) be a posterior random sample of size k which is extracted
from the joint posterior pdf in (10). Using these samples, the marginal posterior pdf of ¥;
given x is defined by

N[

(15)

1 & ;
R Y (YY), j=1,234 (16)
i=1

where ¥ j represents the vector of posterior samples when the jth component is removed.
Inserting (16) in (15), it is possible to compute the credibility intervals for ¥;,j = 1,2,3,4,
as follows

*Z/ (¥ x)aY; = 1-
- (¥, ¥ |x)o¥; =
Kg'/u‘f’/n ( ! _J‘E) !

N

, (17)

N

(18)
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4.4. Highest Posterior Density Interval

Highest posterior density (HPD) interval is a credibility interval under a specific
restriction. A (1 —#)100% HPD interval for Y, j=1234is the simultaneous solution of
integral equations

fZ/L (Y = 1-, (19)

K K ‘
Z (Ly;, ¥ lx) = Z (U, ¥ [x). 20)

4.5. Generating Posterior Samples

It is clear from Equations (10) and (12) that there are no explicit expressions for the
Bayesian point estimators under the loss functions in Table 1. Because of intractable in-
tegrals associated with joint posterior and marginal posterior distributions, we require
numerical software to solve the integral equations numerically via MCMC methods such as
the Metropolis-Hastings algorithm and Gibbs sampling (Contreras-Reyes et al. 2018). As-
suming general model f(x|¢) is associated with parameter vector ¢ = ({1, ¢,..., ;) and
observed data x, the joint posterior distribution is 7r(¢1, ¢2, . . ., Pp|x). We also assume that

Po = (ngo), 1p§0>, cee zp;‘))) is the initial vector to start the Gibbs sampler (Quintero et al. 2017).
The steps for any iteration, say iteration k, are as follows:

e  Starting with an initial estimate (1,050), gbéo), ey 47,(,0) );

o draw ¢k from 7t (g |ps L, pb L, l/kal, x);

o draw ¢k from 7t (yo|pk, i1, . ,5~1,x); and so on down to

o draw ¢ from 7t (y,|yf, ¢5, ..., lppil,i).

In the case of the CWE distribution, by considering parameter vector ¥ = («, 6, A, w)
and initial parameter vector ¥y = (ao, 69, A9, a)o), the posterior samples are extracted based
on Gibbs sampler where the full conditional distributions are

k=1 yk—1 k-1 a+1\" T
7 (a|0, A W x) . a0 e M TTY (x;,Y), (21)
i=1
n
7 (0]af 1, AR, W x) o« g e O TT Y (1, Y), (22)
n
(Alaf1 081, WF T x) o AN e MATT Y (%, ), (23)
i=1
and ;
m(w]a® =1, 0L A x) o w0 (1 — w) U TT Y (x:, YY), (24)

where Y(x;, ¥) = (1 — w)e ™ Mi(1 — e=*Mi) + whe i (1 — g=20Ax),

In practice, simulations related to Gibbs sampling can be done with special software
WinBUGS. This software was developed in 1997 to simulate data of complex posterior
distributions, where analytical or numerical integration techniques cannot be applied.
Moreover, Gibbs sampling processes can be carried out via OpenBUGS software, which is
an open source version of WinBUGS. Since there isn’t any prior information about hyper-
parameters in (10), we follow Congdon (2001) and the hyper-parameter values are set
asw; = 0; = A; = w; = 0.0001, i = 0,1, so we can use the MCMC procedure to extract
posterior samples of (10) by means of Gibbs sampling process in OpenBUGS software.

5. Simulation Study: Recovery of the True Underlying Parameters

An experiment intends to investigate the ability of the proposed EM algorithm to
recover the true underlying parameters. We generate 5000 synthetic Monte Carlo samples
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of different sample sizes n = 30, 70, 100 and 200 from the CWE distribution and following
three parameter scenarios (each scenario corresponding to density plotted as “dotdash”
line in Figure 1):
Scenariol: « =05,A=1,0=2,w =0.2.
Scenario2: « =2,A=1,0 =0.3,w = 0.2.
Scenario 3: « = 05,4 =1,06 = 0.3,w = 0.6.

The accuracies of the parameter estimates are measured by computing the mean
absolute bias (MAB) and the root mean square error (RMSE), defined as

PN

1 5000 5000
5000 = (6

= §. _ — _ 2
MAB 5000 & |6; —04] and RMSE 64)%,

i

where 0; denotes the prediction of a specific parameter at the i-th replication and 6,4
denotes the actual specific parameter value. Table 2 shows the simulation results for the
CWE distribution. As expected, the MAB and RMSE tend toward zero when the sample
size increases, showing empirically the consistency of the ML estimates obtained via the
EM algorithm.

Table 2. Simulation results, based on 5000 replications, to evaluate the EM algorithm under three
scenarios.

n =230 n=170 n = 100 n = 200
Parameter MAB RMSE MAB RMSE MAB RMSE MAB RMSE

Sample Size

o 0.357 0419 0270 0329 0232 0284 0171 0213

. A 0.204 0259 0.139 0.176 0.118 0.150 0.083 0.104
Scenario 1

0 1906 7158 1176 2943 0955 1.825 0.645 1.003

w 0.094 0.148 0.073 0.109 0.065 0.093 0.050 0.069

w 1.749 2892 1165 1.626 0959 1286 0.697 0.898

Scenario 2 A 0.308 0419 0.197 0259 0.163 0213 0.115 0.148

0 0.189 0.282 0.102 0.151 0.080 0.115 0.052 0.069

w 0.118 0.158 0.098 0.126 0.088 0.112 0.069 0.087

o 0449 0665 0359 0508 0306 0412 0236 0.310

Scenario 3 A 0366 0564 0229 0323 0.187 0252 0132 0.172

0 0.092 0.121 0.059 0.075 0.050 0.064 0.036 0.045

w 0.169 0204 0.126 0.155 0.109 0.135 0.082 0.102

6. Numerical Examples for Insurance Data Fitting

In this section, we evaluate the performance and various aspects of the proposed
model using insurance claims data. The proposed distribution is fitted to the data by
implementing the ECM algorithm described in Section 3. For the sake of comparison,
the reduced WE, CE and exponential (Exp) models are also fitted as sub-models of CWE
distribution. To compare how well the models fit the data, we adopt the Akaike information
criterion (AIC) (Akaike 1973) and the Bayesian information criterion (BIC) (Schwarz 1978),
defined as AIC = 2p — 2/, and BIC = plogn — 2{,,4x, where p is the number of free
parameters in the model and ¢,,,; the maximized log-likelihood value. For both AIC and
BIC, a smaller value indicates a better model fit.

The first dataset (DS1) comprises Danish fire losses analyzed in McNeil (1997). This
dataset is frequently used for comparison of methods; see Eling (2012) and references
therein. These data represent Danish fire losses in million Danish Krones and were collected
by a Danish reinsurance company. The dataset contains individual losses above 1 million
Danish Krones, a total of 2167 individual losses, covering the period from 3 January 1980 to
31 December 1990. Data are adjusted for inflation to reflect 1985 values and are available in
R packages evir and fExtremes.

The second dataset (DS2), analyzed by Cummins and Freifelder (1978), contains 80 fire
losses from 500 buildings a large university owned from 1951 to 1973. Cummins et al.
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(1990) found that the log-normal and gamma distributions did not have sufficient heavy
tails to model the data, so they considered the generalized beta of the second kind (GB2)
distribution.

Figure 3 presents two histograms for the considered datasets. Both histograms reveal a
typical feature of insurance claims data: a large number of small losses and a small number
of very large losses. Table 3 reports parameter estimates, standard error and model fit
criteria for all fitted models. Observing the Table 3, it is evident from the AIC and BIC
values that the CWE model provides better fit than other fitted models. The posterior
probability of each observation belonging to unusual observations is depicted in Figures 4
and 5, those reveal that the unusual data have the highest posterior probability and the
original data have small posterior probability, showing clearly the impact of outliers.

Histogram of DS1 Histogram of DS2
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Figure 3. Data histograms corresponding to DS1 and DS2 datasetes.
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Figure 4. Posterior probability that each observation is unusual, corresponding to DS1 dataset.
(Left) panel is for the first 2060 observations and (right) panel for the 107 last observations.
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Figure 5. Posterior probability that each observation is unusual, corresponding to the DS2 dataset.
Left panel is for the first 74 observations and right panel for the six last observations.

Table 3. Summary results from fitting various models to the data. The bold entries highlight the
smallest AIC and BIC values for each model.

Dataset ~ Model A 0 i @ p Linax AIC BIC

Exp 0.295 - — - 1 —4809.396 9620792  9626.474

DS WE 0.350 - 4.420 - 2 4576327  9160.655  9183.379
CE 0.401 0.107 — 0043 3 —4556.646  9119.292  9136.335

CWE 0.818 0.113 0.194 0064 4  —4119475  8246.950  8269.675

Exp 0.590 x 10> - - - 1 —859.0414  1720.083  1722.465

DS2 WE 0.596 x 10~ - 103.667 - 2 858548  1725.096  1734.624
CE 0223 x 1073 0.033 - 009 3  —796.815  1599.630  1606.776

CWE  0258x107%  0.035 9.112 0104 4  —793.087  1594.175  1603.703

7. Bayesian Numerical Results

We used an MCMC procedure based on 10,000 replicates with 1000 samples discarded
as burn-in to compute the Bayesian estimators. The corresponding Bayesian point esti-
mation and posterior risk based on DS1 and DS2 datasets are provided in Table 4. It can
be seen that for the both datasets, the resulting log-likelihood values (¢;,4x) are close to
the obtained ones by the EM-algorithm given in Table 3, indicating the efficiency of the
Bayesian approach to estimate the model parameters. It is noteworthy to mention that
the KLF and PLF loss functions yields the highest log-likelihood values for DS1 and DS2
datasets, respectively.

Table 5 provides 95% credible and HPD intervals for the parameters of the CWE
distribution. The posterior samples are extracted using Gibbs sampling technique. More-
over, we provide the posterior summary plots in Figures 6-8. These plots confirm that the
convergence of the Gibbs sampling process occurred.
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Table 4. Bayesian estimates and their posterior risks of the CWE distribution parameters under
different loss functions based on DS1 and DS2 datasets. The bold entries highlight the highest £,
values for each model.

Data DS1
Bayesian Estimation
Loss Function A (r3) 0 (rg) w (rz) @ (ry) Linax
SELF 0.74215 (0.00119) 0.10790 (0.00006)  0.48874 (0.02041)  0.06219 (0.00004) —4120.942
WSELF 0.74054 (0.00160) 0.10734 (0.00056)  0.44265 (0.04609)  0.06150 (0.00068) —4120.876
MSELF 0.73894 (0.00216) 0.10677 (0.00527)  0.38906 (0.12106)  0.06081 (0.01121) —4121.926
PLF 0.74296 (0.00161) 0.10818 (0.00056)  0.50920 (0.04090)  0.06253 (0.00067) —4121.245
KLF 0.74135 (0.00217) 0.10762 (0.00525)  0.46513 (0.10154)  0.06184 (0.01109) —4120.797
Data DS2
Bayesian Estimation
Loss Function A (r3) 0 (rg) w (rz) @ (ry) Lonax
SELF 0.000275 (1.889 x 10~%) 3 32316 (?_5) 6.90240 (1.0208) 0.1038 (0.0019) —793.234
WSELF 0.000268 (6.411 x 107°) 0.0356 (0.0010) 6.75207 (0.1503) 0.0824 (0.0214) —793.4759
MSELF 0.000262 (0.022395) 0.0345 (0.0309) 6.60050 (0.0224) 0.0605 (0.2651) —794.104
PLF 0.000278 (6.821 x 107°) 0.0371 (0.0009) 6.97590 (0.1471) 0.1128 (0.0179) —793.208
KLF 0.000271 (0.023714) 0.0361 (0.0285) 6.82680 (0.0221) 0.0925 (0.2448) —809.881
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Figure 6. Plots of Bayesian analysis and performance of Gibbs sampling for DS1 dataset. Trace plots
of each CWE distribution parameter.
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Table 5. Credible and HPD intervals of parameters A, 6, « and w for DS1 and DS2 datasets.

Data DS1
Credible Interval HPD Interval
A (0.7184, 0.7645) (0.6740, 0.8108)
0 (0.1025, 0.1132) (0.09299, 0.12300)
o (0.3901, 0.5777) (0.2336, 0.7923)
w (0.05767, 0.06658) (0.04907, 0.07438)
Data DS2
Credible Interval HPD Interval
A (0.00024, 0.00030) (10.00019, 0.00035)
0 (0.03269, 0.04018) (0.02322, 0.04958)
% (6.16500, 7.68300) (5.04200, 8.76500)
w (0.07135, 0.12980) (0.03289,0.19750)
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Figure 7. Plots of Bayesian analysis and performance of Gibbs sampling for DS1 dataset. Autocorre-

lation plots of each CWE distribution parameter.

In order to avoid repetition in evaluation of the MCMC procedure in Bayesian analysis,
we just reported the Gelman—Rubin and Geweke-Raftery-Lewis diagnostics measures for
checking the convergence based on data set DS1 in Table 6. For more details on these
indexes see Lee et al. (2014). The Gelman—-Rubin diagnostic is equal to 1 for parameters
A, 0, « and w. Hence, the chains could be accepted, and this indicates the estimates come

from a state space of the parameter, as depicted in Figure 9.
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Table 6. Diagnostics using the Gelman-Rubin and Geweke-Raftery-Lewis methods for parameters «,

B and A based on DS1 dataset.

Parameter Gelman-Rubin Geweke (Zy 05 = £1.96) Raftery-Lewis

A 1 —0.5880 5.1

0 1 0.3205 4.8

o 1 0.7607 5.01

w 1 0.3679 4.632
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Figure 8. Plots of Bayesian analysis and performance of Gibbs sampling for DS1 dataset. Histogram

plots of each CWE distribution parameter.
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Figure 9. Gelman plot diagnostic for each CWE distribution parameter based on DS1 dataset.
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From Table 6, Geweke-Raftery—Lewis test statistics for parameters A, 6, « and w
are —0.588, 0.320, 0.761 and 0.368, respectively. Therefore, also in this case, the chain is
acceptable, as shown in Figures 10 and 11. Moreover, the reported diagnostics statistics for
parameters «, § and A based on the Geweke-Raftery—-Lewis measure don’t show significant
correlations between estimates. Hence, the estimated values have good mixing.
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Figure 10. Geweke plot diagnostic (chainl) for each CWE distribution parameter based on
DS1 dataset.
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