
Activity Workbook
for

Understanding Linear Algebra





Activity Workbook
for

Understanding Linear Algebra

David Austin
Grand Valley State University

December 21, 2023



Edition: 2023 Update

Website: http://gvsu.edu/s/0Ck

©2023 David Austin

This work is licensed under a Creative Commons Attribution 4.0 International License¹.

¹creativecommons.org

http:/\penalty \exhyphenpenalty {}/\penalty \exhyphenpenalty {}gvsu.edu/\penalty \exhyphenpenalty {}s/\penalty \exhyphenpenalty {}0Ck
http://creativecommons.org/licenses/by/4.0/


Preface

This workbook consists of the activities from Understanding Linear Algebra, which is available in a variety of formats
at gvsu.edu/s/0Ck.

This workbook is meant to support students and instructors as a supplement to their use of the book. Each activity
appears on its own page, and blank space is provided for students to work directly in the workbook. In this way,
students can generate an organized and completed set of activities for future reference.

In addition, this workbook aims to develop readers’ ability to reason about linear algebraic concepts and to apply
that reasoning in a computational environment. In particular, Sage is introduced as a platform for performing many
linear algebraic computations since it is freely available and its syntax mirrors common mathematical notation.

Readers may access Sage online using either the Sage cell server² or a provided page of Sage cells.³

Throughout the workbook, Sage cells appear in various places to encourage readers to use Sage to complete some
relevant computation. These may appear with some pre-populated code, such as the one below, that you will want
to copy into an online Sage cell.

A = matrix ([[1,2], [2 ,1]])

Empty cells appear as shown below and are included to indicate part of an exercise or activity that is meant to be
completed in Sage.

²sagecell.sagemath.org/
³https:gvsu.edu/s/0Ng

http://gvsu.edu/s/0Ck
https://sagecell.sagemath.org/
https:gvsu.edu/s/0Ng
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1 Systems of equations

1.1 What can we expect

Activity 1.1.1 In this activity, we consider sets of linear equations having just two unknowns. In this case, we can
graph the solutions sets for the equations, which allows us to visualize different types of behavior.

a. On the grid below, graph the lines
y � x + 1
y � 2x − 1.

At what point or points (x , y), do the lines intersect? How many points (x , y) satisfy both equations?

-4 -2 2 4

-4

-2

2

4

x

y

b. On the grid below, graph the lines
y � x + 1
y � x − 1.

At what point or points (x , y), do the lines intersect? How many points (x , y) satisfy both equations?
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c. On the grid below, graph the line
y � x + 1.

How many points (x , y) satisfy this equation?
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d. On the grid below, graph the lines
y � x + 1
y � 2x − 1
y � −x.

At what point or points (x , y), do the lines intersect? How many points (x , y) satisfy all three equations?
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4 1 SYSTEMS OF EQUATIONS

Activity 1.1.2 This activity considers sets of equations having three unknowns. In this case, we know that the so-
lutions of a single equation form a plane. If it helps with visualization, consider using 3 × 5-inch index cards to
represent planes.

a. Is it possible that there are no solutions to two linear equations in three unknowns? Either sketch an example
or state a reason why it can’t happen.

b. Is it possible that there is exactly one solution to two linear equations in three unknowns? Either sketch an
example or state a reason why it can’t happen.

c. Is it possible that the solutions to four equations in three unknowns form a line? Either sketch an example or
state a reason why it can’t happen.

d. What would you usually expect for the set of solutions to four equations in three unknowns?

e. Suppose we have a set of 500 linear equations in 10 unknowns. Which of the three possibilities would you
expect to hold?

f. Suppose we have a set of 10 linear equations in 500 unknowns. Which of the three possibilities would you
expect to hold?
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6 1 SYSTEMS OF EQUATIONS

Activity 1.1.3 Linear equations and their solutions.
a. Which of the following equations are linear? Please provide a justification for your response.

1.
2x + x y − 3y2

� 2.

2.
−2x1 + 3x2 + 4x3 − x5 � 0.

3.
x � 3z − 4y.

b. Consider the system of linear equations:
x + y � 3

y − z � 2
2x + y + z � 4.

1. Is (x , y , z) � (1, 2, 0) a solution?
2. Is (x , y , z) � (−2, 1, 0) a solution?
3. Is (x , y , z) � (0,−3, 1) a solution?
4. Can you find a solution in which y � 0?
5. Do you think there are other solutions? Please explain your response.
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8 1 SYSTEMS OF EQUATIONS

1.2 Finding solutions to linear systems

Preview Activity 1.2.1 In this activity, we will consider some simple examples that will guide us in finding a more
general approach.

a. Give a description of the solution space to the linear system:

x � 2
y �−1.

b. Give a description of the solution space to the linear system:

−x + 2y − z � −3
3y + z � −1

2z � 4.

c. Give a description of the solution space to the linear system:

x + 3y � −1
2x + y � 3.

d. Describe the solution space to the linear equation 0x � 0.

e. Describe the solution space to the linear equation 0x � 5.
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10 1 SYSTEMS OF EQUATIONS

Activity 1.2.2 Gaussian Elimination. For each of the following linear systems, use Gaussian elimination to describe
the solutions to the following systems of linear equations. In particular, determine whether each linear system has
exactly one solution, infinitely many solutions, or no solutions.

a.
x + y + 2z � 1

2x − y − 2z � 2
−x + y + z � 0

b.
−x − 2y + 2z � −1
2x + 4y − z � 5

x + 2y � 3

c.
−x − 2y + 2z � −1
2x + 4y − z � 5

x + 2y � 2
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12 1 SYSTEMS OF EQUATIONS

Activity 1.2.3 Augmented matrices and solution spaces.
a. Write the augmented matrix for the linear system

x + 2y − z � 1
3x + 2y + 2z � 7
−x + 4z � −3

and perform Gaussian elimination to describe the solution space in as much detail as you can.

b. Suppose that you have a linear system in the variables x and y whose augmented matrix is row equivalent to
1 0 3
0 1 0
0 0 0

 .
Write the linear system corresponding to this augmented matrix and describe its solution set in as much detail
as you can.

c. Suppose that you have a linear system in the variables x and y whose augmented matrix is row equivalent to
1 0 3
0 1 0
0 0 1

 .
Write the linear system corresponding to this augmented matrix and describe its solution set in as much detail
as you can.

d. Suppose that the augmented matrix of a linear system has the following shape where ∗ could be any real
number. 

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

 .
1. How many equations are there in this system and how many variables?
2. Based on our earlier discussion in Section 1.1, do you think it’s possible that this system has exactly one

solution, infinitely many solutions, or no solutions?
3. Suppose that this augmented matrix is row equivalent to

1 2 0 0 3 2
0 0 1 2 −1 −1
0 0 0 0 0 0

 .
Make a choice for the names of the variables and write the corresponding linear system. Does the system
have exactly one solution, infinitely many solutions, or no solutions?
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14 1 SYSTEMS OF EQUATIONS

Activity 1.2.4 Identifying reduced row echelon matrices. Consider each of the following augmented matrices. De-
termine if the matrix is in reduced row echelon form. If it is not, perform a sequence of scaling, interchange, and
replacement operations to obtain a row equivalent matrix that is in reduced row echelon form. Then use the reduced
row echelon matrix to describe the solution space.

a.
[

2 0 4 −8
0 1 3 2

]
.

b.


1 0 0 −1
0 1 0 3
0 0 1 1

 .
c.


1 0 4 2
0 1 3 2
0 0 0 1

 .
d.


0 1 3 2
0 0 0 0
1 0 4 2

 .
e.


1 2 −1 2
0 1 −2 0
0 0 1 1

 .
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16 1 SYSTEMS OF EQUATIONS

1.3 Computation with Sage

Activity 1.3.1 Basic Sage commands.
a. Sage uses the standard operators +, -, ∗, /, and ^ for the usual arithmetic operations. By entering text in the

cell below, ask Sage to evaluate
3 + 4(24 − 1)

b. Notice that we can create new lines by pressing Enter and entering additional commands on them. What
happens when you evaluate this Sage cell?

5 * 3
10 - 4

Notice that we only see the result from the last command. With the print command, wemay see earlier results,
if we wish.

print (5 * 3)
print (10 - 4)

c. We may give a name to the result of one command and refer to it in a later command.

income = 1500 * 12
taxes = income * 0.15
print(taxes)

Suppose you have three tests in your linear algebra class and your scores are 90, 100, and 98. In the Sage cell
below, add your scores together and call the result total. On the next line, find the average of your test scores
and print it.

d. If you are not a programmer, you may ignore this part. If you are an experienced programmer, however, you
should know that Sage is written in the Python programming language and that you may enter Python code
into a Sage cell.

for i in range (10):
print(i)
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Activity 1.3.2 Using Sage to find row reduced echelon matrices.
a. Enter the following matrix into Sage. 

−1 −2 2 −1
2 4 −1 5
1 2 0 3


b. Give the matrix the name A by entering

A = matrix( ..., ..., [ ... ])

We may then find its reduced row echelon form by entering

A = matrix( ..., ..., [ ... ])
A.rref()

A common mistake is to forget the parentheses after rref.
Use Sage to find the reduced row echelon form of the matrix from Item a of this activity.

c. Use Sage to describe the solution space of the system of linear equations

−x1 + 2x4 � 4
3x2 + x3 + 2x4 � 3

4x1 − 3x2 + x4 � 14
2x2 + 2x3 + x4 � 1

d. Consider the two matrices:

A �


1 −2 1 −3

−2 4 1 1
−4 8 −1 7


B �


1 −2 1 −3 0 3

−2 4 1 1 1 −1
−4 8 −1 7 3 2


We say that B is an augmentation of A because it is obtained from A by adding some more columns.
Using Sage, define the matrices and compare their reduced row echelon forms. What do you notice about the
relationship between the two reduced row echelon forms?

e. Using the system of equations in Item c, write the augmentedmatrix corresponding to the system of equations.
What did you find for the reduced row echelon form of the augmented matrix?
Now write the coefficient matrix of this system of equations. What does Item d of this activity tell you about
its reduced row echelon form?
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1.4 Pivots and their influence on solution spaces

Preview Activity 1.4.1 Some basic observations about pivots.
a. Shown below is a matrix and its reduced row echelon form. Indicate the pivot positions.

2 4 6 −1
−3 1 5 0

1 3 5 1

 ∼


1 0 −1 0
0 1 2 0
0 0 0 1

 .
b. How many pivot positions can there be in one row? In a 3 × 5 matrix, what is the largest possible number of

pivot positions? Give an example of a 3 × 5 matrix that has the largest possible number of pivot positions.

c. How many pivots can there be in one column? In a 5 × 3 matrix, what is the largest possible number of pivot
positions? Give an example of a 5 × 3 matrix that has the largest possible number of pivot positions.

d. Give an example of a matrix with a pivot position in every row and every column. What is special about such
a matrix?
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Activity 1.4.2
a. Shown below are three augmented matrices in reduced row echelon form.

1 0 0 3
0 1 0 0
0 0 1 −2
0 0 0 0




1 0 2 3
0 1 −1 0
0 0 0 0
0 0 0 0




1 0 2 0
0 1 −1 0
0 0 0 1
0 0 0 0


For each matrix, identify the pivot positions and determine if the corresponding linear system is consistent.
Explain how the location of the pivots determines whether the system is consistent or inconsistent.

b. Each of the augmented matrices above has a row in which each entry is zero. What, if anything, does the
presence of such a row tell us about the consistency of the corresponding linear system?

c. Give an example of a 3× 5 augmented matrix in reduced row echelon form that represents a consistent system.
Indicate the pivot positions in yourmatrix and explainwhy these pivot positions guarantee a consistent system.

d. Give an example of a 3 × 5 augmented matrix in reduced row echelon form that represents an inconsistent
system. Indicate the pivot positions in your matrix and explain why these pivot positions guarantee an incon-
sistent system.

e. Write the reduced row echelon form of the coefficient matrix of the corresponding linear system in Item d?
(Remember that the Augmentation Principle says that the reduced row echelon form of the coefficient ma-
trix simply consists of the first four columns of the augmented matrix.) What do you notice about the pivot
positions in this coefficient matrix?

f. Suppose we have a linear system for which the coefficient matrix has the following reduced row echelon form.
1 0 0 0 −1
0 1 0 0 2
0 0 1 0 0
0 0 0 1 −3


What can you say about the consistency of the linear system?
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Activity 1.4.3
a. Here are the three augmentedmatrices in reduced row echelon form thatwe considered in the previous section.

1 0 0 3
0 1 0 0
0 0 1 −2
0 0 0 0




1 0 2 3
0 1 −1 0
0 0 0 0
0 0 0 0




1 0 2 0
0 1 −1 0
0 0 0 1
0 0 0 0


For eachmatrix, identify the pivot positions and state whether the corresponding linear system is consistent. If
the system is consistent, explain whether the solution is unique or whether there are infinitely many solutions.

b. If possible, give an example of a 3 × 5 augmented matrix that corresponds to a linear system having a unique
solution. If it is not possible, explain why.

c. If possible, give an example of a 5 × 3 augmented matrix that corresponds to a linear system having a unique
solution. If it is not possible, explain why.

d. What condition on the pivot positions guarantees that a linear system has a unique solution?

e. If a linear system has a unique solution, what can we say about the relationship between the number of equa-
tions and the number of variables?
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2 Vectors, matrices, and linear combinations

2.1 Vectors and linear combinations

Preview Activity 2.1.1 Scalar Multiplication and Vector Addition. Suppose that

v �

[
3
1

]
,w �

[
−1

2

]
.

a. Find expressions for the vectors
v, 2v, −v, −2v,
w, 2w, −w, −2w.

and sketch them using Figure 2.1.2.

-6 -4 -2 2 4 6
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Figure 2.1.2 Sketch the vectors on this grid.

b. What geometric effect does scalar multiplication have on a vector? Also, describe the effect that multiplying
by a negative scalar has.

c. Sketch the vectors v,w, v + w using Figure 2.1.3.
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Figure 2.1.3 Sketch the vectors on this grid.

d. Consider vectors that have the form v + cw where c is any scalar. Sketch a few of these vectors when, say,
c � −2,−1, 0, 1, and 2. Give a geometric description of this set of vectors.

-6 -4 -2 2 4 6
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-2

2

4

6
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y

Figure 2.1.4 Sketch the vectors on this grid.

e. If c and d are two scalars, then the vector
cv + dw

is called a linear combination of the vectors v and w. Find the vector that is the linear combination when c � −2
and d � 1.

f. Can the vector
[
−31

37

]
be represented as a linear combination of v and w? Asked differently, can we find

scalars c and d such that cv + dw �

[
−31

37

]
.
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30 2 VECTORS, MATRICES, AND LINEAR COMBINATIONS

Activity 2.1.2 In this activity, we will look at linear combinations of a pair of vectors, v �

[
2
1

]
and w �

[
1
2

]
.

There is an interactive diagram, available at gvsu.edu/s/0Je, that accompanies this activity.

Figure 2.1.10 Linear combinations of vectors v and w.

a. The weight d is initially set to 0. Explain what happens as you vary c while keeping d � 0. How is this related
to scalar multiplication?

b. What is the linear combination of v and w when c � 1 and d � −2? Youmay find this result using the diagram,
but you should also verify it by computing the linear combination.

c. Describe the vectors that arise when the weight d is set to 1 and c is varied. How is this related to our investi-
gations in the preview activity?

d. Can the vector
[

0
0

]
be expressed as a linear combination of v and w? If so, what are the weights c and d?

e. Can the vector
[

3
0

]
be expressed as a linear combination of v and w? If so, what are the weights c and d?

f. Verify the result from the previous part by algebraically finding the weights c and d that form the linear com-

bination
[

3
0

]
.

g. Can the vector
[

1.3
−1.7

]
be expressed as a linear combination of v and w? What about the vector

[
15.2
7.1

]
?

h. Are there any two-dimensional vectors that cannot be expressed as linear combinations of v and w?

http://gvsu.edu/s/0Je
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32 2 VECTORS, MATRICES, AND LINEAR COMBINATIONS

Activity 2.1.3 Linear combinations and linear systems.
a. Given the vectors

v1 �


4
0
2
1

 , v2 �


1

−3
3
1

 , v3 �


−2

1
1
0

 , b �


0
1
2

−2

 ,
can b be expressed as a linear combination of v1, v2, and v3? Rephrase this question by writing a linear system
for the weights c1, c2, and c3 and use the Sage cell below to answer this question.

b. Consider the following linear system.
3x1 + 2x2 − x3 � 4

x1 + 2x3 � 0
−x1 − x2 + 3x3 � 1

Identify vectors v1, v2, v3, and b such that the question ”Is this linear system consistent?” is equivalent to the
question ”Can b be expressed as a linear combination of v1, v2, and v3?”

c. Consider the vectors

v1 �


0

−2
1

 , v2 �


1
1

−1

 , v3 �


2
0

−1

 , b �


−1

3
−1

 .
Can b be expressed as a linear combination of v1, v2, and v3? If so, can b be written as a linear combination of
these vectors in more than one way?

d. Considering the vectors v1, v2, and v3 from the previous part, can we write every three-dimensional vector b
as a linear combination of these vectors? Explain how the pivot positions of the matrix

[
v1 v2 v3

]
help

answer this question.

e. Now consider the vectors

v1 �


0

−2
1

 , v2 �


1
1

−1

 , v3 �


1

−1
−2

 , b �


0
8

−4

 .
Can b be expressed as a linear combination of v1, v2, and v3? If so, can b be written as a linear combination of
these vectors in more than one way?

f. Considering the vectors v1, v2, and v3 from the previous part, can we write every three-dimensional vector b
as a linear combination of these vectors? Explain how the pivot positions of the matrix

[
v1 v2 v3

]
help

answer this question.
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2.2 Matrix multiplication and linear combinations

Preview Activity 2.2.1 Matrix operations.
a. Compute the scalar multiple

−3
[

3 1 0
−4 3 −1

]
.

b. Find the sum 
0 −3
1 −2
3 4

 +


4 −1
−2 2

1 1

 .
c. Suppose that A and B are two matrices. What do we need to know about their shapes before we can form the

sum A + B?

d. Thematrix In , whichwe call the identity matrix, is the n×n matrixwhose entries are zero except for the diagonal
entries, all of which are 1. For instance,

I3 �


1 0 0
0 1 0
0 0 1

 .
If we can form the sum A + In , what must be true about the matrix A?

e. Find the matrix A − 2I3 where

A �


1 2 −2
2 −3 3

−2 3 4

 .
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Activity 2.2.2 Matrix-vector multiplication.
a. Find the matrix product 

1 2 0 −1
2 4 −3 −2

−1 −2 6 1




3
1

−1
1

 .
b. Suppose that A is the matrix 

3 −1 0
0 −2 4
2 1 5
1 0 3

 .
If Ax is defined, what is the dimension of the vector x and what is the dimension of Ax?

c. A vector whose entries are all zero is denoted by 0. If A is a matrix, what is the product A0?

d. Suppose that I �


1 0 0
0 1 0
0 0 1

 is the identity matrix and x �


x1
x2
x3

 . Find the product Ix and explain why I is

called the identity matrix.

e. Suppose we write the matrix A in terms of its columns as

A �
[

v1 v2 · · · vn
]
.

If the vector e1 �


1
0
...
0


, what is the product Ae1?

f. Suppose that

A �

[
1 2

−1 1

]
, b �

[
6
0

]
.

Is there a vector x such that Ax � b?
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38 2 VECTORS, MATRICES, AND LINEAR COMBINATIONS

Activity 2.2.3 Sage can find the product of a matrix and vector using the * operator. For example,

A = matrix (2,2,[1,2,2,1])
v = vector ([3,-1])
A*v

a. Use Sage to evaluate the product 
1 2 0 −1
2 4 −3 −2

−1 −2 6 1




3
1

−1
1


from Item a of the previous activity.

b. In Sage, define the matrix and vectors

A �


−2 0

3 1
4 2

 , 0 �

[
0
0

]
, v �

[
−2

3

]
,w �

[
1
2

]
.

c. What do you find when you evaluate A0?

d. What do you find when you evaluate A(3v) and 3(Av) and compare your results?

e. What do you find when you evaluate A(v + w) and Av + Aw and compare your results?
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40 2 VECTORS, MATRICES, AND LINEAR COMBINATIONS

Activity 2.2.4 The equation Ax � b.
a. Consider the linear system

2x + y − 3z � 4
−x + 2y + z � 3
3x − y � −4.

Identify the matrix A and vector b to express this system in the form Ax � b.

b. If A and b are as below, write the linear system corresponding to the equation Ax � b and describe its solution
space, using a parametric description if appropriate:

A �

[
3 −1 0

−2 0 6

]
, b �

[
−6

2

]
.

c. Describe the solution space of the equation
1 2 0 −1
2 4 −3 −2

−1 −2 6 1

 x �


−1

1
5

 .
d. Suppose A is an m × n matrix. What can you guarantee about the solution space of the equation Ax � 0?
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Activity 2.2.5 Consider the matrices

A �

[
1 3 2

−3 4 −1

]
, B �


3 0
1 2

−2 −1

 .
a. Before computing, first explain why the shapes of A and B enable us to form the product AB. Then describe

the shape of AB.

b. Compute the product AB.

c. Sage can multiply matrices using the * operator. Define the matrices A and B in the Sage cell below and check
your work by computing AB.

d. Are we able to form the matrix product BA? If so, use the Sage cell above to find BA. Is it generally true that
AB � BA?

e. Suppose we form the three matrices.

A �

[
1 2
3 −2

]
, B �

[
0 4
2 −1

]
, C �

[
−1 3

4 3

]
.

Compare what happens when you compute A(B + C) and AB + AC. State your finding as a general principle.

f. Compare the results of evaluating A(BC) and (AB)C and state your finding as a general principle.

g. When we are dealing with real numbers, we know if a , 0 and ab � ac, then b � c. Define matrices

A �

[
1 2

−2 −4

]
, B �

[
3 0
1 3

]
, C �

[
1 2
2 2

]
and compute AB and AC.

If AB � AC, is it necessarily true that B � C?

h. Again, with real numbers, we know that if ab � 0, then either a � 0 or b � 0. Define

A �

[
1 2

−2 −4

]
, B �

[
2 −4

−1 2

]
and compute AB.

If AB � 0, is it necessarily true that either A � 0 or B � 0?
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2.3 The span of a set of vectors

Preview Activity 2.3.1 The existence of solutions.
a. If the equation Ax � b is inconsistent, what can we say about the pivot positions of the augmented matrix[

A b
]
?

b. Consider the matrix A

A �


1 0 −2

−2 2 2
1 1 −3

 .
If b �


2
2
5

 , is the equation Ax � b consistent? If so, find a solution.

c. If b �


2
2
6

 , is the equation Ax � b consistent? If so, find a solution.

d. Identify the pivot positions of A.

e. For our two choices of the vector b, one equation Ax � b has a solution and the other does not. What feature
of the pivot positions of the matrix A tells us to expect this?
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Activity 2.3.2 Let’s look at two examples to develop some intuition for the concept of span.
a. First, we will consider the set of vectors

v �

[
1
2

]
, w �

[
−2
−4

]
.

There is an interactive diagram, available at gvsu.edu/s/0Jg, that accompanies this activity. The diagram at the
top of that page accompanies part a of this activity.

Figure 2.3.3 An interactive diagram for constructing linear combinations of the vectors v and w.

1. What vector is the linear combination of v and w with weights:
• c � 2 and d � 0?
• c � 1 and d � 1?
• c � 0 and d � −1?

2. Can the vector
[

2
4

]
be expressed as a linear combination of v and w? Is the vector

[
2
4

]
in the span of

v and w?

3. Can the vector
[

3
0

]
be expressed as a linear combination of v and w? Is the vector

[
3
0

]
in the span of

v and w?
4. Describe the set of vectors in the span of v and w.
5. For what vectors b does the equation [

1 −2
2 −4

]
x � b

have a solution?

b. We will now look at an example where

v �

[
2
1

]
, w �

[
1
2

]
.

http://gvsu.edu/s/0Jg
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The diagram at the bottom of the page at gvsu.edu/s/0Jg accompanies part b of this activity.

Figure 2.3.4 An interactive diagram for constructing linear combinations of the vectors v and w.

1. What vector is the linear combination of v and w with weights:
• c � 2 and d � 0?
• c � 1 and d � 1?
• c � 0 and d � −1?

2. Can the vector
[
−2

2

]
be expressed as a linear combination of v and w? Is the vector

[
−2

2

]
in the span

of v and w?

3. Can the vector
[

3
0

]
be expressed as a linear combination of v and w? Is the vector

[
3
0

]
in the span of

v and w?
4. Describe the set of vectors in the span of v and w.
5. For what vectors b does the equation [

2 1
1 2

]
x � b

have a solution?

http://gvsu.edu/s/0Jg
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Activity 2.3.3 In this activity, we will look at the span of sets of vectors in �3.

a. Suppose v �


1
2
1

 . Give a geometric description of Span{v} and a rough sketch of v and its span in Fig-

ure 2.3.10.

y

z

x

Figure 2.3.10 A three-dimensional coordinate system for sketching v and its span.

b. Now consider the two vectors

e1 �


1
0
0

 , e2 �


0
1
0

 .
Sketch the vectors below. Then give a geometric description of Span{e1 , e2} and a rough sketch of the span in
Figure 2.3.11.

y

z

x

Figure 2.3.11 A coordinate system for sketching e1, e2, and Span{e1 , e2}.

c. Let’s now look at this situation algebraically by writing write b �


b1
b2
b3

 . Determine the conditions on b1, b2,

and b3 so that b is in Span{e1 , e2} by considering the linear system[
e1 e2

]
x � b
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or 
1 0
0 1
0 0

 x �


b1
b2
b3

 .
Explain how this relates to your sketch of Span{e1 , e2}.

d. Consider the vectors

v1 �


1
1

−1

 , v2 �


0
2
1

 .
1. Is the vector b �


1

−2
4

 in Span{v1 , v2}?

2. Is the vector b �


−2

0
3

 in Span{v1 , v2}?

3. Give a geometric description of Span{v1 , v2}.

e. Consider the vectors

v1 �


1
1

−1

 , v2 �


0
2
1

 , v3 �


1

−2
4

 .
Form the matrix

[
v1 v2 v3

]
and find its reduced row echelon form.

What does this tell you about Span{v1 , v2 , v3}?

f. If the span of a set of vectors v1 , v2 , . . . , vn is �3, what can you say about the pivot positions of the matrix[
v1 v2 . . . vn

]
?

g. What is the smallest number of vectors such that Span{v1 , v2 , . . . , vn} � �3?
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2.4 Linear independence

Preview Activity 2.4.1 Let’s begin by looking at some sets of vectors in �3. As we saw in the previous section, the
span of a set of vectors in �3 will be either a line, a plane, or �3 itself.

a. Consider the following vectors in �3:

v1 �


0

−1
2

 , v2 �


3
1

−1

 , v3 �


2
0
1

 .
Describe the span of these vectors, Span{v1 , v2 , v3}, as a line, a plane, or �3.

b. Now consider the set of vectors:

w1 �


0

−1
2

 ,w2 �


3
1

−1

 ,w3 �


3
0
1

 .
Describe the span of these vectors, Span{w1 ,w2 ,w3}, as a line, a plane, or �3.

c. Show that the vector w3 is a linear combination of w1 and w2 by finding weights such that

w3 � cw1 + dw2.

d. Explain why any linear combination of w1, w2, and w3,

c1w1 + c2w2 + c3w3

can be written as a linear combination of w1 and w2.

e. Explain why
Span{w1 ,w2 ,w3} � Span{w1 ,w2}.
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Activity 2.4.2 We would like to develop a means to detect when a set of vectors is linearly dependent. This activity
will point the way.

a. Suppose we have five vectors in �4 that form the columns of a matrix having reduced row echelon form

[
v1 v2 v3 v4 v5

]
∼


1 0 −1 0 2
0 1 2 0 3
0 0 0 1 −1
0 0 0 0 0

 .
Is it possible towrite one of the vectors v1 , v2 , . . . , v5 as a linear combination of the others? If so, show explicitly
how one vector appears as a linear combination of some of the other vectors. Is this set of vectors linearly
dependent or independent?

b. Suppose we have another set of three vectors in �4 that form the columns of a matrix having reduced row
echelon form [

w1 w2 w3
]
∼


1 0 0
0 1 0
0 0 1
0 0 0

 .
Is it possible to write one of these vectors w1, w2, w3 as a linear combination of the others? If so, show explicitly
how one vector appears as a linear combination of some of the other vectors. Is this set of vectors linearly
dependent or independent?

c. By looking at the pivot positions, how can you determine whether the columns of a matrix are linearly depen-
dent or independent?

d. If one vector in a set is the zero vector 0, can the set of vectors be linearly independent?

e. Suppose a set of vectors in �10 has twelve vectors. Is it possible for this set to be linearly independent?
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Activity 2.4.3 Linear independence and homogeneous equations.
a. Explain why the homogeneous equation Ax � 0 is consistent no matter the matrix A.

b. Consider the matrix

A �


3 2 0

−1 0 −2
2 1 1


whose columns we denote by v1, v2, and v3. Describe the solution space of the homogeneous equation Ax � 0
using a parametric description, if appropriate.

c. Find a nonzero solution to the homogeneous equation and use it to find weights c1, c2, and c3 such that

c1v1 + c2v2 + c3v3 � 0.

d. Use the equation you found in the previous part to write one of the vectors as a linear combination of the
others.

e. Are the vectors v1, v2, and v3 linearly dependent or independent?
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2.5 Matrix transformations

Preview Activity 2.5.1 Wewill begin by considering amore familiar situation; namely, the function f (x) � x2, which
takes a real number x as an input and produces its square x2 as its output.

a. What is the value of f (3)?

b. Can we solve the equation f (x) � 4? If so, is the solution unique?

c. Can we solve the equation f (x) � −10? If so, is the solution unique?

d. Sketch a graph of the function f (x) � x2 in Figure 2.5.1

-4 -2 2 4

-4

-2

2

4

x

y

Figure 2.5.1 Graph the function f (x) � x2 above.

e. We will now consider functions having the form 1(x) � mx. Draw a graph of the function 1(x) � 2x on the left
in Figure 2.5.2.

-4 -2 2 4

-4

-2

2

4

x

y

-4 -2 2 4

-4

-2

2

4

x

y

Figure 2.5.2 Graphs of the function 1(x) � 2x and h(x) � − 1
3 x.

f. Draw a graph of the function h(x) � − 1
3 x on the right of Figure 2.5.2.

g. Remember that composing two functions means we use the output from one function as the input into the
other; that is, (1 ◦ h)(x) � 1(h(x)). What function results from composing (1 ◦ h)(x)?
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Activity 2.5.2 In this activity, we will look at some examples of matrix transformations.
a. To begin, suppose that A is the matrix

A �

[
2 1
1 2

]
.

with associated matrix transformation T(x) � Ax.

1. What is T
( [

1
−2

] )
?

2. What is T
( [

1
0

] )
?

3. What is T
( [

0
1

] )
?

4. Is there a vector x such that T(x) �
[

3
0

]
?

5. Write T
( [

x
y

] )
as a two-dimensional vector.

b. Suppose that T(x) � Ax where

A �


3 3 −2 1
0 2 1 −3

−2 1 4 −4

 .
1. What is the dimension of the vectors x that are inputs for T?
2. What is the dimension of the vectors T(x) � Ax that are outputs?
3. If we describe this transformation as T : �n → �m , what are the values of n and m and how do they relate

to the shape of A?
4. Describe the vectors x for which T(x) � 0.

c. If A is the matrix A �
[

v1 v2
]
, what is T

( [
1
0

] )
in terms of the vectors v1 and v2? What about T

( [
0
1

] )
?

d. Suppose that A is a 3 × 2 matrix and that T(x) � Ax. If

T
( [

1
0

] )
�


3

−1
1

 , T
( [

0
1

] )
�


2
2

−1

 ,
what is the matrix A?
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Activity 2.5.3 Let’s look at some examples and apply these observations.
a. To begin, suppose that T is thematrix transformation that takes a two-dimensional vector x as an input and out-

puts T(x), the two-dimensional vector obtained by rotating x counterclockwise by 90◦, as shown in Figure 2.5.7.

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

e1

e2

v

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

T (e1)

T (e2)

T (v)

Figure 2.5.7 The matrix transformation T takes two-dimensional vectors on the left and rotates them by 90◦
counterclockwise into the vectors on the right.

We will see in the next section that many geometric operations like this one can be performed by matrix trans-
formations.

1. If we write T : �n → �m , what are the values of m and n, and what is the shape of the associated matrix
A?

2. Determine the matrix A by applying Proposition 2.5.6.

3. If v �

[
−2
−1

]
as shown on the left in Figure 2.5.7, use your matrix to determine T(v) and verify that it

agrees with that shown on the right of Figure 2.5.7.

4. If x �

[
x
y

]
, determine the vector T(x) obtained by rotating x counterclockwise by 90◦.

b. Suppose that we work for a company that makes baked goods, including cakes, doughnuts, and eclairs. The
company operates two bakeries, Bakery 1 and Bakery 2. In one hour of operation,

• Bakery 1 produces 10 cakes, 50 doughnuts, and 30 eclairs.
• Bakery 2 produces 20 cakes, 30 doughnuts, and 30 eclairs.

If Bakery 1 operates for x1 hours and Bakery 2 for x2 hours, we will use the vector x �

[
x1
x2

]
to describe the

operation of the two bakeries.
We would like to describe a matrix transformation T where x describes the number of hours the bakeries

operate and T(x) describes the total number of cakes, doughnuts, and eclairs produced. That is, T(x) �


y1
y2
y3


where y1 is the number of cakes, y2 is the number of doughnuts, and y3 is the number of eclairs produced.

1. If T : �n → �m , what are the values of m and n, and what is the shape of the associated matrix A?

2. We can determine the matrix A using Proposition 2.5.6. For instance, T
( [

1
0

] )
will describe the number

of cakes, doughnuts, and eclairs produced when Bakery 1 operates for one hour and Bakery 2 sits idle.
What is this vector?

3. In the same way, determine T
( [

0
1

] )
. What is the matrix A?
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4. If Bakery 1 operates for 120 hours andBakery 2 for 180 hours, what is the total number of cakes, doughnuts,
and eclairs produced?

5. Suppose that in one period of time, the company produces 5060 cakes, 14310 doughnuts, and 10470 eclairs.
How long did each bakery operate?

6. Suppose that the company receives an order for a certain number of cakes, doughnuts, and eclairs. Can
you guarantee that you can fill the order without having leftovers?
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Activity 2.5.4 We will explore the composition of matrix transformations by revisiting the matrix transformations
from Activity 2.5.3.

a. Let’s begin with the matrix transformation T : �2 → �2 that rotates a two-dimensional vector x by 90◦ to

produce T(x). We saw in the earlier activity that the associated matrix is A �

[
0 −1
1 0

]
. Suppose that we

compose this matrix transformation with itself to obtain (T ◦ T)(x) � T(T(x)), which is the result of rotating x
by 90◦ twice.

1. What is the matrix associated to the composition (T ◦ T)?

2. What is the result of rotating v �

[
−2
−1

]
twice?

3. Suppose that R : �2 → �2 is the matrix transformation that rotates vectors by 180◦, as shown in Fig-
ure 2.5.9.

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

e1

e2

v

-3 -2 -1 1 2 3
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-2

-1

1

2

3

R(e1)

R(e2)

R(v)

Figure 2.5.9 The matrix transformation R takes two-dimensional vectors on the left and rotates them by
180◦ into the vectors on the right.
Use Proposition 2.5.6 to find the matrix associated to R and explain why it is the same matrix associated
to (T ◦ T).

4. Write the two-dimensional vector (T ◦ T)
( [

x
y

] )
. How might this vector be expressed in terms of scalar

multiplication and why does this make sense geometrically?

b. In the previous activity, we imagined a company that operates two bakeries. We found the matrix transforma-

tion T : �2 → �3 where T
( [

x1
x2

] )
describes the number of cakes, doughnuts, and eclairs when Bakery1 runs

for x1 hours and Bakery 2 runs for x2 hours. The associated matrix is A �


10 20
50 30
30 30

 .
Suppose now that

• Each cake requires 4 cups of flour and and 2 cups of sugar.
• Each doughnut requires 1 cup of flour and 1 cup of sugar.
• Each eclair requires 1 cup of flour and 2 cups of sugar.

Wewill describe amatrix transformation S : �3 → �2 where S ©«


y1
y2
y3

ª®¬ is a two-dimensional vector describing

the number of cups of flour and sugar required to make y1 cakes, y2 doughnuts, and y3 eclairs.

1. Use Proposition 2.5.6 to write the matrix B associated to the transformation S.
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2. If wemake 1200 cakes, 2850 doughnuts, and 2250 eclairs, howmany cups of flour and sugar are required?

3. Suppose that Bakery 1 operates for 75 hours and Bakery 2 operates for 53 hours. Howmany cakes, dough-
nuts, and eclairs are produced? How many cups of flour and sugar are required?

4. What is the meaning of the composition (S ◦ T) and what is its associated matrix?
5. In a certain time interval, both bakeries use a total of 5800 cups of flour and 5980 cups of sugar. How long

have the two bakeries been operating?
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Activity 2.5.5 Suppose we run a company that has two warehouses, which we will call P and Q, and a fleet of 1000
delivery trucks. Every morning, a delivery truck goes out from one of the warehouses and returns in the evening to
one of the warehouses. It is observed that

• 70% of the trucks that leave P return to P. The other 30% return to Q.

• 50% of the trucks that leave Q return to Q and 50% return to P.

The distribution of trucks is represented by the vector x �

[
x1
x2

]
when there are x1 trucks at location P and x2 trucks

at Q. If x describes the distribution of trucks in the morning, then the matrix transformation T(x) will describe the
distribution in the evening.

a. Suppose that all 1000 trucks begin the day at location P and none at Q. How many trucks are at each location

that evening? Using our vector representation, what is T
( [

1000
0

] )
?

So that we can find the matrix A associated to T, what does this tell us about T
( [

1
0

] )
?

b. In the same way, suppose that all 1000 trucks begin the day at location Q and none at P. How many trucks are

at each location that evening? What is the result T
( [

0
1000

] )
and what is T

( [
0
1

] )
?

c. Find the matrix A such that T(x) � Ax.

d. Suppose that there are 100 trucks at P and 900 at Q in the morning. How many are there at the two locations
in the evening?

e. Suppose that there are 550 trucks at P and 450 at Q in the evening. How many trucks were there at the two
locations that morning?

f. Suppose that all of the trucks are at location Q on Monday morning.

1. How many trucks are at each location Monday evening?
2. How many trucks are at each location Tuesday evening?
3. How many trucks are at each location Wednesday evening?

g. Suppose that S is the matrix transformation that transforms the distribution of trucks x one morning into
the distribution of trucks in the morning one week (seven days) later. What is the matrix that defines the
transformation S?
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2.6 The geometry of matrix transformations

Preview Activity 2.6.1 We will describe the matrix transformation T that reflects 2-dimensional vectors across the
horizontal axis. For instance, Figure 2.6.1 illustrates how a vector x is reflected onto the vector T(x).

x

T (x)

Figure 2.6.1 A vector x and its reflection T(x) across the horizontal axis.

a. If x �

[
2
4

]
, what is the vector T(x)? Sketch the vectors x and T(x).

b. More generally, if x �

[
x
y

]
, what is T(x)?

c. Find the vectors T
( [

1
0

] )
and T

( [
0
1

] )
.

d. Use your results to write the matrix A so that T(x) � Ax. Then verify that T
( [

x
y

] )
agrees with what you

found in part b.

e. Describe the transformation that results from composing T with itself; that is, what is the transformation T ◦T?
Explain how matrix multiplication can be used to justify your response.
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Activity 2.6.2 Using matrix transformations to describe geometric operations.

This activity uses an interactive diagram that is available at gvsu.edu/s/0Jf.

Figure 2.6.2 The matrix transformation T transforms features shown on the left into features shown on the right.

For the following 2 × 2 matrices A, use the diagram to study the effect of the corresponding matrix transformation
T(x) � Ax. For each transformation, describe the geometric effect the transformation has on the plane.

a. A �

[
2 0
0 1

]
.

b. A �

[
2 0
0 2

]
.

c. A �

[
0 1

−1 0

]
.

d. A �

[
1 1
0 1

]
.

e. A �

[
−1 0

0 1

]
.

f. A �

[
1 0
0 0

]
.

g. A �

[
1 0
0 1

]
.

h. A �

[
1 −1

−2 2

]
.

http://gvsu.edu/s/0Jf
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Activity 2.6.3 In this activity, we seek to describe various matrix transformations by finding the matrix that gives the
desired transformation. All of the transformations that we study here have the form T : �2 → �2.

a. Find the matrix of the transformation that has no effect on vectors; that is, T(x) � x.

b. Find the matrix of the transformation that reflects vectors in �2 across the line y � x.

c. What is the result of composing the reflection you found in the previous partwith itself; that is, what is the effect
of reflecting across the line y � x and then reflecting across this line again? Provide a geometric explanation
for your result as well as an algebraic one obtained by multiplying matrices.

d. Find the matrix that rotates vectors counterclockwise in the plane by 90◦.

e. Compare the result of rotating by 90◦ and then reflecting in the line y � x to the result of first reflecting in
y � x and then rotating 90◦.

f. Find the matrix that results from composing a 90◦ rotation with itself four times; that is, if T is the matrix
transformation that rotates vectors by 90◦, find the matrix for T ◦ T ◦ T ◦ T. Explain why your result makes
sense geometrically.

g. Explain why the matrix that rotates vectors counterclockwise by an angle θ is[
cos θ − sin θ
sin θ cos θ

]
.
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Activity 2.6.4 In this activity, wewill use homogeneous coordinates andmatrix transformations tomove our character
into a variety of poses.

a. Since we regard our character as living in �3, we will consider matrix transformations defined by matrices
a b c
d e f
0 0 1

 .
Verify that such a matrix transformation transforms points in the plane z � 1 into points in the same plane;
that is, verify that 

a b c
d e f
0 0 1




x
y
1

 �


x′

y′

1

 .
Express the coordinates of the resulting point x′ and y′ in terms of the coordinates of the original point x and
y.

This activity uses an interactive diagram that is available at gvsu.edu/s/0Jb. Using the six sliders, you may

choose the matrix

a b c
d e f
0 0 1

 that will move our character in the plane.

Figure 2.6.13 An interactive diagram that allows us to move the character using homogeneous coordinates.

b. Find the matrix transformation that translates our character to a new position in the plane, as shown in Fig-
ure 2.6.14

http://gvsu.edu/s/0Jb
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Figure 2.6.14 Translating to a new position.

c. As originally drawn, our character is waving with one of their hands. In one of the movie’s scenes, we would
like them to wave with their other hand, as shown in Figure 2.6.15. Find the matrix transformation that moves
them into this pose.

Figure 2.6.15 Waving with the other hand.

d. Later, our character performs a cartwheel by moving through the sequence of poses shown in Figure 2.6.16.
Find the matrix transformations that create these poses.
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Figure 2.6.16 Performing a cartwheel.

e. Next, we would like to find the transformations that zoom in on our character’s face, as shown in Figure 2.6.17.
To do this, you should think about composingmatrix transformations. This can be accomplished in the diagram
by using the Compose button, which makes the current pose, displayed on the right, the new beginning pose,
displayed on the left. What is thematrix transformation thatmoves the character from the original pose, shown
in the upper left, to the final pose, shown in the lower right?
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Figure 2.6.17 Zooming in on our characters’ face.

f. We would also like to create our character’s shadow, shown in the sequence of poses in Figure 2.6.18. Find the
sequence of matrix transformations that achieves this. In particular, find the matrix transformation that takes
our character from their original pose to their shadow in the lower right.
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Figure 2.6.18 Casting a shadow.

g. Write a final scene to the movie and describe how to construct a sequence of matrix transformations that create
your scene.
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3 Invertibility, bases, and coordinate systems

3.1 Invertibility

Preview Activity 3.1.1
a. Explain how you would solve the equation 3x � 5 using multiplication rather than division.

b. Find the 2 × 2 matrix A that rotates vectors counterclockwise by 90◦.

c. Find the 2 × 2 matrix B that rotates vectors clockwise by 90◦.

d. What do you expect the product AB to be? Explain the reasoning behind your expectation and then compute
AB to verify it.

e. Solve the equation Ax �

[
3

−2

]
using Gaussian elimination.

f. Explain why your solution may also be found by computing x � B
[

3
−2

]
.
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Activity 3.1.2 This activity demonstrates a procedure for finding the inverse of a matrix A.

a. Suppose that A �

[
3 −2
1 −1

]
. To find an inverse B, we write its columns as B �

[
b1 b2

]
and require that

AB � I[
Ab1 Ab2

]
�

[
1 0
0 1

]
.

In other words, we can find the columns of B by solving the equations

Ab1 �

[
1
0

]
, Ab2 �

[
0
1

]
.

Solve these equations to find b1 and b2. Then write the matrix B and verify that AB � I. This is enough for us
to conclude that B is the inverse of A.

b. Find the product BA and explain why we now know that B is invertible and B−1 � A.

c. What happens when you try to find the inverse of C �

[
−2 1
4 −2

]
?

d. We now develop a condition that must be satisfied by an invertible matrix. Suppose that A is an invertible n×n
matrix with inverse B and suppose that b is any n-dimensional vector. Since AB � I, we have

A(Bb) � (AB)b � Ib � b.

This says that the equation Ax � b is consistent and that x � Bb is a solution.
Since we know that Ax � b is consistent for any vector b, what does this say about the span of the columns of
A?

e. Since A is a square matrix, what does this say about the pivot positions of A? What is the reduced row echelon
form of A?

f. In this activity, we have studied the matrices

A �

[
3 −2
1 −1

]
, C �

[
−2 1
4 −2

]
.

Find the reduced row echelon form of each and explain how those forms enable us to conclude that one matrix
is invertible and the other is not.
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Activity 3.1.3 We’ll begin by considering the square matrix

A �


1 0 2
2 2 1
1 1 1

 .
a. Describe the solution space to the equation Ax �


3
4
3

 by augmenting A and finding the reduced row echelon

form.

b. Using Proposition 3.1.5, explain why A is invertible and find its inverse.

c. Now use the inverse to solve the equation Ax �


3
4
3

 and verify that your result agrees with what you found

in part a.

d. If you have defined a matrix B in Sage, you can find it’s inverse as B.inverse() or B^-1. Use Sage to find the
inverse of the matrix

B �


1 −2 −1

−1 5 6
5 −4 6


and use it to solve the equation Bx �


8
3

36

 .
e. If A and B are the two matrices defined in this activity, find their product AB and verify that it is invertible.

f. Compute the products A−1B−1 and B−1A−1. Which one agrees with (AB)−1?

g. Explain your finding by considering the product

(AB)(B−1A−1)

and using associativity to regroup the products so that the middle two terms are multiplied first.
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Activity 3.1.4 Gaussian elimination and matrix multiplication. This activity explores how the row operations of
scaling, interchange, and replacement can be performed using matrix multiplication.

As an example, we consider the matrix

A �


1 2 1
2 0 −2

−1 2 −1


and apply a replacement operation that multiplies the first row by −2 and adds it to the second row. Rather than
performing this operation in the usualway, we construct a newmatrix by applying the desired replacement operation
to the identity matrix. To illustrate, we begin with the identity matrix

I �

1 0 0
0 1 0
0 0 1


and form a new matrix by multiplying the first row by −2 and adding it to the second row to obtain

R �


1 0 0
−2 1 0
0 0 1

 .
a. Show that the product RA is the result of applying the replacement operation to A.

b. Explain why R is invertible and find its inverse R−1.

c. Describe the relationship between R and R−1 and use the connection to replacement operations to explain why
it holds.

d. Other row operations can be performed using a similar procedure. For instance, suppose we want to scale the
second row of A by 4. Find a matrix S so that SA is the same as that obtained from the scaling operation. Why
is S invertible and what is S−1?

e. Finally, suppose we want to interchange the first and third rows of A. Find a matrix P, usually called a permu-
tation matrix that performs this operation. What is P−1?

f. The original matrix A is seen to be row equivalent to the upper triangular matrix U by performing three re-
placement operations on A:

A �


1 2 1
2 0 −2

−1 2 −1

 ∼


1 2 1
0 −4 −4
0 0 −4

 � U.

Find the matrices L1, L2, and L3 that perform these row replacement operations so that L3L2L1A � U.

g. Explain why the matrix product L3L2L1 is invertible and use this fact to write A � LU. What is the matrix L
that you find? Why do you think we denote it by L?
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3.2 Bases and coordinate systems

Preview Activity 3.2.1 Consider the vectors

v1 �

[
2
1

]
, v2 �

[
1
2

]
in �2, which are shown in Figure 3.2.2.

v1

v2

Figure 3.2.2 Linear combinations of v1 and v2.

a. Indicate the linear combination v1 − 2v2 on the figure.

b. Express the vector
[
−3

0

]
as a linear combination of v1 and v2.

c. Find the linear combination 10v1 − 13v2.

d. Express the vector
[

16
−4

]
as a linear combination of v1 and v2.

e. Explain why every vector in �2 can be written as a linear combination of v1 and v2 in exactly one way.
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Activity 3.2.2 We will look at some examples of bases in this activity.
a. In the preview activity, we worked with the set of vectors in �2:

v1 �

[
2
1

]
, v2 �

[
1
2

]
.

Explain why these vectors form a basis for �2.

b. Consider the set of vectors in �3

v1 �


1
1
1

 , v2 �


0
1

−1

 , v3 �


1
0

−1


and determine whether they form a basis for �3.

c. Do the vectors

v1 �


−2

1
3

 , v2 �


3
0

−1

 , v3 �


1
1
0

 , v4 �


0
3

−2


form a basis for �3?

d. Explain why the vectors e1 , e2 , e3 form a basis for �3.

e. If a set of vectors v1 , v2 , . . . , vn forms a basis for �m , what can you guarantee about the pivot positions of the
matrix [

v1 v2 . . . vn
]
?

f. If the set of vectors v1 , v2 , . . . , vn is a basis for �10, how many vectors must be in the set?
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Activity 3.2.3 Let’s begin with the basis B � {v1 , v2} of �2 where

v1 �

[
3

−2

]
, v2 �

[
2
1

]
.

a. If the coordinates of x in the basis B are {x}B �

[
−2

4

]
, what is the vector x?

b. If x �

[
3
5

]
, find the coordinates of x in the basis B; that is, find {x}B .

c. Find a matrix A such that, for any vector x, we have x � A {x}B . Explain why this matrix is invertible.

d. Using what you found in the previous part, find a matrix B such that, for any vector x, we have {x}B � Bx.
What is the relationship between the two matrices A and B? Explain why this relationship holds.

e. Suppose we consider the standard basis
E � {e1 , e2}.

What is the relationship between x and {x}E?

f. Suppose we also consider the basis

C �

{[
1
2

]
,

[
−2

1

]}
.

Find a matrix C that converts coordinates in the basis C into coordinates in the basis B; that is,

{x}B � C {x}C .

You may wish to think about converting coordinates from the basis C into the standard coordinate system and
then into the basis B.
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Activity 3.2.4 Edge detection. An important problem in the field of computer vision is to detect edges in a digital
photograph, as is shown in Figure 3.2.12. Edge detection algorithms are useful when, say, we want a robot to locate
an object in its field of view. Graphic designers also use these algorithms to create artistic effects.

Figure 3.2.12 A canyon wall in Capitol Reef National Park and the result of an edge detection algorithm.

Wewill consider a very simple version of an edge detection algorithm to give a sense of how this works. Rather than
considering a two-dimensional photograph, we will think about a one-dimensional row of pixels in a photograph.
The grayscale values of a pixel measure the brightness of a pixel; a grayscale value of 0 corresponds to black, and a
value of 255 corresponds to white.

Suppose, for simplicity, that the grayscale values for a row of six pixels are represented by a vector x in �6:

x �



25
34
30
45

190
200


.

1 2 3 4 5 6

100

200

We can easily see that there is a jump in brightness between pixels 4 and 5, but how canwe detect it computationally?
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We will introduce a new basis B for �6 with vectors:

v1 �



1
0
0
0
0
0


, v2 �



1
1
0
0
0
0


, v3 �



1
1
1
0
0
0


, v4 �



1
1
1
1
0
0


, v5 �



1
1
1
1
1
0


, v6 �



1
1
1
1
1
1


.

a. Construct the matrix PB that relates the standard coordinate system with the coordinates in the basis B.

b. Determine the matrix P−1
B that converts the representation of x in standard coordinates into the coordinate

system defined by B.

c. Suppose the vectors are expressed in general terms as

x �



x1
x2
x3
x4
x5
x6


, {x}B �



c1
c2
c3
c4
c5
c6


.

Using the relationship {x}B � P−1
B x, determine an expression for the coefficient c2 in terms of x1 , x2 , . . . , x6.

What does c2 measure in terms of the grayscale values of the pixels? What does c4 measure in terms of the
grayscale values of the pixels?

d. Now for the specific vector

x �



25
34
30
45

190
200


,

determine the representation of x in the B-coordinate system.

e. Explain how the coefficients in {x}B determine the location of the jump in brightness in the grayscale values
represented by the vector x.

Readers who are familiar with calculus may recognize that this change of basis converts a vector x into {x}B , the set
of changes in x. This process is similar to differentiation in calculus. Similarly, the process of converting {x}B into
the vector x adds together the changes in a process similar to integration. As a result, this change of basis represents
a linear algebraic version of the Fundamental Theorem of Calculus.
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3.3 Image compression

Preview Activity 3.3.1 Since we will be using various bases and the coordinate systems they define, let’s review how
to translate between coordinate systems.

a. Suppose that we have a basis B � {v1 , v2 , . . . , vm} for �m . Explain what we mean by the representation {x}B
of a vector x in the coordinate system defined by B.

b. If we are given the representation {x}B , how can we recover the vector x?

c. If we are given the vector x, how can we find {x}B?

d. Suppose that

B �

{[
1
3

]
,

[
1
1

]}
is a basis for �2. If {x}B �

[
1

−2

]
, find the vector x.

e. If x �

[
2

−4

]
, find {x}B .
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Activity 3.3.2 This activity investigates these two color models, which we view as coordinate systems for describing
colors.

a. First, we will explore the RGB color model.

There is an interactive diagram, available at the top of the page gvsu.edu/s/0Jc, that accompanies this activity.

Figure 3.3.2 The RGB color model.

1. What happens when G � 0, B � 0 (pushed all the way to the left), and R is allowed to vary?
2. What happens when R � 0, G � 0, and B is allowed to vary?
3. How can you create black in this color model?
4. How can you create white?

b. Next, we will explore the YCbCr color model.

There is an interactive diagram, available in the middle of the page gvsu.edu/s/0Jc, that accompanies this activ-
ity.

Figure 3.3.3 The YCbCr color model.

1. What happens when Cb � 0 and Cr � 0 (kept in the center) and Y is allowed to vary?
2. What happens when Y � 0 (pushed to the left), Cr � 0 (kept in the center), and Cb is allowed to increase

between 0 and 127.5?
3. What happens when Y � 0, Cb � 0, and Cr is allowed to increase between 0 and 127.5?
4. How can you create black in this color model?
5. How can you create white?

c. Verify that B is a basis for �3.

d. Find the matrix PB that converts from


Y
Cb

Cr

 coordinates into


R
G
B

 coordinates. Then find the matrix P−1
B

that converts from


R
G
B

 coordinates back into


Y
Cb

Cr

 coordinates.

e. Find the


Y
Cb

Cr

 coordinates for the following colors and check, using the diagrams above, that the two repre-

sentations agree.

1. Pure red is


R
G
B

 �


255
0
0

 .

http://gvsu.edu/s/0Jc
http://gvsu.edu/s/0Jc
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2. Pure blue is


R
G
B

 �


0
0

255

 .
3. Pure white is


R
G
B

 �


255
255
255

 .
4. Pure black is


R
G
B

 �


0
0
0

 .
f. Find the


R
G
B

 coordinates for the following colors and check, using the diagrams above, that the two repre-

sentations agree.

1.


Y
Cb

Cr

 �


128
0
0

 .
2.


Y

Cb

Cr

 �


128
60
0

 .
3.


Y

Cb

Cr

 �


128
0

60

 .
g. Write an expression for

1. The luminance Y as it depends on R, G, and B.
2. The blue chrominance Cb as it depends on R, G, and B.
3. The red chrominance Cr as it depends on R, G, and B.

Explain how these quantities can be roughly interpreted by stating that

1. the luminance represents the brightness of the color.
2. the blue chrominance measures the amount of blue in the color.
3. the red chrominance measures the amount of red in the color.
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Activity 3.3.3 We will explore the influence that the Fourier coefficients have on the vector x.
a. To begin, we’ll look at the Fourier coefficient F0.

There is an interactive diagram that accompanies this part of the activity and that is available at the top of
gvsu.edu/s/0Jd.

Figure 3.3.10 The effect of the Fourier coefficient F0 on the vector x � F0v0.

Describe the effect that F0 has on the vector x. Would you describe the components in x as constant, slowly
varying, or rapidly varying?

b. By comparison, let’s see how the Fourier coefficient F3 influences x.

There is an interactive diagram that accompanies this part of the activity and that is available in the middle of
gvsu.edu/s/0Jd.

Figure 3.3.11 The effect of the Fourier coefficient F3 on the vector x � F3v3.

Describe the effect that F3 has on the vector x. Would you describe the components in x as constant, slowly
varying, or rapidly varying?

c. Let’s now investigate how the Fourier coefficient F7 influences the vector x.

http://gvsu.edu/s/0Jd
http://gvsu.edu/s/0Jd
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There is an interactive diagram that accompanies this part of the activity and that is available at the bottom of
gvsu.edu/s/0Jd.

Figure 3.3.12 The effect of the Fourier coefficient F0 on the vector x � F7v7.

Describe the effect that F7 has on the vector x. Would you describe the components in x as constant, slowly
varying, or rapidly varying?

d. If the components of x vary relatively slowly, what would you expect to be true of the Fourier coefficients F j?

e. The Sage cell belowwill construct the vector PB , which is denoted P, and its inverse P−1
B , which is denoted Pinv.

Evaluate this Sage cell and notice that it prints the matrix P−1
B .

mat = [[cos ((2*i+1)*j*pi/16) for j in range (8)] for i in range (8)]
P = matrix(mat).numerical_approx ()
Pinv = P.inverse ()
print (Pinv.numerical_approx(digits =3))

Now look at the form of P−1
B and explain why F0 is the average of the luminance values in the vector x.

f. The Sage cell below defines the vector x, which is the vector of luminance values in the first column, as seen in
Figure 3.3.8. Use the cell below to find the vector f of Fourier coefficients F0 , F1 , . . . , F7. If you have evaluated
the cell above, you will still be able to refer to P and Pinv in this cell.

x = vector ([176 ,181 ,165 ,139 ,131 ,131 ,140 ,150])
# find the vector of Fourier coefficients f below
f =
print (f.numerical_approx(digits =4))

Write the Fourier coefficients and discuss the relative sizes of the coefficients.

g. Let’s see what happens when we simply ignore the coefficients F6 and F7. Form a new vector of Fourier coeffi-
cients by rounding the coefficients to the nearest integer and setting F6 and F7 to zero. This is an approximation
to f, the vector of Fourier coefficients. Use the approximation to f to form an approximation of the vector x.

# define fapprox below and then find xapprox
fapprox =
xapprox =
print (”x␣␣␣␣␣␣=”, x)
print (”xapprox=”, xapprox.numerical_approx(digits =3))

How much does your approximation differ from the actual vector x?

h. Whenwe ignore the Fourier coefficients corresponding to rapidly varying basis elements, we see that the vector
x that we reconstruct is very close to the original one. In fact, the luminance values in the approximation differ

http://gvsu.edu/s/0Jd
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by at most one or two from the actual luminance values. Our eyes are not sensitive enough to detect this
difference.
So far, we have concentrated on only one column in our 8× 8 block of luminance values. Let’s now consider all
of the columns. The following Sage cell defines amatrix called luminance, which is the 8×8matrix of luminance
values. Find the 8× 8 matrix F whose columns are the Fourier coefficients of the columns of luminance values.

luminance = matrix(8,8, [176, 170, 170, 169, 162, 160, 155, 150, 181,
179, 175, 167, 162, 160, 154, 149, 165, 170, 169, 161, 162, 161, 160,
158, 139, 150, 164, 166, 159, 160, 162, 163, 131, 137, 157, 165, 163,
163, 164, 164, 131, 132, 153, 161, 167, 167, 167, 169, 140, 142, 157,
166, 166, 166, 167, 169, 150, 152, 160, 168, 172, 170, 168, 168])
# define your matrix F below
F =
print (F.numerical_approx(digits =3))

i. Notice that the first row of this matrix consists of the Fourier coefficient F0 for each of the columns. Just as we
saw before, the entries in this row do not change significantly as wemove across the row. In the Sage cell below,
write these entries in the vector y and find the corresponding Fourier coefficients.

# define the vector y as the entries in the first row of F
y =
y_fourier =
print (y_fourier.numerical_approx(digits =3))
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3.4 Determinants

Preview Activity 3.4.1 We will explore the area formula in this preview activity.
a. Find the area of the following parallelograms.

1.

1 2 3 4

1

2

3

4 2.

1 2 3 4

1

2

3

4 3.

1 2 3 4

1

2

3

4

4.

1 2 3 4

1

2

3

4 5.

1 2 3 4

1

2

3

4

b.
Explain why the area of the parallelogram formed by
the vectors v and w1 is the same as that formed by v
and w2.

v

w1 w2
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Activity 3.4.2 In this activity, wewill find the determinant of some simple 2×2 matrices and discover some important
properties of determinants.

There is an interactive diagram at gvsu.edu/s/0J9 that accompanies this activity.

Figure 3.4.6 The geometric meaning of the determinant of a matrix.

a. Use the diagram to find the determinant of the matrix
[
− 1

2 0
0 2

]
. Along with Example 3.4.4, what does this

lead you to believe is generally true about the determinant of a diagonal matrix?

b. Use the diagram to find the determinant of the matrix
[

0 1
1 0

]
. What is the geometric effect of the matrix

transformation defined by this matrix?

c. Use the diagram to find the determinant of the matrix
[

2 1
0 1

]
. More generally, what do you notice about

the determinant of any matrix of the form
[

2 k
0 1

]
? What does this say about the determinant of an upper

triangular matrix?

d. Use the diagram to find the determinant of any matrix of the form
[

2 0
k 1

]
. What does this say about the

determinant of a lower triangular matrix?

e. Use the diagram to find the determinant of the matrix
[

1 −1
−2 2

]
. In general, what is the determinant of a

matrix whose columns are linearly dependent?

f. Consider the matrices
A �

[
2 1
2 −1

]
, B �

[
1 0
0 2

]
.

http://gvsu.edu/s/0J9
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Use the diagram to find the determinants of A, B, and AB. What does this suggest is generally true about the
relationship of det(AB) to det(A) and det(B)?
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Activity 3.4.3 We will investigate the connection between the determinant of a matrix and its invertibility using
Gaussian elimination.

a. Consider the two upper triangular matrices

U1 �


1 −1 2
0 2 4
0 0 −2

 , U2 �


1 −1 2
0 2 4
0 0 0

 .
Remembering Proposition 3.1.9, which of the matrices U1 and U2 are invertible? What are the determinants
det(U1) and det(U2)?

b. Explain why an upper triangular matrix is invertible if and only if its determinant is not zero.

c. Let’s now consider the matrix

A �


1 −1 2

−2 2 −6
3 −1 10


and begin the Gaussian elimination process with a row replacement operation

A �


1 −1 2

−2 2 −6
3 −1 10

 ∼


1 −1 2
0 0 −2
3 −1 10

 � A1.

What is the relationship between det(A) and det(A1)?

d. Next we perform another row replacement operation:

A1 �


1 −1 2
0 0 −2
3 −1 10

 ∼


1 −1 2
0 0 −2
0 2 4

 � A2.

What is the relationship between det(A) and det(A2)?

e. Finally, we perform an interchange:

A2 �


1 −1 2
0 0 −2
0 2 4

 ∼


1 −1 2
0 2 4
0 0 −2

 � U

to arrive at an upper triangular matrix U. What is the relationship between det(A) and det(U)?

f. Since U is upper triangular, we can compute its determinant, which allows us to find det(A). What is det(A)?
Is A invertible?

g. Now consider the matrix

A �


1 −1 3
0 2 −2
2 1 3

 .
Perform a sequence of row operations to find an upper triangular matrix U that is row equivalent to A. Use
this to determine det(A) and whether A is invertible?

h. Suppose we apply a sequence of row operations on a matrix A to obtain A′. Explain why det(A) , 0 if and
only if det(A′) , 0.

i. Explain why an n × n matrix A is invertible if and only if det(A) , 0.
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Activity 3.4.4 We will explore cofactor expansions through some examples.
a. Using a cofactor expansion, show that the determinant of the following matrix

det


2 0 −1
3 1 2

−2 4 −3

 � −36.

Remember that you can choose any row or column to create the expansion, but the choice of a particular row
or column may simplify the computation.

b. Use a cofactor expansion to find the determinant of
−3 0 0 0

4 1 0 0
−1 4 −4 0

0 3 2 3

 .
Explain how the cofactor expansion technique shows that the determinant of a triangular matrix is equal to
the product of its diagonal entries.

c. Use a cofactor expansion to determine whether the following vectors form a basis of �3:
2

−1
−2

 ,


1
−1

2

 ,


1
0

−4

 .
d. Sage will compute the determinant of a matrix Awith the command A.det(). Use Sage to find the determinant

of the matrix 
2 1 −2 −3
3 0 −1 −2

−3 4 1 2
1 3 3 −1

 .
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3.5 Subspaces

Preview Activity 3.5.1 Let’s consider the following matrix A and its reduced row echelon form.

A �


2 −1 2 3
1 0 0 2

−2 2 −4 −2

 ∼


1 0 0 2
0 1 −2 1
0 0 0 0

 .
a. Are the columns of A linearly independent? Is the span of the columns �3?

b. Give a parametric description of the solution space to the homogeneous equation Ax � 0.

c. Explain how this parametric description produces two vectors w1 and w2 whose span is the solution space to
the equation Ax � 0.

d. What can you say about the linear independence of the set of vectors w1 and w2?

e. Let’s denote the columns of A as v1, v2, v3, and v4. Explain why v3 and v4 can bewritten as linear combinations
of v1 and v2.

f. Explain why v1 and v2 are linearly independent and Span{v1 , v2} � Span{v1 , v2 , v3 , v4}.
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Activity 3.5.2 We will look at some sets of vectors and the subspaces they form.
a. If v1 , v2 , . . . , vn is a set of vectors in�m , explain why 0 can be expressed as a linear combination of these vectors.

Use this fact to explain why the zero vector 0 belongs to any subspace in �m .

b. Explain why the line on the left of Figure 3.5.3 is not a subspace of �2 and why the line on the right is.

Figure 3.5.3 Two lines in �2, one of which is a subspace and one of which is not.

c. Consider the vectors

v1 �


1
0
1

 , v2 �


0
1
1

 , v3 �


1
1
0

 ,
and describe the subspace S � Span{v1 , v2 , v3} of �3.

d. Consider the vectors

w1 �


2
1
0

 , w2 �


−1

1
−1

 , w3 �


0
3

−2


1. Write w3 as a linear combination of w1 and w2.
2. Explain why Span{w1 ,w2 ,w3} � Span{w1 ,w2}.
3. Describe the subspace S � Span{w1 ,w2 ,w3} of �3.

e. Suppose that v1, v2, v3, and v4 are four vectors in �3 and that

[
v1 v2 v3 v4

]
∼

1 2 0 −2
0 0 1 1
0 0 0 0

 .
Give a description of the subspace S � Span{v1 , v2 , v3 , v4} of �3.
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Activity 3.5.3 We will explore some column spaces in this activity.
a. Consider the matrix

A �
[

v1 v2 v3
]
�


1 3 −1

−2 0 −4
1 2 0

 .
Since Col(A) is the span of the columns, we have

Col(A) � Span{v1 , v2 , v3}.

Explain why v3 can be written as a linear combination of v1 and v2 and why Col(A) � Span{v1 , v2}.

b. Explain why the vectors v1 and v2 form a basis for Col(A) and why Col(A) is a 2-dimensional subspace of �3

and therefore a plane.

c. Now consider the matrix B and its reduced row echelon form:

B �

[
−2 −4 0 6

1 2 0 −3

]
∼
[

1 2 0 −3
0 0 0 0

]
.

Explain why Col(B) is a 1-dimensional subspace of �2 and is therefore a line.

d. For a general matrix A, what is the relationship between the dimension dim Col(A) and the number of pivot
positions in A?

e. How does the location of the pivot positions indicate a basis for Col(A)?

f. If A is an invertible 9 × 9 matrix, what can you say about the column space Col(A)?

g. Suppose that A is an 8 × 10 matrix and that Col(A) � �8. If b is an 8-dimensional vector, what can you say
about the equation Ax � b?
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Activity 3.5.4 We will explore some null spaces in this activity and see why Nul(A) satisfies the definition of a
subspace.

a. Consider the matrix

A �


1 3 −1 2
−2 0 −4 2
1 2 0 1


and give a parametric description of the solution space to the equation Ax � 0. In otherwords, give a parametric
description of Nul(A).

b. This parametric description shows that the vectors satisfying the equation Ax � 0 can be written as a linear
combination of a set of vectors. In other words, this description showswhyNul(A) is the span of a set of vectors
and is therefore a subspace. Identify a set of vectors whose span is Nul(A).

c. Use this set of vectors to find a basis for Nul(A) and state the dimension of Nul(A).

d. The null space Nul(A) is a subspace of �p for which value of p?

e. Now consider the matrix B whose reduced row echelon form is given by

B ∼
[

1 2 0 −3
0 0 0 0

]
.

Give a parametric description of Nul(B).

f. The parametric description gives a set of vectors that span Nul(B). Explain why this set of vectors is linearly
independent and hence forms a basis. What is the dimension of Nul(B)?

g. For a general matrix A, how does the number of pivot positions indicate the dimension of Nul(A)?

h. Suppose that the columns of a matrix A are linearly independent. What can you say about Nul(A)?
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4 Eigenvalues and eigenvectors

4.1 An introduction to eigenvalues and eigenvectors
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Preview Activity 4.1.1 Before we introduce the definition of eigenvectors and eigenvalues, it will be helpful to re-
member some ideas we have seen previously.

a. Suppose that v is the vector shown in the figure. Sketch
the vector 2v and the vector −v.

v

b. State the geometric effect that scalar multiplication has on the vector v. Then sketch all the vectors of the form
λv where λ is a scalar.

c. State the geometric effect of the matrix transformation defined by[
3 0
0 −1

]
.

d. Suppose that A is a 2 × 2 matrix and that v1 and v2 are vectors such that

Av1 � 3v1 , Av2 � −v2.

Use the linearity of matrix multiplication to express the following vectors in terms of v1 and v2.

1. A(4v1).
2. A(v1 + v2).
3. A(4v1 − 3v2).
4. A2v1.
5. A2(4v1 − 3v2).
6. A4v1.
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Activity 4.1.2 This definition has an important geometric interpretation that we will investigate here.
a. Suppose that v is a nonzero vector and that λ is a scalar. What is the geometric relationship between v and λv?

b. Let’s now consider the eigenvector condition: Av � λv. Here we have two vectors, v and Av. If Av � λv, what
is the geometric relationship between v and Av?

c. There is an interactive diagram, available at gvsu.edu/s/0Ja, that accompanies this activity.

Figure 4.1.3 A geometric interpretation of the eigenvalue-eigenvector condition Av � λv .

Choose the matrix A �

[
1 2
2 1

]
. Move the vector v so that the eigenvector condition holds. What is the

eigenvector v and what is the associated eigenvalue?

d. By algebraically computing Av, verify that the eigenvector condition holds for the vector v that you found.

e. If you multiply the eigenvector v that you found by 2, do you still have an eigenvector? If so, what is the
associated eigenvalue?

f. Are you able to find another eigenvector v that is not a scalar multiple of the first one that you found? If so,
what is the eigenvector and what is the associated eigenvalue?

g. Now consider the matrix A �

[
2 1
0 2

]
. Use the diagram to describe any eigenvectors and associated eigen-

values.

h. Finally, consider the matrix A �

[
0 −1
1 0

]
. Use the diagram to describe any eigenvectors and associated

eigenvalues. What geometric transformation does this matrix perform on vectors? How does this explain the
presence of any eigenvectors?

http://gvsu.edu/s/0Ja
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Activity 4.1.3 Let’s consider an example that illustrates how we can put these ideas to use.

Suppose that we work for a car rental company that has two locations, P and Q. When a customer rents a car at one
location, they have the option to return it to either location at the end of the day. After doing some market research,
we determine:

• 80% of the cars rented at location P are returned to P and 20% are returned to Q.

• 40% of the cars rented at location Q are returned to Q and 60% are returned to P.

a. Suppose that there are 1000 cars at location P and no cars at location Q on Monday morning. How many cars
are there are locations P and Q at the end of the day on Monday?

b. How many are at locations P and Q at end of the day on Tuesday?

c. If we let Pk and Qk be the number of cars at locations P and Q, respectively, at the end of day k, we then have

Pk+1 � 0.8Pk + 0.6Qk

Qk+1 � 0.2Pk + 0.4Qk .

We canwrite the vector xk �

[
Pk

Qk

]
to reflect the number of cars at the two locations at the end of day k, which

says that

xk+1 �

[
0.8 0.6
0.2 0.4

]
xk

or xk+1 � Axk where A �

[
0.8 0.6
0.2 0.4

]
.

Suppose that

v1 �

[
3
1

]
, v2 �

[
−1

1

]
.

Compute Av1 and Av2 to demonstrate that v1 and v2 are eigenvectors of A. What are the associated eigenvalues
λ1 and λ2?

d. We said that 1000 cars are initially at location P and none at location Q. This means that the initial vector

describing the number of cars is x0 �

[
1000

0

]
. Write x0 as a linear combination of v1 and v2.

e. Remember that v1 and v2 are eigenvectors of A. Use the linearity of matrix multiplication to write the vector
x1 � Ax0, describing the number of cars at the two locations at the end of the first day, as a linear combination
of v1 and v2.

f. Write the vector x2 � Ax1 as a linear combination of v1 and v2. Then write the next few vectors as linear
combinations of v1 and v2:

1. x3 � Ax2.
2. x4 � Ax3.
3. x5 � Ax4.
4. x6 � Ax5.

g. What will happen to the number of cars at the two locations after a very long time? Explain how writing x0 as
a linear combination of eigenvectors helps you determine the long-term behavior.
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4.2 Finding eigenvalues and eigenvectors

Preview Activity 4.2.1 Let’s begin by reviewing some important ideas that we have seen previously.
a. Suppose that A is a square matrix and that the nonzero vector x is a solution to the homogeneous equation

Ax � 0. What can we conclude about the invertibility of A?

b. How does the determinant det(A) tell us if there is a nonzero solution to the homogeneous equation Ax � 0?

c. Suppose that

A �


3 −1 1
0 2 4
1 1 3

 .
Find the determinant det(A). What does this tell us about the solution space to the homogeneous equation
Ax � 0?

d. Find a basis for Nul(A).

e. What is the relationship between the rank of a matrix and the dimension of its null space?
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Activity 4.2.2 The eigenvalues of a square matrix are defined by the condition that there be a nonzero solution to the
homogeneous equation (A − λI)v � 0.

a. If there is a nonzero solution to the homogeneous equation (A − λI)v � 0, what can we conclude about the
invertibility of the matrix A − λI?

b. If there is a nonzero solution to the homogeneous equation (A − λI)v � 0, what can we conclude about the
determinant det(A − λI)?

c. Let’s consider the matrix
A �

[
1 2
2 1

]
from which we construct

A − λI �
[

1 2
2 1

]
− λ

[
1 0
0 1

]
�

[
1 − λ 2

2 1 − λ

]
.

Find the determinant det(A − λI). What kind of equation do you obtain when we set this determinant to zero
to obtain det(A − λI) � 0?

d. Use the determinant you found in the previous part to find the eigenvalues λ by solving the equation det(A −
λI) � 0. We considered this matrix in Activity 4.1.2 so we should find the same eigenvalues for A that we
found by reasoning geometrically there.

e. Consider the matrix A �

[
2 1
0 2

]
and find its eigenvalues by solving the equation det(A − λI) � 0.

f. Consider the matrix A �

[
0 −1
1 0

]
and find its eigenvalues by solving the equation det(A − λI) � 0.

g. Find the eigenvalues of the triangular matrix


3 −1 4
0 −2 3
0 0 1

 . What is generally true about the eigenvalues of a

triangular matrix?
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Activity 4.2.3 In this activity, we will find the eigenvectors of a matrix as the null space of the matrix A − λI.

a. Let’s begin with the matrix A �

[
1 2
2 1

]
. We have seen that λ � 3 is an eigenvalue. Form the matrix A − 3I

and find a basis for the eigenspace E3 � Nul(A−3I). What is the dimension of this eigenspace? For each of the
basis vectors v, verify that Av � 3v.

b. We also saw that λ � −1 is an eigenvalue. Form the matrix A − (−1)I and find a basis for the eigenspace E−1.
What is the dimension of this eigenspace? For each of the basis vectors v, verify that Av � −v.

c. Is it possible to form a basis of �2 consisting of eigenvectors of A?

d. Now consider thematrix A �

[
3 0
0 3

]
. Write the characteristic equation for A anduse it to find the eigenvalues

of A. For each eigenvalue, find a basis for its eigenspace Eλ. Is it possible to form a basis of �2 consisting of
eigenvectors of A?

e. Next, consider the matrix A �

[
2 1
0 2

]
. Write the characteristic equation for A and use it to find the eigenval-

ues of A. For each eigenvalue, find a basis for its eigenspace Eλ. Is it possible to form a basis of �2 consisting
of eigenvectors of A?

f. Finally, find the eigenvalues and eigenvectors of the diagonal matrix A �

[
4 0
0 −1

]
. Explain your result by

considering the geometric effect of the matrix transformation defined by A.
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Activity 4.2.4
a. Identify the eigenvalues, and their multiplicities, of an n × n matrix whose characteristic polynomial is (2 −
λ)3(−3−λ)10(5−λ). What can you conclude about the dimensions of the eigenspaces? What is the shape of the
matrix? Do you have enough information to guarantee that there is a basis of �n consisting of eigenvectors?

b. Find the eigenvalues of
[

0 −1
4 −4

]
and state their multiplicities. Can you find a basis of�2 consisting of eigen-

vectors of this matrix?

c. Consider the matrix A �


−1 0 2
−2 −2 −4

0 0 −2

 whose characteristic equation is

(−2 − λ)2(−1 − λ) � 0.

1. Identify the eigenvalues and their multiplicities.
2. For each eigenvalue λ, find a basis of the eigenspace Eλ and state its dimension.
3. Is there a basis of �3 consisting of eigenvectors of A?

d. Now consider the matrix A �


−5 −2 −6
−2 −2 −4

2 1 2

 whose characteristic equation is also

(−2 − λ)2(−1 − λ) � 0.

1. Identify the eigenvalues and their multiplicities.
2. For each eigenvalue λ, find a basis of the eigenspace Eλ and state its dimension.
3. Is there a basis of �3 consisting of eigenvectors of A?

e. Consider the matrix A �


−5 −2 −6

4 1 8
2 1 2

 whose characteristic equation is

(−2 − λ)(1 − λ)(−1 − λ) � 0.

1. Identify the eigenvalues and their multiplicities.
2. For each eigenvalue λ, find a basis of the eigenspace Eλ and state its dimension.
3. Is there a basis of �3 consisting of eigenvectors of A?
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Activity 4.2.5 We will use Sage to find the eigenvalues and eigenvectors of a matrix. Let’s begin with the matrix

A �

[
−3 1

0 −3

]
.

a. We can find the characteristic polynomial of a matrix A by writing A.charpoly('lambda'). Notice that we have
to give Sage a variable in which to write the polynomial; here, we use lambda though x works just as well.

A = matrix (2,2,[-3,1,0,-3])
A.charpoly( ' lambda ' )

The factored form of the characteristic polynomial may be more useful since it will tell us the eigenvalues and
their multiplicities. The factored characteristic polynomial is found with A.fcp('lambda').

A = matrix (2,2,[-3,1,0,-3])
A.fcp( ' lambda ' )

b. If we only want the eigenvalues, we can use A.eigenvalues().

A = matrix (2,2,[-3,1,0,-3])
A.eigenvalues ()

Notice that the multiplicity of an eigenvalue is the number of times it is repeated in the list of eigenvalues.

c. Finally, we can find eigenvectors by A.eigenvectors_right(). (We are looking for right eigenvalues since the
vector v appears to the right of A in the definition Av � λv.)

A = matrix (2,2,[-3,1,0,-3])
A.eigenvectors_right ()

At first glance, the result of this command can be a little confusing to interpret. What we see is a list with one
entry for each eigenvalue. For each eigenvalue, there is a triple consisting of (i) the eigenvalue λ, (ii) a basis for
Eλ, and (iii) the multiplicity of λ.

d. When working with decimal entries, which are called floating point numbers in computer science, we must
remember that computers perform only approximate arithmetic. This is a problem when we wish to find the

eigenvectors of such a matrix. To illustrate, consider the matrix A �

[
0.4 0.3
0.6 0.7

]
.

1. Without using Sage, find the eigenvalues of this matrix.
2. What do you find for the reduced row echelon form of A − I?
3. Let’s now use Sage to determine the reduced row echelon form of A − I:

A = matrix (2 ,2 ,[0.4 ,0.3 ,0.6 ,0.7])
(A-identity_matrix (2)).rref()

What result does Sage report for the reduced row echelon form? Why is this result not correct?
4. Because the arithmetic Sage performs with floating point entries is only approximate, we are not able to

find the eigenspace E1. In this next chapter, we will learn how to address this issue. In the meantime, we
can get around this problem by writing the entries in the matrix as rational numbers:

A = matrix (2 ,2 ,[4/10 ,3/10 ,6/10 ,7/10])
A.eigenvectors_right ()
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4.3 Diagonalization, similarity, and powers of a matrix

Preview Activity 4.3.1 In this preview activity, we will review some familiar properties about matrix multiplication
that appear in this section.

a. Remember that matrix-vector multiplication constructs linear combinations of the columns of the matrix. For

instance, if A �
[
a1 a2

]
, express the product A

[
2

−3

]
in terms of a1 and a2.

b. What is the product A
[

4
0

]
in terms of a1 and a2?

c. Next, remember howmatrix-matrix multiplication is defined. Suppose that we havematrices A and B and that
B �

[
b1 b2

]
. How can we express the matrix product AB in terms of the columns of B?

d. Suppose that A is a matrix having eigenvectors v1 and v2 with associated eigenvalues λ1 � 4 and λ2 � −1.
Express the product A(2v1 + 3v2) in terms of v1 and v2.

e. Suppose that A is the matrix from the previous part and that P �
[
v1 v2

]
. What is the matrix product

AP � A
[
v1 v2

]
?
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Activity 4.3.2 Suppose that A is a 2× 2 matrix having eigenvectors v1 and v2 with associated eigenvalues λ1 � 3 and
λ2 � −6. Because the eigenvalues are real and distinct, we know by Proposition 4.2.9 that these eigenvectors form a
basis of �2.

a. What are the products Av1 and Av2 in terms of v1 and v2?

b. If we form the matrix P �
[
v1 v2

]
, what is the product AP in terms of v1 and v2?

c. Use the eigenvalues to form the diagonal matrix D �

[
3 0
0 −6

]
and determine the product PD in terms of v1

and v2.

d. The results from the previous two parts of this activity demonstrate that AP � PD. Using the fact that the
eigenvectors v1 and v2 form a basis of �2, explain why P is invertible and that we must have A � PDP−1.

e. Suppose that A �

[
−3 6
3 0

]
. Verify that v1 �

[
1
1

]
and v2 �

[
2

−1

]
are eigenvectors of A with eigenvalues

λ1 � 3 and λ2 � −6.

f. Use the Sage cell below to define the matrices P and D and then verify that A � PDP−1.

# enter the matrices P and D below
P =
D =
P*D*P.inverse ()
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Activity 4.3.3
a. Find a diagonalization of A, if one exists, when

A �

[
3 −2
6 −5

]
.

b. Can the diagonal matrix

A �

[
2 0
0 −5

]
be diagonalized? If so, explain how to find the matrices P and D.

c. Find a diagonalization of A, if one exists, when

A �


−2 0 0

1 −3 0
2 0 −3

 .
d. Find a diagonalization of A, if one exists, when

A �


−2 0 0

1 −3 0
2 1 −3

 .
e. Suppose that A � PDP−1 where

D �

[
3 0
0 −1

]
, P �

[
v2 v1

]
�

[
2 2
1 −1

]
.

1. Explain why A is invertible.
2. Find a diagonalization of A−1.
3. Find a diagonalization of A3.
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Activity 4.3.4
a. Let’s begin with the diagonal matrix

D �

[
2 0
0 −1

]
.

Find the powers D2, D3, and D4. What is Dk for a general value of k?

b. Suppose that A is a matrix with eigenvector v and associated eigenvalue λ; that is, Av � λv. By considering
A2v, explain why v is also an eigenvector of A with eigenvalue λ2.

c. Suppose that A � PDP−1 where

D �

[
2 0
0 −1

]
.

Remembering that the columns of P are eigenvectors of A, explain why A2 is diagonalizable and find a diago-
nalization in terms of P and D.

d. Give another explanation of the diagonalizability of A2 by writing

A2
� (PDP−1)(PDP−1) � PD(P−1P)DP−1.

e. In the same way, find a diagonalization of A3, A4, and Ak .

f. Suppose that A is a diagonalizable 2 × 2 matrix with eigenvalues λ1 � 0.5 and λ2 � 0.1. What happens to Ak

as k becomes very large?



151



152 4 EIGENVALUES AND EIGENVECTORS

Activity 4.3.5 We begin by rewriting C in terms of r and θ and noting that

C �

[
a −b
b a

]
�

[
r cos θ −r sin θ
r sin θ r cos θ

]
�

[
r 0
0 r

] [
cos θ − sin θ
sin θ cos θ

]
.

a. Explain why C has the geometric effect of rotating vectors by θ and scaling them by a factor of r.

b. Let’s now consider the matrix
A �

[
−2 2
−5 4

]
whose eigenvalues are λ1 � 1+ i and λ2 � 1− i. We will choose to focus on one of the eigenvalues λ1 � a+ bi �
1 + i.

Form thematrix C using these values of a and b. Then rewrite the point (a , b) in polar coordinates by identifying
the values of r and θ. Explain the geometric effect of multiplying vectors by C.

c. Suppose that P �

[
1 1
2 1

]
. Verify that A � PCP−1.

C =
P =
P*C*P.inverse ()

d. Explain why Ak � PCkP−1.

e. We formed the matrix C by choosing the eigenvalue λ1 � 1 + i. Suppose we had instead chosen λ2 � 1 − i.
Form the matrix C′ and use polar coordinates to describe the geometric effect of C.

f. Using the matrix P′ �

[
1 −1
2 −1

]
, show that A � P′C′P′−1.
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4.4 Dynamical systems

Preview Activity 4.4.1 Suppose that we have a diagonalizable matrix A � PDP−1 where

P �

[
1 −1
1 2

]
, D �

[
2 0
0 −3

]
.

a. Find the eigenvalues of A and find a basis for the associated eigenspaces.

b. Form a basis of �2 consisting of eigenvectors of A and write the vector x �

[
1
4

]
as a linear combination of

basis vectors.

c. Write Ax as a linear combination of basis vectors.

d. For some power k, write Akx as a linear combination of basis vectors.

e. Find the vector A5x.
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Activity 4.4.2 Suppose we have two species R and S that interact with each another and that we record the change
in their populations from year to year. When we begin our study, the populations, measured in thousands, are R0
and S0; after k years, the populations are Rk and Sk .

If we know the populations in one year, suppose that the populations in the following year are determined by the
expressions

Rk+1 � 0.9Rk + 0.8Sk

Sk+1 � 0.2Rk + 0.9Sk .

This is an example of a mutually beneficial relationship between two species. If species S is not present, then Rk+1 �

0.9Rk , which means that the population of species R decreases every year. However, species R benefits from the
presence of species S, which helps R to grow by 80% of the population of species S. In the same way, S benefits from
the presence of R.

We will record the populations in a vector xk �

[
Rk

Sk

]
and note that xk+1 � Axk where A �

[
0.9 0.8
0.2 0.9

]
.

a. Verify that

v1 �

[
2
1

]
, v2 �

[
−2

1

]
are eigenvectors of A and find their respective eigenvalues.

b. Suppose that initially x0 �

[
2
3

]
. Write x0 as a linear combination of the eigenvectors v1 and v2.

c. Write the vectors x1, x2, and x3 as linear combinations of the eigenvectors v1 and v2.

d. What happens to xk after a very long time?

e. When k becomes very large, what happens to the ratio of the populations Rk/Sk?

f. After a very long time, by approximately what factor does the population of R grow every year? By approxi-
mately what factor does the population of S grow every year?

g. If we begin instead with x0 �

[
4
4

]
, what eventually happens to the ratio Rk/Sk as k becomes very large?
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Activity 4.4.3 We will now look at several more examples of dynamical systems. If P �

[
1 −1
1 1

]
, we note that the

columns of P form a basis B of �2. Given below are several matrices A written in the form A � PEP−1 for some
matrix E. For each matrix, state the eigenvalues of A and sketch a phase portrait for the matrix E on the left and a
phase portrait for A on the right. Describe the behavior of Akx0 as k becomes very large for a typical initial vector x0.

a. A � PEP−1 where E �

[
1.3 0

0 1.5

]
.

b. A � PEP−1 where E �

[
0 −1
1 0

]
.

c. A � PEP−1 where E �

[
0.7 0

0 1.5

]
.
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d. A � PEP−1 where E �

[
0.3 0

0 0.7

]
.

e. A � PEP−1 where E �

[
1 −0.9

0.9 1

]
.
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f. A � PEP−1 where E �

[
0.6 −0.2
0.2 0.6

]
.
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Activity 4.4.4 In this activity, we will consider several ways in which two species might interact with one another.

Throughout, we will consider two species R and S whose populations in year k form a vector xk �

[
Rk

Sk

]
andwhich

evolve according to the rule
xk+1 � Axk .

a. Suppose that A �

[
0.7 0

0 1.6

]
.

Explain why the species do not interact with one another. Which of the six types of dynamical systems do we
have? What happens to both species after a long time?

b. Suppose now that A �

[
0.7 0.3

0 1.6

]
.

Explain why S is a beneficial species for R. Which of the six types of dynamical systems do we have? What
happens to both species after a long time?

c. If A �

[
0.7 0.5

−0.4 1.6

]
, explain why this describes a predator-prey system. Which of the species is the predator

andwhich is the prey? Which of the six types of dynamical systems dowe have? What happens to both species
after a long time?

d. Suppose that A �

[
0.5 0.2

−0.4 1.1

]
. Compare this predator-prey system to the one in the previous part. Which

of the six types of dynamical systems do we have? What happens to both species after a long time?
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Activity 4.4.5 The following type of analysis has been used to study the population of a bison herd. We will divide
the population of female bison into three groups: juveniles who are less than one year old; yearlings between one
and two years old; and adults who are older than two years.
Each year,

• 80% of the juveniles survive to become yearlings.

• 90% of the yearlings survive to become adults.

• 80% of the adults survive.

• 40% of the adults give birth to a juvenile.
40% 80%

90%

80%

Juveniles

YearlingsAdults

By Jk , Yk , and Ak , we denote the number of juveniles, yearlings, and adults in year k. We have

Jk+1 � 0.4Ak .

a. Find similar expressions for Yk+1 and Ak+1 in terms of Jk , Yk , and Ak .

b. As is usual, we write the matrix xk �


Jk

Yk

Ak

 . Write the matrix A such that xk+1 � Axk and find its eigenvalues.

c. We can write A � PEP−1 where the matrices E and P are approximately:

E �


1.058 0 0

0 −0.128 −0.506
0 0.506 −0.128

 ,

P �


1 1 0

0.756 −0.378 1.486
2.644 −0.322 −1.264

 .
Make a prediction about the long-term behavior of xk . For instance, at what rate does it grow? For every 100
adults, how many juveniles, and yearlings are there?

d. Suppose that the birth rate decreases so that only 30% of adults give birth to a juvenile. How does this affect
the long-term growth rate of the herd?

e. Suppose that the birth rate decreases further so that only 20% of adults give birth to a juvenile. How does this
affect the long-term growth rate of the herd?

f. Find the smallest birth rate that supports a stable population.
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4.5 Markov chains and Google’s PageRank algorithm

Preview Activity 4.5.1 Suppose that our rental car company rents from two locations P and Q. We find that 80%
of the cars rented from location P are returned to P while the other 20% are returned to Q. For cars rented from
location Q, 60% are returned to Q and 40% to P.

We will use Pk and Qk to denote the number of cars at the two locations on day k. The following day, the number of
cars at P equals 80% of Pk and 40% of Qk . This shows that

Pk+1 � 0.8Pk + 0.4Qk

Qk+1 � 0.2Pk + 0.6Qk .

a. If we use the vector xk �

[
Pk

Qk

]
to represent the distribution of cars on day k, find a matrix A such that

xk+1 � Axk .

b. Find the eigenvalues and associated eigenvectors of A.

c. Suppose that there are initially 1500 cars, all of which are at location P. Write the vector x0 as a linear combi-
nation of eigenvectors of A.

d. Write the vectors xk as a linear combination of eigenvectors of A.

e. What happens to the distribution of cars after a long time?
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Activity 4.5.2 Suppose you live in a country with three political parties P, Q, and R. We use Pk , Qk , and Rk to denote
the percentage of voters voting for that party in election k.
Voterswill change parties from one election to the next as shown
in the figure. We see that 60% of voters stay with the same party.
However, 40% of those who vote for party P will vote for party
Q in the next election.

P

QR

0.6

0.6 0.6

0.40.2

00

0.4

0.2

a. Write expressions for Pk+1, Qk+1, and Rk+1 in terms of Pk , Qk , and Rk .

b. If we write xk �


Pk

Qk

Rk

 , find the matrix A such that xk+1 � Axk .

c. Explain why A is a stochastic matrix.

d. Suppose that initially 40% of citizens vote for party P, 30% vote for party Q, and 30% vote for party R. Form
the vector x0 and explain why x0 is a probability vector.

e. Find x1, the percentages who vote for the three parties in the next election. Verify that x1 is also a probability
vector and explain why xk will be a probability vector for every k.

f. Find the eigenvalues of the matrix A and explain why the eigenspace E1 is a one-dimensional subspace of �3.

Then verify that v �


1
2
2

 is a basis vector for E1.

g. As every vector in E1 is a scalar multiple of v, find a probability vector in E1 and explain why it is the only
probability vector in E1.

h. Describe what happens to xk after a very long time.
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Activity 4.5.3 Consider the matrices

A �

[
0 1
1 0

]
, B �

[
0.4 0.3
0.6 0.7

]
.

a. Verify that both A and B are stochastic matrices.

b. Find the eigenvalues of A and then find a steady-state vector for A.

c. We will form the Markov chain beginning with the vector x0 �

[
1
0

]
and defining xk+1 � Axk . The Sage cell

below constructs the first N terms of the Markov chain with the command markov_chain(A, x0, N). Define
the matrix A and vector x0 and evaluate the cell to find the first 10 terms of the Markov chain.

def markov_chain(A, x0 , N):
for i in range(N):

x0 = A*x0
print (x0)

## define the matrix A and x0
A =
x0 =
markov_chain(A, x0 , 10)

What do you notice about the Markov chain? Does it converge to the steady-state vector for A?

d. Now find the eigenvalues of B along with a steady-state vector for B.

e. As before, find the first 10 terms in the Markov chain beginning with x0 �

[
1
0

]
and xk+1 � Bxk . What do you

notice about the Markov chain? Does it converge to the steady-state vector for B?

f. What condition on the eigenvalues of a stochastic matrix will guarantee that a Markov chain will converge to
a steady-state vector?
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Activity 4.5.4 We will explore the meaning of the Perron-Frobenius theorem in this activity.

a. Consider the matrix C �

[
0 0.5
1 0.5

]
. This is a positive matrix, as we saw in the previous example. Find the

eigenvectors of C and verify there is a unique steady-state vector.

b. Using the Sage cell below, construct theMarkov chainwith initial vector x0 �

[
1
0

]
and describewhat happens

to xk as k becomes large.

def markov_chain(A, x0 , N):
for i in range(N):

x0 = A*x0
print (x0)

## define the matrix C and x0
C =
x0 =
markov_chain(C, x0 , 10)

c. Construct another Markov chain with initial vector x0 �

[
0.2
0.8

]
and describe what happens to xk as k becomes

large.

d. Consider the matrix D �


0 0.5 0
1 0.5 0
0 0 1

 and compute several powers of D below.

Determine whether D is a positive matrix.

e. Find the eigenvalues of D and then find the steady-state vectors. Is there a unique steady-state vector?

f. What happens to the Markov chain defined by D with initial vector x0 �


1
0
0

? What happens to the Markov

chain with initial vector x0 �


0
0
1

 .
g. Explain how the matrices C and D, which we have considered in this activity, relate to the Perron-Frobenius

theorem.
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Activity 4.5.5
We will consider a simple model of the Internet that has
three pages and links between them as shown here. For
instance, page 1 links to both pages 2 and 3, but page 2
only links to page 1.

1

2

3

Figure 4.5.7 Our first Internet.
We will measure the quality of the jth page with a number x j , which is called the PageRank of page j. The PageRank
is determined by the following rule: each page divides its PageRank into equal pieces, one for each outgoing link,
and gives one piece to each of the pages it links to. A page’s PageRank is the sum of all the PageRank it receives from
pages linking to it.

For instance, page 3 has two outgoing links. It therefore divides its PageRank x3 in half and gives half to page 1.
Page 2 has only one outgoing link so it gives all of its PageRank x2 to page 1. We therefore have

x1 � x2 +
1
2 x3.

a. Find similar expressions for x2 and x3.

b. We now form the PageRank vector x �


x1
x2
x3

 . Find a matrix G such that the expressions for x1, x2, and x3 can

be written in the form Gx � x. The matrix G is called the “Google matrix”.

c. Explain why G is a stochastic matrix.

d. Since x is defined by the equation Gx � x, any vector in the eigenspace E1 satisfies this equation. So that
we might work with a specific vector, we will define the PageRank vector to be the steady-state vector of the
stochastic matrix G. Find this steady-state vector.

e. The PageRank vector x is composed of the PageRanks for each of the three pages. Which page of the three is
assessed to have the highest quality? By referring to the structure of this small model of the Internet, explain
why this is a good choice.

f. If we begin with the initial vector x0 �


1
0
0

 and form the Markov chain xk+1 � Gxk , what does the Perron-

Frobenius theorem tell us about the long-term behavior of the Markov chain?

g. Verify that this Markov chain converges to the steady-state PageRank vector.
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def markov_chain(A, x0 , N):
for i in range(N):

x0 = A*x0
print (x0.numerical_approx(digits =3))

## define the matrix G and x0
G =
x0 =
markov_chain(G, x0 , 20)
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Activity 4.5.6 Consider the Internet with eight web pages, shown in Figure 4.5.8.

1

2

3

4

5

6

7

8

Figure 4.5.8 A simple model of the Internet with eight web pages.

a. Construct the Google matrix G for this Internet. Then use a Markov chain to find the steady-state PageRank
vector x.

def markov_chain(A, x0 , N):
for i in range(N):

x0 = A*x0
print (x0.numerical_approx(digits =3))

## define the matrix G and x0
G =
x0 =
markov_chain(G, x0 , 20)

b. What does this vector tell us about the relative quality of the pages in this Internet? Which page has the highest
quality and which the lowest?

c. Now consider the Internet with five pages, shown in Figure 4.5.9.
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1

2

3

4

5

Figure 4.5.9 A model of the Internet with five web pages.

What happens when you begin the Markov chain with the vector x0 �


1
0
0
0
0


? Explain why this behavior is

consistent with the Perron-Frobenius theorem.

d. What do you think the PageRank vector for this Internet should be? Is any one page of a higher quality than
another?

e. Now consider the Internet with eight web pages, shown in Figure 4.5.10.

1

2

3

4

5

6

7

8

Figure 4.5.10 Another model of the Internet with eight web pages.

Notice that this version of the Internet is identical to the first one that we saw in this activity, except that a single
link from page 7 to page 1 has been removed. We can therefore find its Google matrix G by slightly modifying
the earlier matrix.
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What is the long-term behavior of a Markov chain defined by G and why is this behavior not desirable? How
is this behavior consistent with the Perron-Frobenius theorem?
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Activity 4.5.7 The following Sage cell will generate theMarkov chain for the modified Google matrix G if you simply
enter the original Google matrix G in the appropriate line.

def modified_markov_chain(A, x0 , N):
r = A.nrows()
A = 0.85*A + 0.15* matrix(r,r ,[1.0/r]*(r*r))
for i in range(N):

x0 = A*x0
print (x0.numerical_approx(digits =3))

## Define original Google matrix G and initial vector x0.
## The function above finds the modified Google matrix
## and resulting Markov chain
G =
x0 =
modified_markov_chain(G, x0 , 20)

a. Consider the original Internet with three pages shown in Figure 4.5.7 and find the PageRank vector x using
the modified Google matrix in the Sage cell above. How does this modified PageRank vector compare to the
vector we found using the original Google matrix G?

b. Find the modified PageRank vector for the Internet shown in Figure 4.5.9. Explain why this vector seems to be
the correct one.

c. Find the modified PageRank vector for the Internet shown in Figure 4.5.10. Explain why this modified PageR-
ank vector fixes the problem that appeared with the original PageRank vector.
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5 Linear algebra and computing

5.1 Gaussian elimination revisited

Preview Activity 5.1.1 To begin, let’s recall how we implemented Gaussian elimination by considering the matrix

A �


1 2 −1 2
1 0 −2 1
3 2 1 0


a. What is the first row operation we perform? If the resulting matrix is A1, find a matrix E1 such that E1A � A1.

b. What is the matrix inverse E−1
1 ? You can find this using your favorite technique for finding a matrix inverse.

However, it may be easier to think about the effect that the row operation has and how it can be undone.

c. Perform the next two steps in the Gaussian elimination algorithm to obtain A3. Represent these steps using
multiplication by matrices E2 and E3 so that

E3E2E1A � A3.

d. Suppose we need to scale the second row by −2. What is the 3 × 3 matrix that perfoms this row operation by
left multiplication?

e. Suppose that we need to interchange the first and second rows. What is the 3×3 matrix that performs this row
operation by left multiplication?
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Activity 5.1.2 Suppose we have a hypothetical computer that represents numbers using only three decimal digits.
We will consider the linear system

0.0001x + y � 1
x + y � 2.

a. Show that this system has the unique solution

x �
10000
9999 � 1.00010001 . . . ,

y �
9998
9999 � 0.99989998 . . . .

b. If we represent this solution inside our computer that only holds 3 decimal digits, what do we find for the
solution? This is the best that we can hope to find using our computer.

c. Let’s imagine that we use our computer to find the solution using Gaussian elimination; that is, after every
arithmetic operation, we keep only three decimal digits. Our first step is to multiply the first equation by 10000
and subtract it from the second equation. If we represent numbers using only three decimal digits, what does
this give for the value of y?

d. By substituting our value for y into the first equation, what do we find for x?

e. Compare the solution we find on our computer with the actual solution and assess the quality of the approxi-
mation.

f. Let’s now modify the linear system by simplying interchanging the equations:

x + y � 2
0.0001x + y � 1.

Of course, this doesn’t change the actual solution. Let’s imaginewe use our computer to find the solution using
Gaussian elimination. Perform the first step where we multiply the first equation by 0.0001 and subtract from
the second equation. What does this give for y if we represent numbers using only three decimal digits?

g. Substitute the value you found for y into the first equation and solve for x. Then compare the approximate
solution found with our hypothetical computer to the exact solution.

h. Which approach produces the most accurate approximation?
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Activity 5.1.3 We will consider the matrix

A �


1 2 1

−2 −3 −2
3 7 4


and begin performing Gaussian elimination without using partial pivoting.

a. Perform two row replacement operations to find the row equivalent matrix

A′
�


1 2 1
0 1 0
0 1 1

 .
Find elementary matrices E1 and E2 that perform these two operations so that E2E1A � A′.

b. Perform a third row replacement to find the upper triangular matrix

U �


1 2 1
0 1 0
0 0 1

 .
Find the elementary matrix E3 such that E3E2E1A � U.

c. We can write A � E−1
1 E−1

2 E−1
3 U. Find the inverse matrices E−1

1 , E−1
2 , and E−1

3 and the product L � E−1
1 E−1

2 E−1
3 .

Then verify that A � LU.

d. Suppose that we want to solve the equation Ax � b �


4

−7
12

 . We will write

Ax � LUx � L(Ux) � b

and introduce an unknown vector c such that Ux � c. Find c by noting that Lc � b and solving this equation.

e. Now that we have found c, find x by solving Ux � c.

f. Using the factorization A � LU and this two-step process, solve the equation Ax �


2

−2
7

 .
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Activity 5.1.4 Sage will create LU factorizations; once we have a matrix A, we write P, L, U = A.LU() to obtain the
matrices P, L, and U such that PA � LU.

a. In Example 5.1.1, we found the LU factorization

A �


2 −3 1
−4 5 0
2 −2 2

 �


1 0 0
−2 1 0
1 −1 1



2 −3 1
0 −1 2
0 0 3

 � LU.

Using Sage, define the matrix A, and then ask Sage for the LU factorization. What are the matrices P, L, and
U?
Notice that Sage finds a different LU factorization than we found in the previous activity because Sage uses
partial pivoting, as described in the previous section, when it performs Gaussian elimination.

b. Define the vector b �


8

−13
8

 in Sage and compute Pb.

c. Use the matrices L and U to solve Lc � Pb and Ux � c. You should find the same solution x that you found in
the previous activity.

d. Use the factorization to solve the equation Ax �


9

−16
10

 .
e. How does the factorization show us that A is invertible and that, therefore, every equation Ax � b has a unique

solution?

f. Suppose that we have the matrix

B �


3 −1 2
2 −1 1
2 1 3

 .
Use Sage to find the LU factorization. Explain how the factorization shows that B is not invertible.

g. Consider the matrix

C �


−2 1 2 −1

1 −1 0 2
3 2 −1 0


and find its LU factorization. Explain why C and U have the same null space and use this observation to find
a basis for Nul(A).
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5.2 Finding eigenvectors numerically

Preview Activity 5.2.1 Let’s recall some earlier observations about eigenvalues and eigenvectors.
a. How are the eigenvalues and associated eigenvectors of A related to those of A−1?

b. How are the eigenvalues and associated eigenvectors of A related to those of A − 3I?

c. If λ is an eigenvalue of A, what can we say about the pivot positions of A − λI?

d. Suppose that A �

[
0.8 0.4
0.2 0.6

]
. Explain how we know that 1 is an eigenvalue of A and then explain why the

following Sage computation is incorrect.

A = matrix (2,2,[0.8, 0.4, 0.2, 0.6])
I = matrix (2,2,[1, 0, 0, 1])
(A-I).rref()

e. Suppose that x0 �

[
1
0

]
, and we define a sequence xk+1 � Axk ; in other words, xk � Akx0. What happens to xk

as k grows increasingly large?

f. Explain how the eigenvalues of A are responsible for the behavior noted in the previous question.
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Activity 5.2.2 Let’s begin by considering the matrix A �

[
0.5 0.2
0.4 0.7

]
and the initial vector x0 �

[
1
0

]
.

a. Compute the vector x1 � Ax0.

b. Find m1, the component of x1 that has the largest absolute value. Then form x1 �
1

m1
x1. Notice that the

component having the largest absolute value of x1 is 1.

c. Find the vector x2 � Ax1. Identify the component m2 of x2 having the largest absolute value. Then form
x2 �

1
m2

x1 to obtain a vector in which the component with the largest absolute value is 1.

d. The Sage cell below defines a function that implements the power method. Define the matrix A and initial
vector x0 below. The command power(A, x0, N) will print out the multiplier m and the vectors xk for N steps
of the power method.

def power(A, x, N):
for i in range(N):

x = A*x
m = max([comp for comp in x], key=abs).numerical_approx(digits =14)
x = 1/ float(m)*x
print (m, x)

### Define the matrix A and initial vector x0 below
A =
x0 =
power(A, x0, 20)

How does this computation identify an eigenvector of the matrix A?

e. What is the corresponding eigenvalue of this eigenvector?

f. How do the values of the multipliers mk tell us the eigenvalue associated to the eigenvector we have found?

g. Consider now the matrix A �

[
−5.1 5.7
−3.8 4.4

]
. Use the power method to find the dominant eigenvalue of A and

an associated eigenvector.
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Activity 5.2.3 The key to finding the eigenvalue of A having the smallest absolute value is to note that the eigenvectors
of A are the same as those of A−1.

a. If v is an eigenvector of A with associated eigenvector λ, explain why v is an eigenvector of A−1 with associated
eigenvalue λ−1.

b. Explainwhy the eigenvalue of A having the smallest absolute value is the reciprocal of the dominant eigenvalue
of A−1.

c. Explain how to use the power method applied to A−1 to find the eigenvalue of A having the smallest absolute
value.

d. If we apply the power method to A−1, we begin with an intial vector x0 and generate the sequence xk+1 �

A−1xk . It is not computationally efficient to compute A−1, however, so insteadwe solve the equation Axk+1 � xk .
Explain why an LU factorization of A is useful for implementing the power method applied to A−1.

e. The following Sage cell defines a command called inverse_power that applies the power method to A−1. That
is, inverse_power(A, x0, N) prints the vectors xk , where xk+1 � A−1xk , andmultipliers 1

mk
, which approximate

the eigenvalue of A. Use it to find the eigenvalue of A �

[
−5.1 5.7
−3.8 4.4

]
having the smallest absolute value.

def inverse_power(A, x, N):
for i in range(N):

x = A \ x
m = max([comp for comp in x], key=abs).numerical_approx(digits =14)
x = 1/ float(m)*x
print (1/ float(m), x)

### define the matrix A and vector x0
A =
x0 =
inverse_power(A, x0, 20)

f. The inverse power method only works if A is invertible. If A is not invertible, what is its eigenvalue having the
smallest absolute value?

g. Use the power method and the inverse power method to find the eigenvalues and associated eigenvectors of

the matrix A �

[
−0.23 −2.33
−1.16 1.08

]
.
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Activity 5.2.4 Remember that the absolute value of a number tells us how far that number is from 0 on the real
number line. We may therefore think of the inverse power method as telling us the eigenvalue closest to 0.

a. If v is an eigenvector of A with associated eigenvalue λ, explain why v is an eigenvector of A − sI where s is
some scalar.

b. What is the eigenvalue of A − sI associated to the eigenvector v?

c. Explain why the eigenvalue of A closest to s is the eigenvalue of A − sI closest to 0.

d. Explain why applying the inverse power method to A − sI gives the eigenvalue of A closest to s.

e. Consider the matrix A �


3.6 1.6 4.0 7.6
1.6 2.2 4.4 4.1
3.9 4.3 9.0 0.6
7.6 4.1 0.6 5.0

 . If we use the power method and inverse power method, we

find two eigenvalues, λ1 � 16.35 and λ2 � 0.75. Viewing these eigenvalues on a number line, we know that
the other eigenvalues lie in the range between −λ1 and λ1, as shaded in Figure 5.2.3.

-20 -10 10 20

λ1λ2

Figure 5.2.3 The range of eigenvalues of A.

The Sage cell below has a function find_closest_eigenvalue(A, s, x, N) that implements N steps of the
inverse power method using the matrix A − sI and an initial vector x. This function prints approximations to
the eigenvalue of A closest to s and its associated eigenvector. By trying different values of s in the shaded
regions of the number line shown in Figure 5.2.3, find the other two eigenvalues of A.

def find_closest_eigenvalue(A, s, x, N):
B = A-s*identity_matrix(A.nrows())
for i in range(N):

x = B \ x
m = max([comp for comp in x], key=abs).numerical_approx(digits =14)
x = 1/ float(m)*x
print (1/ float(m)+s, x)

### define the matrix A and vector x0
A =
x0 =
find_closest_eigenvalue(A, 2, x0, 20)

f. Write a list of the four eigenvalues of A in increasing order.
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6 Orthogonality and Least Squares

6.1 The dot product

Preview Activity 6.1.1
a. Compute the dot product [

3
4

]
·
[

2
−2

]
.

b. Sketch the vector v �

[
3
4

]
below. Then use the Pythagorean theorem to find the length of v.

-6 -4 -2 2 4 6
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4
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y

Figure 6.1.1 Sketch the vector v and find its length.

c. Compute the dot product v · v. How is the dot product related to the length of v?

d. Remember that the matrix
[

0 −1
1 0

]
represents the matrix transformation that rotates vectors counterclock-

wise by 90◦. Beginning with the vector v �

[
3
4

]
, find w, the result of rotating v by 90◦, and sketch it above.

e. What is the dot product v · w?

f. Suppose that v �

[
a
b

]
. Find the vector w that results from rotating v by 90◦ and find the dot product v · w.

g. Suppose that v and w are two perpendicular vectors. What do you think their dot product v · w is?
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Activity 6.1.2

a. Sketch the vectors v �

[
3
2

]
and w �

[
−1

3

]
using Figure 6.1.6.
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Figure 6.1.6 Sketch the vectors v and w here.

b. Find the lengths |v| and |w| using the dot product.

c. Find the dot product v · w and use it to find the angle between v and w.

d. Consider the vector x �

[
−2

3

]
. Include it in your sketch in Figure 6.1.6 and find the angle between v and x.

e. If two vectors are perpendicular, what can you say about their dot product? Explain your thinking.

f. For what value of k is the vector
[

6
k

]
perpendicular to w?

g. Sage can be used to find lengths of vectors and their dot products. For instance, if v and w are vectors, then
v.norm() gives the length of v and v * w gives v · w.
Suppose that

v �


2
0
3

−2

 , w �


1

−3
4
1

 .
Use the Sage cell below to find |v|, |w|, v · w, and the angle between v and w. You may use arccos to find the
angle’s measure expressed in radians.
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Activity 6.1.3 This activity explores two further uses of the dot product beginning with the similarity of vectors.
a. Our first task is to assess the similarity between various Wikipedia articles by forming vectors from each of

five articles. In particular, one may download the text from a Wikipedia article, remove common words, such
as “the” and “and”, count the number of times the remaining words appear in the article, and represent these
counts in a vector.
For example, evaluate the following cell that loads some special commands along with the vectors constructed
from the Wikipedia articles on Veteran’s Day, Memorial Day, Labor Day, the Golden Globe Awards, and the
Super Bowl. For each of the five articles, you will see a list of the number of times 10 words appear in these
articles. For instance, the word “act” appears 3 times in the Veteran’s Day article and 0 times in the Labor Day
article.

url= ' https ://raw.githubusercontent.com/davidaustinm/ '
url+= ' ula_modules/master/dot_similarity.py '
sage.repl.load.load(url , globals ())
events.head(int (10))

For each of the five articles, we obtain 604-dimensional vectors, which are named veterans, memorial, labor,
golden, and super.

1. Suppose that two articles have no words in common. What is the value of the dot product between their
corresponding vectors? What does this say about the angle between these vectors?

2. Suppose there are two articles on the same subject, yet one article is twice as long. What approximate
relationship would you expect to hold between the two vectors? What does this say about the angle
between them?

3. Use the Sage cell below tofind the angle between the vector veterans and the other four vectors. To express
the angle in degrees, use the degrees(x) command, which gives the number of degrees in x radians.

4. Compare the four angles you have found and discuss what they mean about the similarity between the
Veteran’s Day article and the other four. How do your findings reflect the nature of these five events?

b. Vectors are often used to represent how a quantity changes over time. For instance, the vector s �


78.3
81.2
82.1
79.0


might represent the value of a company’s stock on four consecutive days. When interpreted in this way, we
call the vector a time series. Evaluate the Sage cell below to see a representation of two time series s1, in blue,
and s2, in orange, which we imagine represent the value of two stocks over a period of time. (This cell relies
on some data loaded by the first cell in this activity.)

series_plot(s1, ' blue ' ) + series_plot(s2, ' orange ' )

Even though one stock has a higher value than the other, the two appear to be related since they seem to rise
and fall at roughly similar ways. We often say that they are correlated, and wewould like to measure the degree
to which they are correlated.

1. In order to compare the ways in which they rise and fall, we will first demean the time series; that is, for
each time series, we will subtract its average value to obtain a new time series. There is a command,
demean(s), that returns the demeaned time series of s. Use the Sage cell below to demean the series s1
and s2 and plot.

ds1 = demean(s1)
ds2 = demean(s2)
series_plot(ds1 , ' blue ' ) + series_plot(ds2 , ' orange ' )
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2. If the demeaned series are s̃1 and s̃2, then the correlation between s1 and s2 is defined to be

corr(s1 , s2) �
s̃1 · s̃2
|s̃1 | |s̃2 |

.

Given the geometric interpretation of the dot product, the correlation equals the cosine of the angle be-
tween the demeaned time series, and therefore corr(s1 , s2) is between -1 and 1.
Find the correlation between s1 and s2.

3. Suppose that two time series are such that their demeaned time series are scalar multiples of one another,
as in Figure 6.1.9

Figure 6.1.9 On the left, the demeaned time series are positive scalar multiples of one another. On the
right, they are negative scalar multiples.
For instance, suppose we have time series t1 and t2 whose demeaned time series t̃1 and t̃2 are positive
scalar multiples of one another. What is the angle between the demeaned vectors? What does this say
about the correlation corr(t1 , t2)?

4. Suppose the demeaned time series t̃1 and t̃2 are negative scalar multiples of one another, what is the angle
between the demeaned vectors? What does this say about the correlation corr(t1 , t2)?

5. Use the Sage cell below to plot the time series s1 and s3 and find their correlation.

series_plot(s1, ' blue ' ) + series_plot(s3, ' orange ' )

6. Use the Sage cell below to plot the time series s1 and s4 and find their correlation.

series_plot(s1, ' blue ' ) + series_plot(s4, ' orange ' )
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Activity 6.1.4 To begin, we identify the centroid, or the average, of a set of vectors v1 , v2 , . . . , vn as
1
n
(v1 + v2 + . . . + vn) .

a. Find the centroid of the vectors
v1 �

[
1
1

]
, v2 �

[
4
1

]
, v3 �

[
4
4

]
.

and sketch the vectors and the centroid using Figure 6.1.11. Youmaywish to simply plot the points represented
by the tips of the vectors rather than drawing the vectors themselves.
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1

2

3

4

5

Figure 6.1.11 The vectors v1, v2, v3 and their centroid.

Notice that the centroid lies in the center of the points defined by the vectors.

b. Now we’ll illustrate an algorithm that forms clusterings. To begin, consider the following points, represented
as vectors,

v1 �

[
−2

1

]
, v2 �

[
1
1

]
, v3 �

[
1
2

]
, v4 �

[
3
2

]
,

which are shown in Figure 6.1.12.
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v3 v4

Figure 6.1.12 We will group this set of four points into two clusters.

Suppose that we would like to group these points into k � 2 clusters. (Later on, we’ll see how to choose an
appropriate value for k, the number of clusters.) We begin by choosing two points c1 and c2 at random and
declaring them to be the “centers”’ of the two clusters.
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For example, suppose we randomly choose c1 � v2 and c2 � v3 as the center of two clusters. The cluster
centered on c1 � v2 will be the set of points that are closer to c1 � v2 than to c2 � v3. Determine which of the
four data points are in this cluster, which we denote by C1, and circle them in Figure 6.1.12.

c. The second cluster will consist of the data points that are closer to c2 � v3 than c1 � v2. Determine which of
the four points are in this cluster, which we denote by C2, and circle them in Figure 6.1.12.

d. We now have a clustering with two clusters, but we will try to improve upon it in the following way. First, find
the centroids of the two clusters; that is, redefine c1 to be the centroid of cluster C1 and c2 to be the centroid of
C2. Find those centroids and indicate them in Figure 6.1.13
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3

v1 v2

v3 v4

Figure 6.1.13 Indicate the new centroids and clusters.

Now update the cluster C1 to be the set of points closer to c1 than c2. Update the cluster C2 in a similar way
and indicate the clusters in Figure 6.1.13.

e. Let’s perform this last step again. That is, update the centroids c1 and c2 from the new clusters and then update
the clusters C1 and C2. Indicate your centroids and clusters in Figure 6.1.14.
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Figure 6.1.14 Indicate the new centroids and clusters.

Notice that this last step produces the same set of clusters so there is no point in repeating it. We declare this
to be our final clustering.
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Activity 6.1.5 We’ll now use the objective to compare clusterings and to choose an appropriate value of k.
a. In the previous activity, one initial choice of c1 and c2 led to the clustering:

C1 � {v1}
C2 � {v2 , v3 , v4}

with centroids c1 � v1 and c2 �

[
5/3
5/3

]
. Find the objective of this clustering.

b. We have now seen two clusterings and computed their objectives. Recall that our data set is shown in Fig-
ure 6.1.12. Which of the two clusterings feels like the better fit? How is this fit reflected in the values of the
objectives?

c. Evaluating the following cell will load and display a data set consisting of 177 data points. This data set has
the name data.

url= ' https ://raw.githubusercontent.com/davidaustinm/ '
url+= ' ula_modules/master/k_means.py '
sage.repl.load.load(url , globals ())
list_plot(data , color= ' blue ' , size=20, aspect_ratio =1)

Given this plot of the data, what would seem like a reasonable number of clusters?

d. In the following cell, you may choose a value of k and then run the algorithm to determine and display a
clustering and its objective. If you run the algorithm a few times with the same value of k, you will likely see
different clusterings having different objectives. This is natural since our algorithm starts by making a random
choice of points c1 , c2 , . . . , ck , and a different choices may lead to different clusterings. Choose a value of k
and run the algorithm a few times. Notice that clusterings having lower objectives seem to fit the data better.
Repeat this experiment with a few different values of k.

k = 2 # you may change the value of k here
clusters , centroids , objective = kmeans(data , k)
print( ' Objective␣= ' , objective)
plotclusters(clusters , centroids)

e. For a given value of k, our strategy is to run the algorithm several times and choose the clustering with the
smallest objective. After choosing a value of k, the following cell will run the algorithm 10 times and display
the clustering having the smallest objective.

k = 2 # you may change the value of k here
clusters , centroids , objective = minimalobjective(data , k)
print( ' Objective␣= ' , objective)
plotclusters(clusters , centroids)

For each value of k between 2 and 9, find the clustering having the smallest objective and plot your findings in
Figure 6.1.15.



210 6 ORTHOGONALITY AND LEAST SQUARES

1 2 3 4 5 6 7 8 9
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k

Objective

Figure 6.1.15 Construct a plot of the minimal objective as it depends on the choice of k.

This plot is called an elbow plot due to its shape. Notice how the objective decreases sharply when k is small and
then flattens out. This leads to a location, called the elbow, where the objective transitions from being sharply
decreasing to relatively flat. This means that increasing k beyond the elbow does not significantly decrease the
objective, which makes the elbow a good choice for k.
Where does the elbowoccur in your plot above? Howdoes this compare to the best value of k that you estimated
by simply looking at the data in Item c.

Of course, we could increase k until each data point is its own cluster. However, this defeats the point of the technique,
which is to group together nearby data points in the hope that they share common features, thus providing insight
into the structure of the data.
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6.2 Orthogonal complements and the matrix transpose

Preview Activity 6.2.1

a. Sketch the vector v �

[
−1

2

]
on Figure 6.2.1 and one vector that is orthogonal to it.
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4
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Figure 6.2.1 Sketch the vector v and one vector orthogonal to it.

b. If a vector x is orthogonal to v, what do we know about the dot product v · x?

c. If we write x �

[
x
y

]
, use the dot product to write an equation for the vectors orthogonal to v in terms of x

and y.

d. Use this equation to sketch the set of all vectors orthogonal to v in Figure 6.2.1.

e. Section 3.5 introduced the column space Col(A) and null space Nul(A) of a matrix A. If A is a matrix, what is
the meaning of the null space Nul(A)?

f. What is the meaning of the column space Col(A)?
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Activity 6.2.2 Suppose that w1 �


1
0

−2

 and w2 �


1
1

−1

 form a basis for W , a two-dimensional subspace of �3.

We will find a description of the orthogonal complement W⊥.

a. Suppose that the vector x is orthogonal to w1. If we write x �


x1
x2
x3

 , use the fact that w1 · x � 0 to write a

linear equation for x1, x2, and x3.

b. Suppose that x is also orthogonal to w2. In the same way, write a linear equation for x1, x2, and x3 that arises
from the fact that w2 · x � 0.

c. If x is orthogonal to both w1 and w2, these two equations give us a linear system Bx � 0 for some matrix B.
Identify the matrix B and write a parametric description of the solution space to the equation Bx � 0.

d. Since w1 and w2 form a basis for the two-dimensional subspace W , any vector w in W can be written as a linear
combination

w � c1w1 + c2w2.

If x is orthogonal to bothw1 andw2, use the distributive property of dot products to explainwhy x is orthogonal
to w.

e. Give a basis for the orthogonal complement W⊥ and state the dimension dim W⊥.

f. Describe (W⊥)⊥, the orthogonal complement of W⊥.
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Activity 6.2.3 This activity illustrates how multiplying a vector by AT is related to computing dot products with the
columns of A. You’ll develop a better understanding of this relationship if you compute the dot products andmatrix
products in this activity without using technology.

a. If B �


3 4
−1 2
0 −2

 , write the matrix BT .

b. Suppose that

v1 �


2
0

−2

 , v2 �


1
1
2

 , w �


−2

2
3

 .
Find the dot products v1 · w and v2 · w.

c. Nowwrite thematrix A �
[
v1 v2

]
and its transpose AT . Find the product ATw and describe how this product

computes both dot products v1 · w and v2 · w.

d. Suppose that x is a vector that is orthogonal to both v1 and v2. What does this say about the dot products v1 · x
and v2 · x? What does this say about the product ATx?

e. Use the matrix AT to give a parametric description of all the vectors x that are orthogonal to v1 and v2.

f. Remember that Nul(AT), the null space of AT , is the solution set of the equation ATx � 0. If x is a vector in
Nul(AT), explain why x must be orthogonal to both v1 and v2.

g. Remember that Col(A), the column space of A, is the set of linear combinations of the columns of A. Therefore,
any vector in Col(A) can be written as c1v1 + c2v2. If x is a vector in Nul(AT), explain why x is orthogonal to
every vector in Col(A).
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Activity 6.2.4 In Sage, the transpose of a matrix A is given by A.T. Define the matrices

A �

[
1 0 −3
2 −2 1

]
, B �

[
3 −4 1
0 1 2

]
, C �


1 0 −3
2 −2 1
3 2 0

 .

a. Evaluate (A + B)T and AT + BT . What do you notice about the relationship between these two matrices?

b. What happens if you transpose a matrix twice; that is, what is (AT)T?

c. Find det(C) and det(CT). What do you notice about the relationship between these determinants?

d. 1. Find the product AC and its transpose (AC)T .
2. Is it possible to compute the product AT CT? Explain why or why not.
3. Find the product CTAT and compare it to (AC)T . What do you notice about the relationship between

these two matrices?

e. What is the transpose of the identity matrix I?

f. If a squarematrix D is invertible, explainwhy you can guarantee that DT is invertible andwhy (DT)−1 � (D−1)T .
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Activity 6.2.5
a. Suppose that W is a 5-dimensional subspace of �9 and that A is a matrix whose columns form a basis for W ;

that is, Col(A) � W .

1. What is the shape of A?
2. What is the rank of A?
3. What is the shape of AT?
4. What is the rank of AT?
5. What is dimNul(AT)?
6. What is dim W⊥?
7. How are the dimensions of W and W⊥ related?

b. Suppose that W is a subspace of �4 having basis

w1 �


1
0
2

−1

 , w2 �


−1

2
−6

3

 .
1. Find the dimensions dim W and dim W⊥.
2. Find a basis for W⊥. It may be helpful to know that the Sage command A.right_kernel() produces a

basis for Nul(A).

3. Verify that each of the basis vectors you found for W⊥ are orthogonal to the basis vectors for W .
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6.3 Orthogonal bases and projections

Preview Activity 6.3.1 For this activity, it will be helpful to recall the distributive property of dot products:

v · (c1w1 + c2w2) � c1v · w1 + c2v · w2.

We’ll work with the basis of �2 formed by the vectors

w1 �

[
1
2

]
, w2 �

[
−2

1

]
.

a. Verify that the vectors w1 and w2 are orthogonal.

b. Suppose that b �

[
7
4

]
and find the dot products w1 · b and w2 · b.

c. We would like to express b as a linear combination of w1 and w2, which means that we need to find weights
c1 and c2 such that

b � c1w1 + c2w2.

To find the weight c1, dot both sides of this expression with w1:

b · w1 � (c1w1 + c2w2) · w1,

and apply the distributive property.

d. In a similar fashion, find the weight c2.

e. Verify that b � c1w1 + c2w2 using the weights you have found.
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Activity 6.3.2 Consider the vectors

w1 �


1

−1
1

 , w2 �


1
1
0

 , w3 �


1

−1
−2

 .
a. Verify that this set forms an orthogonal set of 3-dimensional vectors.

b. Explain why we know that this set of vectors forms a basis for �3.

c. Suppose that b �


2
4

−4

 . Find the weights c1, c2, and c3 that express b as a linear combination b � c1w1 +

c2w2 + c3w3 using Proposition 6.3.4.

d. If we multiply a vector v by a positive scalar s, the length of v is also multiplied by s; that is, |sv| � s |v|.
Using this observation, find a vector u1 that is parallel to w1 and has length 1. Such vectors are called unit
vectors.

e. Similarly, find a unit vector u2 that is parallel to w2 and a unit vector u3 that is parallel to w3.

f. Construct the matrix Q �
[
u1 u2 u3

]
and find the product QTQ. Use Proposition 6.2.8 to explain your

result.
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Activity 6.3.3 This activity demonstrates how to determine the orthogonal projection of a vector onto a subspace of
�m .

a. Let’s begin by considering a line L, defined by the vector w �

[
2
1

]
, and a vector b �

[
2
4

]
not on L, as

illustrated in Figure 6.3.13.

2 4
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w

b̂

b− b̂

b

L

2 4

2

4

w

sw

b− sw

b

L

Figure 6.3.13 Finding the orthogonal projection of b onto the line defined by w.

1. To find b̂, first notice that b̂ � sw for some scalar s. Since b − b̂ � b − sw is orthogonal to w, what do we
know about the dot product

(b − sw) · w?

2. Apply the distributive property of dot products to find the scalar s. What is the vector b̂, the orthogonal
projection of b onto L?

3. More generally, explain why the orthogonal projection of b onto the line defined by w is

b̂ �
b · w
w · w

w.

b. The same ideas apply more generally. Suppose we have an orthogonal set of vectors w1 �


2
2

−1

 and w2 �


1
0
2

 that define a plane W in �3. If b �


3
9
6

 another vector in �3, we seek the vector b̂ on the plane W

closest to b. As before, the vector b − b̂ will be orthogonal to W , as illustrated in Figure 6.3.14.
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w1

w2

b

b̂

Figure 6.3.14 Given a plane W defined by the orthogonal vectors w1 and w2 and another vector b, we seek the
vector b̂ on W closest to b.

1. The vector b−b̂ is orthogonal to W . What does this say about the dot products: (b−b̂) ·w1 and (b−b̂) ·w2?

2. Since b̂ is in the plane W , we can write it as a linear combination b̂ � c1w1 + c2w2. Then

b − b̂ � b − (c1w1 + c2w2).

Find the weight c1 by dotting b − b̂ with w1 and applying the distributive property of dot products. Sim-
ilarly, find the weight c2.

3. What is the vector b̂, the orthogonal projection of b onto the plane W?

c. Suppose that W is a subspace of�m with orthogonal basis w1 ,w2 , . . . ,wn and that b is a vector in�m . Explain
why the orthogonal projection of b onto W is the vector

b̂ �
b · w1

w1 · w1
w1 +

b · w2
w2 · w2

w2 + · · · + b · wn

wn · wn
wn .

d. Suppose that u1 , u2 , . . . , un is an orthonormal basis for W ; that is, the vectors are orthogonal to one another and
have unit length. Explain why the orthogonal projection is

b̂ � (b · u1) u1 + (b · u2) u2 + · · · + (b · un) un .

e. If Q �
[
u1 u2 . . . un

]
is the matrix whose columns are an orthonormal basis of W , use Proposition 6.2.8

to explain why b̂ � QQTb.
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Activity 6.3.4

a. Suppose that L is the line in �3 defined by the vector w �


1
2

−2

 .
1. Find an orthonormal basis u for L.
2. Construct the matrix Q �

[
u
]
and use it to construct the matrix P that projects vectors orthogonally onto

L.

3. Use your matrix to find b̂, the orthogonal projection of b �


1
1
1

 onto L.

4. Find rank(P) and explain its geometric significance.

b. The vectors

w1 �


1
1
1
1

 , w2 �


0
1
1

−2


form an orthogonal basis of W , a two-dimensional subspace of �4.

1. Use the projection formula from Proposition 6.3.15 to find b̂, the orthogonal projection of b �


9
2

−2
3

 onto
W .

2. Find an orthonormal basis u1 and u2 for W and use it to construct the matrix P that projects vectors
orthogonally onto W . Check that Pb � b̂, the orthogonal projection you found in the previous part of this
activity.

3. Find rank(P) and explain its geometric significance.
4. Find a basis for W⊥.
5. Find a vector b⊥ in W⊥ such that

b � b̂ + b⊥.

6. If Q is the matrix whose columns are u1 and u2, find the product QTQ and explain your result.
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6.4 Finding orthogonal bases
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Preview Activity 6.4.1 Suppose we have a basis for �2 consisting of the vectors

v1 �

[
1
1

]
, v2 �

[
0
2

]
as shown in Figure 6.4.1. Notice that this basis is not orthogonal.

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

v1

v2

Figure 6.4.1 A basis for �2.

a. Find the vector v̂2 that is the orthogonal projection of v2 onto the line defined by v1.

b. Explain why v2 − v̂2 is orthogonal to v1.

c. Define the new vectors w1 � v1 and w2 � v2 − v̂2 and sketch them in Figure 6.4.2. Explain why w1 and w2
define an orthogonal basis for �2.
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3

Figure 6.4.2 Sketch the new basis w1 and w2.

d. Write the vector b �

[
8

−10

]
as a linear combination of w1 and w2.

e. Scale the vectors w1 and w2 to produce an orthonormal basis u1 and u2 for �2.
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Activity 6.4.2 Suppose that W is a three-dimensional subspace of �4 with basis:

v1 �


1
1
1
1

 , v2 �


1
3
2
2

 , v3 �


1

−3
−3
−3

 .
We can see that this basis is not orthogonal by noting that v1 · v2 � 8. Our goal is to create an orthogonal basis w1,
w2, and w3 for W .

To begin, we declare that w1 � v1, and we call W1 the line defined by w1.

a. Find the vector v̂2 that is the orthogonal projection of v2 onto W1, the line defined by w1.

b. Form the vector w2 � v2 − v̂2 and verify that it is orthogonal to w1.

c. Explain why Span{w1 ,w2} � Span{v1 , v2} by showing that any linear combination of v1 and v2 can be written
as a linear combination of w1 and w2 and vice versa.

d. The vectors w1 and w2 are an orthogonal basis for a two-dimensional subspace W2 of �4. Find the vector v̂3
that is the orthogonal projection of v3 onto W2.

e. Verify that w3 � v3 − v̂3 is orthogonal to both w1 and w2.

f. Explain why w1, w2, and w3 form an orthogonal basis for W .

g. Now find an orthonormal basis for W .
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Activity 6.4.3 Sage can automate these computations for us. Before we begin, however, it will be helpful to under-
stand how we can combine things using a list in Python. For instance, if the vectors v1, v2, and v3 form a basis for
a subspace, we can bundle them together using square brackets: [v1, v2, v3]. Furthermore, we could assign this
to a variable, such as basis = [v1, v2, v3].

Evaluating the following cell will load in some special commands.

url= ' https :// raw.githubusercontent.com/davidaustinm/ '
url+= ' ula_modules/master/orthogonality.py '
sage.repl.load.load(url , globals ())

• There is a command to apply the projection formula: projection(b, basis) returns the orthogonal projection
of b onto the subspace spanned by basis, which is a list of vectors.

• The command unit(w) returns a unit vector parallel to w.

• Given a collection of vectors, say, v1 and v2, we can form the matrix whose columns are v1 and v2 using
matrix([v1, v2]).T. When given a list of vectors, Sage constructs a matrix whose rows are the given vectors.
For this reason, we need to apply the transpose.

Let’s now consider W , the subspace of �5 having basis

v1 �


14
−6

8
2

−6


, v2 �


5

−3
4
3

−7


, v3 �


2
3
0

−2
1


.

a. Apply the Gram-Schmidt algorithm to find an orthogonal basis w1, w2, and w3 for W .

b. Find b̂, the orthogonal projection of b �


−5
11
0

−1
5


onto W .

c. Explain whywe know that b̂ is a linear combination of the original vectors v1, v2, and v3 and then findweights
so that

b̂ � c1v1 + c2v2 + c3v3.

d. Find an orthonormal basis u1, u2, for u3 for W and form the matrix Q whose columns are these vectors.

e. Find the product QTQ and explain the result.

f. Find the matrix P that projects vectors orthogonally onto W and verify that Pb gives b̂, the orthogonal projec-
tion that you found earlier.
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Activity 6.4.4 Suppose that A is the 4 × 3 matrix whose columns are

v1 �


1
1
1
1

 , v2 �


1
3
2
2

 , v3 �


1

−3
−3
−3

 .
These vectors form a basis for W , the subspace of �4 that we encountered in Activity 6.4.2. Since these vectors are
the columns of A, we have Col(A) � W .

a. When we implemented Gram-Schmidt, we first found an orthogonal basis w1, w2, and w3 using

w1 � v1

w2 � v2 −
v2 · w1
w1 · w1

w1

w3 � v3 −
v3 · w1
w1 · w1

w1 −
v3 · w2
w2 · w2

w2.

Use these expressions to write v1, v1, and v3 as linear combinations of w1, w2, and w3.

b. We next normalized the orthogonal basis w1, w2, and w3 to obtain an orthonormal basis u1, u2, and u3.
Write the vectors wi as scalar multiples of ui . Then use these expressions to write v1, v1, and v3 as linear
combinations of u1, u2, and u3.

c. Suppose that Q �
[

u1 u2 u3
]
. Use the result of the previous part to find a vector r1 so that Qr1 � v1.

d. Then find vectors r2 and r3 such that Qr2 � v2 and Qr3 � v3.

e. Construct the matrix R �
[

r1 r2 r3
]
. Remembering that A �

[
v1 v2 v3

]
, explain why A � QR.

f. What is special about the shape of R?

g. Suppose that A is a 10 × 6 matrix whose columns are linearly independent. This means that the columns
of A form a basis for W � Col(A), a 6-dimensional subspace of �10. Suppose that we apply Gram-Schmidt
orthogonalization to create an orthonormal basis whose vectors form the columns of Q and that we write
A � QR. What are the shape of Q and what the shape of R?
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Activity 6.4.5 As before, we would like to use Sage to automate the process of finding and using the QR factorization
of a matrix A. Evaluating the following cell provides a command QR(A) that returns the factorization, which may be
stored using, for example, Q, R = QR(A).

url= ' https :// raw.githubusercontent.com/davidaustinm/ '
url+= ' ula_modules/master/orthogonality.py '
sage.repl.load.load(url , globals ())

Suppose that A is the following matrix whose columns are linearly independent.

A �


1 0 −3
0 2 −1
1 0 1
1 3 5

 .
a. If A � QR, what is the shape of Q and R? What is special about the form of R?

b. Find the QR factorization using Q, R = QR(A) and verify that R has the predicted shape and that A � QR.

c. Find the matrix P that orthogonally projects vectors onto Col(A).

d. Find b̂, the orthogonal projection of b �


4

−17
−14

22

 onto Col(A).

e. Explain why the equation Ax � b̂ must be consistent and then find x.



241



242 6 ORTHOGONALITY AND LEAST SQUARES

6.5 Orthogonal least squares

Preview Activity 6.5.1
a. Is there a solution to the equation Ax � b where A and b are such that

1 2
2 5
−1 0

 x �


5

−3
−1

 .

b. We know that


1
2

−1

 and


2
5
0

 form a basis for Col(A). Find an orthogonal basis for Col(A).

c. Find the orthogonal projection b̂ of b onto Col(A).

d. Explain why the equation Ax � b̂ must be consistent and then find its solution.
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Activity 6.5.2 Suppose we have three data points (1, 1), (2, 1), and (3, 3) and that we would like to find a line passing
through them.

a. Plot these three points in Figure 6.5.2. Are you able to draw a line that passes through all three points?

-1 1 2 3 4

-1

1

2

3

4

x

y

Figure 6.5.2 Plot the three data points here.

b. Remember that the equation of a line can be written as b+mx � y where m is the slope and b is the y-intercept.
We will try to find b and m so that the three points lie on the line.
The first data point (1, 1) gives an equation for b and m. In particular, we know that when x � 1, then y � 1 so
we have b + m(1) � 1 or b + m � 1. Use the other two data points to create a linear system describing m and b.

c. We have obtained a linear system having three equations, one from each data point, for the two unknowns b

and m. Identify a matrix A and vector b so that the system has the form Ax � b, where x �

[
b
m

]
.

Notice that the unknown vector x �

[
b
m

]
describes the line that we seek.

d. Is there a solution to this linear system? How does this question relate to your attempt to draw a line through
the three points above?

e. Since this system is inconsistent, we know that b is not in the column space Col(A). Find an orthogonal basis
for Col(A) and use it to find the orthogonal projection b̂ of b onto Col(A).

f. Since b̂ is in Col(A), the equation Ax � b̂ is consistent. Find its solution x �

[
b
m

]
and sketch the line y � b+mx

in Figure 6.5.2. We say that this is the line of best fit.
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Activity 6.5.3 The rate at which a cricket chirps is related to the outdoor temperature, as reflected in some experi-
mental data that we’ll study in this activity. The chirp rate C is expressed in chirps per secondwhile the temperature
T is in degrees Fahrenheit. Evaluate the following cell to load the data:

base= ' https ://raw.githubusercontent.com/davidaustinm/ '
url=base+ ' ula_modules/master/orthogonality.py '
sage.repl.load.load(url , globals ())
url=base+ ' ula_modules/master/data/crickets.csv '
df = pd.read_csv(url)
data = [vector(row) for row in df.values]
chirps = vector(df[ ' Chirps ' ])
temps = vector(df[ ' Temperature ' ])
print(df)
list_plot(data , color= ' blue ' , size=40, xmin=12, xmax=22, ymin=60, ymax =100)

Evaluating this cell also provides:

• the vectors chirps and temps formed from the columns of the dataset.

• the command onesvec(n), which creates an n-dimensional vector whose entries are all one.

• Remember that you can form a matrix whose columns are the vectors v1 and v2 with matrix([v1, v2]).T.

We would like to represent this relationship by a linear function

β0 + β1C � T.

a. Use the first data point (C1 , T1) � (20.0, 88.6) to write an equation involving β0 and β1.

b. Suppose that we represent the unknowns using a vector x �

[
β0
β1

]
. Use the 15 data points to create the matrix

A and vector b so that the linear system Ax � b describes the unknown vector x.

c. Write the normal equations ATAx̂ � ATb; that is, find the matrix ATA and the vector ATb.

d. Solve the normal equations to find x̂, the least-squares approximate solution to the equation Ax � b. Call your
solution xhat since x has another meaning in Sage.

What are the values of β0 and β1 that you found?

e. If the chirp rate is 22 chirps per second, what is your prediction for the temperature?
You can plot the data and your line, assuming you called the solution xhat, using the cell below.

plot_model(xhat , data , domain =(12, 22))
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Activity 6.5.4
a. Supposewe are interested in finding the least-squares approximate solution to the equation Ax � b and thatwe

have the QR factorization A � QR. Explain why the least-squares approximation solution is given by solving

Ax̂ � QQTb

QRx̂ � QQTb

b. Multiply both sides of the second expression by QT and explain why

Rx̂ � QTb.

Since R is upper triangular, this is a relatively simple equation to solve using back substitution, as we saw in
Section 5.1. We will therefore write the least-squares approximate solution as

x̂ � R−1QTb,

and put this to use in the following context.

c. Brozak’s formula, which is used to calculate a person’s body fat index BFI, is

BFI � 100
(
4.57
ρ

− 4.142
)

where ρ denotes a person’s body density in grams per cubic centimeter. Obtaining an accurate measure of ρ
is difficult, however, because it requires submerging the person in water and measuring the volume of water
displaced. Instead, we will gather several other body measurements, which are more easily obtained, and use
it to predict BFI.
For instance, supposewe take 10 patients andmeasure their weight w in pounds, height h in inches, abdomen a
in centimeters, wrist circumference r in centimeters, neck circumference n in centimeters, and BFI. Evaluating
the following cell loads and displays the data.

base= ' https ://raw.githubusercontent.com/davidaustinm/ '
url=base+ ' ula_modules/master/orthogonality.py '
sage.repl.load.load(url , globals ())
url=base+ ' /ula_modules/master/data/bfi.csv '
df = pd.read_csv(url)
weight = vector(df[ ' Weight ' ])
height = vector(df[ ' Height ' ])
abdomen = vector(df[ ' Abdomen ' ])
wrist = vector(df[ ' Wrist ' ])
neck = vector(df[ ' Neck ' ])
BFI = vector(df[ ' BFI ' ])
print(df)

In addition, that cell provides:

(a) vectors weight, height, abdomen, wrist, neck, and BFI formed from the columns of the dataset.
(b) the command onesvec(n), which returns an n-dimensional vector whose entries are all one.
(c) the command QR(A) that returns the QR factorization of A as Q, R = QR(A).
(d) the command demean(v), which returns the demeaned vector ṽ.

We would like to find the linear function

β0 + β1w + β2h + β3a + β4r + β5n � BFI

that best fits the data.
Use the first data point to write an equation for the parameters β0 , β1 , . . . , β5.
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d. Describe the linear system Ax � b for these parameters. More specifically, describe how the matrix A and the
vector b are formed.

e. Construct the matrix A and find its QR factorization in the cell below.

f. Find the least-squares approximate solution x̂ by solving the equation Rx̂ � QTb. Youmaywant to use N(xhat)
to display a decimal approximation of the vector. What are the parameters β0 , β1 , . . . , β5 that best fit the data?

g. Find the coefficient of determination R2 for your parameters. What does this imply about the quality of the fit?

h. Suppose a person’s measurements are: weight 190, height 70, abdomen 90, wrist 18, and neck 35. Estimate this
person’s BFI.
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Activity 6.5.5
a. Suppose that we have a small dataset containing the points (0, 2), (1, 1), (2, 3), and (3, 3), such as appear when

the following cell is evaluated.

url= ' https ://raw.githubusercontent.com/davidaustinm/ '
url+= ' ula_modules/master/orthogonality.py '
sage.repl.load.load(url , globals ())
data = [[0, 2], [1, 1], [2, 3], [3, 3]]
list_plot(data , color= ' blue ' , size =40)

In addition to loading and plotting the data, evaluating that cell provides the following commands:

• Q, R = QR(A) returns the QR factorization of A.
• demean(v) returns the demeaned vector ṽ.

Let’s fit a quadratic function of the form
β0 + β1x + β2x2

� y

to this dataset.
Write four equations, one for each data point, that describe the coefficients β0, β1, and β2.

b. Express these four equations as a linear system Ax � b where x �


β0
β1
β2

 .
Find the QR factorization of A and use it to find the least-squares approximate solution x̂.

c. Use the parameters β0, β1, and β2 that you found to write the quadratic function that fits the data. You can plot
this function, along with the data, by entering your function in the place indicated below.

list_plot(data , color= ' blue ' , size =40) + plot( **your function here**,
0, 3, color= ' red ' )

d. What is your predicted y value when x � 1.5?

e. Find the coefficient of determination R2 for the quadratic function. What does this say about the quality of the
fit?

f. Now fit a cubic polynomial of the form

β0 + β1x + β2x2
+ β3x3

� y

to this dataset.

g. Find the coefficient of determination R2 for the cubic function. What does this say about the quality of the fit?

h. What do you notice when you plot the cubic function along with the data? How does this reflect the value of
R2 that you found?

list_plot(data , color= ' blue ' , size =40) + plot( **your function here**,
0, 3, color= ' red ' )



252 6 ORTHOGONALITY AND LEAST SQUARES



253

Activity 6.5.6 This activity explores a dataset describing Arctic sea ice and that comes from Sustainability Math.⁴

Evaluating the cell below will plot the extent of Arctic sea ice, in millions of square kilometers, during the twelve
months of 2012.

base= ' https ://raw.githubusercontent.com/davidaustinm/ '
url=base+ ' ula_modules/master/orthogonality.py '
sage.repl.load.load(url , globals ())
url=base+ ' /ula_modules/master/data/sea_ice.csv '
df = pd.read_csv(url)
data = [vector ([row[0], row [2]]) for row in df.values]
month = vector(df[ ' Month ' ])
ice = vector(df[ ' 2012 ' ])
print(df[[ ' Month ' , ' 2012 ' ]])
list_plot(data , color= ' blue ' , size =40)

In addition, you have access to a few special variables and commands:

• month is the vector of month values and ice is the vector of sea ice values from the table above.

• vandermonde(x, k) constructs the Vandermonde matrix of degree k using the points in the vector x.

• Q, R = QR(A) provides the QR factorization of A.

• demean(v) returns the demeaned vector ṽ.

a. Find the vector x̂, the least-squares approximate solution to the linear system that results from fitting a degree
5 polynomial to the data.

b. If your result is stored in the variable xhat, you may plot the polynomial and the data together using the
following cell.

plot_model(xhat , data)

c. Find the coefficient of determination R2 for this polynomial fit.

d. Repeat these steps to fit a degree 8 polynomial to the data, plot the polynomial with the data, and find R2.

e. Repeat one more time by fitting a degree 11 polynomial to the data, creating a plot, and finding R2.

It’s certainly true that higher degree polynomials fit the data better, as seen by the increasing values of R2, but
that’s not always a good thing. For instance, when k � 11, you may notice that the graph of the polynomial
wiggles a little more than wewould expect. In this case, the polynomial is trying too hard to fit the data, which
usually contains some uncertainty, especially if it’s obtained frommeasurements. The error built in to the data
is called noise, and its presence means that we shouldn’t expect our polynomial to fit the data perfectly. When
we choose a polynomial whose degree is too high, we give the noise too much weight in the model, which
leads to some undesirable behavior, like the wiggles in the graph.
Fitting the data with a polynomial whose degree is too high is called overfitting, a phenomenon that can appear
inmanymachine learning applications. Generally speaking, wewould like to choose k large enough to capture
the essential features of the data but not so large that we overfit and build the noise into the model. There are
ways to determine the optimal value of k, but we won’t pursue that here.

f. Choosing a reasonable value of k, estimate the extent of Arctic sea ice at month 6.5, roughly at the Summer
Solstice.

http://sustainabilitymath.org/
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7 Singular value decompositions

7.1 Symmetric matrices and variance

Preview Activity 7.1.1 This preview activity reminds us how a basis of eigenvectors can be used to relate a square
matrix to a diagonal one.
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Figure 7.1.1 Use these plots to sketch the vectors requested in the preview activity.

a. Suppose that D �

[
3 0
0 −1

]
and that e1 �

[
1
0

]
and e2 �

[
0
1

]
.

1. Sketch the vectors e1 and De1 on the left side of Figure 7.1.1.
2. Sketch the vectors e2 and De2 on the left side of Figure 7.1.1.
3. Sketch the vectors e1 + 2e2 and D(e1 + 2e2) on the left side.
4. Give a geometric description of the matrix transformation defined by D.

b. Now suppose we have vectors v1 �

[
1
1

]
and v2 �

[
−1

1

]
and that A is a 2 × 2 matrix such that

Av1 � 3v1 , Av2 � −v2.

That is, v1 and v2 are eigenvectors of A with associated eigenvalues 3 and −1.

1. Sketch the vectors v1 and Av1 on the right side of Figure 7.1.1.
2. Sketch the vectors v2 and Av2 on the right side of Figure 7.1.1.
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3. Sketch the vectors v1 + 2v2 and A(v1 + 2v2) on the right side.
4. Give a geometric description of the matrix transformation defined by A.

c. In what ways are the matrix transformations defined by D and A related to one another?
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Activity 7.1.2 Remember that the Sage command A.right_eigenmatrix() attempts to find a basis for �m consisting
of eigenvectors of A. In particular, D, P = A.right_eigenmatrix() provides a diagonal matrix D constructed from
the eigenvalues of A with the columns of P containing the associated eigenvectors.

a. For each of the following matrices, determine whether there is a basis for �2 consisting of eigenvectors of that
matrix. When there is such a basis, form the matrices P and D and verify that the matrix equals PDP−1.

1.
[
3 −4
4 3

]
.

2.
[

1 1
−1 3

]
.

3.
[

1 0
−1 2

]
.

4.
[
9 2
2 6

]
.

b. For which of these examples is it possible to form an orthogonal basis for �2 consisting of eigenvectors?

c. For any such matrix A, find an orthonormal basis of eigenvectors and explain why A � QDQ−1 where Q is an
orthogonal matrix.

d. Finally, explain why A � QDQT in this case.

e. When A � QDQT , what is the relationship between A and AT?
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Activity 7.1.3 Each of the following matrices is symmetric so the Spectral Theorem tells us that each is orthogonally
diagonalizable. The point of this activity is to find an orthogonal diagonalization for each matrix.

To begin, find a basis for each eigenspace. Use this basis to find an orthogonal basis for each eigenspace and put these
bases together to find an orthogonal basis for �m consisting of eigenvectors. Use this basis to write an orthogonal
diagonalization of the matrix.

a.
[
0 2
2 3

]
.

b.


4 −2 14
−2 19 −16
14 −16 13

 .
c.


5 4 2
4 5 2
2 2 2

 .
d. Consider the matrix A � BT B where B �

[
0 1 2
2 0 1

]
. Explain how we know that A is symmetric and then find

an orthogonal diagonalization of A.
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Activity 7.1.4 We’ll begin with a set of three data points

d1 �

[
1
1

]
, d2 �

[
2
1

]
, d3 �

[
3
4

]
.

a. Find the centroid, or mean, d �
1
N
∑

j d j . Then plot the data points and their centroid in Figure 7.1.12.
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Figure 7.1.12 Plot the data points and their centroid here.

b. Notice that the centroid lies in the center of the data so the spread of the data will be measured by how far
away the points are from the centroid. To simplify our calculations, find the demeaned data points

d̃ j � d j − d

and plot them in Figure 7.1.13.
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Figure 7.1.13 Plot the demeaned data points d̃ j here.

c. Now that the data has been demeaned, we will define the total variance as the average of the squares of the
distances from the origin; that is, the total variance is

V �
1
N

∑
j

|d̃ j |2.

Find the total variance V for our set of three points.
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d. Now plot the projections of the demeaned data onto the x and y axes using Figure 7.1.14 and find the variances
Vx and Vy of the projected points.
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Figure 7.1.14 Plot the projections of the demeaned data onto the x and y axes.

e. Which of the variances, Vx and Vy , is larger and how does the plot of the projected points explain your re-
sponse?

f. What do you notice about the relationship between V , Vx , and Vy? Howdoes the Pythagorean theorem explain
this relationship?

g. Plot the projections of the demeaned data points onto the lines defined by vectors v1 �

[
1
1

]
and v2 �

[
−1

1

]
using Figure 7.1.15 and find the variances Vv1 and Vv2 of these projected points.
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Figure 7.1.15 Plot the projections of the deameaned data onto the lines defined by v1 and v2.

h. What is the relationship between the total variance V and Vv1 and Vv2? How does the Pythagorean theorem
explain your response?
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Activity 7.1.5 Let’s return to the dataset from the previous activity in which we have demeaned data points:

d̃1 �

[
−1
−1

]
, d̃2 �

[
0

−1

]
, d̃3 �

[
1
2

]
.

Our goal is to compute the variance Vu in the direction defined by a unit vector u.

To begin, form the demeaned data matrix
A �

[
d̃1 d̃2 d̃3

]
and suppose that u is a unit vector.

a. Write the vector ATu in terms of the dot products d̃ j · u.

b. Explain why Vu �
1
3 |ATu|2.

c. Apply Proposition 7.1.10 to explain why

Vu �
1
3 |A

Tu|2 �
1
3 (A

Tu) · (ATu) � uT
(
1
3AAT

)
u � u ·

(
1
3AAT

)
u �

d. In general, the matrix C �
1
N AAT is called the covariance matrix of the dataset, and it is useful because the

variance Vu � u · (Cu), as we have just seen. Find the matrix C for our dataset with three points.

e. Use the covariance matrix to find the variance Vu1 when u1 �

[
1/
√

5
2/
√

5

]
.

f. Use the covariance matrix to find the variance Vu2 when u2 �

[
−2/

√
5

1/
√

5

]
. Since u1 and u2 are orthogonal,

verify that the sum of Vu1 and Vu2 gives the total variance.

g. Explain why the covariance matrix C is a symmetric matrix.
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Activity 7.1.6
a. Evaluating the following Sage cell loads a dataset consisting of 100 demeaned data points and provides a plot

of them. It also provides the demeaned data matrix A.

import pandas as pd
url= ' https ://raw.githubusercontent.com/davidaustinm/ '
url+= ' ula_modules/master/data/variance -data.csv '
df=pd.read_csv(url , header=None)
data = [vector(row) for row in df.values]
A = matrix(data).T
list_plot(data , size=20, color= ' blue ' , aspect_ratio =1)

What is the shape of the covariance matrix C? Find C and verify your response.

b. By visually inspecting the data, determine which is larger, Vx or Vy . Then compute both of these quantities to
verify your response.

c. What is the total variance V?

d. In approximately what direction is the variance greatest? Choose a reasonable vector u that points in approxi-
mately that direction and find Vu.

e. In approximately what direction is the variance smallest? Choose a reasonable vector w that points in approx-
imately that direction and find Vw.

f. How are the directions u and w in the last two parts of this problem related to one another? Why does this
relationship hold?
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7.2 Quadratic forms

Preview Activity 7.2.1 Let’s begin by looking at an example. Suppose we have three data points that form the
demeaned data matrix

A �

[
2 1 −3
1 2 −3

]
a. Plot the demeaned data points in Figure 7.2.1. In which direction does the variance appear to be largest and in

which does it appear to be smallest?

-4 -2 2 4

-4

-2

2

4

x

y

Figure 7.2.1 Use this coordinate grid to plot the demeaned data points.

b. Construct the covariance matrix C and determine the variance in the direction of
[

1
1

]
and the variance in the

direction of
[
−1

1

]
.

c. What is the total variance of this dataset?

d. Generally speaking, if C is the covariance matrix of a dataset and u is an eigenvector of C having unit length
and with associated eigenvalue λ, what is Vu?
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Activity 7.2.2 Let’s look at some more examples of quadratic forms.

a. Consider the symmetric matrix D �

[
3 0
0 −1

]
. Write the quadratic form qD(x) defined by D in terms of the

components of x �

[
x1
x2

]
. What is the value of qD

( [
2

−4

] )
?

b. Given the symmetric matrix A �

[
2 5
5 −3

]
, write the quadratic form qA(x) and evaluate qA

( [
2

−1

] )
.

c. Suppose that q
( [

x1
x2

] )
� 3x2

1 − 4x1x2 + 4x2
2. Find a symmetric matrix A such that q is the quadratic form

defined by A.

d. Suppose that q is a quadratic form and that q(x) � 3. What is q(2x)? q(−x)? q(10x)?

e. Suppose that A is a symmetric matrix and qA(x) is the quadratic form defined by A. Suppose that x is an
eigenvector of A with associated eigenvalue -4 and with length 7. What is qA(x)?
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Activity 7.2.3 We can gain some intuition about this problem by graphing the quadratic form and paying particular
attention to the unit vectors.

a. Evaluating the following cell defines thematrix D �

[
3 0
0 −1

]
anddisplays the graph of the associated quadratic

form qD(x). In addition, the points corresponding to vectors u with unit length are displayed as a curve.

url= ' https ://raw.githubusercontent.com/davidaustinm/ '
url+= ' ula_modules/master/quad_plot.py '
sage.repl.load.load(url , globals ())

## We define our matrix here
A = matrix(2, 2, [3, 0, 0, -1])

quad_plot(A)

Notice that the matrix D is diagonal. In which directions does the quadratic form have its maximum and
minimum values?

b. Write the quadratic form qD associated to D. What is the value of qD

( [
1
0

] )
? What is the value of qD

( [
0
1

] )
?

c. Consider a unit vector u �

[
u1
u2

]
so that u2

1 + u2
2 � 1, an expression we can rewrite as u2

1 � 1 − u2
2. Write

the quadratic form qD(u) and replace u2
1 by 1 − u2

2. Now explain why the maximum of qD(u) is 3. In which
direction does the maximum occur? Does this agree with what you observed from the graph above?

d. Write the quadratic form qD(u) and replace u2
2 by 1 − u2

1. What is the minimum value of qD(u) and in which
direction does the minimum occur?

e. Use the previous Sage cell to change the matrix to A �

[
1 2
2 1

]
and display the graph of the quadratic form

qA(x) � x · (Ax). Determine the directions in which the maximum and minimum occur?

f. Remember that A �

[
1 2
2 1

]
is symmetric so that A � QDQT where D is the diagonal matrix above and Q is

the orthogonal matrix that rotates vectors by 45◦. Notice that

qA(u) � u · (Au) � u · (QDQTu) � (QTu) · (DQTu) � qD(v)

where v � QTu. That is, we have qA(u) � qD(v).
Explain why v � QTu is also a unit vector; that is, explain why

|v|2 � |QTu|2 � (QTu) · (QTu) � 1.

g. Using the fact that qA(u) � qD(v), explain how we now know the maximum value of qA(u) is 3 and determine
the direction in which it occurs. Also, determine the minimum value of qA(u) and determine the direction in
which it occurs.
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Activity 7.2.4 This activity explores the relationship between the eigenvalues of a symmetric matrix and its definite-
ness.

a. Consider the diagonal matrix D �

[
4 0
0 2

]
and write its quadratic form qD(x) in terms of the components of

x �

[
x1
x2

]
. How does this help you decide whether D is positive definite or not?

b. Now consider D �

[
4 0
0 0

]
and write its quadratic form qD(x) in terms of x1 and x2. What can you say about

the definiteness of D?

c. If D is a diagonal matrix, what condition on the diagonal entries guarantee that D is

1. positive definite?
2. positive semidefinite?
3. negative definite?
4. negative semidefinite?
5. indefinite?

d. Suppose that A is a symmetric matrix with eigenvalues 4 and 2 so that A � QDQT where D �

[
4 0
0 2

]
. If

y � QTx, then we have qA(x) � qD(y). Explain why this tells us that A is positive definite.

e. Suppose that A is a symmetric matrix with eigenvalues 4 and 0. What can you say about the definiteness of A
in this case?

f. What condition on the eigenvalues of a symmetric matrix A guarantees that A is

1. positive definite?
2. positive semidefinite?
3. negative definite?
4. negative semidefinite?
5. indefinite?
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Activity 7.2.5 Let’s explore how our understanding of quadratic forms helps us determine the behavior of a function
f near a critical point.

a. Consider the function f (x , y) � 2x3−6x y+3y2. Find the partial derivatives fx and fy and use these expressions
to determine the critical points of f .

b. Evaluate the second partial derivatives fxx , fx y , and fy y .

c. Let’s first consider the critical point (1, 1). Use the quadratic approximation as written above to find an expres-
sion approximating f near the critical point.

d. Using the vector w �

[
x − 1
y − 1

]
, rewrite your approximation as

f (x , y) ≈ f (1, 1) + qA(w)

for some matrix A. What is the matrix A in this case?

e. Find the eigenvalues of A. What can you conclude about the definiteness of A?

f. Recall that (x0 , y0) is a local minimum for f if f (x , y) > f (x0 , y0) for nearby points (x , y). Explain why our
understanding of the eigenvalues of A shows that (1, 1) is a local minimum for f .

plot3d (2*x^3 - 6*x*y + 3*y^2, (x, -2,2), (y,-2,2))
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7.3 Principal Component Analysis

Preview Activity 7.3.1 We will begin by recalling our earlier discussion of variance. Suppose we have a dataset that
leads to the covariance matrix

C �

[
7 −4
−4 13

]
.

a. Suppose that u is a unit eigenvector of C with eigenvalue λ. What is the variance Vu in the u direction?

b. Find an orthogonal diagonalization of C.

c. What is the total variance?

d. In which direction is the variance greatest and what is the variance in this direction? If we project the data
onto this line, how much variance is lost?

e. In which direction is the variance smallest and how is this direction related to the direction of maximum vari-
ance?
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Activity 7.3.2 Suppose that we work with a dataset having 100 five-dimensional data points. The demeaned data
matrix A is therefore 5 × 100 and leads to the covariance matrix C �

1
100 AAT , which is a 5 × 5 matrix. Because C is

symmetric, the Spectral Theorem tells us it is orthogonally diagonalizable so suppose that C � QDQT where

Q �
[
u1 u2 u3 u4 u5

]
, D �


13 0 0 0 0
0 10 0 0 0
0 0 2 0 0
0 0 0 0 0
0 0 0 0 0


.

a. What is Vu2 , the variance in the u2 direction?

b. Find the variance of the data projected onto the line defined by u4. What does this say about the data?

c. What is the total variance of the data?

d. Consider the 2-dimensional subspace spanned by u1 and u2. If we project the data onto this subspace, what
fraction of the total variance is represented by the variance of the projected data?

e. How does this question change if we project onto the 3-dimensional subspace spanned by u1, u2, and u3?

f. What does this tell us about the data?
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Activity 7.3.3 We will work here with a dataset having 100 3-dimensional demeaned data points. Evaluating the
following cell will plot those data points and define the demeaned data matrix A whose shape is 3 × 100.

url= ' https :// raw.githubusercontent.com/davidaustinm/ '
url+= ' ula_modules/master/pca_demo.py '
sage.repl.load.load(url , globals ())

Notice that the data appears to cluster around a plane though it does not seem to be wholly contained within that
plane.

a. Use the matrix A to construct the covariance matrix C. Then determine the variance in the direction of u �
1/3
2/3
2/3

?
b. Find the eigenvalues of C and determine the total variance.

Notice that Sage does not necessarily sort the eigenvalues in decreasing order.

c. Use the right_eigenmatrix() command to find the eigenvectors of C. Remembering that the Sage command
B.column(1) retrieves the vector represented by the second column of B, define vectors u1, u2, and u3 represent-
ing the three principal components in order of decreasing eigenvalues. How can you check if these vectors are
an orthonormal basis for �3?

d. What fraction of the total variance is retained by projecting the data onto W1, the subspace spanned by u1?
What fraction of the total variance is retained by projecting onto W2, the subspace spanned by u1 and u2?
What fraction of the total variance do we lose by projecting onto W2?

e. If we project a data point x onto W2, the Projection Formula tells us we obtain

x̂ � (u1 · x)u1 + (u2 · x)u2.

Rather than viewing the projected data in�3, we will record the coordinates of x̂ in the basis defined by u1 and
u2; that is, we will record the coordinates [

u1 · x
u2 · x

]
.

Construct the matrix Q so that QTx �

[
u1 · x
u2 · x

]
.

f. Since each column of A represents a data point, the matrix QTA represents the coordinates of the projected
data points. Evaluating the following cell will plot those projected data points.

pca_plot(Q.T*A)

Notice how this plot enables us to view the data as if it were two-dimensional. Why is this plot wider than it
is tall?
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Activity 7.3.4 The next cell will load a dataset describing the average consumption of various food groups for citizens
in each of the four nations of the United Kingdom. The units for each entry are grams per person per week.

import pandas as pd
url= ' https :// raw.githubusercontent.com/davidaustinm/ '
url+= ' ula_modules/master/data/uk -diet.csv '
df = pd.read_csv(url , index_col =0)
data_mean = vector(df.T.mean())
A = matrix ([ vector(row) for row in (df.T-df.T.mean()).values ]).T
df

We will view this as a dataset consisting of four points in�17. As such, it is impossible to visualize and studying the
numbers themselves doesn’t lead to much insight.

In addition to loading the data, evaluating the cell above created a vector data_mean, which is the mean of the four
data points, and A, the 17 × 4 matrix of demeaned data.

a. What is the average consumption of Beverages across the four nations?

b. Find the covariance matrix C and its eigenvalues. Because there are four points in �17 whose mean is zero,
there are only three nonzero eigenvalues.

c. For what percentage of the total variance does the first principal component account?

d. Find the first principal component u1 and project the four demeaned data points onto the line defined by u1.
Plot those points on Figure 7.3.2

-500 -400 -300 -200 -100 100 200 300 400 5000

Figure 7.3.2 A plot of the demeaned data projected onto the first principal component.

e. For what percentage of the total variance do the first two principal components account?

f. Find the coordinates of the demeaned data points projected onto W2, the two-dimensional subspace of �17

spanned by the first two principal components.

Plot these coordinates in Figure 7.3.3.
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Figure 7.3.3 The coordinates of the demeaned data points projected onto the first two principal components.

g. What information do these plots reveal that is not clear from consideration of the original data points?

h. Study the first principal component u1 and find the first component of u1, which corresponds to the dietary
category Alcoholic Drinks. (To do this, you may wish to use N(u1, digits=2) for a result that’s easier to
read.) If a data point lies on the far right side of the plot in Figure 7.3.3, what does it mean about that nation’s
consumption of Alcoholic Drinks?
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Activity 7.3.5 In this activity, we’ll look at a well-known dataset⁵ that describes 150 irises representing three species
of iris: Iris setosa, Iris versicolor, and Iris virginica. For each flower, the length and width of its sepal and the length
and width of its petal, all in centimeters, are recorded.

Figure 7.3.8 One of the three species, iris versicolor, represented in the dataset showing three shorter petals and three
longer sepals. (Source: Wikipedia⁶, License: GNU Free Documetation License⁷)

Evaluating the following cell will load the dataset, which consists of 150 points in �4. In addition, we have a vector
data_mean, a four-dimensional vector holding the mean of the data points, and A, the 4× 150 demeaned data matrix.

url= ' https :// raw.githubusercontent.com/davidaustinm/ '
url+= ' ula_modules/master/pca_iris.py '
sage.repl.load.load(url , globals ())
df.T

Since the data is four-dimensional, we are not able to visualize it. Of course, we could forget about two of the
measurements and plot the 150 points represented by their, say, sepal length and sepal width.

sepal_plot ()

a. What is the mean sepal width?

b. Find the covariance matrix C and its eigenvalues.

c. Find the fraction of variance for which the first two principal components account.

d. Construct the first two principal components u1 and u2 along with the matrix Q whose columns are u1 and u2.

e. As we have seen, the columns of the matrix QTA hold the coordinates of the demeaned data points after
projecting onto W2, the subspace spanned by the first two principal components. Evaluating the following cell
shows a plot of these coordinates.

https://archive.ics.uci.edu/ml/datasets/Iris
https://commons.wikimedia.org/wiki/File:Iris_versicolor_3.jpg
https://commons.wikimedia.org/wiki/Commons:GNU_Free_Documentation_License,_version_1.2
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pca_plot(Q.T*A)

Suppose we have a flower whose coordinates in this plane are (−2.5,−0.75). To what species does this iris most
likely belong? Find an estimate of the sepal length, sepal width, petal length, and petal width for this flower.

f. Suppose you have an iris, but you only know that its sepal length is 5.65 cm and its sepal width is 2.75 cm.
Knowing only these two measurements, determine the coordinates (c1 , c2) in the plane where this iris lies. To
what species does this iris most likely belong? Now estimate the petal length and petal width of this iris.

g. Suppose youfind another iriswhose sepalwidth is 3.2 cmandwhose petalwidth is 2.2 cm. Find the coordinates
(c1 , c2) of this iris and determine the species to which it most likely belongs. Also, estimate the sepal length
and the petal length.
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7.4 Singular Value Decompositions

Preview Activity 7.4.1 Let’s review orthogonal diagonalizations and quadratic forms as our understanding of sin-
gular value decompositions will rely on them.

a. Suppose that A is any matrix. Explain why the matrix G � ATA is symmetric.

b. Suppose that A �

[
1 2
−2 −1

]
. Find the matrix G � ATA and write out the quadratic form qG

( [
x1
x2

] )
as a

function of x1 and x2.

c. What is the maximum value of qG(x) and in which direction does it occur?

d. What is the minimum value of qG(x) and in which direction does it occur?

e. What is the geometric relationship between the directions in which the maximum andminimum values occur?
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Activity 7.4.2 The following interactive figure will help us explore singular values and vectors geometrically before
we begin a more algebraic approach.

There is an interactive diagram, available at gvsu.edu/s/0YE, that accompanies this activity.

Figure 7.4.1 Singular values, right singular vectors and left singular vectors

Select the matrix A �

[
1 2
−2 −1

]
. As we vary the vector x, we see the vector Ax on the right in gray while the height

of the blue bar to the right tells us lA(x) � |Ax|.

a. The first singular value σ1 is the maximum value of lA(x) and an associated right singular vector v1 is a unit vector
describing a direction in which this maximum occurs.
Use the diagram to find the first singular value σ1 and an associated right singular vector v1.

b. The second singular value σ2 is the minimum value of lA(x) and an associated right singular vector v2 is a unit
vector describing a direction in which this minimum occurs.
Use the diagram to find the second singular value σ2 and an associated right singular vector v2.

c. Here’s how we can find the right singular values and vectors without using the diagram. Remember that
lA(x) �

√
qG(x) where G � ATA is the Gram matrix associated to A. Since G is symmetric, it is orthogonally

diagonalizable. Find G and an orthogonal diagonalization of it.

What is the maximum value of the quadratic form qG(x) among all unit vectors and in which direction does it
occur? What is the minimum value of qG(x) and in which direction does it occur?

d. Because lA(x) �
√

qG(x), the first singular value σ1 will be the square root of the maximum value of qG(x) and
σ2 the square root of the minimum. Verify that the singular values that you found from the diagram are the
square roots of the maximum and minimum values of qG(x).

e. Verify that the right singular vectors v1 and v2 that you found from the diagram are the directions in which
the maximum and minimum values occur.

f. Finally, we introduce the left singular vectors u1 and u2 by requiring that Av1 � σ1u1 and Av2 � σ2u2. Find the
two left singular vectors.

http://gvsu.edu/s/0YE


294 7 SINGULAR VALUE DECOMPOSITIONS

g. Form the matrices

U �
[
u1 u2

]
, Σ �

[
σ1 0
0 σ2

]
, V �

[
v1 v2

]
and explain why AV � UΣ.

h. Finally, explain why A � UΣVT and verify that this relationship holds for this specific example.
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Activity 7.4.3 In this activity, we will construct the singular value decomposition of A �

[
1 0 −1
1 1 1

]
. Notice that

this matrix is not square so there are no eigenvalues and eigenvectors associated to it.
a. Construct the Gram matrix G � ATA and find an orthogonal diagonalization of it.

b. Identify the singular values of A and the right singular vectors v1, v2, and v3. What is the dimension of these
vectors? How many nonzero singular values are there?

c. Find the left singular vectors u1 and u2 using the fact that Avi � σiui . What is the dimension of these vectors?
What happens if you try to find a third left singular vector u3 in this way?

d. As before, form the orthogonal matrices U and V from the left and right singular vectors. What are the shapes
of U and V? How do these shapes relate to the number of rows and columns of A?

e. Now form Σ so that it has the same shape as A:

Σ �

[
σ1 0 0
0 σ2 0

]
and verify that A � UΣVT .

f. How can you use this singular value decomposition of A � UΣVT to easily find a singular value decomposition

of AT �


1 1
0 1
−1 1

?
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Activity 7.4.4 Let’s suppose that a matrix A has a singular value decomposition A � UΣVT where

U �
[
u1 u2 u3 u4

]
, Σ �


20 0 0
0 5 0
0 0 0
0 0 0

 , V �
[
v1 v2 v3

]
.

a. What is the shape of A; that is, how many rows and columns does A have?

b. Suppose we write a three-dimensional vector x as a linear combination of right singular vectors:

x � c1v1 + c2v2 + c3v3.

We would like to find an expression for Ax.

To begin, VTx �


v1 · x
v2 · x
v3 · x

 �


c1
c2
c3

 .
Now ΣVTx �


20 0 0
0 5 0
0 0 0
0 0 0




c1
c2
c3

 �


20c1
5c2
0
0

 .
And finally, Ax � UΣVTx �

[
u1 u2 u3 u4

] 
20c1
5c2
0
0

 � 20c1u1 + 5c2u2.

To summarize, we have Ax � 20c1u1 + 5c2u2.
What condition on c1, c2, and c3 must be satisfied if x is a solution to the equation Ax � 40u1 + 20u2? Is there
a unique solution or infinitely many?

c. Remembering that u1 and u2 are linearly independent, what condition on c1, c2, and c3 must be satisfied if
Ax � 0?

d. How do the right singular vectors vi provide a basis for Nul(A), the subspace of solutions to the equation
Ax � 0?

e. Remember that b is in Col(A) if the equation Ax � b is consistent, which means that

Ax � 20c1u1 + 5c2u2 � b

for some coefficients c1 and c2. How do the left singular vectors ui provide an orthonormal basis for Col(A)?

f. Remember that rank(A) is the dimension of the column space. What is rank(A) and how do the number of
nonzero singular values determine rank(A)?
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Activity 7.4.5 Suppose we have a singular value decomposition A � UΣVT where

U �
[
u1 u2 u3 u4

]
, Σ �


18 0 0
0 4 0
0 0 0
0 0 0

 , V �
[
v1 v2 v3

]
.

a. What is the shape of A? What is rank(A)?

b. Identify bases for Col(A) and Col(AT).

c. Explain why

UΣ �
[
u1 u2

] [18 0 0
0 4 0

]
.

d. Explain why [
18 0 0
0 4 0

]
VT

�

[
18 0
0 4

] [
v1 v2

]T .

e. If A � UΣVT , explain why A � UrΣrVT
r where the columns of Ur are an orthonormal basis for Col(A), Σr is a

square, diagonal, invertible matrix, and the columns of Vr form an orthonormal basis for Col(AT).
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7.5 Using Singular Value Decompositions

Preview Activity 7.5.1 Suppose that A � UΣVT where

Σ �


13 0 0 0
0 8 0 0
0 0 2 0
0 0 0 0
0 0 0 0


,

vectors u j form the columns of U, and vectors v j form the columns of V .
a. What are the shapes of the matrices A, U, and V?

b. What is the rank of A?

c. Describe how to find an orthonormal basis for Col(A).

d. Describe how to find an orthonormal basis for Nul(A).

e. If the columns of Q form an orthonormal basis for Col(A), what is QTQ?

f. How would you form a matrix that projects vectors orthogonally onto Col(A)?
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Activity 7.5.2 Consider the equation Ax � b where
1 0
1 1
1 2

 x �


−1

3
6


a. Find a singular value decomposition for A using the Sage cell below. What are singular values of A?

b. What is r, the rank of A? How can we identify an orthonormal basis for Col(A)?

c. Form the reduced singular value decomposition UrΣrVT
r by constructing: the matrix Ur , consisting of the first

r columns of U; the matrix Vr , consisting of the first r columns of V ; and Σr , a square r × r diagonal matrix.
Verify that A � UrΣrVT

r .
You may find it convenient to remember that if B is a matrix defined in Sage, then B.matrix_from_columns(
list ) and B.matrix_from_rows( list ) can be used to extract columns or rows from B. For instance, you
may use B.matrix_from_rows([0,1,2]) to obtain a matrix formed from the first three rows of B.

d. How does the reduced singular value decomposition provide a matrix whose columns are an orthonormal
basis for Col(A)?

e. Explain why a least-squares approximate solution x̂ satisfies

Ax̂ � UrUT
r b.

f. What is the product VT
r Vr and why does it have this form?

g. Explain why
x̂ � VrΣ

−1
r UT

r b

is the least-squares approximate solution, and use this expression to find x̂.
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Activity 7.5.3 Let’s consider a matrix A � UΣVT where

U �


1
2

1
2

1
2

1
2

1
2

1
2 − 1

2 − 1
2

1
2 − 1

2
1
2 − 1

2
1
2 − 1

2 − 1
2

1
2

 , Σ �


500 0 0 0
0 100 0 0
0 0 20 0
0 0 0 4


V �


1
2

1
2

1
2

1
2

1
2 − 1

2 − 1
2

1
2

− 1
2 − 1

2
1
2

1
2

− 1
2

1
2 − 1

2
1
2


Evaluating the following cell will create the matrices U, V, and Sigma. Notice how the diagonal_matrix command
provides a convenient way to form the diagonal matrix Σ.

h = 1/2
U = matrix (4,4,[h,h,h,h, h,h,-h,-h, h,-h,h,-h, h,-h,-h,h])
V = matrix (4,4,[h,h,h,h, h,-h,-h,h, -h,-h,h,h, -h,h,-h,h])
Sigma = diagonal_matrix ([500 , 100, 20, 4])

a. Form the matrix A � UΣVT . What is rank(A)?

b. Now form the approximating matrix A1 � UΣ(1)VT . What is rank(A1)?

c. Find the error in the approximation A ≈ A1 by finding A − A1.

d. Now find A2 � UΣ(2)VT and the error A − A2. What is rank(A2)?

e. Find A3 � UΣ(3)VT and the error A − A3. What is rank(A3)?

f. What would happen if we were to compute A4?

g. What do you notice about the error A − Ak as k increases?
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Activity 7.5.4 Let’s revisit the iris data set that we studied in Section 7.3. Remember that there are fourmeasurements
given for each of 150 irises and that each iris belongs to one of three species.

Evaluating the following cell will load the dataset and define the demeaned data matrix A whose shape is 4 × 150.

url= ' https :// raw.githubusercontent.com/davidaustinm/ '
url+= ' ula_modules/master/pca_iris.py '
sage.repl.load.load(url , globals ())
df.T

a. Find the singular values of A using the command A.singular_values() anduse them to determine the variance
Vu j in the direction of each of the four principal components. What is the fraction of variance retained by the
first two principal components?

b. We will now write the matrix Γ � ΣVT so that A � UΓ. Suppose that a demeaned data point, say, the 100th
column of A, is written as a linear combination of principal components:

x � c1u1 + c2u2 + c3u3 + c4u4.

Explainwhy


c1
c2
c3
c4

 , the vector of coordinates of x in the basis of principal components, appears as 100th column

of Γ.

c. Suppose that we now project this demeaned data point x orthogonally onto the subspace spanned by the first
two principal components u1 and u2. What are the coordinates of the projected point in this basis and how can
we find them in the matrix Γ?

d. Alternatively, consider the approximation A2 � U2Σ2VT
2 of the demeaned data matrix A. Explain why the

100th column of A2 represents the projection of x onto the two-dimensional subspace spanned by the first two
principal components, u1 and u2. Then explain why the coefficients in that projection, c1u1 + c2u2, form the

two-dimensional vector
[

c1
c2

]
that is the 100th column of Γ2 � Σ2VT

2 .

e. Nowwe’ve seen that the columns of Γ2 � Σ2VT
2 form the coordinates of the demeaned data points projected on

to the two-dimensional subspace spanned by u1 and u2. In the cell below, find a singular value decomposition
of A and use it to form the matrix Gamma2. When you evaluate this cell, you will see a plot of the projected
demeaned data plots, similar to the one we created in Section 7.3.

# Form the SVD of A and use it to form Gamma2

Gamma2 =

# The following will plot the projected demeaned data points
data = Gamma2.columns ()
(list_plot(data [:50] , color= ' blue ' , aspect_ratio =1) +
list_plot(data [50:100] , color= ' orange ' ) +
list_plot(data [100:] , color= ' green ' ))
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Activity 7.5.5 Evaluating the following cell loads some data that we’ll use in this activity. To begin, it defines and
displays a 25 × 15 matrix A.

url= ' https :// raw.githubusercontent.com/davidaustinm/ '
url+= ' ula_modules/master/svd_compress.py '
sage.repl.load.load(url , globals ())
print(A)

a. If we interpret 0 as black and 1 as white, this matrix represents an image as shown below.

display_matrix(A)

We will explore how the singular value decomposition helps us to compress this image.

1. By inspecting the image represented by A, identify a basis for Col(A) and determine rank(A).
2. The following cell plots the singular values of A. Explain how this plot verifies that the rank is what you

found in the previous part.

plot_sv(A)

3. There is a command approximate(A, k) that creates the approximation Ak . Use the cell below to define
k and look at the images represented by the first few approximations. What is the smallest value of k for
which A � Ak?

k =
display_matrix(approximate(A, k))

4. Now we can see how the singular value decomposition allows us to compress images. Since this is a
25 × 15 matrix, we need 25 · 15 � 375 numbers to represent the image. However, we can also reconstruct
the image using a small number of singular values and vectors:

A � Ak � σ1u1vT
1 + σ2u2vT

2 + . . . + σkukvT
k .

What are the dimensions of the singular vectors ui and vi? Between the singular vectors and singular
values, how many numbers do we need to reconstruct Ak for the smallest k for which A � Ak? This is the
compressed size of the image.

5. The compression ratio is the ratio of the uncompressed size to the compressed size. What compression ratio
does this represent?

b. Next we’ll explore an example based on a photograph.

1. Consider the following image consisting of an array of 316 × 310 pixels stored in the matrix A.

A = matrix(RDF , image)
display_image(A)

Plot the singular values of A.

plot_sv(A)

2. Use the cell below to study the approximations Ak for k � 1, 10, 20, 50, 100.

k = 1
display_image(approximate(A, k))

Notice how the approximating image Ak more closely approximates the original image A as k increases.
What is the compression ratio when k � 50? What is the compression ratio when k � 100? Notice how a
higher compression ratio leads to a lower quality reconstruction of the image.
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c. A second, related application of the singular value decomposition to image processing is called denoising. For
example, consider the image represented by the matrix A below.

A = matrix(RDF , noise.values)
display_matrix(A)

This image is similar to the image of the letter ”O”we first studied in this activity, but there are splotchy regions
in the background that result, perhaps, from scanning the image. We think of the splotchy regions as noise,
and our goal is to improve the quality of the image by reducing the noise.

1. Plot the singular values below. How are the singular values of this matrix similar to those represented by
the clean image that we considered earlier and how are they different?

plot_sv(A)

2. There is a natural point where the singular values dramatically decrease so it makes sense to think of the
noise as being formed by the small singular values. To denoise the image, we will therefore replace A by
its approximation Ak , where k is the point at which the singular values drop off. This has the effect of
setting the small singular values to zero and hence eliminating the noise. Choose an appropriate value
of k below and notice that the new image appears to be somewhat cleaned up as a result of removing the
noise.

k =
display_matrix(approximate(A, k))
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Activity 7.5.6 Evaluating the following cell loads and displays a dataset describing the votes of each justice in these
911 cases. More specifically, an entry of +1 means that the justice represented by the row voted with the majority in
the case represented by the column. An entry of -1 means that justice was in the minority. This information is also
stored in the 9 × 911 matrix A.

url= ' https :// raw.githubusercontent.com/davidaustinm/ '
url+= ' ula_modules/master/svd_supreme.py '
sage.repl.load.load(url , globals ())
A = matrix(RDF , cases.values)
cases

The justices are listed, very roughly, in order from more conservative to more progressive.

In this activity, it will be helpful to visualize the entries in various matrices and vectors. The next cell displays the
first 50 columns of the matrix A with white representing an entry of +1, red representing -1, and black representing
0.

display_matrix(A.matrix_from_columns(range (50)))

a. Plot the singular values of A below. Describe the significance of this plot, including the relative contributions
from the singular values σk as k increases.

plot_sv(A)

b. Form the singular value decomposition A � UΣVT and the matrix of coefficients Γ so that A � UΓ.

c. We will now study a particular case, the second case which appears as the column of A indexed by 1. There
is a command display_column(A, k) that provides a visual display of the k th column of a matrix A. Describe
the justices’ votes in the second case.

d. Also, display the first left singular vector u1, the column of U indexed by 0, and the column of Γ holding the
coefficients that express the second case as a linear combination of left singular vectors.

What does this tell us about how the second case is constructed as a linear combination of left singular vectors?
What is the significance of the first left singular vector u1?

e. Let’s now study the 48th case, which is represented by the column of A indexed by 47. Describe the voting
pattern in this case.

f. Display the second left singular vector u2 and the vector of coefficients that express the 48th case as a linear
combination of left singular vectors.

Describe how this case is constructed as a linear combination of singular vectors. What is the significance of
the second left singular vector u2?

g. The data in Table 7.5.2 describes the number of cases decided by each possible vote count.
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Table 7.5.2 Number of cases by vote count

Vote count # of cases
9-0 405
8-1 89
7-2 111
6-3 118
5-4 188

How do the singular vectors u1 and u2 reflect this data? Would you characterize the court as leaning toward
the conservatives or progressives? Use these singular vectors to explain your response.

h. Cases decided by a 5-4 vote are often the most impactful as they represent a sharp divide among the justices
and, often, society at large. For that reason, we will now focus on the 5-4 decisions. Evaluating the next cell
forms the 9 × 188 matrix B consisting of 5-4 decisions.

B = matrix(RDF , fivefour.values)
display_matrix(B.matrix_from_columns(range (50)))

Form the singular value decomposition of B � UΣVT along with the matrix Γ of coefficients so that B � UΓ
and display the first left singular vector u1. Study how the 7th case, indexed by 6, is constructed as a linear
combination of left singular vectors.

What does this singular vector tell us about the make up of the court and whether it leans towards the conser-
vatives or progressives?

i. Display the second left singular vector u2 and study how the 6th case, indexed by 5, is constructed as a linear
combination of left singular vectors.

What does u2 tell us about the relative importance of the justices’ voting records?

j. By a swing vote, we mean a justice who is less inclined to vote with a particular bloc of justices but instead
swings from one bloc to another with the potential to sway close decisions. What do the singular vectors u1
and u2 tell us about the presence of voting blocs on the court and the presence of a swing vote? Which justice
represents the swing vote?
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