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and Hatim Ghazi Zaini

Hermite-Hadamard Inequalities in Fractional Calculus for Left and Right Harmonically Convex 
Functions via Interval-Valued Settings
Reprinted from: Fractal Fract. 2022, 6, 178, doi:10.3390/fractalfract6040178 . . . . . . . . . . . . . 225

Fatima Daqaq, Salah Kamel, Mohammed Ouassaid, Rachid Ellaia, and Ahmed M. Agwa

Non-Dominated Sorting Manta Ray Foraging Optimization for Multi-Objective Optimal Power
Flow with Wind/Solar/Small- Hydro Energy Sources
Reprinted from: Fractal Fract. 2022, 6, 194, doi:10.3390/fractalfract6040194 . . . . . . . . . . . . . 241

Ahmed H. A. Elkasem, Mohamed Khamies, Mohamed H. Hassan, Ahmed M. Agwa 
and Salah Kamel

Optimal Design of TD-TI Controller for LFC Considering Renewables Penetration by an 
Improved Chaos Game Optimizer
Reprinted from: Fractal Fract. 2022, 6, 220, doi:10.3390/fractalfract6040220 . . . . . . . . . . . . . 279

vi



About the Editor

Savin Treanţă
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1. Introduction

There are many applications of optimization and nonlinear analysis in various fields
of basic science, engineering, and natural phenomena. In this regard, we have provided
the Special Issue “Advances in Optimization and Nonlinear Analysis” to cover the new
advances in these mathematical areas. In this Special Issue, we have focused on publishing
research studies on optimization and nonlinear analysis by investigating the well-posedness
and optimal solutions in new classes of (multiobjective) variational (control) problems
governed by multiple and/or path-independent curvilinear integral cost functionals and
mixed and/or isoperimetric constraints involving first- and second-order partial differen-
tial equations. Additionally, some applications of fractional calculus or related subjects
(variational inequalities, equilibrium problems, fixed point problems, evolutionary prob-
lems, and so on) have been considered in this Special Issue. In response to our invitation,
we received 41 papers from 22 countries (Egypt, Saudi Arabia, Morocco, Pakistan, Mexico,
Romania, China, Iran, Tunisia, South Africa, Yemen, Korea, Turkey, Bangladesh, Australia,
Indonesia, Thailand, India, Ecuador, Albania, Spain, Malaysia), of which 15 were published
and 26 rejected/withdrawn.

2. Brief Overview of the Contributions

In a review conducted by Omar et al. [1], the spiral dynamics optimization (SDO)
algorithm was comprehensively reviewed. It is well-known that SDO algorithm is one
of the most straightforward physics-based optimization algorithms and it is successfully
applied in various broad fields. This review paper describes the recent advances of the SDO
algorithm, including its adaptive, improved, and hybrid approaches. The growth of the
SDO algorithm and its application in various areas, theoretical analysis, and comparison
with its preceding and other algorithms are also described in detail. A detailed description
of different spiral paths, their characteristics, and the application of these spiral approaches
in developing and improving other optimization algorithms are comprehensively pre-
sented. The review concludes the current works on the SDO algorithm, highlighting its
shortcomings and suggesting possible future research perspectives.

In [2], Treanţă studies the well posedness for a new class of optimization problems with
variational inequality constraints involving second-order partial derivatives. More precisely,
by using the notions of lower semicontinuity, pseudomonotonicity, hemicontinuity and
monotonicity for a multiple integral functional, and by introducing the set of approximating
solutions for the considered class of constrained optimization problems, he establishes
some characterization results on well posedness. Furthermore, to illustrate the theoretical
developments included in this paper, some examples are presented.

Thakur et al.’s [3] study in this Special Issue investigates the existence of positive solutions
for a class of fractional differential equations of arbitrary order δ > 2, subject to boundary
conditions that include an integral operator of the fractional type. The consideration of this
type of boundary conditions allows to consider heterogeneity on the dependence specified by
the restriction added to the equation as a relevant issue for applications. An existence result is
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obtained for the sublinear and superlinear case by using the Guo–Krasnosel’skii fixed point
theorem through the definition of adequate conical shells that allow to localize the solution.
As additional tools in the considered procedure, Thakur et al. obtain the explicit expression
of Green’s function associated to an auxiliary linear fractional boundary value problem, and
study some of its properties, such as the sign and some useful upper and lower estimates.
Finally, an example is given to illustrate the results.

A parametric intuitionistic fuzzy multi-objective fractional transportation problem
(PIF-MOFTP) is analyzed in El Sayed et al. [4]. The PIF-MOFTP includes a single-scalar
parameter in the objective functions and an intuitionistic fuzzy supply and demand. Based
on the (α, β)-cut concept, a parametric (α, β)-MOFTP is proposed. Then, a fuzzy goal
programming (FGP) approach is utilized to obtain (α, β)-Pareto optimal solution. Moreover,
the authors investigates the stability set associated with the first kind (SSFK) corresponding
to the solution by extending the Kuhn-Tucker optimality conditions of multi-objective
programming problems. Also, an algorithm to crystalize the progressing SSFK for PIF-
MOFTP is presented.

Vivas-Cortez et al. [5] use integral inequalities involving many fractional integral
operators in order to solve various fractional differential equations. More precisely, the
authors generalize the Hermite–Jensen–Mercer-type inequalities for an h-convex function
via a Caputo–Fabrizio fractional integral. They develop some novel Caputo–Fabrizio
fractional integral inequalities. Also, they establish Caputo–Fabrizio fractional integral
identities for differentiable mapping, and these will be used to give estimates for some
fractional Hermite–Jensen–Mercer-type inequalities. Some familiar results are recaptured
as special cases of these results.

In Lai et al. [6], the authors establish Fritz John stationary conditions for nonsmooth,
nonlinear, semidefinite, multiobjective programs with vanishing constraints in terms of
convexificator. Also, they introduce generalized Cottle type and generalized Guignard
type constraints qualification to achieve strong S—stationary conditions from Fritz John
stationary conditions. Further, the authors establish strong S—stationary necessary and suf-
ficient conditions, independently from Fritz John conditions. Some examples are provided
to validate the established results.

The purpose of the next paper Khan et al. [7] published in this Special Issue is to
introduce a new class of Hermite–Hadamard inequalities for LR-convex interval-valued
functions, by means of a pseudo-order relation. This order relation is defined on interval
space. Moreover, the interval Hermite–Hadamard–Fejér inequality is also derived for
LR-convex interval-valued functions. These inequalities also generalize some new and
known results. Useful examples that verify the applicability of the theory developed in this
study are presented.

The Lieb concavity theorem, successfully solved in the Wigner–Yanase–Dyson con-
jecture, is an important application of matrix concave functions. Recently, the Thomp-
son–Golden theorem, a corollary of the Lieb concavity theorem, was extended to deformed
exponentials. Hence, it is worthwhile to study the Lieb concavity theorem for deformed
exponentials. In Yang [8], the Pick function is used to obtain a generalization of the Lieb
concavity theorem for deformed exponentials, and some corollaries associated with exterior
algebra are obtained.

Nowadays, more and more consumers consider environmentally friendly products
in their purchasing decisions. Companies need to adapt to these changes while paying
attention to standard business systems such as payment terms. The purpose of the study
realized by Sultana et al. [9] is to optimize the entire profit function of a retailer and to
find the optimal selling price and replenishment cycle when the demand rate depends on
the price and carbon emission reduction level. This study investigates an economic order
quantity model that has a demand function with a positive impact of carbon emission
reduction besides the selling price. In this model, the supplier requests payment in advance
on the purchased cost while offering a discount according to the payment in the advanced
decision. Three different types of payment-in-advance cases are applied: (1) payment
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in advance with equal numbers of instalments, (2) payment in advance with a single
instalment, and (3) the absence of payment in advance. Numerical examples and sensitivity
analysis illustrate the proposed model. Here, the total profit increases for all three cases
with higher values of carbon emission reduction level. Further, the study finds that the
profit becomes maximum for case 2, whereas the selling price and cycle length become
minimum. This study considers the sustainable inventory model with payment-in-advance
settings when the demand rate depends on the price and carbon emission reduction level.

Convexity is crucial in obtaining many forms of inequalities. As a result, there is a
significant link between convexity and integral inequality. Due to the significance of these
concepts, the purpose of Khan et al.’s [10] study is to introduce a new class of generalized
convex interval-valued functions called (p, s)-convex fuzzy interval-valued functions (for
short, (p, s)-convex F-I-V-Fs) in the second sense and to establish Hermite–Hadamard
(for short, H–H) type inequalities for (p, s)-convex F-I-V-Fs using fuzzy order relation. In
addition, the authors demonstrate that the derived results include a large class of new and
known inequalities for (p, s)-convex F-I-V-Fs and their variant forms as special instances.
Furthermore, useful examples are given to demonstrate usefulness of the theory produced
in this study. These findings and diverse approaches may pave the way for future research
in fuzzy optimization, modeling, and interval-valued functions.

In the paper Sajjadmanesh et al. [11], the authors are interested in an inverse geometric
problem for the three-dimensional Laplace equation to recover an inner boundary of
an annular domain. This work is based on the method of fundamental solutions (MFS)
by imposing the boundary Cauchy data in a least-square sense and minimisation of the
objective function. This approach can also be considered with noisy boundary Cauchy data.
The simplicity and efficiency of this method is illustrated in several numerical examples.

Multiple attractors and their fractal basins of attraction can lead to the loss of global stability
and integrity of Micro Electro Mechanical Systems (MEMS). In the paper of Zhu et al. [12],
multistability of a class of electrostatic bilateral capacitive micro-resonator is researched in detail.
First, the dynamical model is established and made dimensionless. Second, via the perturbating
method and the numerical description of basins of attraction, the multiple periodic motions
under primary resonance are discussed. It is found that the variation of AC voltage can induce
safe jump of the micro resonator. In addition, with the increase of the amplitude of AC voltage,
hidden attractors and chaos appear. The results may have some potential value in the design of
MEMS devices.

The purpose of the study Khan et al. [13] is to define a new class of harmonically
convex functions, which is known as left and right harmonically convex interval-valued
functions (for short, LR-H-convex IV-F), and to establish novel inclusions for a newly
defined class of interval-valued functions (for short, IV-Fs) linked to Hermite–Hadamard
(for short, H-H) and Hermite–Hadamard–Fejér (H-H-Fejér) type inequalities via interval-
valued Riemann–Liouville fractional (for short, IV-RL-fractional) integrals. These findings
enable the authors to identify a new class of inclusions that may be seen as significant
generalizations. Some examples are included in the considered findings that may be used
to determine the validity of the results.

The study developed in Daqaq et al. [14] describes a novel manta ray foraging opti-
mization approach based non-dominated sorting strategy, namely (NSMRFO), for solving
the multi-objective optimization problems (MOPs). The proposed powerful optimizer
can efficiently achieve good convergence and distribution in both the search and objec-
tive spaces. In the NSMRFO algorithm, the elitist non-dominated sorting mechanism is
followed. Afterwards, a crowding distance with a non-dominated ranking method is inte-
grated for the purpose of archiving the Pareto front and improving the optimal solutions
coverage. To judge the NSMRFO performances, a bunch of test functions are carried out in-
cluding classical unconstrained and constrained functions, a recent benchmark suite known
as the completions on evolutionary computation 2020 (CEC2020) that contains twenty-four
multimodal optimization problems (MMOPs), some engineering design problems, and
also the modified real-world issue known as IEEE 30-bus optimal power flow involving
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the wind/solar/small-hydro power generations. Comparison findings with multimodal
multi-objective evolutionary algorithms (MMMOEAs) and other existing multi-objective
approaches with respect to performance indicators reveal the NSMRFO ability to balance
between the coverage and convergence towards the true Pareto front (PF) and Pareto
optimal sets (PSs). Thus, the competing algorithms fail in providing better solutions while
the proposed NSMRFO optimizer is able to attain almost all the Pareto optimal solutions.

The last paper published in the considered Special Issue (see Elkasem et al. [15])
presents an innovative strategy for load frequency control (LFC) using a combination struc-
ture of tilt-derivative and tilt-integral gains to form a TD-TI controller. Furthermore, a new
improved optimization technique, namely the quantum chaos game optimizer (QCGO)
is applied to tune the gains of the proposed combination TD-TI controller in two-area
interconnected hybrid power systems, while the effectiveness of the proposed QCGO is
validated via a comparison of its performance with the traditional CGO and other opti-
mizers when considering 23 bench functions. Correspondingly, the effectiveness of the
proposed controller is validated by comparing its performance with other controllers, such
as the proportional-integral-derivative (PID) controller based on different optimizers, the
tilt-integral-derivative (TID) controller based on a CGO algorithm, and the TID controller
based on a QCGO algorithm, where the effectiveness of the proposed TD-TI controller
based on the QCGO algorithm is ensured using different load patterns (i.e., step load per-
turbation (SLP), series SLP, and random load variation (RLV)). Furthermore, the challenges
of renewable energy penetration and communication time delay are considered to test the
robustness of the proposed controller in achieving more system stability. In addition, the
integration of electric vehicles as dispersed energy storage units in both areas has been
considered to test their effectiveness in achieving power grid stability. The simulation
results elucidate that the proposed TD-TI controller based on the QCGO controller can
achieve more system stability under the different aforementioned challenges.
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Abstract: This paper comprehensively reviews the spiral dynamics optimization (SDO) algorithm
and investigates its characteristics. SDO algorithm is one of the most straightforward physics-based
optimization algorithms and is successfully applied in various broad fields. This paper describes the
recent advances of the SDO algorithm, including its adaptive, improved, and hybrid approaches. The
growth of the SDO algorithm and its application in various areas, theoretical analysis, and comparison
with its preceding and other algorithms are also described in detail. A detailed description of different
spiral paths, their characteristics, and the application of these spiral approaches in developing and
improving other optimization algorithms are comprehensively presented. The review concludes the
current works on the SDO algorithm, highlighting its shortcomings and suggesting possible future
research perspectives.

Keywords: advances of SDO; applications of SDO; metaheuristic optimization; nature-inspired
algorithms; optimization problems; spiral dynamics optimization; spiral-inspired optimization
algorithms; spiral paths

1. Introduction

In engineering applications, metaheuristic optimization algorithms are more popular
and widely used for computing the optimal solution [1]. This broad application is because:

1. The algorithms are easy to implement and do not require gradient information as they
depend on relatively simple concepts;

2. The algorithms can avoid settling at optimal local solutions;
3. The algorithms can be applied to various problems of different fields.

A great variety of nature and population-based metaheuristic optimization algorithms
have been published in the literature [2]. As reported in [2], these algorithms are cate-
gorized into breeding-based, swarm intelligence-based, physics-based, chemistry-based,
social human behavior-based, plant-based, and others. Many developed metaheuristic
optimization algorithms published in the literature are swarm intelligence-based algo-
rithms. After swarm intelligence-based algorithms, physics-based algorithms are the most
widely proposed and implemented in various applications [3,4]. As the name suggests,
in swarm intelligence-based algorithms, some degree of intelligence is present in the algo-
rithm process while finding the optimal solution. However, in physics-based algorithms,
the algorithm process is based on specific laws or principles [3,5,6]. The main advantage
of physics-based algorithms compared to others is the most straightforwardness. This
is because the algorithm’s strategy is based on fundamental physical principles. Thus,
the algorithms can consistently and accurately represent the dynamics over the entire
domain. Further, some physics-based algorithms also take advantage of a nature-inspired
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ratio, called the golden ratio, which helps to converge quickly and effectively when finding
the optimal solution [7].

The most popular physics-based optimization algorithms are harmony search, gravi-
tational search algorithm (GSA), big bang big crunch, electromagnetic field optimization
(EFO), galaxy-based search [8], ray optimization, magnetic optimization, spiral dynamics
optimization [9], and water cycle optimization [10]. Spiral dynamics optimization (SDO) is
one of the most straightforward physics-based algorithms proposed by Tamura and Yasuda
in 2011, developed using a logarithmic spiral phenomenon in nature [9]. The algorithm is
simple and has few control parameters. Moreover, the algorithm has fast computational
speed, local searching capability, diversification in the early phase, and intensification in
the later stage.

This review paper provides the origin and concept of the SDO algorithm for an n-
dimensional system. The effect of variation of spiral parameters (radius and angle) for
two- and three-dimensional systems are analyzed by generating the conventional and
hypotrochoid spiral trajectories. Besides, the recent advances in SDO algorithm, including
adaptive, improved, and hybrid versions, are highlighted. The current applications of SDO
and its variants are also focused. Different types of spirals, coordinates on xy-plane, and tra-
jectories are generated to understand spiral behaviors. Further, various novel optimization
algorithms’ developments using these spirals are presented comprehensively. Therefore,
this review paper helps in guiding multiple researchers who are currently working and
willing to work by employing SDO and its variants to solve various engineering problems.
Moreover, the review helps in developing or improving existing algorithms using the
spiral phenomenon.

The paper’s remaining sections are organized as follows: the origin and concept of the
SDO algorithm and the effect of the spiral parameter in developing search trajectories are
presented in Section 2. Section 3 offers the recent adaptive, improved, and hybrid versions
of the SDO algorithm. Section 4 gives the different types of spiral trajectories and a list of
novel optimization algorithms created using these trajectories. The applications of SDO and
its hybrid versions are presented in Section 5. Finally, the paper is concluded in Section 6.

2. Spiral Dynamics Optimization Algorithm

This section presents the origin and the concept of the SDO algorithm for two-
dimensional and three-dimensional systems. A detailed analysis of the effect of varying
spiral parameters (radius and angle) is also presented.

2.1. Origin

Tamura and Yoshida developed the SDO algorithm in 2011 to mimic the spiral phe-
nomena in nature [9,11]. Many spirals are available in nature, such as galaxies, aurora,
blackbuck horns, hurricanes, tornadoes, seashells, snails, ammonites, cabbage butterflies,
Pieris brassicae, chameleon tail, seahorse, and fish vortex [12,13]. The spirals are also seen
in ancient art created by humanity during 5000 BC to 1600 AD [12]. Over the years, several
researchers have made efforts to understand the spiral sequences and complexities and
develop equations and algorithms of the spirals. Moreover, it is worth highlighting that
the frequently encountered spiral phenomenon in nature is the logarithmic spiral, which
can be seen in galaxies, tropical cyclones, and nautilus shells [14]. The discrete processes
of generating a logarithmic spiral have been realized as an effective search behavior in
metaheuristics, which inspired the spiral dynamics optimization algorithm to develop.

2.2. Concept

In the SDO algorithm, the multipoint search function for an n-dimensional system is
formulated as [15],

xk+1 = rR(n)(θ)xk − (rR(n)(θ)− In)x∗, (1)
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where r is the spiral radius, R(n)(θ) is the rotational matrix of order n× n, θ is the spiral
rotation angle, In is the identity matrix of order n× n, x∗ is the spiral center, xk and xk+1
are the search point positions at iterations k and k + 1, respectively.

The rotational matrix R(n)(θ) for an n-dimensional case on an arbitrary xixj-plane is
given as [9,16,17],

R(n)(θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0 0 0
0 1 0 . . . 0 0 0
0 0 cos(θi,j) . . . − sin(θi,j) 0 0
...

...
...

. . .
...

...
...

0 0 sin(θi,j) . . . cos(θi,j) 0 0
0 0 0 . . . 0 1 0
0 0 0 . . . 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2)

where θi,j is the spiral rotation angle around the origin on xixj-plane.
From (2), the only one possibility of rotational matrix R(2)(θ) for a two-dimensional

system on x1x2-plane is given as follows:

R(2)(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. (3)

On the other hand, the three possible combinations of rotational matrix R(3)(θ) for a
three-dimensional system on x1x2, x2x3, and x1x3-planes are respectively given as follows:

R(3)
1,2 (θ) =

⎡⎣cos(θ1,2) − sin(θ1,2) 0
sin(θ1,2) cos(θ1,2) 0

0 0 1

⎤⎦, (4)

R(3)
2,3 (θ) =

⎡⎣1 0 0
0 cos(θ2,3) − sin(θ2,3)
0 sin(θ2,3) cos(θ2,3)

⎤⎦, and (5)

R(3)
1,3 (θ) =

⎡⎣cos(θ1,3) 0 − sin(θ1,3)
0 1 0

sin(θ1,3) 0 cos(θ1,3)

⎤⎦. (6)

From (1), it is to be noted that the model generated the spiral trajectories around the
center x∗ and these trajectories are classified into two types [18,19]:

• If r > 1 and θ ∈ (−π
2 , π

2 ), the trajectory is a conventional spiral;
• If r < 1 and θ ∈ (−π

2 , π
2 ), the trajectory is a hypotrochoid spiral.

From the above classification, the spiral’s direction of rotation based on the value of θ
is classified as follows:

• If θ ∈ (−π
2 , 0), the rotation of trajectory is clockwise;

• If θ ∈ (0, π
2 ), the rotation of trajectory is anticlockwise.

The spiral trajectories for a two-dimensional system for various values of r ∈ [−1, 1]
and θ = π

8 is shown in Figure 1. Similarly, the trajectories for various values of θ ∈ [−π
2 , π

2 ]
and r = 0.85 for conventional spiral and r = −0.85 for hypotrochoid spiral are shown in
Figure 2. Further, the conventional and hypotrochoid spiral trajectories for both positive
and negative values of θ are shown in Figure 3. In all these cases, the starting point used in
the study is (25, 25).
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Figure 1. Spiral trajectories for a two-dimensional system for various values of r ∈ [−1, 1] and θ = π
8 :

(a) conventional spiral and (b) hypotrochoid spiral.
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Figure 2. Spiral trajectories for a two-dimensional system for various values of θ ∈ [−π
2 , π

2 ] and
r = 0.85 for conventional spiral in (a) and r = −0.85 for hypotrochoid spiral in (b).
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Figure 3. Spiral trajectories for a two-dimensional system for both positive and negative values of θ:
(a) conventional spiral and (b) hypotrochoid spiral.

Observing the notations k = 0, k = 1, . . . , k = 4 on spiral trajectories in Figures 1–3,
it can be noted that at each iteration, the spiral point from the starting point moves by an
angle θ and then tends towards the center x∗. Thus, the net effect is the spiral movement
of the initial point towards the center. The trajectories also depict the angle θ, controlling
the spiral curve. A smoother curve is achieved for smaller values of θ, compared to the
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boxy curved with larger values of θ (refer to Figure 2a). The spiral trajectories in Figure 3
show the clockwise and anticlockwise spiral movement for negative and positive angles,
respectively. On the other hand, the spiral radius r controls the spiral movement towards
the center x∗. A quick movement of spiral towards the center is achieved for smaller values
of r, compared to the slow movement with larger values of r (refer to Figures 1 and 2).
The hypotrochoid spirals shown in Figures 1b, 2b, and 3b are internal trajectories which are
generated along a circle. The advantage of a hypotrochoid spiral over conventional spirals
is it does not exceed the search space and can search most of the area in the search space.

In a similar way, the conventional and hypotrochoid spiral trajectories for a
three-dimensional system with r = 0.95 and θ = π

4 are shown in Figure 4. The trajec-
tory in Figure 4a on the x1x2-plane is obtained using the rotational matrix in (4). Similarly,
the trajectories in Figure 4b,c on the x2x3 and x1x3-planes are obtained using the rotational
matrices in (5) and (6), respectively. The starting point used is(25, 25, 25) in all of these cases.
The trajectories depict the conventional spiral with a positive r value and the hypotrochoid
spiral with a negative r value. As the θ value is positive, all the spiral movements are
anticlockwise. As mentioned earlier, the advantage of hypotrochoid spirals is they can
search most of the area in the search space, as shown in Figure 4. The search space of a
conventional spiral is only on the positive plane, while the hypotrochoid spirals search
space is both negative and positive. Thus, the trajectories in the figure conclude that the
hypotrochoid spirals can search most of the area in the search space.
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Figure 4. Conventional and hypotrochoid spiral trajectories for a three-dimensional system with
r = 0.95 and θ = π

4 : (a) on x1x2-plane with R1,2. (b) on x2x3-plane with R2,3. (c) on x1x3-plane
with R1,3.

3. Advances of Spiral Dynamics Optimization Algorithm

This section presents the recent adaptive, improved, and hybrid versions of the
SDO algorithm.

3.1. Adaptive Versions of Spiral Dynamics Optimization Algorithm

Researchers have developed the adaptive versions of the SDO algorithm by dynami-
cally varying the spirals’ radius and angle based on the fitness value during each iteration.
The four types of proposed adaptive approaches in the literature are linear, quadratic,
exponential, and fuzzy [16,20,21]. The mathematical functions of spirals’ radius and angle
using the proposed approaches are given in Figure 5.

In the figure, the notations are defined as follows:

• rla and θla are the computed radius and angle using linear adaptive approach;
• rqa and θqa are the obtained radius and angle using quadratic adaptive approach;
• rea and θea are the radius and angle obtained using exponential adaptive approach;
• r f a and θ f a are the calculated radius and angle using fuzzy adaptive approach;
• rl ∈ [0, 1] and ru ∈ [0, 1] are the minimum and maximum radius of spiral;
• θl ∈ [0, 1] and θu ∈ [0, 1] are the minimum and maximum angles of spiral;
• c1 and c2 are constants;
• fuzzy(·) is the fuzzy logic mapping;
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• YFit is the difference between fitness value at a current iteration f (xi(k)) and best
fitness min( f (xi(k))), is defined as,

YFit = f (xi(k))−min( f (xi(k))). (7)

In [17], using the linear adaptive approach in Figure 5, the authors have proposed
the adaptive hypotrochoid SDO algorithm. The proposed algorithm performs best on
various benchmark functions compared to conventional techniques. On the other hand,
in [22], a self-adaptive approach is proposed for the SDO algorithm to update the spiral
radius and angle during the optimization. The approach’s advantage is that all search
points are updated by randomly tuning the parameter values in each iteration. Similarly,
the authors of [23] have proposed an adaptive SDO by incorporating three mechanisms,
such as (i) bi-considering updation, (ii) self-adaptive radius, and (iii) punish mechanisms.
The proposed algorithm boosted the optimization efficiency and avoided trapping at the
local optimal minima.

Adaptive SDO 
Algorithm

Linear Adaptive

Fuzzy Adaptive

Exponential Adaptive Q
ua

dr
at

ic 
Ad

ap
tiv

e

Figure 5. Adaptive versions of the SDO algorithm.

3.2. Improved Versions of Spiral Dynamics Optimization Algorithm

As mentioned earlier in Section 2.2, the algorithm settles into optimal local values at the
end of the optimization process due to insufficient exploration of the conventional SDO’s
search space. Thus, to avoid this problem, Nasir et al. have proposed the improved SDO
algorithm using the bacterial foraging algorithms’ elimination–dispersal strategy [24,25].
In this enhanced version, the algorithm structure is kept the same. However, two new
phases, namely elimination and dispersal, are introduced. Similarly, Hashim et al. have
proposed the chaotic SDO algorithm logistic chaotic map patterns in the conventional
SDO [26,27]. The chaotic map pattern helps in the initial population distribution rather
than randomly in conventional SDO. Moreover, the search strategy of the artificial bee
colony optimization algorithm is employed to improve the SDO’s exploration capability.
The authors have also proposed the greedy SDO algorithm by incorporating the greedy
selection stage and chaotic logistic map in the conventional SDO [28]. In this selection
stage, the obtained solution is compared to the previous value for updating the spiral
positions. The authors of [18,19] have proposed the hypotrochoid SDO algorithm in which
the search points follow the hypotrochoid spiral rather than the conventional spiral in SDO.
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The proposed hypotrochoid SDO can explore the search space more effectively and explore
the whole neighborhood of the optimal center. The experimental validation on optimal
triaxial accelerometers placement in the Shanghai Tower in China [19], and sizing and
layout of truss structures [18] has shown the better performance of hypotrochoid SDO than
its predecessors.

The SDO algorithm in Section 2.2 is developed by utilizing a feature of the logarithmic
spiral. This algorithm is also known as a deterministic or direct-solving metaheuristic
optimization algorithm. One of the significant drawbacks of this algorithm is the slow
convergence. Therefore, the authors of [29–31] have proposed a stochastic SDO algorithm
by incorporating some random disturbances at each searching point of the algorithm.
Similarly, the authors of [32] have introduced the iterative SDO algorithm for analyzing the
information on blurred images. In this algorithm, the model’s output is given as an input to
the same model iteratively. Thus, the optimization algorithm searches for the sharp image
spirally with the blurred vision at the initial stage. On the other hand, the authors of [33]
have proposed the distributed SDO algorithm to increase the diversity in the search space.
In this conventional SDO algorithm, it is clear that the search points rotate spirally around
the optimal center only. Thus, the algorithm falls into the local minimum quickly. However,
in the proposed distributed SDO algorithm, the population of search points is split into
sub-populations to increase diversity and capture the whole search space. The summary of
all these approaches is given in Figure 6.
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Improved SDO Algorithm
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Improves the exploration rate of SDO
algorithm.

Chaotic SDO Algorithm

Uses logistic chaotic map patterns for
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Helps in exploring the search space
effectively.

Stochastic SDO Algorithm
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each searching point of the algorithm.
Improves the convergence speed of
conventional SDO algorithms.

Iterative SDO Algorithm

The model's output is given as an
input to the same model iteratively.
Increases the diversity in the search
space.

Distributed SDO Algorithm 

The population of search points is
split into sub-populations.
Increases the diversity in the search
space.

Figure 6. Improved versions of the SDO algorithm.

3.3. Hybrid Versions of Spiral Dynamics Optimization Algorithm

From the literature review, the following points are worth highlighting on the perfor-
mance of the SDO algorithm. SDO has the advantages of a simple structure, few control
parameters, and early diversification and intensification strategies. However, the SDO’s
performance is poor in searching the whole search space [20,34], and the exploration mech-
anism of the SDO needs to be improved [35]. The algorithm gets trapped at optimal local
minima easily [33].

Thus, to improve the performance of SDO, researchers have proposed the hybridiza-
tion of SDO with other algorithms. Further, various algorithms’ performance has also
been enhanced using SDO. The hybrid versions of the SDO algorithm presented in the
literature used an artificial bee colony (ABC) [36,37], antlion optimization (ALO) [38], bac-
terial chemotaxis algorithm (BCA) [20,34,39], bacterial foraging algorithm (BFA) [35,40,41],
biogeography-based optimization (BBO) [42], cuckoo search (CS) [43], genetic algorithm
(GA) [44], particle swarm optimization (PSO) [45–48], sine-cosine algorithm (SCA) [49],
and teaching–learning-based optimization (TLBO) [50], as shown in Figure 7. As shown in
the figure, the excellent exploitation strategy of SDO is hybridized with the fast exploration
strategy of another algorithm to balance both the exploitation and exploration phases.
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Figure 7. Hybrid versions of the SDO algorithm.

Moreover, there are several other novel optimization algorithms in which spiral behav-
ior or trajectory is used during the development of the algorithm. A detailed description of
various spiral paths and a list of novel spiral path-inspired optimization algorithms are
discussed in the following section.

4. Spiral Path Inspired Optimization Algorithms

The first part of this section presents the various spiral trajectories used to develop the
optimization algorithms. Then, the list of different novel optimization algorithms created
using these spirals is shown.

4.1. Spiral Paths

Patterns referred to as visible consistencies found in nature are trees, spirals, waves,
etc. Visual patterns in nature are modeled using chaos theory, fractals, spirals, etc. In some
natural patterns, the spirals and fractals are related. For instance, a variant of the logarithmic
spiral, namely the Fibonacci spiral, is based on the golden ratio and Fibonacci numbers.
As it is logarithmic, the curve at every scale appears the same and can be considered a fractal.
Romanesco broccoli is an example of such Fractal spirals. The above patterns inspired
researchers to develop optimization algorithms. Different types of spiral trajectories used
in the research include:

• Archimedes spira;
• Cycloid spiral;
• Epitrochoid spiral;
• Hypotrochoid spiral;
• Logarithmic spiral;
• Rose spiral;
• Inverse spiral; and
• Overshoot spirals.

A detailed description of the five most widely used spirals, including Archimedes,
logarithmic, rose, epitrochoid, and hypotrochoid, is provided underneath. This detailed
description includes the coordinates on the xy-plane and trajectories showing the effect of
each parameter on the xy-plane.
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4.1.1. Logarithmic Spiral

The logarithmic spirals often appear in nature. For instance, the nautilus cutaway,
Iceland’s low-pressure area, galaxies, and tropical cyclones arms usually take a logarithmic
spiral shape. The logarithmic spiral is also known as equiangular or growth spiral because
the spiral distance increases in geometric progression. The coordinates of a logarithmic
spiral on xy-plane are given as follows [13,38]:

x(φ) = a · ebφ · cos(φ), y(φ) = a · ebφ · sin(φ), (8)

where φ is the angle, a and b are the arbitrary constants.
The logarithmic spiral for a = 0.18, φ from −4π to 4π, and various b values is shown

in Figure 8. The spiral in Figure 8a is obtained for positive values of b, while Figure 8b is
obtained for negative values. The trajectories in Figure 8 show that parameter b controls
the tightness and the direction of the spiral. The trajectories in Figure 8a also depict the
logarithmic spiral proprieties that for positive b values and φ tends to +∞, the spiral
evolves in an anticlockwise direction. Whereas for the same b values and φ tends to −∞,
the spiral evolves in a clockwise direction. However, for negative b values, the spiral
evolves or twists in the opposite direction.

x(φ)
-4 -2 0 2 4 6 8

y(
φ

)

-6

-5

-4

-3

-2

-1

0

1

2

3

b = 0.1
b = 0.2
b = 0.3

(a)

x(φ)
-4 -2 0 2 4 6 8

y(
φ

)

-3

-2

-1

0

1

2

3

4

5

6

b = -0.1
b = -0.2
b = -0.3

(b)

Figure 8. Logarithmic spiral with various values of b: (a) logarithmic spiral with positive b values
and (b) logarithmic spiral with negative b values.

4.1.2. Archimedean Spiral

Archimedean spiral is another famous spiral that has been used in significant applica-
tions of engineering, biology, etc. The Archimedean spiral is also known as the arithmetic
spiral. This spiral can be seen in nature in ferns, millipedes, and human fingerprints.
The spiral trajectory is the locus of a point’s position that moves away from the fixed
point with a constant speed along a line that rotates with a constant angular velocity.
The coordinates of an Archimedean spiral on xy-plane is given as follows [13,38]:

x(ψ) = (c + d · ψ) · cos(ψ), y(ψ) = (c + d · ψ) · sin(ψ), (9)

where c and d are constants that define the spirals initial radius and the successive turns
difference, respectively.

The Archimedean spiral for c = 0.5, ψ from 0 to −7π, and various d values are shown
in Figure 9. The trajectory in Figure 9a is obtained for positive values of d, while Figure 9b
is obtained for negative values. As the initial radius is c = 0.5, all the spirals are starting
at this value, as shown in Figure 9. The spiral growth rate d controls the increment per
revolution. Thus, the distance between successive turns is constant, which is equal to the
value of d. Moreover, the parameter d controls the evolution of the spiral. The spiral in
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Figure 9a depicts that for positive d values, and the spiral evolves in an anticlockwise
direction. Whereas for negative d values, the spiral evolves clockwise.
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Figure 9. Archimedean spiral with various values of d: (a) Archimedean spiral with positive d values
and (b) Archimedean spiral with negative d values.

Observing the spirals in Figures 8 and 9 shows a difference between the Archimedean
and logarithmic spirals worth highlighting. In the Archimedean spiral, the intersection
points of a ray from the origin on successive turnings have a constant separation distance.
However, in a logarithmic spiral, these distance of intersection points on next turnings
from the origin will form a geometric progression.

4.1.3. Rose Spiral

As the name suggests, the rose spiral is often seen in the unfurling of rose petals and
holds the properties of symmetric and periodic arc curves. The coordinates of a rose spiral
on xy-plane is given as follows [13,38]:

x(ξ) = e · cos(nξ) · cos(ξ), y(ξ) = e · cos(nξ) · sin(ξ), (10)

where e and n are constants that define the pedal length and number, respectively.
The rose spiral with various values of e and n are shown in Figure 10. The spiral in

Figure 10a is achieved for n = 2 and multiple values of e. Similarly, the spiral in Figure 10b
is obtained for e = 2 and various values of n. In both cases, ξ ranges from 0 to 2. The spirals
in Figure 10a depict that parameter e controls the petal length. It is worth noting that as the
value of e increases, the petal length increases. The spirals in Figure 10b also show that n
controls petals’ number, size, and length. For an even value of n, the number of petals is 2n.
However, for odd values of n, the number of petals is only n.
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Figure 10. Rose spiral with various values of e and n: (a) rose spiral with constant n value and
variable e and (b) rose spiral with constant e value and variable n.
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4.1.4. Epitrochoid and Hypotrochoid Spirals

Epitrochoid and hypotrochoid spirals are a family of curves generated by a point
attached to a rolling circle. This rolling circle will roll out around the outside of a fixed
circle to form an epitrochoid spiral. On the other hand, to create a hypotrochoid spiral,
the rolling one will roll around inside the fixed one. Let ρ1 and ρ2 be the radii of rolling
and fixed circles, respectively, and f is the distance between the point and rolling circle’s
center. The coordinates of epitrochoid spiral on xy-plane is given as [13,38],

x(ζ) = (ρ2 + ρ1) · cos(ζ)− f · cos
(

ρ2 + ρ1

ρ1
ζ

)
, and

y(ζ) = (ρ1 + ρ2) · sin(ζ)− f · sin
(

ρ1 + ρ2

ρ1
ζ

)
.

(11)

Similarly, the coordinates of a hypotrochoid spiral on xy-plane is given as follows:

x(ζ) = (ρ2 − ρ1) · cos(ζ) + f · cos
(

ρ2 − ρ1

ρ1
ζ

)
, and

y(ζ) = (ρ2 − ρ1) · sin(ζ)− f · sin
(

ρ2 − ρ1

ρ1
ζ

)
.

(12)

The trajectories of epitrochoid and hypotrochoid spirals for ρ1 = 0.8, ρ2 = 3, d = 2.5,
and ζ ranging from 0 to 10π is shown in Figure 11a,b, respectively. In both spirals, it should
be noted that ζ significantly affects the spiral’s shape. If the considered ζ ranges from 0 to
2π, the rolling circle will revolve only once around the fixed circle. Thus, it is not possible
to obtain the whole pattern of the spiral. These spirals can be drawn using Spirograph
toys and often appear in nature. For instance, the planets orbit in a geocentric system,
and Wankel engines’ combustion chambers take these spiral shapes.

x(ζ)
-8 -6 -4 -2 0 2 4 6 8

y(
ζ
)

-8

-6

-4

-2

0

2

4

6

8

(a)

x(ζ)
-5 -4 -3 -2 -1 0 1 2 3 4 5

y(
ζ
)

-5

-4

-3

-2

-1

0

1

2

3

4

5

(b)

Figure 11. Epitrochoid and hypotrochoid spirals for ρ1 = 0.8, ρ2 = 3, and d = 2.5: (a) epitrochoid
spiral and (b) hypotrochoid spiral.

4.2. Spiral Path-Based Optimization Algorithms

Over the years, researchers have developed various novel optimization algorithms in
which the spiral motion has been used while mimicking the system’s behavior. Further,
an improved version of multiple algorithms is also proposed using spiral trajectories to
improve the performance of conventional techniques. Table 1 provides the list of spiral path-
inspired optimization techniques, including the inspiration of developing the algorithm,
the type of spiral used, and the source code links.
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For example, a detailed description of four novel optimization algorithms in which
spiral trajectory has been used in the development is explained underneath. The chosen
novel optimizations algorithms list includes moth–flame, whale, seagull, and Aquila.
Further, a detailed description of four improved optimization algorithms using spiral
trajectories is also explained in this section. The enhanced optimization algorithms are the
water cycle, antlion, slap swarm, and sparrow search. Some of these algorithms have been
widely used by various researchers recently, and others have been developed newly, thus
selected for the detailed explanation.

4.2.1. Moth–Flame Optimization Algorithm

The moth–flame optimization algorithm was developed in 2015 by Seyedali Mirjalili
from the behavior of moths’ navigation around the light/flame in a spiral path [52,72,73].
The application of a logarithmic spiral to mimic the moths’ transverse orientation property
around the flame in this algorithm is explained underneath. In the algorithm, the initial
moths’ positions will be updated with respect to flames using the logarithmic spiral as
follows [52,74]:

mi,j =

{
Di,j · ebτ · cos(2πτ) + fi,j, for i ≤ FN

Di,j · ebτ · cos(2πτ) + fN,j, for i > FN
, (13)

where mi,j, fi,j, and Di,j are the positions of jth variable of ith moth, flame, and distance
between the moth and its corresponding flame, N is the total number of flames. Further, b
and τ are the parameters of logarithmic spiral (refer to Section 4.1.1).

The major drawback of this algorithm is the premature convergence at optimal local
solutions during the search process. Moreover, they cannot be applied to permutation
problems as it is developed for continuous search space [75]. As mentioned in Table 1,
the source code of this optimization algorithm created using MATLAB for both single and
multiobjective problems is made publicly available by the developer on his website at
https://seyedalimirjalili.com/mfo (accessed on 1 December 2021). Further, the links for the
source code using other platforms, such as Python, C++, and R studio, are also available on
the same website.

4.2.2. Whale Optimization Algorithm

The whale optimization algorithm is a novel metaheuristic algorithm developed
in 2016 by Seyedali Mirjalili and Andrew Lewis to mimic whales’ hunting bubble net
phenomenon in a spiral motion [53,76–79]. The algorithm is a model of capturing whales’
behavior during the encircling, attacking, and searching of prey. During the encircling
phase, all the whales’ positions will be updated to move towards the best whale position,
which is near to the target and is given as,

�X(i + 1) = �X∗(i)− �A · |�C · �X∗(i)− �X(i)|. (14)

During the phase of attacking the prey, the whales move spirally using the bubble net
movement phenomenon. Thus, position updation of whales during this phenomenon in
logarithmic spiral motion is as follows:

�X(i + 1) = |�X∗(i)− �X(i)| · ebl · cos(2πl)�X∗(i). (15)

Finally, the whales will choose either encircling or attacking during the searching of
prey, which can be achieved using the following model:

�X(i + 1) =

{
�X∗(i)− �A · |�C · �X∗(i)− �X(i)|, p < 0.5,
|�X∗(i)− �X(i)| · ebl · cos(2πl)�X∗(i), p ≥ 0.5.

(16)
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Therefore, the position updation of all the whales during all three phases is summa-
rized as,

�X(i + 1) =

⎧⎪⎨⎪⎩
{
�X∗(i)− �A · |�C · �X∗(i)− �X(i)|, �A < 1,
�Xr(i)− �A · |�C · �Xr(i)− �X(i)|, �A ≥ 1,

p < 0.5,

|�X∗(i)− �X(i)| · ebl · cos(2πl)�X∗(i), p ≥ 0.5,

, (17)

where the vectors �X∗(i) is the closest whale’s position to the prey, �X(i) and �X(i + 1) are
the whales’ positions at ith and i + 1th iterations, �A and �C are the coefficients, b and l are
the parameters of logarithmic spiral (refer to Section 4.1.1). Further, it is to be noted that
for �A ≥ 1, positions updation has been achieved using �Xr(i), a random position vector at
ith iteration.

This whale optimization algorithm has the drawbacks of lower accuracy, slow conver-
gence, and being trapped into optimal local solutions and cannot solve higher-dimensional
problems effectively [80]. As given in Table 1, the source codes of this optimization al-
gorithm for single-objective problems using MATLAB, Python, C++, and R are publicly
available at https://seyedalimirjalili.com/woa (accessed on 1 December 2021).

4.2.3. Seagull Optimization Algorithm

Gaurav Dhiman et al. proposed the seagull optimization algorithm in 2019 to mimic
the seagulls’ migration and hunting behavior [56]. The algorithm is a mathematical model
of seagulls’ behavior in two stages, namely migration and attack. During the stage of
natural attacking, the seagulls maintain spiral behavior in the air. The coordinates of this
spiral behavior in x, y, and z planes are modeled as follows:

x = u · ekv · cos(k), y = u · ekv · sin(k), z = u · ekv · k, (18)

where k ∈ [0, 2π] is the spiral angle, u and v are the arbitrary constants.
The seagull optimization algorithm has the significant drawback of weak population

diversity during the search process [81]. The link to the MATLAB-based source code of this
optimization algorithm is given in Table 1.

4.2.4. Aquila Optimization Algorithm

The Aquila optimization algorithm was proposed in 2021 by Laith Abualigah et al. to
mimic Aquila’s behavior during prey catching [68]. The algorithm constitutes four stages:
(i) expanded exploration, (ii) narrowed exploration, (iii) expanded exploitation, and (iv)
narrowed exploitation. During the stage of narrowed exploration, the Aquila rotates over a
target prey for a short glide attack. This behavior is modeled as follows:

X(t + 1) = Xbest(t) · Levy() + Xr(t) + (y− x) · rand(), (19)

where Xr(t) and Xbest(t) are the random and best solutions at tth iteration, X(t + 1) so-
lution at (t + 1)th iteration, rand() ∈ (0, 1] is the random number, and Levy() is the Lévy
distribution. Further, x and y are the Cartesian coordinates of the spiral with radius r and
angle l given as follows:

x = r sin(l), y = r cos(l). (20)

From the above, it is to be highlighted that the Levy flight’s effect is relatively weak.
Thus, the algorithm has insufficient local exploitation ability [82]. The MATLAB and Java-
based source code link of this optimization algorithm for single-objective problems is given
in Table 1.
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4.2.5. Water Cycle Optimization Algorithm

The water cycle optimization algorithm was proposed in 2012 by Eskandar et al. to
mimic the natural hydrological cycle process [10,83,84]. The algorithm simulates the stream
and river flow, rainfall, and evaporation into the sea. In this algorithm, the position update
of (a) streams flow to the rivers, (b) streams flow to the sea, and (c) rivers flow to the sea
are respectively given as follows:

Xst(i + 1) = Xst(i) + rand() · C · (Xr(i)− Xst(i)), (21)

Xst(i + 1) = Xst(i) + rand() · C · (Xse(i)− Xst(i)), (22)

Xr(i + 1) = Xr(i) + rand() · C · (Xse(i)− Xr(i)), (23)

where Xst(i), Xr(i) and Xse(i) are the positions of stream, river, and sea at ith iteration,
Xst(i + 1), Xr(i + 1), and Xse(i + 1) are the positions of stream, river, and sea at (i + 1)th

iteration, C ∈ [1, 2] is the constant value and rand() ∈ (0, 1] is the random number.
The MATLAB-based source code of this conventional optimization algorithm for

both constrained and unconstrained problems, including several improved versions and
multiobjective problems, are made publicly available by the researcher on his website at
https://ali-sadollah.com/water-cycle-algorithm-wca/ (accessed on 1 December 2021).

The algorithm has insufficient exploitation ability, and thus, in [64], the authors
have integrated the hyperbolic spiral, which helps improve the exploitation ability of
the algorithm. Therefore, modified position update equations using the hyperbolic spiral
are given as follows:

Xst(i + 1) = Xst(i) + |Xr(i)− Xst(i)| · cos(2πl)/l, (24)

Xst(i + 1) = Xst(i) + |Xse(i)− Xst(i)| · cos(2πl)/l, (25)

Xr(i + 1) = Xr(i) + |Xse(i)− Xr(i)| · cos(2πl)/l, (26)

where l ∈ [−1, 1] is the parameter of hyperbolic spiral, which is an uniformly distributed
random number.

4.2.6. Ant Lion Optimization Algorithm

Seyedali Mirjalili proposed the antlion optimization algorithm in 2015 to mimic the
natural hunting phenomenon of antlions [85–88]. The algorithm is a model of capturing the
following ants and antlions behaviors: (i) the ants’ random walk behavior and gets trapped
in antlions pits and (ii) the antlions’ hunting behaviors include building traps, sliding ants
towards them, catching, rebuilding pits, and elitism. The algorithm retains the best antlion
with optimal fitness value, elitism, and the corresponding antlion is called elite antlion.
Thus, the elite and selected antlions update their position randomly as follows:

Anti(t) =
Re(t) + Ra(t)

2
, (27)

where Re(t) and Ra(t) are the elite and selected antlions random walk during tth iteration.
The MATLAB, Python, and R software-based source codes of this conventional opti-

mization algorithm for both single and multiobjective problems are made publicly available
by Seyedali Mirjalili on his website at https://seyedalimirjalili.com/alo (accessed on 1
December 2021).

In [38], the authors proposed an improved version of this algorithm. In this enhanced
version, the elite and selected antlions update their position using eight spiral complex
paths instead of moving in randomly to improve the convergence speed and performance.
These spiral trajectories include Archimedes, cycloid, epitrochoid, hypotrochoid, logarith-
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mic, rose, inverse, and overshoot spirals. For an example case, the values of Re(t) and Ra(t)
are computed using logarithmic spiral as,

Re(t) = D1 · eb1t cos(2πt1), Ra(t) = D1 · eb1t sin(2πt1), (28)

where D1, b1, and t1 are the parameters of logarithmic spiral (see Section 4.1.1).
Similarly, using the Archimedes spiral, the values of Re(t) and Ra(t) are computed as

follows:

Re(t) = D2 + b2 · t2 · cos(2πt2), Ra(t) = D2 + b2 · t2 · sin(2πt2), (29)

where D2, b2, and t2 are the parameters of Archimedes spiral (see Section 4.1.2).

4.2.7. Slap Swarm Optimization Algorithm

Slap swarm optimization algorithm was developed in 2017 by Seyedali Mirjalili et al.
to mimic the behavior of slap chains, which is searching for target food [89–92]. In the slap
chain, the first slap is the leader, and all the other slaps follow the leader. In the algorithm,
the update equations for the leader and followers’ positions during the searching of target
food are as follows:

X1
i =

{
Fi + r1((UBi − LBi)r2 + LBi), if r3 ≥ 0,
Fi − r1((UBi − LBi)r2 + LBi), if r3 < 0,

, (30)

Xj
i = 0.5(Xj

i + Xj−1
i ), j ≥ 2, (31)

where X1
i and Xj

i are the positions of leader and followers, Fi is the target food, LBi and
UBi are the lower and upper bounds of ith dimension, r1, r2, and r3 are random numbers.

The MATLAB-based source code of this optimization algorithm for both single and
multiobjective problems is made publicly available by the developer on his website at
https://seyedalimirjalili.com/ssa (accessed on 1 December 2021). Further, the links for the
source code using Python and R are also available on the same website.

However, in [65], it is stated that the conventional slap swarm optimization algorithm
(SSOA) has a slower convergence and gets trapped at local optima. Thus, the authors
have proposed an improved SSOA using a logarithmic spiral. In this improved algorithm,
the followers’ positions are updated using a logarithmic spiral as follows:

Xj
i = 0.5(Xj

i + Xj−1
i ) · ebθ · cos(2πθ), j ≥ 2, (32)

where b and θ are the parameters of logarithmic spiral (refer to Section 4.1.1).

4.2.8. Sparrow Search Optimization Algorithm

Jiankai Xue and Bo Shen proposed a sparrow search optimization algorithm in 2020
to mimic the sparrow’s behaviors during group wisdom, antipredation, and foraging [93].
In this algorithm, the sparrows’ population is divided into two groups of 20:80 as discovers
and followers. The discover have a broad search space to search for the food and guide the
followers to move towards the food source. The position update equation for the discover
sparrows during the searching of target food is as follows:

Xi,j(t + 1) =

{
Xi,j(t) · exp(− h

α·M ), if R2 < ST,
Xi,j(t) + Q · L, if R2 ≥ ST,

(33)

where Xi,j(t) and Xi,j(t + 1) are the ith discover sparrows’ position of jth dimension tth
and (t + 1)th iterations, h and M are the current and maximum number of iterations, Q is
a uniformly distributed random number, L is a row matrix with all values as one, α and
R2 ∈ [0, 1] are the random numbers, ST ∈ [0.5, 1] is the safety threshold values.
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The values of R2 and ST help indicate the safety of the food source area. Based on
these values, the type of environment around the food source area, predators status, and the
actions that need to be taken are classified as follows:

Condition =

{
Safe, No predators around, can search for food, if R2 < ST,
Unsafe, Predators around, fly to other safe area, if R2 ≥ ST.

(34)

As some of the followers closely follow the discoverers, they update their positions
to move towards the discovered food source area. The position update equation for the
follower sparrows towards the food source is as follows:

Xi,j(t + 1) =

⎧⎪⎨⎪⎩Q · exp
(

Xworst(t)−Xi,j(t)
i2

)
, if i > n/2,

Xp(t + 1) + |Xi,j(t)− Xp(t + 1)| · AT(AAT)−1 · L, otherwise,
(35)

where Xworst(t) is the group’s worst position at tth iteration, Xp(t + 1) is the discovers’
optimal position at (t + 1)th iteration, A is row matrix of randomly assigned with 1 or −1.
Further, i > n/2 indicates that the sparrows are in a danger position. Thus, the sparrows
make antipredation behavior. The MATLAB-based source code for implementing this
algorithm is available for registered users at https://www.mathworks.com/matlabcentral/
fileexchange/88788 (accessed on 1 December 2021).

However, in [66,94], the authors proposed a variable spiral search technique for the
followers to update their positions better. The position update equation of the followers
using this search strategy is as follows:

Xi,j(t + 1) =

⎧⎪⎨⎪⎩ezl · cos(2πl)Q · exp
(

Xworst(t)−Xi,j(t)
i2

)
, if i > n/2,

Xp(t + 1) + |Xi,j(t)− Xp(t + 1)| · AT(AAT)−1 · L, otherwise,
(36)

where z and l are the parameters of logarithmic spiral (refer to Section 4.1.1). Further,
the value of z is varied at every iteration, making the proposed technique a variable spiral
search approach.

5. Application of Spiral Dynamics Optimization Algorithm

The conventional and other variants of the SDO algorithm have been applied in
various fields for finding the optimal solution, as explained underneath.

5.1. Modeling and Controller Tuning

The application of SDO and its variants in the area of modeling and controller tuning
is as follows:

• Controller tuning [95];
• Controlling robotic arm movement [96];
• Flexible manipulator system [14,16,20,26,28,34,35];
• Stair descending in a wheelchair [97,98];
• Inverted pendulum [99];
• Twin rotor systems [25,34];
• Two-wheeled robotic vehicle [39].

Hassan et al. proposed using an SDO algorithm to tune the predictive proportional-
integral (PI) controller for wireless networked control systems [95]. Similarly, the authors
of [96] have utilized SDO in the tuning of proportional-integral-derivative (PID) in con-
trolling the robotic arm movement. Moreover, for both modeling and control of flexible
link manipulator systems, the authors of [14] have used conventional SDO. For the same
application, the authors of [20,34,35] proposed the hybridization of the SDO algorithm with
BCA and BFA. The improved and adaptive version of SDO is also presented for both mod-
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eling and control of a flexible link manipulator system [16,26,28]. In another application,
fuzzy control of a stair descending in a wheelchair, an SDO algorithm is used for tuning
of controller parameters. In [99], a hybrid algorithm using PSO and SDO is proposed for
the tuning of a fuzzy controller designed for the inverted pendulum. Nasir et al. have
proposed an improved SDO and hybrid algorithm using SDO and BFA to model twin rotor
systems [25,34]. The hybrid SDO and BFA algorithm has also been used for controlling the
two-wheeled robotic vehicles [39].

5.2. Electrical Energy Optimization

Similarly, the application of SDO and its variants in the area of optimizing electrical
energy systems is as follows:

• Digital filters [100];
• Economic/emission dispatch [14,101,102];
• Hybrid electrical vehicles [23];
• Maximizing power production of a wind farm [103];
• Multigeneration energy system [104];
• Network with power distribution [105].

The economic and emission dispatch problems in power systems have been solved
by various researchers using the SDO algorithm [14,101,102]. Similarly, an optimal strat-
egy using the SDO algorithm is proposed for maximum power production in the wind
farm [103]. A multiobjective SDO algorithm for a multigeneration energy system is pre-
sented for minimizing the total cost while maximizing energy efficiency [104]. In [105],
a hybrid algorithm using SDO and BFA is proposed to optimize decentralized generation
placement simultaneously. In another application, an optimal sizing strategy using the
adaptive version of the SDO algorithm has been presented for hybrid electric air–ground
vehicles [23]. The authors of [100] have proposed using SDO for the filter design. The al-
gorithm achieved better performance in achieving the desired magnitude response in the
multiobjective optimization task.

5.3. Mechanical Systems Optimization

Over the years, several mechanical systems have been optimized using the SDO
algorithm. The list of applications are as follows:

• Micro-channel heat sink [29,30];
• Automation of high-rise buildings [19];
• Planar, spatial truss structures [18];
• Pressure vessel design problems [38,50];
• Welded beam design problems [50].

Cruz et al. proposed the generalized and stochastic SDO algorithms to solve micro-
electronic thermal management problems [29,30]. The authors of [19] have proposed a
hypotrochoid SDO algorithm to optimize the sensor placement in the 632-meter-tall Shang-
hai Tower and compared the performance with seven optimization algorithms, including
its predictors. The authors of [18] also proposed the hypotrochoid SDO algorithm for
finding the optimal setting parameters of 10, 37, 52, 72, and 200-bar planar and spatial truss
structures. The use of spiral equation in improving the TLBO and antlion optimization
algorithms for pressure vessel design problems is presented in [38,50]. The improved TLBO
algorithm using logarithmic spiral trajectory is also applied to find the optimal setting
parameters for welded beam design problems [50].

5.4. Other Optimization Problems

The application of the SDO algorithm for other types of optimization problems are
as follows:

• 2D mesh topologies [106];
• Clustering problems [33];
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• Cubic polyhedral cages [107];
• Face image de-blurring [32];
• Neural network training [108,109];
• Sensor pattern sorting [110,111].

The authors of [107] are the first to showcase the problems and scope of spiral dy-
namics optimization applied to polyhedral cages. Another work before developing the
conventional SDO algorithm is reported in [106]. Here, a heuristic spiral mapping algo-
rithm is the first type of SDO applied for 2D mesh network topologies. For clustering
problems, distributed SDO is proposed in which the population of search space is split
into sub-populations [33]. Hong-Chun Jia et al. have proposed an efficient and intelligent
algorithm using SDO for deep neural networks [108]. The network is to find the optimal
physical health and fitness level in sports. Recently, James McCaffrey from Microsoft
Research has developed the SDO algorithm in Python to train the neural network to find
the optimal weights and biases values [112], the real-time implementation of a determin-
istic SDO algorithm using field-programmable gate arrays for spot patterns sorting in a
Shack–Hartmann wavefront sensor [110].

As mentioned earlier, the SDO and its variants have been applied in various applica-
tions. The summary of all applications is given in Table 2. The table provides the details
of the application system, including the dimension, software tool, cost function, type of
optimization problem, and comparison techniques. In the table, SO and MO are optimiza-
tion problems denoting single objective and multiobjective. The SDO validation and its
variants on various benchmark functions are also detailed. It is to highlight that the most
widely used error-based cost functions are: mean squared error (MSE), root mean squared
error (RMSE), and the sum of squared error (SSE). Similarly, the integral error functions
used in the research are integral squared error (ISE) and integral time absolute error (ITAE).
The errors are computed as follows:

MSE =
1
ns

ns

∑
i=1

(Ya −Yp)
2, (37)

RMSE =

√
1
ns

ns

∑
i=1

(Ya −Yp)2, (38)

ISE =
∫ ∞

t=0
e(t)dt, (39)

ITAE =
∫ ∞

t=0
t|e(t)|dt, (40)

where ns is the total number of samples, Ya and Yp are the actual and predicted values, e(t)
is the error, the difference between actual and reference values.
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6. Conclusions

6.1. Findings

SDO is a promising and fascinating algorithm that has been greatly appreciated in
the literature. The SDO algorithm’s advantages over other optimization algorithms lie in
its simplicity, ease of implementation, the requirement of few control parameters, and bet-
ter diversification and intensification strategies. This comprehensive review summarizes
the research outcomes published from 1997 until January 2022. The advances and vari-
ants of SDO, including adaptive, improved, and hybrid approaches for solving various
optimization problems, are critically analyzed. Further, the application of SDO and its
variants in multiple fields, including modeling, controller tuning, electrical energy systems,
mechanical systems, etc., is comprehensively summarized. Besides, a special interest is
devoted to highlighting various nature-inspired optimization algorithms fascinated by the
concept of spiral paths. This review is expected to draw the attention of the investigators,
experts, and researchers to solve the optimization problems using the SDO algorithm and
its variants.

6.2. Future Perspectives

This comprehensive review has helped open up new scopes in the field of spiral-
inspired optimization and is highlighted as such underneath.

• Even though the authors have tried to avoid the issue of settling at local optima
by the SDO algorithm, the issue is persisting. It requires a careful balance between
exploration and exploitation phases.

• The problem of insufficient search space exploration with the conventional SDO, which
uses a logarithmic spiral, can be overcome by judiciously selecting spirals. A few such
spirals are Fermat, Archimedean, etc., which seem suitable in the present context to
solve multiobjective problems. Specifically, the use of Fibonacci and a golden spiral is
expected to solve image processing optimization problems effectively as their spiral
behavior helps analyze the entire image.

• Dynamically varying control parameters in each iteration of SDO variants is still
unresolved, leading to lower accuracy of the optimal solution. The selection of suitable
adaptive functions for control parameters is required.

• There is a scope to improve the performance of several existing spiral-inspired optimiza-
tion algorithms either by utilizing the spiral position update equation of SDO or using
other spiral trajectories. Further, the natural behavior of nonspiral-inspired algorithms
can be modified using spiral paths for better accuracy in the optimal solution.

• The lack of a mathematical model for complex spiral trajectories, such as the Celtic
spiral, limits its use for better search space exploration. Hence, the development of
suitable models for such a complex spiral trajectory is expected to enhance the SDO
algorithm’s exploration performance.
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Abstract: In this paper, we studied the well posedness for a new class of optimization problems with
variational inequality constraints involving second-order partial derivatives. More precisely, by using
the notions of lower semicontinuity, pseudomonotonicity, hemicontinuity and monotonicity for a
multiple integral functional, and by introducing the set of approximating solutions for the considered
class of constrained optimization problems, we established some characterization results on well
posedness. Furthermore, to illustrate the theoretical developments included in this paper, we present
some examples.

Keywords: well posedness; constrained variational control problem; monotonicity; pseudomono-
tonicity; hemicontinuity; multiple integral functional; lower semicontinuity

1. Introduction

The notion of well posedness represents a useful mathematical tool by ensuring the
convergence of a sequence of approximate solutions to the exact solution of some optimiza-
tion problems. Starting with the work of Tykhonov [1] for unconstrained optimization
problems, various types of well posedness for variational problems have been considered
(see, for instance, Levitin-Polyak well posedness [2–5], extended well posedness [6–14]),
L-well posedness [15], α-well posedness [16,17]). Moreover, the concept of well posedness
can be useful to study some related problems, such as variational inequality and fixed point
problems [18–22], hemivariational inequality problems [23], complementary problems [24],
equilibrium problems [25,26], Nash equilibrium problems [27] and variational inclusion
problems [28]. Recently, the study of well posedness for vector variational inequalities and
the associated optimization problems was formulated by Jayswal and Shalini [29]. On the
other hand, an important and interesting extension of variational inequality problems is
that of multidimensional variational inequality problems and the corresponding multi-time
optimization problems (see [30–40]).

Motivated by the aforementioned research works, in this paper we analyze the well
posedness of a new class of constrained optimization problems governed by multiple inte-
gral functionals involving second-order partial derivatives. To this aim, first we introduce
new forms for the concepts of monotonicity, lower semicontinuity, pseudomonotonicity
and hemicontinuity associated with a multiple integral functional. Furthermore, we define
the set of approximating solutions for the considered optimization problem and establish
some characterization theorems on well posedness. The main novelty elements of this
paper are represented by the following: the mathematical framework is based on infinite-
dimensional function spaces, multiple integral functionals, the presence of second-order
partial derivatives, and innovative proofs of the main results. The aforementioned ele-
ments are completely new in the area of well-posed variational control problems. Most of
the previous works in this field have been studied in classical finite-dimensional spaces,
without taking into account the new notions mentioned above.

This paper is organized as follows. Section 2 provides the concepts of monotonicity,
pseudomonotonicity, hemicontinuity and the lower semicontinuity of a multiple integral
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functional, and an auxiliary lemma. Section 3 investigates the well posedness for the
considered constrained optimization problem. Concretely, we establish that well posedness
and the existence and uniqueness of a solution are equivalent in the aforementioned
problem. Furthermore, some examples are formulated throughout the paper to highlight
the theoretical elements. Finally, in Section 4, we present the conclusions and provide
further developments.

2. Preliminaries

Throughout this work, we consider the following mathematical tools and notations:
let Ω be a compact set in Rm and Ω � ζ = (ζα), α = 1, m; consider A as the space of

C4-class state functions a : Ω → Rn and aα :=
∂a

∂ζα
, aβγ :=

∂2a
∂ζβ∂ζγ

denote the partial

speed and partial acceleration, respectively; also, consider U ass the space of C1-class control
functions u : Ω → Rk, and consider A×U as a closed, convex and non-empty subset of
A×U , (a, u)|∂Ω = given, endowed with the scalar product:

〈(a, u), (b, w)〉 =
∫

Ω
[a(ζ) · b(ζ) + u(ζ) · w(ζ)

]
dζ

=
∫

Ω

[ n

∑
i=1

ai(ζ)bi(ζ) +
k

∑
j=1

uj(ζ)wj(ζ)
]
dζ, ∀(a, u), (b, w) ∈ A× U

and the induced norm, where dζ = dζ1 · · · dζm denotes the volume element on Rm.

Consider J2(Rm,Rn) as the second-order jet bundle associated with Rm and Rn. Taking
the scalar continuously differentiable function f : J2(Rm,Rn)×Rk → R, we introduce the
following multiple integral-type functional:

F : A×U → R, F(a, u) =
∫

Ω
f
(
ζ, a(ζ), aα(ζ), aβγ(ζ), u(ζ)

)
dζ.

At this moment, we are able to introduce the following constrained variational control
problem (in short, CVCP), given as follows (we use the notation (πa,u(ζ)) := (ζ, a(ζ), aα(ζ),
aβγ(ζ), u(ζ))):

(CVCP) Minimize(a,u)

∫
Ω

f (πa,u(ζ))dζ

subject to (a, u) ∈ Θ,

where Θ is the solution set of the controlled variational inequality problem (in short, CVIP): to
find a pair (a, u) ∈ A×U such that:

(CVIP)
∫

Ω

[∂ f
∂a

(πa,u(ζ))(b(ζ)− a(ζ)) +
∂ f
∂aα

(πa,u(ζ))Dα(b(ζ)− a(ζ))

+
1

n(β, γ)

∂ f
∂aβγ

(πa,u(ζ))D2
βγ(b(ζ)− a(ζ))

+
∂ f
∂u

(πa,u(ζ))(w(ζ)− u(ζ))
]
dζ ≥ 0, ∀(b, w) ∈ A×U,

where D2
βγ := Dβ(Dγ), and n(β, γ) is the Saunders’s multi-index notation (see Saun-

ders [41], Treanţă [40]).
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More precisely, the feasible solution set for (CVIP) is given by

Θ =
{
(a, u) ∈ A×U :

∫
Ω

[
(b(ζ)− a(ζ))

∂ f
∂a

(πa,u(ζ))

+ Dα(b(ζ)− a(ζ))
∂ f
∂aα

(πa,u(ζ)) + (w(ζ)− u(ζ))
∂ f
∂u

(πa,u(ζ))

+
1

n(β, γ)
D2

βγ(b(ζ)− a(ζ))
∂ f

∂aβγ
(πa,u(ζ))

]
dζ ≥ 0,

∀(b, w) ∈ A×U
}

.

Next, we define the notions of monotonicity and pseudomonotonicity for the aforemen-
tioned multiple integral functional.

Definition 1. The multiple integral functional F(a, u) =
∫

Ω
f (πa,u(ζ))dζ is called monotone on

A×U if the following inequality holds:∫
Ω

[
(a(ζ)− b(ζ))

(
∂ f
∂a

(πa,u(ζ))− ∂ f
∂a

(πb,w(ζ))

)
+ (u(ζ)− w(ζ))

(
∂ f
∂u

(πa,u(ζ))− ∂ f
∂u

(πb,w(ζ))

)
+ Dα(a(ζ)− b(ζ))

(
∂ f
∂aα

(πa,u(ζ))− ∂ f
∂aα

(πb,w(ζ))

)
+

1
n(β, γ)

D2
βγ(a(ζ)− b(ζ))

(
∂ f

∂aβγ
(πa,u(ζ))− ∂ f

∂aβγ
(πb,w(ζ))

)]
dζ ≥ 0,

∀(a, u), (b, w) ∈ A×U.

Definition 2. The multiple integral functional F(a, u) =
∫

Ω
f (πa,u(ζ))dζ is called pseudomono-

tone on A×U if the following implication holds:∫
Ω

[
(a(ζ)− b(ζ))

∂ f
∂a

(πb,w(ζ)) + (u(ζ)− w(ζ))
∂ f
∂u

(πb,w(ζ))

+Dα(a(ζ)− b(ζ))
∂ f
∂aα

(πb,w(ζ))

+
1

n(β, γ)
D2

βγ(a(ζ)− b(ζ))
∂ f

∂aβγ
(πb,w(ζ))

]
dζ ≥ 0

⇒
∫

Ω

[
(a(ζ)− b(ζ))

∂ f
∂a

(πa,u(ζ)) + (u(ζ)− w(ζ))
∂ f
∂u

(πa,u(ζ))

+Dα(a(ζ)− b(ζ))
∂ f
∂aα

(πa,u(ζ))

+
1

n(β, γ)
D2

βγ(a(ζ)− b(ζ))
∂ f

∂aβγ
(πa,u(ζ))

]
dζ ≥ 0, ∀(a, u), (b, w) ∈ A×U.

Let us give an example of a multiple integral-type functional which is not monotone
but is pseudomonotone.

Example 1. Consider n = k = 1, m = 2, and Ω = [0, 3]2. We define:

f (πa,u(ζ)) = 2 sin a(ζ) + u(ζ)eu(ζ)
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and show, in accordance with Definition 2, that the multiple integral functional F(a, u) =∫
Ω

f (πa,u(ζ))dζ is pseudomonotone on A × U = C4(Ω, [−1, 1]) × C1(Ω, [−1, 1]). Indeed,

we have: ∫
Ω

[
(a(ζ)− b(ζ))

∂ f
∂a

(πb,w(ζ)) + (u(ζ)− w(ζ))
∂ f
∂u

(πb,w(ζ))

+Dα(a(ζ)− b(ζ))
∂ f
∂aα

(πb,w(ζ))

+
1

n(β, γ)
D2

βγ(a(ζ)− b(ζ))
∂ f

∂aβγ
(πb,w(ζ))

]
dζ

=
∫

Ω

[
2(a(ζ)− b(ζ)) cos b(ζ) + (u(ζ)− w(ζ))(ew(ζ) + w(ζ)ew(ζ))

]
dζ ≥ 0,

∀(a, u), (b, w) ∈ A×U

⇒
∫

Ω

[
(a(ζ)− b(ζ))

∂ f
∂a

(πa,u(ζ)) + (u(ζ)− w(ζ))
∂ f
∂u

(πa,u(ζ))

+Dα(a(ζ)− b(ζ))
∂ f
∂aα

(πa,u(ζ))

+
1

n(β, γ)
D2

βγ(a(ζ)− b(ζ))
∂ f

∂aβγ
(πa,u(ζ))

]
dζ

=
∫

Ω

[
2(a(ζ)− b(ζ)) cos a(ζ) + (u(ζ)− w(ζ))(eu(ζ) + u(ζ)eu(ζ))

]
dζ ≥ 0,

∀(a, u), (b, w) ∈ A×U.

However, it is not monotone on A×U in the sense of Definition 1, because:∫
Ω

[
(a(ζ)− b(ζ))

(
∂ f
∂a

(πa,u(ζ))− ∂ f
∂a

(πb,w(ζ))

)
+ (u(ζ)− w(ζ))

(
∂ f
∂u

(πa,u(ζ))− ∂ f
∂u

(πb,w(ζ))

)
+ Dα(a(ζ)− b(ζ))

(
∂ f
∂aα

(πa,u(ζ))− ∂ f
∂aα

(πb,w(ζ))

)
+

1
n(β, γ)

D2
βγ(a(ζ)− b(ζ))

(
∂ f

∂aβγ
(πa,u(ζ))− ∂ f

∂aβγ
(πb,w(ζ))

)]
dζ

=
∫

Ω

[
2(a(ζ)− b(ζ))(cos a(ζ)− cos b(ζ))

+ (u(ζ)− w(ζ))(u(ζ)eu(ζ) + eu(ζ) − w(ζ)ew(ζ) − ew(ζ))
]
dζ � 0,

∀(a, u), (b, w) ∈ A×U.

Then, in accordance with Usman and Khan [42], we define the concept of hemicontinu-
ity for the considered multiple integral-type functional.

Definition 3. The functional F(a, u) =
∫

Ω
f (πa,u(ζ))dζ is hemicontinuous on A × U if the

application:

λ→
〈
((a(ζ), u(ζ))− (b(ζ), w(ζ)),

(
δF
δaλ

(ζ),
δF
δuλ

(ζ)

)〉
, 0 ≤ λ ≤ 1
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is continuous at 0+, for ∀(a, u), (b, w) ∈ A×U, where:

δF
δaλ

(ζ) :=
∂ f
∂a

(πaλ ,uλ
(ζ))− Dα

∂ f
∂aα

(πaλ ,uλ
(ζ)) +

1
n(β, γ)

D2
βγ

∂ f
∂aβγ

(πaλ ,uλ
(ζ)) ∈ A,

δF
δuλ

(ζ) :=
∂ f
∂u

(πaλ ,uλ
(ζ)) ∈ U,

aλ := λa + (1− λ)b, uλ := λu + (1− λ)w.

The following lemma is an auxiliary result for proving the main results derived in the
present paper.

Lemma 1. Consider F(a, u) =
∫

Ω
f (πa,u(ζ))dζ is pseudomonotone and hemicontinuous on

A×U. The pair (a, u) ∈ A×U is a solution for (CVIP) if and only if (a, u) is a solution for the
following variational inequality problem:∫

Ω

[
(b(ζ)− a(ζ))

∂ f
∂a

(πb,w(ζ)) + (w(ζ)− u(ζ))
∂ f
∂u

(πb,w(ζ))

+Dα(b(ζ)− a(ζ))
∂ f
∂aα

(πb,w(ζ))

+
1

n(β, γ)
D2

βγ(b(ζ)− a(ζ))
∂ f

∂aβγ
(πb,w(ζ))

]
dζ ≥ 0, ∀(b, w) ∈ A×U.

Proof. Consider that the pair (a, u) ∈ A×U is the solution for (CVIP). As a consequence,
it results that: ∫

Ω

[
(b(ζ)− a(ζ))

∂ f
∂a

(πa,u(ζ)) + (w(ζ)− u(ζ))
∂ f
∂u

(πa,u(ζ))

+Dα(b(ζ)− a(ζ))
∂ f
∂aα

(πa,u(ζ))

+
1

n(β, γ)
D2

βγ(b(ζ)− a(ζ))
∂ f

∂aβγ
(πa,u(ζ))

]
dζ ≥ 0, ∀(b, w) ∈ A×U.

By using the pseudomonotonicity property of the considered multiple integral functional
(see Definition 2), the previous inequality involves:∫

Ω

[
(b(ζ)− a(ζ))

∂ f
∂a

(πb,w(ζ)) + (w(ζ)− u(ζ))
∂ f
∂u

(πb,w(ζ))

+Dα(b(ζ)− a(ζ))
∂ f
∂aα

(πb,w(ζ))

+
1

n(β, γ)
D2

βγ(b(ζ)− a(ζ))
∂ f

∂aβγ
(πb,w(ζ))

]
dζ ≥ 0, ∀(b, w) ∈ A×U.

Conversely, assume that:∫
Ω

[
(b(ζ)− a(ζ))

∂ f
∂a

(πb,w(ζ)) + (w(ζ)− u(ζ))
∂ f
∂u

(πb,w(ζ))

+Dα(b(ζ)− a(ζ))
∂ f
∂aα

(πb,w(ζ))

+
1

n(β, γ)
D2

βγ(b(ζ)− a(ζ))
∂ f

∂aβγ
(πb,w(ζ))

]
dζ ≥ 0, ∀(b, w) ∈ A×U.
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For λ ∈ (0, 1] and (b, w) ∈ A×U, we define:

(bλ, wλ) = ((1− λ)a + λb, (1− λ)u + λw) ∈ A×U.

Thus, the above inequality implies:∫
Ω

[
(bλ(ζ)− a(ζ))

∂ f
∂a

(πbλ ,wλ
(ζ)) + (wλ(ζ)− u(ζ))

∂ f
∂u

(πbλ ,wλ
(ζ))

+Dα(bλ(ζ)− a(ζ))
∂ f
∂aα

(πbλ ,wλ
(ζ))

+
1

n(β, γ)
D2

βγ(bλ(ζ)− a(ζ))
∂ f

∂aβγ
(πbλ ,wλ

(ζ))
]
dζ ≥ 0, (b, w) ∈ A×U.

By considering λ→ 0, we obtain:∫
Ω

[
(b(ζ)− a(ζ))

∂ f
∂a

(πa,u(ζ)) + (w(ζ)− u(ζ))
∂ f
∂u

(πa,u(ζ))

+Dα(b(ζ)− a(ζ))
∂ f
∂aα

(πa,u(ζ))

+
1

n(β, γ)
D2

βγ(b(ζ)− a(ζ))
∂ f

∂aβγ
(πa,u(ζ))

]
dζ ≥ 0, ∀(b, w) ∈ A×U,

which proves that (a, u) solves (CVIP). This completes the proof of this lemma.

Now, we give the definition of lower semicontinuity for the multiple integral functional

F(a, u) =
∫

Ω
f (πa,u(ζ))dζ.

Definition 4. The multiple integral functional F(a, u) =
∫

Ω
f (πa,u(ζ))dζ is called lower semi-

continuous at a point (a0, u0) ∈ A×U if:∫
Ω

f (πa0,u0(ζ))dζ ≤ lim
(a,u)→(a0,u0)

inf
∫

Ω
f (πa,u(ζ))dζ.

3. Well Posedness Associated with (CVCP)

In this section, by considering the notions introduced in Section 2, we study the well
posedness for the considered class of constrained optimization problems (CVCPs). To this
aim, we introduce the following definitions and notations.

Denote by S solution set of (CVCP), namely:

S =
{
(a, u) ∈ A×U |

∫
Ω

f (πa,u(ζ))dζ ≤ inf
(b,w)∈Θ

∫
Ω

f (πb,w(ζ))dζ and∫
Ω

[
(b(ζ)− a(ζ))

∂ f
∂a

(πa,u(ζ)) + (w(ζ)− u(ζ))
∂ f
∂u

(πa,u(ζ))

+ Dα(b(ζ)− a(ζ))
∂ f
∂aα

(πa,u(ζ))

+
1

n(β, γ)
D2

βγ(b(ζ)− a(ζ))
∂ f

∂aβγ
(πa,u(ζ))

]
dζ ≥ 0, ∀(b, w) ∈ A×U

}
.
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Consider the set of approximating solutions of (CVCP), for σ, ι ≥ 0, as follows:

S(σ, ι) =
{
(a, u) ∈ A×U |

∫
Ω

f (πa,u(ζ))dζ ≤ inf
(b,w)∈Θ

∫
Ω

f (πb,w(ζ))dζ + σ and∫
Ω

[
(b(ζ)− a(ζ))

∂ f
∂a

(πa,u(ζ)) + (w(ζ)− u(ζ))
∂ f
∂u

(πa,u(ζ))

+ Dα(b(ζ)− a(ζ))
∂ f
∂aα

(πa,u(ζ))

+
1

n(β, γ)
D2

βγ(b(ζ)− a(ζ))
∂ f

∂aβγ
(πa,u(ζ))

]
dζ + ι ≥ 0, ∀(b, w) ∈ A×U

}
.

Remark 1. For (σ, ι) = (0, 0), we obtain S = S(σ, ι), and for (σ, ι) > (0, 0), we obtain
S ⊆ S(σ, ι).

Definition 5. The sequence {(an, un)} is an approximating sequence for (CVCP) if there exists
ιn → 0 (a sequence of positive real numbers) as n→ ∞, such that:

lim
n→∞

sup
∫

Ω
f (πan ,un(ζ))dζ ≤ inf

(b,w)∈Θ

∫
Ω

f (πb,w(ζ))dζ

and: ∫
Ω

[
(b(ζ)− an(ζ))

∂ f
∂a

(πan ,un(ζ)) + (w(ζ)− un(ζ))
∂ f
∂u

(πan ,un(ζ))

+Dα(b(ζ)− an(ζ))
∂ f
∂aα

(πan ,un(ζ))

+
1

n(β, γ)
D2

βγ(b(ζ)− an(ζ))
∂ f

∂aβγ
(πan ,un(ζ))

]
dζ + ιn ≥ 0, ∀(b, w) ∈ A×U

are fulfilled.

Definition 6. The constrained optimization (CVCP) is well posed if:

(i) it admits a single solution (a0, u0);
and (ii) each approximating sequence of (CVCP) converges to (a0, u0).

Furthermore, denote by “diam B” the diameter of the set B and it is defined as follows

diam B = sup
x,y∈B

‖x− y‖.

The next theorem represents a first characterization result on the well posedness for
(CVCP).

Theorem 1. Consider that F(a, u) =
∫

Ω
f (πa,u(ζ))dζ is lower semicontinuous, monotone and

hemicontinuous on A×U. The constrained optimization problem (CVCP) is well posed if and
only if:

S(σ, ι) �= ∅, ∀σ, ι > 0 and diam S(σ, ι)→ 0 as (σ, ι)→ (0, 0).

Proof. Consider (CVCP) is well posed. In consequence, it admits a single solution (ā, ū) ∈
S . By using the inclusion S ⊆ S(σ, ι), ∀σ, ι > 0, we obtain S(σ, ι) �= ∅, ∀σ, ι > 0. Now,
contrary to the result, suppose that diam S(σ, ι) � 0 as (σ, ι) → (0, 0). Consequently,
there exists r > 0, a positive integer m, σn, ιn > 0 with σn, ιn → 0, and (an, un), (a′n, u′n) ∈
S(σn, ιn) such that:

‖(an, un)− (a′n, u′n)‖ > r, ∀n ≥ m. (1)
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Since (an, un), (a′n, u′n) ∈ S(σn, ιn), we obtain:∫
Ω

f (πan ,un(ζ))dζ ≤ inf
(b,w)∈Θ

∫
Ω

f (πb,w(ζ))dζ + σn,

∫
Ω

[
(b(ζ)− an(ζ))

∂ f
∂a

(πan ,un(ζ)) + (w(ζ)− un(ζ))
∂ f
∂u

(πan ,un(ζ))

+Dα(b(ζ)− an(ζ))
∂ f
∂aα

(πan ,un(ζ))

+
1

n(β, γ)
D2

βγ(b(ζ)− an(ζ))
∂ f

∂aβγ
(πan ,un(ζ))

]
dζ + ιn ≥ 0, ∀(b, w) ∈ A×U

and: ∫
Ω

f (πa′n ,u′n(ζ))dζ ≤ inf
(b,w)∈Θ

∫
Ω

f (πb,w(ζ))dζ + σn,

∫
Ω

[
(b(ζ)− a′n(ζ))

∂ f
∂a

(πa′n ,u′n(ζ)) + (w(ζ)− u′n(ζ))
∂ f
∂u

(πa′n ,u′n(ζ))

+Dα(b(ζ)− a′n(ζ))
∂ f
∂aα

(πa′n ,u′n(ζ))

+
1

n(β, γ)
D2

βγ(b(ζ)− a′n(ζ))
∂ f

∂aβγ
(πa′n ,u′n(ζ))

]
dζ + ιn ≥ 0, ∀(b, w) ∈ A×U.

Clearly, it follows that {(an, un)} and {(a′n, u′n))} are two approximating sequences for
(CVCP) which converge to (ā, ū) (by hypothesis, the problem (CVCP) is well posed).
By computation, we obtain:

‖(an, un)− (a′n, u′n)‖
= ‖(an, un)− (ā, ū) + (ā, ū)− (a′n, u′n)‖

≤ ‖(an, un)− (ā, ū)‖+ ‖(ā, ū)− (a′n, u′n)‖ ≤ ι,

which contradicts (1), for some ι = r. It follows that diam S(σ, ι)→ 0 as (σ, ι)→ (0, 0).
Conversely, let {(an, un)} be an approximating sequence for (CVCP). Therefore, there

exists a sequence of positive real numbers ιn → 0 as n→ ∞ such that the inequalities:

lim
n→∞

sup
∫

Ω
f (πan ,un(ζ))dζ ≤ inf

(b,w)∈Θ

∫
Ω

f (πb,w(ζ))dζ, (2)

∫
Ω

[
(b(ζ)− an(ζ))

∂ f
∂a

(πan ,un(ζ)) + (w(ζ)− un(ζ))
∂ f
∂u

(πan ,un(ζ))

+Dα(b(ζ)− an(ζ))
∂ f
∂aα

(πan ,un(ζ))

+
1

n(β, γ)
D2

βγ(b(ζ)− an(ζ))
∂ f

∂aβγ
(πan ,un(ζ))

]
dζ + ιn ≥ 0, ∀(b, w) ∈ A×U (3)

hold, involving that (an, un) ∈ S(σn, ιn) (see σn → 0 as n→ ∞, a sequence of positive real
numbers). By considering diam S(σn, ιn)→ 0 as (σn, ιn)→ (0, 0), we obtain that {(an, un)}
is a Cauchy sequence which converges to some (ā, ū) ∈ A×U as A×U is a closed set.

By using the monotonicity property of
∫

Ω
f (πa,u(ζ))dζ on A×U, for (ā, ū), (b, w) ∈

A×U, we have: ∫
Ω

[
(ā(ζ)− b(ζ))

(
∂ f
∂a

(πā,ū(ζ))− ∂ f
∂a

(πb,w(ζ))

)

+(ū(ζ)− w(ζ))

(
∂ f
∂u

(πā,ū(ζ))− ∂ f
∂a

(πb,w(ζ))

)
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+Dα(ā(ζ)− b(ζ))
(

∂ f
∂aα

(πā,ū(ζ))− ∂ f
∂aα

(πb,w(ζ))

)

+
1

n(β, γ)
D2

βγ(ā(ζ)− b(ζ))

(
∂ f

∂aβγ
(πā,ū(ζ))− ∂ f

∂aβγ
(πb,w(ζ))

)]
dζ ≥ 0,

or, equivalently:∫
Ω

[
(ā(ζ)− b(ζ))

∂ f
∂a

(πā,ū(ζ)) + (ū(ζ)− w(ζ))
∂ f
∂u

(πā,ū(ζ))

+Dα(ā(ζ)− b(ζ))
∂ f
∂aα

(πā,ū(ζ))

+
1

n(β, γ)
D2

βγ(ā(ζ)− b(ζ))
∂ f

∂aβγ
(πā,ū(ζ))

]
dζ

≥
∫

Ω

[
(ā(ζ)− b(ζ))

∂ f
∂a

(πb,w(ζ)) + (ū(ζ)− w(ζ))
∂ f
∂u

(πb,w(ζ))

+Dα(ā(ζ)− b(ζ))
∂ f
∂aα

(πb,w(ζ))

+
1

n(β, γ)
D2

βγ(ā(ζ)− b(ζ))
∂ f

∂aβγ
(πb,w(ζ))

]
dζ. (4)

By considering the limit in inequality (3), we obtain:∫
Ω

[
(ā(ζ)− b(ζ))

∂ f
∂a

(πā,ū(ζ)) + (ū(ζ)− w(ζ))
∂ f
∂u

(πā,ū(ζ))

+Dα(ā(ζ)− b(ζ))
∂ f
∂aα

(πā,ū(ζ))

+
1

n(β, γ)
D2

βγ(ā(ζ)− b(ζ))
∂ f

∂aβγ
(πā,ū(ζ))

]
dζ ≤ 0. (5)

By using (4) and (5), it results that:∫
Ω

[
(b(ζ)− ā(ζ))

∂ f
∂a

(πb,w(ζ)) + (w(ζ)− ū(ζ))
∂ f
∂u

(πb,w(ζ))

+Dα(b(ζ)− ā(ζ))
∂ f
∂aα

(πb,w(ζ))

+
1

n(β, γ)
D2

βγ(b(ζ)− ā(ζ))
∂ f

∂aβγ
(πb,w(ζ))

]
dζ ≥ 0.

Now, we use Lemma 1 to obtain:∫
Ω

[
(b(ζ)− ā(ζ))

∂ f
∂a

(πā,ū(ζ)) + (w(ζ)− ū(ζ))
∂ f
∂u

(πā,ū(ζ))

+Dα(b(ζ)− ā(ζ))
∂ f
∂aα

(πā,ū(ζ))

+
1

n(β, γ)
D2

βγ(b(ζ)− ā(ζ))
∂ f

∂aβγ
(πā,ū(ζ))

]
dζ ≥ 0, (6)

which implies that (ā, ū) ∈ Θ.
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Since the functional
∫

Ω
f (πa,u(ζ))dζ is lower semi-continuous, we conclude:

∫
Ω

f (πā,ū(ζ))dζ ≤ lim
n→∞

inf
∫

Ω
f (πan ,un(ζ))dζ ≤ lim

n→∞
sup

∫
Ω

f (πan ,un(ζ))dζ.

By (2), the previous inequality can be written as∫
Ω

f (πā,ū(ζ))dζ ≤ inf
(b,w)∈Θ

∫
Ω

f (πb,w(ζ))dζ. (7)

As a consequence, by (6) and (7), we obtain that (ā, ū) is the solution for (CVCP).
Let us prove that (ā, ū) is the single solution for (CVCP). Suppose that (a1, u1) �=

(a2, u2) are two solutions for (CVCP). Then:

0 < ‖(a1, u1)− (a2, u2)‖ ≤ diam S(σ, ι)→ 0 as (σ, ι)→ (0, 0),

which is not possible. The proof is now complete.

The second main result of this paper is contained in the next theorem.

Theorem 2. Consider F(a, u) =
∫

Ω
f (πa,u(ζ))dζ is lower semicontinuous, monotone and hemi-

continuous on A×U. The constrained optimization problem (CVCP) is well posed if and only if it
admits a solution.

Proof. Consider that (CVCP) is well posed. In consequence, it has a solution (a0, u0).
Conversely, consider that (CVCP) has a solution (a0, u0), that is:∫

Ω
f (πa0,u0(ζ))dζ ≤ inf

(b,w)∈Θ

∫
Ω

f (πb,w(ζ))dζ,

∫
Ω

[
(b(ζ)− a0(ζ))

∂ f
∂a

(πa0,u0(ζ)) + (w(ζ)− u0(ζ))
∂ f
∂u

(πa0,u0(ζ))

+Dα(b(ζ)− a0(ζ))
∂ f
∂aα

(πa0,u0(ζ))

+
1

n(β, γ)
D2

βγ(b(ζ)− a0(ζ))
∂ f

∂aβγ
(πa0,u0(ζ))

]
dζ ≥ 0, ∀(b, w) ∈ A×U, (8)

but (CVCP) is not well posed. Therefore, by Definition 6, there exists an approximating
sequence {(an, un)} of (CVCP) (which does not converge to (a0, u0)), that is the following
inequalities hold:

lim
n→∞

sup
∫

Ω
f (πan ,un(ζ))dζ ≤ inf

(b,w)∈Θ

∫
Ω

f (πb,w(ζ))dζ

and: ∫
Ω

[
(b(ζ)− an(ζ))

∂ f
∂a

(πan ,un(ζ)) + (w(ζ)− un(ζ))
∂ f
∂u

(πan ,un(ζ))

+Dα(b(ζ)− an(ζ))
∂ f
∂aα

(πan ,un(ζ))

+
1

n(β, γ)
D2

βγ(b(ζ)− an(ζ))
∂ f

∂aβγ
(πan ,un(ζ))

]
dζ + ιn ≥ 0, ∀(b, w) ∈ A×U. (9)

Furthermore, to prove the boundedness of {(an, un)}, we proceed by contradiction. Sup-
pose, in contrast to the result, {(an, un)} is not bounded, that is, ‖(an, un)‖ → +∞ as

n→ +∞. Let us consider δn =
1

‖(an, un)− (a0, u0)‖ and (an, un) = (a0, u0) + δn[(an, un)−
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(a0, u0)]. We can see that {(an, un)} is bounded in A×U. If necessary, passing to a subse-
quence, we may consider that:

(an, un)→ (a, u) weakly in A×U �= (a0, u0).

It is easy to check that (a, u) �= (a0, u0) thanks to ‖δn[(an, un)− (a0, u0)]‖ = 1, for all n ∈ N.
Since (a0, u0) is a solution of (CVCP), the inequalities in (8) are satisfied. By Lemma 1, we
obtain: ∫

Ω
f (πa0,u0(ζ))dζ ≤ inf

(b,w)∈Θ

∫
Ω

f (πb,w(ζ))dζ,

∫
Ω

[
(b(ζ)− a0(ζ))

∂ f
∂a

(πb,w(ζ)) + (w(ζ)− u0(ζ))
∂ f
∂u

(πb,w(ζ))

+Dα(b(ζ)− a0(ζ))
∂ f
∂aα

(πb,w(ζ))

+
1

n(β, γ)
D2

βγ(b(ζ)− a0(ζ))
∂ f

∂aβγ
(πb,w(ζ))

]
dζ ≥ 0, ∀(b, w) ∈ A×U. (10)

By using the monotonicity property of the multiple integral functional
∫

Ω
f (πa,u(ζ))dζ on

A×U, for (an, un), (b, w) ∈ A×U, we have:∫
Ω

[
(an(ζ)− b(ζ))

(
∂ f
∂a

(πan ,un(ζ))−
∂ f
∂a

(πb,w(ζ))

)

+(un(ζ)− w(ζ))

(
∂ f
∂u

(πan ,un(ζ))−
∂ f
∂a

(πb,w(ζ))

)
+Dα(an(ζ)− b(ζ))

(
∂ f
∂aα

(πan ,un(ζ))−
∂ f
∂aα

(πb,w(ζ))

)

+
1

n(β, γ)
D2

βγ(an(ζ)− b(ζ))

(
∂ f

∂aβγ
(πan ,un(ζ))−

∂ f
∂aβγ

(πb,w(ζ))

)]
dζ ≥ 0,

or, equivalently:∫
Ω

[
(b(ζ)− an(ζ))

∂ f
∂a

(πan ,un(ζ)) + (w(ζ)− un(ζ))
∂ f
∂u

(πan ,un(ζ))

+Dα(b(ζ)− an(ζ))
∂ f
∂aα

(πan ,un(ζ))

+
1

n(β, γ)
D2

βγ(b(ζ)− an(ζ))
∂ f

∂aβγ
(πan ,un(ζ))

]
dζ

≤
∫

Ω

[
(b(ζ)− an(ζ))

∂ f
∂a

(πb,w(ζ)) + (w(ζ)− un(ζ))
∂ f
∂u

(πb,w(ζ))

+Dα(b(ζ)− an(ζ))
∂ f
∂aα

(πb,w(ζ))

+
1

n(β, γ)
D2

βγ(b(ζ)− an(ζ))
∂ f

∂aβγ
(πb,w(ζ))

]
dζ. (11)

Combining with (9) and (11), we have:∫
Ω

[
(b(ζ)− an(ζ))

∂ f
∂a

(πb,w(ζ)) + (w(ζ)− un(ζ))
∂ f
∂u

(πb,w(ζ))

+Dα(b(ζ)− an(ζ))
∂ f
∂aα

(πb,w(ζ))
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+
1

n(β, γ)
D2

βγ(b(ζ)− an(ζ))
∂ f

∂aβγ
(πb,w(ζ))

]
dζ ≥ −ιn, ∀(b, w) ∈ A×U.

Because of δn → 0 as n → ∞ (by the assumption that {(an, un)} is not bounded), so, we
can take n0 ∈ N be large enough such that δn < 1, for all n ≥ n0. Then, by multiplying the
previous inequality and (10) by δn > 0 and 1− δn > 0, respectively, we obtain:∫

Ω

[
(b(ζ)− an(ζ))

∂ f
∂a

(πb,w(ζ)) + (w(ζ)− un(ζ))
∂ f
∂u

(πb,w(ζ))

+Dα(b(ζ)− an(ζ))
∂ f
∂aα

(πb,w(ζ))

+
1

n(β, γ)
D2

βγ(b(ζ)− an(ζ))
∂ f

∂aβγ
(πb,w(ζ))

]
dζ ≥ −ιn, ∀(b, w) ∈ A×U, ∀n ≥ n0.

Since (an, un)→ (a, u) �= (a0, u0) and (an, un) = (a0, u0) + (an, un)[(an, un)− (a0, u0)], we
have: ∫

Ω

[
(b(ζ)− a(ζ))

∂ f
∂a

(πb,w(ζ)) + (w(ζ)− u(ζ))
∂ f
∂u

(πb,w(ζ))

+Dα(b(ζ)− a(ζ))
∂ f
∂aα

(πb,w(ζ))

+
1

n(β, γ)
D2

βγ(b(ζ)− a(ζ))
∂ f

∂aβγ
(πb,w(ζ))

]
dζ

= lim
n→∞

∫
Ω

[
(b(ζ)− an(ζ))

∂ f
∂a

(πb,w(ζ)) + (w(ζ)− un(ζ))
∂ f
∂u

(πb,w(ζ))

+Dα(b(ζ)− an(ζ))
∂ f
∂aα

(πb,w(ζ))

+
1

n(β, γ)
D2

βγ(b(ζ)− an(ζ))
∂ f

∂aβγ
(πb,w(ζ))

]
dζ

≥ − lim
n→∞

ιn = 0, ∀(b, w) ∈ A×U.

By considering the lower semicontinuity of the considered functional, and taking into
account Lemma 1, we have:∫

Ω
f (πa,u(ζ))dζ ≤ inf

(b,w)∈Θ

∫
Ω

f (πb,w(ζ))dζ,

∫
Ω

[
(b(ζ)− a(ζ))

∂ f
∂a

(πa,u(ζ)) + (w(ζ)− u(ζ))
∂ f
∂u

(πa,u(ζ))

+Dα(b(ζ)− a(ζ))
∂ f
∂aα

(πa,u(ζ))

+
1

n(β, γ)
D2

βγ(b(ζ)− a(ζ))
∂ f

∂aβγ
(πa,u(ζ))

]
dζ ≥ 0, ∀(b, w) ∈ A×U. (12)

We obtain that (a, u) is a solution of (CVCP), which contradicts the uniqueness of (a0, u0).
In consequence, {(an, un)} is a bounded sequence with a convergent subsequence {(ank , unk )}
which converges to (ā, ū) ∈ A×U as k→ ∞. Now, by Definition 1, for (ank , unk ), (b, w) ∈
A×U, we have (see (11)):∫

Ω

[
(b(ζ)− ank (ζ))

∂ f
∂a

(πank ,unk
(ζ)) + (w(ζ)− unk (ζ))

∂ f
∂u

(πank ,unk
(ζ))

+Dα(b(ζ)− ank (ζ))
∂ f
∂aα

(πank ,unk
(ζ))
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+
1

n(β, γ)
D2

βγ(b(ζ)− ank (ζ))
∂ f

∂aβγ
(πank ,unk

(ζ))
]
dζ

≤
∫

Ω

[
(b(ζ)− ank (ζ))

∂ f
∂a

(πb,w(ζ)) + (w(ζ)− unk (ζ))
∂ f
∂u

(πb,w(ζ))

+Dα(b(ζ)− ank (ζ))
∂ f
∂aα

(πb,w(ζ))

+
1

n(β, γ)
D2

βγ(b(ζ)− ank (ζ))
∂ f

∂aβγ
(πb,w(ζ))

]
dζ. (13)

Furthermore, on behalf of (9), we can write that:

lim
k→∞

∫
Ω

[
(b(ζ)− ank (ζ))

∂ f
∂a

(πank ,unk
(ζ)) + (w(ζ)− unk (ζ))

∂ f
∂u

(πank ,unk
(ζ))

+Dα(b(ζ)− ank (ζ))
∂ f
∂aα

(πank ,unk
(ζ))

+
1

n(β, γ)
D2

βγ(b(ζ)− ank (ζ))
∂ f

∂aβγ
(πank ,unk

(ζ))
]
dζ ≥ 0. (14)

Combining (13) and (14), we have:

lim
k→∞

∫
Ω

[
(b(ζ)− ank (ζ))

∂ f
∂a

(πb,w(ζ)) + (w(ζ)− unk (ζ))
∂ f
∂u

(πb,w(ζ))

+Dα(b(ζ)− ank (ζ))
∂ f
∂aα

(πb,w(ζ))

+
1

n(β, γ)
D2

βγ(b(ζ)− ank (ζ))
∂ f

∂aβγ
(πb,w(ζ))

]
dζ ≥ 0

⇒
∫

Ω

[
(b(ζ)− ā(ζ))

∂ f
∂a

(πb,w(ζ)) + (w(ζ)− ū(ζ))
∂ f
∂u

(πb,w(ζ))

+Dα(b(ζ)− ā(ζ))
∂ f
∂aα

(πb,w(ζ))

+
1

n(β, γ)
D2

βγ(b(ζ)− ā(ζ))
∂ f

∂aβγ
(πb,w(ζ))

]
dζ ≥ 0.

By considering the lower semicontinuity of the considered functional, in accordance with
Lemma 1, we have: ∫

Ω
f (πā,ū(ζ))dζ ≤ inf

(b,w)∈Θ

∫
Ω

f (πb,w(ζ))dζ,

∫
Ω

[
(b(ζ)− ā(ζ))

∂ f
∂a

(πā,ū(ζ)) + (w(ζ)− ū(ζ))
∂ f
∂u

(πā,ū(ζ))

+Dα(b(ζ)− ā(ζ))
∂ f
∂aα

(πā,ū(ζ))

+
1

n(β, γ)
D2

βγ(b(ζ)− ā(ζ))
∂ f

∂aβγ
(πā,ū(ζ))

]
dζ ≥ 0,

implying that (ā, ū) is a solution for (CVCP). Therefore, (ank , unk )→ (ā, ū), that is, (ank , unk )→
(a0, u0), involving (an, un)→ (a0, u0) and the proof is complete.

In the following illustrative example, we present an application of Theorems 1 and 2,
as well.
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Example 2. Let us consider n = k = 1, m = 2, and Ω = [0, 3]2. We define:

f (πa,u(ζ)) = 3u2(ζ) + ea(ζ) − a(ζ)

and consider the following constrained variational control problem:

(CVCP-1) Minimize(a,u)

∫
Ω

f (πa,u(ζ))dζ

subject to∫
Ω

[
6(w(ζ)− u(ζ))u(ζ) + (b(ζ)− a(ζ))(ea(ζ) − 1)

]
dζ ≥ 0, ∀(b, w) ∈ A×U,

(a, u)|∂Ω = 0.

We have S = {(0, 0)}. Moreover, we have that the functional
∫

Ω
f (πa,u(ζ))dζ is

monotone, hemicontinuous and lower semicontinuous on A×U = C4(Ω, [−10, 10])×
C1(Ω, [−10, 10]). In consequence, all hypotheses in Theorem 2 hold, therefore the optimiza-
tion problem (CVCP-1) is well posed. Furthermore, since S(σ, ι) = {(0, 0)}, we obtain
S(σ, ι) �= ∅ and diam S(σ, ι) → 0 as (σ, ι) → (0, 0). Consequently, by using Theorem 1,
we obtain that the constrained optimization problem (CVCP-1) is well posed.

4. Conclusions and Further Developments

In this paper, we investigated the well posedness for a new class of constrained opti-
mization problems governed by second-order partial derivatives. Concretely, by using the
monotonicity, lower semicontinuity, pseudomonotonicity and hemicontinuity of multiple
integral functional, we proved that the well posedness of the constrained optimization
problem under study is characterized in terms of existence and uniqueness of solution.
Furthermore, the theoretical developments have been accompanied by some examples.

Some further developments associated with the present paper are the following: to
formulate the necessary and sufficient optimality conditions for the considered optimiza-
tion problems, to establish some duality results, and to study the well posedness for similar
classes of control problems by using fractional derivatives.
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34. Treanţă, S. On weak sharp solutions in (ρ, b, d)-variational inequalities. J. Ineq. Appl. 2020, 2020, 54. [CrossRef]
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Abstract: We investigate the existence of positive solutions for a class of fractional differential
equations of arbitrary order δ > 2, subject to boundary conditions that include an integral operator
of the fractional type. The consideration of this type of boundary conditions allows us to consider
heterogeneity on the dependence specified by the restriction added to the equation as a relevant issue
for applications. An existence result is obtained for the sublinear and superlinear case by using the
Guo–Krasnosel’skii fixed point theorem through the definition of adequate conical shells that allow
us to localize the solution. As additional tools in our procedure, we obtain the explicit expression
of Green’s function associated to an auxiliary linear fractional boundary value problem, and we
study some of its properties, such as the sign and some useful upper and lower estimates. Finally, an
example is given to illustrate the results.
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1. Introduction

Differential equations for non-integer order play an important role to describe the
physical phenomena more accurately than classical integer order differential equations.
The need for fractional order differential equations stems in part from the fact that many
phenomena cannot be modeled by differential equations with integer derivatives. There-
fore, the existence results for solutions to fractional differential equations have received
considerable attention in recent years.

Some relevant monographs on fractional calculus and fractional differential equations
are, for instance [1–3]. The work [4] gives some fundamental ideas on initial value problems
for fractional differential equations from the point of view of Riemann–Liouville operators,
discussing local and global existence, or extremal solutions, and the monograph [5] includes
different theoretical results as well as developments related to applications in the field of
fractional calculus.

There are several papers dealing with the existence and uniqueness of solution to
initial and boundary value problems for fractional order differential equations. For instance,
in 2009, some impulsive problems for Caputo-type differential equations with δ ∈ (1, 2] and
boundary conditions given by x(0) + x′(0) = 0, x(1) + x′(1) = 0, were studied (see [6]).
Later, in 2010, initial value problems and periodic boundary value problems for linear
fractional differential equations were analyzed in [7] by giving some comparison results.
The authors of [8] studied the existence of positive solutions for fractional differential
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equations of order δ ∈ (1, 2), whose nonlinearity depended on a fractional derivative of
the unknown function, subject to Dirichlet boundary conditions.

They completed their study by calculating the associated Green’s function and by
applying the compressive version of the Guo–Krasnosel’skii fixed point theorem. Green’s
function, Banach contraction mapping and fixed point index theory are the main tools used
in [9] for the analysis of a nonlocal problem for fractional differential equations. In [10], a
result that guarantees the existence of a unique fixed point for a mixed monotone operator
was used to provide the existence of a unique positive solution to an initial value problem
for fractional differential equations of general order n− 1 < δ ≤ n, with n ≥ 2, whose
nonlinearity depends on the classical derivatives of the unknown function up to order
n− 2.

On the other hand, the development of the monotone iterative technique for periodic
boundary value problems associated with impulsive fractional differential equations with
Riemann–Liouville sequential derivatives was made in [11], and [12] was devoted to
boundary value problems for fractional differential inclusions. We refer also to [13] for
a monograph devoted to the positive solutions for differential, difference and integral
equations.

Integral boundary value problems for differential equations with integer and non-
integer order have been studied by several researchers [1,2,4,12,14,15]. To mention some
related references, in [16], first-order problems were considered by using the method of
upper and lower solutions, and, in [17], the Guo–Krasnosel’skii fixed point result was
applied to study the existence of positive solutions to integral boundary value problems
for classical second-order differential equations.

These kind of problems were also considered in [18], where some results were derived
as a consequence of the nonlinear alternative of Leray–Schauder type. On the other
hand, the monotone iterative technique was developed in [19] for integral boundary value
problems relative to first-order integro-differential equations with deviating arguments.
See also [20] for a similar study on analogous differential systems. Very recently, the results
in [21] were devoted to the study of first-order problems with multipoint and integral
boundary conditions by applying Banach or Schaefer’s fixed point theorem.

In the fractional case, some sufficient conditions were established in [22] for the
existence of solutions to nonlocal boundary value problems associated to Caputo-type frac-
tional differential equations by using Banach and Schaefer’s fixed point theorems. A related
problem with integral boundary conditions in the context of Banach spaces was analyzed
in [23] by using Green’s functions and the Kuratowski measure of noncompactness.

The authors of [24] studied fractional differential equations subject to a nonlocal
strip condition of integral type that, in the limit, approaches the usual integral boundary
condition, and some results were derived by applying fixed point results and the Leray–
Schauder degree theory. In [25], the authors considered boundary value problems for
a class of fractional differential equations of order δ ∈ (1, 2] with three-point fractional
integral boundary conditions by means of Schaefer’s fixed point theorem.

In [26], the contractive mapping principle and the monotone iterative technique
were the basic tools and procedures used in the study of a class of Riemann–Liouville
fractional differential equations with integral boundary conditions. On the other hand,
in [27], Lyapunov-type results were used to study the nonexistence, the uniqueness and
the existence and uniqueness of solutions to fractional boundary value problems.

More recently, in [28], a fractional problem subject to Stieltjes and generalized frac-
tional integral boundary conditions was analyzed by applying the Banach contraction
mapping principle. An analogous method was applied in [29], where the authors studied a
Cauchy problem for Caputo–Fabrizio fractional differential equations in Banach spaces,
imposing an initial condition that involves an integral operator, and they deduced the
existence and uniqueness of solutions by applying the Banach fixed point theorem.

Some results for Hilfer fractional differential equations subject to boundary conditions
involving Riemann–Liouville fractional integral operators were given in [30], and the

56



Fractal Fract. 2021, 5, 220

study was completed by applying a nonlinear alternative of Leray–Schauder type and
the Nadler theorem. Classical fixed point theory was also the tool used in [31] for the
analysis of sequential ψ-Hilfer fractional boundary value problems. In particular, one of the
results applied was the Krasnosel’skii fixed point theorem for the addition of a contractive
mapping and a compact mapping.

Several other recent papers include, for instance, [32], where the type of derivative
considered was Caputo fractional derivatives with respect to a fixed function, and, under
this framework the authors studied an impulsive problem subject to integral boundary
conditions based on the Riemann–Stieltjes fractional integral through Leray–Schauder’s
nonlinear alternative; or [33], where ψ-Caputo operators were considered in the differential
equation and in the integral boundary conditions, and the method of upper and lower
solutions coupled with the monotone iterative technique were the main tools used.

More specifically, in 2012, Cabada and Wang [15] considered the following boundary
value problem for fractional order differential equations with classical integral bound-
ary conditions: {

cDδu(t) + f (t, u(t)) = 0, 0 < t < 1,
u(0) = u′′(0) = 0, u(1) = λ

∫ 1
0 u(s)ds,

where 2 < δ < 3, 0 < λ < 2, cDδ is the Caputo fractional derivative and f : [0, 1]× [0, ∞)→
[0, ∞) is a continuous function.

In 2014, Cabada and Hamdi [14] discussed, by defining a suitable cone on a Banach
space and by applying Guo–Krasnosel’skii fixed point theorem, the existence of positive
solutions for the following class of nonlinear fractional differential equations with integral
boundary conditions: {

Dδu(t) + f (t, u(t)) = 0, 0 < t < 1,
u(0) = u′(0) = 0, u(1) = λ

∫ 1
0 u(s)ds,

where 2 < δ ≤ 3, 0 < λ, λ �= δ, Dδ is the Riemann–Liouville fractional derivative of order δ
and f is a continuous function.

The large collection of research works existing on the topic shows the increasing
interest that the study of integral boundary value problems for fractional differential
equations has received in the recent times, due to their applicability to the modeling of
various processes for which hereditary or memory properties leave a footprint in the
performance of the phenomena, and because, in many occasions, the restrictions on the
real problem make it adequate to consider boundary conditions that consider the influence
that the state on a certain interval has on the evolution of the system.

It is worthwhile to devote efforts to study the existence of positive solutions, since
controlling the sign of the solutions is a relevant issue in many fields of application for
which negative values are not admissible (populations, amount of substances etc.). In
this sense, in comparison with the above mentioned works, we are interested in the
consequences, in terms of the properties of the solutions, that the application of the Guo–
Krasnosel’skii fixed point theorem may present for a fractional problem with a boundary
condition including a fractional operator.

Motivated by the above-mentioned work [14] and its approach, this paper deals with
the existence of positive solutions for the following fractional differential equation of gen-
eral order δ > 2 with fractional integral boundary conditions:⎧⎪⎨⎪⎩

Dδ
0+w(t) + f (t, w(t)) = 0, 0 < t < 1,

w(0) = w′(0) = w′′(0) = w′′′(0) = · · · = w(n−2)(0) = 0,
w(1) = λIγ

0+w(ζ), 0 < ζ < 1, n− 1 < δ ≤ n,

(1)
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where n ∈ N, n ≥ 3, λ > 0 and Dδ
0+ denotes the Riemann–Liouville fractional derivative

of order δ, Iγ is the Riemann–Liouville fractional integral operator of order γ > 0 and
f : [0, 1]× [0, ∞)→ [0, ∞) is a continuous function.

As original contributions of the paper, we mention the consideration of a boundary
value problem that involves an integral operator of fractional type, which allows us to
consider heterogeneity on the dependence specified by the restriction added to the equation
and also the subsequent explicit calculation of the Green’s function for this general problem,
which is not easy to handle due to the high order of the equation and the introduction of
fractional operators in the boundary conditions considered.

These novelties in the problem considered add more complexity to the study of the
particular properties of the Green’s function that are essential to build the mathematical
constructs required for the application of the fixed point result, namely, the establishment of
estimates, which allow us to define an appropriate cone that is mapped into itself through
the integral operator corresponding to the boundary value problem.

To prove the existence of positive solutions to (1), we apply the Guo–Krasnosel’skii
fixed point theorem in cones, used in [14] in the context of fractional problems with
boundary conditions involving a classical integral term but different from the techniques
followed in the discussed works dealing with boundary conditions involving integral
operators of a fractional type. The main reason to use this fixed point result is its potential
to provide a localization of the solution by handling conical shells whose boundary is
defined by the boundaries of two sets, which can be, in this case, more general than open
balls [34,35].

Then, it is not only possible to deduce the existence of a positive solution but also we
can give an upper bound for its maximum value and establish a certain positive number
that is exceeded by the values of the solution at some points. Having, at our disposal,
a contractive and an expansive version of the hypotheses, it is possible to deduce the
existence of a positive solution under different types of restrictions on the function defining
the equation—namely, the sublinear and the superlinear case.

The organization of the paper is as follows. In Section 2, we recall some basic notations
and concepts concerning fractional calculus as well as the fixed point result that we apply
as a fundamental tool in our procedure. In Section 3, we explicitly obtain the Green’s
function for a modified linear fractional boundary value problem, and we deduce some
estimates for its expression.

The study of the sign of the Green’s function is relevant too, as well as the comparison
between its value at different points, which is also useful to our reasoning. Then, in Section
4, we present our main result, which allows us to derive the existence of a positive solution
for the nonlinear problem (1) in the sublinear and superlinear cases. The proof of the
main result provides details regarding the conical shells to which the mentioned solution
belongs in each case. In Section 5, an example is included, and, finally, Section 6 shows our
conclusions.

2. Materials and Methods

In this section, we recall some notations, definitions and results that are essential to
prove our main result.

Definition 1. The fractional derivative of Riemann–Liouville type and fractional order δ > 0 is
defined for a function f as

Dδ
0+ f (t) =

1
Γ(n− δ)

(
d
dt

)n ∫ t

0
(t− s)n−δ−1 f (s)ds,

where n = [δ] + 1, and [δ] is the integer part of δ, provided that the integral on the right-hand side
converges pointwise on (0,∞).

58



Fractal Fract. 2021, 5, 220

Definition 2. The fractional integral of Riemann–Liouville type and fractional order δ > 0 is
defined for a function f as

Iδ
0+ f (t) =

1
Γ(δ)

∫ t

0
(t− s)δ−1 f (s)ds,

provided that the integral on the right-hand side converges pointwise on (0,∞).

Lemma 1 ([1]). Let δ > 0, and then the solutions to Dδ
0+w(t) + y(t) = 0 are given by

w(t) = −
∫ t

0

(t− s)δ−1

Γ(δ)
y(s)ds + c1tδ−1 + c2tδ−2 + · · ·+ cntδ−n.

Without loss of generality, we assume in this and later results that the fractional
derivatives are developed taking 0 as base point. For a discussion on other types of
conditions, we refer to Kilbas et al. [1] and Samko et al. [3].

Definition 3. Let E be a real Banach space. A nonempty closed and convex set K ⊂ E is called a
cone if it satisfies the following two conditions:

(i) x ∈ K, λ ≥ 0 implies λx ∈ K;
(ii) x ∈ K, − x ∈ K implies x = 0, where 0 denotes the zero element of E.

Theorem 1 ([34]). Let E be a Banach space, and let K ⊂ E be a cone. Assume that Ω1, Ω2 are
open and bounded subsets of E with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let T : K ∩ (Ω2 \Ω1) −→ K be a
completely continuous mapping such that one of the following conditions holds:

(i) ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2; or
(ii) ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2.

Then, the mapping T has at least one fixed point in K ∩ (Ω2 \Ω1).

We define the mapping T : C[0, 1] → C[0, 1] as [Tu](t) =
∫ 1

0 G(t, s) f (s, u(s))ds, with
G a certain Green’s function whose expression is given as indicated below (see (3)). This
Green’s function will be built in such a way that the fixed points of the mapping T coincide
with the solutions to problem (1), and, hence, by Theorem 1, we will deduce the existence
of positive solutions to problem (1).

3. Some Auxiliary Results

First, we prove the following lemma, relative to the expression of the explicit solution
for a linear fractional problem subject to integral boundary conditions of fractional type.

Lemma 2. Let δ > 0, n − 1 < δ ≤ n, 0 < ζ < 1, y ∈ C[0, 1], and suppose that P :=
1− λΓ(δ)

Γ(δ+γ)
ζδ+γ−1 �= 0. Then, the problem

⎧⎪⎨⎪⎩
Dδ

0+w(t) + y(t) = 0, 0 < t < 1,
w(0) = w′(0) = w′′(0) = w′′′(0) = · · · = w(n−2)(0) = 0,
w(1) = λIγ

0+w(ζ), 0 < ζ < 1, n− 1 < δ ≤ n,

(2)

has a unique solution w ∈ C1[0, 1], given by w(t) =
∫ 1

0 G(t, s)y(s)ds, where

G(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−PΓ(δ+γ)(t−s)δ−1+Γ(δ+γ)(1−s)δ−1tδ−1−Γ(δ)λ(ζ−s)δ+γ−1tδ−1

PΓ(δ)Γ(δ+γ)
, 0 ≤ s ≤ t ≤ 1, s ≤ ζ,

Γ(δ+γ)(1−s)δ−1tδ−1−Γ(δ)λ(ζ−s)δ+γ−1tδ−1

PΓ(δ)Γ(δ+γ)
, 0 ≤ t ≤ s ≤ ζ ≤ 1,

−PΓ(δ+γ)(t−s)δ−1+Γ(δ+γ)(1−s)δ−1tδ−1

PΓ(δ)Γ(δ+γ)
, 0 ≤ ζ ≤ s ≤ t ≤ 1,

Γ(δ+γ)(1−s)δ−1tδ−1

PΓ(δ)Γ(δ+γ)
, 0 ≤ t ≤ s ≤ 1, s ≥ ζ.

(3)
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Here, G(t, s) is called the Green’s function associated to the boundary value problem (1). Note
that G(t, s) is a continuous function on [0, 1]× [0, 1].

Proof. The first equation in problem (2) is equivalent to the following integral equation:

w(t) = −Iδ
0+y(t) + c1tδ−1 + c2tδ−2 + · · ·+ cntδ−n.

By using

w(0) = w′(0) = · · · = w(n−2)(0) = 0,

we obtain that

w(t) = −Iδ
0+y(t) + c1tδ−1.

It follows from

w(1) = λIγ
0+w(ζ),

combined with

w(1) = −Iδ
0+y(1) + c1

and

λIγ
0+w(ζ) = −λIδ+γ

0+ y(ζ) + λc1
Γ(δ)

Γ(δ + γ)
ζδ+γ−1,

that

w(t) = − 1
Γ(δ)

∫ t

0
(t− s)δ−1y(s)ds +

tδ−1

PΓ(δ)

∫ 1

0
(1− s)δ−1y(s)ds

− λtδ−1

PΓ(δ + γ)

∫ ζ

0
(ζ − s)δ+γ−1y(s)ds.

For t ≤ ζ, we have

w(t) =
−1

Γ(δ)

∫ t

0
(t− s)δ−1y(s)ds +

tδ−1

PΓ(δ)

{ ∫ t

0
+
∫ ζ

t
+
∫ 1

ζ

}
(1− s)δ−1y(s)ds

− λtδ−1

PΓ(δ + γ)

{ ∫ t

0
+
∫ ζ

t

}
(ζ − s)δ+γ−1y(s)ds

=
∫ t

0

−PΓ(δ + γ)(t− s)δ−1 + Γ(δ + γ)(1− s)δ−1tδ−1 − Γ(δ)λ(ζ − s)δ+γ−1tδ−1

PΓ(δ)Γ(δ + γ)
y(s)ds

+
∫ ζ

t

Γ(δ + γ)(1− s)δ−1tδ−1 − Γ(δ)λ(ζ − s)δ+γ−1tδ−1

PΓ(δ)Γ(δ + γ)
y(s)ds

+
∫ 1

ζ

Γ(δ + γ)(1− s)δ−1tδ−1

PΓ(δ)Γ(δ + γ)
y(s)ds

=
∫ 1

0
G(t, s)y(s)ds.
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For t ≥ ζ, we deduce that

w(t) = − 1
Γ(δ)

{ ∫ ζ

0
+
∫ t

ζ

}
(t− s)δ−1y(s)ds +

tδ−1

PΓ(δ)

{ ∫ ζ

0
+
∫ t

ζ
+
∫ 1

t

}
(1− s)δ−1y(s)ds

− λtδ−1

PΓ(δ + γ)

∫ ζ

0
(ζ − s)δ+γ−1y(s)ds

=
∫ ζ

0

−PΓ(δ + γ)(t− s)δ−1 + Γ(δ + γ)(1− s)δ−1tδ−1 − Γ(δ)λ(ζ − s)δ+γ−1tδ−1

PΓ(δ)Γ(δ + γ)
y(s)ds

+
∫ t

ζ

−PΓ(δ + γ)(t− s)δ−1 + Γ(δ + γ)(1− s)δ−1tδ−1

PΓ(δ)Γ(δ + γ)
y(s)ds

+
∫ 1

t

Γ(δ + γ)(1− s)δ−1tδ−1

PΓ(δ)Γ(δ + γ)
y(s)ds

=
∫ 1

0
G(t, s)y(s)ds.

A careful analysis of the Green’s function G allows us to prove some of its properties
that will be useful to our procedure, such as the nonnegativity or the establishment of
upper and lower estimates.

Lemma 3. Let G be the Green’s funtion corresponding to the problem (2), which is given in
Lemma 2. Then, for all δ ∈ (n− 1, n], and λ > 0 with P := 1− λΓ(δ)

Γ(δ+γ)
ζδ+γ−1 > 0, the following

properties hold:

(I) G(t, s) ≥ λtδ−1ζδ+γ−1

PΓ(δ+γ)
[(1− s)δ−1 − (1− s)δ+γ−1] for all t, s ∈ (0, 1).

(II) G(t, s) ≤ (1−s)δ−1tδ−1

PΓ(δ) for all t, s ∈ (0, 1).

(III) G(t, s) > 0 for all t, s ∈ (0, 1).
(IV) G(1, s) > 0 for all s ∈ (0, 1).
(V) G(t, s) is a continuous function for all t, s ∈ (0, 1).

Proof. We start by proving (I) and (II) simultaneously. First, assume that 0 ≤ s ≤ t ≤ 1,

s ≤ ζ. Since 0 < λΓ(δ)ζδ+γ−1

Γ(δ+γ)
< 1, then we obtain

PΓ(δ)Γ(δ + γ)G(t, s)

= −PΓ(δ + γ)(t− s)δ−1 + Γ(δ + γ)(1− s)δ−1tδ−1 − Γ(δ)λ(ζ − s)δ+γ−1tδ−1

= λΓ(δ)ζδ+γ−1(t− s)δ−1 + [−Γ(δ + γ)(t− s)δ−1 + Γ(δ + γ)(1− s)δ−1tδ−1]

− Γ(δ)λ(ζ − s)δ+γ−1tδ−1

≥ λΓ(δ)ζδ+γ−1(t− s)δ−1 − λΓ(δ)ζδ+γ−1(t− s)δ−1

+ λΓ(δ)ζδ+γ−1(1− s)δ−1tδ−1 − Γ(δ)λ(ζ − s)δ+γ−1tδ−1

= λΓ(δ)ζδ+γ−1(1− s)δ−1tδ−1 − Γ(δ)λ(ζ − s)δ+γ−1tδ−1

≥ λΓ(δ)ζδ+γ−1tδ−1[(1− s)δ−1 − (1− s)δ+γ−1],
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and

PΓ(δ)Γ(δ + γ)G(t, s)

= −PΓ(δ + γ)(t− s)δ−1 + Γ(δ + γ)(1− s)δ−1tδ−1 − Γ(δ)λ(ζ − s)δ+γ−1tδ−1

= λΓ(δ)ζδ+γ−1(t− s)δ−1 − Γ(δ + γ)(t− s)δ−1

+ Γ(δ + γ)(1− s)δ−1tδ−1 − Γ(δ)λ(ζ − s)δ+γ−1tδ−1

≤ Γ(δ + γ)(1− s)δ−1tδ−1 − Γ(δ)λ(ζ − s)δ+γ−1tδ−1

≤ Γ(δ + γ)(1− s)δ−1tδ−1.

For 0 ≤ t ≤ s ≤ ζ ≤ 1, we have

PΓ(δ)Γ(δ + γ)G(t, s)

= Γ(δ + γ)(1− s)δ−1tδ−1 − Γ(δ)λ(ζ − s)δ+γ−1tδ−1

≥ λΓ(δ)ζδ+γ−1(1− s)δ−1tδ−1 − Γ(δ)λ(ζ − s)δ+γ−1tδ−1

≥ λΓ(δ)ζδ+γ−1tδ−1[(1− s)δ−1 − (1− s)δ+γ−1],

and

PΓ(δ)Γ(δ + γ)G(t, s)

= Γ(δ + γ)(1− s)δ−1tδ−1 − Γ(δ)λ(ζ − s)δ+γ−1tδ−1

≤ Γ(δ + γ)(1− s)δ−1tδ−1.

For 0 ≤ ζ ≤ s ≤ t ≤ 1, we find

PΓ(δ)Γ(δ + γ)G(t, s)

= −PΓ(δ + γ)(t− s)δ−1 + Γ(δ + γ)(1− s)δ−1tδ−1

= λΓ(δ)ζδ+γ−1(t− s)δ−1 − Γ(δ + γ)(t− s)δ−1 + Γ(δ + γ)(1− s)δ−1tδ−1

≥ λΓ(δ)ζδ+γ−1(t− s)δ−1 − λΓ(δ)ζδ+γ−1(t− s)δ−1 + λΓ(δ)ζδ+γ−1(1− s)δ−1tδ−1

≥ λΓ(δ)ζδ+γ−1tδ−1[(1− s)δ−1 − (1− s)δ+γ−1],

and

PΓ(δ)Γ(δ + γ)G(t, s)

= −PΓ(δ + γ)(t− s)δ−1 + Γ(δ + γ)(1− s)δ−1tδ−1

= λΓ(δ)ζδ+γ−1(t− s)δ−1 − Γ(δ + γ)(t− s)δ−1 + Γ(δ + γ)(1− s)δ−1tδ−1

≤ Γ(δ + γ)(1− s)δ−1tδ−1.

For 0 ≤ t ≤ s ≤ 1 s ≥ ζ, we have

PΓ(δ)Γ(δ + γ)G(t, s)

= Γ(δ + γ)(1− s)δ−1tδ−1

≥ λΓ(δ)ζδ+γ−1tδ−1[(1− s)δ−1 − (1− s)δ+γ−1].

Property (III) is derived from (I). On the other hand, for the validity of (IV), we
observe that

G(1, s) =

⎧⎨⎩
(1−P)Γ(δ+γ)(1−s)δ−1−Γ(δ)λ(ζ−s)δ+γ−1

PΓ(δ)Γ(δ+γ)
= λ[ζδ+γ−1(1−s)δ−1−(ζ−s)δ+γ−1]

PΓ(δ+γ)
, s ≤ ζ,

(1−P)Γ(δ+γ)(1−s)δ−1

PΓ(δ)Γ(δ+γ)
= λζδ+γ−1(1−s)δ−1

PΓ(δ+γ)
, ζ ≤ s,
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which is obviously positive for s ∈ (0, 1). Finally, (V) is trivially derived.

The previous result is consistent with those obtained in [14] for the problem with
2 < δ ≤ 3. In fact, for γ = 1, we have P = 1− λ

δ ζδ, and thus the assumption λ ∈ (0, δ) (as
considered in [14]) guarantees that P > 0.

Corollary 1. For all δ ∈ (n− 1, n], and λ > 0 with P := 1− λΓ(δ)
Γ(δ+γ)

ζδ+γ−1 > 0, the Green’s
function G(t, s) satisfies

tδ−1w1(s) ≤ G(t, s) ≤ tδ−1w2(s), ∀ t, s ∈ (0, 1), (4)

where

w1(s) =
λζδ+γ−1

PΓ(δ + γ)
[(1− s)δ−1 − (1− s)δ+γ−1],

w2(s) =
(1− s)δ−1

PΓ(δ)
.

Similarly to [14], we derive the following Lemma, which expresses a correspondence
between the values G(t, s) and G(1, s). This relation will be essential in the proof of the
main result.

Lemma 4. For all δ ∈ (n− 1, n], and λ > 0 with P := 1− λΓ(δ)
Γ(δ+γ)

ζδ+γ−1 > 0, the Green’s
function G(t, s) also satisfies

tδ−1G(1, s) ≤ G(t, s) ≤ 1
1− P

G(1, s) =
Γ(δ + γ)

λΓ(δ)ζδ+γ−1 G(1, s), ∀ t, s ∈ (0, 1). (5)

Proof. By Lemma 3 (IV), the sought inequality is equivalent to prove that

tδ−1 ≤ G(t, s)
G(1, s)

≤ 1
1− P

=
Γ(δ + γ)

λΓ(δ)ζδ+γ−1 , ∀ t, s ∈ (0, 1). (6)

Note also that, under the hypotheses imposed, G(t, s) > 0 for all t, s ∈ (0, 1).
First, we consider the case 0 < s ≤ t < 1, with s ≤ ζ, and then

ϕ(t, s) :=
G(t, s)
G(1, s)

=
−PΓ(δ + γ)(t− s)δ−1 + Γ(δ + γ)(1− s)δ−1tδ−1 − Γ(δ)λ(ζ − s)δ+γ−1tδ−1

−PΓ(δ + γ)(1− s)δ−1 + Γ(δ + γ)(1− s)δ−1 − Γ(δ)λ(ζ − s)δ+γ−1

= tδ−1−PΓ(δ + γ)(1− s
t )

δ−1 + Γ(δ + γ)(1− s)δ−1 − Γ(δ)λ(ζ − s)δ+γ−1

−PΓ(δ + γ)(1− s)δ−1 + Γ(δ + γ)(1− s)δ−1 − Γ(δ)λ(ζ − s)δ+γ−1

= tδ−1
−P (1− s

t )
δ−1

(1−s)δ−1 + 1− Γ(δ)λ(ζ−s)δ+γ−1

Γ(δ+γ)(1−s)δ−1

−P + 1− Γ(δ)λ(ζ−s)δ+γ−1

Γ(δ+γ)(1−s)δ−1

∈

⎡⎢⎣tδ−1,
1− Γ(δ)λ(ζ−s)δ+γ−1

Γ(δ+γ)(1−s)δ−1

1− P− Γ(δ)λ(ζ−s)δ+γ−1

Γ(δ+γ)(1−s)δ−1

⎤⎥⎦ ⊆ [
tδ−1,

1
1− P

]
=

[
tδ−1,

Γ(δ + γ)

λΓ(δ)ζδ+γ−1

]
.
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For 0 < t ≤ s ≤ ζ < 1, we have

ϕ(t, s) :=
G(t, s)
G(1, s)

= tδ−1 Γ(δ + γ)(1− s)δ−1 − Γ(δ)λ(ζ − s)δ+γ−1

−PΓ(δ + γ)(1− s)δ−1 + Γ(δ + γ)(1− s)δ−1 − Γ(δ)λ(ζ − s)δ+γ−1

≥ tδ−1.

Next, we prove that ϕ(t, s) ≤ 1
1−P , for 0 < t ≤ s ≤ ζ < 1. We study the behavior of

the auxiliary one-variable function

ψ(s) :=
Γ(δ + γ)(1− s)δ−1 − Γ(δ)λ(ζ − s)δ+γ−1

(1− P)Γ(δ + γ)(1− s)δ−1 − Γ(δ)λ(ζ − s)δ+γ−1

in the interval [t, ζ], with t ∈ (0, ζ] fixed. The sign of ψ′(s) coincides with the sign of

φ(s) :=
(
−Γ(δ + γ)(δ− 1)(1− s)δ−2 + Γ(δ)λ(δ + γ− 1)(ζ − s)δ+γ−2

)
×
(
(1− P)Γ(δ + γ)(1− s)δ−1 − Γ(δ)λ(ζ − s)δ+γ−1

)
−
(

Γ(δ + γ)(1− s)δ−1 − Γ(δ)λ(ζ − s)δ+γ−1
)

×
(
−(1− P)Γ(δ + γ)(δ− 1)(1− s)δ−2 + Γ(δ)λ(δ + γ− 1)(ζ − s)δ+γ−2

)
=Γ(δ + γ)Γ(δ)(1− s)δ−2λ(ζ − s)δ+γ−2P{(δ− 1)(ζ − 1)− (1− s)γ},

which is, clearly, nonpositive for s ∈ [t, ζ]. Hence, ψ(s) ≤ ψ(t), for s ∈ [t, ζ]. Since
ϕ(t, s) = tδ−1ψ(s), this proves that, in the case 0 < t ≤ s ≤ ζ < 1, we have

ϕ(t, s) ≤ tδ−1ψ(t) =
Γ(δ + γ)tδ−1(1− t)δ−1 − Γ(δ)λtδ−1(ζ − t)δ+γ−1

(1− P)Γ(δ + γ)(1− t)δ−1 − Γ(δ)λ(ζ − t)δ+γ−1 =:M(t).

We now check thatM(t) ≤ 1
1−P , for t ∈ (0, ζ], which is equivalent to

(1− P)Γ(δ + γ)(1− t)δ−1(1− tδ−1) ≥ Γ(δ)λ(ζ − t)δ+γ−1(1− (1− P)tδ−1), t ∈ (0, ζ].

By substituting the value of P, the previous condition is equivalent to the nonnegativity
on the interval (0, ζ] of the function

R(t) := ζδ+γ−1(1− t)δ−1(1− tδ−1)− (ζ − t)δ+γ−1
(

1− Γ(δ)λζδ+γ−1

Γ(δ + γ)
tδ−1

)
.

Indeed, R(0) = ζδ+γ−1 − ζδ+γ−1 = 0, R(ζ) = ζδ+γ−1(1− ζ)δ−1(1− ζδ−1) > 0, and

R′(t) =ζδ+γ−1(δ− 1)(1− t)δ−2
(

1− tδ−1 − (1− t)tδ−2
)

+ (ζ − t)δ+γ−1
{
(δ + γ− 1)

(
1− Γ(δ)λζδ+γ−1

Γ(δ + γ)
tδ−1

)
+

Γ(δ)λζδ+γ−1

Γ(δ + γ)
(δ− 1)tδ−2

}
,

which is clearly positive on (0, ζ], since

Γ(δ)λζδ+γ−1

Γ(δ + γ)
tδ−1 <

Γ(δ)λζδ+γ−1

Γ(δ + γ)
< 1,

and S(t) := 1− tδ−1 − (1− t)tδ−2 satisfies S(0) = 1, S(1) = 0, and S′(t) = tδ−3(2− δ) < 0
for t ∈ (0, 1); thus, S > 0 on (0, ζ]. This proves that R > 0 on (0, ζ].
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For 0 < ζ ≤ s ≤ t < 1,

ϕ(t, s) :=
G(t, s)
G(1, s)

=
−PΓ(δ + γ)(t− s)δ−1 + Γ(δ + γ)(1− s)δ−1tδ−1

−PΓ(δ + γ)(1− s)δ−1 + Γ(δ + γ)(1− s)δ−1

= tδ−1−PΓ(δ + γ)(1− s
t )

δ−1 + Γ(δ + γ)(1− s)δ−1

−PΓ(δ + γ)(1− s)δ−1 + Γ(δ + γ)(1− s)δ−1

= tδ−1
−P (1− s

t )
δ−1

(1−s)δ−1 + 1

−P + 1

∈
[

tδ−1,
1

1− P

]
=

[
tδ−1,

Γ(δ + γ)

λΓ(δ)ζδ+γ−1

]
.

Finally, for 0 < t ≤ s < 1, s ≥ ζ,

ϕ(t, s) :=
G(t, s)
G(1, s)

= tδ−1 Γ(δ + γ)(1− s)δ−1

−PΓ(δ + γ)(1− s)δ−1 + Γ(δ + γ)(1− s)δ−1

= tδ−1 1
−P + 1

∈
[

tδ−1,
1

1− P

]
=

[
tδ−1,

Γ(δ + γ)

λΓ(δ)ζδ+γ−1

]
.

4. Main Results

This section of the paper is focused on the study of the existence of at least one positive
solution to the nonlinear boundary value problem specified in expression (1). The main
tool used is the fixed point result by Guo and Krasnosel’skii [34], i.e., Theorem 1.

The base space of interest is E = C[0, 1], which is a Banach space if we consider the
usual supremum norm ‖ · ‖.

Next, similarly to [14], we consider the cone K ⊂ E defined in the following way:

K :=
{

u ∈ E : u(t) ≥ 0 for all t ∈ [0, 1], u(t) ≥ tδ−1(1− P)‖u‖, for all t ∈
[

1
2

, 1
]}

, (7)

and develop, in the rest of the section, a procedure similar to that in the mentioned
reference [14]. Hence, one of the assumptions that will be used is specified below:

(a) The function f : [0, 1]× [0, ∞)→ [0, ∞) is continuous.

We take the following finite or infinite values:

f0 := lim
h→0+

{
min

t∈[ 1
2 ,1]

f (t, h)
h

}
, f∞ := lim

h→∞

{
min

t∈[ 1
2 ,1]

f (t, h)
h

}
,

f 0 := lim
h→0+

{
max
t∈[0,1]

f (t, h)
h

}
, and f ∞ := lim

h→∞

{
max
t∈[0,1]

f (t, h)
h

}
.

Then, it is possible to extend Theorem 3.2 [14] to the context of the general-order
problem (1). This fact is the main conclusion of this paper.

Theorem 2. Suppose that the hypothesis (a) is satisfied, and that one of the following assumptions
also holds:

(i) f0 = ∞ and f ∞ = 0 (that is, the sublinear case).
(ii) f 0 = 0 and f∞ = ∞ (that is, the superlinear case).
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Then, for all δ ∈ (n− 1, n], and λ > 0 with P := 1− λΓ(δ)
Γ(δ+γ)

ζδ+γ−1 > 0, the problem (1)
has a positive solution that belongs to the cone K given by (7).

Proof. We consider the mapping T defined by [Tu](t) :=
∫ 1

0 G(t, s) f (s, u(s)) ds, where G
is the Green’s function given in expression (3). In the first place, we check that the mapping
T : K → K is a self-mapping and that T is also completely continuous. Indeed, using the
continuity and the nonnegative character of the functions G and f on [0, 1]× [0, 1] and
[0, 1]× [0, ∞), respectively, it is clear that, if u ∈ K, then Tu is continuous and nonnegative
on [0, 1].

To prove that T is self-mapping, let u ∈ K, and then, by Lemma 4, we have

[Tu](t) =
∫ 1

0
G(t, s) f (s, u(s)) ds

≥ tδ−1
∫ 1

0
G(1, s) f (s, u(s)) ds

≥ tδ−1(1− P)
∫ 1

0
max
t∈[0,1]

G(t, s) f (s, u(s)) ds

≥ tδ−1(1− P) max
t∈[0,1]

{ ∫ 1

0
G(t, s) f (s, u(s)) ds

}
= tδ−1(1− P)‖Tu‖.

It is clear that the mapping T : K → K is continuous, since G and f are both continuous.
Next, to check that T is completely continuous, let B ⊂ K be a bounded set, i.e., such

that there exists a positive constant N > 0 with ‖u‖ ≤ N for all u ∈ B. Consider the
compact set [0, 1]× [0, N], and take L := max

(t,u)∈[0,1]×[0,N]
| f (t, u)|+ 1 > 0.

Now we check that T(B) is a bounded set. Indeed, for an arbitrary u ∈ B, we have,
by Corollary 1, that

‖[Tu](t)‖ ≤ max
t∈[0,1]

∫ 1

0
G(t, s)| f (s, u(s))| ds ≤ L max

t∈[0,1]

∫ 1

0
tδ−1 (1− s)δ−1

PΓ(δ)
ds ≤ L

PΓ(δ)
,

for every t ∈ [0, 1], so that T(B) is a bounded subset of E.
On the other hand, we seek an estimate for the derivative of the functions in T(B).

Given an arbitrary u ∈ B, we have, from the calculations in Lemma 2, that

[Tu](t) =
∫ 1

0
G(t, s) f (s, u(s)) ds

= − 1
Γ(δ)

∫ t

0
(t− s)δ−1 f (s, u(s)) ds +

tδ−1

PΓ(δ)

∫ 1

0
(1− s)δ−1 f (s, u(s)) ds

− λtδ−1

PΓ(δ + γ)

∫ ζ

0
(ζ − s)δ+γ−1 f (s, u(s)) ds,
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so that∣∣(Tu)′(t)
∣∣ = ∣∣∣∣− 1

Γ(δ− 1)

∫ t

0
(t− s)δ−2 f (s, u(s))ds

+
tδ−2

PΓ(δ− 1)

∫ 1

0
(1− s)δ−1 f (s, u(s))ds− (δ− 1)λtδ−2

PΓ(δ + γ)

∫ ζ

0
(ζ − s)δ+γ−1 f (s, u(s))ds

∣∣∣∣
≤ 1

Γ(δ− 1)

∫ t

0
(t− s)δ−2| f (s, u(s))|ds

+
tδ−2

|P|Γ(δ− 1)

∫ 1

0
(1− s)δ−1| f (s, u(s))|ds +

(δ− 1)λtδ−2

|P|Γ(δ + γ)

∫ ζ

0
(ζ − s)δ+γ−1| f (s, u(s))|ds

≤ Ltδ−1

Γ(δ)
+

Ltδ−2

|P|Γ(δ− 1)δ
+

(δ− 1)λLtδ−2ζδ+γ

|P|Γ(δ + γ)(δ + γ)

≤ Ltδ−1

Γ(δ)
+

tδ−2L
|P|Γ(δ) +

(δ− 1)Ltδ−2ζδ+γλ

|P|Γ(δ + γ + 1)
≤ L

Γ(δ)
+

L
|P|Γ(δ) +

(δ− 1)Lζδ+γλ

|P|Γ(δ + γ + 1)
=: M.

Therefore, for every t1, t2 ∈ [0, 1] with t1 < t2, we obtain

|[Tu](t2)− [Tu](t1)| ≤ M(t2 − t1),

and we deduce that T(B) is an equicontinuous set in E.
With these ingredients, the application of the Arzelà–Ascoli Theorem proves that T(B)

is relatively compact. As a consequence, T : K → K is completely continuous.
Once we have proven some relevant properties of the mapping T, we distinguish two

cases and complete the proof following the ideas in [14]. We include the explanations and
adaptations here for completeness.

Case (i): ( f0 = ∞ and f ∞ = 0).
We choose δ̃ > 0 to be sufficiently large such that

δ̃(1− P) max
t∈[0,1]

{ ∫ 1

1
2

sδ−1G(t, s)ds
}
≥ 1. (8)

Since f0 = ∞, we can affirm the existence of a constant ρ̃ > 0 such that f (t, h) ≥ δ̃h
for every t ∈ [ 1

2 , 1] and every 0 < h ≤ ρ̃.
Then, for an arbitrary u ∈ K with ‖u‖ = ρ̃, we have that u(t) > 0 for t ∈ [ 1

2 , 1] and,
using the selection for δ̃, we obtain that

‖Tu‖ = max
t∈[0,1]

{ ∫ 1

0
G(t, s) f (s, u(s))ds

}
≥ δ̃ max

t∈[0,1]

{ ∫ 1

1
2

G(t, s)u(s)ds
}

≥ δ̃‖u‖(1− P) max
t∈[0,1]

{ ∫ 1

1
2

sδ−1G(t, s)ds
}

≥ ‖u‖.

By the continuity of f (t, ·) on the interval [0, ∞), we can consider the function:

f̃ (t, h) = max
z∈[0,h]

f (t, z),

which is clearly a nondecreasing function on [0, ∞). By the hypothesis f ∞ = 0, it is
deduced that

lim
h→∞

{
max
t∈[0,1]

f̃ (t, h)
h

}
= 0.
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Next, we select δ∗ > 0 small enough such that δ∗
PΓ(δ) ≤ 1.

By virtue of the previous limit, we can prove the existence of a constant ρ∗ > ρ̃ > 0
such that f̃ (t, h) ≤ δ∗h for every t ∈ [0, 1] and all h ≥ ρ∗.

If we take u ∈ K such that ‖u‖ = ρ∗, then, using the nondecreasing character of f̃ and
Lemma 3 (II) (or Corollary 1), the next inequalities are satisfied:

‖Tu‖ = max
t∈[0,1]

{ ∫ 1

0
G(t, s) f (s, u(s)) ds

}
≤ max

t∈[0,1]

{ ∫ 1

0
G(t, s) f̃ (s, ‖u‖) ds

}
≤ δ∗‖u‖ max

t∈[0,1]

{ ∫ 1

0
G(t, s) ds

}
≤ δ∗

PΓ(δ)
‖u‖ ≤ ‖u‖.

Therefore, by part (i) in Theorem 1, we can affirm that problem (1) has at least one
positive solution u with ρ̃ ≤ ‖u‖ ≤ ρ∗.
Case (ii): f 0 = 0 and f∞ = ∞.

We take δ∗ > 0 with δ∗
PΓ(δ) ≤ 1.

Using f 0 = 0, it is possible to find a constant r∗ > 0 such that f (t, h) ≤ δ∗h for every
t ∈ [0, 1] and 0 < h ≤ r∗. From f 0 = 0, it is clear that limh→0+

f (t,h)
h = 0 for every t ∈ [0, 1];

hence, limh→0+ f (t, h) = 0, and thus, by the continuity of f , f (t, 0) = 0, for every t ∈ [0, 1].
This, together with the previous inequality, implies that f (t, h) ≤ δ∗h for every t ∈ [0, 1]
and 0 ≤ h ≤ r∗.

Then, for every u ∈ K with ‖u‖ = r∗, we deduce that

‖Tu‖ = max
t∈[0,1]

{ ∫ 1

0
G(t, s) f (s, u(s)) ds

}
≤ δ∗‖u‖ max

t∈[0,1]

{ ∫ 1

0
G(t, s) ds

}
≤ δ∗

PΓ(δ)
‖u‖ ≤ ‖u‖.

Finally, we select δ̂ > 0 large enough such that

δ̂

2δ−1 (1− P) max
t∈[0,1]

{ ∫ 1

1
2

G(t, s) ds
}
≥ 1.

Since f∞ = ∞, we can affirm the existence of r̂ > r∗ > 0, which can be taken satisfying
the additional condition r̂2δ−1 > r∗(1− P), such that f (t, h) ≥ δ̂h for all t ∈ [ 1

2 , 1] and all
h ≥ r̂.

Next, we choose a convenient shell, in particular, we take an arbitrary u ∈ K with
‖u‖ = r̂

1−P 2δ−1. The definition of the cone K implies that u(t) ≥ r̂ for every t ∈ [ 1
2 , 1].

In summary, in this case, we obtain that

‖Tu‖ = max
t∈[0,1]

{ ∫ 1

0
G(t, s) f (s, u(s)) ds

}
≥ max

t∈[0,1]

{ ∫ 1

1
2

G(t, s) f (s, u(s)) ds
}

≥ δ̂ max
t∈[0,1]

{ ∫ 1

1
2

G(t, s)u(s) ds
}

≥ δ̂

2δ−1 (1− P)‖u‖ max
t∈[0,1]

{ ∫ 1

1
2

G(t, s) ds
}

≥ ‖u‖.

In consequence, by case (ii) in Theorem 1, we deduce that problem (1) has at least one
positive solution such that r∗ ≤ ‖u‖ ≤ r̂

1−P 2δ−1.
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5. Example

In this section, we discuss an example to show the applicability of our result.

Example 1. Consider the following fractional integral boundary value problem on the interval
[0, 1]: ⎧⎨⎩D

5
2
0+u(t) + f (t, u(t)) = 0

u(0) = u′(0) = 0, u(1) = 2I
1
2
0+u(ζ),

(9)

where f (t, u(t)) = u
1
3 (t) + log(1 + u2(t)) + sin2(eu(t)), D

5
2
0+ denotes the Riemann–Liouville

fractional derivative operator of order δ = 5
2 , I

1
2
0+ is the Riemann–Liouville fractional integral

operator of order γ = 1
2 and 0 < ζ < 1. Here, f : [0, 1] × [0, ∞) → [0, ∞) is a continuous

function. It is clear that f0 = ∞, f ∞ = 0, and thus the function f is sublinear. Note that, since
2Γ( 5

2 )
Γ(3) > 1, P := 1− 2Γ( 5

2 )
Γ(3) ζ2 vanishes at a certain ζ ∈ (0, 1), exactly at ζ∗ :=

√
Γ(3)

2Γ( 5
2 )

. Therefore,

we must impose that ζ ∈ (0, ζ∗) in order to guarantee P > 0. Under this restriction, from case (i)
in Theorem 2, the particular problem (9) has, at least, a positive solution.

6. Conclusions

In this paper, we extended the results in [14] to general fractional problems of order
greater than 2, dealing with the existence of positive solutions for differential equations
of arbitrary order with fractional integral boundary conditions of the type (1). The intro-
duction of a boundary condition that involves an integral operator of fractional type is
interesting from the point of view of applications, since it allows for the mathematical
expression of heterogeneity that may affect the dependence specified by the restriction
added to the equation—a fact that is consistent with many physical problems.

The main tool used in the paper was Guo–Krasnosel’skii fixed point theorem in cones.
In particular, in Lemma 2, we obtained, by imposing some adequate restrictions on the
parameters, the integral expression of the solution to a modified linear fractional boundary
value problem, which provides the Green’s function of interest. Then, in Lemma 3, we
studied some properties of the Green’s function, including its positivity on (0, 1)× (0, 1)
under some restrictions on the parameters, as well as some upper and lower estimates for
its expression.

Another useful result is Lemma 4, which establishes the relation between the value of
the Green’s function at an arbitrary point and the value at the point with the same ordinate
and abscise 1. The explicit calculations for this general problem were developed in detail
due to the high order of the equation and the difficulty generated by the introduction of
fractional operators in the boundary conditions.

Theorem 2 provides the existence of a positive solution to (1) by assuming that the
nonlinearity f is sublinear or superlinear. The proof, based on the Guo–Krasnosel’skii fixed
point theorem, makes a selection of the conical shells that allow localization of the solution
in each case. Then, we have not only deduced the existence of a positive solution but the
details of the proof also provide the procedure to obtain an estimate for its maximum value
and to determine positive numbers that are not upper bounds for the solution.

Since the fixed point theorem used has two contexts of application (a contractive and
expansive case), it is possible to consider the problem under two types of hypotheses;
that is, two types of restrictions on the function defining the equation. The consideration
of other types of restrictions on the function f can be one of the possible future lines
of research.

Finally, an example was presented.

69



Fractal Fract. 2021, 5, 220

Author Contributions: Conceptualization, A.T., J.A. and R.R.-L.; methodology, A.T., J.A. and R.R.-L.;
formal analysis, A.T., J.A. and R.R.-L.; investigation, A.T., J.A. and R.R.-L.; writing—review and edit-
ing, A.T., J.A. and R.R.-L. All authors have read and agreed to the published version of the manuscript.

Funding: The research of R. Rodríguez-López was partially supported by AEI/FEDER, UE, grant
numbers PID2020-113275GB-I00 and MTM2016-75140-P, and by GRC Xunta de Galicia grant number
ED431C 2019/02.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are grateful to the anonymous Referees for their helpful comments
and suggestions towards the improvement of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The
Netherlands, 2006.

2. Podlubny, I. Fractional Differential Equations; Mathematics in Science and Engineering; Academic Press: New York, NY, USA, 1999.
3. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives, Theory and Applications; Gordon and Breach: Yverdon,

Switzerland, 1993.
4. Lakshmikantham, V.; Vatsala, A.S. Basic theory of fractional differential equations. Nonlinear Anal. 2008, 69, 2677–2682. [CrossRef]
5. Sabatier, J.; Agrawal, O.P.; Machado, J.A.T. Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and

Engineering; Springer: Dordrecht, The Netherlands, 2007.
6. Ahmad, B.; Sivasundaram, S. Existence of solutions for impulsive integral boundary value problems of fractional order. Nonlinear

Anal. Hybrid Syst. 2010, 4, 134–141. [CrossRef]
7. Nieto, J.J. Maximum principles for fractional differential equations derived from Mittag-Leffler functions. Appl. Math. Lett. 2010,

23, 1248–1251. [CrossRef]
8. Agarwal, R.P.; O’Regan, D.; Stanek, S. Positive solutions for Dirichlet problems of singular nonlinear fractional differential

equations. J. Math. Anal. Appl. 2010, 371, 57–68. [CrossRef]
9. Bai, Z.B. On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal. 2010, 72, 916–924. [CrossRef]
10. Zhang, S.Q. Positive solutions to singular boundary value problem for nonlinear fractional differential equation. Comput. Math.

Appl. 2010, 59, 1300–1309. [CrossRef]
11. Bai, C. Impulsive periodic boundary value problems for fractional differential equation involving Riemann–Liouville sequential

fractional derivative. J. Math. Anal. Appl. 2011, 384, 211–231. [CrossRef]
12. Agarwal, R.P.; Benchohra, M.; Hamani, S. Boundary value problems for differential inclusions with fractional order. Adv. Stud.

Contemp. Math. 2008, 16, 181–196.
13. Agarwal, R.P.; O’Regan, D.; Wong, P.J.Y. Positive Solutions of Differential, Difference and Integral Equations; Kluwer Academic

Publishers: Dordrecht, The Netherlands, 1999.
14. Cabada, A.; Hamdi, Z. Nonlinear fractional differential equations with integral boundary value conditions. Applied Math. Comp.

2014, 228, 251–257. [CrossRef]
15. Cabada, A.; Wang, G. Positive solutions of nonlinear fractional differential equations with integral boundary value conditions. J.

Math. Anal. Appl. 2012, 389, 403–411. [CrossRef]
16. Jankowski, T. Differential equations with integral boundary conditions. J. Comput. Appl. Math. 2002, 147, 1–8. [CrossRef]
17. Boucherif, A. Second-order boundary value problems with integral boundary conditions. Nonlinear Anal. 2009 70, 364–371.

[CrossRef]
18. Benchohra, M.; Nieto, J.J.; Ouahab, A. Second-order boundary value problem with integral boundary conditions. Bound. Value

Probl. 2011, 2011, 260309. [CrossRef]
19. Wang, G.; Song, G.; Zhang, L. Integral boundary value problems for first order integro-differential equations with deviating

arguments. J. Comput. Appl. Math. 2009, 225, 602–611. [CrossRef]
20. Wang, G. Boundary value problems for systems of nonlinear integro-differential equations with deviating arguments. J. Comput.

Appl. Math. 2010, 234, 1356–1363. [CrossRef]
21. Mardanov, M.J.; Sharifov, Y.A.; Gasimov, Y.S.; Cattani, C. Non-linear first-order differential boundary problems with multipoint

and integral conditions. Fractal Fract. 2021, 5, 15. [CrossRef]
22. Benchohra, M.; Hamani, S.; Ntouyas, S.K. Boundary value problems for differential equations with fractional order and nonlocal

conditions. Nonlinear Anal. 2009, 71, 2391–2396. [CrossRef]
23. Benchohra, M.; Cabada, A.; Seba, D. An existence result for nonlinear fractional differential equations on Banach spaces. Bound.

Value Probl. 2009, 2000, 628916. [CrossRef]

70



Fractal Fract. 2021, 5, 220

24. Ahmad, B.; Agarwal, R.P. On nonlocal fractional boundary value problems. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal.
2011, 18, 535–544.

25. Sudsutad, W.; Tariboon, J. Boundary value problems for fractional differential equations with three-point fractional integral
boundary conditions. Adv. Differ. Equ. 2012, 2012, 93. [CrossRef]

26. Wang, X.; Wang, L.; Zeng, Q. Fractional differential equations with integral boundary conditions. J. Nonlinear Sci. Appl. 2015, 8,
309–314. [CrossRef]

27. Dhar, S.; Kong, Q.; McCabe, M. Fractional boundary value problems and Lyapunov-type inequalities with fractional integral
boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2016, 43, 1–16. [CrossRef]

28. Ahmad, B.; Alghanmi, M.; Ntouyas, S.K.; Alsaedi, A. Fractional differential equations involving generalized derivative with
Stieltjes and fractional integral boundary conditions. Appl. Math. Lett. 2018, 84, 111–117. [CrossRef]

29. Keten, A.; Yavuz, M.; Baleanu, D. Nonlocal Cauchy problem via a fractional operator involving power kernel in Banach spaces.
Fractal Fract. 2019, 3, 27. [CrossRef]

30. Wongcharoen, A.; Ntouyas, S.K.; Tariboon, J. Boundary value problems for Hilfer fractional differential inclusions with nonlocal
integral boundary conditions. Mathematics 2020, 8, 1905. [CrossRef]

31. Sitho, S.; Ntouyas, S.K.; Samadi, A.; Tariboon, J. Boundary value problems for ψ-Hilfer type sequential fractional differential
equations and inclusions with integral multi-point boundary conditions. Mathematics 2021, 9, 1001. [CrossRef]

32. Asawasamrit, S.; Thadang, Y.; Ntouyas, S.K.; Tariboon, J. Non-instantaneous impulsive boundary value problems containing
Caputo fractional derivative of a function with respect to another function and Riemann-Stieltjes fractional integral boundary
conditions. Axioms 2021, 10, 130. [CrossRef]

33. Boutiara, A.; Benbachir, M.; Alzabut, J.; Samei, M.E. Monotone Iterative and upper-lower solution techniques for solving nonlinear
ψ-Caputo fractional boundary value problem. Fractal Fract. 2021, 5, 194. [CrossRef]

34. Guo, D.; Lakshmikantham, V. Nonlinear Problems in Abstract Cones; Academic Press: New York, NY, USA, 1988.
35. Krasnosel’skii, M.A. Fixed points of cone-compressing or cone-extending operators. Soviet Math. Dokl. 1960, 1, 1285–1288.

71





fractal and fractional

Article

Stability of Parametric Intuitionistic Fuzzy Multi-Objective
Fractional Transportation Problem

Mohamed A. El Sayed 1,2,*, Mohamed A. El-Shorbagy 3,4, Farahat A. Farahat 5, Aisha F. Fareed 2

and Mohamed A. Elsisy 2,6

Citation: El Sayed, M.A.;

El-Shorbagy, M.A.; Farahat, F.A.;

Fareed, A.F.; Elsisy, M.A. Stability of

Parametric Intuitionistic Fuzzy

Multi-Objective Fractional

Transportation Problem. Fractal Fract.

2021, 5, 233. https://doi.org/

10.3390/fractalfract5040233

Academic Editor: Savin Treanţă
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Abstract: In this study, a parametric intuitionistic fuzzy multi-objective fractional transportation
problem (PIF-MOFTP) is proposed. The current PIF-MOFTP has a single-scalar parameter in the
objective functions and an intuitionistic fuzzy supply and demand. Based on the (α, β)-cut concept a
parametric (α, β)-MOFTP is established. Then, a fuzzy goal programming (FGP) approach is utilized
to obtain (α, β)-Pareto optimal solution. We investigated the stability set of the first kind (SSFK)
corresponding to the solution by extending the Kuhn-Tucker optimality conditions of multi-objective
programming problems. An algorithm to crystalize the progressing SSFK for PIF-MOFTP as well as
an illustrative numerical example is presented.

Keywords: multi-objective programming; fractional transportation problem; intuitionistic fuzzy set;
parametric programming

1. Introduction

Transportation issues (TP) have been studied in various writings [1–7]. These issues
and their solution processes postulate a worthy task in logistics and supply chain organi-
zation for reducing expenses, further developing service quality, etc. [3,8]. Nonetheless,
TP is described by multiple, incommensurable, and clashing objective functions, being
known as the multi-objective transportation problem (MO-TP). Accordingly, in MO-TP,
the idea of an ideal solution offers spot to the idea of the best compromise solution or the
non-dominated solutions. Optimization of the ratio of two functions is called fractional
programming (ratio optimization) [7,9]. To be sure, in such circumstances, it is often a
question of optimizing a ratio of benefit/cost, stock/deals, specialist/patient, and so on,
subject to some constraints [7,9].

One of the significant issues looked at by specialists is that involving the exact values
of parameters [7]. In this way, this might involve thinking about vagueness, or specify-
ing the fundamental parameters of the model, which are the coefficients of the objective
function and the constrains [4,8]. Accordingly, it might be naturalistic to take the distinct
adjectival information on specialists and leaders about the parameters which can be ex-
emplified as fuzzy data [7,10]. Uncertainty may happen because of the accompanying
unrestrained factors. In this study the main hypotheses are that the transportation charge
has a parametric nature, and the supply and the demand parameters are intuitionistic
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fuzzy numbers (IFNs). The main hypotheses have not been presented in the literature, and
the basic question is how we can get the SSFK for such PIF-MOFTP.

2. Literature Review

The research on MO-TP is improved by fusing the diverse numerical models and
procedures. James et al. [11] examined transportation administration quality dependent
on data combination. A lot of examination that deals with transportation wellbeing
was created by Ergun et al. [12], Sheu and Chen [13]. Recently, MO-TP under different
circumstances has been discussed by Roy et al. [14,15], Roy and Mahapatra [16], Roy [17],
Maity and Roy [18,19].

Although fuzzy set theory (FST) is novel tool in handling uncertainties, it cannot
tackle special kinds of uncertainties, as it is difficult to depict the membership degree using
one specific value. To overcome the lack of knowledge of non-membership degrees, intu-
itionistic fuzzy set (IFS) was presented in 1986 by Atanassov [20] as an extension of FST. In
IFS, each element in a set is attached with two grades: membership and non-membership,
where the sum of these two grades is restricted to less or equal to one. Moreover, many
creators have been utilized IFS for addressing various sorts of TPs [21,22]. The study of
MO-TP with vague numbers has been presented by Ammar and Youness [1]. The fuzzy
programming strategy was acquainted with tackle MO-TP with various non-linear mem-
bership functions [23]. IFS has additionally been utilized by several scientists to tackle
different types of TPs [10,24]. One more strategy for thoroughly considering linear MO-
TPs with vague nature has been suggested by Gupta and Kumar [25]. Recently, MO-TP
under various types of uncertainty has been discussed by Roy and Mahapatra [16], Maity
and Roy [26], and Ebrahimnejad and Verdegay [10]. Mahajan and Gupta [27] proposed
a fully IF MO-TP utilizing various membership functions. Achievement stability set for
parametric linear FGP problems has been introduced by El Sayed and Farahat [28]. The
neutrosophic goal programming approach for solving the multi-objective fractional trans-
portation problem was introduced by Veeramani et al., [29]. Pramanik and Banerjee [30]
proposed a chance-constrained capacitated MO-TP with two fuzzy goals, and a consensus
solution was found. Edalatpanah [31] developed a nonlinear framework for neutrosophic
linear programming. Furthermore, Rizk-Allah et al. [32] developed a compromise solution
framework for the MO-TP based on the neutrosophic environment. A fuzzy approach us-
ing generalized dinkelbach’s algorithm for linear multi-objective fractional transportation
problem (MOFTP) has been presented by Cetin and Tiryaki [3]. A fuzzy mathematical
programming approach for solving fuzzy linear fractional programming problem has been
demonstrated by Veeramani and Sumathi [33]. El Sayed and Abo-Sinna [7] introduced the
intuitionistic fuzzy multi-objective fractional transportation problem (IF-MOFTP).

Parametric programming examines the impact of preordained continuous varieties in
the objective function coefficients and the right-hand side of the constraints on the ideal
solution [34–36]. In parametric analysis the objective function and the right-hand side
vectors are replaced with the parameterized function c(ϑ) and b(α, β), where ϑ and α, β
are the parameter of variation. The general idea of parametric analysis is to start with the
α-Pareto optimal solution at ϑ = ϑ∗, α = α∗, β = β∗. Then by applying KKT optimality
the SSFK is determined [35,37]. The concept of the stability set of the first kind (SSFK)
has been introduced by Osman [35], and extended by Saad [38], Saad and Hughes [39],
Osman et al. [36], Saad et al. [40].

In prior examinations, the MO-TP was created with the presumption that the supply,
demand, and cost boundaries were known. Nonetheless, applications, every one of the
parameters of the TP are not for the most part characterized definitively. It might have IF
values. Comparable contemplations might be taken for supply and demand parameters
in TP of this paper. Keeping this perspective, the primary commitments are concerned
with two unique viewpoints: one is to find a (α, β)-Pareto optimal solution for the PIF-
MOFTP, and another is to investigate the SSFK for PIF-MOFTP. First, based on the (α, β)-cut
methodology a parametric (α, β)-MOFTP is established. Then, A FGP approach is used to
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get (α, β)-Pareto optimal solution. Finally, the KKT optimality conditions applied to get the
SSFK. An algorithm to clarify the developed SSFK for PIF-MOFTP as well as an illustrative
numerical example are given.

The rest of this study is organized as follows: after the introduction and literature
review, Section 3 introduces some basic concepts. Modelling of the PIF-MOFTP is presented
in Section 4. Section 5 demonstrates the FGP methodology for tackling the PIF-MOFTP.
In the next section the SSFK is investigated. An algorithm for obtaining the SSFK for
PIF-MOFTP is introduced in Section 6. An illustrative example, discussion and limitations
is given in Section 7. This paper ends with some concluding remarks.

3. Preliminaries

This part presents the concept of IFS [20,21,41,42].

Definition 1. An IFS ÃI in X is a set of ordered triples ÃI =
{(

x, μÃI (x), vÃI (x)
)|x ∈ X

}
,

where μÃI (x), vÃI (x) : X → [0, 1] are functions such that 0 ≤ μÃI (x) + vÃI (x) ≤ 1, ∀x ∈ X.
The value of μÃI (x) acts as the grade of membership and vÃI (x) acts as the grade of non-membership
of the element x ∈ X being in ÃI . h(x) = 1− μÃI (x)− vÃI (x) represents the grade of hesitation
for the element x in ÃI [20,41].

Definition 2. An IFN of the form ÃI =
(

a1, a2, a3;
−
a1, a2,

−
a3

)
is said to be triangular IFN (TIFN)

with membership and non-membership functions defined as [41,43]:

μÃI (x) =

⎧⎪⎨⎪⎩
x−a1
a2−a1

, a1 ≤ x ≤ a2,
a3−x
a3−a2

, a2 ≤ x ≤ a3

0, otherwise
, (1)

νÃI (x) =

⎧⎪⎨⎪⎩
a2−x
a2−a1

a1 ≤ x ≤ a2
x−a2
a3−a2

a2 ≤ x ≤ a3

1 otherwise
, (2)

where x−a1
a2−a1

, and x−a2
a3−a2

are continuous monotone increasing functions, a3−x
a3−a2

and a2−x
a2−a1

are

continuous monotone decreasing functions. x−a1
a2−a1

, a3−x
a3−a2

, a2−x
a2−a1

and x−a2
a3−a2

are the left and
the right basis functions of the membership function and the non-membership function
(see Figure 1), respectively. a1 ≤ a1 ≤ a2 ≤ a3 ≤ a3 and 0 ≤ μÃI (x) + vÃI (x) ≤ 1, ∀ x ∈ X.

Figure 1. Triangular Intuitionistic Fuzzy number.

Definition 3. A TIFNs ÃI =
(

a1, a2, a3;
−
a1, a2,

−
a3

)
is assumed to be a non-negative TIFN iff,

−
a1 ≥ 0 [41,43].
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Definition 4. Two TIFNs ÃI =
(

a1, a2, a3;
−
a1, a2,

−
a3

)
and ÃI =

(
b1, b2, b3;

−
b1, b2,

−
b3

)
are

equivalent to one another, ÃI = B̃I iff, ai = bi and
−
ai =

−
bi ∀ i = 1, 2, 3 [7,41,43].

Definition 5. (α, β)-cut of an IFS ÃI is defined by: ÃI
(α,β) = {x : μÃI (x) ≥ α, νÃI (x) ≤ β,

α + β ≤ 1, x ∈ X}; where α, β ∈ (0, 1].

Definition 6. (α, β)-cut of a TIFN ÃI =
(

a1, a2, a3;
−
a1, a2,

−
a3

)
is the set of all x whose degree of

membership is greater than or equal to α and degree of non-membership is less than or equal to β,
i.e., ÃI

(α,β) =
{

x : μÃI (x) ≥ α, νÃI (x) ≤ β, α + β ≤ 1, x ∈ X
}

.

The (α, β)-cut of a TIFN is shown in Figure 2, is defined as the crisp set of elements
x which belong to ÃI at least to the degree α and which does belong to ÃI at most to the
degree β.

Figure 2. The (α, β)-cut of a TIFN.

Now, μÃI (x) ≥ α⇒ x−a1
a2−a1

≥ α and a3−x
a3−a2

≥ α, or x ≥ a1 + α(a2 − a1) and x ≤ a3 −
α(a3 − a2) again, νÃI (x) ≤ β⇒ a2−x

a2−a1
≤ β and x−a2

a3−a2
≤ β, or x ≥ a2 − β(a2 − a1) and

x ≤ a2 + β(a3 − a2) [43]. Thus, referring to Figure 2 ÃI
(α,β) = [AL, AU ], where AL =

max{a1 + α(a2 − a1), a2 − β(a2 − a1)} and AU = min{a3 − α(a3 − a2), a2 + β(a3 − a2)}.
4. Mathematical Formulation

In genuine case TP, during the modeling process, the transportation parameters are
not precise on account of insufficient information the variance of the market situation. To
deal quantitatively with such unclear information, we deemed parametric IF-MOFTP in
which single-scalar parameter ϑ ∈ R in the objective functions and an intuitionistic fuzzy
supply and demand. Suppose that there are m sources and n destinations. Thus, modelling
of the parametric IF-MOFTP can be obtained as [3,7,9]:

Max Zq(x, ϑ) =
∑m

i=1 ∑n
j=1

(
cij + ϑωij

)(q)x(q)ij + δ(q)

∑m
i=1 ∑n

j=1 d(q)ij x(q)ij + ρ(q)
, q = 1, 2, . . . , Q, (3)

Subject to:
n

∑
j=1

xij ≤ ãI
i , i = 1, 2, . . . , m, (4)

m

∑
i=1

xij ≥ b̃I
j , j = 1, 2, . . . , n, (5)
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xij ≥ 0, i = 1, 2, . . . , m, j = 1, 2, . . . , n. (6)

where c(q)ij =
(
cij + ϑωij

)(q) denotes the parametric profit gained from shipment of ith

source to jth destination. Also, d(q)ij denotes the expense per unit of shipment from ith

source to jth destination. δ(q), ρ(q) are some constant profit and cost, respectively. x(q)ij is

the quantity shipped from ith source to jth destination. ãI
i =

(
a1

i , a2
i , a3

i ; a1
i , a2

i , a3
i

)
stands for

the available intuitionistic fuzzy supply at ith source and b̃I
j =

(
b1

j , b2
j , b3

j ; b
1
j , b2

j , b
3
j

)
alludes

to the accessible intuitionistic fuzzy demand at jth destination. Further, we postulate that

∑m
i=1 ∑n

j=1 d(q)ij x(q)ij + ρ(q) > 0, q = 1, 2, . . . , Q; ãI
i > 0I , b̃I

j > 0I , ∀ j;
(
cij + ϑωij

)(q)
>

0I , δ(q), ρ(q) > 0 for all i, j, and the gross supply is greater than or equal the gross
demand [3,7].

m

∑
i=1

(
ãI

i

)
(α,β)
≥

n

∑
j=1

(
b̃I

j

)
(α,β)

. (7)

The disparity (7) is considered as a necessary and sufficient condition for the existence
of a feasible solution to PIF-MOFTP.

For a certain degree of (α, β)-cut the PIF-MOFTP could be transformed into parametric
(α, β)-MOFTP as:

Max Zq(x, ϑ) =
∑m

i=1 ∑n
j=1

(
cij + ϑωij

)(q)x(q)ij + δ(q)

∑m
i=1 ∑n

j=1 d(q)ij x(q)ij + ρ(q)
, q = 12, . . . , Q, (8)

Subject to:
n

∑
j=1

xij ≤ (ai)(α,β) i = 1, 2, . . . , m, (9)

m

∑
i=1

xij ≥
(
bj
)
(α,β) j = 1, 2, . . . , n, (10)

xij ≥ 0, i = 1, 2, . . . , m, j = 1, 2, . . . , n, (11)

aL
i ≤ (ai)(α,β) ≤ aU

i , i = 1, 2, . . . , m, (12)

bL
j ≤

(
bj
)
(α,β) ≤ bU

j , j = 1, 2, . . . , n. (13)

Based on the concept of a convex linear combination method proposed in [40] para-
metric (α, β)-MOFTP can be rewritten as:

Max Zq(x, ϑ) =
∑m

i=1 ∑n
j=1

(
cij + ϑωij

)(q)x(q)ij + δ(q)

∑m
i=1 ∑n

j=1 d(q)ij x(q)ij + ρ(q)
, q = 12, . . . , Q, (14)

Subject to:
n

∑
j=1

xij ≤ λ aL
i + (1− λ)aU

i i = 1, 2, . . . , m, (15)

m

∑
i=1

xij ≥ λ bL
j + (1− λ)bU

j j = 1, 2, . . . , n, (16)

xij ≥ 0, λ ∈ [0, 1], i = 1, 2, . . . , m, j = 1, 2, . . . , n, (17)

Let M(α,β) denote the set of constraints in Equations (15)–(17), the parametric (α, β)-
MOFTP has an (α, β)-Pareto optimal solution x∗ij at ϑ∗.
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Definition 7. (α, β)-Pareto optimal solution. x∗ij ∈ M(α,β) is said to be an (α, β)-Pareto

optimal solution to (α, β)-MOFTP if and only if there does not exist another x
◦
ij ∈ M(α,β)

ai ∈ (ai)(α,β), bj ∈
(
bj
)
(α,β), such that Zq

(
x
◦
ij, ϑ∗

)
≥ Zq

(
x∗ij, ϑ∗

)
with at least one strict

inequality hold for q (q = 1, 2, . . . , Q).

5. FGP Methodology for PIF-MOFTP

In this section the FGP approach is applied to obtain the compromise solution of the
parametric (α, β)-MOFTP. The objective functions are modeled as fuzzy goals characterized
by its’ membership function μ(zq(x,ϑ∗)) [36,44–46]. The model formulation and solution

process are carried out at ϑ = ϑ*. The membership functions of the qth fuzzy goals [36,44],
is defined as:

μ(zq(x,ϑ∗)) =

⎧⎪⎪⎨⎪⎪⎩
1, i f Zq(x, ϑ∗) ≥ uq

∗,
Zq(x,ϑ∗)−gq

∗
uq∗−gq∗ , i f gq

∗ ≤ Zq(x, ϑ∗) ≤ uq
∗,

0, i f Zq(x, ϑ∗) ≤ gq
∗,

q = 1, 2, . . . , Q (18)

where uq
∗ = max Zq(x, ϑ∗), gq

∗ = min Zq(x, ϑ∗), and denotes the upper and lower
tolerance limit for the membership function of qth objective, respectively. In the FGP
approach, the most extensive level of membership is unity. So, the membership goals
having the aspired level unity follows as [44]:

μq
(
Zq(x, ϑ∗)

)
+ d−q − d+q = 1, q = 1, 2, . . . , Q, (19)

where d−q , d+q ≥ 0, with d−q × d+q = 0, denote the under- and over-deviations, respectively,
from the aspired levels [36,44]. The final FGP model of the parametric (α, β)-MOFTP can
be obtained as:

Min AF =
Q

∑
q=1

w−q d−q , (20)

Subject to:

Zq(x, ϑ∗)− gq
∗

uq∗ − gq∗
+ d−q − d+q = 1, q = 1, 2, . . . , Q, (21)

n

∑
j=1

xij ≤ λ aL
i + (1− λ)aU

i i = 1, 2, . . . , m, (22)

m

∑
i=1

xij ≥ λ bL
j + (1− λ)bU

j j = 1, 2, . . . , n, (23)

xij ≥ 0, λ ∈ [0, 1], i = 1, 2, . . . , m, j = 1, 2, . . . , n, (24)

d−q × d+q = 0, and d−q , d+q ≥ 0, q = 1, 2, . . . , Q, (25)

where w−q represents the relative importance of achieving the aspired levels of the respective
fuzzy goals which given by [44,47]:

w−q =
1

uq∗ − gq∗
, q = 1, 2, . . . , Q (26)

Extension of Pal’s Method to Linearize the Membership Goals

It can be easily realized that the parametric membership goals in Equation (19) are
non-linear fractional in nature. To avoid such problem, Pal et al. [45] method is extended
here to linearize the qth membership goals with single-scalar parameter ϑ = ϑ∗ as:
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μq
(
Zq(x, ϑ∗)

)
+ d−q − d+q = 1, q = 1, 2, . . . , Q, (27)

Lq
(
Zq(x, ϑ∗)

)− Lqgq
∗ + d−q − d+q = 1; Lq =

1
uq∗ − gij

∗ , (28)

Zq(x, ϑ∗) =
∑m

i=1 ∑n
j=1

(
cij + ϑ∗ωij

)(q)x(q)ij + δ(q)

∑m
i=1 ∑n

j=1 d(q)ij x(q)ij + ρ(q)
, q = 1, 2, . . . , Q, (29)

Substituting from Equation (29) in Equation (28), we obtain:

Lq
∑m

i=1 ∑n
j=1

(
cij + ϑ∗ωij

)(q)x(q)ij + δ(q)

∑m
i=1 ∑n

j=1 d(q)ij x(q)ij + ρ(q)
− Lqgq

∗ + d−q − d+q = 1, (30)

Lq

[
m
∑

i=1

n
∑

j=1

(
cij + ϑ∗ωij

)(q)x(q)ij + δ(q)

]
− Lqgq

∗
[

m
∑

i=1

n
∑

j=1
d(q)ij x(q)ij + ρ(q)

]
+ d−q

[
m
∑

i=1

n
∑

j=1
d(q)ij x(q)ij + ρ(q)

]

− d+q

[
m
∑

i=1

n
∑

j=1
d(q)ij x(q)ij + ρ(q)

]
=

[
m
∑

i=1

n
∑

j=1
d(q)ij x(q)ij + ρ(q)

]
,

(31)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Lq

[
m
∑

i=1

n
∑

j=1

(
cij + ϑ∗ωij

)(q)x(q)ij + δ(q)

]

+d−q

[
m
∑

i=1

n
∑

j=1
d(q)ij x(q)ij + ρ(q)

]

−d+q

[
m
∑

i=1

n
∑

j=1
d(q)ij x(q)ij + ρ(q)

]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
(
1 + Lqgq

∗)[ m

∑
i=1

n

∑
j=1

d(q)ij x(q)ij + ρ(q)

]
, (32)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Lq

[
m
∑

i=1

n
∑

j=1

(
cij + ϑ∗ωij

)(q)x(q)ij + δ(q)

]

+d−q

[
m
∑

i=1

n
∑

j=1
d(q)ij x(q)ij + ρ(q)

]

−d+q

[
m
∑

i=1

n
∑

j=1
d(q)ij x(q)ij + ρ(q)

]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= L

◦
q

[
m

∑
i=1

n

∑
j=1

d(q)ij x(q)ij + ρ(q)

]
; L0

q =
(
1 + Lqgq

∗) (33)

[
Lq

m
∑

i=1

n
∑

j=1

(
cij + ϑ∗ωij

)(q) − L0
q

m
∑

i=1

n
∑

j=1
d(q)ij

]
x(q)ij + d−q

[
m
∑

i=1

n
∑

j=1
d(q)ij x(q)ij + ρ(q)

]
− d+q

[
m
∑

i=1

n
∑

j=1
d(q)ij x(q)ij + ρ(q)

]
=
[

L0
qρ(q) − Lqδ(q)

]
,

(34)

C(q)
ij x(q)ij + d−q

[
m

∑
i=1

n

∑
j=1

d(q)ij x(q)ij + ρ(q)

]
− d+q

[
m

∑
i=1

n

∑
j=1

d(q)ij x(q)ij + ρ(q)

]
= Gq; (35)

where

C(q)
ij =

[
Lq

m

∑
i=1

n

∑
j=1

(
cij + ϑ∗ωij

)(q) − L0
q

m

∑
i=1

n

∑
j=1

d(q)ij

]
, (36)

Gq =
[

L0
qρ(q) − Lqδ(q)

]
, (37)
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Considering Pal et al. [45], the goal expression in Equation (35) can be linearized as follows.
Letting D−q = d−q

[
∑m

i=1 ∑n
j=1 d(q)ij x(q)ij + ρ(q)

]
and D+

q = d+q
[
∑m

i=1 ∑n
j=1 d(q)ij x(q)ij + ρ(q)

]
, then

the linear form of expression in Equation (32) is obtained as:

C(q)
ij x(q)ij + D−q − D+

q = Gq, (38)

with D−q , D+
q ≥ 0; and D−q × D+

q = 0, since d−q , d+q ≥ 0, and ∑m
i=1 ∑n

j=1 d(q)ij x(q)ij + ρ(q) > 0.

So, minimization of d−q means minimization of D−q = d−q
[
∑m

i=1 ∑n
j=1 d(q)ij x(q)ij + ρ(q)

]
which

is also non-linear. So, involvement of d−q ≤ 1, in the solution leads to impose the following
constraint in the model:

D−q[
∑m

i=1 ∑n
j=1 d(q)ij x(q)ij + ρ(q)

] ≤ 1. (39)

Now, the final FGP model of the parametric (α, β)-MOFTP in model (20)–(25) becomes:

Min AF =
Q

∑
q=1

w−q d−q , (40)

Subject to:[
Lq

m

∑
i=1

n

∑
j=1

(
cij + ϑ∗ωij

)(q) − L0
q

m

∑
i=1

n

∑
j=1

d(q)ij

]
x(q)ij + D−q − D+

q =
[

L0
qρ(q) − Lqδ(q)

]
, (41)

m

∑
i=1

n

∑
j=1
−d(q)ij x(q)ij + D−q ≤ ρ(q), q = 1, 2, . . . , Q, ∀i, j, (42)

n

∑
j=1

xij ≤ λ aL
i + (1− λ)aU

i , i = 1, 2, . . . , m, (43)

m

∑
i=1

xij ≥ λ bL
j + (1− λ)bU

j j = 1, 2, . . . , n, (44)

xij ≥ 0, λ ∈ [0, 1], i = 1, 2, . . . , m, j = 1, 2, . . . , n, (45)

D−q × D+
q = 0, and D−q , D+

q ≥ 0, q = 1, 2, . . . , Q. (46)

Thus, the above FGP model provides the satisfactory solution x∗ij for the parametric
(α, β)-MOFTP.

6. The SSFK for Parametric (α,β) -MOFTP

The main area of inquiry is as follows: having solved the parametric (α, β)-MOFTP,
to what extent can its data with respect to α, β and ϑ be changed without invalidating
the efficiency of its (α, β)-Pareto optimal solution? The set of feasible parameters, the
solvability set, and the SSFK for parametric (α, β)-MOFTP are defined as:

Definition 8. The set of feasible parameters for the parametric (α, β)-MOFTP is defined by:

F =

{
a ∈ Rm,
b ∈ Rn

∣∣∣∣∣ ai ∈ Lα,β
(
ãI

i
)
, i = 1, 2, . . . m; bj ∈ Lα,β

(
b̃I

j

)
, j = 1, 2, . . . , n;

α, β ∈ [0, 1]; and M(α,β)
(
xij, a, b

) �= ∅

}
.

Definition 9. The solvability setM of the parametric (α, β)-MOFTP is defined by:
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M =

{
(ϑ, a, b) ∈ R× Rm × Rn

∣∣∣∣ parametric(α, β)−MOFTP has
an (α, β)− Pareto optimal solution.

}
.

Definition 10. Suppose that x∗ij be an (α, β)-Pareto optimal solution of the parametric (α, β)-

MOFTP, then the SSFK S1

(
x∗ij, α, β

)
corresponding to x∗ij is defined by:

S1

(
x∗ij, α, β

)
=

{
(ϑ, a, b) ∈ R× Rm × Rn

∣∣∣∣∣ x∗ij is an (α, β)− Pareto optimal solution o f
parametric (α, β)−MOFTP

}
.

The SSFK of the parametric (α, β)-MOFTP is the set of all parameters corresponding to
one (α, β)-Pareto optimal solution [35,36]. It is easy to see that the stability of the parametric
(α, β)-MOFTP model (14)–(17) implies the stability of the parametric FGP model which is
defined as follows:

Min AF =
Q

∑
q=1

w−q d−q ,q (47)

Subject to:[
Lq

m

∑
i=1

n

∑
j=1

(
cij + ϑωij

)(q) − L0
q

m

∑
i=1

n

∑
j=1

d(q)ij

]
x(q)ij + D−q − D+

q =
[

L0
qρ(q) − Lqδ(q)

]
, (48)

m

∑
i=1

n

∑
j=1
−d(q)ij x(q)ij + D−q ≤ ρ(q), q = 1, 2, . . . , Q, ∀i, j (49)

n

∑
j=1

xij ≤ λ aL
i + (1− λ)aU

i , i = 1, 2, . . . , m, (50)

m

∑
i=1

xij ≥ λ bL
j + (1− λ)bU

j , j = 1, 2, . . . , n, (51)

xij ≥ 0, λ ∈ [0, 1], ϑ ∈ R, i = 1, 2, . . . , m, j = 1, 2, . . . , n, (52)

D−q × D+
q = 0, and D−q , D+

q ≥ 0, q = 1, 2, . . . , Q. (53)

6.1. KKT Optimality Conditions for Parametric FGP Model

The Lagrangian function of parametric FGP model (47)–(53) follows as [36,37]:

L =

[
Q
∑

q=1
w−q D−q

]
+ ξq

[[
Lq

m
∑

i=1

n
∑

j=1

(
cij + ϑωij

)(q) − L0
q

m
∑

i=1

n
∑

j=1
d(q)ij

]
x(q)ij + D−q − D+

q −
[

L0
qρ(q) − Lqδ(q)

]]

+ υq

[
m
∑

i=1

n
∑

j=1
−d(q)ij x(q)ij + D−q − ρ(q)

]
+ τi

[
n
∑

j=1
xij −

(
λ aL

i + (1− λ)aU
i
)]

+ ηj

[
− m

∑
i=1

xij +
(

λ bL
j + (1− λ)bU

j

)]
+ ϕij

[−xij
]
+ ψi

[−aL
i
]
+ φj

[
−bL

j

]
+ �i

[−aU
i
]
+ εj

[
−bU

j

]
+ ζq

[
−D−q

]
+ πq

[
−D+

q

]
,

(54)

where ξ, υ, τ, η, ϕ, ψ, φ, �, ε, ζ and π are the Lagrange multipliers. Thus, KKT optimality
conditions [28,36,37,39] have the following form:

∂L
∂xij

= ξq

[
Lq

m

∑
i=1

n

∑
j=1

(
cij + ϑωij

)(q) − L0
q

m

∑
i=1

n

∑
j=1

d(q)ij

]
+ υq

[
m

∑
i=1

n

∑
j=1
−d(q)ij

]
+ τi − ηj − ϕij = 0,i = 1, 2, . . . , m, j = 1, 2, . . . , n, (55)

∂L
∂aL

i
= −λτi − ψi = 0, i = 1, 2, . . . m, (56)
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∂L
∂aU

i
= −(1− λ)τi −�i = 0, i = 1, 2, . . . m, (57)

∂L
∂bL

j
= ληj − φj = 0, i = 1, 2, . . . m, (58)

∂L
∂bU

j
= (1− λ)ηj − εj = 0, i = 1, 2, . . . m, (59)

∂L
∂D−q

=
Q

∑
q=1

w−q + ξq + υq − ζq = 0, q = 1, 2, . . . , Q, (60)

∂L
∂D+

q
= −ξq − πq = 0, q = 1, 2, . . . , Q, (61)

[
Lq

m

∑
i=1

n

∑
j=1

(
cij + ϑωij

)(q) − L0
q

m

∑
i=1

n

∑
j=1

d(q)ij

]
x(q)ij + D−q − D+

q −
[

L0
qρ(q) − Lqδ(q)

]
= 0, (62)

m

∑
i=1

n

∑
j=1
−d(q)ij x(q)ij + D−q − ρ(q) ≤ 0, q = 1, 2, . . . , Q, ∀i, j (63)

n

∑
j=1

xij −
[
λ aL

i + (1− λ)aU
i

]
≤ 0, i = 1, 2, . . . , m, (64)

[
λ bL

j + (1− λ)bU
j

]
−

m

∑
i=1

xij ≤ 0, j = 1, 2, . . . , n, (65)

xij ≥ 0, i = 1, 2, . . . , m, j = 1, 2, . . . , n, (66)

D−ij , D+
ij ≥ 0, q = 1, 2, . . . , Q, (67)

υq

[
m

∑
i=1

n

∑
j=1
−d(q)ij x(q)ij + D−q − ρ(q)

]
= 0, q = 1, 2, . . . , Q, ∀i, j (68)

τi

[
n

∑
j=1

xij −
(

λ aL
i + (1− λ)aU

i

)]
= 0, i = 1, 2, . . . , m, (69)

ηj

[
−

m

∑
i=1

xij +
(

λ bL
j + (1− λ)bU

j

)]
= 0, j = 1, 2, . . . , n, (70)

ϕij
[
xij
]
= 0, (71)

ψi

[
aL

i

]
= 0, (72)

φj

[
bL

j

]
= 0, (73)

�i

[
aU

i

]
= 0, (74)

εj

[
bU

j

]
= 0, (75)

ζq

[
D−q

]
= 0, (76)

πq

[
D+

q

]
= 0, (77)

υ, τ, η, ϕ, ψ, φ, �, ε, ζ, π ≥ 0, and ϑ, ξ ∈ R; (78)
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where the KKT conditions (55)–(78) are evaluated at x∗ij. Solving the system of Equations

(55)–(78), the SSFK S1

(
x∗ij, α, β

)
for parametric IF-MOFTP is obtained.

6.2. Algorithm for Determination of the SSFK S1 (x∗ij, a, b)

Following the above discussion, the algorithm for obtaining the SSFK S1

(
x∗ij, α, β

)
for

parametric (α, β)-MOFTP van be described as follows (Algorithms 1 and 2):

Algorithm 1 Phase I: Obtain an (α, β)-Pareto Optimal Solution of the Problem

1: Set the value of α, and β.
2: Presume that ϑ = ϑ∗.
3: Calculate the sole maximum and minimum values of Zq(x, ϑ∗), q = 1, 2, . . . , Q.
4: Set the goals and the upper tolerance limits for Zq(x, ϑ∗), q = 1, 2, . . . , Q.
5: Formulate μ(zq(x,ϑ∗)), q = 1, 2, . . . , Q as in Equation (18).

6: Evaluate the weights w−ij as defined in Equation (26).

7: Do the linearization procedures at ϑ = ϑ∗ for each parametric membership goal according
to Equations (35)–(38).

8: Formulate and solve the FGP model (Equations (40)–(46)) to get (α, β)-Pareto optimal
solution x∗ij.

Algorithms 2 Phase II: Determination of the SSFK S1(x∗ij, α, β)

1: Formulate the parametric FGP model (Equations (47)–(53)).
2: Obtain the Lagrangian function, for the final FGP model, as in Equation (54).
3: Apply the KKT optimality conditions to find the SSFK (Equations (55)–(78)).
4: Reduce and solve the system of Equations (55)–(78), to obtain S1(x∗ij, α, β) and stop.

7. Numerical Example

To demonstrate the proposed algorithm for finding the SSFK, consider the following
parametric IF-MOFTP:

Max

(
Z1(x, ϑ) =

ϑx11 + (2 + ϑ)x12 + (3 + 2ϑ)x21 + 6x22 + 4
x11 + 3x12 + x21 + 2x22 + 2 ,

Z2(x, ϑ) =
2x11 + (3 + ϑ)x12 + (4 + 2ϑ)x21 + (5 + ϑ)x22 + 6

x11 + 2x12 + 3x21 + x22+ 4

)
,

Subject to:

Supply constraints:
x11 + x12 ≤ ãI

1,x21 + x22 ≤ ãI
2,

Demand constraints:

x11 + x21 ≥ b̃I
1,x12 + x22 ≥ b̃I

2,

where the membership functions μãI
1
(x), μãI

2
(x), μb̃I

1
(x), μb̃I

2
(x) and the non-membership

functions γãI
1
(x), γãI

2
(x), γb̃I

2
(x), γb̃I

2
(x) of the supplies and demands are described

as follows:

μãI
1
(x) =

⎧⎪⎨⎪⎩
x−140

20 i f 140 ≤ x ≤ 160,
180−x

20 i f 160 ≤ x ≤ 180,
0 otherwise,

γãI
1
(x) =

⎧⎪⎨⎪⎩
160−x

30 i f 130 ≤ x ≤ 160,
x−160

40 i f 160 ≤ x ≤ 200,
1 otherwise,
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μãI
2
(x) =

⎧⎪⎨⎪⎩
x−220

20 i f 220 ≤ x ≤ 240,
250−x

10 i f 240 ≤ x ≤ 250,
0 otherwise,

γãI
2
(x) =

⎧⎪⎨⎪⎩
240−x

20 i f 210 ≤ x ≤ 240,
x−240

30 i f 240 ≤ x ≤ 270,
1 otherwise,

μb̃I
1
(x) =

⎧⎪⎨⎪⎩
x−40

10 i f 40 ≤ x ≤ 50,
60−x

10 i f 50 ≤ x ≤ 60,
0 otherwise,

γb̃I
1
(x) =

⎧⎪⎨⎪⎩
50−x

20 i f 30 ≤ x ≤ 50,
x−50

30 i f 50 ≤ x ≤ 80,
1 otherwise,

μb̃I
2
(x) =

⎧⎪⎨⎪⎩
x−310

10 i f 310 ≤ x ≤ 320,
350−x

30 i f 320 ≤ x ≤ 350,
0 otherwise,

γb̃I
2
(x) =

⎧⎪⎨⎪⎩
320−x

20 i f 300 ≤ x ≤ 320,
x−320

60 i f 320 ≤ x ≤ 380,
1 otherwise,

Phase I: Finding an (α, β)-Pareto optimal solution of the parametric IF-MOFTP.
For a desired values of α = 0.6, and β = 0.2, then applying the concept of (α, β)-cut of

the IFN we formulate the (α, β)-MOFTP at ϑ = ϑ∗ = 3.

Max

(
Z1(x) =

3x11+ 5x12+ 9x21+ 6x22+ 8
x11+ 3x12+ x21+ 2x22+ 2 ,

Z2(x) =
2x11+ 6x12+ 10x21+ 8x22+ 6

x11+ 2x12+ 3x21+ x22+ 4

)
,

Subject to:

Supply constraints:

x11 + x12 ≤ [154, 168], x21 + x22 ≤ [234, 244].

Demand constraints:

x11 + x21 ≥ [46, 54], x12 + x22 ≥ [316, 332].

Based on the concept of convex linear combination on the constraints, then we obtain
the MOFTP:

Max

(
Z1(x) =

3x11+ 5x12+ 9x21+ 6x22+ 8
x11+ 3x12+ x21+2x22+ 2 ,

Z2(x) =
2x11+ 6x12+ 10x21+ 8x22+ 6

x11+ 2x12+ 3x21+ x22+ 4

)
,

Subject to:

x11 + x12 ≤ 165.2, x21 + x22 ≤ 240, x11 + x21 ≥ 51.6, x12 + x22 ≥ 328.8.

A FGP approach is utilized to solve the MOFTP according to the model of Equa-
tions (40)–(46). Firstly, the coefficients of the linearized membership goals are obtained
in Table 1.

Table 1. The coefficient of the linearized membership goals
(

cij
)T

and Gij.

Z1(x) Z2(x)

(
cq

ij

)T
⎛⎜⎜⎝

0.682
−10.22
19.081
1.364

⎞⎟⎟⎠
T ⎛⎜⎜⎝

−2.8628
−4.048
−5.234
2.1688

⎞⎟⎟⎠
T

Gij −7.497 13.128

Min AF = 3.0665D−1 + 0.8386D−2 ,

Subject to:

0.682x11 − 10.22x12 + 19.081x21 + 1.364x22 + D−1 − D+
1 = −7.497,

− 2.8628x11 − 4.048x12 − 5.234x21 + 2.169x22 + D−2 − D+
2 = 13.128,
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− x11 − 3x12 − x21 − 2x22 + D−1 ≤ 2,

− x11 − 2x12 − 3x21 − x22 + D−2 ≤ 4,

x11 + x12 ≤ 165.2,

x21 + x22 ≤ 240,

x11 + x21 ≥ 51.6,

x12 + x22 ≥ 328.8,

x11, x12, x21, x22, D−1 , D+
1 , D−2 , D+

2 ≥ 0.

Using Lingo programming, the (α, β)-Pareto optimal solution of the parametric IF-
MOFTP is obtained at

(
x∗11, x∗12, x∗21, x∗22, D−1 , D+

1 , D−2 , D+
2
)
= (0, 165.88, 76.39, 163.61, 0,

0, 726.78, 0) .
Phase II: determination of the SSFK S1(x∗, α, β).
To determine the SSFK S1(x∗, a, b) of the parametric IF-MOFTP, the coefficients of the

linearized membership goals in the parametric form are recalculated in Table 2.

Table 2. The coefficients of the linearized membership goals
[(

cij + ϑωij

)(q)]T
and Gij.

Z1(x, ϑ) Z2(x, ϑ)[(
cij + ϑωij

)(q)]T
⎛⎜⎜⎝
−8.518 + 3.067ϑ
−19.42 + 3.067ϑ
0.682 + 6.133ϑ

1.364

⎞⎟⎟⎠
T ⎛⎜⎜⎝

−2.863
−6.564 + 0.839ϑ
−10.266 + 1.677ϑ
−0.347 + 0.839ϑ

⎞⎟⎟⎠
T

Gij −7.497 13.128

Therefore, the stability of parametric IF-MOFTP implies the stability of the parametric
FGP model which is defined as:

Min AF = 3.067D−1 + 0.839D−2 ,

Subject to:

(−8.518 + 3.067ϑ)x11 + (−19.42 + 3.067ϑ)x12 + (0.682 + 6.133ϑ)x21 + 1.364x22

+ D−1 − D+
1 = −7.497,

− 2.8628x11 + (−6.564 + 0.839ϑ)x12 + (−10.266 + 1.677ϑ)x21

+ (−0.347 + 0.839ϑ)x22 + D−2 − D+
2 = 13.128,

− x11 − 3x12 − x21 − 2x22 + D−1 ≤ 2,

− x11 − 2x12 − 3x21 − x22 + D−2 ≤ 4,

x11 + x12 ≤ 0.2aL
1 + 0.8aU

1 ,

x21 + x22 ≤ 0.4aL
2 + 0.6aU

2 ,

x11 + x21 ≥ 0.3bL
1 + 0.7bU

1 ,

x12 + x22 ≥ 0.2bL
2 + 0.8bU

2 ,

x11, x12, x21, x22, aL
1 , aU

1 , aL
2 , aU

2 , bL
1 , bU

1 , bL
2 , bU

2 ≥ 0,

D−1 , D+
1 , D−2 , D+

2 ≥ 0; ϑ ∈ R

The Lagrangean function of the above parametric FGP model follows as:
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L

= 3.067D−1 + 0.839D−2 + ξ1

[
(−8.518 + 3.067ϑ)x11 + (−19.42 + 3.067ϑ)x12

+(0.682 + 6.133ϑ)x21 + 1.364x22 + D−1 − D+
1 + 7.497

]
+ ξ2

[ −2.8628x11 + (−6.564 + 0.839ϑ)x12 + (−10.266 + 1.677ϑ)x21
+(−0.347 + 0.839ϑ)x22 + D−2 − D+

2 − 13.128

]
+ ϑ1

[−x11 − 3x12 − x21 − 2x22 + D−1 − 2
]
+ ϑ2

[−x11 − 2x12 − 3x21 − x22 + D−2 − 4
]

+ τ1
[
x11 + x12 − 0.2aL

1 − 0.8aU
1
]
+ τ2

[
x21 + x22 − 0.4aL

2 − 0.6aU
2
]

+ η1
[−x11 − x21 + 0.3bL

1 + 0.7bU
1
]
+η2

[−x12 − x22 + 0.2bL
2 + 0.8bU

2
]
+ ϕ1[−x11]

+ ϕ2[−x12] + ϕ3[−x21] + ϕ4[−x22] + ψ1
[−aL

1
]
+ ψ2

[−aL
2
]
+ φ1

[−bL
1
]
+ φ2

[−bL
2
]

+ �1
[−aU

1
]
+�2

[−bU
2
]
+ ε1

[−bU
1
]
+ ε2

[−bU
2
]
+ζ1

[−D−1
]
+ζ2

[−D−2
]
+π1

[−D+
1
]

+ π2
[−D+

2
]

where ϑ, ξ1, ξ2 ∈ R, and υ1, υ2, τ1, τ2, η1, η2, ϕ1, ϕ2, ϕ3, ϕ4, ψ1, ψ2, φ1, φ2, �1, �2, ε1, ε2 ≥ 0,
and ζ1, ζ2, π1, π2 ≥ 0, are the Lagrange multipliers. Therefore, KKT optimality conditions
follows as:

∂L
∂x11

= (−8.518 + 3.067ϑ)ξ1 − 2.863ξ2 − υ1 − υ2 + τ1 − η1 − ϕ1 = 0

∂L
∂x12

= (−19.42 + 3.067ϑ)ξ1 + (−6.564 + 0.839ϑ)ξ2 − 3υ1 − 2υ2 + τ1 − η2 − ϕ2 = 0,

∂L
∂x21

= (0.682 + 6.133ϑ)ξ1 + (−10.266 + 1.677ϑ)ξ2 − υ1 − 3υ2 + τ2 − η1 − ϕ3 = 0,

∂L
∂x22

= 1.364ξ1 + (−0.347 + 0.839ϑ)ξ2 − 2υ1 − υ2 + τ2 − η2 − ϕ4 = 0,

∂L
∂aL

1
= −0.2τ1 − ψ1 = 0,

∂L
∂aU

1
= −0.8τ1 −�1 = 0,

∂L
∂aL

2
= −0.4τ2 − ψ2 = 0,

∂L
∂aU

2
= −0.6τ2 −�2 = 0,

∂L
∂bL

1
= 0.3η1 − φ1 = 0,

∂L
∂bU

1
= 0.7η1 − ε1 = 0,

∂L
∂bL

2
= 0.2η2 − φ2 = 0,

∂L
∂bU

2
= 0.8η2 − ε2 = 0,

∂L
∂D−1

= 3.067 + ξ1 + v1 − ζ1 = 0,

∂L
∂D+

1
= −ξ1 − π1 = 0,

∂L
∂D−2

= 0.839 + ξ2 + υ2 − ζ2 = 0,
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∂L
∂D+

2
= −ξ2 − π2 = 0,

υ1
[−x11 − 3x12 − x21 − 2x22 + D−1 − 2

]
= 0, i.e., υ1 = 0,

υ2
[−x11 − 2x12 − 3x21 − x22 + D−2 − 4

]
= 0, i.e., υ2 = 0,

τ1

[
x11 + x12 − 0.2aL

1 − 0.8aU
1

]
= 0, i.e., τ1 = 0,

τ2

[
x21 + x22 − 0.4aL

2 − 0.6aU
2

]
= 0, i.e., τ2 ≥ 0,

η1

[
−x11 − x21 + 0.3bL

1 + 0.7bU
1

]
= 0, i.e., η1 = 0,

η2

[
−x12 − x22 + 0.2bL

2 + 0.8bU
2

]
= 0, i.e., η2 = 0,

ϕ1[−x11] = 0, i.e., ϕ1 ≥ 0,

ϕ2[−x12] = 0, i.e., ϕ2 = 0,

ϕ3[−x21] = 0, i.e., ϕ3 = 0,

ϕ4[−x22] = 0, i.e., ϕ4 = 0,

ψ1

[
−aL

1

]
= 0, i.e., ψ1 = 0,

ψ2

[
−aL

2

]
= 0, i.e., ψ2 = 0,

φ1

[
−bL

1

]
= 0, i.e., φ1 = 0,

φ2

[
−bL

2

]
= 0, i.e., φ2 = 0,

�1

[
−aU

1

]
= 0, i.e., �1 = 0,

�2

[
−aU

2

]
= 0, i.e., �2 = 0,

ε1

[
−bU

1

]
= 0, i.e., ε1 = 0,

ε2

[
−bU

2

]
= 0, i.e., ε2 = 0,

ζ1
[−D−1

]
= 0, i.e., ζ1 ≥ 0,

ζ2
[−D−2

]
= 0, i.e., ζ2 = 0,

π1
[−D+

1
]
= 0, i.e., π1 ≥ 0,

π2
[−D+

2
]
= 0, i.e., π2 ≥ 0,

− x11 − 3x12 − x21 − 2x22 + D−1 ≤ 2,

− x11 − 2x12 − 3x21 − x22 + D−2 ≤ 4,

x11 + x12 ≤ 0.2aL
1 + 0.8aU

1 ,

x21 + x22 ≤ 0.4aL
2 + 0.6aU

2 ,

x11 + x21 ≥ 0.3bL
1 + 0.7bU

1 ,

x12 + x22 ≥ 0.2bL
2 + 0.8bU

2 ,

x11, x12, x21, x22, aL
1 , aU

1 , aL
2 , aU

2 , bL
1 , bU

1 , bL
2 , bU

2 , D−1 , D+
1 , D−2 , D+

2 ≥ 0; ϑ ∈ R

Solving the above system of Equation. we get: υ1 = υ2 = τ1 = τ2 = η1 = η2 = ϕ2 =
ϕ3 = ϕ4 = ψ1 = ψ2 = φ1 = φ2 = �1 = �2 = ε1 = ε2 = ζ2 = 0, and ϕ1, ζ1, π1, π2 ≥ 0.
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Also, ξ2 = −π2 = −0.839, ξ1 = −π1. The above system of Equation is reduced to
the following:

(−8.518 + 3.067ϑ)ξ1 − 2.863ξ2 − ϕ1 = 0,

(−19.42 + 3.067ϑ)ξ1 + (−6.564 + 0.839ϑ)ξ2 = 0,

(0.682 + 6.133ϑ)ξ1 + (−10.266 + 1.677ϑ)ξ2 = 0,

1.364ξ1 + (−0.347 + 0.839ϑ)ξ2 = 0,

Therefore, the SSFK for the parametric IF-MOFTP is given by:

S1(0, 165.88, 76.39, 163.61, 0, 0, 726.78, 0)

=

⎧⎨⎩ ϑ ∈ R,
α, β ∈ [0, 1]

∣∣∣∣∣∣
12.948 ξ1 + [−1.41 + 6.133ξ1]ϑ + 5.799− ϕ1 = 0,
ξ1 = ζ1 − 3.67; ξ1 = −π1; ξ2 = −π2 = −0.839,

ζ1, ϕ1, π1, π2 ≥ 0; ξ1, ξ2 ∈ R

⎫⎬⎭
After applying the KKT optimality conditions we obtain a large system of algebraic

equations. By reducing and solving the algebraic system of equations the SSFK is obtained.
The SSFK introduces the values and relations between different parameters which generate
the same solution of the PIF-MOFTP as indicated by set S1. To test the obtained results
of the SSFK, different values of α, β ∈ [0, 1] will be taken and the solution will remain
the same.

8. Conclusions

The SSFK for the PIF-MOFTP was investigated in this study. Also, we characterized
definitions of the set of feasible parameters and the solvability set for PIF-MOFTP. First, the
concept of (α, β)-cut methodology was applied to get the parametric model. Moreover, the
FGP approach was applied to find a (α, β)-Pareto optimal solution for PIF-MOFTP which
has not been published in the literature to date. To obtain the SSFK for the novel model of
PIF-MOFTP, the KKT necessary optimality conditions are applied. After applying the KKT
optimality conditions, we obtained a large system of algebraic equations. By reducing and
solving the algebraic system of equations, the SSFK was obtained. A detailed procedure
that determines the SSFK for the PIF-MOFTP was exhibited. A numerical example was
given to ensure the applicability and efficiency of the proposed PIF-MOFTP.

The major limitation of the proposed PIF-MOFTP is that a specific (α, β)-level is
adopted in the proposed methods to represent the confidence level on DMs’ subjective
uncertainty to specify parameter values in the PIF-MOFTP. For simplification, the (α, β)-
level for all parameters of the supply and demand in the solution process are assumed to be
the same. However, these may be limitations in practical applications. The determination
of (α, β)-levels for various DMs’ subjective uncertainties could be different in the real
world due to DMs’ different consideration of the real transportation data. Thus, this will
be addressed in future studies.

Several remaining areas of research in the topic of parametric MOFTP include
the following:

1. The parametric study of multi-choice MOTP should be addressed.
2. Real-world PIF-MOFTP is a vital field in the future research.
3. Rough parametric MOFTP is a vital topic to be investigated.

Author Contributions: Conceptualization, M.A.E.S., M.A.E.-S. and F.A.F.; Methodology, M.A.E.S.,
F.A.F. and M.A.E.; Investigation, M.A.E.S., M.A.E.-S., A.F.F. and M.A.E.; writing—review and editing,
M.A.E.S., M.A.E.-S., A.F.F., M.A.E. and F.A.F. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

88



Fractal Fract. 2021, 5, 233

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ammar, E.E.; Youness, E.A. Study on multi-objective transportation problem with fuzzy numbers. Appl. Math. Comput. 2005,
166, 241–253.

2. Bit, A.K.; Biswal, M.P.; Alam, S.S. Fuzzy programming approach to multi-criteria decision-making transportation problem. Fuzzy
Sets Syst. 1992, 50, 135–141. [CrossRef]

3. Cetin, N.; Tiryaki, F. A Fuzzy Approach Using Generalized Dinkelbach’s Algorithm for Multiobjective Linear Fractional
Transportation Problem. Math. Probl. Eng. 2014, 2014, 702319. [CrossRef]

4. Chanas, S.; Kuchta, D. A concept of the optimal solution of the transportation problem with fuzzy cost coefficients. Fuzzy Sets
Syst. 1996, 82, 299–305. [CrossRef]

5. Charnes, A.; Cooper, W.W. The steppingstone method for explaining linear programming calculation in transportation problem.
Manag. Sci. 1954, 1, 49–69. [CrossRef]

6. Diaz, J.A. Finding a complete description of all efficient solutions to a multi-objective transportation problem. Ekon.-Mat. Obz.
1979, 15, 62–73.

7. El Sayed, M.; Abo-Sinna, M.A. A novel Approach for Fully Intuitionistic Fuzzy Multi-Objective Fractional Transportation Problem.
Alex. Eng. J. 2020, 60, 1447–1463. [CrossRef]

8. Beaula, T.; Priyadharsini, M. A new algorithm for finding a fuzzy optimal solution for intuitionistic fuzzy transportation problems.
Int. J. Appl. Fuzzy Sets Artif. Intell. 2015, 5, 183–192.

9. Arya, R.; Singh, P.; Kumari, S.; Obaidat, M.S. An approach for solving fully fuzzy multi-objective linear fractional optimization
problems. Soft Comput. 2020, 24, 9105–9119. [CrossRef]

10. Ebrahimnejad, A.; Verdegay, J.L. A new approach for solving fully intuitionistic fuzzy transportation problems. Fuzzy Optim.
Decis. Mak. 2017, 17, 447–474. [CrossRef]

11. Liou, J.J.; Hsu, C.-C.; Chen, Y.-S. Improving transportation service quality based on information fusion. Transp. Res. Part A Policy
Pract. 2014, 67, 225–239. [CrossRef]

12. Ergun, O.; Kuyzu, G.; Savelsbergh, M. Reducing truckload transportation through collaboration. Transp. Sci. 2007, 41,
206–221. [CrossRef]

13. Sheu, J.B.; Chen, Y.J. Transportation and economics of scale in recycling low-value materials. Transp. Res. Part B Methodol. 2014,
65, 65–76. [CrossRef]

14. Roy, S.K.; Maity, G.; Weber, G.-W. Multi-objective two-stage grey transportation problem using utility function with goals. Cent.
Eur. J. Oper. Res. 2016, 25, 417–439. [CrossRef]

15. Roy, S.K.; Maity, G.; Weber, G.W.; Gök, S.Z.A. Conic scalarization approach to solve multi-choice multi-objective transportation
problem with interval goal. Ann. Oper. Res. 2017, 253, 599–620. [CrossRef]

16. Roy, S.K.; Mahapatra, D.R. Multi-objective interval valued transportation probabilistic problem involving lognormal. Int. J. Math.
Sci. Comput. 2011, 1, 14–21.

17. Roy, S.K. Multi-choice stochastic transportation problem involving Weibull distribution. Int. J. Oper. Res. 2014, 21, 38. [CrossRef]
18. Maity, G.; Roy, S.K.; Verdegay, J.L. Multi-objective transportation problem with cost reliability under uncertain environment. Int.

J. Comput. Intell. Syst. 2016, 9, 839–849. [CrossRef]
19. Maity, G.; Roy, S.K. Solving a multi-objective transportation problem with nonlinear cost and multi-choice demand. Int. J. Manag.

Sci. Eng. Manag. 2014, 11, 62–70. [CrossRef]
20. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [CrossRef]
21. Gong, Z.; Zhangc, N.; Chiclanad, F. The optimization ordering model for intuitionistic fuzzy preference relations with utility

functions. Knowl.-Based Syst. 2018, 162, 174–184. [CrossRef]
22. Jana, B.; Roy, T.K. Multi-objective intuitionistic fuzzy linear programming and its application in transportation model. Notes

Intuit. Fuzzy Sets 2007, 13, 34–51.
23. Verma, R.; Biswal, M.; Biswas, A. Fuzzy programming technique to solve multi-objective transportation problems with some

non-linear membership functions. Fuzzy Sets Syst. 1997, 91, 37–43. [CrossRef]
24. Gourav, G.; Kumari, A. An efficient method for solving intuitionistic fuzzy transportation problem of type-2. Int. J. Appl. Comput.

Math. 2017, 3, 3795–3804.
25. Gupta, A.; Kumar, A. A new method for solving linear multi-objective transportation problems with fuzzy parameters. Appl.

Math. Model. 2012, 36, 1421–1430. [CrossRef]
26. Maity, G.; Roy, S.K. Solving multi-choice multi-objective transportation problem: A utility function approach. J. Uncertain. Anal.

Appl. 2014, 2, 11. [CrossRef]
27. Mahajan, S.; Gupta, S.K. On fully intuitionistic fuzzy multiobjective transportation problems using different membership

functions. Ann. Oper. Res. 2019, 296, 211–241. [CrossRef]

89



Fractal Fract. 2021, 5, 233

28. El Sayed, M.; Farahat, F. Study of Achievement Stability Set for Parametric Linear FGP Problems. Ain Shams Eng. J. 2020, 11,
1345–1353. [CrossRef]

29. Veeramani, C.; Edalatpanah, S.A.; Sharanya, S. Solving the Multiobjective Fractional Transportation Problem through the
Neutrosophic Goal Programming Approach. Discret. Dyn. Nat. Soc. 2021, 2021, 7308042. [CrossRef]

30. Pramanik, S.; Banerjee, D. Multi-objective chance constrained capacitated transportation problem based on fuzzy goal program-
ming. Int. J. Comput. Appl. 2012, 44, 42–46. [CrossRef]

31. Edalatpanah, S.A. A nonlinear approach for neutrosophic linear programming. J. Appl. Res. Ind. Eng. 2019, 6, 367–373. [CrossRef]
32. Rizk-Allah, R.M.; Hassanien, A.E.; Elhoseny, M. A multi-objective transportation model under neutrosophic environment.

Comput. Electr. Eng. 2018, 69, 705–719. [CrossRef]
33. Veeramani, C.; Sumathi, M. Fuzzy Mathematical Programming approach for Solving Fuzzy Linear Fractional Programming

Problem. RAIRO-Oper. Res. 2014, 48, 109–122. [CrossRef]
34. Emam, O.E. A parametric study on multi-objective integer quadratic programming problems under uncertainty. Gen. Math. Notes

2011, 6, 49–60.
35. Osman, M.S. Qualitative analysis of basic notions in parametric convex programming, (parameters in the objective function). Apl.

Mat. 1977, 22, 333–348. [CrossRef]
36. Osman, M.S.; Emam, O.E.; El Sayed, M.A. On Parametric Multi-level Multi-objective Fractional Programming Problems with

Fuzziness in the Constraints. Br. J. Math. Comput. Sci. 2016, 18, 1–19. [CrossRef] [PubMed]
37. Hsien-Chung, W. The Karush-Kuhn-Tucker optimality conditions for multi-objective programming problems with fuzzy-valued

objective functions. Fuzzy Optim. Decis. Mak. 2009, 8, 1–28.
38. Saad, O.M. On stability of proper efficient solutions in multi-objective fractional programming problems under fuzziness. Math.

Comput. Model. 2007, 45, 221–231. [CrossRef]
39. Saad, O.M.; Hughes, J.B. Bicriterion integer linear fractional programs with parameters in the objective functions. J. Inf. Optim.

Sci. 1998, 19, 97–108. [CrossRef]
40. Saad, O.M.; Elshafei, M.M.; Sleem, M.M. On some stability notions for fuzzy three-level fractional programming problem. Math.

Sci. Lett. 2021, 10, 23–34.
41. Mahapatra, G.S.; Roy, T.K. Intuitionistic Fuzzy Number and Its Arithmetic Operation with Application on System Failure.

J. Uncertain Syst. 2013, 7, 92–107.
42. Mahmoodirad, A.; Allahviranloo, T.; Niroomand, S. A new effective solution method for fully intuitionistic fuzzy transportation

problem. Soft Comput. 2019, 23, 4521–4530. [CrossRef]
43. Roy, S.K.; Ebrahimnejad, A.; Verdegay, J.L.; Das, S. New approach for solving intuitionistic fuzzy multi-objective transportation

problem. Sadhana 2018, 43, 3. [CrossRef]
44. Mohamed, R.H. The relationship between goal programming and fuzzy programming. Fuzzy Sets Syst. 1997, 89,

215–222. [CrossRef]
45. Pal, B.B.; Moitra, B.N.; Maulik, U. A goal programming procedure for fuzzy multi-objective linear fractional programming

problem. Fuzzy Sets Syst. 2003, 139, 395–405. [CrossRef]
46. Zangiabadi, M.; Maleki, H.R. Fuzzy goal programming technique to solve multi-objective transportation problems with some

non-linear membership functions. Iran. J. Fuzzy Syst. 2013, 10, 61–74.
47. Osman, M.; Emam, O.; El Sayed, M.A. Interactive Approach for Multi-Level Multi-Objective Fractional Programming Problems

with Fuzzy Parameters. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 139–149. [CrossRef]

90



fractal and fractional

Article

Hermite–Jensen–Mercer-Type Inequalities via Caputo–Fabrizio
Fractional Integral for h-Convex Function

Miguel Vivas-Cortez 1,*,†, Muhammad Shoaib Saleem 2,†, Sana Sajid 2,† and Muhammad Sajid Zahoor 2,†

and Artion Kashuri 3,†

Citation: Vivas-Cortez, M.; Saleem,

M.S.; Sajid, S.; Zahoor, M.S.; Kashuri,

A. Hermite–Jensen–Mercer-Type

Inequalities via Caputo–Fabrizio

Fractional Integral for h-Convex

Function. Fractal Fract. 2021, 5, 269.

https://doi.org/10.3390/fractalfract

5040269

Academic Editors: Savin Treanţă and
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Abstract: Integral inequalities involving many fractional integral operators are used to solve various
fractional differential equations. In the present paper, we will generalize the Hermite–Jensen–Mercer-
type inequalities for an h-convex function via a Caputo–Fabrizio fractional integral. We develop some
novel Caputo–Fabrizio fractional integral inequalities. We also present Caputo–Fabrizio fractional
integral identities for differentiable mapping, and these will be used to give estimates for some
fractional Hermite–Jensen–Mercer-type inequalities. Some familiar results are recaptured as special
cases of our results.

Keywords: convex function; h-convex function; Hermite–Hadamard inequality; Caputo–Fabrizio
fractional integral; Hermite–Hadamard inequality; Jensen inequality; Jensen–Mercer inequality

1. Introduction

Fractional calculus has undergone rapid development in both applied and pure
mathematics because of its enormous use in image processing, physics, machine learning,
networking, and other branches. For more on fractional calculus identities, see [1–3]. The
fractional derivative has received rapid attention among experts from different branches of
science. Most of the applied problems can not be modeled by classical derivations. The
complications in real-world problems are addressed by fractional differential equations.
The famous fractional integral contains Riemann–Liouville [4–6], Hadamard [6,7], Caputo–
Fabrizio [8], and Katugampola [6], etc.

In this paper, we will restrict ourselves to the Caputo–Fabrizio fractional integral op-
erator. In the current direction of fractional calculus, numerous analysts are characterizing
new operators by various methods to cover most of the real-world problems. Usually, the
operators are not the same as each other in terms of singularity and locality of kernels. The
main aspect that makes Caputo–Fabrizio different from others is that it has a non-singular
kernel, and it is useful to find exact solutions for various issues.

For convex functions, the Hermite–Hadamard inequality is a famous inequality that
has been proved in many ways and has several extensions and generalizations in the
literature (see [9–19]). The Hermite–Hadamard inequality for the convex function is
defined as:

Let ξ : I ⊆ R→ R be a convex function. Then

ξ

(
υ + μ

2

)
≤ 1

μ− υ

∫ μ

υ
ξ(χ)dχ ≤ ξ(υ) + ξ(μ)

2
,
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Fractal Fract. 2021, 5, 269

holds ∀ υ, μ ∈ I and υ < μ.
The generalization of the Hermite–Hadamard inequality for h-convex are defined as

(see [20]):
Let ξ : I ⊆ R→ R be a convex function. Then

1

2h
(

1
2

) ξ

(
υ + μ

2

)
≤ 1

μ− υ

∫ μ

υ
ξ(χ)dχ ≤ [ξ(υ) + ξ(μ)]

∫ 1

0
h(σ)dσ,

holds ∀ υ, μ ∈ I and υ < μ.
In the literature, some more interesting extensions and refinements of the Hermite–

Hadamard integral inequality with the help of h-convex functions have been widely studied
(see [21–26]).

In the literature, for the Jensen inequality, several interesting studies are given. In [27],
for a convex function, a variant of Jensen’s inequality is proved by Mercer within the year
2003. Later, Matković et al. presented the Jensen–Mercer inequality for operators with
applications in the year 2006 (see [28]).

Vivas-Cortez et al. presented the following variant of the Jensen–Mercer inequality
(see [29]).

Theorem 1 ([29]). Let ξ be a h-convex function defined on interval [υ, μ]. Then

ξ

(
υ + μ−

n

∑
i=1

χixi

)
≤ M[ξ(υ) + ξ(μ)]−

n

∑
i=1

h(χi)ξ(xi), (1)

holds ∀ xi ∈ [υ, μ] and χi ∈ [0, 1] with ∑n
i=1 χi = 1, where M = sup {h(σ) : σ ∈ (0, 1)}.

In 2019, the authors established the Hermite–Hadamard–Mercer-like inequalities for
fractional integrals [30]. In [31], Butt et al. presented the Hermite–Jensen–Mercer type
inequalities for conformable fractional integrals within the year 2020. Furthermore, they
developed the Hermite–Jensen–Mercer-like inequalities for k-fractional integrals, general-
ized fractional integrals and ψ-Riemann–Liouville k-fractional integrals (see [32–34]). In
2020, several researchers presented Hermite–Jensen–Mercer-like inequalities in the setting
of a k-Caputo fractional derivative and Caputo fractional derivative (see [35,36]). In [37],
the authors developed the weighted Hermite–Hadamard–Mercer-type inequalities for
convex functions within the year 2020. Chu et al. presented the new fractional estimates
for Hermite–Hadamard–Mercer inequalities in the year 2020 (see [38]).

The present paper is organized as follows. First, we write definitions and preliminary
material associated with our present paper. In Section 2, we will present Hermite–Jensen–
Mercer-type inequalities for a Caputo–Fabrizio fractional integral operator with the help
of an h-convex function. In Section 3, we will develop new Lemmas and then present
some results for an h-convex function via a Caputo–Fabrizio fractional integral operator. In
Section 4, some more integral inequalities for h-convex functions are established making
use of the Hölder– İşcan integral inequality for an improved power mean integral inequality,
and at last, we will write concluding remarks to our present paper.

Throughout the paper, we need the following assumption:
Let ξ : I = [υ, μ]→ R be a positive function, 0 ≤ υ < μ and ξ ∈ L1[υ, μ]. Furthermore,

consider h : (0, 1)→ R is a non-negative function, h �= 0 and I ⊆ R is an interval.
Now, we begin with definitions and preliminary results, which will be used in

this work.

Definition 1. (Convex function) [39] The function ξ : [υ, μ]→ R is called convex, if

ξ(χx1 + (1− χ)x2) ≤ χξ(x1) + (1− χ)ξ(x2),

holds ∀ x1, x2 ∈ [υ, μ] and χ ∈ [0, 1].
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Definition 2. (h-Convex function) [40] A function ξ : [υ, μ] ⊆ R→ R is said to be h-convex if

ξ(χx1 + (1− χ)x2) ≤ h(χ)ξ(x1) + h(1− χ)ξ(x2),

holds ∀ x1, x2 ∈ [υ, μ] and χ ∈ [0, 1].

Definition 3. (Superadditive function) A function h : [υ, μ] ⊆ R→ R is called superadditive
function if

h(x1 + x2) ≥ h(x1) + h(x2),

holds ∀ x1, x2 ∈ [υ, μ].

Definition 4 ([8,41,42]). Let ξ ∈ H1(x1, x2), x1 < x2, θ ∈ [0, 1], then the definition of the left
fractional derivative in the sense of Caputo and Fabrizio is defined as(

CFC
x1

Dθξ
)
(t) =

B(θ)
1− θ

∫ t

x1

ξ
′
(z)e

−θ(t−z)θ
1−θ dz,

and the associated fractional integral is(
CF
x1

Iθξ
)
(t) =

1− θ

B(θ)
ξ(t) +

θ

B(θ)

∫ t

x1

ξ(z)dz,

where B(θ) > 0 is a normalization function satisfying B(0) = B(1) = 1.
The right fractional derivative is defined as(

CFCDθ
x2

ξ
)
(t) =

−B(θ)
1− θ

∫ x2

t
ξ
′
(z)e

−θ(z−t)θ
1−θ dz,

and the associated fractional integral is(
CF Iθ

l2 ξ
)
(t) =

1− θ

B(θ)
ξ(t) +

θ

B(θ)

∫ l2

t
ξ(z)dz.

In [43,44], the Hölder-İşcan integral inequality and improved power-mean integral inequality
is explained as follows.

Theorem 2. (Hölder– İşcan integral inequality) [43] Let ξ1 and ξ2 be real functions defined on
[x1, x2] and if |ξ1|q and |ξ2|q are integrable on [ x1, x2]. If p > 1 and 1

p + 1
q = 1, then

∫ x2

x1

|ξ1(z)ξ2(z)|dz ≤ 1
x2 − x1

{(∫ x2

x1

(x2 − z)|ξ1(z)|pdz
) 1

p
(∫ x2

x1

(x2 − z)|ξ2(z)|qdz
) 1

q

+

(∫ x2

x1

(z− x1)|ξ1(z)|pdz
) 1

p
(∫ x2

x1

(z− x1)|ξ2(z)|qdz
) 1

q
}

≤
(∫ x2

x1

|ξ1(z)|pdz
) 1

p
(∫ x2

x1

|ξ2(z)|qdz
) 1

q

.

Theorem 3. (Improved power-mean integral inequality) [44] Let ξ1 and ξ2 be real functions
defined on [x1, x2] and if |ξ1|, |ξ1||ξ2|q are integrable functions on [ x1, x2]. Let q ≥ 1, then

∫ x2

x1

|ξ1(z)ξ2(z)|dz ≤ 1
x2 − x1

{(∫ x2

x1

(x2 − z)|ξ1(z)|dz
)1− 1

q
(∫ x2

x1

(x2 − z)|ξ1(z)||ξ2(z)|qdz
) 1

q

+

(∫ x2

x1

(z− x1)|ξ1(z)|dz
)1− 1

q
(∫ x2

x1

(z− x1)|ξ1(z)||ξ2(z)|qdz
) 1

q
}

≤
(∫ x2

x1

|ξ1(z)|dz
)1− 1

q
(∫ x2

x1

|ξ1(z)||ξ2(z)|qdz
) 1

q
.
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2. Hermite–Jensen–Mercer-Type Inequalities via the Caputo–Fabrizio
Fractional Operator

Theorem 4. Let ξ : I = [υ, μ] → R be a h-convex function and ξ ∈ L1[υ, μ]. If h is a super-
additive function and θ ∈ [0, 1], then

1

2h
(

1
2

) ξ

(
υ + μ− x1 + x2

2

)
≤ B(θ)

θ(x2 − x1)

×
[(

CF
υ+μ−x2

Iθξ
)
(t) +

(
CF Iθ

υ+μ−x1
ξ
)
(t)− 2(1− θ)

B(θ)
ξ(t)

]
≤

∫ 1

0
h(1)dχ

(
M[ξ(υ) + ξ(μ)]− ξ(x1) + ξ(x2)

2

)
, (2)

holds for all x1, x2 ∈ [υ, μ], t ∈ [υ, μ], B(θ) > 0 is a normalization function and M = sup
{h(χ) : χ ∈ (0, 1)}.

Proof. Since ξ is h-convex function on [x1, x2] yields that

ξ

(
υ + μ− x1 + x2

2

)
= ξ

(
υ + μ− x1 + υ + μ− x2

2

)
≤ h

(
1
2

)(
ξ(υ + μ− x1) + ξ(υ + μ− x2)

)
= h

(
1
2

)(
ξ(υ + μ− (χx1 + (1− χ)x2))

+ ξ(υ + μ− ((1− χ)x1 + χx2))

)
,

holds for all x1, x2 ∈ [υ, μ].
The above inequality is integrated with respect to χ over [0, 1] and by change of

variable technique, we can deduce

1

h
(

1
2

) ξ

(
υ + μ− x1 + x2

2

)
≤ 2

x2 − x1

∫ υ+μ−x1

υ+μ−x2

ξ(z)dz

=
2

x2 − x1

(∫ χ

υ+μ−x2

ξ(z)dz +
∫ υ+μ−x1

χ
ξ(z)dz

)
. (3)

Both sides of (3) multipled by θ(x2−x1)
2B(θ) and adding 2(1−θ)

B(θ) ξ(t), we have

2(1− θ)

B(θ)
ξ(t) +

θ(x2 − x1)

2h
(

1
2

)
B(θ)

ξ

(
υ + μ− x1 + x2

2

)

≤ 2(1− θ)

B(θ)
ξ(t) +

θ

B(θ)

(∫ t

υ+μ−x2

ξ(z)dz +
∫ υ+μ−x1

t
ξ(z)dz

)
=

(
(1− θ)

B(θ)
ξ(t) +

θ

B(θ)

∫ t

υ+μ−x2

ξ(z)dz
)
+

(
(1− θ)

B(θ)
ξ(t) +

∫ υ+μ−x1

t
ξ(z)dz

)
=
(

CF
υ+μ−x2

Iθξ
)
(t) +

(
CF Iθ

υ+μ−x1
ξ
)
(t). (4)

Suitable rearrangement of (4) yields the first inequality of (2).
By using h-convexity of ξ, we have

ξ(χ(υ + μ− x1) + (1− χ)(υ + μ− x2)) ≤ h(χ)ξ(υ + μ− x1) + h(1− χ)ξ(υ + μ− x2),

and

ξ((1− χ)(υ + μ− x1) + χ(υ + μ− x2)) ≤ h(1− χ)ξ(υ + μ− x1) + h(χ)ξ(υ + μ− x2).
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Adding the above two inequalities and then by using the super additivity of function
and Jensen–Mercer inequality yields that

ξ(χ(υ + μ− x1) + (1− χ)(υ + μ− x2)) + ξ((1− χ)(υ + μ− x1) + χ(υ + μ− x2))

≤ h(1)
(

ξ(υ + μ− x1) + ξ(υ + μ− x2)

)
≤ h(1)

(
2M[ξ(υ) + ξ(μ)]− (ξ(x1) + ξ(x2))

)
. (5)

Integrating the inequality (5) with respect to χ over [0, 1] and by the change of variable
technique, we can write

2
x2 − x1

∫ υ+μ−x1

υ+μ−x2

ξ(z)dz ≤
∫ 1

0
h(1)dχ

(
2M[ξ(υ) + ξ(μ)]− (ξ(x1) + ξ(x2))

)
. (6)

By making use of the same operations with (3) in (6), we have(
CF
υ+μ−x2

Iθξ
)
(t) +

(
CF Iθ

υ+μ−x1
ξ
)
(t)

≤ 2(1− θ)

B(θ)
ξ(t) +

θ(x2 − x1)

2B(θ)

[∫ 1

0
h(1)dχ

(
2M[ξ(υ) + ξ(μ)]− (ξ(x1) + ξ(x2))

)]
. (7)

By suitable rearrangement of (7), we obtain inequality (2).

Remark 1. By putting h(χ) = χ, M = sup {h(χ) : χ ∈ (0, 1)} = 1, x1 = υ and x2 = μ in
Theorem 2, then we obtain Theorem 2 of (see [45]).

Theorem 5. Assume that ξ : I = [υ, μ] → R is a h-convex function and ξ ∈ L1[υ, μ]. If
θ ∈ [0, 1], then

1

h
(

1
2

) ξ

(
υ + μ− x1 + x2

2

) ∫ 1

0
h(χ)dχ

≤ 1

h
(

1
2

)M[ξ(υ) + ξ(μ)]
∫ 1

0
h(χ)dχ

− B(θ)
θ(x2 − x1)

[(
CF
x1

Iθξ
)
(t) +

(
CF Iθ

x2
ξ
)
(t)− 2(1− θ)

B(θ)
ξ(t)

]
≤ 1

h
(

1
2

)M[ξ(υ) + ξ(μ)]
∫ 1

0
h(χ)dχ− 1

2h
(

1
2

) ξ

(
x1 + x2

2

)
, (8)

holds ∀ x1, x2 ∈ [υ, μ], t ∈ [υ, μ], B(θ) > 0 is a normalization function and M = sup {h(χ):
χ ∈ (0, 1)}.

Proof. By the Jensen–Mercer inequality, we have

ξ

(
υ + μ− x1 + x2

2

)
≤ M[ξ(υ) + ξ(μ)]− h

(
1
2

)
[ξ(x1) + ξ(x2)].

Both sides of the above inequality are multiplied by h(χ) and integrated with respect
to χ over [0,1], and we obtain

ξ

(
υ + μ− x1 + x2

2

) ∫ 1

0
h(χ)dχ

≤ M[ξ(υ) + ξ(μ)]
∫ 1

0
h(χ)dχ− h

(
1
2

)
[ξ(x1) + ξ(x2)]

∫ 1

0
h(χ)dχ,
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which implies that

1

h
(

1
2

) ξ

(
υ + μ− x1 + x2

2

) ∫ 1

0
h(χ)dχ

≤ 1

h
(

1
2

)M[ξ(υ) + ξ(μ)]
∫ 1

0
h(χ)dχ− [ξ(x1) + ξ(x2)]

∫ 1

0
h(χ)dχ.

Now, we will use the right-hand side of the Hermite–Hadamard inequality for the
h-convex function, and we obtain

1

h
(

1
2

) ξ

(
υ + μ− x1 + x2

2

) ∫ 1

0
h(χ)dχ

≤ 1

h
(

1
2

)M[ξ(υ) + ξ(μ)]
∫ 1

0
h(χ)dχ− 1

x2−x1

∫ x2

x1

ξ(z)dz

=
1

h
(

1
2

)M[ξ(υ) + ξ(μ)]
∫ 1

0
h(χ)dχ− 1

x2 − x1

(∫ t

x1

ξ(z)dz +
∫ x2

t
ξ(z)dz

)
. (9)

Both sides of (9) multiplying by θ(x2−x1)
B(θ) and subtracting 2(1−θ)

B(θ) ξ(t), we have

θ(x2 − x1)

B(θ)h
(

1
2

) ξ

(
υ + μ− x1 + x2

2

) ∫ 1

0
h(χ)dχ− 2(1− θ)

B(θ)
ξ(t)

≤ θ(x2 − x1)

B(θ)h
(

1
2

) M[ξ(υ) + ξ(μ)]
∫ 1

0
h(χ)dχ

− θ

B(θ)

(∫ t

x1

ξ(z)dz +
∫ x2

t
ξ(z)dz

)
− 2(1− θ)

B(θ)
ξ(t)

=
θ(x2 − x1)

B(θ)h
(

1
2

) M[ξ(υ) + ξ(μ)]
∫ 1

0
h(χ)dχ−

[(
θ

B(θ)

∫ t

x1

ξ(z)dz +
(1− θ)

B(θ)
ξ(t)

)

+

(
θ

B(θ)

∫ x2

t
ξ(z)dz +

(1− θ)

B(θ)
ξ(t)

)]

=
θ(x2 − x1)

h
(

1
2

)
B(θ)

M[ξ(υ) + ξ(μ)]
∫ 1

0
h(χ)dχ−

[(
CF
x1

Iθξ
)
(t) +

(
CF Iθ

x2
ξ
)
(t)

]
. (10)

After suitable rearrangement, (10) yields the first inequality of (8).
For the second part of the inequality of (8), we will use the right-hand side of the

Hermite–Hadamard integral inequality for the h-convex function, and we can write

− 1
x2 − x1

∫ x2

x1

ξ(z)dz ≤ − 1

2h
(

1
2

) ξ

(
x1 + x2

2

)
. (11)

By using the same operations with (9) in (11), we have

− B(θ)
θ(x2 − x1)

[(
CF
x1

Iθξ
)
(t) +

(
CF Iθ

x2
ξ
)
(t)− 2(1− θ)

B(θ)
ξ(t)

]
≤ − 1

2h
(

1
2

) ξ

(
x1 + x2

2

)
. (12)
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Adding 1
h( 1

2 )
M[ξ(υ) + ξ(μ)]

∫ 1
0 h(χ)dχ to both sides of (12), we have

1

h
(

1
2

)M[ξ(υ) + ξ(μ)]
∫ 1

0
h(χ)dχ

− B(θ)
θ(x2 − x1)

[(
CF
x1

Iθξ
)
(t) +

(
CF Iθ

x2
ξ
)
(t)− 2(1− θ)

B(θ)
ξ(t)

]
≤ 1

h
(

1
2

)M[ξ(υ) + ξ(μ)]
∫ 1

0
h(χ)dχ− 1

2h
(

1
2

) ξ

(
x1 + x2

2

)
,

which completes the proof.

Theorem 6. Let ξ1, ξ2 : I ⊆ R→ R be an h-convex function on I. If ξ1ξ2 ∈ L[υ, μ] , then

2B(θ)
θ(x2 − x1)

[(
CF
υ+μ−x2

Iθξ1ξ2

)
(t) +

(
CF Iθ

υ+μ−x1
ξ1ξ2

)
(t)− 2(1− θ)

B(θ)
ξ1(t)ξ2(t)

]
≤ 2M2B1(υ, μ)− 2MB2(υ, μ, x1)

∫ 1

0
h(1− χ)dχ

− 2MB3(υ, μ, x2)]
∫ 1

0
h(χ)dχ + 2B4(x1, x2)

∫ 1

0
h(χ)h(1− χ)dχ

+ 2K1(x1)
∫ 1

0
(h(1− χ))2dχ + 2K2(x2)

∫ 1

0
(h(χ))2dχ, (13)

where

B1(υ, μ) = ξ1(υ)ξ2(υ) + ξ1(υ)ξ2(μ) + ξ1(μ)ξ2(υ) + ξ1(μ)ξ2(μ),

B2(υ, μ, x1) = ξ1(υ)ξ2(x1) + ξ1(μ)ξ2(x1) + ξ1(x1)ξ2(υ) + ξ1(x1)ξ2(μ),

B3(υ, μ, x2) = ξ1(υ)ξ2(x2) + ξ1(μ)ξ2(x2) + ξ1(x2)ξ2(υ) + ξ1(x2)ξ2(μ),

B4(x1, x2) = ξ1(x1)ξ2(x2) + ξ1(x2)ξ2(x1),

K1(x1) = ξ1(x1)ξ2(x1),

and

K2(x2) = ξ1(x2)ξ2(x2),

holds ∀ x1, x2 ∈ [υ, μ], M = sup {h(χ) : χ ∈ (0, 1)}, t ∈ [υ, μ] and B(θ) > 0 is a normaliza-
tion function.

Proof. Since ξ1 and ξ2 are h-convex functions on [x1, x2] and making use of the Jensen–
Mercer inequality, we have

ξ1(υ + μ− ((1− χ)x1 + χx2))

≤ M[ξ1(υ) + ξ1(μ)]− (h(1− χ)ξ1(x1) + h(χ)ξ1(x2)), ∀χ ∈ [0, 1], x1, x2 ∈ I,

and

ξ2(υ + μ− ((1− χ)x1 + χx2))

≤ M[ξ2(υ) + ξ2(μ)]− (h(1− χ)ξ2(x1) + h(χ)ξ2(x2)), ∀χ ∈ [0, 1], x1, x2 ∈ I.
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Multiplying both sides of the above inequalities, we can write

ξ1(υ + μ− ((1− χ)x1 + χx2))ξ2(υ + μ− ((1− χ)x1 + χx2))

≤ M2[ξ1(υ)ξ2(υ) + ξ1(υ)ξ2(μ) + ξ1(μ)ξ2(υ) + ξ1(μ)ξ2(μ)]

−Mh(1− χ)[ξ1(υ)ξ2(x1) + ξ1(μ)ξ2(x1) + ξ1(x1)ξ2(υ) + ξ1(x1)ξ2(μ)]

−Mh(χ)[ξ1(υ)ξ2(x2) + ξ1(μ)ξ2(x2) + ξ1(x2)ξ2(υ) + ξ1(x2)ξ2(μ)]

+ h(χ)h(1− χ)[ξ1(x1)ξ2(x2) + ξ1(x2)ξ2(x1)] + (h(1− χ))2[ξ1(x1)ξ2(x1)]

+ (h(χ))2[ξ1(x2)ξ2(x2)].

Integrating the above inequality with respect to χ over [0,1] and then by the change of
variable technique, we obtain

1
x2 − x1

∫ υ+μ−x1

υ+μ−x2

ξ1(z)ξ2(z)dz

≤ M2[ξ1(υ)ξ2(υ) + ξ1(υ)ξ2(μ) + ξ1(μ)ξ2(υ) + ξ1(μ)ξ2(μ)]

−M[ξ1(υ)ξ2(x1) + ξ1(μ)ξ2(x1) + ξ1(x1)ξ2(υ) + ξ1(x1)ξ2(μ)]
∫ 1

0
h(1− χ)dχ

−M[ξ1(υ)ξ2(x2) + ξ1(μ)ξ2(x2) + ξ1(x2)ξ2(υ) + ξ1(x2)ξ2(μ)]
∫ 1

0
h(χ)dχ

+ [ξ1(x1)ξ2(x2) + ξ1(x2)ξ2(x1)]
∫ 1

0
h(χ)h(1− χ)dχ

+ [ξ1(x1)ξ2(x1)]
∫ 1

0
(h(1− χ))2dχ + [ξ1(x2)ξ2(x2)]

∫ 1

0
(h(χ))2dχ,

which implies

2
x2 − x1

[∫ χ

υ+μ−x2

ξ1(z)ξ2(z)dz +
∫ υ+μ−x1

χ
ξ1(z)ξ2(z)dz

]
≤ 2M2B1(υ, μ)− 2MB2(υ, μ, x1)

∫ 1

0
h(1− χ)dχ

− 2MB3(υ, μ, x2)]
∫ 1

0
h(χ)dχ + 2B4(x1, x2)

∫ 1

0
h(χ)h(1− χ)dχ

+ 2K1(x1)
∫ 1

0
(h(1− χ))2dχ + 2K2(x2)

∫ 1

0
(h(χ))2dχ.

The above inequality is multipled by θ(x2−x1)
2B(θ) , and adding 2(1−θ)

B(θ) ξ1(t)ξ2(t), we have

θ

B(θ)

[∫ t

υ+μ−x2

ξ1(z)ξ2(z)dz +
∫ υ+μ−x1

t
ξ1(z)ξ2(z)dz

]
+

2(1− θ)

B(θ)
ξ1(t)ξ2(t)

≤ θ(x2 − x1)

2B(θ)

[
2M2B1(υ, μ)− 2MB2(υ, μ, x1)

∫ 1

0
h(1− χ)dχ

− 2MB3(υ, μ, x2)]
∫ 1

0
h(χ)dχ + 2B4(x1, x2)

∫ 1

0
h(χ)h(1− χ)dχ

+ 2K1(x1)
∫ 1

0
(h(1− χ))2dχ + 2K2(x2)

∫ 1

0
(h(χ))2dχ

]
+

2(1− θ)

B(θ)
ξ1(t)ξ2(t).
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Therefore,[
(1− θ)

B(θ)
ξ1(t)ξ2(t) +

θ

B(θ)

∫ t

υ+μ−x2

ξ1(w)ξ2(w)dw
]
+

[
(1− θ)

B(θ)
ξ1(t)ξ2(t)

+
θ

B(θ)

∫ υ+μ−x1

t
ξ1(w)ξ2(w)dw

]
≤ θ(x2 − x1)

2B(θ)

[
2M2B1(υ, μ)− 2MB2(υ, μ, x1)

∫ 1

0
h(1− χ)dχ

− 2MB3(υ, μ, x2)]
∫ 1

0
h(χ)dχ + 2B4(x1, x2)

∫ 1

0
h(χ)h(1− χ)dχ

+ 2K1(x1)
∫ 1

0
(h(1− χ))2dχ + 2K2(x2)

∫ 1

0
(h(χ))2dχ

]
+

2(1− θ)

B(θ)
ξ1(t)ξ2(t).

Thus,[(
CF
υ+μ−x2

Iθξ1ξ2

)
(t) +

(
CF Iθ

υ+μ−x1
ξ1ξ2

)
(t)

]
≤ θ(x2 − x1)

2B(θ)

[
2M2B1(υ, μ)− 2MB2(υ, μ, x1)

∫ 1

0
h(1− χ)dχ

− 2MB3(υ, μ, x2)]
∫ 1

0
h(χ)dχ + 2B4(x1, x2)

∫ 1

0
h(χ(1− χ))

+ 2K1(x1)
∫ 1

0
h((1− χ)2)dχ + 2K2(x2)

∫ 1

0
h(χ2)dχ

]
+

2(1− θ)

B(θ)
ξ1(t)ξ2(t). (14)

By suitable rearrangement, (14) yields required inequality (13).

Remark 2. By putting h(χ) = χ, M = sup {h(χ) : χ ∈ (0, 1)} = 1, x1 = υ and x2 = μ in
Theorem 2, then we obtain Theorem 3 of [45].

3. Some Novel Results Related to the Caputo–Fabrizio Fractional Operator

In this section, we will present some new Lemmas, and then we develop some
novel results for an h-convex function with the help of the Caputo–Fabrizio fractional
integral operator.

Lemma 1. Let ξ : I = [υ, μ]→ R be a differentiable mapping on I◦, where υ, μ ∈ I with υ < μ.
If ξ

′ ∈ L1[υ, μ], then

ξ(υ + μ− x1) + ξ(υ + μ− x2)

2
− 1

x2 − x1

∫ υ+μ−x1

υ+μ−x2

ξ(z)dz

=
x2 − x1

2

∫ 1

0
(1− 2χ)ξ

′
(υ + μ− ((1− χ)x1 + χx2))dχ, (15)

holds for all x1, x2 ∈ [υ, μ].

Proof. Note that

I =
∫ 1

0
(1− 2χ)ξ

′
(υ + μ− ((1− χ)x1 + χx2))dχ

=
ξ(υ + μ− ((1− χ)x1 + χx2))

x1 − x2
(1− 2χ)

∣∣∣∣∣
1

0

+ 2
∫ 1

0

ξ(υ + μ− ((1− χ)x1 + χx2))

x1 − x2
dχ

=
ξ(υ + μ− x1) + ξ(υ + μ− x2)

x2 − x1
− 2

x2 − x1
.

1
x2 − x1

∫ υ+μ−x1

υ+μ−x2

ξ(z)dz.

After suitable rearrangements, we obtain the required inequality (15).
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Remark 3. For x1 = υ and x2 = μ in Lemma 3, we obtain Lemma 2.1 of (see [46]).

Lemma 2. Suppose that ξ : I = [υ, μ] → R is a differentiable mapping on I◦, υ, μ ∈ I with
υ < μ. If ξ

′ ∈ L1[υ, μ] and take θ ∈ [0, 1], then

x2 − x1
2

∫ 1

0
(1− 2χ)ξ

′
(υ + μ− ((1− χ)x1 + χx2))dχ− 2(1− θ)

θ(x2 − x1)
ξ(t)

=
ξ(υ + μ− x1) + ξ(υ + μ− x2)

2
− B(θ)

θ(x2 − x1)

[(
CF
υ+μ−x2

Iθξ
)
(t) +

(
CF Iθ

υ+μ−x1
ξ
)
(t)

]
,

holds for all x1, x2 ∈ [υ, μ], where t ∈ [υ, μ] and B(θ) > 0 is a normalization function.

Proof. It is easy to see that

∫ 1

0
(1− 2χ)ξ

′
(υ + μ− ((1− χ)x1 + χx2))dχ

=
ξ(υ + μ− x1) + ξ(υ + μ− x2)

x2 − x1
− 2

(x2 − x1)2

(∫ t

υ+μ−d
ξ(z)dz +

∫ υ+μ−x1

t
ξ(z)dz

)
.

With both sides of the above inequality multiplied by θ(x2−x1)
2

2B(θ) and subtracting
2(1−θ)

B(θ) ξ(t), we have

θ(x2 − x1)
2

2B(θ)

∫ 1

0
(1− 2χ)ξ

′
(υ + μ− ((1− χ)x1 + χx2))dχ− 2(1− θ)

B(θ)
ξ(t)

=
θ(x2 − x1)(ξ(υ + μ− x1) + ξ(υ + μ− x2))

2B(θ)
− 2(1− θ)

B(θ)
ξ(t)

− θ

B(θ)

(∫ t

υ+μ−x2

ξ(z)dz +
∫ υ+μ−x1

t
ξ(z)dz

)
=

θ(x2 − x1)(ξ(υ + μ− x1) + ξ(υ + μ− x2))

2B(θ)
−
(
(1− θ)

B(θ)
ξ(t) +

θ

B(θ)

∫ t

υ+μ−x2

ξ(z)dz
)

−
(
(1− θ)

B(θ)
ξ(t) +

θ

B(θ)

∫ υ+μ−x1

t
ξ(z)dz

)
=

θ(x2 − x1)(ξ(υ + μ− x1) + ξ(υ + μ− x2))

2B(θ)
−
[(

CF
υ+μ−x2

Iθξ
)
(t) +

(
CF Iθ

υ+μ−x1
ξ
)
(t)

]
.

After suitable rearrangements, we obtain the desired result.

Remark 4. For x1 = υ and x2 = μ in Lemma 3, then we obtain Lemma 2 of (see [45]).

Theorem 7. Let ξ : I → R be a positive differentiable function on I◦. If |ξ ′ | is a h-convex function
on [υ, μ] where x1, x2 ∈ I with υ < μ, ξ

′ ∈ L1[υ, μ] and θ ∈ [0, 1], then∣∣∣∣∣ ξ(υ + μ− x1) + ξ(υ + μ− x2)

2
− B(θ)

θ(x2 − x1)

[(
CF
υ+μ−x2

Iθξ
)
(t) +

(
CF Iθ

υ+μ−x1
ξ
)
(t)

]

+
2(1− θ)

θ(x2 − x1)
ξ(t)

∣∣∣∣∣
≤ x2 − x1

2

[
1
2

M
(∣∣∣ξ ′ (υ)∣∣∣+ ∣∣∣ξ ′ (μ)∣∣∣)−{

Bh(1− χ)
∣∣∣ξ ′ (x1)

∣∣∣+ Bh(χ)
∣∣∣ξ ′ (x2)

∣∣∣}], (16)
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where

Bh(1− χ) =
∫ 1

2

0
(1− 2χ)h(1− χ)dχ +

∫ 1

1
2

(2χ− 1)h(1− χ)dχ,

Bh(χ) =
∫ 1

2

0
(1− 2χ)h(χ)dχ +

∫ 1

1
2

(2χ− 1)h(χ)dχ,

holds ∀ x1, x2 ∈ [υ, μ], t ∈ [υ, μ], B(θ) > 0 is a normalization function and M = sup {h(χ):
χ ∈ (0, 1)}.
Proof. By making use of Lemma 3, the properties of the absolute value, the h-convexity of
|ξ ′ | and the Jensen–Mercer inequality yields∣∣∣∣∣ ξ(υ + μ− x1) + ξ(υ + μ− x2)

2
− B(θ)

θ(x2 − x1)

[(
CF
υ+μ−x2

Iθξ
)
(t) +

(
CF Iθ

υ+μ−x1
ξ
)
(t)

]

+
2(1− θ)

θ(x2 − x1)
ξ(t)

∣∣∣∣∣
≤ x2 − x1

2

∫ 1

0
|1− 2χ|

∣∣∣ξ ′ (υ + μ− ((1− χ)x1 + χx2))
∣∣∣dχ

≤ x2 − x1

2

∫ 1

0
|1− 2χ|

(
M
[∣∣∣ξ ′ (υ)∣∣∣+ ∣∣∣ξ ′ (μ)∣∣∣]− (

h(1− χ)
∣∣∣ξ ′ (x1)

∣∣∣+ h(χ)
∣∣∣ξ ′ (x2)

∣∣∣))dχ

≤ x2 − x1

2

( ∫ 1
2

0
(1− 2χ)

(
M
[∣∣∣ξ ′ (υ)∣∣∣+ ∣∣∣ξ ′ (μ)∣∣∣]− (

h(1− χ)
∣∣∣ξ ′ (x1)

∣∣∣+ h(χ)
∣∣∣ξ ′ (x2)

∣∣∣))dχ

+
∫ 1

1
2

(2χ− 1)
(

M
[∣∣∣ξ ′ (υ)∣∣∣+ ∣∣∣ξ ′ (μ)∣∣∣]− (

h(1− χ)
∣∣∣ξ ′ (x1)

∣∣∣+ h(χ)
∣∣∣ξ ′ (x2)

∣∣∣))dχ

)

≤ x2 − x1

2

[
1
2

M
(∣∣∣ξ ′ (υ)∣∣∣+ ∣∣∣ξ ′ (μ)∣∣∣)

−
{∣∣∣ξ ′ (x1)

∣∣∣( ∫ 1
2

0
(1− 2χ)h(1− χ)dχ +

∫ 1

1
2

(2χ− 1)h(1− χ)dχ

)

+
∣∣∣ξ ′ (x2)

∣∣∣( ∫ 1
2

0
(1− 2χ)h(χ)dχ +

∫ 1

1
2

(2χ− 1)h(χ)dχ

)}]

≤ x2 − x1

2

[
1
2

M
(∣∣∣ξ ′ (υ)∣∣∣+ ∣∣∣ξ ′ (μ)∣∣∣)−{

Bh(1− χ)
∣∣∣ξ ′ (x1)

∣∣∣+ Bh(χ)
∣∣∣ξ ′ (x2)

∣∣∣}].

This completes the proof.

Remark 5. By putting h(χ) = χ, M = sup {h(χ) : χ ∈ (0, 1)} = 1, x1 = υ and x2 = μ in
Theorem 3, we obtain Theorem 5 of [45].

Theorem 8. Suppose that ξ : I → R is a positive differentiable function on I◦ and |ξ ′ |q is
a h-convex function on [υ, μ], υ, μ ∈ I◦ with υ < μ for p, q > 1 with 1

p + 1
q = 1, where υ, μ ∈ I

with υ < μ. If ξ
′ ∈ L1[υ, μ] and θ ∈ [0, 1], then∣∣∣∣∣ ξ(υ + μ− x1) + ξ(υ + μ− x2)

2
− B(θ)

θ(x2 − x1)

[(
CF
υ+μ−x2

Iθξ
)
(t) +

(
CF Iθ

υ+μ−x1
ξ
)
(t)

]

+
2(1− θ)

θ(x2 − x1)
ξ(t)

∣∣∣∣∣
≤ x2 − x1

2

(
1

p + 1

) 1
p
(

M
[∣∣∣ξ ′ (υ)∣∣∣q + ∣∣∣ξ ′ (μ)∣∣∣q]

−
(∣∣∣ξ ′ (x1)

∣∣∣q ∫ 1

0
h(1− χ)dχ +

∣∣∣ξ ′ (x2)
∣∣∣q ∫ 1

0
h(χ)dχ

)) 1
q

, (17)

holds ∀ x1, x2 ∈ [υ, μ], t ∈ [υ, μ], B(θ) > 0 is a normalization function and M = sup {h(χ):
χ ∈ (0, 1)}.
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Proof. From Lemma 3, Hölder’s integral inequality, the h-convexity of |ξ ′ |q and the Jensen–
Mercer inequality yields that∣∣∣∣∣ ξ(υ + μ− x1) + ξ(υ + μ− x2)

2
− B(θ)

θ(x2 − x1)

[(
CF
υ+μ−x2

Iθξ
)
(t) +

(
CF Iθ

υ+μ−x1
ξ
)
(t)

]

+
2(1− θ)

θ(x2 − x1)
ξ(t)

∣∣∣∣∣
≤ x2 − x1

2

∫ 1

0
|1− 2χ|

∣∣∣ξ ′(υ + μ− ((1− χ)x1 + χx2))
∣∣∣dχ

≤ x2 − x1

2

(∫ 1

0
|1− 2χ|pdχ

) 1
p
(∫ 1

0

∣∣∣ξ ′(υ + μ− ((1− χ)x1 + χx2))
∣∣∣qdχ

) 1
q

≤ x2 − x1

2

(∫ 1

0
|1− 2χ|pdχ

) 1
p
( ∫ 1

0

(
M
[∣∣∣ξ ′(υ)∣∣∣q + ∣∣∣ξ ′(μ)∣∣∣q]

−
(

h(1− χ)
∣∣∣ξ ′(x1)

∣∣∣q + h(χ)
∣∣∣ξ ′(x2)

∣∣∣q))dχ

) 1
q

≤ x2 − x1

2

(
1

p + 1

) 1
p
(

M
[∣∣∣ξ ′(υ)∣∣∣q + ∣∣∣ξ ′(μ)∣∣∣q]

−
(∣∣∣ξ ′(x1)

∣∣∣q ∫ 1

0
h(1− χ)dχ +

∣∣∣ξ ′(x2)
∣∣∣q ∫ 1

0
h(χ)dχ

)) 1
q

.

This completes the proof.

Remark 6. By putting h(χ) = χ, M = sup {h(χ) : χ ∈ (0, 1)} = 1, x1 = υ and x2 = μ in
Theorem 3, we obtain Theorem 6 of [45].

Next, we will prove the following theorems using the Hölder– İscan integral inequality
and for improved power mean integral inequality, respectively.

Theorem 9. Assume that ξ : I → R is a positive differentiable mapping on I◦ and |ξ ′ |q is
a h-convex function on [υ, μ], υ, μ ∈ I◦ with υ < μ for q ≥ 1, where υ, μ ∈ I with υ < μ. If
ξ
′ ∈ L1[υ, μ] and θ ∈ [0, 1], then∣∣∣∣∣ ξ(υ + μ− x1) + ξ(υ + μ− x2)

2
− B(θ)

θ(x2 − x1)

[(
CF
υ+μ−x2

Iθξ
)
(t) +

(
CF Iθ

υ+μ−x1
ξ
)
(t)

]

+
2(1− θ)

θ(x2 − x1)
ξ(t)

∣∣∣∣∣
≤ x2 − x1

2

(
1
2

)1− 1
q
(

1
2

M
[∣∣∣ξ ′ (υ)∣∣∣q + ∣∣∣ξ ′ (μ)∣∣∣q]

−
(∣∣∣ξ ′ (x1)

∣∣∣q ∫ 1

0
|1− 2χ|h(1− χ)dχ +

∣∣∣ξ ′ (x2)
∣∣∣q ∫ 1

0
|1− 2χ|h(χ)dχ

)) 1
q

, (18)

holds ∀ x1, x2 ∈ [υ, μ], t ∈ [υ, μ], B(θ) > 0 is a normalization function and M = sup {h(χ):
χ ∈ (0, 1)}.
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Proof. Take q > 1, by using Lemma 3, the power mean inequality, the h-convexity of |ξ ′ |q
and the Jensen–Mercer inequality, and we have∣∣∣∣∣ ξ(υ + μ− x1) + ξ(υ + μ− x2)

2
− B(θ)

θ(x2 − x1)

[(
CF
υ+μ−x2

Iθξ
)
(t) +

(
CF Iθ

υ+μ−x1
ξ
)
(t)

]

+
2(1− θ)

θ(x2 − x1)
ξ(t)

∣∣∣∣∣
≤ x2 − x1

2

∫ 1

0
|1− 2χ|

∣∣∣ξ ′ (υ + μ− ((1− χ)x1 + χx2))
∣∣∣dχ

≤ x2 − x1
2

(∫ 1

0
|1− 2χ|dχ

)1− 1
q

×
(∫ 1

0
|1− 2χ|

∣∣∣ξ ′ (υ + μ− ((1− χ)x1 + χx2))
∣∣∣qdχ

) 1
q

≤ x2 − x1
2

(
1
2

)1− 1
q
( ∫ 1

0
|1− 2χ|

×
(

M
[∣∣∣ξ ′ (υ)∣∣∣q + ∣∣∣ξ ′ (μ)∣∣∣q]− (

h(1− χ)
∣∣∣ξ ′ (x1)

∣∣∣q + h(χ)
∣∣∣ξ ′ (x2)

∣∣∣q))dχ

) 1
q

≤ x2 − x1
2

(
1
2

)1− 1
q
(

1
2

M
[∣∣∣ξ ′ (υ)∣∣∣q + ∣∣∣ξ ′ (μ)∣∣∣q]

−
(∣∣∣ξ ′ (x1)

∣∣∣q ∫ 1

0
|1− 2χ|h(1− χ)dχ +

∣∣∣ξ ′ (x2)
∣∣∣q ∫ 1

0
|1− 2χ|h(χ)dχ

)) 1
q

. (19)

This completes the proof.

4. Some Results in Improved Hölder Setting

In this section, we will present some results for the h-convex function in the setting of
the Hölder– İşcan integral inequality and improved power mean integral inequality via the
Caputo–Fabrizio fractional integral operator.

Theorem 10. Let ξ : I → R be a positive differentiable mapping on I◦ and |ξ ′ |q be a h-convex
function on [υ, μ], υ, μ ∈ I◦ with υ < μ for p, q > 1 with 1

p + 1
q = 1, where υ, μ ∈ I with υ < μ.

If ξ
′ ∈ L1[υ, μ] and θ ∈ [0, 1], then∣∣∣∣∣ ξ(υ + μ− x1) + ξ(υ + μ− x2)

2
− B(θ)

θ(x2 − x1)

[(
CF
υ+μ−x2

Iθξ
)
(t) +

(
CF Iθ

υ+μ−x1
ξ
)
(t)

]

+
2(1− θ)

θ(x2 − x1)
ξ(t)

∣∣∣∣∣
≤ x2 − x1

2

[(
1

2(p + 1)

) 1
p
(

1
2

M
(∣∣∣ξ ′ (υ)∣∣∣q + ∣∣∣ξ ′ (μ)∣∣∣q)

−
(∣∣∣ξ ′ (x1)

∣∣∣q ∫ 1

0
(1− χ)h(1− χ)dχ +

∣∣∣ξ ′ (x2)
∣∣∣q ∫ 1

0
(1− χ)h(χ)dχ

)) 1
q

+

(
1

2(p + 1)

) 1
p
(

1
2

M
(∣∣∣ξ ′ (υ)∣∣∣q + ∣∣∣ξ ′ (μ)∣∣∣q)

−
(∣∣∣ξ ′ (x1)

∣∣∣q ∫ 1

0
χh(1− χ)dχ +

∣∣∣ξ ′ (x2)
∣∣∣q ∫ 1

0
χh(χ)dχ

)) 1
q
]

, (20)

holds ∀ x1, x2 ∈ [υ, μ], t ∈ [υ, μ], B(θ) > 0 is a normalization function and M = sup {h(χ):
χ ∈ (0, 1)}.
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Proof. From Lemma 3, using the Hölder– İscan integral inequality, the h-convexity of |ξ ′ |q
and the Jensen–Mercer inequality yields∣∣∣∣∣ ξ(υ + μ− x1) + ξ(υ + μ− x2)

2
− B(θ)

θ(x2 − x1)

[(
CF
υ+μ−x2

Iθξ
)
(t) +

(
CF Iθ

υ+μ−x1
ξ
)
(t)

]

+
2(1− θ)

θ(x2 − x1)
ξ(t)

∣∣∣∣∣
≤ x2 − x1

2

∫ 1

0
|1− 2χ|

∣∣∣ξ ′ (υ + μ− ((1− χ)x1 + χx2))
∣∣∣dχ

≤ x2 − x1

2

[(∫ 1

0
(1− χ)|1− 2χ|pdχ

) 1
p

×
(∫ 1

0
(1− χ)

∣∣∣ξ ′ (υ + μ− ((1− χ)x1 + χx2))
∣∣∣qdχ

) 1
q

+

(∫ 1

0
χ|1− 2χ|pdχ

) 1
p
(∫ 1

0
χ
∣∣∣ξ ′ (υ + μ− ((1− χ)x1 + χx2))

∣∣∣qdχ

) 1
q
]

≤ x2 − x1

2

[(
1

2(p + 1)

) 1
p
(∫ 1

0
(1− χ)

∣∣∣ξ ′ (υ + μ− ((1− χ)x1 + χx2))
∣∣∣qdχ

) 1
q

+

(
1

2(p + 1)

) 1
p
(∫ 1

0
χ
∣∣∣ξ ′ (υ + μ− ((1− χ)x1 + χx2))

∣∣∣qdχ

) 1
q
]

≤ x2 − x1

2

[(
1

2(p + 1)

) 1
p
(∫ 1

0
(1− χ)

×
(

M
[∣∣∣ξ ′ (υ)∣∣∣q + ∣∣∣ξ ′ (μ)∣∣∣q]− (

h(1− χ)
∣∣∣ξ ′ (x1)

∣∣∣q + h(χ)
∣∣∣ξ ′ (x2)

∣∣∣q))dχ

) 1
q

+

(
1

2(p + 1)

) 1
p
(∫ 1

0
χ

×
(

M
[∣∣∣ξ ′ (υ)∣∣∣q + ∣∣∣ξ ′ (μ)∣∣∣q]− (

h(1− χ)
∣∣∣ξ ′ (x1)

∣∣∣q + h(χ)
∣∣∣ξ ′ (x2)

∣∣∣q))dχ

) 1
q
]

≤ x2 − x1

2

[(
1

2(p + 1)

) 1
p
(

1
2

M
(∣∣∣ξ ′ (υ)∣∣∣q + ∣∣∣ξ ′ (μ)∣∣∣q)

−
(∣∣∣ξ ′ (x1)

∣∣∣q ∫ 1

0
(1− χ)h(1− χ)dχ +

∣∣∣ξ ′ (x2)
∣∣∣q ∫ 1

0
(1− χ)h(χ)dχ

)) 1
q

+

(
1

2(p + 1)

) 1
p
(

1
2

M
(∣∣∣ξ ′ (υ)∣∣∣q + ∣∣∣ξ ′ (μ)∣∣∣q)

−
(∣∣∣ξ ′ (x1)

∣∣∣q ∫ 1

0
χh(1− χ)dχ +

∣∣∣ξ ′ (x2)
∣∣∣q ∫ 1

0
χh(χ)dχ

)) 1
q
]

.

This completes the proof.

Theorem 11. Let ξ : I → R be a positive differentiable mapping on I◦ and |ξ ′ |q be a h-convex
function on [υ, μ], υ, μ ∈ I◦ with υ < μ for q ≥ 1, where υ, μ ∈ I with υ < μ. If ξ

′ ∈ L1[υ, μ]
and θ ∈ [0, 1], then∣∣∣∣∣ ξ(υ + μ− x1) + ξ(υ + μ− x2)

2
− B(θ)

θ(x2 − x1)

[(
CF
υ+μ−x2

Iθξ
)
(t) +

(
CF Iθ

υ+μ−x1
ξ
)
(t)

]

+
2(1− θ)

θ(x2 − x1)
ξ(t)

∣∣∣∣∣
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≤ x2 − x1

2

[(
1
4

)1− 1
q
(

1
4

M
(∣∣∣ξ ′ (υ)∣∣∣q + ∣∣∣ξ ′ (μ)∣∣∣q)

−
(∣∣∣ξ ′ (x1)

∣∣∣q ∫ 1

0
(1− χ)|1− 2χ|h(1− χ)dχ +

∣∣∣ξ ′ (x2)
∣∣∣q ∫ 1

0
(1− χ)|1− 2χ|h(χ)dχ

)) 1
q

+

(
1
4

)1− 1
q
(

1
4

M
(∣∣∣ξ ′ (υ)∣∣∣q + ∣∣∣ξ ′ (μ)∣∣∣q)

−
(∣∣∣ξ ′ (x1)

∣∣∣q ∫ 1

0
χ|1− 2χ|h(1− χ)dχ +

∣∣∣ξ ′ (x2)
∣∣∣q ∫ 1

0
χ|1− 2χ|h(χ)dχ

)) 1
q
]

, (21)

holds ∀ x1, x2 ∈ [υ, μ], t ∈ [υ, μ], B(θ) > 0 is a normalization function and M = sup {h(χ):
χ ∈ (0, 1)}.

Proof. Take q > 1, from Lemma 3, and using the improved power-mean integral inequality,
the definition of the h-convexity of |ξ ′ |q, and the Jensen–Mercer inequality, we have

∣∣∣∣∣ ξ(υ + μ− x1) + ξ(υ + μ− x2)

2
− B(θ)

θ(x2 − x1)

[(
CF
υ+μ−x2

Iθξ
)
(t) +

(
CF Iθ

υ+μ−x1
ξ
)
(t)

]
≤ x2 − x1

2

∫ 1

0
|1− 2χ|

∣∣∣ξ ′ (υ + μ− ((1− χ)x1 + χx2))
∣∣∣dχ

≤ x2 − x1

2

[(∫ 1

0
(1− χ)|1− 2χ|dχ

)1− 1
q

×
(∫ 1

0
(1− χ)|1− 2χ|

∣∣∣ξ ′ (υ + μ− ((1− χ)x1 + χx2))
∣∣∣qdχ

) 1
q

+

(∫ 1

0
χ|1− 2χ|dχ

)1− 1
q

×
(∫ 1

0
χ|1− 2χ|

∣∣∣ξ ′ (υ + μ− ((1− χ)x1 + χx2))
∣∣∣qdχ

) 1
q
]

≤ x2 − x1

2

[(
1
4

)1− 1
q
(∫ 1

0
(1− χ)|1− 2χ|

∣∣∣ξ ′ (υ + μ− ((1− χ)x1 + χx2))
∣∣∣qdχ

) 1
q

+

(
1
4

)1− 1
q
(∫ 1

0
χ|1− 2χ|

∣∣∣ξ ′ (υ + μ− ((1− χ)x1 + χx2))
∣∣∣qdχ

) 1
q
]

≤ x2 − x1

2

[(
1
4

)1− 1
q
(∫ 1

0
(1− χ)|1− 2χ|

×
(

M
[∣∣∣ξ ′ (υ)∣∣∣q + ∣∣∣ξ ′ (μ)∣∣∣q]− (

h(1− χ)
∣∣∣ξ ′ (x1)

∣∣∣q + h(χ)
∣∣∣ξ ′ (x2)

∣∣∣q))dχ

) 1
q

+

(
1
4

)1− 1
q
(∫ 1

0
χ|1− 2χ|

×
(

M
[∣∣∣ξ ′ (υ)∣∣∣q + ∣∣∣ξ ′ (μ)∣∣∣q]− (

h(1− χ)
∣∣∣ξ ′ (x1)

∣∣∣q + h(χ)
∣∣∣ξ ′ (x2)

∣∣∣q))dχ

) 1
q
]

≤ x2 − x1

2

[(
1
4

)1− 1
q
(

1
4

M
(∣∣∣ξ ′ (υ)∣∣∣q + ∣∣∣ξ ′ (μ)∣∣∣q)

−
(∣∣∣ξ ′ (x1)

∣∣∣q ∫ 1

0
(1− χ)|1− 2χ|h(1− χ)dχ +

∣∣∣ξ ′ (x2)
∣∣∣q ∫ 1

0
(1− χ)|1− 2χ|h(χ)dχ

)) 1
q

+

(
1
4

)1− 1
q
(

1
4

M
(∣∣∣ξ ′ (υ)∣∣∣q + ∣∣∣ξ ′ (μ)∣∣∣q)

−
(∣∣∣ξ ′ (x1)

∣∣∣q ∫ 1

0
χ|1− 2χ|h(1− χ)dχ +

∣∣∣ξ ′ (x2)
∣∣∣q ∫ 1

0
χ|1− 2χ|h(χ)dχ

)) 1
q
]

.

This completes the proof.
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5. Conclusions

In this note, we established the Hermite–Jensen–Mercer-type inequalities for an h-
convex function in the Caputo–Fabrizio setting, and various Caputo–Fabrizio fractional
integral inequalities are provided as well. We expect that this work will lead to the novel
fractional integral research for Hermite–Hadamard inequalities. The remarks at the end of
the results verify the generalization of the results. These results are new and set various
interesting directions. In the future, we will prove the inequalities (2) and (8) by using any
other method.
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Abstract: In this paper, we establish Fritz John stationary conditions for nonsmooth, nonlinear,
semidefinite, multiobjective programs with vanishing constraints in terms of convexificator and
introduce generalized Cottle type and generalized Guignard type constraints qualification to achieve
strong S−stationary conditions from Fritz John stationary conditions. Further, we establish strong
S−stationary necessary and sufficient conditions, independently from Fritz John conditions. The
optimality results for multiobjective semidefinite optimization problem in this paper is related to
two recent articles by Treanta in 2021. Treanta in 2021 discussed duality theorems for special class
of quasiinvex multiobjective optimization problems for interval-valued components. The study in
our article can also be seen and extended for the interval-valued optimization motivated by Treanta
(2021). Some examples are provided to validate our established results.

Keywords: multiobjective programs with vanishing constraints; semidefinite programming; convexi-
ficators; nonsmooth analysis; constraint qualifications

1. Introduction

Nonlinear semidefinite programming problems (SDP) include several classes of opti-
mization problems, such as linear programming, quadratic programming, second order
cone programming [1], and semidefinite programming [2]. The nonlinear semidefinite
programming problem has broad applications in system control [3], truss topology op-
timization [4], and other several fields. It has been at the center point of optimization
research for the last two decades. For instance, in the release of library COMPleib [5], where
168 test examples on nonlinear semidefinite programs from various fields, such as control
system design, academia, and many real-life based problems are collected.

In this paper, we consider the following semidefinite multiobjective mathematical
programs with vanishing constraints (S−MMPVC),

min f(A) = (fi(A), ..., fp(A)) (1)

subject to A ∈ M = {A ∈Mn
+ : Hi(A) � 0, Gi(A)Hi(A) � 0},

where Mn
+ is set of n× n positive semidefinite matrix, fi : Mn

+ → R ∪ {+∞} (i = 1, ...p)
and Gi, Hi : Mn

+ → R ∪ {+∞}(i = 1, ..., m) are extended real-valued locally Lipschitz
functions.

Nonlinear semidefinite programming problems consist of the nonlinear problems
where vector variables are replaced by symmetric positive semidefinite matrices. Non-
linear SDPs have been studied extensively due to a wide range of applications, see for
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instance, [6,7]. Shapiro [6] established first and second order necessary and sufficient opti-
mality conditions under the convexity assumptions. Forsgren [8] extended those results
for nonconvex semidefinite programming. Further, Sun et al. [7] and Sun [9] discussed
the algorithmic approaches to solve nonlinear semidefinite programming problems. Ya-
mashita and Yabe [10] introduced some numerical methods to solve nonlinear SDP and
studied the algorithmic consequences. Recently, Golestani and Nobakhtian [11] proposed
the generalized Abadie constraint qualification (GACQ) and established necessary and
sufficient optimality conditions for nonlinear semidefinite programming problems using
convexificators.

Mathematical programs with vanishing constraints(MPVC) has many applications
in truss topology optimization [12], pathfinding problem with logic communication con-
straints in robot motion planning [13], mixed integer nonlinear optimal control prob-
lems [14], scheduling problems with disjoint feasible regions in power generation dis-
patch [15] and many more fields of the current research [16–18]. Initially, mathematical
programs with vanishing constraints (MPVC) was introduced by Achtziger and Kanzow in
2008. MPVC is closely related to an optimization problem known as mathematical programs
with equilibrium constraints (MPEC), for more details on MPEC, we refer, [19–28].

Due to the constraints Gi(z)Hi(z) ≤ 0, the feasible set may not be convex even discon-
nected, most of the basic constraint qualifications such as linearly independent constraint
qualification and Mangasarian–Fromovitz constraint qualification do not hold, therefore,
standard Karush–Kuhn–Tucker conditions are of no use in such cases. Several constraint
qualifications and necessary optimality conditions have been established in [12] for mathe-
matical programs with vanishing constraints. First order sufficient optimality conditions,
as well as second order necessary and sufficient optimality conditions, have been discussed
in [29] using generalized convexity for mathematical programs with vanishing constraints.
In [30], various stationary conditions under weaker assumptions of constraint qualifications
were derived. Further, Hoheisel and Kanzow [31] investigated necessary and sufficient
optimality conditions through Abadie and Guignard type constraint qualifications for
mathematical programs with vanishing constraints. For more details on the MPVC, we
refer to [16,32,33] and the references therein.

Multiobjective optimization problems (MOP) plays a vital role in science, technology,
business, economics, and many others field of daily demand, where optimal decisions need
to be taken among many conflicting objectives and all objective functions to be optimized
simultaneously. Effect of conflict on objectives leads to some change in the solution of (MOP)
compared to the optimal solution of single-objective optimization problems. Therefore,
weak efficient point (weak Pareto optimal solution), efficient point (Pareto optimal solution)
like terms are coined for the solutions of (MOP). Initially, the concept of Pareto optimal
solutions was given by Italian civil engineer and economist Vilfredo Pareto and was
applied in the studies of economic efficiency and income distribution. Basic concept and
literature on the solution of multiobjective optimization problems can be found [34,35].
Maeda [36] studied the strong KKT optimality conditions and differentiable functions.
Preda and Chitescu [37] extends these results for semidifferentiable functions. Further,
Li [38] discussed these results for the nonsmooth case. Recently, Lai et al. [39] proposed
saddle point necessary and sufficient Pareto optimality conditions for multiobjective convex
optimization problems. Treanta [40] established dual pair of multiobjective interval-valued
variational control problems. Further, Treanta [41] discussed duality theorems for special
class of quasiinvex multiobjective optimization problems for interval-valued components.

Since nonsmoothness in optimization is naturally generated from the mathematical
formulation of real-world problems, therefore, proper effective way for solving these
problems should be discovered. Even the solution of some smooth problems, sometimes
requires the use of nonsmooth optimization techniques, in order to either make it easy
or simplify its form. Thus, the field of nonsmooth optimization is an important branch
of mathematical programming that is based on classical concepts of variational analysis
and generalized derivatives. In recent years, research in nonsmooth analysis has focused
on the growth of generalized subdifferentials that give sharp results and good calculus
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rules for nonsmooth functions. It is convexificators [42], that has been used to extend,
unify, and sharpen the results in various aspects of optimization. Jeyakumar and Luc [43]
provided a more sophisticated version of convexificators by introducing the new notion
of convexificators which are the closed set but not necessarily bounded or convex. The
new version of convexificators consists only finitely many points so it is advantageous for
application point of view. We have used the convexificator due to Jeyakumar and Luc [43]
in our study.

Recently, Dorsch et al. [44] established a new result for nonlinear semidefinite pro-
gramming (NLSDP) where almost all linear perturbations of a given NLSDP are shown to
be nondegenerate. Semidefinite programming is a powerful framework from convex opti-
mization that has striking potential for data science applications [45]. Sequential optimality
conditions have played a vital role in unifying and extending global convergence results
for several classes of algorithms for general nonlinear optimization, Andreani et al. [46]
extended these concepts for nonlinear semidefinite programming. Andreani et al. [47]
discussed simple extensions of constant rank-type constraint qualifications to semidefi-
nite programming, which are based on the Approximate Karush–Kuhn–Tucker necessary
optimality condition and on the application of the reduction approach.

Motivated by the above mentioned work, we propose some new constraints quali-
fication to establish necessary and sufficient type optimality conditions for nonsmooth,
nonlinear, semidefinite, multiobjective mathematical programs with vanishing constraints.
The organization of this article is as follows: In Section 2, we recall some needful prelimi-
naries and fundamental results. In Section 3, we establish Fritz John necessary optimality
conditions and propose generalized Cottle and generalized Guignard type constraint quali-
fication to establish strong Karush–Kuhn–Tucker necessary optimality conditions. Further,
sufficient optimality conditions are also established under generalized convexity. Section 4,
presents the conclusion of the paper, as well as some possible views towards future work.

2. Preliminaries

This section recalls needful notation, definitions, and preliminaries that will be used
throughout the paper. Mn is denoted as the space of n × n symmetric matrices. The
notation A � 0(A � 0) means that A is a positive semidefinite matrix (positive definite
matrix) and we denote by Mn

+(M
n
++) the set of all positive semidefinite matrices (positive

definite matrices). The inner product of the symmetric matrices P, Q ∈Mn is denoted by
〈P, Q〉 and defined by 〈P, Q〉 = tr(PQ) where tr(.) denotes the summation of the diagonal
elements of a square matrix. The inner product of x = (x1, ..., xn), y = (y1, ..., yn) ∈ Rn is

denoted and defined by xTy =
n
∑

i=1
xiyi. The norm associated with matrix inner product

is called the Frobenius norm ||P||F = tr(PP)
1
2 = (∑n

i, j=1 a2
ij)

1
2 . The vector space Mn with

this norm is a Hilbert space and Mn
+ is a closed convex cone in Mn. The interior of the

positive semidefinite matrices is the positive definite matrices, for more basics on matrices
see [48,49]. For y, z ∈ Rn,

y � z ⇐⇒ yi � zi, i = 1, ..., n,

y ≤ z ⇐⇒ y � z, y �= z,

y < z ⇐⇒ yi < zi, i = 1, ..., n.

Some index sets are as follows

M = {A ∈Mn
+ : Hi(A) � 0, Gi(A)Hi(A) � 0}, θi(A) = Gi(A)Hi(A),

fג = {1, ..., p}, kג
f = {1, ..., p} \ {k}, Gג H := {1, ..., m},

Q = {A ∈Mn
+ : fi(A) � fi(Ā) (i ∈ ,(fג Hi(A) � 0, Gi(A)Hi(A) � 0},

Qk = {A ∈Mn
+ : fi(A) � fi(Ā) (i ∈ kג

f), Hi(A) � 0, Gi(A)Hi(A) � 0}, where Ā ∈ M,

Rn
+ = {x ∈ Rn : x � 0}, Rn

++ = {x ∈ Rn : x > 0},
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0ג = (Ā)0ג := {i ∈ Gג H : Hi(Ā) = 0}, +ג = (Ā)+ג := {i ∈ Gג H : Hi(Ā) > 0},
+0ג = (Ā)+0ג := {i ∈ Gג H : Hi(Ā) = 0, Gi(Ā) > 0},
00ג = (Ā)00ג := {i ∈ Gג H : Hi(Ā) = 0, Gi(Ā) = 0},
−0ג = (Ā)−0ג := {i ∈ Gג H : Hi(Ā) = 0, Gi(Ā) < 0},
0+ג = (Ā)0+ג := {i ∈ Gג H : Hi(Ā) > 0, Gi(Ā) = 0},
−+ג = (Ā)−+ג := {i ∈ Gג H : Hi(Ā) > 0, Gi(Ā) < 0}.

We discuss the solution concepts of S−MMPVC motivated by Miettinen [34].

Definition 1. A feasible point Ā is said to be a weak efficient solution of S−MMPVC if there is
no any A ∈ M, such that

fi(A) < fi(Ā), ∀ i ∈ .fג

Definition 2. A feasible point Ā is said to be a local weak efficient solution of S−MMPVC if
there exist a neighborhood N (Ā) of Ā, such that there is no any A ∈ M ∩N (Ā), for which

fi(A) < fi(Ā), ∀ i ∈ ,fג

holds.

Given a nonempty subset M of Mn, the closure, the convex hull and the convex cone
(including the origin) generated by M are denoted by clM, coM, and coneM, respectively.
The negative and the strictly negative polar cone of M are defined respectively by

M− := {V ∈Mn : 〈V, W 〉 ≤ 0, ∀ W ∈ M}, Ms := {V ∈Mn : 〈V, W 〉 < 0, ∀ W ∈ M}.

Contingent cone T(M, A) to M at point A ∈ clM are defined by

T(M, A) := {V ∈Mn : ∃ tn ↓ 0, Vn → V such that A + tnVn ∈ M ∀ n}.

The notion of semi-regular convexificators [43] will be used here. It is observed that
for locally Lipschitz function many generalized subdifferential like Clarke subdifferen-
tial [50], Michel-Penot subdifferential [51], Mordukhovich subdifferential [52], and Treiman
subdifferential [53] are examples of upper semi-regular convexificators.

Let f : Mn → R∪ {+∞} be an extended real-valued function and let A ∈Mn at which
f is finite. The lower and upper Dini derivatives of f at A in the direction V ∈ Mn are
defined, respectively, by

f−(A; V) := lim inf
t↓0

f(A + tV)− f(A)

t
,

f+(A; V) := lim sup
t↓0

f(A + tV)− f(A)

t
.

Now, we recall the definition of upper and lower semi-regular convexificators from [42,43].

Definition 3. Let f : Mn → R∪ {+∞} be an extended real-valued function and let A ∈Mn at
which f is finite. The function f is said to admit an upper semi-regular convexificator ∂∗f(A) ⊂Mn

at A if ∂∗f(A) is closed and for each V ∈Mn,

f+(A; V) ≤ sup
ξ∈∂∗f(A)

〈ξ, V〉.

The function f is said to admit a lower semi-regular convexificator ∂∗f(A) ⊂ Mn at A if
∂∗f(A) is closed and for each V ∈Mn
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f−(A; V) ≥ inf
ξ∈∂∗f(A)

〈ξ, V〉.

Definition 4. Set ∂f(A) is said to be semi-regular convexificators if it satisfy both upper semi-
regular convexificators, as well as lower semi-regular convexificators.

Definition 5. Let f : Mn → R ∪ {+∞} be an extended real-valued function. Suppose that
A ∈Mn, f(A) is finite and admits a convexificator ∂∗f(A) at A.

• f is said to be ∂∗−convex at A if, and only if, for all B ∈Mn,

f(B)− f(A) ≥ 〈ξ, B− A〉, ∀ ξ ∈ ∂∗f(A).

• f is said to be strictly ∂∗−convex at A if, and only if, for all B ∈Mn,

f(B)− f(A) > 〈ξ, B− A〉, ∀ ξ ∈ ∂∗f(A).

• f is said to be ∂∗-pseudoconvex at A if, and only if, for all B ∈Mn,

f(B) < f(A) =⇒ 〈ξ, B− A〉 < 0, ∀ ξ ∈ ∂∗f(A).

• f is said to be strictly ∂∗-pseudoconvex at A if, and only if, for all B( �= A) ∈Mn,

〈ξ, B− A〉 ≥ 0 =⇒ f(B) > f(A) ∀ ξ ∈ ∂∗f(A).

• f is said to be ∂∗−quasiconvex at A if, and only if, for all B ∈Mn,

f(B) ≤ f(A) =⇒ 〈ξ, B− A〉 ≤ 0, ∀ ξ ∈ ∂∗f(A).

Now, we recall generalized version of Farkas’ lemma [54], which will play the vital
role in the derivation of main result of this paper.

Lemma 1. (Farkas’ Lemma) Let h : Mn → Rm be convex functions. Then, the following system:{
h(A) < 0,
A ∈ Mn

++.

has no solution if, and only if, there exists (λ, W ) ∈ Rm ×Mn with λ � 0, W � 0 and (λ, W ) �=
(0, 0), such that

λTh(A) + 〈W , A〉 � 0, ∀ A ∈Mn.

3. Optimality Conditions

In this section, we deal with the traditional Fritz John necessary optimality conditions
and propose some constraint qualifications to establish strong Karush–Kuhn–Tucker nec-
essary optimality conditions, as well as sufficient optimality conditions for semidefinite
multiobjective mathematical programs with vanishing constraints in terms of convexificators.

Theorem 1. (Fritz–John necessary optimality conditions) Let Ā be a local weak efficient solution
for (S − MMPVC). Suppose that fi (i ∈ (fג and Hi (i ∈ ,(0ג Gi (i ∈ ,(0+ג admit bounded
upper semi-regular convexificators and for each Hi (i ∈ ,(+ג Gi (i ∈ 0ג ∪ ,(−+ג is continuous.
Then, there exist λ̄f

i � 0 (i ∈ ,(fג λ̄H
i � 0 (i ∈ −0ג ∪ ,(00ג λ̄H

i free (i ∈ ,(+0ג λ̄G
i �

0 (i ∈ ,(0+ג λ̄G
i = 0 (i ∈ 0ג ∪ ,(−+ג W̄ ∈ Mn

+ and not all multipliers along with W̄ can be
simultaneously zero, such that

0 ∈
p

∑
i=1

λ̄f
i co∂∗fi(Ā) +

m

∑
i=1

[λ̄G
i co∂∗Gi(Ā)− λ̄H

i co∂∗Hi(Ā)]− W̄ , 〈Ā, W̄ 〉 = 0.
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Proof. We have to show that(( ⋃
i∈גf

∂∗fi(Ā)

)s

+ Ā
)⋂(( ⋃

i∈0ג∪00ג∪+0ג−
−∂∗Hi(Ā)

)s

+ Ā
)

⋂(( ⋃
i∈0+ג∪−0ג∪00ג∪+0ג

∂∗θi(Ā)

)s

+ Ā
)⋂

Mn
++ = ∅. (2)

Suppose, on the contrary,

A ∈
(( ⋃

i∈גf
∂∗fi(Ā)

)s

+ Ā
)⋂(( ⋃

i∈0ג∪00ג∪+0ג−
−∂∗Hi(Ā)

)s

+ Ā
)

⋂(( ⋃
i∈0+ג∪−0ג∪00ג∪+0ג

∂∗θi(Ā)

)s

+ Ā
)⋂

Mn
++. (3)

As, fi (i ∈ ,(fג Hi (i ∈ +0ג ∪ 00ג ∪ (−0ג and θi (i ∈ 0+ג ∪ 00ג ∪ −0ג ∪ ,(+0ג admit
bounded upper semi-regular convexificators, we deduce that

f+i (Ā, A− Ā) < 0, i ∈ ,fג

−H +
i (Ā, A− Ā) < 0, i ∈ +0ג ∪ 00ג ∪ ,−0ג

θ+i (Ā, A− Ā) < 0, i ∈ +0ג ∪ 00ג ∪ −0ג ∪ .0+ג

Therefore, there exists τ > 0 and t ∈ (0, τ) such that

fi(Ā + t(A− Ā)) < fi(Ā), i ∈ ,fג (4)

−Hi(Ā + t(A− Ā)) < −Hi(Ā), i ∈ +0ג ∪ 00ג ∪ ,−0ג (5)

θi(Ā + t(A− Ā)) < θi(Ā), i ∈ +0ג ∪ 00ג ∪ −0ג ∪ .0+ג (6)

The continuity of Hi (i ∈ −+ג ∪ (0+ג and θi (i ∈ (−+ג implies there exists τ > 0, such
that ∀ t ∈ (0, τ),

−Hi(Ā + t(A− Ā)) < 0 (i ∈ −+ג ∪ ,(0+ג θi(Ā + t(A− Ā)) < 0 (i ∈ .(−+ג (7)

From (4)–(7) and the convexity of Mn
+ we find the contradiction with the local weak

efficient point of Ā. Consider

φi(A) = sup
ξi∈∂∗fi(Ā)

〈ξi, A− Ā〉, i ∈ ,fג

ψi(A) = sup
ηi∈−∂∗Hi(Ā)

〈ηi, A− Ā〉, i ∈ +0ג ∪ 00ג ∪ ,−0ג

ϕi(A) = sup
ζi∈∂∗θi(Ā)

〈ζi, A− Ā〉, i ∈ +0ג ∪ 00ג ∪ −0ג ∪ .0+ג

Easily, we can seen that φi(·), ψi(·) and ϕi(·) are convex functions. From (2), it follows
that the following system has no solution

K =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φi(A) < 0 if i ∈ ,fג
ψi(A) < 0 if i ∈ +0ג ∪ 00ג ∪ ,−0ג
ϕi(A) < 0 if i ∈ +0ג ∪ 00ג ∪ −0ג ∪ ,0+ג
Mn

++.
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Farkas’ Lemma 1 implies that there exist λ̄f
i � 0 (i ∈ ,(fג λH

i � 0 (i ∈ +0ג ∪ 00ג ∪
,(−0ג λθ

i � 0 (i ∈ +0ג ∪ 00ג ∪ −0ג ∪ (0+ג and W̄ ∈ Mn
+ and not all multipliers along with

W̄ can be simultaneously zero, such that

∑
i∈גf

λ̄f
i φi(A) + ∑

i∈0ג∪00ג∪+0ג−
λH

i ψi(A) + ∑
i∈0+ג∪−0ג∪00ג∪+0ג

λθ
i ϕi(A)− 〈W̄ , A〉 � 0, ∀ A ∈Mn. (8)

The above inequality (8) implies that 〈W̄ , Ā〉 � 0. Differently, W̄ and Ā are two
elements in Mn

+, hence 〈W̄ , Ā〉 = 0. Therefore,

ν(A) = ∑
i∈גf

λ̄f
i φi(A) + ∑

i∈0ג∪00ג∪+0ג−
λH

i ψi(A) + ∑
i∈0+ג∪−0ג∪00ג∪+0ג

λθ
i ϕi(A)− 〈W̄ , A〉,

is a convex function and ν(Ā) = 0. This implies 0 ∈ ∂ν(Ā), where ∂ν(Ā) is the subdifferen-
tial set for ν. Hence,

0 ∈ ∑
i∈גf

λ̄f
i ∂φi(Ā) + ∑

i∈0ג∪00ג∪+0ג−
λH

i ∂ψi(Ā) + ∑
i∈0+ג∪−0ג∪00ג∪+0ג

λθ
i ∂ϕi(Ā)− W̄ .

This implies,

0 ∈ ∑
i∈גf

λ̄f
i ∂∗φi(Ā) + ∑

i∈0ג∪00ג∪+0ג−
λH

i ∂∗ψi(Ā) + ∑
i∈0+ג∪−0ג∪00ג∪+0ג

λθ
i ∂∗ϕi(Ā)− W̄ .

0 ∈ ∑
i∈גf

λ̄f
i ∂∗fi(Ā)− ∑

i∈0ג∪00ג∪+0ג−
λH

i ∂∗Hi(Ā) + ∑
i∈0+ג∪−0ג∪00ג∪+0ג

λθ
i ∂∗θi(Ā)− W̄ ,

0 ∈ ∑
i∈גf

λ̄f
i ∂∗fi(Ā)− ∑

i∈0ג∪00ג∪+0ג−
λH

i ∂∗Hi(Ā)

+ ∑
i∈0+ג∪−0ג∪00ג∪+0ג

λθ
i [Hi(Ā)∂∗Gi(Ā) + Gi(Ā)∂∗Hi(Ā)]− W̄ . (9)

For λH
i = 0 (i ∈ −+ג ∪ ,(0+ג λθ

i = 0 (i ∈ ,(−+ג we obtain from (9)

0 ∈ ∑
i∈גf

λ̄f
i co∂∗fi(Ā) +

m

∑
i=1

[λ̄G
i co∂∗Gi(Ā)− λ̄H

i co∂∗Hi(Ā)]− W̄ ,

where λ̄H
i = λH

i − λθ
i Gi(Ā) (i ∈ +0ג ∪ −0ג ∪ 00ג ∪ ,(0+ג

λ̄H
i = λθ

i = 0 (i ∈ ,(−+ג λ̄G
i = λθHi(Ā) (i ∈ +0ג ∪ −0ג ∪ 00ג ∪ ,(0+ג

λ̄G
i = λθ

i = 0 (i ∈ .(−+ג

Thus, we have

0 ∈ ∑
i∈גf

λ̄f
i co∂∗fi(Ā) +

m

∑
i=1

[λ̄G
i co∂∗Gi(Ā)− λ̄H

i co∂∗Hi(Ā)]− W̄ ,

λ̄f
i � 0 (i ∈ ,(fג 〈W̄ , Ā〉 = 0, λ̄H

i = 0 (i ∈ 0+ג ∪ ,(−+ג λ̄H
i � 0 (i ∈ −0ג ∪ ,(00ג λ̄H

i free (i ∈ ,(+0ג

λ̄G
i = 0 (i ∈ +0ג ∪ −0ג ∪ 00ג ∪ ,(−+ג λ̄G

i � 0 (i ∈ .(0+ג

Definition 6. The generalized Cottle constraint qualification (GCCQ) is said to satisfy at Ā if( ⋃
i∈גk

f

co∂∗fi(Ā)

)s ⋂( ⋃
i∈0ג+

co∂∗Hi(Ā)
⋃

i∈0ג+

−co∂∗Hi(Ā)
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⋃
i∈00ג∪−0ג

−co∂∗Hi(Ā)
⋃

i∈0+ג

co∂∗Gi(Ā)

)s ⋂
Mn

+ �= ∅, ∀ k ∈ .fג (10)

Theorem 2. Let Ā be a local weak efficient solution for (S − MMPVC). Suppose that fi
(i ∈ ,(fג Hi (i ∈ (0ג and Gi (i ∈ (0+ג admit bounded upper semi-regular convexificators
and Hi (i ∈ ,(+ג Gi (i ∈ 0ג ∪ (−+ג are continuous. If (GCCQ) holds at Ā then there exist
λ̄f

i > 0 (i ∈ ,(fג λ̄H
i , λ̄G

i ∈ Rm, W̄ ∈Mn
+, such that

0 ∈ ∑
i∈גf

λ̄f
i co∂∗fi(Ā) +

m

∑
i=1

[λ̄G
i co∂∗Gi(Ā)− λ̄H

i co∂∗Hi(Ā)]− W̄ ,

〈W̄ , Ā〉 = 0, λ̄H
i = 0 (i ∈ 0+ג ∪ ,(−+ג λ̄H

i � 0 (i ∈ −0ג ∪ ,(00ג λ̄H
i free (i ∈ ,(+0ג

λ̄G
i = 0 (i ∈ +0ג ∪ −0ג ∪ 00ג ∪ ,(−+ג λ̄G

i � 0 (i ∈ .(0+ג

Proof. Since Ā is a local weak efficient solution, Theorem 1 implies that there exist
λ̄f

i � 0 (i ∈ ,(fג λ̄H
i � 0, λ̄G

i � 0 and W̄ ∈Mn
+, such that

0 ∈ ∑
i∈גf

λ̄f
i co∂∗fi(Ā) +

m

∑
i=1

[λ̄G
i co∂∗Gi(Ā)− λ̄H

i co∂∗Hi(Ā)]− W̄ ,

〈W̄ , Ā〉 = 0, λ̄H
i = 0 (i ∈ 0+ג ∪ ,(−+ג λ̄H

i � 0 (i ∈ −0ג ∪ ,(00ג λ̄H
i free (i ∈ ,(+0ג

λ̄G
i = 0 (i ∈ +0ג ∪ −0ג ∪ 00ג ∪ ,(−+ג λ̄G

i � 0 (i ∈ .(0+ג (11)

Without loss of generality, assume that λ1 = 0, then there exist ξi ∈ co∂fi(Ā) (i ∈ 1ג
f ),

ηi ∈ co∂Hi(Ā), ζi ∈ co∂Gi(Ā), such that Equation (11) becomes

0 = ∑
i∈1ג

f

λ̄f
i ξi +

m

∑
i=1

[λ̄G
i ζi − λ̄H

i ηi]− W̄ .

it follows from (GCCQ), there exists A ∈Mn
+ such that

0 > ∑
i∈1ג

f

λ̄f
i 〈ξi, A〉+

m

∑
i=1

[λ̄G
i 〈ζi, A〉 − λ̄H

i 〈ηi, A〉]− 〈W̄ , A〉

=

〈
∑

i∈1ג
f

λ̄f
i ξi +

m

∑
i=1

[λ̄G
i ζi − λ̄H

i ηi]− W̄ , A
〉

= 0.

This contradicts the assumption. Thus, we obtain λf
1 > 0. Repeating the above process

for each k ∈ fג we find the required result.

Now, we introduce more relaxed constraint qualifications than (GCCQ).

Definition 7. The generalized Guignard constraint qualification (GGCQ) is said to be hold at Ā if

C = cone co

( ⋃
i∈0ג+

co∂∗Hi(Ā)
⋃

i∈0ג+

−co∂∗Hi(Ā)

⋃
i∈00ג∪−0ג

−co∂∗Hi(Ā)
⋃

i∈0+ג

co∂∗Gi(Ā)

)
−Mn

+ is closed set and

( ⋃
i∈גf

co∂∗fi(Ā)

)−⋂( ⋃
i∈0ג+

co∂∗Hi(Ā)
⋃

i∈0ג+

−co∂∗Hi(Ā)
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⋃
i∈00ג∪−0ג

−co∂∗Hi(Ā)
⋃

i∈0+ג

co∂∗Gi(Ā)

)−⋂
Mn

+ ⊂
p⋂

i=1

coT(Qi, Ā).

Lemma 2. Let Ā be any feasible solution to problem (S−MMPVC). Suppose that fi (i ∈ ,(fג
Hi (i ∈ ,(0ג Gi (i ∈ ,(0+ג admit bounded upper semi-regular convexificators and for each
Hi (i ∈ ,(+ג Gi (i ∈ 0ג ∪ ,(−+ג are continuous. If C is closed and GCCQ holds at Ā, then GGCQ
holds at Ā.

Proof. Without loss of generality, we assume that A satisfies GCCQ for k = 1.

A ∈
( ⋃

i∈1ג
f

co∂∗fi(Ā)

)−⋂( ⋃
i∈0ג+

co∂∗Hi(Ā)
⋃

i∈0ג+

−co∂∗Hi(Ā)

⋃
i∈00ג∪−0ג

−co∂∗Hi(Ā)
⋃

i∈0+ג

co∂∗Gi(Ā)

)−⋂
Mn

+ �= ∅. (12)

Since all fi (i ∈ ,(fג Hi (i ∈ ,(0ג Gi (i ∈ ,(0+ג admit bounded upper semi-regular
convexificators, so we have

f+i (Ā; A) < 0, ∀ i ∈ 1ג
f ,

−H +
i (Ā; A) < 0, ∀ i ∈ ,0ג

G +
i (Ā; A) < 0, ∀ i ∈ .0+ג

Since Mn
+ is a convex cone, there exists τ > 0, such that

fi(Ā + tA) < fi(Ā) (i ∈ 1ג
f ), −Hi(Ā + tA) < 0, ∀ i ∈ ,0ג Gi(Ā + tA) < 0, ∀ i ∈ ,0+ג

Ā + tA ∈Mn
+ ∀ t ∈ (0, τ). (13)

On the other hand Hi (i ∈ ,(+ג Gi (i ∈ 0ג ∪ (−+ג are a continuous. Therefore, there
exists τ > 0, such that

−Hi(Ā + tA) < 0 (i ∈ ,(+ג Gi(Ā + tA) < 0 (i ∈ 0ג ∪ (−+ג Ā + tA ∈Mn
+, t ∈ (0, τ).

Thus, A ∈ T(Q1, Ā). Therefore, we have

A =

( ⋃
i∈גf

co∂∗fi(Ā)

)−⋂( ⋃
i∈0ג+

co∂∗Hi(Ā)
⋃

i∈0ג+

−co∂∗Hi(Ā)

⋃
i∈00ג∪−0ג

−co∂∗Hi(Ā)
⋃

i∈0+ג

co∂∗Gi(Ā)

)−⋂
Mn

+

= cl
(( ⋃

i∈גf
co∂∗fi(Ā)

)s ⋂( ⋃
i∈0ג+

co∂∗Hi(Ā)
⋃

i∈0ג+

−co∂∗Hi(Ā)

⋃
i∈00ג∪−0ג

−co∂∗Hi(Ā)
⋃

i∈0+ג

co∂∗Gi(Ā)

)s ⋂
Mn

++

)

⊂ cl
(( ⋃

i∈1ג
f

co∂∗fi(Ā)

)s ⋂( ⋃
i∈0ג+

co∂∗Hi(Ā)
⋃

i∈0ג+

−co∂∗Hi(Ā)

⋃
i∈00ג∪−0ג

−co∂∗Hi(Ā)
⋃

i∈0+ג

co∂∗Gi(Ā)

)s ⋂
Mn

++

)
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⊂ clcoT(Q1, Ā) = coT(Q1, Ā).

Similarly, it can be proved that A ⊂ coT(Qi, Ā), ∀ i ∈ .fג Therefore

( ⋃
i∈גf

co∂∗fi(Ā)

)−⋂( ⋃
i∈0ג+

co∂∗Hi(Ā)
⋃

i∈0ג+

−co∂∗Hi(Ā)

⋃
i∈00ג∪−0ג

−co∂∗Hi(Ā)
⋃

i∈0+ג

co∂∗Gi(Ā)

)−⋂
Mn

+ ⊂
p⋂

i=1

coT(Qi, Ā).

We present an example to show that converse of the above Lemma (2) does not hold.

Example 1. Consider the problem

min (f1(A), f2(A)), subject to H (A) = x1 � 0, G (A)H (A) = x3.x1 � 0,

A =

[
x1 x2
x2 x3

]
∈M2

+, where f1(A) = |x1|, f2(A) = |x3|.

Feasible set M =

{[
x1 x2
x2 x3

]
∈ M2

+ : x1 � 0, x1x3 � 0

}
. Since Ā =

[
0 0
0 0

]
, is

weak efficient solution for the considered problem. Now, we can find upper semi-regular
convexificator of each functions at point Ā as follows:

∂∗f1(Ā) =

{[−1 0
0 0

]
,
[

1 0
0 0

]}
, ∂∗f2(Ā) =

{[
0 0
0 −1

]
,
[

0 0
0 1

]}
,

∂∗H (Ā) =

{[
1 0
0 0

]}
, ∂∗G (Ā) =

{[
0 0
0 1

]}
.

Q1 =

{[
x1 x2
x2 x3

]
∈M2

+ : x1 � 0, x2 = 0, x3 = 0

}
,

Q2 =

{[
x1 x2
x2 x3

]
∈M2

+ : x1 = 0, x2 = 0, x3 ∈ R

}
.

So, we conclude that[
0 0
0 0

]
∈

2⋂
i=1

coT(Qi, Ā) and
2⋃

i=1

co∂∗fi(Ā) =

{[
t 0
0 0

]
,
[

0 0
0 s

]
: t, s ∈ [−1, 1]

}
,

thus, we have (
2⋃

i=1

co∂∗fi(Ā)

)−
=

{[
0 x2
x2 0

]
: x2 ∈ R

}
.

Since,

co∂∗H (Ā) =

{[
1 0
0 0

]}
, then

(
− co∂∗H (Ā)

)−
=

{[
x1 x2
x2 x3

]
: x1 � 0

}
.
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Consequently, we have(
2⋃

i=1

co∂∗fi(Ā)

)−⋂(
− co∂∗H (Ā)

)−⋂
M2

+ =

{[
0 0
0 0

]}
⊂

2⋂
i=1

coT(Qi, Ā).

Obviously, C = cone co∂∗H (Ā)−M2
+ is closed set. Hence, (GGCQ) satisfied at Ā.

Now,( ⋃
i∈1ג

f

co∂∗fi(Ā)

)s

=

(
co∂∗f2(Ā)

)s

= ∅,

( ⋃
i∈2ג

f

co∂∗fi(Ā)

)s

=

(
co∂∗f1(Ā)

)s

= ∅,

which implies that( ⋃
i∈גk

f

co∂∗fi(Ā)

)s ⋂( ⋃
i∈0ג+

co∂∗Hi(Ā)
⋃

i∈0ג+

−co∂∗Hi(Ā)

⋃
i∈00ג∪−0ג

−co∂∗Hi(Ā)
⋃

i∈0+ג

co∂∗Gi(Ā)

)s ⋂
Mn

+ = ∅, ∀ k ∈ .fג

Hence, GCCQ not satisfied.
Applying the generalized Guignard constraint qualification, we derive the Karush–

Kuhn–Tucker type necessary optimality conditions for (S−MMPVC).

Theorem 3. Suppose Ā is a local weak efficient solution for (S − MMPVC). Assume that
fi, Hi, Gi admits bounded upper semi-regular convexificator ∂∗fi(Ā) (i ∈ ,(fג ∂∗Hi(Ā)

(i ∈ ,(0ג ∂∗Gi(Ā) (i ∈ ,(0+ג respectively, at Ā. If (GGCQ) holds at Ā then there exists λ̄f
i > 0

(i ∈ ,(fג λ̄G ∈ Rm, λ̄H ∈ Rm and W̄ ∈Mn
+ such that

0 ∈ ∑
i∈גf

λ̄f
i co∂∗fi(Ā) +

m

∑
i=1

[λ̄G
i co∂∗Gi(Ā)− λ̄H

i co∂∗Hi(Ā)]− W̄ ,

〈W̄ , Ā〉 = 0, λ̄H
i = 0 (i ∈ 0+ג ∪ ,(−+ג λ̄H

i � 0 (i ∈ −0ג ∪ ,(00ג λ̄H
i free (i ∈ ,(+0ג

λ̄G
i = 0 (i ∈ +0ג ∪ −0ג ∪ 00ג ∪ ,(−+ג λ̄G

i � 0 (i ∈ .(0+ג

Proof. For the claim of the theorem, it suffices to show that,

0 ∈
p

∑
i=1

λf
i co∂∗fi(Ā) + C, λf > 0. (14)

Suppose, on the contrary, assume that

0 /∈
p

∑
i=1

λf
i co∂∗fi(Ā) + C, λf > 0. (15)

As fi (i ∈ (fג admits an upper semi-regular convexificator, this implies that the right
side in (14) is a closed convex set in Mn. The classical separation theorem implies that there
exists A ∈Mn, such that

〈τ, A〉 < 0, ∀ τ ∈
p

∑
i=1

λf
i co∂∗fi(Ā) + C, λf > 0. (16)

Consequently,

〈ξi, A〉 < 0, ∀ ξi ∈ co∂∗fi(Ā) (i ∈ ,(fג (17)
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−〈ηi, A〉 � 0, ∀ ηi ∈ co∂∗Hi(Ā) (i ∈ −0ג ∪ ,(00ג (18)

−〈ηi, A〉 � 0, ∀ ηi ∈ co∂∗Hi(Ā) (i ∈ ,(+0ג (19)

〈ηi, A〉 � 0, ∀ ηi ∈ co∂∗Hi(Ā) (i ∈ ,(+0ג (20)

〈ζi, A〉 � 0, ∀ ζi ∈ co∂∗Gi(Ā) (i ∈ ,(0+ג (21)

−〈W̄ , A〉 � 0, ∀ W̄ ∈Mn
+. (22)

Inequalities (17)–(22) and (GGCQ) implies that

A ∈
( ⋃

i∈גf
co∂∗fi(Ā)

)−⋂( ⋃
i∈0ג+

co∂∗Hi(Ā)
⋃

i∈0ג+

−co∂∗Hi(Ā)

⋃
i∈00ג∪−0ג

−co∂∗Hi(Ā)
⋃

i∈0+ג

co∂∗Gi(Ā)

)−⋂
Mn

+ ⊂
p⋂

i=1

coT(Qi, Ā).

Hence, A ∈ ⋂p
i=1 coT(Qi, Ā), which implies that, there exist tn ↓ 0, such that Ā+ tn A ∈

M. Therefore, from (17), we obtain

fi(Ā + tA) < fi(Ā), ∀ i ∈ .fג

Thus, we obtain the contradiction that the feasible point Ā is a local weak efficient
solution for (S−MMPVC). Hence, the result.

Motivated by Achtziger and Kanzow [12] and Sadeghieh et al. [55], we define S-
stationary point for S-MMPVC.

Definition 8. A feasible point Ā is said to be weak S−stationary point for (S−MMPVC) if there
exist λf ∈ Rp, λH ∈ Rm, λG ∈ RM, W ∈ Mn

+, and not all multipliers along with W̄ can be
simultaneously zero, such that

0 ∈ ∑
i∈גf

λf
i co∂∗fi(Ā) +

m

∑
i=1

[λG
i co∂∗Gi(Ā)− λH

i co∂∗Hi(Ā)]−W ,

λf
i � 0 (i ∈ ,(fג 〈W , Ā〉 = 0, λH

i = 0 (i ∈ 0+ג ∪ ,(−+ג λH
i � 0 (i ∈ −0ג ∪ ,(00ג

λH
i free (i ∈ ,(+0ג λG

i = 0 (i ∈ +0ג ∪ −0ג ∪ 00ג ∪ ,(−+ג λG
i � 0 (i ∈ .(0+ג

Definition 9. A feasible point Ā is said to be strong S−stationary point for (S−MMPVC) if
there exist λf ∈ Rp, λH ∈ Rm, λG ∈ RM and W ∈Mn

+, such that

0 ∈ ∑
i∈גf

λf
i co∂∗fi(Ā) +

m

∑
i=1

[λG
i co∂∗Gi(Ā)− λH

i co∂∗Hi(Ā)]−W ,

λf
i > 0 (i ∈ ,(fג 〈W , Ā〉 = 0, λH

i = 0 (i ∈ 0+ג ∪ ,(−+ג λH
i � 0 (i ∈ −0ג ∪ ,(00ג

λH
i free (i ∈ ,(+0ג λG

i = 0 (i ∈ +0ג ∪ −0ג ∪ 00ג ∪ ,(−+ג λG
i � 0 (i ∈ .(0+ג

Note that, if multipliers of gradients of objective functions are strictly greater than zero, then it
is considered as strong S−stationary conditions.
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Example 2. Consider following optimization problem

min (f1(A), f2(A)), subject to H (A) = x1 � 0, G (A)H (A) = x3.x1 � 0,

A =

[
x1 x2
x2 x3

]
∈M2

+, where f1(A) = |x1 − 1|, f2(A) = |x3|.

Feasible set M =

{[
x1 x2
x2 x3

]
∈ M2

+ : x1 � 0, x1x3 � 0

}
. Since Ā =

[
1 0
0 0

]
is

weak efficient solution for the considered problem. Now, we can find upper semi-regular
convexificator of each functions at point Ā as follows:

∂∗f1(Ā) =

{[−1 0
0 0

]
,
[

1 0
0 0

]}
, ∂∗f2(Ā) =

{[
0 0
0 −1

]
,
[

0 0
0 1

]}
,

∂∗H (Ā) =

{[
1 0
0 0

]}
, ∂∗G (Ā) =

{[
0 0
0 1

]}
.

Q1 =

{[
x1 x2

x2 x3

]
∈M2

+ : x1 � 0, x2 = 0, x3 = 0

}
, Q2 =

{[
x1 x2

x2 x3

]
∈M2

+ : x1 = 1, x2 = 0, x3 = 0

}
.

So, we conclude that[
0 0
0 0

]
∈

2⋂
i=1

coT(Qi, Ā) and
2⋃

i=1

co∂∗fi(Ā) =

{[
t 0
0 0

]
,
[

0 0
0 s

]
: t, s ∈ [−1, 1]

}
,

thus, we have (
2⋃

i=1

co∂∗fi(Ā)

)−
=

{[
x1 x2
x2 x3

]
: x1 = 0, x2 = 0, x3 = 0

}
.

Since,

co∂∗H (Ā) =

{[
1 0
0 0

]}
, then

(
− co∂∗H (Ā)

)−
=

{[
x1 x2
x2 x3

]
: x1 � 0

}
.

Consequently, we have(
2⋃

i=1

co∂∗fi(Ā)

)−⋂(
− co∂∗H (Ā)

)−⋂
M2

+ =

{[
0 0
0 0

]}
⊂

2⋂
i=1

coT(Qi, Ā).

Obviously, C = cone co∂∗H (Ā)−M2
+ is closed set. Hence, (GGCQ) satisfied at Ā.

Now, for λf
1 = 1, λf

2 = 1, λH = 0, W̄ =

[
0 0
0 1

]
, ξ1 =

[
0 0
0 0

]
∈ co∂∗f1(Ā),

ξ2 =

[
0 0
0 1

]
∈ co∂∗f2(Ā), and η =

[
1 0
0 0

]
∈ co∂∗H (Ā), we have

0 = λf
1ξ1 + λf

2ξ2 − λH η − W̄ = 1
[

0 0
0 0

]
+ 1

[
0 0
0 1

]
− 0

[
1 0
0 0

]
−
[

0 0
0 1

]
∈ λf

1co∂∗f1(Ā) + λf
2co∂∗f2(Ā)− λH co∂∗H (Ā)− W̄ ,

and 〈Ā, W̄ 〉 = Tr

([
1 0
0 0

][
0 0
0 1

])
= 0. Hence, strong S−stationary conditions satisfied at

weak efficient point Ā.
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Corollary 1. Let Ā be a local weak efficient solution for (S−MMPVC). Suppose that fi, Hi, Gi
admits bounded upper semi-regular convexificator ∂∗fi(Ā) (i ∈ ,(fג ∂∗Hi(Ā) (i ∈ ,(0ג ∂∗Gi(Ā)

(i ∈ ,(0+ג respectively, at Ā. If (GGCQ) holds at Ā then there exists λ̄f
i > 0 (i ∈ ,(fג

λ̄G ∈ Rm, λ̄H ∈ Rm and W̄ ∈Mn
+ such that

0 ∈ ∑
i∈גf

λ̄f
i co∂∗fi(Ā) +

m

∑
i=1

[λ̄G
i co∂∗Gi(Ā)− λ̄H

i co∂∗Hi(Ā)]− W̄ ,

〈W̄ , Ā〉 = 0, λ̄H
i = 0 (i ∈ 0+ג ∪ ,(−+ג λ̄H

i � 0 (i ∈ −0ג ∪ ,(00ג λ̄H
i free (i ∈ ,(+0ג

p

∑
i=1

λ̄f
i = 1, λ̄G

i = 0 (i ∈ +0ג ∪ −0ג ∪ 00ג ∪ ,(−+ג λ̄G
i � 0 (i ∈ .(0+ג

Proof. Since, all conditions of Theorem 3 are satisfying for some λf > 0, λH , λG ∈ Rm,
and W as follows:

0 ∈ ∑
i∈גf

λf
i co∂∗fi(Ā) +

m

∑
i=1

[λG
i co∂∗Gi(Ā)− λH

i co∂∗Hi(Ā)]−W , (23)

〈W , Ā〉 = 0, λH
i = 0 (i ∈ 0+ג ∪ ,(−+ג λH

i � 0 (i ∈ −0ג ∪ ,(00ג

λH
i free (i ∈ ,(+0ג λG

i = 0 (i ∈ +0ג ∪ −0ג ∪ 00ג ∪ ,(−+ג λG
i � 0 (i ∈ .(0+ג

Now, dividing (23) by
p
∑

i=1
λf

i and taking

λ̄f
i =

λf
i

p
∑

i=1
λi

, λ̄H
i =

λH
i

p
∑

i=1
λf

i

, λ̄G
i =

λG
i

p
∑

i=1
λf

i

, W̄ =
W

p
∑

i=1
λf

i

,

we obtain the required result.

Now, we propose some index sets to show sufficient optimality conditions for S-
MMPVC:

00+ג := {i ∈ 00ג : λH
i > 0},

0ג
00 := {i ∈ 00ג : λH

i = 0},
−0+ג := {i ∈ −0ג : λH

i > 0},
0ג

0− := {i ∈ −0ג : λH
i = 0},

+0+ג := {i ∈ +0ג : λH
i > 0},

+0−ג := {i ∈ +0ג : λH
i < 0},

0ג
0+ := {i ∈ +0ג : λH

i = 0},
+0ג
+0 := {i ∈ 0+ג : λH

i = 0, λG
i > 0},

00ג
+0 := {i ∈ 0+ג : λH

i = 0, λG
i = 0}.

Following result is motivated by Sadeghieh et al. ([55], Theorem 9).

Theorem 4. (Sufficient conditions) Suppose fi (i ∈ ,(fג Hi (i ∈ +0ג ∪ 00ג ∪ ,(−0ג Gi (i ∈ (0+ג
admit bounded upper semi-regular convexificators at Ā. Assume that feasible point Ā satis-
fies weak S−stationary conditions under suitable choice of multipliers λf ∈ Rp, λH ∈ Rm,
λG ∈ Rm, W̄ ∈ Mn

+ for S − MMPVC. If Hi (i ∈ ,(+0−ג −Hi (i ∈ +0+ג ∪ 00+ג ∪ ,(−0+ג
Gi (i ∈ +0ג

+0), are ∂∗−quasiconvex and fi (i ∈ (fג are ∂∗−pseudoconvex at Ā and at least one
λf

i > 0. Then,

(i) Ā is a local weak efficient solution for S−MMPVC;
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(ii) In addition to that if +0−ג ∪ +0ג
+0 = ∅, then Ā is a weak efficient solution for S−MMPVC.

Proof. (i) From continuity of Gi(i ∈ (+0ג and Hi(i ∈ (0+ג there exist neighborhoods N
andM for Ā, such that

Hi(A) = 0, Gi(A) > 0, ∀ A ∈ M ∩N ∀ i ∈ ,+0ג (24)

Hi(A) > 0, Gi(A) ≤ 0, ∀ A ∈ M ∩M ∀ i ∈ .0+ג (25)

Since Ā is a weak S−stationary point, so there exist λf ∈ Rp, λH ∈ Rm, λG ∈ Rm, W̄
and not all multipliers along with W̄ can be simultaneously zero, such that satisfies weak
S−stationary conditions. Thus, there exist ξi ∈ co∂∗fi(Ā) (i ∈ ,(fג ηi ∈ co∂∗Hi(Ā)
(i ∈ ,(0ג ζi ∈ co∂∗Gi(Ā) (i ∈ ,(0+ג such that

∑
i∈גf

λf
i ξi + ∑

i∈0+ג

λG
i ζi − ∑

i∈0ג

λH
i ηi − W̄ = 0. (26)

Suppose, on contrary Ā is not local weak efficient solution for S−MMPVC. Then,
there exists B ∈ M ∩N ∩M, such that

fi(B) < fi(Ā), ∀ i ∈ .fג (27)

By the ∂∗-pseudoconvexity of fi (i ∈ (fג and (27), we obtain

〈ξi, B− Ā〉 < 0, ∀ i ∈ .fג (28)

By the ∂∗-quasiconvexity of functions Gi (i ∈ +0ג
+0), Hi (i ∈ (+0−ג and (24) and (25),

we obtain

Gi(B) � 0 = Gi(Ā) =⇒ 〈ζi, B− Ā〉 � 0, ∀ i ∈ +0ג
+0. (29)

Hi(B) = 0 � Hi(Ā) =⇒ 〈ηi, B− Ā〉 � 0, ∀ i ∈ .+0−ג (30)

On the other hand, ∀ i ∈ +0+ג ∪ −0+ג ∪ ,00+ג

−Hi(B) � 0 = −Hi(Ā) =⇒ 〈−ηi, B− Ā〉 � 0, ∀ − ηi ∈ −co∂∗Hi(Ā). (31)

Since W̄ , B ∈Mn
+, so we have

−〈W̄ , B〉+ 〈W̄ , Ā〉 = −〈W̄ , B− Ā〉 � 0. (32)

Multiplying their corresponding multiplier in (29) to (32) and adding, we obtain
contradictions to (26). Hence, the result.

(ii) We proceed similar to (i) and using 0+ג
0+ ∪ 0+−ג = ∅, therefore without making use

of neighborhood N andM, we obtain the required result.

To validate the sufficient optimality conditions we present following example.

Example 3. Consider following optimization problem

min (f1(A), f2(A)), subject to H1(A) = −x2 � 0, G1(A)H1(A) = −|x3|x2 � 0,

A =

[
x1 x2
x2 x3

]
∈M2

+, where f1(A) = x2, f2(A) = x3.
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Feasible set,

M =

{[
x1 x2
x2 x3

]
∈M2

+ : x2 � 0, |x3|x2 � 0

}
,

=

{[
x1 x2
x2 x3

]
: x1 � 0, x1x3 − x2

2 � 0, x2 � 0, |x3|x2 � 0

}
.

Consider at feasible point Ā =

[
0 0
0 0

]
. We observe that f1, f2 are ∂∗−pseudoconvex, −H1 is

∂∗−quasiconvex at Ā and Hi (i = 1 ∈ ,(00ג Gi (i = 1 /∈ (0+ג also 0+ג
0+ ∪ 0+−ג = ∅. Now, we can

find upper semi-regular convexificator of each functions at point Ā as follows:

∂∗f1(Ā) =

{[
0 1

2
1
2 0

]}
, ∂∗f2(Ā) =

{[
0 0
0 1

]}
, ∂∗H1(Ā) =

{[
0 − 1

2
− 1

2 0

]}
.

Thus, for λf
1 = 0, λf

2 > 0, λH
1 = 0, and W̄ =

[
0 0
0 λf

2

]
, we have

λf
1co∂∗f1(Ā) + λf

2co∂∗f2(Ā)− λH
1 co∂∗H1(Ā)− W̄ = 0.

That is, Ā satisfying weak S−stationary conditions. Hence, Ā is weak efficient solution, which
is true by simple observations.

4. Conclusions and Future Remarks

Golestani and Nobakhtian [11] established optimality conditions for nonsmooth
semidefinite single optimization problems. We have established the optimality conditions
for a more interesting class of nonlinear optimization namely, mathematical programming
problems with vanishing constraints (MPVC), which is more applicable in topology op-
timization and many real-life problems. We have further extended the single objective
semidefinite optimization problems to multiobjective semidefinite optimization problems.
We established Fritz John stationary conditions for nonsmooth, nonlinear, semidefinite,
multiobjective programs with vanishing constraints using convexificator and generalized
Cottle type and generalized Guignard type constraints qualification have been introduced
to achieve strong S−stationary conditions from Fritz John stationary conditions. Sufficient
conditions are also established under generalized convexity assumptions and through an
example, we validate our established results. We have used the constraint qualifications
technique motivated by Li [38] and provided some generalized constraint qualifications for
semidefinite optimization problems. We have also used the linearization technique inspired
by Kanzow et al. [56]. Recently, Treanta [41] discussed duality theorems for a special
class of quasiinvex multiobjective optimization problems for interval-valued components.
Further, Treanta established dual pair of multiobjective interval-valued variational control
problems. We can extend the results on multiobjective semidefinite optimization prob-
lems to variational control problems and interval-valued optimization problems motivated
by [40,41,57–61] for the application point of view.
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Abstract: The purpose of this study is to introduce the new class of Hermite–Hadamard inequality for
LR-convex interval-valued functions known as LR-interval Hermite–Hadamard inequality, by means
of pseudo-order relation (≤p ). This order relation is defined on interval space. We have proved that if
the interval-valued function is LR-convex then the inclusion relation “ ⊆ ” coincident to pseudo-order
relation “ ≤p ” under some suitable conditions. Moreover, the interval Hermite–Hadamard–Fejér
inequality is also derived for LR-convex interval-valued functions. These inequalities also generalize
some new and known results. Useful examples that verify the applicability of the theory developed
in this study are presented. The concepts and techniques of this paper may be a starting point for
further research in this area.

Keywords: interval-valued function; Riemann integral; LR-convex interval-valued function; interval
Hermite–Hadamard inequality; interval Hermite–Hadamard–Fejér inequality

1. Introduction

In the development of pure and applied mathematics [1,2] convexity has played a
key role. Due to their resilience, convex sets and convex functions have been refined
and expanded in many mathematical fields; see [3–8]. Convexity theory may be used to
generate numerous inequalities in the literature. Integral inequalities [9] have uses in linear
programming, combinatory, orthogonal polynomials, quantum theory, number theory,
optimization theory, dynamics, and the theory of relativity. Researchers have given this
problem a lot of attention [10–14], and it is now regarded an integrative topic involving
economics, mathematics, physics, and statistics [15,16]. The Hermite–Hadamard inequality
(HH-inequality) is, to the best of my knowledge, a well-known, ultimate, and broadly
applied inequality. Other classical inequalities, such as the Oslen and Gagliardo–Nirenberg,
Oslen, Opial, Hardy, Young, Linger, Ostrowski, levison, Arithmetic’s-Geometric, Ky-fan,
Minkowski, Beckenbach–Dresher, and Holer inequality, are closely linked to the classical
HH-inequality [17–20], and it can be put in the following manner.

Let S : K → R be a convex function on a convex set K and t, υ ∈ K with t ≤ υ . Then,

S

(
t + υ

2

)
≤ 1

υ− t

∫ υ

t
S(ω)dω ≤ S(t) +S(υ)

2
. (1)

In [21], Fejér looked at the key extensions of HH-inequality, dubbed Hermite–Hadamard–
Fejér inequality (HH-Fejér inequality).
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Let S : K → R be a convex function on a convex set K and t, υ ∈ K with t ≤ υ . Then,

S

(
t + υ

2

)
≤ 1∫ υ

t D(ω)dω

∫ υ

t
S(ω)D(ω)dω ≤ S(t) +S(υ)

2

∫ υ

t
D(ω))dω. (2)

If D(ω) = 1 then, we obtain (1) from (2). Many classical inequalities may be derived
by specific convex functions with the help of inequality (1). Furthermore, in both pure
and industrial mathematics, these inequalities play a crucial role for convex functions.
We encourage readers to go more into the literature on generalized convex functions and
HH-integral inequalities, particularly [22–29] and the references therein.

Interval analysis, on the other hand, was mostly forgotten for a long time due to a lack
of applicability in other fields. Moore [30] and Kulish and W. Miranker [31] introduced and
researched the notion of interval analysis. It is the first time in numerical analysis that it is
utilized to calculate the error boundaries of numerical solutions of a finite state machine.
Since then, a number of analysts have focused on and studied interval analysis and interval-
valued functions (I.V-Fs) in both mathematics and applications. As a result, various
writers looked into the literature and applications of neural network output optimization,
automatic error analysis, computational physics, robotics, computer graphics, and a variety
of other well-known scientific and technology fields. We encourage readers to conduct
more research into essential aspects and applications in the literature (see [32–40] and the
references therein).

The theory of fuzzy sets and systems has progressed in a number of ways from its
introduction five decades ago, as seen in [41]. As a result, it is useful in the study of a variety
of issues in pure mathematics and applied sciences, such as operation research, computer
science, management sciences, artificial intelligence, control engineering, and decision sci-
ences. Convex analysis has contributed significantly to the advancement of several sectors
of practical and pure research. Similarly, the concepts of convexity and non-convexity are
important in fuzzy optimization because we obtain fuzzy variational inequalities when
we characterize the optimality condition of convexity, so variational inequality theory and
fuzzy complementary problem theory established powerful mechanisms of mathematical
problems and have a friendly relationship. Costa [42], Costa and Roman-Flores [43], Flores-
Franulic et al. [44], Roman-Flores et al. [45,46], and Chalco-Cano et al. [47,48] have recently
generalized several classical discrete and integral inequalities not only to the environment
of the I.V-Fs and fuzzy I.V-Fs, but also to more general set valued maps by Nikodem et al.
Zhang et al. [49] used a pseudo order relation to establish a novel version of Jensen’s inequal-
ities for set-valued and fuzzy set-valued functions, proving that these Jensen’s inequalities
are an expanded form of Costa Jensen’s inequalities [42]. Zhao et al. [50], inspired by the
literature, introduced -convex I.V-Fs and established that the HH-inequality for -convex
I.V-Fs. Yanrong An et al. [51] took a step forward by introducing the class of ( 1, 2)

-convex I.V-Fs and establishing the interval HH-inequality for ( 1, 2) -convex I.V-Fs.
This research is structured as follows: preliminary and novel notions and results in

interval space and interval-valued convex analysis are presented in Section 2. Section 3
uses LR-convex I.V-Fs to generate LR-interval HH-inequalities and HH-Fejér inequalities.
In addition, several intriguing cases are provided to support our findings. Conclusions and
future plans are presented in Section 4.

2. Preliminaries

Let KC be the collection of all closed and bounded intervals of R that is
KC = {[Z∗, Z∗] : Z∗, Z∗ ∈ R and Z∗ ≤ Z∗}. If Z∗ ≥ 0 , then [Z∗, Z∗] is named
as positive interval. The set of all positive interval is denoted by K+

C and defined as
K+

C = {[Z∗, Z∗] : Z∗, Z∗ ∈ KC and Z∗ ≥ 0}.
If [A∗, A∗], [Z∗, Z∗] ∈ KC and s ∈ R , then arithmetic operations are defined by

[A∗, A∗] + [Z∗, Z∗] = [A∗ +Z∗, A∗ +Z∗],
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[A∗, A∗]× [Z∗, Z∗] = [min{A∗Z∗, A∗Z∗, A∗Z∗, A∗Z∗}, max{A∗Z∗, A∗Z∗, A∗Z∗, A∗Z∗}],

s.[A∗, A∗] =

⎧⎨⎩
[sA∗, sA∗] if s > 0
{0} if s = 0,
[sA∗, sA∗] if s < 0.

For [A∗, A∗], [Z∗, Z∗] ∈ KC, the inclusion “ ⊆ ” is defined by

[A∗, A∗] ⊆ [Z∗, Z∗], if and only if Z∗ ≤ A∗, A∗ ≤ Z∗.

Remark 1. [49]. (i) The relation “ ≤p ” defined on KC by [A∗, A∗] ≤p [Z∗, Z∗] if and only if
A∗ ≤ Z∗, A∗ ≤ Z∗, for all [A∗, A∗], [Z∗, Z∗] ∈ KC, it is a pseudo-order relation. The relation
[A∗, A∗] ≤p [Z∗, Z∗] coincident to [A∗, A∗] ≤ [Z∗, Z∗] on KC.

(ii) It can be easily seen that “ ≤p ” looks similar to “left and right” on the real line R, so we
call “ ≤p ” is “left and right” (or “LR” order, in short).

The concept of Riemann integral for I.V-F first introduced by Moore [30] is defined
as follow:

Theorem 1. [30]. If S : [t, υ] ⊂ R→ KC is an I.V-F on such that S(ω) = [S∗(ω), S∗(ω)].
Then S is Riemann integrable over [t, υ] if and only if, S∗ and S∗ both are Riemann integrable
over [t, υ] such that

(IR)
∫ υ

t
S(ω)dω = [(R)

∫ υ

t
S∗(ω)dω, (R)

∫ υ

t
S∗(ω)dω].

The collection of all Riemann integrable real valued functions and Riemann integrable
I.V-F is denoted byR[t, υ] and IR[t, υ], respectively.

Definition 1. The real mapping S : [t, υ]→ R is named as convex function if for all ω, y ∈ [t, υ]
and ς ∈ [0, 1] we have

S(ςω + (1− ς)y ) ≤ ςS(ω) + (1− ς)S(y), (3)

If inequality (3) is reversed, then S is named as concave on [t, υ] . A function S is named as
affine if S is both convex and cocave function. The set of all convex (concave) functions is denoted by

SX([t, υ], )
(
SV

(
[t, υ], R+

)
, SA

(
[t, υ], R+

))
.

Definition 2. [50]. The I.V-F S : [t, υ]→ R+
I is named as convex I.V-F if for all ω, y ∈ [t, υ]

and ς ∈ [0, 1], the coming inequality

S(ςω + (1− ς)y ) ⊇ (ς)S(ω) + (1− ς)S(y), (4)

is valid. If inequality (4) is reversed, then S is named as concave on [t, υ] . A I.V-F S is named as
affine if S is both convex and cocave I.V-F. The set of all convex (concave, affine) I.V-Fs is denoted by

SX
(
[t, υ], K+

C
) (

SV
(
[t, υ], K+

C
)
, SA

(
[t, υ], K+

C
))

.

Definition 3. [49]. TheI.V-F S : [t, υ]→ K+
C is named as LR-convex I.V-F if for all ω, y ∈ [t, υ]

and ς ∈ [0, 1] , the coming inequality

S(ςω + (1− ς)y ) ≤p ςS(ω) + (1− ς)S(y), (5)

is valid. If inequality (5) is reversed, then S is named as LR-concave on [t, υ] . A I.V-F S is named
as LR-affine if S is both LR-convex and LR-cocave I.V-F. The set of all LR-convex (LR-concave)
I.V-Fs is denoted by

LRSX
(
[t, υ], K+

C
)(

LRSV
(
[t, υ], K+

C
)
, LRSA

(
[t, υ], K+

C
))

.
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Theorem 2. [49]. Let S : [t, υ]→ K+
C be an I.V-F defined by S(ω) = [S∗(ω), S∗(ω)], for all

ω ∈ [t, υ] . Then S ∈ LRSX
(
[t, υ], K+

C
)

if and only if, S∗, S∗ ∈ SX([t, υ]) .

Example 1. We consider the I.V-F S : [1, 4]→ K+
C defined by S(ω) =

[
2ω, 2ω2 ] . Since end

point functions S∗(ω) and S∗(ω) are convex functions. Hence S(ω) is LR-convex I.V-F.

Remark 2. By using our Definition 3 and Example 1, it can be easily observed that the concept
of set inclusion “ ⊇ ” coincident to relation “ ≤p ” (or “ ≤p ” coincident to “ ⊇ ” ) when one
of the end point function S∗ or S∗ is affine function such that “If S ∈ SX

(
[t, υ], K+

C
)

then
S ∈ LRSV

(
[t, υ], K+

C
)

if and only if S∗ ∈ SA([t, υ], R+) and S∗ ∈ SX([t, υ], R+) ”.
Similarly, “If S ∈ SV

(
[t, υ], K+

C
)

then S ∈ LRSX
(
[t, υ], K+

C
)
, if and only if S∗ ∈ SV

([t, υ], R+) and S∗ ∈ SA([t, υ], R+) ”.

Remark 3. From Theorem 2, it can be easily seen that if S∗(ω) = S∗(ω) then, LR-convex I.V-Fs
becomes classical convex functions.

Example 2. We consider the I.V-F S : [1, 4]→ K+
C defined by S(ω) =

[
2ω2, 2ω2 ] . Since end

point functions S∗(ω), S∗(ω), are equal and convex functions. Hence, S(ω) is a convex function.

3. Interval Inequalities

In this section, we present two classes of HH-inequalities and discuss some related
results, and verify with the help of use examples. First of all, we derive HH-inequality for
LR-convex I.V-F.

Theorem 3. Let S : [t, υ]→ K+
C be an I.V-F such that S(ω) = [S∗(ω), S∗(ω)] for all

ω ∈ [t, υ] and S ∈ IR([t, υ]) . If S ∈ LRSX
(
[t, υ], K+

C
)
, then

S

(
t + υ

2

)
≤p

1
υ− t

(IR)
∫ υ

t
S(ω)dω ≤p

S(t) +S(υ)

2
. (6)

If S ∈ LRSV
(
[t, υ], K+

C
)

, then

S

(
t + υ

2

)
≥p

1
υ− t

(IR)
∫ υ

t
S(ω)dω ≥p

S(t) +S(υ)

2
.

Proof. Let S ∈ LRSX
(
[t, υ], K+

C
)

convex I.V-F. Then, by hypothesis, we have

2S∗
( t+υ

2
) ≤ S∗(ςt + (1− ς)υ) +S∗((1− ς)t + ςυ),

2S∗
( t+υ

2
) ≤ S∗(ςt + (1− ς)υ) +S∗((1− ς)t + ςυ).

Then

2
∫ 1

0 S∗
( t+υ

2
)
dς ≤ ∫ 1

0 S∗(ςt + (1− ς)υ)dς +
∫ 1

0 S∗((1− ς)t + ςυ)dς,
2
∫ 1

0 S∗
( t+υ

2
)
dς ≤ ∫ 1

0 S∗(ςt + (1− ς)υ)dς +
∫ 1

0 S∗((1− ς)t + ςυ)dς.

It follows that
S∗

( t+υ
2
) ≤ 1

υ−t

∫ υ
t S∗(ω)dω,

S∗
( t+υ

2
) ≤ 1

υ−t

∫ υ
t S∗(ω)dω.

That is[
S∗

(
t + υ

2

)
, S∗

(
t + υ

2

)]
≤p

1
υ− t

[∫ υ

t
S∗(ω)dω,

∫ υ

t
S∗(ω)dω

]
.

Thus,

S

(
t + υ

2

)
≤p

1
υ− t

(IR)
∫ υ

t
S(ω)dω. (7)
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In a similar way as above, we have

1
υ− t

(IR)
∫ υ

t
S(ω)dω ≤p

S(t) +S(υ)

2
. (8)

Combining (7) and (8), we have

S

(
t + υ

2

)
≤p

1
υ− t

(IR)
∫ υ

t
S(ω)dω ≤p

S(t) +S(υ)

2
.

Hence, the required result. �

Remark 4. If S∗(ω) = S∗(ω), then Theorem 3, reduces to the result for convex function:

S

(
t + υ

2

)
≤ 1

υ− t
(R)

∫ υ

t
S(ω)dω ≤ S(t) +S(υ)

2
.

It is easy to see that due to the convexity of end point functions S∗(ω) and S∗(ω) have
following two possibilities to satisfy (1) either both are convex or affine convex functions.
However, in the case of interval inclusion both functions S∗(ω) and S∗(ω) has only one
possibility to satisfy (1) such that both end point functions should be affine convex because
in interval inclusion S∗(ω) is convex and S∗(ω) is concave, see [50].

Example 3. We consider the function S : [t, υ] = [0, 2]→ K+
C defined by, S(ω) =

[
ω2, 2ω2].

Since end point functions S∗(ω) = ω2, S∗(ω) = 2ω2 LR-convex functions. Hence S(ω) is
LR-convex I.V-F. We now compute the following

S∗
(

t + υ

2

)
≤ 1

υ− t

∫ υ

t
S∗(ω)dω ≤ S∗(t) +S∗(υ)

2
.

S∗
(

t + υ

2

)
= S∗(1) = 1,

1
υ− t

∫ υ

t
S∗(ω)dω =

1
2

∫ 2

0
ω2dω =

4
3

,

S∗(t) +S∗(υ)
2

= 2.

That means
1 ≤ 4

3
≤ 2.

Similarly, it can be easily show that

S∗
(

t + υ

2

)
≤ 1

υ− t

∫ υ

t
S∗(ω)dω ≤ S∗(t) +S∗(υ)

2
.

such that
S∗

( t+υ
2
)
= S∗(1) = 2,

1
υ−t

∫ υ
t S∗(ω)dω = 1

2

∫ 2
0 2ω2dω = 8

3 ,

S∗(t)+S∗(υ)
2 = 4,

from which, it follows that

2 ≤ 8
3
≤ 4,

that is

[1, 2] ≤
[

4
3

,
8
3

]
≤ [2, 4].
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Hence,

S

(
t + υ

2

)
≤p

1
υ− t

(IR)
∫ υ

t
S(ω)dω ≤p

S(t) +S(υ)

2
.

Theorem 4. Let S : [t, υ]→ K+
C be an I.V-F such that S(ω) = [S∗(ω), S∗(ω)] for all

ω ∈ [t, υ] and S ∈ IR([t, υ]) . If S ∈ LRSX([t, υ], KC
+), then

S

(
t + υ

2

)
≤p �2 ≤p

1
υ− t

(IR)
∫ υ

t
S(ω)dω ≤p �1 ≤p

S(t) +S(υ)

2
,

where

�1 =
S(t)+S(υ)

2 +S
( t+υ

2
)

2
, �2 =

S
( 3t+υ

4
)
+S

( t+3υ
4
)

2
and �1 = [�1∗, �1

∗], �2 = [�2∗, �2
∗].

Proof. Take
[
t, t+υ

2
]
, we have

2S

(
ςt + (1− ς) t+υ

2
2

+
(1− ς)t + ς t+υ

2
2

)
≤p S

(
ςt + (1− ς)

t + υ

2

)
+S

(
(1− ς)t + ς

t + υ

2

)
.

From which, we have

2S∗
(

ςt+(1−ς) t+υ
2

2 +
(1−ς)t+ς t+υ

2
2

)
≤ S∗

(
ςt + (1− ς) t+υ

2
)
+S∗

(
(1− ς)t + ς t+υ

2
)
,

2S∗
(

ςt+(1−ς) t+υ
2

2 +
(1−ς)t+ς t+υ

2
2

)
≤ S∗

(
ςt + (1− ς) t+υ

2
)
+S∗

(
(1− ς)t + ς t+υ

2
)
.

In consequence, we obtain

S∗( 3t+υ
4 )

2 ≤ 1
υ−t

∫ t+υ
2

t S∗(ω)dω,
S∗( 3t+υ

4 )
2 ≤ 1

υ−t

∫ t+υ
2

t S∗(ω)dω.

That is[
S∗

( 3t+υ
4
)
, S∗

( 3t+υ
4
) ]

2
≤ 1

υ− t

[∫ t+υ
2

t
S∗(ω)dω,

∫ t+υ
2

t
S∗(ω)dω

]
.

It follows that
S
( 3t+υ

4
)

2
≤p

1
υ− t

(IR)
∫ t+υ

2

t
S(ω)dω. (9)

In a similar way as above, we have

S
( t+3υ

4
)

2
≤p

1
υ− t

(IR)
∫ υ

t+υ
2

S(ω)dω. (10)

Combining (9) and (10), we have[
S
( 3t+υ

4
)
+S

( t+3υ
4
)]

2
≤p

1
υ− t

(IR)
∫ υ

t
S(ω)dω.

By using Theorem 3, we have

S

(
t + υ

2

)
= S

(
1
2

.
3t + υ

4
+

1
2

.
t + 3υ

4

)
.
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From which, we have

S∗
( t+υ

2
)
= S∗

(
1
2 . 3t+υ

4 + 1
2 . t+3υ

4

)
,

S∗
( t+υ

2
)
= S∗

(
1
2 . 3t+υ

4 + 1
2 . t+3υ

4

)
,

≤
[

1
2S∗

( 3t+υ
4
)
+ 1

2S∗
( t+3υ

4
)]

,

≤
[

1
2S
∗( 3t+υ

4
)
+ 1

2S
∗( t+3υ

4
)]

,

= �2∗,
= �2

∗,
≤ 1

υ−t

∫ υ
t S∗(ω)dω,

≤ 1
υ−t

∫ υ
t S∗(ω)dω,

≤ 1
2

[
S∗(t)+S∗(υ)

2 +S∗
( t+υ

2
)]

,

≤ 1
2

[
S∗(t)+S∗(υ)

2 +S∗
( t+υ

2
)]

,

= �1∗,
= �1

∗,

≤ 1
2

[
S∗(t)+S∗(υ)

2 + S∗(t)+S∗(υ)
2

]
,

≤ 1
2

[
S∗(t)+S∗(υ)

2 + S∗(t)+S∗(υ)
2

]
,

= S∗(t)+S∗(υ)
2 ,

= S∗(t)+S∗(υ)
2 ,

that is

S

(
t + υ

2

)
≤p �2 ≤p

1
υ− t

(IR)
∫ υ

t
S(ω)dω ≤p �1 ≤p

S(t) +S(υ)

2
,

hence, the result follows. �

Example 4. We consider the function S : [t, υ] = [0, 2]→ K+
C defined by, S(ω) =

[
ω2, 2ω2],

as in Example 3, then S(ω) is LR-convex I.V-F and satisfying (10). We have S∗(ω) = ω2 and
S∗(ω) = 2ω2 . We now compute the following

S∗(t)+S∗(υ)
2 = 2,

S∗(t)+S∗(υ)
2 = 4,

�1∗ =
S∗(t)+S∗(υ)

2 +S∗( t+υ
2 )

2 = 3
2 ,

�1
∗ =

S∗(t)+S∗(υ)
2 +S∗( t+υ

2 )
2 = 3,

�2∗ =
S∗( 3t+υ

4 )+S∗( t+3υ
4 )

2 = 5
4 ,

�2
∗ = S∗( 3t+υ

4 )+S∗( t+3υ
4 )

2 = 5
2 ,

Then we obtain that
1 ≤ 5

4 ≤ 4
3 ≤ 3

2 ≤ 2,

2 ≤ 5
2 ≤ 8

3 ≤ 3 ≤ 4,

Hence, Theorem 4 is verified.
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Theorem 5. Let S, g : [t, υ]→ K+
C be two I.V-F such that S(ω) = [S∗(ω), S∗(ω)] and

g(ω) = [g∗(ω), g∗(ω)] for all ω ∈ [t, υ] andSg ∈ IR([t, υ]) . If S, g ∈ LRSX
(
[t, υ], K+

C
)
, then

1
υ− t

(IR)
∫ υ

t
S(ω)g(ω)dω ≤p

B(t, υ)

3
+

C(t, υ)

6
,

whereB(t, υ) = S(t)g(t)+S(υ)g(υ),C(t, υ) = S(t)g(υ)+S(υ)g(t), andB(t, υ) = [B∗((t, υ)),
B∗((t, υ))] and C(t, υ) = [C∗((t, υ)), C∗((t, υ))].

Proof. Since S, g ∈ IR([t, υ]) , then we have

S∗(ςt + (1− ς)υ) ≤ ςS∗(t) + (1− ς)S∗(υ),
S∗(ςt + (1− ς)υ) ≤ ςS∗(t) + (1− ς)S∗(υ).

And
g∗(ςt + (1− ς)υ) ≤ ςg∗(t) + (1− ς)g∗(υ),
g∗(ςt + (1− ς)υ) ≤ ςg∗(t) + (1− ς)g∗(υ).

From the definition of LR-convex I.V-Fs it follows that 0 ≤p S(ω) and 0 ≤p g(ω) , so

S∗(ςt + (1− ς)υ)g∗(ςt + (1− ς)υ)

≤
(

ςS∗(t) + (1− ς)S∗(υ)
)(

ςg∗(t) + (1− ς)g∗(υ)
)

= S∗(t)g∗(t)ς2 +S∗(υ)g∗(υ)ς2 +S∗(t)g∗(υ)ς(1− ς) +S∗(υ)g∗(t)ς(1− ς)

S∗(ςt + (1− ς)υ)g∗(ςt + (1− ς)υ)

≤
(

ςS∗(t) + (1− ς)S∗(υ)
)(

ςg∗(t) + (1− ς)g∗(υ)
)

= S∗(t)g∗(t)ς2 +S∗(υ)g∗(υ)ς2 +S∗(t)g∗(υ)ς(1− ς) +S∗(υ)g∗(t)ς(1− ς),

Integrating both sides of above inequality over [0, 1] we obtain∫ 1
0 S∗(ςt + (1− ς)υ)g∗(ςt + (1− ς)υ) = 1

υ−t

∫ υ
t S∗(ω)g∗(ω)dω

≤ (S∗(t)g∗(t) +S∗(υ)g∗(υ))
∫ 1

0 ς2dς

+(S∗(t)g∗(υ) +S∗(υ)g∗(t))
∫ 1

0 ς(1− ς)dς,∫ 1
0 S∗(ςt + (1− ς)υ)g∗(ςt + (1− ς)υ) = 1

υ−t

∫ υ
t S∗(ω)g∗(ω)dω

≤ (S∗(t)g∗(t) +S∗(υ)g∗(υ))
∫ 1

0 ς2dς

+(S∗(t)g∗(υ) +S∗(υ)g∗(t))
∫ 1

0 ς(1− ς)dς.

It follows that,

1
υ−t

∫ υ
t S∗(ω)g∗(ω)dω ≤ B∗((t, υ))

∫ 1
0 ς2dς + C∗((t, υ))

∫ 1
0 ς(1− ς)dς,

1
υ−t

∫ υ
t S∗(ω)g∗(ω)dω ≤ B∗((t, υ))

∫ 1
0 ς2dς + C∗((t, υ))

∫ 1
0 ς(1− ς)dς,

that is

1
υ− t

[∫ υ

t
S∗(ω)g∗(ω)dω,

∫ υ

t
S∗(ω)g∗(ω)dω

]
≤p

[
B∗((t, υ))

3
,
B∗((t, υ))

3

]
+

[
C∗((t, υ))

6
,
C∗((t, υ))

6

]
.

Thus,
1

υ− t
(IR)

∫ υ

t
S(ω)g(ω)dω ≤p

B(t, υ)

3
+

C(t, υ)

6
,

and the theorem has been established. �
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Theorem 6. Let S, g : [t, υ]→ K+
C be two I.V-Fs such that S(ω) = [S∗(ω), S∗(ω)] and

g(ω) = [g∗(ω), g∗(ω)] for all ω ∈ [t, υ] andSg ∈ IR([t, υ]) . If S, g ∈ LRSX
(
[t, υ], K+

C
)
, then

2 S

(
t + υ

2

)
g
(

t + υ

2

)
≤p

1
υ− t

(IR)
∫ υ

t
S(ω)g(ω)dω +

B(t, υ)

6
+

C(t, υ)

3
,

where B(t, υ) = S(t)g(t) + S(υ)g(υ), C(t, υ) = S(t)g(υ) + S(υ)g(t), and B(t, υ) =
[B∗((t, υ)),B∗((t, υ))] and C(t, υ) = [C∗((t, υ)), C∗((t, υ))].

Proof. By hypothesis, we have

S∗
( t+υ

2
)

g∗
( t+υ

2
)

S∗
( t+υ

2
)

g∗
( t+υ

2
)

≤ 1
4

[
S∗(ςt + (1− ς)υ)g∗(ςt + (1− ς)υ)

+S∗(ςt + (1− ς)υ)g∗((1− ς)t + ςυ)

]

+ 1
4

[
S∗((1− ς)t + ςυ)g∗(ςt + (1− ς)υ)

+S∗((1− ς)t + ςυ)g∗((1− ς)t + ςυ)

]
,

≤ 1
4

[
S∗(ςt + (1− ς)υ)g∗(ςt + (1− ς)υ)

+S∗(ςt + (1− ς)υ)g∗((1− ς)t + ςυ)

]

+ 1
4

[
S∗((1− ς)t + ςυ)g∗(ςt + (1− ς)υ)

+S∗((1− ς)t + ςυ)g∗((1− ς)t + ςυ)

]
,

≤ 1
4

[
S∗(ςt + (1− ς)υ)g∗(ςt + (1− ς)υ)

+S∗((1− ς)t + ςυ)g∗((1− ς)t + ςυ)

]

+ 1
4

⎡⎢⎢⎢⎢⎣
(ςS∗(t) + (1− ς)S∗(υ))
((1− ς)g∗(t) + ςg∗(υ))
+((1− ς)S∗(t) + ςS∗(υ))
(ςg∗(t) + (1− ς)g∗(υ))

⎤⎥⎥⎥⎥⎦,

≤ 1
4

[
S∗(ςt + (1− ς)υ)g∗(ςt + (1− ς)υ)

+S∗((1− ς)t + ςυ)g∗((1− ς)t + ςυ)

]

+ 1
4

⎡⎢⎢⎢⎢⎣
(ςS∗(t) + (1− ς)S∗(υ))
((1− ς)g∗(t) + ςg∗(υ))
+((1− ς)S∗(t) + ςS∗(υ))
(ςg∗(t) + (1− ς)g∗(υ))

⎤⎥⎥⎥⎥⎦,

= 1
4

[
S∗(ςt + (1− ς)υ)g∗(ςt + (1− ς)υ)

+S∗((1− ς)t + ςυ)g∗((1− ς)t + ςυ)

]

+ 1
2

⎡⎣ {
ς2 + (1− ς)2

}
C∗((t, υ))

+{ς(1− ς) + (1− ς)ς}B∗((t, υ))

⎤⎦,

= 1
4

[
S∗(ςt + (1− ς)υ)g∗(ςt + (1− ς)υ)

+S∗((1− ς)t + ςυ)g∗((1− ς)t + ςυ)

]

+ 1
2

⎡⎣ {
ς2 + (1− ς)2

}
C∗((t, υ))

+{ς(1− ς) + (1− ς)ς}B∗((t, υ))

⎤⎦.
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IR -Integrating over [0, 1], we have

2 S∗
( t+υ

2
)

g∗
( t+υ

2
) ≤ 1

υ−t

∫ υ
t S∗(ω)g∗(ω)dω + B∗((t,υ))

6 + C∗((t,υ))
3 ,

2 S∗
( t+υ

2
)

g∗
( t+υ

2
) ≤ 1

υ−t

∫ υ
t S∗(ω)g∗(ω)dω + B∗((t,υ))

6 + C∗((t,υ))
3 ,

that is

2 S

(
t + υ

2

)
g
(

t + υ

2

)
≤p

1
υ− t

(IR)
∫ υ

t
S(ω)g(ω)dω +

B(t, υ)

6
+

C(t, υ)

3
.

Hence, the required result. �

Example 5. We consider the I.V-Fs S, g : [t, υ] = [0, 1]→ K+
C defined by S(ω) =

[
2ω2, 4ω2]

and g(ω) = [ω, 2ω]. Since end point functions S∗(ω) = 2ω2, S∗(ω) = 4ω2 and g∗(ω) = ω,
g∗(ω) = 2ω are convex functions. Hence S, g both are LR-convex I.V-Fs. We now compute
the following

1
υ−t

∫ υ
t S∗(ω)g∗(ω)dω = 1

2 ,

1
υ−t

∫ υ
t S∗(ω)g∗(ω)dω = 2,

B∗((t,υ))
3 = 2

3 ,

B∗((t,υ))
3 = 8

3 ,

C∗((t,υ))
6 = 0,

C∗((t,υ))
6 = 0,

that means
1
2 ≤ 2

3 + 0 = 2
3 ,

2 ≤ 8
3 + 0 = 8

3 ,

Consequently, Theorem 5 is verified.
For Theorem 6, we have

2 S∗
( t+υ

2
)

g∗
( t+υ

2
)
= 1

2 ,

2 S∗
( t+υ

2
)

g∗
( t+υ

2
)
= 2,

1
υ−t

∫ υ
t S∗(ω)g∗(ω)dω = 1

2 ,

1
υ−t

∫ υ
t S∗(ω)g∗(ω)dω = 2,

B∗((t,υ))
6 = 1

3 ,

B∗((t,υ))
6 = 4

3 ,

C∗((t,υ))
3 = 0,

C∗((t,υ))
3 = 0,

From which, we have
1
2 ≤ 1

2 + 0 + 1
3 = 5

6 ,

2 ≤ 2 + 0 + 4
3 = 10

3 ,

Consequently, Theorem 6 is demonstrated.

We now give HH-Fejér inequalities for LR-convex I.V-Fs. Firstly, we obtain the second
HH-Fejér inequality for LR-convex I.V-F.
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Theorem 7. Let S : [t, υ]→ K+
C be an I.V-F with t < υ, such that S(ω) = [S∗(ω), S∗(ω)] for

all ω ∈ [t, υ] and S ∈ IR([t, υ]). If S ∈ LRSX
(
[t, υ], K+

C
)
, then D : [t, υ]→ R, D(ω) ≥ 0,

symmetric with respect to t+υ
2 , then

1
υ− t

(IR)
∫ υ

t
S(ω)D(ω)dω ≤p [S(t) +S(υ)]

∫ 1

0
ςD((1− ς)t + ςυ)dς. (11)

Proof. Let S ∈ LRSX
(
[t, υ], K+

C
)

. Then we have

S∗(ςt + (1− ς)υ)D(ςt + (1− ς)υ)

≤ (ςS∗(t) + (1− ς)S∗(υ))D(ςt + (1− ς)υ),

S∗(ςt + (1− ς)υ)D(ςt + (1− ς)υ)

≤ (ςS∗(t) + (1− ς)S∗(υ))D(ςt + (1− ς)υ).

(12)

And

S∗((1− ς)t + ςυ)D((1− ς)t + ςυ) ≤ ((1− ς)S∗(t) + ςS∗(υ))D((1− ς)t + ςυ),

S∗((1− ς)t + ςυ)D((1− ς)t + ςυ) ≤ ((1− ς)S∗(t) + ςS∗(υ))D((1− ς)t + ςυ).
(13)

After adding (12) and (13), and integrating over [0, 1], we obtain∫ 1
0 S∗(ςt + (1− ς)υ)D(ςt + (1− ς)υ)dς +

∫ 1
0 S∗((1− ς)t + ςυ)D((1− ς)t + ςυ)dς

≤ ∫ 1
0

[
S∗(t){ςD(ςt + (1− ς)υ) + (1− ς)D((1− ς)t + ςυ)}
+S∗(υ){(1− ς)D(ςt + (1− ς)υ) + ςD((1− ς)t + ςυ)}

]
dς,∫ 1

0 S∗((1− ς)t + ςυ)D((1− ς)t + ςυ)dς +
∫ 1

0 S∗(ςt + (1− ς)υ)D(ςt + (1− ς)υ)dς

≤ ∫ 1
0

[
S∗(t){ςD(ςt + (1− ς)υ) + (1− ς)D((1− ς)t + ςυ)}
+S∗(υ){(1− ς)D(ςt + (1− ς)υ) + ςD((1− ς)t + ςυ)}

]
dς.

= 2S∗(t)
∫ 1

0
ςD(ςt + (1− ς)υ) dς + 2S∗(υ)

∫ 1
0

ςD((1− ς)t + ςυ) dς,

= 2S∗(t)
∫ 1

0
ςD(ςt + (1− ς)υ) dς + 2S∗(υ)

∫ 1
0 ςD((1− ς)t + ςυ) dς.

Since D is symmetric, then

= 2[S∗(t) +S∗(υ)]
∫ 1

0
ςD((1− ς)t + ςυ) dς,

= 2[S∗(t) +S∗(υ)]
∫ 1

0 ςD((1− ς)t + ςυ) dς.
(14)

Since∫ 1
0 S∗(ςt + (1− ς)υ)D(ςt + (1− ς)υ)dς

=
∫ 1

0 S∗((1− ς)t + ςυ)D((1− ς)t + ςυ)dς = 1
υ−t

∫ υ
t S∗(ω)D(ω)dω∫ 1

0 S∗((1− ς)t + ςυ)D((1− ς)t + ςυ)dς

=
∫ 1

0 S∗(ςt + (1− ς)υ)D(ςt + (1− ς)υ)dς = 1
υ−t

∫ υ
t S∗(ω)D(ω)dω

(15)
From (15), we have

1
υ−t

∫ υ
t S∗(ω)D(ω)dω ≤ [S∗(t) +S∗(υ)]

∫ 1
0 ςD((1− ς)t + ςυ)dς,

1
υ−t

∫ υ
t S∗(ω)D(ω)dω ≤ [S∗(t) +S∗(υ)]

∫ 1
0 ςD((1− ς)t + ςυ) dς,

that is [
1

υ−t

∫ υ
t S∗(ω)D(ω)dω, 1

υ−t

∫ υ
t S∗(ω)D(ω)dω

]
≤p [S∗(t) +S∗(υ), S∗(t) +S∗(υ)]

∫ 1
0 ςD((1− ς)t + ςυ) dς
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hence

1
υ− t

(IR)
∫ υ

t
S(ω)D(ω)dω ≤p [S(t) +S(υ)]

∫ 1

0
ςD((1− ς)t + ςυ)dς.

Next, we construct first HH-Fejér inequality for LR-convex I.V-F, which generalizes
first HH-Fejér inequalities for convex function, see [21]. �

Theorem 8. Let S : [t, υ]→ K+
C be an I.V-F with t < υ, such that S(ω) = [S∗(ω), S∗(ω)] for

all ω ∈ [t, υ] and S ∈ IR([t, υ]) . If S ∈ LRSX
(
[t, υ], K+

C
)

and D : [t, υ]→ R, D(ω) ≥ 0,
symmetric with respect to t+υ

2 , and
∫ υ

t D(ω)dω > 0, then

S

(
t + υ

2

)
≤p

1∫ υ
t D(ω)dω

(IR)
∫ υ

t
S(ω)D(ω)dω. (16)

Proof. Since S ∈ LRSX
(
[t, υ], K+

C
)

, then we have

S∗
( t+υ

2
) ≤ 1

2 (S∗(ςt + (1− ς)υ) +S∗((1− ς)t + ςυ)),

S∗
( t+υ

2
) ≤ 1

2 (S
∗(ςt + (1− ς)υ) +S∗((1− ς)t + ςυ)),

(17)

By multiplying (17) by D(ςt + (1− ς)υ) = D((1− ς)t + ςυ) and integrate it by ς over
[0, 1], we obtain

S∗
( t+υ

2
) ∫ 1

0 D((1− ς)t + ςυ)dς

≤ 1
2

⎛⎝ ∫ 1
0 S∗(ςt + (1− ς)υ)D(ςt + (1− ς)υ)dς

+
∫ 1

0 S∗((1− ς)t + ςυ)D((1− ς)t + ςυ)dς

⎞⎠,

S∗
( t+υ

2
) ∫ 1

0 D((1− ς)t + ςυ)dς

≤ 1
2

⎛⎝ ∫ 1
0 S∗(ςt + (1− ς)υ)D(ςt + (1− ς)υ)dς

+
∫ 1

0 S∗((1− ς)t + ςυ)D((1− ς)t + ςυ)dς

⎞⎠,

(18)

Since ∫ 1
0 S∗(ςt + (1− ς)υ)D(ςt + (1− ς)υ)dς

=
∫ 1

0 S∗((1− ς)t + ςυ)D((1− ς)t + ςυ)dς

= 1
υ−t

∫ υ
t S∗(ω)D(ω)dω∫ 1

0 S∗((1− ς)t + ςυ)D((1− ς)t + ςυ)dς

=
∫ 1

0 S∗(ςt + (1− ς)υ)D(ςt + (1− ς)υ)dς

= 1
υ−t

∫ υ
t S∗(ω)D(ω)dω

(19)

From (19), we have

S∗
( t+υ

2
) ≤ 1∫ υ

t D(ω)dω

∫ υ
t S∗(ω)D(ω)dω,

S∗
( t+υ

2
) ≤ 1∫ υ

t D(ω)dω

∫ υ
t S∗(ω)D(ω)dω,

From which, we have[
S∗

( t+υ
2
)
, S∗

( t+υ
2
)]

≤p
1∫ υ

t D(ω)dω

[ ∫ υ
t S∗(ω)D(ω)dω,

∫ υ
t S∗(ω)D(ω)dω

]
,

that is

S

(
t + υ

2

)
≤p

1∫ υ
t D(ω)dω

(IR)
∫ υ

t
S(ω)D(ω)dω.
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This completes the proof. �

Remark 5. If D(ω) = 1 then, combining Theorems 7 and 8, we obtain Theorem 3.
If S∗(t) = S∗(t) then, Theorems 7 and 8 reduces to classical first and second HH-Fejér

inequality for convex function, see [21].
If S∗(t) = S∗(t) with D(ω) = 1 then, Theorems 7 and 8 reduces to classical first and second

HH-Fejér inequality for convex function, see [17,18].

Example 6. We consider the I.V-F S : [t, υ] =
[

π
4 , π

2
]→ K+

C defined by,

S(ω) = [exp(sin(ω)), 2 exp(sin(ω))]

Since end point functions S∗(ω) = exp(sin(ω)) , S∗(ω) = 2 exp(sin(ω)) convex func-
tions then, by Theorem 2, S(ω) is LR-convex I.V-F. If

D(ω) =

{
ω− π

4 , S ∈ [π
4 , 3π

8
]
,

π
2 −ω, S ∈ ( 3π

8 , π
2
]
.

then, we have

1
υ−t

∫ υ
t [S∗(ω)]D(ω)dω = 4

π

∫ π
2

π
4
[S∗(ω)]D(ω)dω = 4

π

∫ 3π
8

π
4

[S∗(ω)]D(ω)dω + 4
π

∫ π
2

3π
8
S∗(ω)D(ω)dω,

1
υ−t

∫ υ
t [S

∗(ω)]D(ω)dω = 4
π

∫ π
2

π
4
[S∗(ω)]D(ω)dω = 4

π

∫ 3π
8

π
4

[S∗(ω)]D(ω)dω + 4
π

∫ π
2

3π
8
S∗(ω)D(ω)dω,

= 4
π

∫ 3π
8

π
4

[exp(sin(ω))]
(
ω− π

4
)
dω + 4

π

∫ π
2

3π
8

exp(sin(ω))
(

π
2 −ω

)
dω ≈ 63

100π ,

= 8
π

∫ 3π
8

π
4

exp(sin(ω))
(
ω− π

4
)
dω + 8

π

∫ π
2

3π
8

exp(sin(ω))
(

π
2 −ω

)
dω ≈ 63

50π ,
(20)

and
[S∗(t) +S∗(υ)]

∫ 1
0

ςD(t + ς∂(υ, t)) dς

[S∗(t) +S∗(υ)]
∫ 1

0 ςD(t + ς∂(υ, t))dς

= π
2

[∫ 1
2

0 ς2dς +
∫ 1

1
2

ς(1 + ς)dς

]
= 17π

48 ,

= π

[∫ 1
2

0 ς2dς +
∫ 1

1
2

ς(1 + ς)dς

]
= 17π

24 .
(21)

From (20) and (21), we have[
63

100π
,

63
50π

]
≤ p

[
17π

48
,

17π

24

]
.

Hence, Theorem 7 is verified.
For Theorem 8, we have

S∗
( t+υ

2
)
= S∗

( 3π
8
) ≈ 1 ,

S∗
( t+υ

2
)
= S∗

( 3π
8
) ≈ 2 , (22)

∫ υ

t
D(ω)dω =

∫ 3π
8

π
4

(
ω− π

4

)
dω +

∫ π
2

3π
8

(π

2
−ω

)
dω ≈ 4

25
,

1∫ υ
t D(ω)dω

∫ υ
t S∗(ω)D(ω)dω ≈ 1.1

1∫ υ
t D(ω)dω

∫ υ
t S∗(ω)D(ω)dω ≈ 2.1. (23)
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From (22) and (23), we have

[1, 2] ≤ p[1.1, 2.1].

Hence, Theorem 8 is verified.

4. Results and Discussion

For LR-convex I.V-Fs, we find Hermite–Hadamard type inequalities. Our findings not
only improve on Zhao’s work, but they also investigate some of the findings of Sarikaya
et al. We have not looked into inequalities using interval derivatives since there are not any
“interval derivatives” with desirable characteristics.

5. Conclusions

In this paper, HH-inequalities have been investigated for the concept of LR-convex
I.V-Fs. The most important thing in this study is that we have proved that both concepts LR-
convex I.V-F and convex I.V-Fs coincide under some mild conditions when these conditions
are defined on the endpoint functions. As for future research, we try to explore this concept
for generalized LR-convex I.V-Fs and some applications in interval nonlinear programing.
This is an open problem for the readers and anyone can investigate this concept, “the
optimality conditions of LR-convex I.V-Fs can be obtained through variational inequalities”.
We hope that this concept will be helpful for other authors to play their roles in different
fields of sciences. Moreover, in future, we will also start exploring this concept and their
generalizations by using different fractional integral operators.
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Abstract: The Lieb concavity theorem, successfully solved in the Wigner–Yanase–Dyson conjecture,
is an important application of matrix concave functions. Recently, the Thompson–Golden theorem,
a corollary of the Lieb concavity theorem, was extended to deformed exponentials. Hence, it is
worthwhile to study the Lieb concavity theorem for deformed exponentials. In this paper, the Pick
function is used to obtain a generalization of the Lieb concavity theorem for deformed exponentials,
and some corollaries associated with exterior algebra are obtained.
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1. Introduction

Matrix theory is widely used in statistics [1], physics [2], computer science [3] and so
on. For convenience, M(n,C) is denoted as the set of all n× n complex matrices (C is the
set of complex numbers) [4]. A is called a Hermitian matrix when A ∈ M(n,C) satisfies
A∗ = A (A∗ denotes conjugate transposition of A). The Hermitian matrix is frequently
used in quadratic forms and their correlation theory [5]. Let Hn denote the set of n× n
Hermitian matrices and H+

n denote the n× n positive semidefinite Hermitian matrix (Cn is
the n dimensional complex Euclidean space).

Set u1, u2, · · · , un to be any orthonormal basis of Cn, and then the trace operator Tr is
defined as [4]

Tr[A] =
n

∑
i=1

(ui, Aui),

where (·, ·) is the inner product of Cn. It is well known that for any A = (aij) ∈ M(n,C),
the following equalities hold [6]

Tr[A] =
n

∑
j=1

λi =
n

∑
j=1

aii,

where λi is the eigenvalue of A.
From the spectral theorem [5], A ∈ H+

n can be decomposed as

A = P∗ΛAP,
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where P is a unitary matrix and ΛA := diag{λ1, ..., λn} is a diagonal matrix with eigenval-
ues λ1, ..., λn. Then, matrix function f (A) is defined as

f (A) = P∗ f (ΛA)P = ∑
i=1

f (λi)Pi, (1)

where f (ΛA) := diag{ f (λ1), ..., f (λn)} and P2
i = Pi.

Based on the above definition, in 1963, the Wigner–Yanase skew information

IWY(ρ) = −1
2

Tr
[
[
√

ρ, H]2
]

was introduced by Wigner and Yanase ([7]), where ρ is a density matrix (ρ ≥ 0, tr ρ = 1)
and H is a Hermitian matrix. Then, an open problem was left

Tr[AsKA1−sK∗], (2)

which is concave for any positive semidefinite matrix A.
In 1973, (2) was proven by Lieb for all 0 < s < 1 [8], and a more generalized result

was obtained from the following fact [9]

Tr[AsKB1−sK∗] = 〈K, B1−sK∗As〉L(H)

= 〈K, Ψ−1(B1−s ⊗ As)K∗〉L(H).

where Ψ−1(A) = ∑
j
(Aej) ⊗ e∗j . In fact, the Lieb concavity theorem is equivalent to the

concavity of B1−s ⊗ As.
A more elegant proof of the Lieb concavity theorem appeared in [10] using

Tr[K∗AsKB1−s] = 〈K, (As ⊗ B1−s)K〉L(H),

where
[(A⊗ B)K]i,j = ∑

k,l
Ai,kBj,lKk,l .

In 2009, Effros gave another proof of the Lieb concavity theorem based on the Hansen–
Pedersen–Jensen inequality ([11]). Using

LA(K) = AK, RB(K) = KB,

then one obtains

Tr[K∗AsKB1−s] = 〈K, LAs RB1−s(K)〉L(H)

= 〈K, R
1
2
B(R−

1
2

B LAR−
1
2

B )sR
1
2
B(K)〉L(H).

All the above proof of the Lieb concave theorem is equivalent to the joint concavity of
commutative operators. In addition, Epstein also obtained the Lieb concave theorem using
the theory of Herglotz functions [12].

Recently, Shi and Hansen [13] generalized the Thompson–Golden theorem

Tr[expq(A + B)] ≤ Tr[(expq(A))2−q(A(q− 1) + expq(B))]

As the Thompson–Golden theorem can be regarded as a special form of the Lieb
concave theorem, it is worthwhile to study the Lieb concavity theorem for deformed expo-
nentials. In this paper, we will use the theory of the Pick function to obtain a generalization
of the Lieb concavity theorem and some other corollaries. The rest of the paper is organized
as follows. In Section 2, some general definitions and important conclusions are introduced.
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With these preparations, we obtain some useful results, such as the Lieb concavity theorem,
presented in the final Section 3.

2. Preliminary

In this section, some general definitions and some important properties are introduced.

2.1. The q-Logarithm Function and q-Exponential Function

It is well known that the q-logarithm function lnq(x) is defined as [13]

lnq(x) =

{
xq−1−1

q−1 , q �= 1
ln x, q = 1

}

for any x > 0. The deformed exponential function or the q−exponential expq(x) is the
inverse function of the q−logarithm and is defined as

expq(x) =

⎧⎪⎪⎨⎪⎪⎩
[(q− 1)x + 1]

1
q−1 , x > 1

q−1 , q > 1

[(q− 1)x + 1]
1

q−1 , x < 1
q−1 , q < 1

exp(x), x ∈ R, q = 1

⎫⎪⎪⎬⎪⎪⎭
2.2. Tensor Product and Exterior Algebra

The tensor product, denoted by “⊗ ”, is also called the Kronecker product. It is a
generalization of the outer product from vectors to matrices, and the tensor product of
matrices is also referred to as the outer product in certain contexts ([9]). For an m× n matrix
A and a p× q matrix B, the tensor product of A and B is defined by

A⊗ B :=

⎛⎜⎝ a11B · · · a1nB
...

. . .
...

am1B · · · amnB

⎞⎟⎠,

where A =
(
aij
)

1≤i≤m,1≤j≤n.
The tensor product is different from matrix multiplication, and one of the differences

is commutativity
(I ⊗ B)(A⊗ I) = (A⊗ I)(I ⊗ B) = A⊗ B.

From the above equations, we obtain

AC⊗ BD = (AC⊗ I)(I ⊗ BD)

= (A⊗ I)(C⊗ I)(I ⊗ B)(I ⊗ D)

= (A⊗ I)(I ⊗ B)(C⊗ I)(I ⊗ D)

= (A⊗ B)(C⊗ D).

For convenience, we denote

⊗k A = A⊗ A⊗ · · · ⊗ A︸ ︷︷ ︸
k

.

In addition to the tensor product, there is another common product called exterior
algebra [6]. Exterior algebra, denoted by “∧”, is a binary operation for any Ai ∈ H+

n , and
the definition is

(A1 ∧ A2 ∧ · · · ∧ Ak︸ ︷︷ ︸
k

)(ξi1 ∧ ξi2 · · · ∧ ξik )1≤i1<···<ik≤n

= (A1ξi1 ∧ A2ξi2 · · · ∧ Akξik )1≤i1<···<ik≤n,
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where {ξ j}n
j=1 is an orthonormal basis of Cn, and

ξi1 ∧ ξi2 · · · ∧ ξik =
1√
n!

∑
π∈σn

(−1)πξπ(i1) ⊗ ξπ(i2) · · · ⊗ ξπ(ik),

σn is the family of all permutations on {1, 2, · · · , n}.
Let

∧k Cn be the span of the {ξi1 ∧ ξi2 · · · ∧ ξik}1≤i1<···<ik≤n, and then a simple calcula-
tion shows that

∧n A = (A ∧ A ∧ · · · ∧ A︸ ︷︷ ︸
k

) = det(A)

2.3. Pick Function

Let z = x + iy be a complex number where i is the imaginary unit and f (z) =
U(z) + iV(z) is analytic where U(z), V(z) are all real functions. Re z = x denotes the real
part of z, and Im z = y is the imaginary part of z. If Im f (z) > 0 for any Im z > 0, then we
call the analytic function f (z) a Pick function [14]. It is equivalent that f (z) is analytic in
the upper half-plane with the positive imaginary part.

The Pick functions evidently form a convex cone—for instance, if α and β are positive
numbers and f (z) and g(z) are two Pick functions, then the function α f (z) + βg(z) is also
a Pick function. A simple example is that tan(z) is a Pick function.

tan(x + iy) =
tan(x) + tan(iy)

1− tan(x) tan(iy)

=
tan(x) + i tanh(y)

1− i tan(x) tanh(y)
.

Hence, Im tan(z) = (1+tan2(x)) tanh(y)
1+tan2(x) tanh2(y)

, and this implies that Im tan(z) > 0 when y > 0.

It is well known that the Pick function has a integral representation, such as the
following lemma [14].

Lemma 1. Let f (z) be a Pick function. Then, f (z) has a unique canonical representation of
the form

f (z) = α + βz +
∫
R

(
1

λ− z
− λ

1 + λ2

)
d μ(λ),

where α is real, β ≥ 0 and d μ(λ) is a positive Borel measure on the real λ−axis that
∫
R
(1 +

λ2)−1 d μ(λ) is finite. Conversely, any function of this form is also a Pick function.

Lemma 1 is frequently used for functions that are positive and harmonic in the half-
plane.

2.4. The Matrix-Monotone Function

A matrix function f is said to be matrix-monotonic if it satisfies

f (A) ≥ f (B) for all A ≥ B > 0. (3)

where A ≥ B > is equivalent to A− B is a positive semidefinite Hermitian matrix.
Since the matrix-monotone function is a special kind of operator monotone function,

we have the following general conclusions [14].

Lemma 2. The following statements for a real valued continuous function f on (0,+∞) are equiv-
alent:

(1) f (z) is matrix-monotone;
(2) f (z) admits an analytic continuation to the whole domain Im z �= 0 and Im(z) Im f (z) ≥ 0.
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(3) f admits an integral representation:

f (λ) = α + βλ +

0∫
−∞

(1 + λt)(t− λ)−1dμ(t), for any λ > 0, (4)

where α is a real number, β is non-negative and μ is a finite positive measure on (−∞, 0).

From Lemmas 1 and 2, we know that a Pick function must be a matrix-monotone
function.

2.5. Convexity of Matrix

Suppose that X is a convex set in Rn and f is a function defined on X. Then, we call f
a convex function if

f (tx1 + (1− t)x2) ≤ t f (x1) + (1− t) f (x2), ∀x1, x2 ∈ X, ∀t ∈ [0, 1],

for all x1, x2 ∈ X and t ∈ [0, 1].
A matrix function f is called convex if [15–17]

f (tA + (1− t)B) ≤ t f (A) + (1− t) f (B), (5)

for any A, B ∈ H+
n and any t ∈ [0, 1]. Replacing ≤ by < in (5), this gives the definition of

a strictly matrix convex function. A matrix function f is called (strictly) concave if − f is
(strictly) convex. More details can be found in [18].

A matrix convex function must be a convex function; however, the inverse claim is
not always true. For instance, the function f : [0,+∞)→ R given by f (x) = x3 is a convex
function. However, the matrix function f (A) = A3 for any A ∈ H+

n is not convex.
Let f (·, ·) be a bivariate function defined on H+

n × H+
n . We call f (·, ·) jointly convex if

f (tA1 + (1− t)A2, tB1 + (1− t)B2) ≤ t f (A1, B1) + (1− t) f (A2, B2),

for all A1, A2, B1, B2 ∈ H+
n and all t ∈ [0, 1].

2.6. Brunn–Minkowski Inequality

Finally, let us review the Brunn–Minkowski inequality [19].

Lemma 3. for any A, B > 0, and then

{Tr[∧k(A + B)]} 1
k ≥ {Tr

[
∧k A

]
} 1

k + {Tr
[
∧kB

]
} 1

k .

Proof. Let {ξi}n
i=1 be the eigenvectors of A + B with the eigenvalue {λi}n

i=1, then

{Tr[∧k(A + B)]} 1
k =

⎡⎣ ∑
1≤ξi1

<···<ξik
≤n

λi1 · · · λik

⎤⎦
1
k

=

⎡⎣ ∑
1≤ξi1

<···<ξik
≤n

(
det

∣∣∣P∗i1,··· ,ik (A + B)Pi1,··· ,ik
∣∣∣)
⎤⎦

1
k

≥
⎡⎣ ∑

1≤ξi1
<···<ξik

≤n

(
det

∣∣∣P∗i1,··· ,ik APi1,··· ,ik
∣∣∣+ det

∣∣∣P∗i1,··· ,ik BPi1,··· ,ik
∣∣∣)
⎤⎦

1
k

where Pi1,··· ,ik = (ξi1 , · · · , ξik ) and ≥ holds due to det(A + B) ≥ det(A) + det(B).
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As Sk =

[
∑

1≤ξi1
<···<ξik

≤n
xi1 · · · xik

] 1
k

is concave [20], we have

{Tr[∧k(A + B)]} 1
k ≥

⎡⎣ ∑
1≤ξi1

<···<ξik
≤n

det
∣∣∣P∗i1,··· ,ik APi1,··· ,ik

∣∣∣
⎤⎦

1
k

+

⎡⎣ ∑
1≤ξi1

<···<ξik
≤n

det
∣∣∣P∗i1,··· ,ik BPi1,··· ,ik

∣∣∣
⎤⎦

1
k

=

⎡⎣ ∑
1≤ξi1

<···<ξik
≤n

(
ξi1 ∧ · · · ∧ ξik , Aξi1 ∧ · · · ∧ Aξik

)⎤⎦
1
k

+

⎡⎣ ∑
1≤ξi1

<···<ξik
≤n

(
ξi1 ∧ · · · ∧ ξik , Bξi1 ∧ · · · ∧ Bξik

)⎤⎦
1
k

= {Tr[∧k A]} 1
k + {Tr[∧kB]} 1

k .

3. Lieb Concavity Theorem for Deformed Exponential

In this section, we obtain some useful conclusions, and some simple and straightfor-
ward computations are omitted. Recently, by using the Young inequality,

Tr[Y] = max
X≥0
{Tr[X]− Tr[X2−q(lnq X− lnq Y)]},

Shi and Hansen obtained that F(A) = Tr
[

exp
1
p
q (K∗ lnq(Ap)K)

]
is concave for any

1 ≤ q ≤ 2 where K∗K ≤ I (I is the identity matrix of M(n,C)) [13], namely, the following
theorem.

Theorem 1. For 0 < p ≤ 1, 1 < q ≤ 2 and K∗K ≤ I, the function

F(A) = Tr
[

exp
1
p
q (K∗ lnq(Ap)K)

]
(6)

is concave for the strictly positive A ∈ H+
n .

Proof. (The first proof of Theorem 1)
Since [21]

D f (A)(B) = ∑
i

∑
j

f (λi)− f (λj)

λi − λi
PiBPj,

we obtain

d(Tr[ f (A + tB)− f (A)])

d t
= Tr

[
∑

i
∑

j

f (λi)− f (λj)

λi − λi
PiBPj

]

= Tr

[
∑

i
Pj ∑

j

f (λi)− f (λj)

λi − λi
PiB

]

= Tr

[
∑

i
f ′(λi)PiB

]
= Tr[ f ′(A)B],
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where λi are eigenvalues of A. When f (x) is a convex function, we obtain

Tr[ f (A + tB)− f (A)] ≥ Tr[ f ′(A)tB]

for any t. This implies that

Tr[ f (C)] = max{Tr[ f (D) + f ′(D)(C− D)] : D > 0}.

Therefore, we obtain

Tr[(K∗Apq−pK + I − K∗K)
1

pq−p ]

= max{Tr[D
1

pq−p +
D

1
pq−p−1

(K∗Apq−pK + I − K∗K− D)

pq− p
] : D > 0}

= max{Tr[C +
C1−pq+p(K∗Apq−pK + I − K∗K− Cpq−p)

pq− p
] : C = D

1
pq−p > 0}

= max{Tr[C(1− 1
pq− p

) +
C1−pq+pK∗Apq−pK

pq− p
+ C1−pq+p(I − K∗K)] : C > 0}

Thus, the concavity of F(A) is equivalent to the jointly concavity of Tr[C1−pq+pK∗Apq−pK
pq−p ]

for the strictly positive A and C, which is the Lieb concavity theorem [22,23].

Unfortunately, Theorem 1 cannot be obtained using Epstein’s theorem. Hence, we
require a more general generalization of Epstein’s theorem. First, for any Im(z) > 0, we
know that A + zB is invertible and x∗(A + zB)x is a Pick function for any x ∈ Cn [14]. For
any A ∈ M(n,C), we know f (A) is defined as [12]

f (A) =
1

2π

∮
C

f (z)
z− A

d z,

where f (z) is a complex holomorphic function in an open set of the complex plane contain-
ing Sp(A) (the set of all eigenvalues of A). Then, we have the following lemma.

Lemma 4. Let A, B ∈ H+
n and 0 < α ≤ 1, then

x∗(A + zB)αx

is a Pick function for any x ∈ Cn and 0 < arg(x∗(A + zB)αx) < απ if 0 < arg(z) = θ < π,
such as Sp((A + zB)α) ⊆ (Sp(A + zB)α). Generally, we can find that

x∗ f (A + zB)x

is a Pick function when f is a Pick function.

Proof. Setting z = ρeiθ , we have

(A + zB)α =

+∞∫
0

(
A + zB

t + A + zB
)d μ(t)

=

+∞∫
0

(
1

t
A+zB + 1

)d μ(t),

where d μ(t) = tα−1π
sin απ .
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Since Im z > 0, we see that A + zB is invertible. Hence, we have

x∗(A + zB)αx =

+∞∫
0

x∗( 1
t

A+zB + 1
)x d μ(t)

=

+∞∫
0

y∗( t
A + z∗B + 1)y d μ(t), y = ( t

A+zB + 1)−1x

=

+∞∫
0

y∗y + tw∗(A + zB)w d μ(t), w = (A + z∗B)−1y

=

+∞∫
0

y∗y + tw∗Aw d μ(t) + z
+∞∫
0

tw∗Bw d μ(t).

This implies that

Im x∗(A + zB)αx = Im(z) ·
+∞∫
0

tw∗Bw d μ(t) > 0;

hence, 0 < arg(x∗(A + zB)αx) when 0 < arg(z) = θ < π.
In the same way, we can obtain

Im w∗[(−A− z∗B)−α]w = Im(e−iαπz∗) ·
+∞∫
0

tv∗Bv d μ(t) < 0, v = (t(A + z∗B) + 1)−1w.

In particular, letting w = (A + z∗B)αx, we have

Im(e−iαπx∗(A + zB)αx) < 0.

This is equivalent to arg(x∗(A + zB)αx) < απ.
To prove Sp((A + zB)α) ⊆ (Sp(A + zB)α), let (A + zB)ξ = λξ, we find

ξ∗(A + zB)αξ = [ξ∗(A + zB)ξ]α = [ξ∗Aξ + zξ∗Bξ]α = ραeiαθ ,

where tan θ = ξ∗Bξ Im(z)
ξ∗Aξ+ξ∗Bξ Re(z) ≤ tan arg(z).

When f (z) is a Pick function, using the integral represented of f (z), in a similar way,
we can obtain that

x∗ f (A + zB)x

is a Pick function for any x ∈ Cn.

Using Lemma 4, another proof of Theorem 1 can be obtained.

Theorem 2. For 0 < p ≤ 1, 1 < q ≤ 2 and K∗K ≤ I, the function

F(A) = Tr
[

exp
1
p
q (K∗ lnq(Ap)K)

]
is concave for the strictly positive A ∈ H+

n .

Proof. (The second proof of Theorem 1)
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First, setting f (z) = Tr[(A(z) + iB(z))
1

pq−p ] where A(z) = Re(K∗(A + zB)pq−pK + I −
K∗K) and B(z) = Im(K∗(A + zB)pq−pK + I − K∗K) ∈ H+

n . As

Im
[

Tr[(A(z) + iB(z))
1

pq−p ]

]
= Im

⎡⎣Tr[
+∞∫
0

(
A(z) + iB(z)

t + A(z) + iB(z)
)d μ(t)]

⎤⎦
= Im

⎡⎣ +∞∫
0

Tr[(
ΛA(z)+iB(z)

t + ΛA(z)+iB(z)
)d μ(t)]

⎤⎦
= Im

⎡⎣ +∞∫
0

n

∑
i=1

[(
λi(A(z) + iB(z))

t + λi(A(z) + iB(z))
)d μ(t)]

⎤⎦
= Im

[
n

∑
i=1

[(λi(A(z) + iB(z))
1

pq−p ]

]
,

when arg(z) ∈ (0, π) and K∗K ≤ I, then

arg(λi(A(z) + iB(z)))

= arg(x∗i (A(z) + iB(z))xi)

= arg(x∗i K∗(A + zB)pq−pKxi + x∗i (I − K∗K)xi) ∈ (0, (pq− p)π),

where xi ∈ Cn are the eigenvectors of K∗(A + zB)pq−pK + I − K∗K.
Hence,

Im
[

Tr[(A(z) + iB(z))
1

pq−p ]

]
= Im

[
n

∑
i=1

zi

]
,

where zi is the i eigenvalue of (A(z) + iB(z))
1

pq−p and arg(zi) ∈ (0, π).

Thus, f (z) = Tr[(A(z) + iB(z))
1

pq−p ] is a Pick function, and this implies that F(A) is
concave.

Using a similar method, we can obtain the following corollary.

Corollary 1. For 0 < p ≤ 1 and 1 < q ≤ 2, the function

E(A) = Tr
[

exp
1
p
q [B + lnq(Ap)]

]
(7)

is concave for the strictly positive A ∈ H+
n .

Since the Thompson–Golden theorem can be seen as a corollary of the Lieb concav-
ity theorem, we discuss the Lieb concavity theorem for deformed exponentials. Setting
SP(A) ⊂ {z = ρeiθ : 0 < ρ, 0 < θ < α} and SP(B) ⊂ {z = ρeiθ : 0 < ρ, 0 < θ < β}, then for
any A1, B1 ∈ Hn ,A2, B2 ∈ H+

n and A = A1 + iA2, B = B1 + iB2, we have [12]

SP(AB) ⊂ {z = ρeiθ : 0 < ρ, 0 < θ < α + β}. (8)

and then the following theorem can be obtained.

Theorem 3. For 0 < p ≤ 1, 1 < q ≤ 2 and P∗P ≤ I, the following function

L(A) = Tr[expq(P∗ lnq(K∗ApK)P) expq(P∗ lnq A1−pP)] (9)

is concave for any A ∈ H+
n .

Proof. Set LA,B(z) = Tr[expq(P∗ lnq(K∗(A + zB)pK)P) expq(P∗ lnq(A + zB)1−pP)].
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When xi ∈ Cn is a eigenvector of P∗(A + zB)pq−pP + I − P∗P and P∗P ≤ I,

arg(x∗i P∗K∗(A + zB)pq−pKPxi + x∗i (I − P∗P)xi) ∈ (0, (pq− p)π),

if arg(z) ∈ (0, π). This implies

SP(P∗K∗(A + zB)pq−pKP + I − P∗P) ⊂ {z = ρeiθ : 0 < ρ, 0 < θ < (pq− p)π},

such as

SP(expq(P∗ lnq(K∗(A + zB)pK)P)) ⊂ {z = ρeiθ : 0 < ρ, 0 < θ < pπ}.

Similarly, we can also obtain

SP(expq(P∗ lnq(A + zB)1−pP)) ⊂ {z = ρeiθ : 0 < ρ, 0 < θ < (1− p)π}.

Hence, using (8), we see that

SP[expq(P∗ lnq(K∗(A + zB)pK)P) expq(P∗ lnq(A + zB)1−pP)]

⊂ {z = ρeiθ : 0 < ρ, 0 < θ < π}.

Thus, we know arg(LA,B(z)) ∈ (0, π), which implies thatLA,B(z) is a Pick function.
Hence, L(A) is concave.

In fact, Theorem 3 is a generalization of the Lieb concavity theorem setting P = I,

K =

(
0 0
H 0

)
and A =

(
Z 0
0 B

)
. Moreover, we can obtain the following theorem.

Theorem 4. For 0 < p, s ≤ 1, 1 < q ≤ 2 and P∗P ≤ I, the functions

Tr
[[

expq(P∗ lnq A
ps
2 P) expq(P∗ lnq(K∗As−spK)P) expq(P∗ lnq A

ps
2 P)

] 1
s
]

(10)

and [
Tr expq(P∗ lnq A

ps
2 P) expq(P∗ lnq(K∗As−spK)P) expq(P∗ lnq A

ps
2 P)

] 1
s (11)

are jointly concave for any A ∈ H+
n .

The proof of Theorem 4 is similar to Theorem 3; here, we do not repeat the proof.
In [19], Huang used exterior algebra to find that

[
Tr∧k[exp(K∗ ln(A)K)]

] 1
k

is a concave function for any A ∈ H+
n , K∗K ≤ I and k ≤ n. Associated with Theorem 1, we

can obtain a generalization as the following theorem.

Theorem 5. For 0 < p ≤ 1, 1 < q ≤ 2 and K∗K ≤ I, the function

[
Tr∧k

[
exp

1
p
q (K∗ lnq(Ap)K)

]] 1
k

(12)

is concave for the strictly positive A ∈ H+
n and k ≤ n.

Proof. In fact, we can prove that

[
Tr∧k

[
(H∗As H + B)

1
s

]] 1
k
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is a concave function for any A ∈ H+
n where 0 < s ≤ 1 and B ∈ H+

n .
Using Theorem 1, we know that

Tr
[
(H∗Ap H + C)

1
p

]
(13)

is a concave function for any A ∈ H+
n where 0 < p ≤ 1 and C ∈ H+

n .
Then, for any A1, A2 ∈ H+

n , we have

[
Tr∧k

[
(H∗( A1 + A2

2
)s H + B)

1
s

]] 1
k

=

[
Tr

[
(H̄∗( A1 ∧k−1 I + A2 ∧k I

2
)s H̄ + B̄)

1
s

]] 1
k

≥
[

Tr

[
(H̄∗(A1 ∧k−1 I)s H̄ + B̄)

1
s + (H̄∗(A2 ∧k−1 I)s H̄ + B̄)

1
s

2

]] 1
k

=

[
Tr

[(
(H∗As

1H + B)
1
s + (H∗As

2H + B)
1
s

2

)
∧k−1 (H∗( A1 + A2

2
)s H + B)

1
s

]] 1
k

,

where H̄ = H ∧k−1 (H∗( A1+A2
2 )sH + B)

1
s and B̄ = B ∧k−1 (H∗( A1+A2

2 )sH + B)
1
s . Analo-

gously, we can obtain

[
Tr∧k

[
(H∗( A1 + A2

2
)s H + B)

1
s

]] 1
k

≥
[

Tr

[
∧k

(
(H∗As

1H + B)
1
s + (H∗As

2H + B)
1
s

2

)]] 1
k

.

Using lemma 3, we obtain

[
Tr∧k

[
(H∗( A1 + A2

2
)s H + B)

1
s

]] 1
k

≥
[
Tr
[
∧k
(
(H∗As

1H + B)
1
s

)]] 1
k
+
[
Tr
[
∧k
(
(H∗As

2H + B)
1
s

)]] 1
k

2
.

Clearly, the proof of Theorem 5 is in the application of exterior algebra and the Brunn–
Minkowski inequality. Hence, other theorems, such as the Thompson–Golden theorem in a
deformed exponential, can be generalized to a more general form, but we do not discuss
this here.

4. Conclusions

In this paper, we used the Pick function to obtain a generalization of the Lieb concavity
theorem and some corollaries. The advantage of using the Pick function is that it avoids
discussing the commutativity of the matrix and variational method. Generally, we obtain
that the following two functions are concave for 0 < p, s ≤ 1, 1 < q ≤ 2 and P∗P ≤ I

[
Tr∧k

[
expq(P∗ lnq A

ps
2 P) expq(P∗ lnq(K∗As−spK)P) expq(P∗ lnq A

ps
2 P)

] 1
s
] 1

k
(14)
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and [
Tr∧k[expq(P∗ lnq A

ps
2 P) expq(P∗ lnq(K∗As−spK)P) expq(P∗ lnq A

ps
2 P)]

] 1
ks , (15)

where A ∈ H+
n and k ≤ n, and this provides work for the future.
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Abstract: Nowadays, more and more consumers consider environmentally friendly products in
their purchasing decisions. Companies need to adapt to these changes while paying attention to
standard business systems such as payment terms. The purpose of this study is to optimize the entire
profit function of a retailer and to find the optimal selling price and replenishment cycle when the
demand rate depends on the price and carbon emission reduction level. This study investigates an
economic order quantity model that has a demand function with a positive impact of carbon emission
reduction besides the selling price. In this model, the supplier requests payment in advance on the
purchased cost while offering a discount according to the payment in the advanced decision. Three
different types of payment-in-advance cases are applied: (1) payment in advance with equal numbers
of instalments, (2) payment in advance with a single instalment, and (3) the absence of payment in
advance. Numerical examples and sensitivity analysis illustrate the proposed model. Here, the total
profit increases for all three cases with higher values of carbon emission reduction level. Further, the
study finds that the profit becomes maximum for case 2, whereas the selling price and cycle length
become minimum. This study considers the sustainable inventory model with payment-in-advance
settings when the demand rate depends on the price and carbon emission reduction level. From the
literature review, no researcher has undergone this kind of study in the authors’ knowledge.

Keywords: low carbon inventory; discount; payment in advance; price-sensitive demand;
emission reduction

1. Introduction

Customer preferences have always been a concern in industries in terms of their
effect on business growth. Customer preferences are affected by many factors and are
reflected in the customers’ willingness to buy. The level of consumer demand is usually
sensitive to product prices. However, in today’s setting, more and more consumers consider
the environmental performance of the producer and the green level of product in their
purchasing decisions [1–3]. This trend is expanding globally along with the increasing
consumer awareness of the importance of environmental conservation in the midst of
climate change issues. Hence, many producers and retailers innovate green products and
promote green operations to attract these customers [4,5]. Moreover, regulations become
another driver for this eco-innovation. Companies try to reduce carbon emissions from
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production, logistics, and transportation activities and apply green technology to meet new
regulations and pressure from these customers.

The inventory decisions on supply chain operations already incorporate environmental
parameters with certain intentions such as reducing carbon emission levels. Previous
supply chain studies also consider customers’ awareness of low carbon emissions [6–8],
the green quality of the product [9,10], and the amount of carbon emissions [11], which
affect the demand level. Customer awareness and green quality level have positive impacts
on the demand function of green products, while the amount of carbon emissions has
the opposite effect. Green marketing becomes a powerful strategy for businesses through
various green advertising, branding, and eco-labeling. This strategy has been adopted
to promote many international and local brands and products in both developed and
developing countries [12–16]. Xia et al. [7] incorporated the positive effect of emission
reduction and the promotion of this environmental benefit into the demand function.
Recently, Dong et al. [17] considered the manufacturer’s reduction in carbon emission
levels, which shows the company’s initiative for greener operations. The positive effect of
carbon emission reduction on customer demand was combined with the negative effect
of the selling price. The study also examined the payment issue by analyzing the effect of
trade credit and bank loans. Based on Dong et al. [17], we study a sustainable inventory
model considering a prepayment mechanism, another common payment term in business,
in order to consider a real situation.

The payment term in the transaction between a supplier and a buyer is an important
issue in supply chain collaboration. The term should be agreed upon by both parties so that
it is clear and beneficial for all. The classic economic order quantity (EOQ) model assumes a
payment immediately after product delivery. However, in many cases, payment in advance
is applied, in which the buyer should pay the purchase cost before the product delivery. The
buyer may have to pay all the purchase cost in advance [18–20] or pay only a percentage
of it [19,21]. Further, the prepayment can be done in several time intervals [22,23]. While
the payment in advance will give the supplier an advantage by mitigating the risk of
cancellation, the supplier can offer some discounts to the buyer so that they benefit as well.
Our study considers discount offers similar to Mashud et al. [23].

The increase in customers’ awareness of green issues, together with the trend in
producers’ concern on carbon emission reduction and the common practices of payment
in advance, has motivated this study to contribute to the development of a sustainable
inventory model. This paper presents a profit maximization study of a retailer inventory
system to respond to customers’ increasing low carbon preferences. When customer
demand depends on the selling price and the retailer must pay the purchase cost in
advance, the proposed model suggests the optimum replenishment time and selling price.
The study aims at providing managerial insights by answering the following questions:

a. How do payment-in-advance models affect pricing and replenishment decisions as
well as the total profit when customer demand is sensitive to the selling price and
environmental performance of the producer?

b. Will discount policy impact retailers’ choice of payment in advance settings and
total profit?

c. How do the customer preference for carbon emission reduction levels and various
emission costs impact the retailer’s total profit?

In this paper, we first study the retailer’s optimal selling price and replenishment
cycle when payment in advance is fulfilled with some equal numbers of instalments and a
discount is offered by the supplier. Then, we address the same issue when the purchase cost
is completed in a single payment, and in return, the customer will get a different discount
rate. Next, we study the situation in which no payment in advance is considered, hence no
discount is offered.
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2. Literature Review

Traditional inventory management focuses on the economic benefit from a business
point of view. For example, the classic inventory model works under some basic assump-
tions such as infinite replenishment and planning horizon that aim at optimizing financial
profit. In recent years, considerable attention has shifted to economic and environmental
aspects of the emergence of the sustainable inventory model terminology. The focus has
broadened to include minimizing environmental impacts through carbon emission reduc-
tions, energy efficiency, and the adoption of green technologies [24,25]. Most sustainable
inventory models seek to reduce supply chain emission levels by considering emissions
from production, transportation, and inventory storage activities. Carbon tax systems are
widely used to include the cost of carbon emissions in the objective function [26–31]. Other
carbon regulations such as carbon cap-and-trade and strict carbon limits are also used,
depending on the regulations imposed by the government [32,33]. Datta [34] developed
an inventory model with investment in emission reduction technology focusing on emis-
sions from production activities. The study considered carbon emission reduction under
a carbon tax policy and optimization of the investment amount. Under a similar carbon
tax policy, Mashud et al. [35] considered emission reduction from transportation activities.
Simultaneous investments for emission reduction and deterioration rate were studied by
Mishra et al. [36]. Lou et al. [37] optimized the green technology investment considering
a subsidy from the government. Optimum investment level was considered important
because customer demand was assumed to be sensitive to emission reduction level. The
study recommended an active role from the government such as providing technology
investment subsidies and controlling the emission trading price.

In addition to government regulations, efforts to reduce carbon emission levels are
also driven by the increasing number of consumers who consider environmental aspects
in their purchasing decisions [9]. Hence, the environmental performance of the product
was added to the demand function. Pang et al. [6] and Gao et al. [38] considered the
customers’ environmental awareness and set a linear demand function in addition to the
effect of selling price on demand. Hovelaque and Bironneau [11] set a demand function that
depends on price and the amount of carbon emissions. They found two order quantities,
one that will maximize the total profit and another one that will minimize the emission level.
Lou et al. [37] also set a demand function with a linear effect of price and emission reduction.
The percentage of emission reduction per unit product was optimized together with the
selling price. Xia et al. [7] incorporated a promotion strategy to support the emission
reduction program to gain customer attention. Zhang et al. [3] analyzed a manufacturer’s
decision to introduce a new green product to customers with high environmental awareness.
The study found a conflict if the manufacturer also sells an ordinary product because the
products will compete with each other. Recently, Dong et al. [17] considered the positive
effect of carbon emission reduction and the negative effect of the selling price on the
customer demand rate. For a single-supplier, single-buyer supply chain model, they
also studied the effect of financial facilities such as trade credit and bank loans on the
manufacturer’s decision regarding the level of emission reduction. Using a similar demand
function, we study an economic order quantity (EOQ) model of a retailer when payment in
advance is requested by the supplier. The retailer’s optimal selling price and replenishment
cycle are the decision variables.

The inventory model with payment in advance is another research stream in this
paper. The practices of payment in advance may be introduced by a powerful supplier to
prevent order cancellation, especially for customized and expensive products [19]. The
payment may help the supplier to finish the product. Maiti et al. [21] are among the
first researchers who incorporated payment in advance into an inventory model. The
proposed model says that the buyer gets some price discount based on the amount of the
payment in advance. Further, due to the payment in advance, the retailer may need cash aid
from any financial institution, which means an additional cost of interest. The buyer may
have to pay all the purchase costs in advance or pay only a percentage of it [18,19,39,40].
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During the payment-in-advance period, multiple instalments may be applied to reduce the
retailer burden [22,23]. Hence, our study examines the effect of three different payment-in-
advance settings—(1) payment in advance with equal numbers of instalments, (2) payment
in advance with single instalment, and (3) the absence of payment in advance—on the
optimum price and replenishment cycle that optimizes the profit.

3. Mathematical Model Formulation for Inventory Model

The proposed mathematical model is based on the following assumptions:

a. Inventory of a single product is considered with a limitless planning horizon.
b. The replenishment rate is boundless.
c. The lead time is constant and the shortages are overlooked.
d. The retailer has to make a payment in advance to the supplier [23].
e. The supplier offers a discount on the purchase cost of the products according to the

number of instalment decisions [23].
f. The demand function DL = ψ− γp + ηRC depends on price and carbon emission

reduction level [17,41,42]. Here,

ψ is the market potential
γ is the price sensitivity coefficient (γ > 0)
p is the unit selling price
η is the low carbon preference coefficient (η > 0)
RC is the manufacturer’s carbon emission reduction level
In addition, the following nomenclatures (Table 1) are used.

Table 1. Notation description.

Notations Units Description

DL units Demand function
FC $/trip Fixed cost of transportation
Nt unit Number of trips
ce $/km Carbon emission cost per unit distance
ck $/unit/km Carbon emission cost per unit item per unit distance
cp liter/ton Fuel consumption per ton of payload
fe liter Empty vehicle fuel consumption
� $/unit Holding cost per unit
� km One way distance
n unit Number of instalments

wp kg Product weight
α $/liter Price of fuel
χ $ Carbon emission reduction investment
δ constant Payment in advance portion of purchase cost
ζ $/cycle Ordering cost per cycle
κ months Lead time

φ constant Interest rate due to instalment based payment in
advance

φL constant Interest rate on loan amount
Ω units Order quantity
ω $/unit Purchase cost per unit

Decision Variables
p $/unit Selling price

TC months Replenishment time.

An inventory model is developed under consideration of the above assumptions. The
model is divided into three cases considering the payment-in-advance cost. In Case I,
payment in advance is fulfilled with some equal numbers of instalments, and a discount is
offered for the retailer as a benefit according to the number of instalments. Case II considers
that the payment is completed with a single instalment and, in return, the retailer will get
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a different discount from the supplier. Finally, in Case III, no payment-in-advance cost is
considered, and hence no discount is offered to the retailer.

3.1. Case I: With Advanced Payment and a Discount for Instalment Based Payment

A retailer runs its business with an initial stock of Ω units. Depending on the demand
function, the stock decreases and becomes zero at time t = TC. Thus, one cycle ends, and
the process repeats so that the business continues. To get this stock, the retailer pays a
percentage of the purchase cost (δ) in n equal number of instalments before the products
are delivered. The amount of each prepayment is δωΩ

n . At the moment of delivery, the
retailer needs to pay for the remaining (1− δ)Ω quantity. Figure 1 outlines the above facts
and the pattern of the level of inventory.

n
κ

n
κ

n
κ

n
κ

κ

( )δ ω− Ω

n
δωΩ

n
δωΩ

n
δωΩ

CT

Figure 1. Graphical presentation of the inventory system for Case I.

The inventory system is described by the following differential equation considering
the demand DL = ψ− γp + ηRC.

dIS(t)
dt

= −DL, 0 ≤ t ≤ TC (1)

With the help of boundary conditions IS(0) = Ω and IS(TC) = 0 , by solving Equation (1)
we get,

IS(t) = DL(TC − t) (2)

and
Ω = DLTC (3)

3.1.1. Total Cost per Unit Time

(a) Ordering cost per cycle:

OC = ζ (4)

(b) The inventory holding cost per cycle:

HC = �
∫ TC

0
IS(t) dt =

1
2
�DLTC

2 (5)

(c) The purchase cost per cycle:

PC = Ωω (6)
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(d) Transportation cost per cycle:

Three major costs are considered to estimate the transportation cost: fixed cost (FC),
variable cost, and carbon emission cost. However, the variable cost and the carbon emission
cost are different for an empty vehicle (truck) and a loaded vehicle. The total travel distance
is 2� as the vehicle has to travel a distance � to ship the goods and has to travel another �
distance to return with an empty load. For the vehicle only, the variable cost is the total
fuel consumption (2� fe) times the fuel price (α). An additional variable cost is estimated
for one-way distance � based on the vehicle load, that is, a one-way distance (�) multiplied
by the fuel consumption per ton of payload (cp), product weight (wp), order quantity per

trip
(

Ω
Nt

)
, and fuel price (α). Similarly, the carbon emission cost for the vehicle is 2� times

the cost of carbon emission per unit distance of delivery (ce), and the carbon emission cost
based on the load is � times the cost of carbon emission per unit item per unit distance of
delivery (ck) times

(
Ω
Nt

)
. Thus, the total transportation cost per cycle is

TC = Nt

[
FC +

(
2� feα +

�cpwpΩα

Nt

)
+

(
2�ce +

�ckΩ
Nt

)]
TC = FC Nt + 2� feαNt + �cpwpΩα + 2�ceNt + �ckΩ (7)

(e) Instalment capital cost:

The instalment capital cost is estimated following the procedure described by [35,43]:

IC =
(

φδω
n Ω× n× κ

n

)
+
(

φδω
n Ω× (n− 1)× κ

n

)
+ · · ·+

(
φδω

n Ω× (n− (n− 1))× κ
n

)
=
(

φδω
n Ω× κ

n

)
(n + (n− 1) + · · ·+ 2 + 1) =

(
φδω

n Ω× κ
n

)
n(n+1)

2

= (n+1)
2n φδωΩκ

(8)

(f) Discount on purchase cost:

For the retailer’s advanced payment on the purchase cost, the supplier provides υ%
discount. The discount rate ξ depends on the number of instalments n; that is, the supplier
offers a lower discount rate for more installments as follows:

ξ =
υ

n
, 0 ≤ υ ≤ 100. (9)

Hence, the total discount is

DC = Ωωξ =
Ωωυ

n
. (10)

(g) Carbon emission reduction cost:

The effort of carbon emission reduction needs an investment. The higher emission
reduction needs an increasingly accelerated emission reduction cost. This cost is estimated
according to Swami and Shah [42] in Equation (11).

RC = χR2
C. (11)

(h) Sales revenue per cycle:

SR = p
∫ TC

0
DL dt = pDLTC (12)
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3.1.2. Total Profit per Unit Time

Now, for the total profit per unit time, one can write:

τ(p, TC) =
1

TC
(SR−OC− HC− PC− TC− IC− RC + DC)

τ(p, TC) =
1

TC

⎛⎜⎝ pDLTC − ζ − 1
2�DLTC

2 −Ωω−
(

FC Nt + 2� feαNt + �cpwpΩα
+2�ceNt + �ckΩ

)
− (n+1)

2n φδωΩκ − χR2
C + Ωωυ

n

⎞⎟⎠
τ(p, TC) =

1
TC

(
pDLTC − 1

2
�DLTC

2 −
(

ζ + Ωω + (n+1)
2n φδωΩκ + FC Nt + 2� feαNt

+�cpwpΩα + 2�ceNt + �ckΩ + χR2
C − Ωωυ

n

))

τ(p, TC) =
1

TC

(
p(ψ− γp + ηRC)TC − 1

2
�(ψ− γp + ηRC)TC

2 − 1

)
(13)

where

1 = ζ + Ωω +
(n + 1)

2n
φδωΩκ + FC Nt + 2� feαNt + �cpwpΩα + 2�ce Nt + �ckΩ + χR2

C −
Ωωυ

n
(14)

3.2. Case II: With Advanced Payment and a Discount for Single Time Payment

In this case, the retailer has to pay in advance in a single payment. The payment
amount means the whole purchase cost. The scenario is described in Figure 2, which is a
modified version of Figure 1.

κ

ωΩ

CT

Figure 2. Graphical presentation of the inventory system for Case II.

The supplier offers a υ% discount to the retailer for a single-time prepayment as a
benefit. In this situation, the retailer may have a crisis of capital during time κ; in that
case, a loan with some interest of φL% from any financial institutes or other funds can be a
suitable option to manage the required capital.

The discount for purchase cost is

PC = (1− υ)Ωω. (15)

The associated cost of taking a loan is

LC = φLκ(1− υ)Ωω. (16)
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Hence, the total profit per unit time can be written as:

τf (p, TC) =
1

TC
(SR−OC− HC− PC− TC− RC− LC)

τf (p, TC) =
1

TC

⎛⎝ pDLTC − ζ − 1
2�DLTC

2 − (1− υ)Ωω

−
(

FC Nt + 2� feαNt + �cpwpΩα
+2�ceNt + �ckΩ

)
− χR2

C − φLκ(1− υ)Ωω

⎞⎠
τf (p, TC) =

1
TC

(
p(ψ− γp + ηRC)TC − 1

2
�(ψ− γp + ηRC)TC

2 − 2

)
(17)

where

2 = ζ + (1 + φLκ)(1− υ)Ωω + FC Nt + 2� feαNt + �cpwpΩα + 2�ceNt + �ckΩ + χR2
C (18)

3.3. Case III: Without Advanced Payment

In this case, the retailer does not pay in advance. If the retailer does not pay any
payment in advance, then there is no instalment cost and discount. Thus, there is a
necessity to modify Figure 1 into Figure 3. The retailer must pay the full payment during
purchase product shipment.

CT

Figure 3. Graphical presentation of the inventory system for Case III.

Then, the total profit per unit time can be written as:

τN(p, TC) =
1

TC
(SR−OC− HC− PC− TC− RC)

τN(p, TC) =
1

TC

(
pDLTC − ζ − 1

2
�DLTC

2 −Ωω−
(

FC Nt + 2� feαNt + �cpwpΩα

+2�ce Nt + �ckΩ

)
− χR2

C

)

τN(p, TC) =
1

TC

(
p(ψ− γp + ηRC)TC − 1

2
�(ψ− γp + ηRC)TC

2 − 3

)
(19)

where
3 = ζ + Ωω + FC Nt + 2� feαNt + �cpwpΩα + 2�ceNt + �ckΩ + χR2

C (20)

4. Theoretical Development

Here, the concavity of the profit function is analyzed to show the existence of an
optimal solution for each case.
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4.1. Case I (with Advanced Payment and a Discount for Instalment Based Payment)

It is now important to investigate the concavity nature of the profit function τ(p, TC)
in Equation (13) for Case I. For this purpose, the priority is to determine the critical points,
and one needs to differentiate Equation (13) with respect to the two decision variables p, TC
as follows:

∂τ

∂TC
= − 1

T2
C

[
1
2
�(ψ− γp + ηRC)T2

C − 1

]
(21)

∂τ

∂p
= ψ− 2γp + ηRC +

1
2
�γTC (22)

The critical points can be determined by setting Equations (21) and (22) to zero and
doing some manipulations.

T∗C =

√
2 1

�(ψ− γp + ηRC)
(23)

p∗ = 1
2γ

(
ψ + ηRC +

1
2
�γTC

)
(24)

The concavity of the profit function is next discussed with some conditions.

Proposition 1. The profit function τ(p, TC) in Equation (13) is concave regarding the replenish-
ment time TC if the selling price p remains fixed, and hence it provides a unique optimal T∗C.

Proof. One needs to determine the associated critical points as well as prove the sufficient
condition to confirm the concavity of the profit function. The critical point is associated
with Equation (23).

T∗C =

√
2 1

�(ψ− γp + ηRC)

Then, differentiating the profit function as in Equation (13) with respect to TC, one
can find:

∂2τ

∂T2
C
= −2 1

T3
C

(25)

Since 1 > 0 and replenishment time TC must be positive, ∂2τ
∂T2

C
< 0. Thus, we confirm

the concave nature of the profit function regarding TC, and the critical point TC becomes
the unique optimal point T∗C. �

Proposition 2. The profit function τ(p, TC) in Equation (13) is concave regarding the replenish-
ment time p if the selling price p remains fixed, and hence it provides a unique optimal p∗.

Proof. The solution system is akin to the proposed system of Proposition 1; thus, to avoid
redundancy the proof is removed. �

Proposition 3. The profit function τ(p, TC) of selling price p and replenishment time TC in
Equation (13) is a strictly pseudo-concave function at a unique optimal investment (p∗, T∗C).

Proof. The Hessian matrix of τ(p, TC) is of order 2× 2.

Δ =

⎡⎣ ∂2τ(p,TC)

∂T2
C

∂2τ(p,TC)
∂TC∂p

∂2τ(p,TC)
∂p∂TC

∂2τ(p,TC)
∂p2

⎤⎦ (26)
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To prove that τ(p, TC) is a strictly pseudo-concave function, it is essential to confirm
that the Hessian matrix Δ is negative definite. Thus, it is necessary to show that the leading
principal minors, (−1)kΔk > 0, 1 ≤ k ≤ 2 means the first principal minor Δ1 is negative,
and the second principle minor Δ2 is positive.

Δ1 =

∣∣∣∣∣∂2τ(p, TC)

∂T2
C

∣∣∣∣∣ = ∂2τ(p, TC)

∂T2
C

(27)

and

Δ2 =

∣∣∣∣∣∣
∂2τ(p,TC)

∂T2
C

∂2τ(p,TC)
∂TC∂p

∂2τ(p,TC)
∂p∂TC

∂2τ(p,TC)
∂p2

∣∣∣∣∣∣ = ∂2τ(p, TC)

∂T2
C

∂2τ(p, TC)

∂p2 − ∂2τ(p, TC)

∂p∂TC

∂2τ(p, TC)

∂TC∂p
(28)

Taking the second order partial derivatives of the profit function τ(p, TC) in Equation (13)
with respect to p and TC, one gets

∂2τ

∂T2
C
= −2 1

T3
C

(29)

∂2τ

∂p2 = −2γ (30)

∂2τ

∂TC∂p
=

1
2
�γ (31)

Proposition 1 ensures that the first principal minor Δ1 is negative at the optimal point
p = p∗ and TC = T∗C. Now, the only target should be to prove that the second principal
minor Δ2 is positive and to aim it, after manipulations, one can write:

Δ2 =
4γ 1

T3
C
− 1

4
�2γ2. (32)

At the optimal point p = p∗ and TC = T∗C,

Δ2 =
4γ 1

T∗3C
− 1

4
�2γ2. (33)

Later, Lemma 1 confirms the fact that Δ2 > 0.
Thus, the proof of Proposition 3 is complete such that τ(p, TC) is a strictly pseudo-

concave function at a unique optimal investment (p∗, T∗C). Hence, the profit function affirms
the global maximum solution at (p∗, T∗C). �

Lemma 1. If replenishment time TC <

(
16 1
�2γ

) 1
3
, then Equation (32) provides positive results,

which consequently shows that Proposition 3 is valid.

Proof. Replenishment time TC <

(
16 1
�2γ

) 1
3

�2γ <
16 1

T3
C

�2γ
γ

4
<

16 1

T3
C

γ

4
[since γ > 0]
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1
4
�2γ2 <

4γ 1

T3
C

4γ 1

T∗3C
− 1

4
�2γ2 > 0

Thus, Δ2 > 0. �

4.2. Case II: With Advanced Payment and a Discount for Single Time Payment

The concavity test for Case II is similar to Case I, so the proof for Case II is not shown
to avoid redundancy. From Equations (13) and (17) one has:

τ(p, TC) =
1

TC

(
p(ψ− γp + ηRC)TC − 1

2
�(ψ− γp + ηRC)TC

2 − 1

)

τf (p, TC) =
1

TC

(
p(ψ− γp + ηRC)TC − 1

2
�(ψ− γp + ηRC)TC

2 − 2

)
where

1 = ζ + Ωω +
(n + 1)

2n
φδωΩκ + FC Nt + 2� feαNt + �cpwpΩα + 2�ce Nt + �ckΩ + χR2

C −
Ωωυ

n

2 = ζ + (1 + φLκ)(1− υ)Ωω + FC Nt + 2� feαNt + �cpwpΩα + 2�ceNt + �ckΩ + χR2
C

From τ(p, TC) and τf (p, TC) one can easily notice that parts ( 1 and 2) are the only
difference between these two profit functions. Moreover, these two parts ( 1 and 2) are
independent of decision variables (p, TC). Thus, there will be no change in making a
decision regarding the concavity of these profit functions. However, in the numerical
example, the concavity is presented numerically.

4.3. Case III: Without Advanced Payment

From Equations (13) and (19), one has:

τ(p, TC) =
1

TC

(
p(ψ− γp + ηRC)TC − 1

2
�(ψ− γp + ηRC)TC

2 − 1

)

τN(p, TC) =
1

TC

(
p(ψ− γp + ηRC)TC − 1

2
�(ψ− γp + ηRC)TC

2 − 3

)
where

1 = ζ + Ωω +
(n + 1)

2n
φδωΩκ + FC Nt + 2� feαNt + �cpwpΩα + 2�ce Nt + �ckΩ + χR2

C −
Ωωυ

n

3 = ζ + Ωω + FC Nt + 2� feαNt + �cpwpΩα + 2�ceNt + �ckΩ + χR2
C

The whole scenario of this case is similar to the previous Case II. Therefore, there will
be no change in decision-making as in Case II. However, the concavity of the profit function
is presented in the numerical example section.

5. Analysis and Discussion

5.1. Case Study

The choice of eco-friendly products is a growing trend that is being adopted by
millions of people. A new addition in this category is an eco-friendly microwave oven
(Figure 4), which draws the attention of business owners and customers. The higher the
eco-friendliness, the higher the demand; although sometimes the price is slightly elevated,
it satisfies all purposes of customers. A retailer who does not have enough capital can
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advance some purchase costs to the supplier to book the products. The supplier, in return,
provides numerous discount amounts for him according to the retailer’s payment. A case
from a retailer shop is visited to fit in our model. The proposed problem is discussed with
the shop manager, and he is asked to provide actual data accordingly. Those data are used
in later numerical sections to validate the model and maintain a relationship with the data
of the previously published article.

 

Figure 4. A retail shop of microwave oven. (Source: https://upload.wikimedia.org/wikipedia/
commons/7/7e/Microwave_ovens%2C_Media_Markt%2C_Svagertorp%2C_Malmo.JPG, accessed
on 26 December 2021).

5.2. Numerical Illustration

Here, we present three examples. We have collected secondary data from different
published articles.

Example 1. (Case III) In the first example, green carbon emission costs are considered with no
payment in advance. For numerical illustration, the following parameters are considered: ordering
costs per order placement ξ = $1000/cycle, the demand combined with market potential Ψ = 220,
price sensitivity coefficient γ = 0.65, low carbon preference coefficient η = 2, and manufacturer’s
carbon emission reduction level Rc = 0.5, carbon emission reduction investment χ = $800. The
purchase cost per unit ω = $150, per unit holding cost h = $2. Further, the fixed cost per trip
Fc = $200/trip, number of trips Nt = 3, fuel price α = $0.3/liter, the empty vehicle fuel consumption
fc = 1 liter, travelled distance l = 100 km, product weight wp = 0.5 kg, fuel consumption per ton
of payload Cp = 1.5 liter/ton, carbon emission cost per unit distance ce = $0.03/km, and carbon
emission cost per unit item per unit distance ck = $0.02/unit/km.

We obtain optimal solutions per unit selling price p* = $260.36, replenishment time
T∗C = 6.21 months, order quantity Ω = 321.61 units, and total profit τN = $3801.423 using
Lingo 19 software with the aid of an exact optimization approach.

If we consider manufacturer’s carbon emission reduction level (Rc) and selling price
(p) as decision variables and cycle time (TC = 6.21 months) as constant, then, we obtain
the optimal solutions, per unit selling price p* = $260.54, manufacturer’s carbon emission
reduction level R∗c = 0.62, order quantity Ω = 322.23 units, and total profit τN = $3803.25.

Again, if we consider that manufacturer’s carbon emission reduction level (Rc) and
cycle time (TC) are decision variables and selling price (p = $260.35) is constant, then we ob-
tain the optimal solutions, manufacturer’s carbon emission reduction level R∗c = 0.63, cycle
time T∗C = 6.38 months, order quantity Ω = 332.11 units, and total profit τN = $3803.438.
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From Figure 5, one can easily observe that the total profit function confirms the
concavity nature in terms of the two decision variables, and the optimum profit is located
at the blue dot point.

Figure 5. Profit function (τ) with regard to: (a) the selling price (p) and cycle time (TC); (b) the
manufacturer’s carbon emission reduction level (Rc) and selling price (p); (c) the manufacturer’s
carbon emission reduction level (Rc) and cycle time (TC).

When selling price (p), cycle time (TC), and manufacturer’s carbon emission reduc-
tion level (Rc) are decision variables, then optimal solutions are per-unit selling price
p* = $260.66, cycle time T∗C = 6.40 months, and manufacturer’s carbon emission reduction
level R∗c = 0.638, order quantity Ω = 331.82 units, and total profit τN = $3803.499.

Figure 6 shows that the profit function increases with respect to the increased selling
price (p), cycle time (TC), and manufacturer’s carbon emission reduction level (Rc), and
the profit function becomes optimum for optimum selling price p* = $260.66, optimum cycle
time Tc = 6.40 months, and manufacturer’s carbon emission reduction level R∗c = 0.638.
After the optimum point indicated by the green star marker, the profit function decreases,
although the selling price and the cycle time increase. This behavior also confirms the
concavity nature of the profit function.

Example 2. (Case II) All the parameters are the same as in Example 1. For a single payment
model, the supplier offers υ = 5%. Further, the length of time during prepayment κ = 0.5 years
and retailer interest rate of loan from any financial institutes φL = 3%.

We obtain the optimal solutions, per unit selling price p* = $257.62, replenishment
time T∗C = 6.11 months, order quantity Ω = 327.08 units, and total profit τf = $4083.795.

If we consider manufacturer’s carbon emission reduction level (Rc) and selling price
(p) as decision variables and cycle time (TC = 6.12 months) as constant, then we obtain the
optimal solutions of per-unit selling price p* = $ 257.83, manufacturer’s carbon emission
reduction level R∗c = 0.63, order quantity Ω = 328.48 units, and total profit τN = $4086.035.

Again, if we consider manufacturer’s carbon emission reduction level (Rc) and cycle
time (TC) as decision variables and selling price (p = $257.62) as constant, then we obtain
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the optimal solutions as manufacturer’s carbon emission reduction level R∗c = 0.65, cycle
time T∗C = 6.29 months, order quantity Ω = 338.84 units, and total profit τN = $4086.235.

When selling price (p), cycle time (TC), and manufacturer’s carbon emission reduc-
tion level (Rc) are decision variables, then optimal solutions are per-unit selling price
p* = $257.96, cycle time T∗C = 6.31 months, and manufacturer’s carbon emission reduction
level R∗c = 0.65, order quantity Ω = 338.54 units, and total profit τN = $4086.305.

For this example, Figure 7 confirms the concavity nature of the profit function with
respect to the two decision variables.

Figure 8a shows that the profit declines due to growing lead time. Figure 8b confirms
that the higher discount rate produces the higher profit gaining, and Figure 8c confirms
that the total profit declines for the higher interest rate on the loan amount to collect capital.

 
(a) (b) 

 
(c) 

Figure 6. Profit function (τ) regarding (a) the selling price (p); (b) cycle time (TC); (c) manufacturer’s
carbon emission reduction level (Rc).

Example 3. (Case I) All the parameters are the same as Example 1. Some additional parameters
are as follows: number of equal prepayments before receiving order quantity n = 10, the portion of
total purchase cost δ = 0.8, the interest rate of capital cost per year, length of time during which the
prepayments are paid κ = 0.5 years, and discount rate for prepayment υ = 5%.

We acquire the optimal solutions of per-unit selling price p* = $276.86, replenishment
time < φ = 1% months, order quantity Ω = 286.35 units, and total profit τ = $2304.672.

If we consider manufacturer’s carbon emission reduction level (Rc) and selling price
(p) as decision variables and cycle time (TC = 6.21 months) as constant, then we obtain the
optimal solutions of per-unit selling price p* = $276.45, manufacturer’s carbon emission
reduction level R∗c = 0.49, order quantity Ω = 256.35 units, and total profit τN = $2300.881.

Again, if we consider manufacturer’s carbon emission reduction level (Rc) and cycle
time (TC) as decision variables and selling price (p = $260.35) as constant, then we obtain
the optimal solutions of manufacturer’s carbon emission reduction level R∗c = 0.36, cycle
time T∗C = 6.08 months, order quantity Ω = 312.98 units, and total profit τN = $2134.147.
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When selling price (p), cycle time (TC), and manufacturer’s carbon emission reduc-
tion level (Rc) are decision variables, then optimal solutions are per-unit selling price
p* = $276.99, cycle time T∗C = 7.06 months, and manufacturer’s carbon emission reduction
level R∗c = 0.56, order quantity Ω = 289.92 units, and total profit τN = $2305.004.

For this example, Figure 9 confirms the concavity nature of the profit function with
respect to the two decision variables.

 
(a) (b) 

 
(c) 

Figure 7. Profit function (τ) with regard to: (a) the selling price (p) and cycle time (TC); (b) the
manufacturer’s carbon emission reduction level (Rc) and selling price (p); (c) the manufacturer’s
carbon emission reduction level (Rc) and cycle time (TC).

Figure 10a shows that the profit is higher for a smaller number of instalments and is
smaller for a larger number of instalments. As the retailer has to pay interest for instalment-
based payment, the cost becomes higher, and the profit becomes lower. From Figure 10b,
one can confirm that the higher lead time forces a lower profit to be gained. Figure 10c
confirms that the total profit declines for higher portion payment in advance, whereas
Figure 10d assures the fact that for a higher amount of discount rate for instalment payment
in advance, the total profit increases.

5.3. Sensitivity Analysis

Table 2 shows the sensitivity analysis of the present work. One can easily observe the
robustness among the parameters. For three cases, the test has been performed for the pa-
rameters within the range of −20% to +20%.Some critical observations can be summarized
based on the sensitivity table (Table 2):

a. The market potential (ψ) is positively correlated with the integrated profit. The
selling price is correlated similarly, but the cycle length interacts negatively. One can
detect the continuous rise in profit and selling price with growing market potential
(ψ) for all these three cases, and the profit becomes maximum for Case II, whereas
the selling price, as well as cycle length, become minimum.
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b. The total profit and selling price decline for all three cases as the price elasticity
parameter (γ) increases. The cycle length behaves in the opposite direction. One can
observe the highest profit at the minimum value of the price elasticity parameter (γ)
for a discount on a single-instalment payment (Case II).

c. The total profit increases for all three cases with higher values of carbon emission
reduction level (RC). The selling price and the cycle length show the same character-
istics. The total profit is comparatively much lower in Case I as the instalment policy
creates an extra cost. The profit is best in Case II, since the discount in purchasing
cost influences higher profit gaining.

d. For all three cases, the ordering cost (ζ), as well as the holding cost (�), have a direct
impact on total profit. The higher values of those two costs create a lower profit
and vice versa. The increasing ordering charge or holding charge means a decline
in profit. It is easy to observe the significant consequence of this fact for all three
cases. A similar type of effect has been noted for fluctuations of the per-unit purchase
cost (ω).

e. The larger the number of trips (Nt) the lesser the profit becomes since an extra trip
means it needs an additional fixed cost, variable cost, fuel, labor, etc. Therefore, the
profit becomes lower for the intensifications of trips. The travel distance (�), fuel
cost (α), fuel consumption per ton of payload (cp), and product weight (wp) have
similar impacts on profit as those can add additional expenses. Any longer distance
brings additional cost in the expenses, so reduction of distance can optimize the
profit, which is numerically true, as shown in the sensitivity table.

f. The implications of carbon emission cost on transportation cost have important roles
in profit gaining. Increasing values of carbon emission cost per unit distance (ce) and
carbon emission cost per unit item per unit distance (ck) force the total profit to be
less in all three cases.

  
(a) (b) 

(c) 

Figure 8. Total profit profile associated with single payment-based payment in advance parameters.
(a) describes the total profit against different lead times, (b) describes the total profit for different
discount rates due to instalment-based payment in advance, and (c) shows the profit vs. interest rate
on the loan amount.
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(a) (b) 

 
(c) 

Figure 9. Profit function (τ) with regard to: (a) the selling price (p) and cycle time (TC); (b) the
manufacturer’s carbon emission reduction level (Rc) and selling price (p); (c) the manufacturer’s
carbon emission reduction level (Rc) and cycle time (TC).

  
(a) (b) 

(c) (d) 

n

Figure 10. Total profit profile associated with instalment-based payment-in-advance parameters.
(a) describes the total profit against the number of instalments, (b) shows the total profit for different
lead times, (c) describes the profit vs. payment in advance portion, and (d) describes the total profit
for different discount rates due to instalment based payment in advance.

173



Fractal Fract. 2022, 6, 26

Table 2. Sensitivity Analysis.

Parameter
(Base)

Change
in %

Changed
Value

Case I Case II Case III

p Tc Profit (τN) p Tc Profit (τf) p Tc Profit (τ)

ψ (200)

20% 240.000 307.119 5.822 5033.220 288.058 5.311 7382.136 290.771 5.376 7020.964
10% 220.000 290.755 6.428 3311.817 271.614 5.756 5278.759 274.336 5.839 4971.943
−10% 180.000 258.518 8.618 893.981 238.977 7.150 2089.039 241.740 7.313 1891.779
−20% 160.000 243.186 11.289 209.085 222.937 8.402 1007.654 225.755 8.676 866.120

γ (0.60)

20% 0.720 247.554 9.192 510.321 227.756 7.208 1636.208 230.539 7.411 1443.080
10% 0.660 259.677 8.058 1090.069 240.206 6.729 2446.337 242.962 6.878 2223.500
−10% 0.540 292.835 6.698 3116.149 273.686 6.012 4923.224 276.409 6.097 4641.829
−20% 0.480 315.870 6.240 4772.288 296.810 5.732 6801.839 299.523 5.797 6491.457

η (2)

20% 2.400 274.676 7.269 1943.027 255.402 6.332 3529.771 258.138 6.443 3276.993
10% 2.200 274.595 7.274 1936.966 255.320 6.336 3521.782 258.057 6.447 3269.278
−10% 1.800 274.434 7.284 1924.869 255.157 6.342 3505.830 257.894 6.454 3253.873
−20% 1.600 274.353 7.290 1918.833 255.075 6.346 3497.867 257.812 6.458 3246.183

RC
(0.50)

20% 0.600 274.729 7.375 1935.516 255.447 6.424 3521.148 258.185 6.537 3268.518
10% 0.550 274.621 7.325 1933.370 255.342 6.380 3517.653 258.079 6.492 3265.220
−10% 0.450 274.411 7.238 1928.139 255.137 6.302 3509.587 257.873 6.413 3257.564
−20% 0.400 274.309 7.201 1925.044 255.037 6.270 3505.001 257.773 6.380 3253.193

χ (500)

20% 600.000 600.000 7.328 1927.490 255.259 6.381 3509.871 257.997 6.493 3257.708
10% 550.000 550.000 7.304 1929.198 255.249 6.360 3511.833 257.986 6.472 3259.636
−10% 450.000 450.000 7.255 1932.633 255.228 6.318 3515.777 257.965 6.429 3263.512
−20% 400.000 400.000 7.230 1934.359 255.217 6.297 3517.759 257.954 6.408 3265.459

ζ (1000)

20% 1200.000 274.705 7.661 1904.138 255.402 6.667 3483.047 258.143 6.785 3231.349
10% 1100.000 274.611 7.472 1917.355 255.321 6.505 3498.230 258.060 6.620 3246.269
−10% 900.000 274.416 7.082 1944.839 255.153 6.169 3529.792 257.889 6.277 3277.285
−20% 800.000 274.314 6.879 1959.165 255.066 5.994 3546.236 257.799 6.099 3293.445

� (2)

20% 2.400 274.874 6.665 1880.559 255.547 5.798 3455.949 258.290 5.901 3204.722
10% 2.200 274.698 6.951 1905.144 255.396 6.050 3484.203 258.136 6.157 3232.485
−10% 1.800 274.322 7.661 1958.047 255.072 6.675 3544.953 257.806 6.792 3292.184
−20% 1.600 274.120 8.112 1986.783 254.898 7.072 3577.924 257.628 7.196 3324.587

ω (150)

20% 180.000 293.494 8.787 814.828 270.045 7.024 2257.755 273.355 7.211 2013.351
10% 165.000 283.949 7.923 1321.012 262.628 6.655 2853.657 265.649 6.798 2602.859
−10% 135.000 265.149 6.774 2643.576 247.869 6.065 4237.982 250.326 6.152 3989.230
−20% 120.000 255.831 6.363 3458.375 240.517 5.824 5026.037 242.696 5.893 4785.642

FC (200)

20% 240.000 274.630 7.510 1914.685 255.338 6.538 3495.164 258.077 6.653 3243.255
10% 220.000 274.573 7.396 1922.735 255.288 6.439 3504.411 258.026 6.553 3252.342
−10% 180.000 274.456 7.161 1939.223 255.187 6.237 3523.344 257.924 6.347 3270.948
−20% 160.000 274.396 7.042 1947.672 255.136 6.134 3533.044 257.871 6.242 3280.480

Nt (6)

20% 10.000 276.047 10.344 1719.361 256.552 8.967 3270.326 259.315 9.130 3022.364
10% 8.000 275.654 9.558 1772.825 256.217 8.296 3331.964 258.972 8.445 3082.910
−10% 4.000 274.766 7.783 1895.591 255.455 6.772 3473.225 258.196 6.892 3221.698
−20% 2.000 274.246 6.742 1968.856 255.007 5.876 3557.357 257.739 5.979 3304.374

� (100)

20% 120.000 277.083 7.515 1751.504 257.773 6.508 3276.862 260.513 6.627 3032.791
10% 110.000 275.798 7.396 1840.244 256.505 6.423 3394.380 259.244 6.538 3146.228
−10% 90.000 273.233 7.166 2023.510 253.972 6.257 3635.126 256.708 6.365 3378.819
−20% 80.000 271.953 7.056 2118.033 252.707 6.176 3758.353 255.441 6.281 3497.972

fe (1)

20% 1.200 274.550 7.349 1925.991 255.268 6.399 3508.150 258.006 6.512 3256.016
10% 1.100 274.532 7.314 1928.446 255.253 6.369 3510.969 257.991 6.481 3258.787
−10% 0.900 274.497 7.244 1933.392 255.223 6.309 3516.648 257.960 6.420 3264.368
−20% 0.800 274.479 7.209 1935.882 255.208 6.278 3519.508 257.944 6.389 3267.179

α (0.30)

20% 0.360 276.872 7.495 1765.910 257.565 6.493 3295.975 260.306 6.611 3051.237
10% 0.330 275.693 7.386 1847.598 256.401 6.415 3404.086 259.140 6.530 3155.600
−10% 0.270 273.338 7.176 2015.853 254.076 6.264 3625.122 256.811 6.372 3369.148
−20% 0.240 272.162 7.075 2102.417 252.914 6.190 3738.045 255.648 6.296 3478.330
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Table 2. Cont.

Parameter
(Base)

Change
in %

Changed
Value

Case I Case II Case III

p Tc Profit (τN) p Tc Profit (τf) p Tc Profit (τ)

cp (1.50)

20% 1.800 276.837 7.423 1770.736 257.535 6.432 3301.545 260.275 6.549 3056.708
10% 1.650 275.675 7.350 1850.041 256.386 6.385 3406.898 259.125 6.499 3158.363
−10% 1.350 273.355 7.211 2013.351 254.091 6.294 3622.255 256.827 6.403 3366.330
−20% 1.200 272.197 7.144 2097.353 252.944 6.250 3732.257 255.678 6.356 3472.639

wp
(0.50)

20% 0.600 276.837 7.423 1770.736 257.535 6.432 3301.545 260.275 6.549 3056.708
10% 0.550 275.675 7.350 1850.041 256.386 6.385 3406.898 259.125 6.499 3158.363
−10% 0.450 273.355 7.211 2013.351 254.091 6.294 3622.255 256.827 6.403 3366.330
−20% 0.400 272.197 7.144 2097.353 252.944 6.250 3732.257 255.678 6.356 3472.639

ce (0.03)

20% 0.036 274.518 7.286 1930.418 255.241 6.345 3513.234 257.978 6.457 3261.013
10% 0.033 274.516 7.283 1930.666 255.240 6.342 3513.518 257.977 6.454 3261.292
−10% 0.027 274.513 7.276 1931.160 255.237 6.336 3514.086 257.974 6.447 3261.850
−20% 0.024 274.511 7.272 1931.408 255.235 6.333 3514.370 257.972 6.444 3262.129

ck (0.02)

20% 0.024 274.721 7.292 1916.421 255.442 6.347 3494.684 258.180 6.459 3243.109
10% 0.022 274.618 7.286 1923.661 255.340 6.343 3504.237 258.077 6.455 3252.334
−10% 0.018 274.412 7.273 1938.177 255.136 6.335 3523.379 257.873 6.446 3270.820
−20% 0.016 274.308 7.267 1945.454 255.034 6.331 3532.969 257.771 6.442 3280.081

5.4. Managerial Implications

The managerial implications of this sustainable inventory management study in terms
of pricing strategies, low carbon preferences, suitability of discount policy, and impact of
payments in advance are vast:

(i) From the three observed cases, the lowest selling price is obtained when the payment
in advance is performed in a single payment. Further study also confirms that profit is
higher for a smaller number of instalments; hence, managers can optimize the number
of installments in this direction considering their financial condition.

(ii) The case with a single payment also results in a lower selling price. It is beneficial for
customers and increases the demand level.

(iii) One can take important pricing decisions from the study and maintain a healthy profit
margin by incorporating these strategies and simultaneously observing the nature of
the customers.

(iv) This study provides some insights into how preferences for low carbon can influence
the sales of the retailer and in which way a manager can maintain an eco-friendly
inventory. This study shows that the total profit increases with higher values of carbon
emission reduction level and higher preferences for low carbon among customers.

6. Conclusions

This paper presents a low-carbon preference inventory model with selling price and
carbon-emission-reduction-dependent demand. Some major issues solved through this
model are:

(i) The optimal replenishment rate clinging to the commencement of payment in advance
has been successfully integrated and offers some significant results.

(ii) Simultaneous integration of discount policy, payment in advance to the selling price,
and reduction of carbon-emission-dependent demand work efficiently. It provides
some techniques for the retailer to manage inventories profitably.

(iii) A smaller number of instalments of the payment in advance increase the profit. This
study shows that the case with a single payment results in a higher total profit and a
lower selling price.

(iv) With the increasing customers’ preferences for environmentally friendly products,
retailers should increase the effort for reducing emission levels.
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Therefore, to maximize profit, this study recommends that retailers respond to the
increasing customers’ preferences for low carbon by promoting environmentally friendly
products. Simultaneously, retailers should attract more customers by setting a lower price
by minimizing the number of instalments to take advantage of the discounts offered.

However, this model has limitations in terms of exposition, choice of variables, incor-
poration of marketing strategies, etc. This model can easily be extended by incorporating
trade-credit policy [40,44,45], including some carbon emission regulations [33,46] and tak-
ing more than one player, e.g., a vendor–buyer system [47,48]. This study also does not
allow for shortages; hence, further research may consider shortages with a full or partial
backlog. Moreover, the retailer can dynamically purchase the inventory from the outside
supplier to reduce the financial risk and avail the full discount facilities.
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Budak, H. Generalized p-Convex

Fuzzy-Interval-Valued Functions and

Inequalities Based upon the

Fuzzy-Order Relation. Fractal Fract.

2022, 6, 63. https://doi.org/10.3390/

fractalfract6020063

Academic Editor: Ravi P. Agarwal

Received: 30 November 2021

Accepted: 24 January 2022

Published: 26 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Generalized p-Convex Fuzzy-Interval-Valued Functions and
Inequalities Based upon the Fuzzy-Order Relation

Muhammad Bilal Khan 1,*, Savin Treant, ǎ
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Abstract: Convexity is crucial in obtaining many forms of inequalities. As a result, there is a significant
link between convexity and integral inequality. Due to the significance of these concepts, the purpose
of this study is to introduce a new class of generalized convex interval-valued functions called
(p, s)-convex fuzzy interval-valued functions ((p, s)-convex F-I-V-Fs) in the second sense and to
establish Hermite–Hadamard (H–H) type inequalities for (p, s)-convex F-I-V-Fs using fuzzy order
relation. In addition, we demonstrate that our results include a large class of new and known
inequalities for (p, s)-convex F-I-V-Fs and their variant forms as special instances. Furthermore, we
give useful examples that demonstrate usefulness of the theory produced in this study. These findings
and diverse approaches may pave the way for future research in fuzzy optimization, modeling, and
interval-valued functions.

Keywords: (p,s)-convex fuzzy-interval-valued function; fuzzy Riemann integral; Jensen type
inequality; Schur type inequality; Hermite–Hadamard type inequality; Hermite–Hadamard–Fejér
type inequality

1. Introduction

A convex function has a convex set as its epigraph; therefore, the theory of inequality
of convex functions falls under the umbrella of convexity. Nonetheless, it is a significant
theory in and of itself, as it affects practically all fields of mathematics. The graphical
analysis is most often the initial issue that necessitates the acquaintance with this theory.
This is an opportunity to learn about the second derivative test of convexity, which is
a useful tool for detecting convexity. The difficulty of identifying the extreme values of
functions with many variables, as well as the application of Hessian as a higher dimensional
generalization of the second derivative, follows. Holder, Jensen, and Minkowski all made
early contributions to convex analysis. The next step is to go on to optimization issues in
infinite dimensional spaces; however, despite the technological sophistication required to
solve such problems, the fundamental concepts are quite similar to those underlying the
one variable situation. Despite numerous applications, many contemporary difficulties
in economics and engineering, the relevance of convex analysis is well recognized in
optimization theory [1–3], and the idea of convexity no longer suffices.

Over the years, remarkable varieties of convexities, such as harmonic convexity [4],
quasi convexity [5], Schur convexity [6], strong convexity [7,8], p-convexity [9], fuzzy
convexity [10,11], fuzzy preinvexity [12] and generalized convexity [13], p-convexity [14]
and so on, have been introduced to convex sets and convex functions. A fascinating field
for research is the definition of convexity with an integral problem. Therefore, several
authors have identified a great number of equalities or inequalities as applications of convex
functions. The representative results include Gagliardo–Nirenberg-type inequality [15],
Hardy-type inequality [16], Ostrowski-type inequality [17], Olsen-type inequality [18],
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and the most commonly known inequality of, namely, the H–H inequality [19]. Similarly,
many authors have devoted themselves to study the fractional integral inequalities for
single-valued and interval-valued functions, see [20–28].

In ref. [29], the enormous research work fuzzy set and system has been dedicated on
development of different fields, and it plays an important role in the study of a wide class
problems arising in pure mathematics and applied sciences including operation research,
computer science, managements sciences, artificial intelligence, control engineering and
decision sciences. Recently, fuzzy interval analysis and fuzzy interval-valued differential
equations have been put forward to deal the ambiguity originate by insufficient data in some
mathematical or computer models that determine real-world phenomena [30–40]. There
are some integrals to deal with fuzzy-interval-valued functions (in short, F-I-V-Fs), where
the integrands are F-I-V-Fs. For instance, Osuna-Gomez et al. [41], and Costa et al. [42]
constructed Jensen’s integral inequality for F-I-V-Fs through a Kulisch–Miranker order
relation, see [43]. By using the same approach, Costa and Roman-Flores also presented
Minkowski and Beckenbach’s inequalities, where the integrands are F-I-V-Fs. This paper is
motivated by [42–44] and especially by Costa et al. [45] because they established a relation
between elements of fuzzy-interval space and interval space, and introduced level-wise
fuzzy order relation on fuzzy-interval space through a Kulisch–Miranker order relation
defined on interval space. For more information related to fuzzy interval calculus and
generalized convex F-I-V-Fs, see [46–61].

Inspired by the ongoing research work, the new class of generalized convex F-I-V-Fs
is introduced, which is known as (p, s)-convex F-I-V-Fs. With the help of this class and
fuzzy Riemann integral operator, we introduce Jensen, Schur, and fuzzy interval H–H
type inequalities via fuzzy order relation. Moreover, we show that our results include
a wide class of new and known inequalities for (p, s)-convex F-I-V-Fs and their variant
forms as special cases. Some useful examples are also presented to verify the validity of
our main results.

2. Definitions and Basic Results

Let KC and FC(R) be the collection of all closed and bounded intervals, and fuzzy
intervals of R. We use K+

C to represent the set of all positive intervals. The collection of all
Riemann integrable real-valued functions, Riemann integrable I-V-Fs and fuzzy Riemann
integrable F-I-V-Fs over [t, s] is denoted by R[t, s], IR[t, s], and FR([t, s]), respectively.
For more conceptions on interval-valued functions and fuzzy interval-valued functions,
see [36,42–44]. Moreover, we have:

The inclusion “ ⊆ ” means that

ξ ⊆ η if and only if, [ξ∗, ξ∗] ⊆ [η∗, η∗], if and only if η∗ ≤ ξ∗, ξ∗ ≤ η∗, (1)

for all [ ∗, ∗], [η∗, η∗] ∈ KC.

Remark 1 ([43]). The relation “ ≤I ” defined on KC by

[ ∗, ∗] ≤I [η∗, η∗] if and only if ∗ ≤ η∗, ∗ ≤ η∗, (2)

for all [ ∗, ∗], [η∗, η∗] ∈ KC; it is an order relation.

Proposition 1 ([7]). Let FC(R) be a set of fuzzy numbers. If ξ, � ∈ FC(R), then relation
“ � ” defined on FC(R) by

ξ � � if and only if, [ξ]ϕ ≤I [�]ϕ, for all ϕ ∈ [0, 1]; (3)

this relation is known as partial order relation.

Theorem 1 ([50]). Let U : [t, s] ⊂ R→ FC(R) be a F-I-V-F, whose ϕ-levels define the family
of I-V-Fs Uϕ : [t, s] ⊂ R→ KC are given by Uϕ(κ) = [U∗(κ, ϕ), U∗(κ, ϕ)] for all ∈ [t, s]
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and for all ϕ ∈ (0, 1]. Then, U is fuzzy Riemann integrable over [t, s] if, and only if,
U∗(κ, ϕ) and U∗(κ, ϕ) both are Riemann integrable over [t, s]. Moreover, if U is fuzzy
Riemann integrable over [t, s], then

((FR)
∫ s

t
U(κ)dκ)

ϕ

= ((R)
∫ s

t
U∗(κ, ϕ)dκ, (R)

∫ s

t
U∗(κ, ϕ)dκ) = (IR)

∫ s

t
Uϕ(κ)dκ, (4)

for all ϕ ∈ (0, 1].

Definition 1 ([10]). Let K be a convex set. Then, F-I-V-F U : K → FC(R) is named as a
convex F-I-V-F on K if the coming inequality

U(ζ + (1− ζ)y) � ζU(κ)+̃(1− ζ)U(y) (5)

is valid for all , y ∈ K, ζ ∈ [0, 1], where U(κ) � 0̃. If (5) is reversed, then U is named as a
concave on [t, s]. U is affine if and only if it is both a convex and concave function.

Definition 2. Let Kp be a p-convex set and s ∈ [0, 1]. Then, F-I-V-F U : Kp → FC(R) is
named as a (p, s)-convex F-I-V-F in the second sense on Kp such that

U

(
[ζκp + (1− ζ)yp]

1
p

)
� ζsU(κ)+̃(1− ζ)sU(y), (6)

for all κ, y ∈ Kp, ζ ∈ [0, 1], where U(κ) � 0̃. If (6) is reversed, then U is named as a
(p, s)-concave F-I-V-F in the second sense on [t, s]. U is (p, s)-affine if and only if it is both
(p, s)-convex and (p, s)-concave F-I-V-F in the second sense.

Remark 2. The (p, s)-convex F-I-V-Fs in the second sense have some very nice properties
similar to convex F-I-V-F:

- If we attempt to take U as (p, s)-convex F-I-V-F, then we can obtain that YU is also
(p, s)-convex F-I-V-F, for Y ≥ 0;

- If we attempt to take both F and U both as (p, s)-convex F-I-V-Fs, then we can obtain
that max(F (κ),U(κ)) is also a (p, s)-convex F-I-V-F.

We now discuss some new and known special cases of (p, s)-convex F-I-V-Fs in the
second sense:

- If we attempt to take s ≡ 1, then from (p, s)-convex F-I-V-F, we achieve p-convex
F-I-V-F, that is

U

(
[ζκp + (1− ζ)yp]

1
p

)
� ζU(κ)+̃(1− ζ)U(y), ∀ κ, y ∈ K, ζ ∈ [0, 1]. (7)

- If we attempt to take p ≡ 1, then from (p, s)-convex F-I-V-F, we achieve s-convex
F-I-V-F, see [13]; that is,

U(ζκ + (1− ζ)y) � ζsU(κ)+̃(1− ζ)sU(y), ∀κ, y ∈ K, ζ ∈ [0, 1], s ∈ [0, 1]. (8)

- If we attempt to take p ≡ 1 and s ≡ 1, then from (p, s)-convex F-I-V-F, we achieve
convex F-I-V-F, see [13,36], that is

U(ζκ + (1− ζ)y) � ζU(κ)+̃(1− ζ)U(y), ∀ κ, y ∈ K, ζ ∈ [0, 1]. (9)

Theorem 2. Let Kp be p-convex set and U : Kp → FC(R) be a F-I-V-F, whose ϕ-levels define
the family of IVFs Uϕ : Kp ⊂ R→ KC

+ ⊂ KC are given by

Uϕ(κ) = [U∗(κ, ϕ), U∗(κ, ϕ)], (10)
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for all ∈ Kp and for all ϕ ∈ [0, 1]. Then, U is (p, s)-convex F-I-V-F in the second sense on
Kp, if and only if, for all ϕ ∈ [0, 1], U∗(κ, ϕ) and U∗(κ, ϕ) both are (p, s)-convex functions
in the second sense.

Proof. Assume that, for each ϕ ∈ [0, 1], U∗(κ, ϕ) and U∗(κ, ϕ) are (p, s)-convex function
in the second sense on Kp. Then, from Equation (6), we have

U∗
(
[ζκp + (1− ζ)yp]

1
p , ϕ

)
≤ ζsU∗(κ, ϕ) + (1− ζ)sU∗(y, ϕ), ∀ κ, y ∈ Kp, ζ ∈ [0, 1],

and

U∗
(
[ζκp + (1− ζ)yp]

1
p , ϕ

)
≤ ζsU∗(κ, ϕ) + (1− ζ)sU∗(y, ϕ), ∀ κ, y ∈ Kp, ζ ∈ [0, 1].

Then, by Equation (10), we obtain

Uϕ

(
[ζκp + (1− ζ)yp]

1
p

)
=

[
U∗
(
[ζκp + (1− ζ)yp]

1
p , ϕ

)
, U∗

(
[ζκp + (1− ζ)yp]

1
p , ϕ

)]
,

≤I [ζ
sU∗(κ, ϕ), ζsU∗(κ, ϕ)] +

[
(1− ζ)sU∗(y, ϕ), (1− ζ)sU∗(y, ϕ)

]
,

that is

U

(
[ζκp + (1− ζ)yp]

1
p

)
� ζsU(κ)+̃(1− ζ)sU(y),∀ κ, y ∈ Kp, ζ ∈ [0, 1].

Hence, U is (p, s)-convex F-I-V-F in the second sense on Kp.
Conversely, let U be (p, s)-convex F-I-V-F in the second sense on Kp. Then, for all

κ, y ∈ Kp and ζ ∈ [0, 1], we have

U

(
[ζκp + (1− ζ)yp]

1
p

)
� ζsU(κ)+̃(1− ζ)sU(y).

Therefore, from Equation (10), we have

Uϕ

(
[ζκp + (1− ζ)yp]

1
p

)
=

[
U∗
(
[ζκp + (1− ζ)yp]

1
p , ϕ

)
, U∗

(
[ζκp + (1− ζ)yp]

1
p , ϕ

)]
.

Again, from Equation (10), we obtain

ζsUϕ(κ)+̃(1− ζ)sUϕ(κ) = [ζsU∗(κ, ϕ), ζsU∗(κ, ϕ)] +
[
(1− ζ)sU∗(y, ϕ), (1− ζ)sU∗(y, ϕ)

]
,

Then, by (p, s)-convexity in the second sense of U, we have

U∗
(
[ζκp + (1− ζ)yp]

1
p , ϕ

)
≤ ζsU∗(κ, ϕ) + (1− ζ)sU∗(y, ϕ),

and

U∗
(
[ζκp + (1− ζ)yp]

1
p , ϕ

)
≤ ζsU∗(κ, ϕ) + (1− ζ)sU∗(y, ϕ),

for each ϕ ∈ [0, 1]. Hence, the result follows. �

Remark 3. On the basis of Theorem 2, we consider the special situation as below:

- If we attempt to take U∗(κ, ϕ) = U∗(κ, ϕ) with ϕ = 1, then from Definition 2, we
obtain the (p, s)-convex function, see [46];

- If we attempt to take U∗(κ, ϕ) = U∗(κ, ϕ) with ϕ = 1 and s = 1, then from Definition
2, we obtain the p-convex function, see [9];
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- If we attempt to take U∗(κ, ϕ) = U∗(κ, ϕ) with ϕ = 1, p = 1 and s = 0, then from
Definition 2, we obtain the P-function, see [47].

Example 1. We consider the F-I-V-F U : [0, 1]→ FC(R) defined by

U(κ)(σ) =

⎧⎨⎩
σ

2κp σ ∈ [0, 2κp]
4κp−σ

2κ2 σ ∈ (2κp, 4κp]

0 otherwise,
(11)

Then, for each ϕ ∈ [0, 1], we have Uϕ(κ) = [2ϕκp, (4− 2ϕ)κp]. Since end point
functions U∗(κ, ϕ) and U∗(κ, ϕ), both are (p, s)-convex functions in the second sense for
each ϕ ∈ [0, 1] and s ∈ [0, 1]. Hence, U(κ) is (p, s)-convex F-I-V-F in the second sense.

3. Discrete Inequalities for (p, s)-Convex F-I-V-F in the Second Sense

In the following, we establish the following result:

Theorem 3. (Discrete Jensen type inequality for (p, s)-convex F-I-V-F) Let ωj ∈ R+,
tj ∈ [t, s], (j = 1, 2, 3, . . . , k, k ≥ 2) and U : [t, s]→ FC(R) be a (p, s)-convex F-I-V-F,
whose ϕ-levels define the family of I-V-Fs Uϕ : [t, s] ⊂ R→ KC

+ are given by Uϕ(κ) =
[U∗(κ, ϕ), U∗(κ, ϕ)] for all ∈ [t, s] and for all ϕ ∈ [0, 1], then

U

⎛⎝[
1

Wk

k

∑
j=1

ωjtj
p

] 1
p
⎞⎠ � ∑k

j

(
ωj

Wk

)s
U
(
tj
)
, (12)

where Wk = ∑k
j=1ωj. If U is (p, s)-concave F-I-V-F, then inequality Equation (29) is reversed.

Proof. When k = 2, then inequality Equation (12) is true. Considering that inequality
Equation (29) is true for k = n− 1, then

U

⎛⎝[
1

Wn−1

n−1

∑
j=1

ωjtj
p

] 1
p
⎞⎠ � ∑n−1

j=1

(
ωj

Wn−1

)s
U
(
tj
)

Now, let us prove that inequality (12) holds for k = n.

U

⎛⎝[
1

Wn

n

∑
j=1

ωjtj
p

] 1
p
⎞⎠

= U

⎛⎝[
Wn−2

Wn

1
Wn−2

n−2

∑
j=1

ωjtj
p +

ωn−1 + ωn

Wn

(
ωn−1

ωn−1 + ωn
tn−1

p +
ωn

ωn−1 + ωn
tn

p
)] 1

p
⎞⎠.

Therefore, for each ϕ ∈ [0, 1], we have

U∗

⎛⎝[
1

Wn

n
∑

j=1
ωjtj

p

] 1
p

, ϕ

⎞⎠
U∗
⎛⎝[

1
Wn

n
∑

j=1
ωjtj

p

] 1
p

, ϕ

⎞⎠
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= U∗

⎛⎝[
Wn−2

Wn
1

Wn−2

n−2
∑

j=1
ωjtj

p + ωn−1+ωn
Wn

(
ωn−1

ωn−1+ωn
tn−1

p + ωn
ωn−1+ωn

tn
p
)] 1

p

, ϕ

⎞⎠
= U∗

⎛⎝[
Wn−2

Wn
1

Wn−2

n−2
∑

j=1
ωjtj

p + ωn−1+ωn
Wn

(
ωn−1

ωn−1+ωn
tn−1

p + ωn
ωn−1+ωn

tn
p
)] 1

p

, ϕ

⎞⎠
≤ ∑n−2

j=1

(
ωj
Wn

)s
U∗
(
tj, ϕ

)
+
(

ωn−1+ωn
Wn

)s
U∗
([

ωn−1
ωn−1+ωn

tn−1
p + ωn

ωn−1+ωn
tn

p
] 1

p , ϕ

)
≤ ∑n−2

j=1

(
ωj
Wn

)s
U∗
(
tj, ϕ

)
+
(

ωn−1+ωn
Wn

)s
U∗
([

ωn−1
ωn−1+ωn

tn−1
p + ωn

ωn−1+ωn
tn

p
] 1

p , ϕ

)
≤ ∑n−2

j=1

(
ωj
Wn

)s
U∗
(
tj, ϕ

)
+
(

ωn−1+ωn
Wn

)s[ ( ωn−1
ωn−1+ωn

)s
U∗(tn−1, ϕ) +

(
ωn

ωn−1+ωn

)s
U∗(tn, ϕ)

]
≤ ∑n−2

j=1

(
ωj
Wn

)s
U∗
(
tj, ϕ

)
+
(

ωn−1+ωn
Wn

)s[( ωn−1
ωn−1+ωn

)s
U∗(tn−1, ϕ) +

(
ωn

ωn−1+ωn

)s
U∗(tn, ϕ)

]
≤ ∑n−2

j=1

(
ωj
Wn

)s
U∗
(
tj, ϕ

)
+
[(

ωn−1
Wn

)s
U∗(tn−1, ϕ) +

(
ωn
Wn

)s
U∗(tn, ϕ)

]
≤ ∑n−2

j=1

(
ωj
Wn

)s
U∗
(
tj, ϕ

)
+
[(

ωn−1
Wn

)s
U∗(tn−1, ϕ) +

(
ωn
Wn

)s
U∗(tn, ϕ)

]
= ∑n

j=1

(
ωj
Wn

)s
U∗
(
tj, ϕ

)
= ∑n

j=1

(
ωj
Wn

)s
U∗
(
tj, ϕ

)
.

From which, we have⎡⎣U∗
⎛⎝[

1
Wn

n

∑
j=1

ωjtj
p

] 1
p

, ϕ

⎞⎠, U∗
⎛⎝[

1
Wn

n

∑
j=1

ωjtj
p

] 1
p

, ϕ

⎞⎠⎤⎦
≤I

[
∑n

j=1

(
ωj

Wn

)s
U∗
(
tj, ϕ

)
, ∑n

j=1

(
ωj

Wn

)s
U∗
(
tj, ϕ

)]
,

that is,

U

⎛⎝[
1

Wn

n

∑
j=1

ωjtj
p

] 1
p
⎞⎠ � ∑n

j=1

(
ωj

Wn

)s
U
(
tj
)
,

and the result follows. �
If ω1 = ω2 = ω3 = · · · = ωk = 1, then Theorem 3 reduces to the following result:

Corollary 1. Let s ∈ [0, 1] tj ∈ [t, s],. (j = 1, 2, 3, . . . , k, k ≥ 2) and U : [t, s]→ FC(R) be
a (p, s)-convex F-I-V-F, whose ϕ-levels define the family of I-V-Fs Uϕ : [t, s] ⊂ R→ KC

+

that are given by Uϕ(κ) = [U∗(κ, ϕ), U∗(κ, ϕ)] for all ∈ [t, s] and for all ϕ ∈ [0, 1]; then,

U

([
1
k ∑k

j=1tj
p
] 1

p
)

� ∑k
J=1

(
1
k

)s
U
(
tj
)
. (13)

If U is a (p, s)-concave F-I-V-F, then inequality Equation (13) is reversed.

The next Theorem 4 gives the Schur-type inequality for (p, s)-convex F-I-V-Fs.

Theorem 4. (Discrete Schur-type inequality for (p, s)-convex F-I-V-F) Let s ∈ [0, 1] and
U : [t, s]→ FC(R) be a (p, s)-convex F-I-V-F, whose ϕ-levels define the family of IVFs
Uϕ : [t, s] ⊂ R→ KC

+ are given by Uϕ(κ) = [U∗(κ, ϕ), U∗(κ, ϕ)] for all ∈ [t, s] and
for all ϕ ∈ [0, 1]. If t1, t2, t3 ∈ [t, s], such that t1 < t2 < t3 and t3

p − t1
p, t3

p − t2
p,

t2
p − t1

p ∈ [0, 1], we have

(t3
p − t1

p)sU(t2) � (t3
p − t2

p)sU(t1) + (t2
p − t1

p)sU(t3). (14)
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If U is a (p, s)-concave F-I-V-F, then inequality Equation (14) is reversed.

Proof. Let tj such that L < tj
〈

U (j = 1, 2, 3, . . . , k), (t3
p − t1

p)s〉0. Then, by hypothesis,
we have (

t3
p − t2

p

t3
p − t1

p

)s
=

(t3
p − t2

p)s

(t3
p − t1

p)s and
(

t2
p − t1

p

t3
p − t1

p

)s
=

(t2
p − t1

p)s

(t3
p − t1

p)s .

Consider ζ = t3
p−t2

p

t3
p−t1

p , then t2
p = ζt1

p + (1− ζ)t3
p. Since U is a (p, s)-convex F-I-V-F

then, by hypothesis, we have

U(t2) �
(

t3
p − t2

p

t3
p − t1

p

)s
U(t1) +

(
t2

p − t1
p

t3
p − t1

p

)s
U(t3).

Therefore, for each ϕ ∈ [0, 1], we have

U∗(t2, ϕ) ≤
(

t3
p−t2

p

t3
p−t1

p

)s
U∗(t1, ϕ) +

(
t2

p−t1
p

t3
p−t1

p

)s
U∗(t3, ϕ),

U∗(t2, ϕ) ≤
(

t3
p−t2

p

t3
p−t1

p

)s
U∗(t1, ϕ) +

(
t2

p−t1
p

t3
p−t1

p

)s
U∗(t3, ϕ)

(15)

= (t3
p−t2

p)s

(t3
p−t1

p)s U∗(t1, ϕ) + (t2
p−t1

p)s

(t3
p−t1

p)s U∗(t3, ϕ)

= (t3
p−t2

p)s

(t3
p−t1

p)s U∗(t1, ϕ) + (t2
p−t1

p)s

(t3
p−t1

p)s U∗(t3, ϕ).
(16)

From Equation (16), we have

(t3
p − t1

p)sU∗(t2, ϕ) ≤ (t3
p − t2

p)sU∗(t1, ϕ) + (t2
p − t1

p)sU∗(t3, ϕ),
(t3

p − t1
p)sU∗(t2, ϕ) ≤ (t3

p − t2
p)sU∗(t1, ϕ) + (t2

p − t1
p)sU∗(t3, ϕ),

that is [
(t3

p − t1
p)sU∗(t2, ϕ), (t3

p − t1
p)sU∗(t2, ϕ)

]
≤I

[
(t3

p − t2
p)sU∗(t1, ϕ) + (t2

p − t1
p)sU∗(t3, ϕ), (t3

p − t2
p)sU∗(t1, ϕ) + (t2

p − t1
p)sU∗(t3, ϕ)

]
.

Hence,
(t3

p − t1
p)sU(t2) � (t3

p − t2
p)sU(t1) + (t2

p − t1
p)sU(t3).

�

A refinement of Jensen type inequality for (p, s)-convex F-I-V-F is given in the follow-
ing theorem.

Theorem 5. Let s ∈ [0, 1], ωj ∈ R+, tj ∈ [t, s], (j = 1, 2, 3, . . . , , k, k ≥ 2) and
U : [t, s]→ FC(R) be a (p, s)-convex F-I-V-F, whose ϕ-levels define the family of I-V-Fs
Uϕ : [t, s] ⊂ R→ KC

+ are given by Uϕ(κ) = [U∗(κ, ϕ), U∗(κ, ϕ)] for all ∈ [t, s] and for
all ϕ ∈ [0, 1]. If (L, U) ⊆ [t, s], then

∑k
j=1

(
ωj

Wk

)s
U
(

tj

)
� ∑k

j=1

((Up − tj
p

Up − Lp

)s( ωj

Wk

)s
U(L, ϕ) +

( tj
p − Lp

Up − Lp

)s( ωj

Wk

)s
U(U, ϕ)

)
, (17)

where Wk = ∑k
j=1 ωj. If U is (p, s)-concave F-I-V-F, then inequality Equation (17) is reversed.

Proof. Consider tj such that L < tj < U (j = 1, 2, 3, . . . , k). Then, by hypothesis and
inequality Equation (15), we have

U
(
tj
) ≤ (Up − tj

p

Up − Lp

)s

U(L, ϕ) +

(
tj

p − Lp

Up − Lp

)s

U(U, ϕ).
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Therefore, for each ϕ ∈ [0, 1], we have

U∗
(
tj, ϕ

) ≤ (Up−tj
p

Up−Lp

)s
U∗(L, ϕ) +

(
tj

p−Lp

Up−Lp

)s
U∗(U, ϕ),

U∗
(
tj, ϕ

) ≤ (Up−tj
p

Up−Lp

)s
U∗(L, ϕ) +

(
tj

p−Lp

Up−Lp

)s
U∗(U, ϕ).

The above inequality can be written as(
ωj
Wk

)s
U∗
(
tj, ϕ

) ≤ (Up−tj
p

Up−Lp

)s( ωj
Wk

)s
U∗(L, ϕ) +

(
tj

p−Lp

Up−Lp

)s( ωj
Wk

)s
U∗(U, ϕ),(

ωj
Wk

)s
U∗
(
tj, ϕ

) ≤ (Up−tj
p

Up−Lp

)s( ωj
Wk

)s
U∗(L, ϕ) +

(
tj

p−Lp

Up−Lp

)s( ωj
Wk

)s
U∗(U, ϕ)

(18)

Taking the sum of all inequalities (18) for j = 1, 2, 3, . . . , k, we have

∑k
j=1

(
ωj
Wk

)s
U∗
(
tj, ϕ

) ≤ ∑k
j=1

((Up−tj
p

Up−Lp

)s( ωj
Wk

)s
U∗(L, ϕ) +

(
tj

p−Lp

Up−Lp

)s( ωj
Wk

)s
U∗(U, ϕ)

)
,

∑k
j=1

(
ωj
Wk

)s
U∗
(
tj, ϕ

) ≤ ∑k
j=1

((Up−tj
p

Up−Lp

)s( ωj
Wk

)s
U∗(L, ϕ) +

(
tj

p−Lp

Up−Lp

)s( ωj
Wk

)s
U∗(U, ϕ)

)
,

that is

∑k
j=1

(
ωj

Wk

)s
Uϕ

(
tj
)
=

[
∑k

j=1

(
ωj

Wk

)s
U∗
(
tj, ϕ

)
, ∑k

j=1

(
ωj

Wk

)s
U∗
(
tj, ϕ

)]

≤I

⎡⎣∑k
j=1

⎛⎝ (Up−tj
p

Up−Lp

)s( ωj
Wk

)s
U∗(L, ϕ)

+
(

tj
p−Lp

Up−Lp

)s( ωj
Wk

)s
U∗(U, ϕ)

⎞⎠, ∑k
j=1

⎛⎝ (Up−tj
p

Up−Lp

)s( ωj
Wk

)s
U∗(L, ϕ)

+
(

tj
p−Lp

Up−Lp

)s( ωj
Wk

)s
U∗(U, ϕ)

⎞⎠⎤⎦
= ∑k

j=1

(Up − tj
p

Up − Lp

)s( ωj

Wk

)s
[U∗(L, ϕ), U∗(L, ϕ)] + ∑k

j=1

(
tj

p − Lp

Up − Lp

)s( ωj

Wk

)s
[U∗(U, ϕ), U∗(U, ϕ)]

= ∑k
j=1

(Up − tj
p

Up − Lp

)s( ωj

Wk

)s
Uϕ(L) + ∑k

j=1

(
tj

p − Lp

Up − Lp

)s( ωj

Wk

)s
Uϕ(U).

Thus,

∑k
j=1

(
ωj

Wk

)s
U
(
tj
)
� ∑k

j=1

((Up − tj
p

Up − Lp

)s( ωj

Wk

)s
U(L) +

(
tj

p − Lp

Up − Lp

)s( ωj

Wk

)s
U(U)

)
,

and this completes the proof. �

We now consider some special cases of Theorems 3 and 5.
If U∗(κ, ϕ) = U∗(κ, ϕ), then Theorems 3 and 5 reduce to the following results:

Corollary 2 ([21]). (Jensen inequality for (p, s)-convex function) Let s ∈ [0, 1], ωj ∈ R+,
tj ∈ [t, s], (j = 1, 2, 3, . . . , k, k ≥ 2) and let U : [t, s]→ R+ be a non-negative real-valued
function. If U is a (p, s)-convex function, then

U

⎛⎝[
1

Wk

k

∑
j=1

ωjtj
p

] 1
p
⎞⎠ ≤ ∑k

j=1

(
ωj

Wk

)s
U
(
tj
)
, (19)

where Wk = ∑k
j=1 ωj. If U is (p, s)-concave function, then inequality (19) is reversed.
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Corollary 3. Let s ∈ [0, 1], ωj ∈ R+, tj ∈ [t, s], (j = 1, 2, 3, . . . , k, k ≥ 2), and U : [t, s]→ R+

be a non-negative real-valued function. If U is a (p, s)-convex function and t1, t2, . . . , tj ∈
(L, U) ⊆ [t, s], then

∑k
j=1

(
ωj

Wk

)s
U
(

tj

)
≤ ∑k

j=1

((Up − tj
p

Up − Lp

)s( ωj

Wk

)s
U(L) +

( tj
p − Lp

Up − Lp

)s( ωj

Wk

)s
U(U)

)
, (20)

where Wk = ∑k
j=1 ωj. If U is a (p, s)-concave function, then inequality (20) is reversed.

4. Hermite–Hadamard Type Inequalities for (p, s)-Convex F-I-V-F in the Second Sense

In this section, we will continue with the H–H inequality for (p, s)-convex fuzzy-I-V-Fs
as well as the fuzzy-interval H–H Fejér inequality for (p, s)-convex fuzzy-I-V-Fs using the
fuzzy order relation. Firstly, we start with the following H–H inequality for (p, s)-convex
fuzzy-I-V-Fs:

Theorem 6. Let U : [t, s]→ FC(R) be a (p, s)-convex F-I-V-F, whose ϕ-levels define the
family of I-V-Fs. Uϕ : [t, s] ⊂ R→ KC

+ are given by Uϕ(κ) = [U∗(κ, ϕ), U∗(κ, ϕ)] for all
∈ [t, s] and for all ϕ ∈ [0, 1]. If U ∈ FR([t, s]), then

2s−1 U

([
tp + sp

2

] 1
p
)

� p
sp − tp (FR)

∫ s

t
κp−1U(κ)dκ ≤p

U(t)+̃U(s)
s + 1

. (21)

If U is a (p, s)-concave F-I-V-F, then

2s−1 U

([
tp + sp

2

] 1
p
)

� p
sp − tp (FR)

∫ s

t
κp−1U(κ)dκ � U(t)+̃U(s)

s + 1
. (22)

Proof. Let U be a (p, s)-convex F-I-V-F. Then, by hypothesis, we have

2sU

([
tp + sp

2

] 1
p
)

� U

(
[ζtp + (1− ζ)sp]

1
p

)
+̃U

(
[(1− ζ)tp + ζsp]

1
p

)
.

Therefore, for each ϕ ∈ [0, 1], we have

2sU∗
([

tp+sp

2

] 1
p , ϕ

)
≤ U∗

(
[ζtp + (1− ζ)sp]

1
p , ϕ

)
+ U∗((1− ζ)tp + ζsp, ϕ),

2sU∗
([

tp+sp

2

] 1
p , ϕ

)
≤ U∗

(
[ζtp + (1− ζ)sp]

1
p , ϕ

)
+ U∗((1− ζ)tp + ζsp, ϕ).

Then,

2s ∫ 1
0 U∗

([
tp+sp

2

] 1
p , ϕ

)
dζ ≤ ∫ 1

0 U∗
(
[ζtp + (1− ζ)sp]

1
p , ϕ

)
dζ +

∫ 1
0 U∗((1− ζ)tp + ζsp, ϕ)dζ,

2s ∫ 1
0 U∗

([
tp+sp

2

] 1
p , ϕ

)
dζ ≤ ∫ 1

0 U∗
(
[ζtp + (1− ζ)sp]

1
p , ϕ

)
dζ +

∫ 1
0 U∗((1− ζ)tp + ζsp, ϕ)dζ.

It follows that

2s−1U∗
([

tp+sp

2

] 1
p , ϕ

)
≤ p

sp−tp
∫ s

t κp−1U∗(κ, ϕ)dκ,

2s−1U∗
([

tp+sp

2

] 1
p , ϕ

)
≤ p

sp−tp
∫ s

t κp−1U∗(κ, ϕ)dκ.

That is,
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2s−1

[
U∗

([
tp + sp

2

] 1
p
, ϕ

)
, U∗

([
tp + sp

2

] 1
p
, ϕ

)]
≤I

p
sp − tp

[∫ s

t
κp−1U∗(κ, ϕ)dκ,

∫ s

t
κp−1U∗(κ, ϕ)dκ

]
.

Thus,

2s−1U

([
tp + sp

2

] 1
p
)

� p
sp − tp (FR)

∫ s

t
κp−1U(κ)dκ. (23)

In a similar way as above, we have

p
sp − tp (FR)

∫ s

t
κp−1U(κ)dκ � 1

s + 1
[
U(t)+̃U(s)

]
. (24)

Combining Equations (23) and (24), we have

2s−1 U

([
tp + sp

2

] 1
p
)

� p
sp − tp (FR)

∫ s

t
κp−1U(κ)dκ � 1

s + 1
[
U(t)+̃U(s)

]
.

Hence, we obtain the required result. �

Remark 4. On the basis of Theorem 6, we consider the certain the special situation as
below:

- If we attempt to take U∗(κ, ϕ) = U∗(κ, ϕ) with ϕ = 1, then we achieve the (p, s)-
convex function, see [9];

- If we attempt to take s = 1, then we achieve the result for p-convex F-I-V-F-:

U

([
tp + sp

2

] 1
p
)

� p
sp − tp (FR)

∫ s

t
κp−1U(κ)dκ � U(t)+̃U(s)

2
; (25)

- If we attempt to take p = 1, then we achieve the result for s-convex F-I-V-F, see [13]:

U

(
t + s

2

)
� 1

s− t
(FR)

∫ s

t
U(κ)dκ � U(t)+̃U(s)

s + 1
; (26)

- If we attempt to take s = 1 and p = 1, then we achieve the result for p-convex F-I-V-F,
see [13]:

U

(
t + s

2

)
� 1

s− t
(FR)

∫ s

t
U(κ)dκ � U(t)+̃U(s)

2
; (27)

- If we attempt to take U∗(κ, ϕ) = U∗(κ, ϕ) with ϕ = 1, then we acquire the result for
classical (p, s)-convex function, see [21]:

2s−1 U

([
tp + sp

2

] 1
p
)
≤ p

sp − tp (R)
∫ s

t
κp−1U(κ)dκ ≤ 1

s + 1
[
U(t)+̃U(s)

]
; (28)

- If we attempt to take U∗(κ, ϕ) = U∗(κ, ϕ) with ϕ = 1 and s = 1, then we acquire the
result for classical p-convex function:

U

([
tp + sp

2

] 1
p
)
≤ p

sp − tp (R)
∫ s

t
κp−1U(κ)dκ ≤ U(t) + U(s)

2
; (29)
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- If we attempt to take U∗(κ, ϕ) = U∗(κ, ϕ) with, ϕ = 1, p = 1 and s = 1, then we
acquire the result for classical convex function:

U

(
t + s

2

)
≤ 1

s− t
(R)

∫ s

t
U(κ)dκ ≤ U(t) + U(s)

2
. (30)

Example 2. Let p be an odd number and s ∈ [0, 1], and the F-I-V-F U : [t, s] = [2, 3]→ FC(R)
defined by

U(κ)(σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

σ(
2−κ

p
2

) , σ ∈
[
0, 2−κ

p
2

]
2
(

2−κ
p
2

)
−σ(

2−κ
p
2

) , σ ∈
(

2−κ
p
2 , 2

(
2−κ

p
2

)]
0, otherwise.

(31)

Then, for each ϕ ∈ [0, 1], we have Uϕ(κ) =
[

ϕ
(

2−κ
p
2

)
, (2− ϕ)

(
2−κ

p
2

)]
. Since

end point functions U∗(κ, ϕ) = ϕ
(

2−κ
p
2

)
, U∗(κ, ϕ) = (2− ϕ)

⎛⎜⎜⎜⎝2−κ
p
2

⎞⎟⎟⎟⎠ are (p, s)-

convex functions for each ϕ ∈ [0, 1]. Then, U(κ) is (p, s)-convex F-I-V-F. We now compute
the following:

2s−1U∗
([

tp+sp

2

] 1
p , ϕ

)
= 4−√10

2 ϕ,

2s−1U∗
([

tp+sp

2

] 1
p , ϕ

)
= 4−√10

2 (2− ϕ),

p
sp−tp

∫ s
t κp−1U∗(κ, ϕ)dκ = ϕ

∫ 3
2

(
2−κ

p
2

)
dκ = 21

50 ϕ,
p

sp−tp
∫ s

t κp−1U∗(κ, ϕ)dκ = (2− ϕ)
∫ 3

2

(
2−κ

p
2

)
dκ = 21

50 (2− ϕ),
U∗(t, ϕ)+U∗(s, ϕ)

s+1 = 4−√2−√3
2 ϕ,

U∗(t, ϕ)+U∗(s, ϕ)
s+1 = 4−√2−√3

2 (2− ϕ),

for all ϕ ∈ [0, 1]. That means[
4−√10

2
ϕ,

4−√10
2

(2− ϕ)

]
≤I

[
21
50

ϕ,
21
50

(2− ϕ)

]
≤I

[
4−√2−√3

2
ϕ,

4−√2−√3
2

(2− ϕ)

]
, for all ϕ ∈ [0, 1],

and the Theorem 6 has been verified.

Theorem 7. Let U : [t, s]→ FC(R) be a (p, s)-convex F-I-V-F, whose ϕ-levels define the
family of I-V-Fs Uϕ : [t, s] ⊂ R→ KC

+ are given by Uϕ(κ) = [U∗(κ, ϕ), U∗(κ, ϕ)] for all
∈ [t, s] and for all ϕ ∈ [0, 1]. If U ∈ FR([t, s]), then

4s−1 U

([
tp + sp

2

] 1
p
)

� �2 � p
sp − tp (FR)

∫ s

t
κp−1U(κ)dκ � �1 � U(t)+̃U(s)

s + 1

[
1
2
+

1
2s

]
, (32)

where

�1 =

U(t)+̃U(s)
2 +̃U

([
tp+sp

2

] 1
p
)

s + 1
,�2 = 2s−2

[
U

([
3tp + sp

4

] 1
p
)
+̃U

([
tp + 3sp

4

] 1
p
)]

,

and �1 = [�1∗ , �1
∗], �2 = [�2∗ , �2

∗].
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Proof. Take
[
tp, tp+sp

2

]
, and we have

2sU

([
ζtp+(1−ζ) tp+sp

2
2 +

(1−ζ)tp+ζ tp+sp
2

2

] 1
p
)

� U

([
ζtp + (1− ζ) tp+sp

2

] 1
p
)
+̃U

([
(1− ζ)tp + ζ tp+sp

2

] 1
p
)

.

Therefore, for each ϕ ∈ [0, 1], we have

2sU∗

([
ζtp+(1−ζ) tp+sp

2
2 +

(1−ζ)tp+ζ tp+sp
2

2

] 1
p
, ϕ

)
≤ U∗

([
ζtp + (1− ζ) tp+sp

2

] 1
p , ϕ

)
+ U∗

([
(1− ζ)tp + ζ tp+sp

2

] 1
p , ϕ

)
,

2sU∗
([

ζtp+(1−ζ) tp+sp
2

2 +
(1−ζ)tp+ζ tp+sp

2
2

] 1
p
, ϕ

)
≤ U∗

([
ζtp + (1− ζ) tp+sp

2

] 1
p , ϕ

)
+ U∗

([
(1− ζ)tp + ζ tp+sp

2

] 1
p , ϕ

)
.

Consequently, we obtain

2s−2U∗
([

3tp+sp

4

] 1
p , ϕ

)
≤ p

sp−tp
∫ tp+sp

2
t κp−1U∗(κ, ϕ)dκ,

2s−2U∗
([

3tp+sp

4

] 1
p , ϕ

)
≤ p

sp−tp
∫ tp+sp

2
t κp−1U∗(κ, ϕ)dκ.

That is,

2s−2
[
U∗
([

3tp+sp

4

] 1
p , ϕ

)
, U∗

([
3tp+sp

4

] 1
p , ϕ

)]
≤I

p
sp−tp

[∫ tp+sp
2

t κp−1U∗(κ, ϕ)dκ,
∫ tp+sp

2
t κp−1U∗(κ, ϕ)dκ

]
.

It follows that

2s−2U

([
3tp + sp

4

] 1
p
)

� p
sp − tp

∫ tp+sp
2

t
κp−1U(κ)dκ. (33)

In a similar way as above, we have

2s−2U

([
tp + 3sp

4

] 1
p
)

� p
sp − tp

∫ s

tp+sp
2

κp−1U(κ)dκ. (34)

Combining Equations (33) and (34), we have

2s−2

[
U

([
3tp + sp

4

] 1
p
)
+̃U

([
tp + 3sp

4

] 1
p
)]

� p
sp − tp

∫ s

t
κp−1U(κ)dκ.

By using Theorem 6, we have

4s−1 U

([
tp + sp

2

] 1
p
)

= 4s−1 U

([
1
2

.
3tp + sp

4
+

1
2

.
tp + 3sp

4

] 1
p
)

.
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Therefore, for each ϕ ∈ [0, 1], we have

4s−1U∗
([

tp+sp

2

] 1
p , ϕ

)
= 4s−1 U∗

([
1
2 . 3tp+sp

4 + 1
2 . tp+3sp

4

] 1
p , ϕ

)
,

4s−1U∗
([

tp+sp

2

] 1
p , ϕ

)
= 4s−1U∗

([
1
2 . 3tp+sp

4 + 1
2 . tp+3sp

4

] 1
p , ϕ

)
≤ 2s−2

[
U∗
([

3tp+sp

4

] 1
p , ϕ

)
+ U∗

([
tp+3sp

4

] 1
p , ϕ

)]
≤ 2s−2

[
U∗
([

3tp+sp

4

] 1
p , ϕ

)
+ U∗

([
tp+3sp

4

] 1
p , ϕ

)]
= �2∗
= �2

∗
≤ p

sp−tp
∫ s

t κp−1U∗(κ, ϕ)dκ
≤ p

sp−tp
∫ s

t κp−1U∗(κ, ϕ)dκ

≤ 1
s+1

[
U∗(t,ϕ)+U∗(s,ϕ)

2 + U∗
([

tp+sp

2

] 1
p , ϕ

)]
≤ 1

s+1

[
U∗(t,ϕ)+U∗(s,ϕ)

2 + U∗
([

tp+sp

2

] 1
p , ϕ

)]
= �1∗
= �1

∗

≤ 1
s+1

[
U∗(t,ϕ)+U∗(s,ϕ)

2 + 1
2s (U∗(t, ϕ) + U∗(s, ϕ))

]
≤ 1

s+1

[
U∗(t,ϕ)+U∗(s,ϕ)

2 + 1
2s (U∗(t, ϕ) + U∗(s, ϕ))

]
= 1

s+1 [U∗(t, ϕ) + U∗(s, ϕ)]
[

1
2 + 1

2s

]
= 1

s+1 [U
∗(t, ϕ) + U∗(s, ϕ)]

[
1
2 + 1

2s

]
,

that is

4s−1 U

([
tp + sp

2

] 1
p
)

� �2 � p
sp − tp (FR)

∫ s

t
κp−1U(κ)dκ � �1 � U(t)+̃U(s)

s + 1

[
1
2
+

1
2s

]
,

hence, the result follows. �

Example 3. Let p be an odd number and the F-I-V-F U : [t, s] = [2, 3]→ FC(R) defined by,

Uϕ(κ) =

⎡⎢⎢⎢⎣ϕ
(

2−κ
p
2

)
, (2− ϕ)

⎛⎜⎜⎜⎝2−κ
p
2

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦, as in Example 2, then U(κ) is (p, s)-convex

F-I-V-F and satisfies Equation (21). We have

U∗(κ, ϕ) = ϕ
(

2−κ
p
2

)
and U∗(κ, ϕ) = (2− ϕ)

(
2−κ

p
2

)
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We now compute the following:

U∗(t, ϕ)+U∗(s, ϕ)
s+1

[
1
2 + 1

2s

]
= 4−√2−√3

2 ϕ,
U∗(t, ϕ)+U∗(s, ϕ)

s+1

[
1
2 + 1

2s

]
= 4−√2−√3

2 (2− ϕ),

�1∗ =
U∗(t, ϕ)+U∗(s, ϕ)

2 +U∗

([
tp+sp

2

] 1
p , ϕ

)
s+1 = 8−√2−√3−√10

4 ϕ,

�1
∗ =

U∗(t, ϕ)+U∗(s, ϕ)
2 +U∗

([
tp+sp

2

] 1
p , ϕ

)
s+1 = 8−√2−√3−√10

4 (2− ϕ),

�2∗ = 2s−2
[
U∗
([

3tp+sp

4

] 1
p , ϕ

)
+ U∗

([
tp+3sp

4

] 1
p , ϕ

)]
= 5−√11

4 ϕ,

�2
∗ = 2s−2

[
U∗
([

3tp+sp

4

] 1
p , ϕ

)
+ U∗

([
tp+3sp

4

] 1
p , ϕ

)]
= 5−√11

4 (2− ϕ),

4s−1U∗
([

tp+sp

2

] 1
p , ϕ

)
= 4−√10

2 ϕ,

4s−1U∗
([

tp+sp

2

] 1
p , ϕ

)
= 4−√10

2 (2− ϕ).

Then, we obtain that

4−√10
2 ϕ ≤ 5−√11

4 ϕ ≤ 21
50 ϕ ≤ 8−√2−√3−√10

4 ϕ ≤ 4−√2−√3
2 ϕ,

4−√10
2 (2− ϕ) ≤ 5−√11

4 (2− ϕ) ≤ 21
50 (2− ϕ) ≤ 8−√2−√3−√10

4 (2− ϕ) ≤ 4−√2−√3
2 (2− ϕ).

Hence, Theorem 7 is verified.

The next Theorems 8 and 9 give the second H–H Fejér inequality and the first H–H
Fejér inequality for (p, s)-convex F-I-V-F, respectively.

Theorem 8. (Second H–H Fejér inequality for (p, s)-convex F-I-V-F) Let U : [t, s]→ FC(R)
be a (p, s)-convex F-I-V-F with t < s, whose ϕ-levels define the family of I-V-Fs
Uϕ : [t, s] ⊂ R→ KC

+ are given by Uϕ(κ) = [U∗(κ, ϕ), U∗(κ, ϕ)] for all κ ∈ [t, s] and for
all ϕ ∈ [0, 1]. If U ∈ FR([t, s]) and Ψ : [t, s]→ R, Ψ(κ) ≥ 0, p-symmetric with respect to[

tp+sp

2

] 1
p , then

p
sp − tp (FR)

∫ s

t
κp−1U(κ)Ψ(κ)d �

[
U(t)+̃U(s)

] ∫ 1

0
ζsΨ

(
[(1− ζ)tp + ζsp]

1
p

)
dζ. (35)

If U is (p, s)-concave F-I-V-F, then Equation (35) is reversed.

Proof. Let U be a (p, s)-convex F-I-V-F. Then, for each ϕ ∈ [0, 1], we have

U∗
(
[ζtp + (1− ζ)sp]

1
p , ϕ

)
Ψ
(
[ζtp + (1− ζ)sp]

1
p

)
≤ (

ζsU∗(t, ϕ) + (1− ζ)sU∗(s, ϕ)
)
Ψ
(
[ζtp + (1− ζ)sp]

1
p

)
,

U∗
(
[ζtp + (1− ζ)sp]

1
p , ϕ

)
Ψ
(
[ζtp + (1− ζ)sp]

1
p

)
≤ (

ζsU∗(t, ϕ) + (1− ζ)sU∗(s, ϕ)
)
Ψ
(
[ζtp + (1− ζ)sp]

1
p

)
.

(36)
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and

U∗
(
[(1− ζ)tp + ζsp]

1
p , ϕ

)
Ψ
(
[(1− ζ)tp + ζsp]

1
p

)
≤ (

(1− ζ)sU∗(t, ϕ) + ζsU∗(s, ϕ)
)
Ψ
(
[(1− ζ)tp + ζsp]

1
p

)
,

U∗
(
[(1− ζ)tp + ζsp]

1
p , ϕ

)
Ψ
(
[(1− ζ)tp + ζsp]

1
p

)
≤ (

(1− ζ)sU∗(t, ϕ) + ζsU∗(s, ϕ)
)
Ψ
(
[(1− ζ)tp + ζsp]

1
p

)
.

(37)

After adding Equations (36) and (37), and integrating over [0, 1], we get∫ 1
0 U∗

(
[ζtp + (1− ζ)sp]

1
p , ϕ

)
Ψ
(
[ζtp + (1− ζ)sp]

1
p
)

dζ

+
∫ 1

0 U∗
(
[(1− ζ)tp + ζsp]

1
p , ϕ

)
Ψ
(
[(1− ζ)tp + ζsp]

1
p
)

dζ

≤ ∫ 1
0

⎡⎣ U∗(t, ϕ)
{

ζsΨ
(
[ζtp + (1− ζ)sp]

1
p
)
+ (1− ζ)sΨ

(
[(1− ζ)tp + ζsp]

1
p
)}

+U∗(s, ϕ)
{
(1− ζ)sΨ

(
[ζtp + (1− ζ)sp]

1
p
)
+ ζsΨ

(
[(1− ζ)tp + ζsp]

1
p
)}

⎤⎦dζ,

∫ 1
0 U∗

(
[ζtp + (1− ζ)sp]

1
p , ϕ

)
Ψ
(
[ζtp + (1− ζ)sp]

1
p
)

dζ

+
∫ 1

0 U∗
(
[(1− ζ)tp + ζsp]

1
p , ϕ

)
Ψ
(
[(1− ζ)tp + ζsp]

1
p
)

dζ

≤ ∫ 1
0

⎡⎣ U∗(t, ϕ)
{

ζsΨ
(
[ζtp + (1− ζ)sp]

1
p
)
+ (1− ζ)sΨ

(
[(1− ζ)tp + ζsp]

1
p
)}

+U∗(s, ϕ)
{
(1− ζ)sΨ

(
[ζtp + (1− ζ)sp]

1
p
)
+ ζsΨ

(
[(1− ζ)tp + ζsp]

1
p
)}

⎤⎦dζ.

= 2U∗(t, ϕ)
∫ 1

0 ζsΨ
(
[ζtp + (1− ζ)sp]

1
p
)

dζ + 2U∗(s, ϕ)
∫ 1

0 ζsΨ
(
[(1− ζ)tp + ζsp]

1
p
)

dζ

= 2U∗(t, ϕ)
∫ 1

0 ζsΨ
(
[ζtp + (1− ζ)sp]

1
p
)

dζ + 2U∗(s, ϕ)
∫ 1

0 ζsΨ
(
[(1− ζ)tp + ζsp]

1
p
)

dζ.

Since Ψ is symmetric, then

= 2[U∗(t, ϕ) + U∗(s, ϕ)]
∫ 1

0 ζsΨ
(
[(1− ζ)tp + ζsp]

1
p

)
dζ

= 2[U∗(t, ϕ) + U∗(s, ϕ)]
∫ 1

0 ζsΨ
(
[(1− ζ)tp + ζsp]

1
p

)
dζ.

(38)

Since ∫ 1
0 U∗

(
[ζtp + (1− ζ)sp]

1
p , ϕ

)
Ψ
(
[ζtp + (1− ζ)sp]

1
p

)
dζ

=
∫ 1

0 U∗
(
[(1− ζ)tp + ζsp]

1
p , ϕ

)
Ψ
(
[(1− ζ)tp + ζsp]

1
p

)
dζ

= p
sp−tp

∫ s
t κp−1U∗(κ, ϕ)Ψ(κ)dκ,∫ 1

0 U∗
(
[ζtp + (1− ζ)sp]

1
p , ϕ

)
Ψ
(
[ζtp + (1− ζ)sp]

1
p

)
dζ

=
∫ 1

0 U∗
(
[(1− ζ)tp + ζsp]

1
p , ϕ

)
Ψ
(
[(1− ζ)tp + ζsp]

1
p

)
dζ

= p
sp−tp

∫ s
t κp−1U∗(κ, ϕ)Ψ(κ)dκ,

(39)

From Equation (39) and integrating with respect to ζ over [0, 1], we have

p
sp−tp

∫ s
t κp−1U∗(κ, ϕ)Ψ(κ)dκ ≤ [U∗(t, ϕ) + U∗(s, ϕ)]

∫ 1
0 ζsΨ

(
[(1− ζ)tp + ζsp]

1
p

)
dζ,

p
sp−tp

∫ s
t κp−1U∗(κ, ϕ)Ψ(κ)dκ ≤ [U∗(t, ϕ) + U∗(s, ϕ)]

∫ 1
0 ζsΨ

(
[(1− ζ)tp + ζsp]

1
p

)
dζ,

that is,

p
sp−tp

[ ∫ s
t κp−1U∗(κ, ϕ)Ψ(κ)dκ,

∫ s
t κp−1U∗(κ, ϕ)Ψ(κ)dκ

]
≤I [U∗(t, ϕ) + U∗(s, ϕ), U∗(t, ϕ) + U∗(s, ϕ)]

∫ 1
0 ζsΨ

(
[(1− ζ)tp + ζsp]

1
p

)
dζ,
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hence

p
sp − tp (FR)

∫ s

t
κp−1U(κ)Ψ(κ)dκ �

[
U(t)+̃U(s)

] ∫ 1

0
ζsΨ

(
[(1− ζ)tp + ζsp]

1
p

)
dζ.

�

Theorem 9. (First H–H Fejér inequality for (p, s)-convex F-I-V-F) Let U : [t, s]→ FC(R)
be a (p, s)-convex F-I-V-F with t < s, whose ϕ-levels define the family of I-V-Fs
Uϕ : [t, s] ⊂ R→ KC

+ are given by Uϕ(κ) = [U∗(κ, ϕ), U∗(κ, ϕ)] for all ∈ [t, s] and for
all ϕ ∈ [0, 1]. If U ∈ FR([t, s]) and Ψ : [t, s]→ R, Ψ(κ) ≥ 0, p-symmetric with respect to[

tp+sp

2

] 1
p , and

∫ s
t Ψ(κ)dκ > 0, then

2s−1 U

([
tp + sp

2

] 1
p
)

� p∫ s
t κp−1Ψ(κ)dκ

(FR)
∫ s

t
κp−1U(κ)Ψ(κ)dκ. (40)

If U is (p, s)-concave F-I-V-F, then inequality (40) is reversed.

Proof. Since U is a (p, s)-convex F-I-V-F, then, for each ϕ ∈ [0, 1], we have

2s U∗
([

tp+sp

2

] 1
p , ϕ

)
≤ U∗

(
[ζtp + (1− ζ)sp]

1
p , ϕ

)
+ U∗

(
[(1− ζ)tp + ζsp]

1
p , ϕ

)
,

2s U∗
([

tp+sp

2

] 1
p , ϕ

)
≤ U∗

(
[ζtp + (1− ζ)sp]

1
p , ϕ

)
+ U∗

(
[(1− ζ)tp + ζsp]

1
p , ϕ

)
.

(41)

By multiplying Equation (41) by Ψ
(
[ζtp + (1− ζ)sp]

1
p

)
= Ψ

(
[(1− ζ)tp + ζsp]

1
p

)
and integrating it by ζ over [0, 1], we obtain

2s U∗
([

tp+sp

2

] 1
p , ϕ

) ∫ 1
0 Ψ

(
[(1− ζ)tp + ζsp]

1
p , ϕ

)
dζ

≤

⎛⎜⎜⎝
∫ 1

0 U∗
(
[ζtp + (1− ζ)sp]

1
p , ϕ

)
Ψ
(
[ζtp + (1− ζ)sp]

1
p

)
dζ

+
∫ 1

0 U∗
(
[(1− ζ)tp + ζsp]

1
p , ϕ

)
Ψ
(
[(1− ζ)tp + ζsp]

1
p

)
dζ

⎞⎟⎟⎠,

2sU∗
([

tp+sp

2

] 1
p , ϕ

) ∫ 1
0 Ψ

(
[(1− ζ)tp + ζsp]

1
p

)
dζ

≤

⎛⎜⎜⎝
∫ 1

0 U∗
(
[ζtp + (1− ζ)sp]

1
p , ϕ

)
Ψ
(
[ζtp + (1− ζ)sp]

1
p

)
dζ

+
∫ 1

0 U∗
(
[(1− ζ)tp + ζsp]

1
p , ϕ

)
Ψ
(
[(1− ζ)tp + ζsp]

1
p

)
dζ

⎞⎟⎟⎠.

(42)

Since ∫ 1
0 U∗

(
[ζtp + (1− ζ)sp]

1
p , ϕ

)
Ψ
(
[ζtp + (1− ζ)sp]

1
p

)
dζ

=
∫ 1

0 U∗
(
[(1− ζ)tp + ζsp]

1
p , ϕ

)
Ψ
(
[(1− ζ)tp + ζsp]

1
p

)
dζ

= p
sp−tp

∫ s
t κp−1U∗(κ, ϕ)Ψ(κ)dκ,∫ 1

0 U∗
(
[ζtp + (1− ζ)sp]

1
p , ϕ

)
Ψ
(
[ζtp + (1− ζ)sp]

1
p

)
dζ

=
∫ 1

0 U∗
(
[(1− ζ)tp + ζsp]

1
p , ϕ

)
Ψ
(
[(1− ζ)tp + ζsp]

1
p

)
dζ

= p
sp−tp

∫ s
t κp−1U∗(κ, ϕ)Ψ(κ)dκ,

(43)
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From Equation (43), we have

2s−1U∗
([

tp+sp

2

] 1
p , ϕ

)
≤ p∫ s

t Ψ(κ)dκ

∫ s
t κp−1U∗(κ, ϕ)Ψ(κ)dκ,

2s−1U∗
([

tp+sp

2

] 1
p , ϕ

)
≤ p∫ s

t Ψ(κ)dκ

∫ s
t κp−1U∗(κ, ϕ)Ψ(κ)dκ.

From this, we have

2s−1
[
U∗
([

tp+sp

2

] 1
p , ϕ

)
, U∗

([
tp+sp

2

] 1
p , ϕ

)]
≤I

p∫ s
t Ψ(κ)dκ

[ ∫ s
t κp−1U∗(κ, ϕ)Ψ(κ)dκ,

∫ s
t κp−1U∗(κ, ϕ)Ψ(κ)dκ

]
,

that is

2s−1U

([
tp + sp

2

] 1
p
)

� p∫ s
t κp−1Ψ(κ)dκ

(FR)
∫ s

t
κp−1U(κ, ϕ)Ψ(κ)dκ,

and this completes the proof. �

Remark 5. If we attempt to take s = 1 in Theorems 8 and 9, then we achieve the appropriate
theorems for p-convex F-I-V-Fs, see [13]:

- If we attempt to take U∗(κ, ϕ) = U∗(κ, ϕ) with ϕ = 1, then, from Theorems 8 and 9, we
achieve classical first and second H–H Fejér inequality for (p, s)-convex function, [21];

- If in Theorems 8 and 9, we attempt to take U∗(κ, ϕ) = U∗(κ, ϕ) with ϕ = 1 and s = 1,
then we acquire the classical appropriate theorems for p-convex function, see [49];

- If, in Theorems 8 and 9, we attempt to take U∗(κ, ϕ) = U∗(κ, ϕ) with ϕ = 1, s = 1
and p = 1, then we acquire the appropriate theorems for a convex function [48];

- If we attempt to take Ψ(κ) = 1, then combining Theorem 8 and Theorem 9, we acquire
Theorem 4.1.

Example 4. We consider the F-I-V-F U : [1, 4]→ FC(R) defined by

U(κ)(σ) =

⎧⎨⎩
σ−eκ p

eκ p , σ ∈ [eκ p, 2eκ p],
4eκ p−σ

2eκ p , σ ∈ (2eκ p, 4eκ p],
0, otherwise,

(44)

Then, for each ϕ ∈ [0, 1], we have Uϕ(κ) = [(1 + ϕ)eκ p, 2(2− ϕ)eκ p]. Since end point
functions U∗(κ, ϕ), U∗(κ, ϕ) are (p, s)-convex functions, for each s, ϕ ∈ [0, 1], then U(κ) is
(p, s)-convex F-I-V-F. If

Ψ(κ) =
{

κp − 1, σ ∈ [1, 5
2
]
,

4−κp, σ ∈ ( 5
2 , 4

]
,

(45)

where p = 1. Then, we have

p
sp−tp

∫ 4
1 κp−1U∗(κ, ϕ)Ψ(κ)dκ = 1

3

∫ 4
1 κp−1U∗(κ, ϕ)Ψ(κ)dκ

= 1
3

∫ 5
2

1 κp−1U∗(κ, ϕ)Ψ(κ)dκ + 1
3

∫ 4
5
2
κp−1U∗(κ, ϕ)Ψ(κ)dκ

= 1
3 (1 + ϕ)

∫ 5
2

1 e(−1)dκ + 1
3 (1 + ϕ)

∫ 4
5
2

e(4−)dκ ≈ 11(1 + ϕ),
p

sp−tp
∫ 4

1 κp−1U∗(κ, ϕ)Ψ(κ)dκ = 1
3

∫ 4
1 κp−1U∗(κ, ϕ)Ψ(κ)dκ

= 1
3

∫ 5
2

1 κp−1U∗(κ, ϕ)Ψ(κ)dκ + 1
3

∫ 4
5
2
κp−1U∗(κ, ϕ)Ψ(κ)dκ

= 2
3 (2− ϕ)

∫ 5
2

1 e(−1)dκ + 2
3 (2− ϕ)

∫ 4
5
2

e(4−)dκ ≈ 22(2− ϕ),

(46)
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and

[U∗(t, ϕ) +U∗(s, ϕ)]
∫ 1

0 ζsΨ
(
[(1− τ)tp + τsp]

1
p

)
dτ

[U∗(t, ϕ) +U∗(s, ϕ)]
∫ 1

0 ζsΨ
(
[(1− τ)tp + τsp]

1
p

)
dτ

= (1 + ϕ)
[
e + e4] [∫ 1

2
0 3τ2d +

∫ 1
1
2

τ(3− 3τ)dτ

]
≈ 43

2 (1 + ϕ)

= 2(2− ϕ)
[
e + e4][∫ 1

2
0 3τ2d +

∫ 1
1
2

τ(3− 3τ)dτ

]
≈ 43(2− ϕ).

(47)

From Equations (46) and (47), we have

[11(1 + ϕ), 22(2− ϕ)] ≤ I

[
43
2
(1 + ϕ), 43(2− ϕ)

]
, for each ϕ ∈ [0, 1].

Hence, Theorem 8 is verified.
For Theorem 9, we have

2s−1U∗
([

tp+sp

2

] 1
p , ϕ

)
≈ 61

5 (1 + ϕ),

2s−1U∗
([

tp+sp

2

] 1
p , ϕ

)
≈ 122

5 (2− ϕ),
(48)

∫ s

t
κp−1Ψ(κ)dκ =

∫ 5
2

1
(κ − 1)dκ

∫ 4

5
2

(4−)dκ =
9
4

,

p∫ s
t κp−1Ψ(κ)dκ

∫ 4
1 κp−1U∗(κ, ϕ)Ψ(κ)dκ ≈ 73

5 (1 + ϕ),
p∫ s

t κp−1Ψ(κ)dκ

∫ 4
1 κp−1U∗(κ, ϕ)Ψ(κ)dκ ≈ 293

10 (2− ϕ).
(49)

From Equations (48) and (49), we have[
61
5
(1 + ϕ),

122
5

(2− ϕ)

]
≤ I

[
73
5
(1 + ϕ),

293
10

(2− ϕ)

]
.

Hence, Theorem 9 has been demonstrated.

5. Conclusions and Future Developments

Through this study, we have provided a reformative version of the different inequal-
ities in the frame of fuzzy interval space, which offers a better approximation than the
interval integral inequalities.

Then, for mappings satisfying the property “the product of two (p, s)-convex F-I-V-Fs
is a (p, s)-convex F-I-V-F”, we created certain fuzzy interval integral inequalities in terms
of the fuzzy interval H–H type inequalities. It is a fascinating topic to apply these fuzzy
interval inequalities to ϕ-type special means, numerical integration, and probability density
functions. With the methods and ideas provided in this article, the interested readers
are encouraged to further excavation on fuzzy interval inequalities. In the future, we
will try to explore this concept and its generalizations with the help of fuzzy fractional
integral operators.
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Abbreviations

KC Collection of all closed and bounded intervals
K+

C Collection of all closed and bounded positive intervals
FC(R) Collection of all closed and bounded fuzzy intervals
F-I-V-Fs Fuzzy-interval-valued functions
I-V-Fs Interval-valued functions
≤I order relation
� fuzzy order relation
(p, s)-convex F-I-V-Fs (p, s)-Convex fuzzy-interval-valued functions
H–H inequality Hermite–Hadamard inequality
H–H Fejér inequality Hermite–Hadamard–Fejér inequality
(FR)-integrable Fuzzy Riemann integrable
R[t, s] Riemann integrable real-valued functions
IR[t, s] Riemann integrable I-V-Fs
FR([t, s]) Riemann integrable F-I-V-Fs

References

1. Dragomir, S.S.; Pearce, V. Selected Topics on Hermite-Hadamard Inequalities and Applications; RGMIA Monographs: Victoria, Australia, 2000.
2. Mehrez, K.; Agarwal, P. New Hermite–Hadamard type integral inequalities for convex functions and their applications. J. Comput.

Appl. Math. 2019, 50, 274–285. [CrossRef]
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Abstract: In this paper, we are interested in an inverse geometric problem for the three-dimensional
Laplace equation to recover an inner boundary of an annular domain. This work is based on
the method of fundamental solutions (MFS) by imposing the boundary Cauchy data in a least-
square sense and minimisation of the objective function. This approach can also be considered with
noisy boundary Cauchy data. The simplicity and efficiency of this method is illustrated in several
numerical examples.

Keywords: inverse geometric problem; Laplace equation; method of fundamental solution; least-
square problem

1. Introduction

The inverse geometry problems, as an important subclass of inverse problems, can
be subdivided into two subclasses, depending on the location of the unknown boundary.
In the first kind, the portion of the outer boundary of the solution domain is unknown,
whilst in the second kind, the inner boundary is unknown.

There are many methods for solving the inverse geometry problems, such as the
boundary element regularisation method by Lesnic et al. [1], the method of fundamental
solutions and moving pseudo-boundary method by Karageorghis et al. [2–4], the boundary
function method by Wang et al. [5], the conjugate gradient method (CGM) and the boundary
element technique by Huang et al. [6,7].

Bin-Mohsin and Lesnic in 2012 utilised the method of fundamental solutions (MFS) to
the modified Helmholtz inverse geometry problem on an annular domain [8].
The purpose of this paper is to extend the aforementioned current approach to the three-
dimensional Laplace equation based on the method of fundamental solutions. Finally, two
examples are presented to show the simplicity and efficiency of this method.

2. Formulation of the Inverse Geometric Problem

Let D ⊂ R3 be a simply connected domain with an unknown boundary ∂D which is
compactly contained in a simply connected domain Ω ⊂ R3 with the boundary ∂Ω.
Let us consider the following inverse problem:

Δu = 0 in Ω \ D, (1)
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subject to the boundary conditions,

u = f on ∂Ω, (2)
∂u
∂n

= g on ∂Ω, (3)

u = h on ∂D, (4)

where f ∈ H1/2(∂Ω) and g ∈ H−1/2(∂Ω) are given functions and n is an outward unit
normal vector on ∂Ω. Moreover, the function h ∈ H1/2(∂D) is given on the unknown
boundary ∂D. Without loss of generality, we can suppose that Ω is the unit disk B(0; 1);
otherwise we can conformally map the exterior of the simply connected domain Ω onto
the exterior of the unit disk.

The unknown boundary ∂D can be expressed in spherical coordinates as

∂D = { r(θ, ϕ)(cos θ sin ϕ, sin θ sin ϕ, cos ϕ); θ ∈ [0, 2π), ϕ ∈ [0, π] }

where r(θ, ϕ) is a 2π-periodic and π-periodic smooth function with respect to θ and ϕ,
respectively, with values in the interval (0, 1).

The inverse problem we are concerned with is to determine geometrically the domain
boundary ∂D by utilising the method of fundamental solutions.

3. The Least-Square Problem Based on the MFS

In the classic MFS, the solution of a homogeneous linear partial differential equation
(PDE) is approximated by a linear combination of the fundamental solutions with the set of
sources located outside the problem domain and a set of points on the domain boundary.
The linear combination coefficients are determined by collocation or, alternatively, with a
least-squares fit of the boundary conditions.

Based on the MFS, one can approximate the solution of (1) by a linear combination of
its fundamental solutions, which is given by [9]

U(z, s) =
1

4πr
; r = ‖z− s‖. (5)

i.e.,

u(z) =
ns

∑
j=1

cjU(z, sj), (6)

where the collocation points zi and zi+M are uniformly located on ∂Ω and ∂D, respec-
tively, i.e.,

zi = (cos θ̂i sin ϕ̂i, sin θ̂i sin ϕ̂i, cos ϕ̂i), i = 1, M (7)

zi+M = ri(cos θi sin ϕi, sin θi sin ϕi, cos ϕi), i = 1, N (8)

Further, the ns := M + N source points sj and sj+M are uniformly located on the
outside of Ω and the inside of D, respectively, i.e.,

sj = R1(cos θ̂j sin ϕ̂j, sin θ̂j sin ϕ̂j, cos ϕ̂j), j = 1, M (9)

sj+M =
rj

R2
(cos θj sin ϕj, sin θj sin ϕj, cos ϕj), j = 1, N (10)

where R1, R2 > 1.
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The coefficients vector c = (cj)j=1,M+N in linear combination (6) and also, the radial
vector r = (rj)j=1,N can be determined by imposing the boundary conditions (2)–(4) in a
least-square sense, which recasts into minimising the objective function

T(c, r) = ‖u− f ‖2
L2(∂Ω) + ‖

∂u
∂n
− g‖2

L2(∂Ω) + ‖u− h‖2
L2(∂D). (11)

Upon discretisation, Equation (11) yields

T(c, r) =
M

∑
i=1

[
M+N

∑
j=1

cjU(zi, sj)− f (zi)

]2

+
2M

∑
i=M+1

[
M+N

∑
j=1

cj
∂U
∂n

(zi−M, sj)− g(zi−M)

]2

+
2M+N

∑
i=2M+1

[
M+N

∑
j=1

cjU(zi−M, sj)− h(zi−M)

]2

. (12)

In general, the boundary data F ∈ { f , g, h} are measured noisy data satisfying

Fδ
i = Fi + δ rand(i) Fi, (13)

where δ is the percentage noise and the number rand(i) is a random number drawn from
the standard uniform distribution on the interval [−1, 1] generated by the MATLAB code
−1 + 2rand(i).

Imposing noise on all measured data implies

Tδ(c, r) =
M

∑
i=1

[
M+N

∑
j=1

cjU(zi, sj)− f δ(zi)

]2

+
2M

∑
i=M+1

[
M+N

∑
j=1

cj
∂U
∂n

(zi−M, sj)− gδ(zi−M)

]2

+
2M+N

∑
i=2M+1

[
M+N

∑
j=1

cjU(zi−M, sj)− hδ(zi−M)

]2

. (14)

The minimisation of (12) or (14) imposes 2M + N nonlinear equations for the 2N + M
unknowns (c, r), and for a unique solution, it is necessary that M ≥ N.

4. Error Analysis and the Regularisation

The accuracy of the presented method is evaluated by the normalised relative root
mean square error (RMSE) and L∞-error:

RMSE =

{
1
N

N

∑
i=1
|r(an)

i − r(num)
i |2

} 1
2

max
1≤i≤N

|r(an)
i |

, L∞-error = max
1≤i≤N

|r(an)
i − r(num)

i |

where r(an)
i and r(num)

i denote the analytical and numerical radial vectors, respectively, at
the ith collocation point on the boundary ∂D.

The obtained numerical radial vectors from the presented method are unstable, espe-
cially when noise is added to the boundary data, and so the regularisation is needed. For
this, we can add the following regularisation terms via standard zeroth- and first-order
Tikhonov’s regularisation with parameters λ1, λ2 ≥ 0 to the functional (14), i.e.,

Reg(a, r) =
3M+2N

∑
j=2M+N+1

(√
λ1aj−2M−N

)2
+

3M+3N−1

∑
j=3M+2N+1

(√
λ2(rj−3M−2N+1 − rj−3M−2N)

)2
, (15)
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5. Numerical Examples

In this section, we give some examples to check the effectiveness of the presented
method. We consider a three-dimensional annular domain with an outer boundary as the
unit sphere ∂Ω = B(0; 1), R1 = R2 = 2 and M = N ∈ {25, 50} in (7)–(10). Moreover, the
percentage noise δ = 5% is added to every measured boundary data.

The minimisation of functional (12) or (14) is carried out using the MATLAB optimisa-
tion toolbox routine lsqnonlin, which solves nonlinear least-squares problems.

Example 1. Consider a three-dimensional annular domain with an unknown inner boundary
∂D = B(0; r(an)) of radius r(an) = 0.7. The boundary data are given as follows:

u|∂Ω = f (θ, ϕ) =
1
2

{
sin 2ϕ (cos θ + sin θ) + sin 2θ sin2 ϕ

}
,

∂u
∂n
|∂Ω = g(θ, ϕ) = sin 2ϕ (cos θ + sin θ) + sin 2θ sin2 ϕ,

u|∂D = h(θ, ϕ) =
49

200

{
sin 2ϕ (cos θ + sin θ) + sin 2θ sin2 ϕ

}
.

The exact solution for these input boundary data is u(x) = x1x2 + x1x3 + x2x3.
Table 1 gives the values of the objective functions and the corresponding errors obtained using

the optimal initial guess r0 and M = N ∈ {25, 50} without using regularisation parameters. It
can be seen that the values of the corresponding errors increase with the number of collocation points
and so regularisation is needed.

Table 1. The values of the optimal initial guess, r0 , objective functions and the corresponding errors
with M = N ∈ {25, 50} and no regularisation parameters for Example 1.

M = N r0 Objective Functions L∞-Error RMSE

Without noise 25 0.5 4.9013× 10−3 4.3884 1.4418
50 0.6 6.1682 5.0114 1.7985

With noise 5% 25 0.6 2.1799 2.1210 7.1903× 10−1

50 0.6 1.8326× 101 1.0113 9.1243× 10−1

In Tables 2 and 3, we present the values of the objective functions and the corresponding errors
with initial guess, r0, obtained using the regularisation parameters λ1, λ2 ∈ {0, 10−6, 10−3, 10−1}
with M = N ∈ {25, 50} and so, in Table 4, we give the minimal objective functions and the
corresponding errors with initial guess r0.

Table 2. The values of the optimal initial guess, r0 , objective functions and the corresponding errors
using the regularisation parameters λ1, λ2 with M = N = 25 for Example 1.

r0 Objective Functions L∞-Error RMSE

W
it

ho
ut

no
is

e λ2 = 10−6 0.7 1.8102× 10−2 2.6100 1.0249
λ1 = 0 λ2 = 10−3 0.5 2.5783× 10−3 1.2932× 10−1 1.3835× 10−1

λ2 = 10−1 0.3 2.2118× 10−3 1.0442× 10−1 1.3354× 10−1

λ1 = 10−6 0.6 5.8822× 10−3 2.9436× 10−1 1.5451× 10−1

λ1 = 10−3 λ2 = 0 0.5 1.2470 2.8593 8.8216× 10−1

λ1 = 10−1 0.7 5.8688 5.1408× 103 1.4688× 10−3

W
it

h
no

is
e

5%

λ2 = 10−6 0.9 4.1621× 10−2 3.5650× 10−1 1.1951× 10−1

λ1 = 0 λ2 = 10−3 0.6 1.3166× 10−2 1.6224× 10−1 1.3880× 10−1

λ2 = 10−1 0.5 1.2386× 10−2 1.0866× 10−1 1.1611× 10−1

λ1 = 10−6 0.4 3.1242× 10−2 6.5845× 10−1 2.8637× 10−1

λ1 = 10−3 λ2 = 0 0.2 1.2775 8.0410× 10−1 3.8164× 10−1

λ1 = 10−1 0.2 5.9897 3.3646 2.0861
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Table 3. The values of the optimal initial guess, r0 , objective functions and the corresponding errors
using the regularisation parameters λ1, λ2 with M = N = 50 for Example 1.

r0 Objective Functions L∞-Error RMSE

W
it

ho
ut

no
is

e λ2 = 10−6 0.6 3.4092 4.6998 1.726
λ1 = 0 λ2 = 10−3 0.7 2.4650 8.8865× 10−1 4.5447× 10−1

λ2 = 10−1 0.7 1.6998× 10−5 9.8441× 10−3 1.1249× 10−2

λ1 = 10−6 0.6 4.3927× 10−2 4.7363 1.8483
λ1 = 10−3 λ2 = 0 0.5 9.7102× 10−1 4.6546 1.9311
λ1 = 10−1 0.2 1.4145× 101 1.2983 1.5821

W
it

h
no

is
e

5%

λ2 = 10−6 0.6 1.2600 1.5259 4.6191× 10−1

λ1 = 0 λ2 = 10−3 0.8 1.2761× 10−2 1.0640 4.4252× 10−1

λ2 = 10−1 0.6 6.2499× 10−3 6.2367× 10−2 3.1760× 10−2

λ1 = 10−6 0.6 1.1694 4.8164 1.6659
λ1 = 10−3 λ2 = 0 0.7 9.7398× 10−1 3.2081 1.0049
λ1 = 10−1 0.6 1.0836× 101 4.4080 1.9817

Example 2. Consider a three-dimensional annular domain with an unknown inner boundary of
radius r(an) = 1

4 (1 + cos θ sin 2ϕ). The boundary data are given as follows:

u|∂Ω = f (θ, ϕ) = 3 sin2 ϕ− 2,
∂u
∂n
|∂Ω = g(θ, ϕ) = 6 sin2 ϕ− 4,

u|∂D = h(θ, ϕ) =
1
16

(3 sin2 ϕ− 2)(sin 2ϕ cos θ + 1)2.

The exact solution for these input boundary data is u(x) = x2
1 + x2

2 − 2x2
3.

Table 4. The values of the minimal objective functions and the corresponding errors with initial guess
r0, obtained (with/no) selecting the optimal regularisation parameters with M = N ∈ {25, 50} for
Example 1 .

M = N
With/No
Noise

With/No
Regularisation

λ1 λ2 r0
Objective
Function

L∞-Error RMSE

25
no no 0.5 4.9013× 10−3 4.3884 1.4418

with 0 10−1 0.3 2.2118× 10−3 1.0442× 10−1 1.3354× 10−1

with no 0.6 2.1799 2.1210 7.1903× 10−1

with 0 10−1 0.5 1.2386× 10−2 1.0866× 10−1 1.1611× 10−1

50
no no 0.6 6.1682 5.0114 1.7985

with 0 10−1 0.7 1.6998× 10−5 9.8441× 10−3 1.1249× 10−2

with no 0.6 1.8326× 101 1.0113 9.1243× 10−1

with 0 10−1 0.6 6.2499× 10−3 6.2367× 10−2 3.1760× 10−2

Table 5 gives the values of the objective functions and the corresponding errors obtained using
the optimal initial guess r0, M = N ∈ {25, 50} without using regularisation parameters, whilst
Tables 6 and 7 are obtained using the regularisation parameters λ1, λ2 and so, in Table 8 we give the
minimal objective functions and the corresponding errors with initial guess r0.

Table 5. The values of the optimal initial guess, r0 , objective functions and the corresponding errors
for Example 2 with M = N ∈ {25, 50} and no regularisation parameters .

M = N r0 Objective Functions L∞-Error RMSE

Without noise 25 0.5 5.0884× 101 4.1355× 10−1 6.0305× 10−1

50 0.6 1.0837× 102 8.1024× 10−1 1.2263

With noise 5% 25 0.8 3.2489× 101 1.9251 1.9305
50 0.7 5.4166× 101 4.5130 1.8355
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Table 6. The values of the optimal initial guess, r0 , objective functions and the corresponding errors using the
regularisation parameters λ1, λ2 ∈ {0, 10−6, 10−3, 10−1} with M = N = 25 for Example 2.

r0 Objective Functions L∞-Error RMSE

W
it

ho
ut

no
is

e λ2 = 10−6 0.5 5.3972× 101 5.0754× 10−1 6.3467× 10−1

λ1 = 0 λ2 = 10−3 0.4 4.1825× 101 4.0134× 10−1 4.7861× 10−1

λ2 = 10−1 0.8 2.0433× 10−1 4.0078× 10−1 4.5618× 10−1

λ1 = 10−6 0.6 4.0430× 101 1.5634 1.3413
λ1 = 10−3 λ2 = 0 0.1 5.9128 4.9809× 10−1 5.6395× 10−1

λ1 = 10−1 0.4 2.5867× 101 1.9664 2.9192

W
it

h
no

is
e

5%

λ2 = 10−6 0.8 3.3672× 101 1.9251 1.9396
λ1 = 0 λ2 = 10−3 0.2 5.4494 5.3183× 10−1 4.8568× 10−1

λ2 = 10−1 0.1 1.9182× 10−1 4.3568× 10−1 4.7239× 10−1

λ1 = 10−6 0.8 3.4257 4.6055 2.1547
λ1 = 10−3 λ2 = 0 0.2 5.9130 6.4875× 10−1 6.2476× 10−1

λ1 = 10−1 0.4 2.5843× 101 1.9654 2.9119

Table 7. The values of the optimal initial guess, r0 , objective functions and the corresponding errors
using the regularisation parameters λ1, λ2 ∈ {0, 10−6, 10−3, 10−1} with M = N = 50 for Example 2.

r0 Objective Functions L∞-Error RMSE

W
it

ho
ut

no
is

e λ2 = 10−6 0.4 8.3494× 101 8.2159× 10−1 1.2749
λ1 = 0 λ2 = 10−3 0.2 1.4682× 10−4 8.0200× 10−1 1.0192

λ2 = 10−1 0.8 3.8174 9.5145× 10−1 1.3288

λ1 = 10−6 0.5 2.0732 6.4408 2.9474
λ1 = 10−3 λ2 = 0 0.7 3.6352 5.2101 3.879
λ1 = 10−1 0.4 4.7401× 101 1.1726× 101 7.6963

W
it

h
no

is
e

5%

λ2 = 10−6 0.8 3.6080× 101 8.5674× 10−1 1.1744
λ1 = 0 λ2 = 10−3 0.9 2.1617× 10−1 5.2427× 10−1 6.5482× 10−1

λ2 = 10−1 0.7 3.2234× 10−2 4.7546× 10−1 4.9726× 10−1

λ1 = 10−6 0.6 1.0459× 101 6.7322× 10−1 6.447× 10−1

λ1 = 10−3 λ2 = 0 0.6 7.0388 9.6421× 10−1 1.1551
λ1 = 10−1 0.7 7.5548× 101 3.4477× 103 1.2448× 103

Table 8. The values of the minimal objective functions and the corresponding errors with initial guess,
r0, obtained (with/no) selecting the optimal regularisation parameters λ1, λ2 with M = N ∈ {25, 50}
for Example 2.

M = N
With/No
Noise

With/No
Regularisation

λ1 λ2 r0
Objective
Function

L∞-Error RMSE

25
no no 0.5 5.0884× 101 4.1355× 10−1 6.0305× 10−1

with 0 10−1 0.8 2.0433× 10−1 4.0078× 10−1 4.5618× 10−1

with no 0.8 3.2489× 101 1.9251 1.9305
with 0 10−1 0.1 1.9182× 10−1 4.3568× 10−1 4.7239× 10−1

50
no no 0.6 1.0837× 102 8.1024× 10−1 1.2263

with 0 10−3 0.2 1.4682× 10−4 8.0200× 10−1 1.0192

with no 0.7 5.4166× 101 4.5130 1.8355
with 0 10−1 0.7 3.2234× 10−2 4.7546× 10−1 4.9726× 10−1

6. Conclusions

In this paper, we extended the aforementioned method presented in [8], based on the
method of fundamental solutions to solve numerically the three-dimensional inverse geom-
etry problem on an annular domain. To obtain the stable and accuracy results, Tikhonov’s
regularisation parameters were used combined with the problem of the minimising an
objective function. From the examples, we can see that our proposed method is effective
and stable, even for the boundary data added with noise.
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Abstract: Multiple attractors and their fractal basins of attraction can lead to the loss of global stability
and integrity of Micro Electro Mechanical Systems (MEMS). In this paper, multistability of a class of
electrostatic bilateral capacitive micro-resonator is researched in detail. First, the dynamical model
is established and made dimensionless. Second, via the perturbating method and the numerical
description of basins of attraction, the multiple periodic motions under primary resonance are
discussed. It is found that the variation of AC voltage can induce safe jump of the micro resonator. In
addition, with the increase of the amplitude of AC voltage, hidden attractors and chaos appear. The
results may have some potential value in the design of MEMS devices.

Keywords: micro resonator; fractal; multistability; safe jump; hidden attractor; chaos; basin
of attraction

1. Introduction

Multistability, i.e., the coexistence of multiple attractors, is a common dynamical
phenomenon in MEMS/NEMS [1,2]. Based on it, there are many applications such as
MEMS-based memory [3] and switches [4]. In addition, considering the loss of global
stability that multistability may trigger, there are some devices that should avoid the ap-
pearance of multiple attractors in their vibrating systems, such as filters [5], microvalves [6],
and micro-relays [7]. As one of the fastest developing MEMS products [8], electrostatic
micro-resonators should assure that the resonators undergo periodic vibration whose am-
plitudes vary continuously with the driven voltages. However, in practical applications
of electrostatic micro-resonators [9], there are many complex dynamic behaviors such as
multistability [10,11], quasi-periodic motion [12] and periodic-n motion [13], chaos [14,15],
and pull-in instability.

It is of great significance to study the multistability and necessary conditions for in-
ducing it either for avoiding this phenomenon or making use of it. Thus, multistability of
vibrating systems of micro resonators has been studied experimentally and numerically
during these decades [16]. Via experiments, Mohammadreza investigated the dynamic
response of an electrostatic micro-actuator in the vicinity of the primary resonance and
the parametric one [17]. Siewe et al. [18] studied the vibration of a double-side MEMS
resonator numerically and found the variation of the driven voltage could induce the
coexistence of chaos and quasi-periodic motions. Shang et al. [19] found the coexisting
chaos and dynamical pull-in in the vibrating system of a single-side electrostatic micro
sensor. Haghighi et al. [20] found the coexisting periodic-n motion and the chaotic motion
of micromechanical resonators with electrostatic forces on both sides, and then discussed
the global bifurcation of its vibrating system by approximately expressing its homoclinic
orbits as the ones of a typical duffing equation. When amplifying signals of a nanome-
chanical duffing resonator, Almog et al. [21] found that multistability was an interesting
dynamical phenomenon of nonlinear systems and could be explored for many applications.
Gusso et al. [22] studied chaos of a typical micro/nanoelectromechanical beam resonator
with two-sided electrodes experimentally and observed multiple attractors in a signif-
icant region of the relevant parameter space, involving periodic and chaotic attractors.
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By applying cell-mapping method to depict the basins of attraction for all the attractors,
they also found that the basin boundaries were fractal under certain conditions of the
excitations, indicating that the attractors are strongly intermingled. Liu et al. [23] applied
the method of multiple scales (MMS) to analyze the multiple periodic motions induced
by the local bifurcation, and used the Melnikov method to predict necessary conditions
for chaos and its control. The corresponding numerical results were also presented by the
basins of attraction and spectrum diagrams. Angelo et al. [24] investigated the effect of the
linear and nonlinear stiffness terms and damping coefficients on dynamical behaviors of
a microelectromechanical resonator and controlled the chaotic motion by forcing it into
an orbit obtained analytically via the harmonic balance method. However, most study
concentrated on describing or observing the phenomenon itself rather than studying its
mechanism, which is still not that clear yet.

To this end, we consider a typical electrostatic driven bilateral capacitive micro-
resonator and study the possible multistability and its mechanism in its vibrating system.
The paper is organized as follows. In Section 2, the dynamical model is constructed and
made dimensionless. In Sections 3 and 4, two different cases for coexisting multiple peri-
odic attractors, fractal basins of attraction, and other complex attractors of the systems are
discussed both theoretically and numerically. In Section 5, the conclusions are presented.

2. Dynamical Model

We choose to study a class of bilateral micro resonator whose simplified diagram
is shown in Figure 1. The driven forces on the resonator are electrostatic ones between
the moving electrode and the fixed electrode [25]. The driven voltage in Figure 1 is the
combination of alternate current (AC) and direct current (DC) actuation. In the figure, x
is the vertical displacement of the moving electrode at moment t, d the initial gap width
between the moving electrode and each fixed one, Vb the DC bias voltage, VACsinΩt the AC
voltage where VAC is the amplitude and Ω the frequency. Suppose that the amplitude of the
AC voltage VAC is much lower than the bias DC voltage Vb, i.e., VAC  Vb. According to
the Second Law of Newton, the vibrating system of the moving electrode can be expressed
as a nonlinear system as follows:

m
d2x
dt2 + c

dx
dt

+ k1x + k2x3 =
C0

2(d− x)2 (Vb + VACsinΩt)2 − C0V2
b

2(d + x)2 (1)

where m represents the effective lumped mass of the moving electrode, k1 its linear me-
chanical stiffness, k2 its cubic nonlinear stiffness, c the damping coefficient, C0 the initial
capacitance of the parallel-plate structure.

 

Figure 1. Simplified diagram of a bilateral MEMS resonator.

Introducing the following dimensionless variables

ω0 =

√
k1

m
, ω =

Ω
ω0

, μ =
c

mω0
, α =

k2d2

mω2
0

, β =
C0V2

b
2k1d3 , γ =

VAC

Vb
, T = ω0t, u =

x
d

,
.
u =

du
dT

(2)
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and substituting Equation (2) into Equation (1), one can obtain that

..
u + μ

.
u + u + αu3 =

β

(1− u)2 (1 + γsinωT)2 − β

(1 + u)2 (3)

which is a dimensionless system. Since in the original system (1), the viscous damping
coefficient of air c is very tiny, and VAC  Vb, the parameters μ and γ in (3) will be both
small and can be considered as perturbed parameters. Thus, considering μ = 0 and γ = 0
in Equation (3), one has the unperturbed system that can be expressed as below:

.
u = v,

.
v = −u− αu3 +

β

(1− u)2 −
β

(1 + u)2 . (4)

Letting the right side of Equation (4) be zero, one can determine equilibria of the
dimensionless system (3). Equation (5) is a Hamilton system with the Hamiltonian

H(u, v) =
1
2

v2 +
1
2

u2 +
α

4
u4 − β

1− u
− β

1 + u
+ 2β (5)

and the function of potential energy (P.E.)

V(u) =
1
2

u2 +
α

4
u4 − β

1− u
− β

1 + u
+ 2β. (6)

Concerning Equation (4), the number of the equilibria, and the shapes and positions
of the possible potential wells of the unperturbed system (4) depend on the parameters α
and β. The same as in [20], the values of the parameters in the system (1) are given by:

m = 5× 12−12 kg, c = 5× 12−8 kg/s, k1 = 5 μN/μm, k2 = 15 μN/μm3, d = 2μm, C0 = 1.875× 10−18 mF. (7)

Accordingly, in system (4), α = 12.
Different equilibria and potential energy diagrams of the unperturbed system under

different values of the parameter β can be seen in Figure 2. It shows that there are three P.E.
poles when β = 0.211, five P.E. poles when β increases to 0.338, and only one P.E. pole when
β increases to 0.6. Under different values of β, the potential wells and unperturbed orbits are
shown in Figure 3. When β = 0.211, there are three equilibria (two non-trivial equilibria are
saddles and the origin is a center) as well as one well surrounded by heteroclinic orbits (see
Figure 3a). As β increases to 0.338, there will be five equilibria among which two non-trivial
equilibria S1 (−0.196339,0) and S2 (0.196339,0) are centers of the two wells surrounded by
homoclinic orbits; the other three equilibria are unstable. When β = 0.6, no wells or non-
trivial equilibria of the unperturbed system (4) exist. The P.E. poles in Figure 2 correspond
to the fixed points shown in Figure 3. Therefore, according to Equations (2) and (7), when
the structural parameters are fixed, the number of centers will depend on the value of
DC bias voltage Vb: when the DC bias voltage is very low, there will be a center of the
system (4) as well as a stable point attractor of the system (3) without AC voltage. Under
a higher DC bias voltage, there may be two centers of the system (4). As is well known,
periodic vibration can often be attributed to the perturbation of the centers. Since the
number and the location of the centers in Figure 3a,b are totally different, the mechanism
for the possible multiple periodic attractors of the vibrating system of the micro-resonator
can be different as well. Therefore, in Sections 3 and 4, we discuss the different mechanism
of multi-stability for these two different cases, i.e., the only center (the origin) and the two
non-trivial centers, respectively.
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Figure 2. Potential energy of the unperturbed system (4) under different values of parameter β.

  
(a)  = 0.211 (b)  = 0.338 (c)  = 0.6 

Figure 3. Orbits of the unperturbed system (4) under different values of parameter β.

3. Multiple Periodic Attractors in the Neighborhood of the Origin

Considering the case where the DC bias voltage is low, and the periodic vibration
of the microstructure is induced by the perturbation of the only center (see Figure 3a,
where Vb = 3 V), one may use the Method of Multiple Scales (MMS) to analyze the peri-
odic solutions in the neighborhood of the origin. Expanding the fractional terms of the
dimensionless system (3) as Taylor series in the neighborhood of u = 0, and neglecting the
higher-order-than-three terms of u, one has:

..
u + μ

.
u + u + αu3 = 2βγ sin ωT + 4βu + 4uβγ sin ωT + 6u2βγ sin ωT + 8βu3 + 8u3βγ sin ωT. (8)

As mentioned in Section 2, the values of the parameters μ and γ in the above system
are small; one can introduce a small parameter ε satisfying 0 < ε 1, and can re-scale the
two parameters in the system (8) as:

μ = ε2μ̃, γ = ε2γ̃. (9)

Then Equation (8) becomes

..
u + ω̃2u = −ε2μ̃

.
u + 2ε2βγ̃ sin ωT + 4uε2βγ̃ sin ωT + 6u2ε2βγ̃ sin ωT − P1u3 + 8u3ε2βγ̃ sin ωT. (10)

where
ω̃2 = 1− 4β, P1 = α− 8β. (11)

To apply MMS, one may rescale some terms in the system (10) that

ω = ω̃ + εσ, u = εu1 + ε2u2 + · · · , σ = O(1). (12)

212



Fractal Fract. 2022, 6, 141

and

Ti = εiT, Di =
∂

∂Ti
,

d
dT

=
n

∑
i=0

εiDi (i = 0, 1, 2, · · · ) (13)

Comparing the coefficients of ε1, ε2, and ε3 in the system (10), respectively, one obtains
that

ε1 : D0
2u1 + ω2u1 = 0, (14)

ε2 : D0
2u2 + ω2u2 = −2D1D0u1+2ωσu1 + 2βγ̃ sin ωT, (15)

and

ε3 : D0
2u3 + ω2u3 = −2D1D0u2 − μ̃D0u1 − D1

2u1 + 2u2ωσ− σ2u1 − 2D2D0u1 − P1u1
3 + 4βγ̃u1 sin ωT. (16)

To solve Equation (14), one can assume that

u1 = A1(T1, T2)eiωT0 + A1(T1, T2)e−iωT0 , (17)

where

A1 =
a(T1, T2)

2
eiθ(T1,T2). (18)

Substituting Equations (17) and (18) into Equation (15), and eliminating the secular
terms of Equation (15), one will have:

D1 A1 = − βγ̃

2ω
− iσA1. (19)

Solving Equation (15), one may assume:

u2 = A2(T2)eiωT0 + A2(T2)e−iωT0 . (20)

Substituting Equation (20) into Equation (16), and eliminating secular terms of Equation (16),
one will obtain:

D2 A1 = − μ̃

2
A1 +

βγ̃

2ω
− σβγ̃

4ω2 +
3iP1 A2

1 A1

2ω
. (21)

Since .
A1 ≈ D0 A1 + εD1 A1 + ε2D2 A1, (22)

Substituting Equations (19) and (21) into Equation (22), and expressing it by the
original dimensionless parameters of Equation (3), one has:

ε
.
a = − μ

2 (εa)− P2 cos θ,

(εa)
.
θ = −(ω− ω̃)(εa) + 3P1(εa)3

8ω + P2 sin θ.
(23)

where

P2 =
(3ω− ω̃)βγ

2ω2 . (24)

According to Equation (18), it is obvious that the amplitude of the periodic solution a
is the function of the time scale T1 where T1 is a one-order term of ε; thus, one can assume
the amplitude of the solution u of Equation (10) ã as:

εa = ã. (25)

Letting
.
a = 0, and

.
θ = 0, one can obtain:

− μ

2
ã = P2 cos θ, (ω− ω̃)ã− 3P1 ã3

8ω
= P2 sin θ. (26)
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Eliminating the triangulation function of Equation (26), one can get:

μ2

4
a2 + (ω− ω̃− 3P1a2

8ω
)

2

a2 =
(3ω− ω̃)2

4ω4 β2γ2. (27)

According to Equations (17), (18) and (25), the periodic solution can be expressed as:

u ≈ ã cos(ωT + θ). (28)

To determine the stability of the periodic solutions, one can get the corresponding
characteristic equation of the periodic solution based on Equation (23). It shows that the
periodic solution will lose its stability when its amplitude ã satisfies:

(8(ω− ω̃)− 9ã2P1

ω
)(8(ω− ω̃)− 3ã2P1

ω
) ≥ 16μ2. (29)

Based on Equations (26)–(29), the variation of the amplitude of the periodic solutions
of the system (3) and their stability with AC voltage is shown in Figure 4 where the
frequency and the amplitude of AC voltage are considered as the control parameters in
Figure 4a and Figure 4b, respectively. In Figure 4a, where VAC = 0.01 V, when ω is lower
than 0.45, there is only one periodic attractor in the system (3) whose amplitude changes
continuously with the increase in ω. Comparatively, when ω ranges from 0.46 to 0.69, the
global dynamical behaviors of the system (3) will change to bistable periodic attractors,
which can be attributed to Hopf bifurcation. As ω continues to increase from 0.7, the
periodic attractor with the higher amplitude will disappear, only the periodic attractor
with the lower amplitude will exist, and its amplitude will decrease continuously with the
increase of ω. Similarly, the change in global dynamical behaviors in Figure 4b also shows
that in a certain range of VAC, there will be two periodic attractors coexisting, which can
be due to Hopf bifurcation of the system (3). The accuracy of the theoretical prediction in
Figure 4 are verified by the numerical results.

  

(a) Amplitude of the periodic solution vs.  
ω  when VAC = 0.01 V (b) Amplitude of the periodic solution vs. VAC when  = 0.6 

Figure 4. Variation of the amplitude of the periodic solution with the change in AC voltage.

Figure 4 demonstrates that the parameters ω and VAC can induce the coexistence of
bistability, meaning that under fixed values of parameters of system (3), different initial
conditions may lead to different periodic attractors. Accordingly, it is necessary to classify
the basins of attraction for the two different periodic attractors. Here, the 4th order Runge-
Kutta approach and the cell-mapping method are applied to depict the basins of attraction
of the system (3). The time step is taken as 1/102 of the period of excitation. To investigate
the long-term dynamical behaviors, it is supposed that an initial condition will be safe if
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the vibration in this initial condition keeps satisfying |u(T)| < 1 within 105 excited circles;
otherwise, the micro resonator will undergo pull in [20]. The union of all initial conditions
leading to the same periodic motion will be the basin of attraction for that attractor which
will surely be marked in the same color in the initial plane. The basins of attraction of
system (3) are drawn in sufficiently large ranges for the initial position and velocity of the
proof mass defined as |u(0)| < 1 and |

.
u(0)| < 1.5 by generating an 200 × 100 array of

initial points. The change of attractors and the area and nature of their basins of attraction
with frequency ω is shown in Figure 5 where the amplitude of AC voltage VAC is fixed as
0.01 V.

 
(a1) Attractor when  = 0.45 (a2) Basin of Attraction when  = 0.45 

 
(b1) Attractors when  = 0.46 (b2) Basins of Attraction when  = 0.46 

 
(c1) Attractors when  = 0.52 (c2) Basins of Attraction when  = 0.52 

 
(d1) Attractors when  = 0.69 (d2) Basins of attraction when  = 0.69 

 
(e1) Attractor when  = 0.70 (e2) Basins of attraction when  = 0.70 

Figure 5. Evolution of multiple attractors and their basins of attraction under different values of ω.
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According to Figure 5, with the increase in parameter ω, the number of attractors
and the boundary of basins of attraction will both change. When ω = 0.45 in system (3),
there will only be one periodic attractor whose basin of attraction is comparatively bigger
with a smooth boundary (see Figure 5a1,a2). However, with a small increase of ω, i.e.,
ω = 0.45, the global dynamics are totally different, as shown in Figure 5b1,b2 where two
periodic attractors coexist, whose basins of attraction mix each other and are both fractal. It
means that the dynamical behavior of system (3) is highly sensitive to initial conditions.
In other words, system (3) may undergo a safe jump. A similar phenomenon can be seen
in Figure 5c1,c2 under a higher ω. As ω increases, the basin of attraction of the periodic
attractor with the higher amplitude becomes small (see the red regions in Figure 5b2,c2,d2).
Specifically, in Figure 5d2, the regions of attraction are almost blue, and there is very little
area of basin of attraction for that periodic attractor. As ω = 0.70 (see Figure 5e1,e2), the
periodic attractor with the higher amplitude disappears, and there is only the other attractor
whose basin of attraction is almost the same as that in Figure 4b, showing that when the
frequency ω increases enough, the periodic attractor with the lower amplitude replaces the
initial one.

4. Multistability in the Neighborhood of Non-Trivial Equilibria

In this section, the case that the DC voltage is higher, and the periodic vibration of the
microstructure is induced by the perturbation of the two non-trivial centers (see Figure 3b)
is considered; thus, we set β = 0.338, i.e., Vb = 3.8V. In addition, we consider the effect of
AC voltage on the global dynamics of the system (3). To begin with, setting

εû = u∓ uc (30)

where uc is the abscissa of the right center (see S1 in Figure 3), rescaling he two parameters μ
and γ in the system (3) by Equation (9), expanding the fractional terms of the dimensionless
system (3) as a Taylor series in the neighborhood of the non-trivial equilibria and ignoring
the higher-order-than-cubic terms of û, the system (3) becomes

..
û = −ε2μ̃

.
û− ω̂2û + εQ1û2 + ε2Q2û3 +

2εβγ̃ sin ωT

(1∓ uc)
2 +

4ε2βγ̃ sin ωT

(1∓ uc)
3 û +

6ε3βγ̃ sin ωT

(1∓ uc)
4 û2, (31)

where

ω̂2 = 1 + 3αuc
2 − 4β(1 + 3uc

2)

(1− uc2)3 , Q1 = ±3uc(−α +
8β(1 + uc

2)

(1− uc2)4 ), Q2 = −α +
8β(1 + 10uc

2 + 5uc
4)

(1− uc2)5 . (32)

To apply the Method of Multiple Scale in Equation (32), one can assume in this
equation that:

ω̂ = ω + εσ̂, û = û0 + εû1 + ε2û2 + · · · , σ̂ = O(1). (33)

Comparing the coefficients of ε1, ε2 and ε3, one has:

ε0 : D0
2û0 + ω2û0 = 0, (34)

ε1 : D0
2û1 + ω2û1 = −2D1D0û0+2ωσ̂û0 +

2βγ̃ sin ωT

(1∓ uc)
2 + Q1û0

2, (35)

and

ε2 : D0
2û2 + ω2û2 = −2D1D0û1 − μ̃D0û0 − D1

2û0 + 2û1ωσ̂− σ̂2û0 − 2D2D0û0 + 2Q1û0û1 + Q2û0
3 +

4βγ̃ sin ωT

(1∓ uc)
3 û0. (36)

One can set the solution of Equation (34) as:

û0 = B1(T1)eiωT0 + B1(T1)e−iωT0 . (37)
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Substituting Equation (37) into Equation (35), and eliminating the secular terms of
Equation (35), one can obtain that:

D1B1 = −βγ̃

2ω(1∓uc)
2 − iσB1,

û1 = − B2
1 P

3ω2 ei2ωT0 − B2
1P

3ω2 e−i2ωT0 + 2B1B1P
ω2 .

(38)

Substituting the equation above into Equation (36) and eliminating its secular terms,
one can have:

D2B1 = − μ̃B1

2
− σ̂βγ̃

4ω2(1∓ uc)
2 − i(

5Q2
1

3ω3 +
3Q2

2ω
)B2

1B1. (39)

Now setting

B1 =
1
2

εb(T1, T2)eiϕ(T1,T2), (40)

considering
.
B1 ≈ D0B1 + εD1B1 + ε2D2B1, (41)

and substituting Equations (38) and (39) into Equation (41), and expressing Equation (41)
by the original dimensionless parameters of Equation (3), one has:

.
b = −(3 ω−ω̂)βγ cos ϕ

2ω2(1∓uc)
2 − μb

2 ,

b
.
ϕ = (3 ω−ω̂)βγ sin ϕ

2ω2(1∓uc)
2 − (ω− ω̂)b− 5b3Q2

1
12ω3 − 3b3Q2

8ω .
(42)

The periodic solution of the system (3) satisfies
.
b = 0, and

.
ϕ = 0, i.e.,

−μb
2

=
(3 ω− ω̂)βγ cos ϕ

2ω2(1∓ uc)
2 , (ω− ω̂)b+(

5Q2
1

12ω3 +
3Q2

8ω

)
b3 =

(3 ω− ω̂)βγ sin ϕ

2ω2(1∓ uc)
2 . (43)

The periodic solution can be expressed analytically as:

u = ±uc +
2b2Q1

3ω2 + b cos(ωT + ϕ)− b2Q1

3ω2 cos2(ωT + ϕ). (44)

According to the characteristic solutions of Equation (42), it shows that the theoretical
periodic solution expressed by Equation (44) will become unstable if:

(ω− ω̂− (
5Q2

1
12ω3 +

9Q2

8ω
)b2)(ω− ω̂ + (

5Q2
1

12ω3 +
3Q2

8ω
)b2) ≥ μ2

4
. (45)

Based on Equations (43)–(45), the evolution of the periodic solutions of system (3)
with the amplitude of AC voltage when ω = 0.6 is shown in Figure 6. Obviously, when
VAC increases from 0, the two non-trivial equilibria lose their stability; instead, there are
two periodic attractors coexisting. The amplitudes of the two periodic attractors increases
with the amplitude of AC voltage. The coexistence of multiple periodic attractors can be
attributed to the disturbance of the bistable non-trivial equilibria of the system (3) when
VAC = 0 V.
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Figure 6. Variation of the periodic solutions with the amplitude of AC voltage when ω = 0.6.

In Figure 6, when VAC varies from 0 to 0.055 V, the numerical simulation is in great
agreement with the theoretical solution. However, when VAC exceeds 0.056 V, the theoretical
prediction of the periodic attractor in the neighborhood of the right non-trivial equilibria is
not that accurate, which may be due to the limitation of the Method of Multiple Scale. It
will then be essential for us to apply numerical simulation to investigate the evolution of
the attractors with the change in AC voltage. The basic settings for the simulation, such as
the time step and initial plane, are the same as that in Section 3. The change of the attractors
and the area and nature of their basins of attraction with VAC are shown in Figure 7, where
ω = 0.6. The evolution of global dynamics of system (3) with the increase in VAC can be
separated into the following five stages.

Firstly, when VAC = 0 V, there are two point attractors coexisting whose basins of
attraction are fractal and trigger each other (see Figure 7a1,a2). According to Figure 7a2,
in a small neighborhood of each point attractor, the attractor of system (3) is locally stable.
Otherwise, a small disturbance of initial conditions will lead to a different point attractor,
meaning that it is easy to induce a safe jump.

Secondly, when VAC increases from 0 to 0.01 V (see Figure 7b1–d2), the number of the
periodic attractors increases with VAC. At VAC = 0.005 V, the two point attractors become
two periodic attractors; apart from these two periodic attractors predicted theoretically, a
new periodic attractor appears suddenly, marked by the yellow curve in Figure 7b1, and
its basin of attraction is discrete (see the yellow regions in Figure 7b2). It shows that the
new periodic attractor is a hidden attractor [26]. When VAC increases to 0.006 V, another
hidden attractor appears, which is almost symmetric to the former one (see the blue curve
of Figure 7c1 and the blue regions of Figure 7c2). When VAC = 0.01 V, there are five periodic
attractors coexisting, as shown in Figure 7d1. A new periodic attractor appears (see the
green curve in Figure 7d1), whose amplitude is much bigger than the other ones.

Thirdly, as VAC increases from 0.01 V to 0.116 V, the number of attractors will decrease.
Comparing Figure 7e1 with Figure 7d1, it is obvious that when VAC increases to 0.02 V,
the yellow periodic attractor disappears whose basin of attraction is eroded by that of the
green attractor; thus, the basin of attraction of the green attractor can be much bigger in
Figure 7e2 than in Figure 7d2. When VAC continues to increase, the other three periodic
attractors, i.e., the blue attractor, the red one, and the black one, disappear successively (see
Figure 7f1,h1,j1) whose basins of attraction are aggressed by the basin of attraction of the
green attractor, as shown in Figure 7e1–j2. Till VAC becomes 0.116 V, there will be a single
periodic attractor left whose basin of attraction is not fractal but with a smooth boundary
(see Figure 7j1,j2).
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Besides, when VAC increases to 0.128 V, there will be a new complex attractor coexisting
with the former green periodic attractor. It is a period-3 attractor (see the purple curve in
Figure 7k1) whose basin of attraction is fractal and eroded to the basin of attraction of the
periodic attractor (see Figure 7k2). It follows that a small change of initial conditions possibly
shifts the dynamical behavior of the system (3) from a periodic motion to a period-3 motion,
which is another type of safe jump.

Finally, as VAC continues to increase, another type of complex dynamical behav-
ior is induced. According to the phase map, Poincare map, and frequency spectrum in
Figure 8a–c, there is only a chaotic attractor when VAC = 0.28 V, and the boundary of its
basin of attraction is not fractal (see Figure 8d).

 
(a1) Attractors when VAC = 0 V (a2) Basins of attraction when VAC = 0 V 

 
(b1) Attractors when VAC = 0.005 V (b2) Basins of attraction when VAC = 0.005 V 

  

 
(c1) Attractors when VAC = 0.006 V (c2) Basins of attraction when VAC = 0.006 V 

Figure 7. Cont.
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(d1) Attractors when VAC = 0.01 V (d2) Basins of attraction when VAC = 0.01 V 

 
(e1) Attractors when VAC = 0.02 V (e2) Basins of attraction when VAC = 0.02 V 

 
(f1) Attractors when VAC = 0.03 V (f2) Basins of attraction when VAC = 0.03 V 

 
(g1) Attractors when VAC = 0.056 V (g2) Basins of attraction when VAC = 0.056 V 

 
(h1) Attractors when VAC = 0.057 V (h2) Basins of attraction when VAC = 0.057 V 

Figure 7. Cont.
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(i1) Attractors when VAC = 0.115 V (i2) Basins of attraction when VAC = 0.115 V 

 
(j1) Attractors when VAC = 0.116 V (j2) Basins of attraction when VAC = 0.116 V 

 
(k1) Attractors when VAC = 0.128 V (k2) Basins of attraction when VAC = 0.128 V 

Figure 7. Evolution of multiple attractors and their basins of attraction under different values of VAC.

  
(a) Phase map (b) Poincare map 

 
(c) Frequency spectrum (d) Basin of attraction 

Figure 8. Attractor and its basin of attraction when VAC = 0.28.
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5. Conclusions

In this paper, a typical electrostatic bilateral micro-resonator is considered. The theory
of local bifurcation and numerical approaches are applied to analyze the global dynamics of
the vibrating system of the micro resonator. The main conclusions are presented as follows:

(1) DC bias voltage has some effect on the dynamics of the micro resonator. Without AC
voltage, when the DC bias voltage is low, there will be only one stable point attractor
in its vibrating system; when the DC bias voltage increases, there may be bistable
point attractors.

(2) In the case of a low bias DC voltage, multiple periodic attractors and the corresponding
safe jump occur due to Hopf bifurcation when varying the frequency or amplitude of
AC voltage in certain ranges.

(3) Under a higher bias DC voltage that can induce bistable point attractors, when
increasing the value of the amplitude of AC voltage, there will be multiple periodic
attractors attributed to the loss of stability of the two non-trivial point attractors;
apart from this, there will be some other complex dynamical behaviors of the micro-
resonator vibrating system, such as safe jump, hidden attractors, period-n attractor,
and chaos.

Our results provide some theoretical reference in avoiding complex dynamics of micro
resonators, thus having some potential values in the design of micro sensors. The hidden
attractors are depicted numerically, but their mechanism is still not that clear, which will be
discussed in our future study.
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Abstract: The purpose of this study is to define a new class of harmonically convex functions, which
is known as left and right harmonically convex interval-valued function (LR- ऒ -convex IV-F), and
to establish novel inclusions for a newly defined class of interval-valued functions (IV-Fs) linked to
Hermite–Hadamard (H-H) and Hermite–Hadamard–Fejér (H-H-Fejér) type inequalities via interval-
valued Riemann–Liouville fractional integrals (IV-RL-fractional integrals). We also attain some related
inequalities for the product of two LR- ऒ -convex IV-Fs. These findings enable us to identify a new
class of inclusions that may be seen as significant generalizations of results proved by Iscan and Chen.
Some examples are included in our findings that may be used to determine the validity of the results.
The findings in this work can be seen as a considerable advance over previously published findings.

Keywords: interval-valued function; LR-Harmonically convexity; fractional integral operator;
Hermite–Hadamard type inequalities

1. Introduction

The concept of convexity of functions is a useful instrument that is used to solve a
wide range of pure and applied scientific issues. Many researchers have recently committed
themselves to investigate the attributes and inequalities of convexity in various directions,
as evidenced by [1–6] and the references therein. The Hermite–Hadamard inequality
(H-H inequality), which is also used frequently in many other parts of practical mathemat-
ics, notably in optimization and probability, is one of the most important mathematical
inequalities relevant to convex maps. Let us elicit it as follows:

Suppose that the mapping: [t, υ]→ R . For every for all κ, μ ∈ [t, υ] and s ∈ [0, 1], if
the successive inequality

A( (1− s)κ + sμ) ≤ (1− s)A(κ) + sA(μ) (1)

Then, A is named as convex function on the convex interval [t, υ]. If (1) is reversed,
then, A is named as a concave function on [t, υ].

This famous inequality gives error bounds for the mean value of a continuous convex
mapping: [t, υ]→ R , which has gotten a lot of attention from a lot of authors. Many
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investigations have been conducted on the H-H type inequalities for additional forms
of convex mappings. For example, s-convex mappings may be found in Kórus [7], N-
quasi-convex mappings in Abramovich and Persson [8], h-convex mappings in Delavar
and De La Sen [9], etc. Kadakal and Bekar [10], Işcan [11], Marinescu and Monea [12],
Kadakal et al. [13], and the references therein provide new developments on this impor-
tant issue.

Fractional calculus has shown to be an important cornerstone in mathematics and
applied sciences as a very valuable tool. As a result of this fruitful interaction of various
approaches to fractional calculus, many authors have studied some prominent integral
inequalities, including [14] in the study of the H-H inequality for Riemann–Liouville
fractional integrals, [15] in the H-H Fejér type inequality for Katugampola fractional inte-
grals, and [16] in the extensions of trapezium inequalities for k-fractional integrals. We
recommend interested readers to [17,18] and the references therein for other significant
conclusions relating to fractional integral operators.

Set-valued analysis is a subset of interval analysis. There is no denying that interval
analysis is important in both pure and practical research. The error limits of numerical
solutions of finite state machines were one of the first applications of interval analysis. How-
ever, interval analysis, as one of the strategies for resolving interval uncertainty, has been
a key component of mathematical and computer models for the past fifty years. Several
applications in automated error analysis [19], computer graphics [20], and neural network
output optimization [21] have been described. Furthermore, Refs. [22,23] has several op-
timization theory applications involving IV-Fs. The interested reader is recommended to
Zhao et al. [24] and Román-Flores et al. [25] and their references for current developments
in the area of IV-Fs. We recommend interested readers to [26–34] and the references therein
for other significant conclusions relating to inequalities and fractional integral inequalities.

We structured the article in the following manner in response to the aforementioned
tendency and invigorated by ongoing research activity in this fascinating topic. To prove
fractional integral inclusions, firstly, we have generalized the class of ऒ -convex functions
in terms of LR-ऒ -convex IV-Fs. Then, a class of IV-RL-fractional integrals inequalities is
presented to achieve this aim. Some inclusion relations for convex IV-Fs in connection with
the renowned H-H, H-H-Fejér type inequalities are found in this paper utilizing the newly
presented class of ऒ -convex functions.

2. Preliminaries

Let us begin the rest of this part by outlining the theory of interval analysis, which
is mostly due to [28]. The sets of all closed intervals of R, the sets of all negative closed
intervals of R, and the sets of all positive closed intervals of R are denoted by KC, K−C , and
K+

C , respectively. For more conceptions on IV·Fs, see [24]. Moreover, we have:

Remark 1 ([29]). (i) The relation “ ≤p ” defined on KC by

[Q∗, Q∗] ≤p [Z∗, Z∗] if and only if Q∗ ≤ Z∗, Q∗ ≤ Z∗, (2)

for all [Q∗, Q∗], [Z∗, Z∗] ∈ KC, it is a pseudo order relation. For given [Q∗, Q∗], [Z∗, Z∗] ∈ KC,
we say that [Q∗, Q∗] ≤p [Z∗, Z∗] if and only if Q∗ ≤ Z∗, Q∗ ≤ Z∗ or Q∗ ≤ Z∗, Q∗ < Z∗.
The relation [Q∗, Q∗] ≤p [Z∗, Z∗] coincident to [Q∗, Q∗] ≤ [Z∗, Z∗] on KC.

(ii) It can be easily seen that “ ≤p ” looks like “left and right” on the real line R, so we call
“ ≤p ” is “left and right” (or “LR” order, in short).

Theorem 1 ([28]). If A : [t, υ] ⊂ R→ KC is an I-V·F on such that A(κ) = [A∗(κ), A∗(κ)],
then, A is Riemann integrable over [t, υ] if and only if, A∗ and A∗ both are Riemann integrable over
[t, υ] such that

(IR)
∫ υ

t
A(κ)dκ =

[
(R)

∫ υ

t
A∗(κ)dκ, (R)

∫ υ

t
A∗(κ)dκ

]
.
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The following interval-valued Riemann–Liouville fractional integral (IV-RL-fractional integral)
operators were presented by Buduk et al. [1]:

Let β > 0 and L
(
[t, υ],K+

C
)

be the collection of all Lebesgue measurable I-V-Fs on [t, υ].
Then, the IV-RL-fractional integrals of A ∈ L

(
[t, υ],K+

C
)

with order β > 0 are defined by

T
β

t+ A(κ) =
1

Γ(β)

∫ κ

t
(κ − s)β−1A(s)ds, (κ > t), (3)

and
T

β
υ− A(κ) =

1
Γ(β)

∫ υ

κ
(s−κ)β−1A(s)ds, (κ < υ), (4)

respectively, where Γ(β) =
∫ ∞

0 sκ−1e−sds is the Euler gamma function.

Definition 1 ([27]). A set K = [t, υ] ⊂ R+ = (0, ∞) is said to be harmonically convex set, if, for
all κ, μ ∈ K, s ∈ [0, 1], we have:

κμ

sκ + (1− s)μ
∈ K. (5)

Definition 2 ([27]). Suppose that the mapping: [t, υ]→ R . For every κ, μ ∈ [t, υ] and
s ∈ [0, 1], if the successive inequality

A

(
κμ

sκ + (1− s)μ

)
≤ (1− s)A(κ) + sA(μ), (6)

Then, A is named as harmonically convex function (ऒ -convex function) on interval [t, υ]. If
(6) is reversed, then, A is named as a ऒ -concave function on [t, υ].

Definition 3 ([29]). Suppose that the mapping: [t, υ]→ KC . For every κ, μ ∈ [t, υ] and
s ∈ [0, 1], if the successive inequality

A( (1− s)κ + sμ) ≤p (1− s)A(κ) + sA(μ), (7)

Then, A is named as LR-convex IV-F on the convex interval [t, υ]. If (7) is reversed, then, A is
named as a concave function on [t, υ].

Definition 4. Suppose that the mapping A : [t, υ]→ KC . For all κ, μ ∈ [t, υ] and s ∈ [0, 1],
if the successive inequality

A

(
κμ

sκ + (1− s)μ

)
≤p (1− s)A(κ) + sA(μ), (8)

is valid, then, A is named as LR-harmonically convex IV-F (LR- ऒ -convex IV-F) defined on interval
[t, υ]. If (8) is reversed, then, A is called LR-ऒ -concave IV-F on [t, υ]. The set of all LR-ऒ -convex
(LR-ऒ -concave IV-F) is denoted

LRHSX([t, υ], KC)(LRHSV([t, υ], KC)).

Theorem 2. Let K be harmonically convex set, and let A : K → KC be an IV-F is given by

A(κ) = [A∗(κ), A∗(κ)], ∀ κ, (9)

for allκ ∈ K. Then, A is LR-ऒ -convex function on K, if and only if, A∗(κ) and A∗(κ)are ऒ
-convex functions.
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Proof. Assume that A∗(κ) and A∗(κ) are ऒ -convex on K. Then, from (6), we have

A∗
(

κμ

sκ + (1− s)μ

)
≤ (1− s)A∗(κ) + sA∗(μ),

and

A∗
(

κμ

sκ + (1− s)μ

)
≤ (1− s)A∗(κ) + sA∗(μ).

Then, by (9), we obtain

A
(

κμ
sκ+(1−s)μ

)
= [A∗(sκ + (1− s)μ), A∗(sκ + (1− s)μ)] ≤p (1−
s)[A∗(κ), A∗(κ)] + s[A∗(μ), A∗(μ)],

that is

A

(
κμ

sκ + (1− s)μ

)
≤p (1− s)A(κ) + sA(μ),∀ κ, μ ∈ K, s ∈ [0, 1].

Hence, A is LR-ऒ -convex IV-F on K.
Conversely, let A be LR-ऒ -convex IV-F on K. Then, for all κ, μ ∈ K, s ∈ [0, 1], we have

A

(
κμ

sκ + (1− s)μ

)
≤p (1− s)A(κ) + sA(μ).

Therefore, from (9), left side of above inequality, we have

A

(
κμ

sκ + (1− s)μ

)
=

[
A∗

(
κμ

sκ + (1− s)μ

)
, A∗

(
κμ

sκ + (1− s)μ

)]
.

Again, from (9), we obtain

(1− s)A(κ) + sA(κ)= (1− s)[A∗(κ), A∗(κ)] + s[A∗(μ), A∗(μ)],

for all κ, μ ∈ K, s ∈ [0, 1]. Then, by ऒ -convexity of A, we have for all κ, μ ∈ K, s ∈ [0, 1]
such that

A∗
(

κμ

sκ + (1− s)μ

)
≤ (1− s)A∗(κ) + sA∗(μ),

and

A∗
(

κμ

sκ + (1− s)μ

)
≤ (1− s)A∗(κ) + sA∗(μ),

this concludes the proof. �

Remark 2. If one attempts to take A∗(κ) = A∗(κ), then, from Definition 3, we achieve Defini-
tion 2.

Example 1. We consider the IV-Fs A : [1, 2]→ KC defined by A(κ) =
[
ln(κ), 2

√
κ
]
. Since

end point functions A∗(κ), A∗(κ) are ऒ -convex functions. Hence, A(κ) is LR-ऒ -convex IV-F.

In next result, we will establish a relation between LR-convex IV-F and LR-ऒ -convex
IV-F.

Theorem 3. Let A : K → KC be an IV-F such that A(κ) = [A∗(κ), A∗(κ)], for all κ ∈ K.
Then, A(κ) is LR-ऒ -convex IV-F on K, if and only if, A

(
1
κ

)
is LR-convex IV-F on K.

Proof. Since A(κ) is a LR-ऒ -convex IV-F, then, for κ, μ ∈ [t, υ], s ∈ [0, 1], we have

A

(
κμ

sκ + (1− s)μ

)
≤p (1− s)A(κ) + sA(μ).
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Therefore, we have

A∗
(

κμ
sκ+(1−s)μ

)
≤ (1− s)A∗(κ) + sA∗(μ),

A∗
(

κμ
sκ+(1−s)μ

)
≤ (1− s)A∗(κ) + sA∗(μ).

(10)

Consider θ(κ) = A
(

1
κ

)
. Taking m = 1

κ and n = 1
μ to replace κ and μ, respectively.

Then, applying (10)

A∗
(

1
κμ

s 1
κ+(1−s) 1

μ

)
= A∗

(
1

(1−s)κ+sμ

)
= θ∗((1− s)κ + sμ)

≤ sA∗
(

1
μ

)
+ (1− s)A∗

(
1
κ

)
= sθ∗(μ) + (1− s)θ∗(κ),

A∗
(

1
κμ

s 1
κ+(1−s) 1

μ

)
= A∗

(
1

(1−s)κ+sμ

)
= θ∗((1− s)κ + sμ)

≤ sA∗
(

1
μ

)
+ (1− s)A∗

(
1
κ

)
= sθ∗(μ) + (1− s)θ∗(κ)

It follows that [
A∗

(
1
κμ

s 1
κ+(1−s) 1

μ

)
, A∗

(
1
κμ

s 1
κ+(1−s) 1

μ

)]
=

[θ∗((1− s)κ + sμ), θ∗((1− s)κ + sμ)] ≤p s[θ∗(μ), θ∗(μ)] + (1−
s)[θ∗(κ), θ∗(κ)].

which implies that
θ((1− s)κ + sμ) ≤p sθ(μ) + (1− s)θ(κ).

This concludes that θ(κ) is a LR-convex IV-F.
Conversely, let θ is LR-convex IV-F on K. Then, for all κ,μ ∈ K, s ∈ [0, 1], we have

θ(sκ + (1− s)μ ) ≤p sθ(κ) + (1− s)θ(μ).

By using the same steps as above, we have

θ∗
(

s 1
κ + (1− s) 1

μ

)
= A∗

(
1

s 1
κ+(1−s) 1

μ

)
= A∗

(
κμ

(1−s)κ+sμ

)
≤ sθ∗

(
1
κ

)
+ (1− s)θ∗

(
1
μ

)
= sA∗(κ) + (1− s)A∗(μ)

θ∗
(

s 1
κ + (1− s) 1

μ

)
= A∗

(
1

s 1
κ+(1−s) 1

μ

)
= A∗

(
κμ

(1−s)κ+sμ

)
≤ sθ∗

(
1
κ

)
+ (1− s)θ∗

(
1
μ

)
= sA∗(κ) + (1− s)A∗(μ)

It follows that

A

(
κμ

sκ + (1− s)μ

)
≤p (1− s)A(κ) + sA(μ).

This completes the proof. �
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Remark 3. If one attempts to take A∗(κ) = A∗(κ), then, from Theorem 3, we acquire the
Lemma 2.1 of [30].

3. Main Results

Budak et al. [1] introduced the notion of IV-RL-fractional integrals. As may be seen,
fractional integral definitions and IV-RL-fractional integral definitions have comparable
configurations. As a result of this observation, we may state the H-H inequality for LR-
harmonically IV-Fs using IV-RL-fractional integrals.

Theorem 4. Let A ∈ LRHSX
(
[t, υ], K+

C
)
, and defined on the interval [t, υ] such that

A(κ) = [A∗(κ), A∗(κ)] for all κ ∈ [t, υ]. If A ∈ L
(
[t, υ],K+

C
)

and fractional integral over
[t, υ], then

A

(
2tυ

t + υ

)
≤p

Γ(β + 1)

2(υ− t)β

[
T

β
1
t
−(A ◦Ψ)

(
1
υ

)
+ T

β
1
υ
+ (A ◦Ψ)

(
1
t

)]
≤p

A(t) +A(υ)

2
. (11)

If A(κ) is LR-ऒ -concave IV-F, then

A

(
2tυ

t + υ

)
≥p

Γ(β + 1)

2(υ− t)β

[
T

β
1
t
− (A ◦Ψ)

(
1
υ

)
+ T

β
1
υ
+ (A ◦Ψ)

(
1
t

)]
≥p

A(t) +A(υ)

2
. (12)

where Ψ(κ) = 1
κ .

Proof. Let A ∈ LRHSX
(
[t, υ], K+

C
)
. Then, by hypothesis, we have

2A
(

2tυ
t + υ

)
≤p A

(
tυ

st + (1− s)υ

)
+A

(
tυ

(1− s)t + sυ

)
.

Therefore, we have

2A∗
( 2tυ

t+υ

) ≤ A∗
(

tυ
st+(1−s)υ

)
+A∗

(
tυ

(1−s)t+sυ

)
,

2A∗
( 2tυ

t+υ

) ≤ A∗
(

tυ
st+(1−s)υ

)
+A∗

(
tυ

(1−s)t+sυ

)
.

Consider θ(κ) = A
(

1
κ

)
. By Theorem 3, we have θ(κ) is LR-convex IV-F. Then, above

inequality, we have

2θ∗
(

t + υ

2tυ

)
≤ θ∗

(
st + (1− s)υ

tυ

)
+ θ∗

(
(1− s)t + sυ

tυ

)
.

Multiplying both sides by sβ−1 and integrating the obtained result with respect to s
over (0, 1), we have

2
∫ 1

0 sβ−1θ∗
( t+υ

2tυ
)
ds

≤ ∫ 1
0 sβ−1θ∗

(
st+(1−s)υ

tυ

)
ds +

∫ 1
0 sβ−1θ∗

(
(1−s)t+sυ

tυ

)
ds.

Let κ = (1−s)t+sυ
tυ and μ = st+(1−s)υ

tυ . Then, we have

2
β θ∗

( t+υ
2tυ

) ≤ ( tυ
υ−t

)β ∫ 1
t

1
υ

(
1
t − μ

)β−1
θ∗(μ)dμ +

( tυ
υ−t

)β ∫ 1
t

1
υ

(
κ − 1

υ

)β−1
θ∗(κ)dκ = Γ(β)

( tυ
υ−t

)β
[
T

β

( 1
t )
− θ∗

(
1
υ

)
+

T
β

( 1
υ )
+ θ∗

(
1
t

)]
.

Similarly, for θ∗(κ), we have

2
β

θ∗
(

t + υ

2tυ

)
≤ Γ(β)

(
tυ

υ− t

)β[
T

β

( 1
t )
− θ∗

(
1
υ

)
+ T

β

( 1
υ )

+ θ∗
(

1
t

)]
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It follows that

2
[

θ∗
(

t + υ

2tυ

)
, θ∗

(
t + υ

2tυ

)]
≤p Γ(β + 1)

(
tυ

υ− t

)β[
T

β

( 1
t )
− θ∗

(
1
υ

)
+ T

β

( 1
υ )

+ θ∗
(

1
t

)
, Tβ

( 1
t )
− θ∗

(
1
υ

)
+ T

β

( 1
υ )

+ θ∗
(

1
t

)]
.

That is,

2 θ

(
t + υ

2tυ

)
≤p Γ(β + 1)

(
tυ

υ− t

)β[
T

β

( 1
t )
− θ

(
1
υ

)
+ T

β

( 1
υ )

+ θ

(
1
t

)]
. (13)

In a similar way as above, we have

Γ(β)

(
tυ

υ− t

)β[
T

β

( 1
t )
− θ

(
1
υ

)
+ T

β

( 1
υ )

+ θ

(
1
t

)]
≤p

θ
(

1
t

)
+ θ

(
1
υ

)
β

. (14)

Combining (31) and (32), we have

θ

(
t + υ

2tυ

)
≤p

Γ(β + 1)
( tυ

υ−t
)β

2

[
T

β

( 1
t )
− θ

(
1
υ

)
+ T

β

( 1
υ )

+ θ

(
1
t

)]
≤p

θ
(

1
t

)
+ θ

(
1
υ

)
2

,

that is

A

(
2tυ

t + υ

)
≤p

Γ(β + 1)

2(υ− t)β

[
T

β
1
t
−(A ◦Ψ)

(
1
υ

)
+ T

β
1
υ
+ (A ◦Ψ)

(
1
t

)]
≤p

A(t) +A(υ)

2
.

Hence, the required result. �

Remark 4. On the basic of the inequality (29), we consider certain special cases as below. If we
attempt to take β = 1, then, we achieve the coming inequality which is also new one:

A

(
2tυ

t + υ

)
≤p

tυ
υ− t

∫ υ

t

A(κ)
κ2 dκ ≤p

A(t) +A(υ)

2
. (15)

If we attempt to take A∗(κ) = A∗(κ), then, we achieve the coming inequality, see [30]:

A

(
2tυ

t + υ

)
≤ Γ(β + 1)

2(υ− t)β

[
T

β
1
t
−(A ◦Ψ)

(
1
υ

)
+ T

β
1
υ
+ (A ◦Ψ)

(
1
t

)]
≤ A(t) +A(υ)

2
. (16)

If we attempt to take A∗(κ) = A∗(κ) with β = 1, then, we acquire the coming inequality,
see [27].

A

(
2tυ

t + υ

)
≤ tυ

υ− t

∫ υ

t

A(κ)
κ2 dκ ≤ A(t) +A(υ)

2
(17)

Example 2. If we consider taking the IV-Fs A : [0, 2]→ FC(R) such that [1, 2]
√
κ, then, all

assumptions mentioned in Theorem 4 are met. Since A∗(κ) =
√
κ, A∗(κ, θ) = 2

√
κ. If β = 1,

then, we compute the following:

A∗
( 2tυ

t+υ

) ≤ Γ(β+1)
2(υ−t)β

[
T

β
1
t
−(A∗ ◦Ψ)

(
1
υ

)
+ T

β
1
υ
+ (A∗ ◦Ψ)

(
1
t

)]
≤ A∗(t)+A∗(υ)

2 .

A∗
( 2tυ

t+υ

)
= A∗(0) = 0,

Γ(β+1)
2(υ−t)β

[
T

β
1
t
−(A∗ ◦Ψ)

(
1
υ

)
+ T

β
1
υ
+ (A∗ ◦Ψ)

(
1
t

)]
= 0,

tυ
υ−t

∫ υ
t

A∗(κ)
κ2 dκ = 0

2

∫ 2
0

√
κ

κ2 dκ = 0,

A∗(t)+A∗(υ)
2 = 1√

2
.
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That means
0 ≤ 0 ≤ 1√

2
.

Similarly, it can be easily shown that

A∗
(

2tυ
t + υ

)
≤ Γ(β + 1)

2(υ− t)β

[
T

β
1
t
−(A

∗ ◦Ψ)

(
1
υ

)
+ T

β
1
υ
+ (A∗ ◦Ψ)

(
1
t

)]
≤ A∗(t) +A∗(υ)

2
.

Now
A∗

( 2tυ
t+υ

)
= A∗(0) = 0,

Γ(β+1)
2(υ−t)β

[
T

β
1
t
−(A

∗ ◦Ψ)
(

1
υ

)
+ T

β
1
υ
+ (A∗ ◦Ψ)

(
1
t

)]
= 0,

A∗(t)+A∗(υ)
2 =

√
2.

From which, we have
0 ≤ 0 ≤

√
2,

that is

[0, 0] ≤p [0, 0] ≤p

[
1√
2

,
√

2
]

.

Hence,

A

(
2tυ

t + υ

)
≤p

Γ(β + 1)

2(υ− t)β

[
T

β
1
t
−(A ◦Ψ)

(
1
υ

)
+ T

β
1
υ
+ (A ◦Ψ)

(
1
t

)]
≤p

A(t) +A(υ)

2
.

Based on the IV-RL-fractional integrals, our next main results in association with the H-H
type inequalities for product of two LR-harmonically IV-Fs are presented as follows.

Theorem 5. Let A, Ψ ∈ LRHSX
(
[t, υ], K+

C
)
, and defined on the interval [t, υ] such that

A(κ) = [A∗(κ), A∗(κ)] and Ψ(κ) = [Ψ∗(κ), Ψ∗(κ)] for allκ ∈ [t, υ]. If A × Ψ ∈ L
(
[t, υ],K+

C
)
,

and fractional integral over [t, υ], then

Γ(β+1)
2

( tυ
υ−t

)β
[

T
β

( 1
υ )

+ A ◦Ψ
(

1
t

)
×Ψ ◦Ψ

(
1
t

)
+ T

β

( 1
t )
−A ◦Ψ

(
1
υ

)
×Ψ ◦Ψ

(
1
υ

) ]
≤p

(
1
2 − β

(β+1)(β+2)

)
D(t, υ)+(

β
(β+1)(β+2)

)
Q(t, υ),

where D(t, υ) = A(t) × Ψ(t) + A(υ) × Ψ(υ), Q(t, υ) = A(t) × Ψ(υ) + A(υ) × Ψ(t), and
D(t, υ) = [D∗(t, υ), D∗(t, υ)] and Q(t, υ) = [Q∗(t, υ), Q∗(t, υ)].

Proof. Since A, Ψ ∈ LRHSX
(
[t, υ], K+

C
)
, then, we have

A∗
(

tυ
st + (1− s)υ

)
≤ (1− s)A∗(t) + sA∗(υ),

and
Ψ∗
(

tυ
st+(1−s)υ

)
≤ (1− s)Ψ∗(t) + sΨ∗(υ) .

From the definition of LR-ऒ -convex IV-Fs it follows that 0 ≤p A(κ) and 0 ≤p Ψ(κ), so

A∗
(

tυ
st+(1−s)υ

)
×Ψ∗

(
tυ

st+(1−s)υ

)
≤ (

(1− s)A∗(t) + sA∗(υ)
)(

(1− s)Ψ∗(t) + sΨ∗(υ)
)

= (1− s)2A∗(t)×Ψ∗(t) + s2A∗(υ)×Ψ∗(υ)
+s(1− s)A∗(t)×Ψ∗(υ) + s(1− s)A∗(υ)×Ψ∗(t)

. (18)
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Analogously, we have

A∗
(

tυ
(1−s)t+sυ

)
Ψ∗
(

tυ
(1−s)t+sυ

)
≤ s2A∗(t)×Ψ∗(t) + (1− s)2A∗(υ)×Ψ∗(υ)

+s(1− s)A∗(t)×Ψ∗(υ) + s(1− s)A∗(υ)×Ψ∗(t)
. (19)

Adding (18) and (19), we have

A∗
(

tυ
st+(1−s)υ

)
×Ψ∗

(
tυ

st+(1−s)υ

)
+A∗

(
tυ

(1−s)t+sυ

)
×Ψ∗

(
tυ

(1−s)t+sυ

)
≤
[
s2 + (1− s)2

][
A∗(t)×Ψ∗(t) +A∗(υ)×Ψ∗(υ)

]
+2s(1− s)

[
A∗(υ)×Ψ∗(t) +A∗(t)×Ψ∗(υ)

] . (20)

Taking multiplication of (20) by sβ−1 and integrating the obtained result with respect
to s over (0, 1), we have∫ 1

0 sβ−1A∗
(

tυ
st+(1−s)υ

)
×Ψ∗

(
tυ

st+(1−s)υ

)
ds

+
∫ 1

0 sβ−1A∗
(

tυ
(1−s)t+sυ

)
×Ψ∗

(
tυ

(1−s)t+sυ

)
ds

≤ D∗(t, υ)
∫ 1

0 sβ−1
[
s2 + (1− s)2

]
ds + 2Q∗(t, υ)

∫ 1
0 sβ−1s(1− s)ds.

It follows that,

Γ(β)
( tυ

υ−t
)β
[

T
β

( 1
υ )

+ A∗
(

1
t

)
×Ψ∗

(
1
t

)
+ T

β

( 1
t )
− A∗

(
1
υ

)
×Ψ∗

(
1
υ

) ]
≤ 2

β

(
1
2 − β

(β+1)(β+2)

)
D∗(t, υ) + 2

β

(
β

(β+1)(β+2)

)
Q∗(t, υ)

,

Similarly, for A∗(κ), we have

Γ(β)
( tυ

υ−t
)β
[

T
β

( 1
υ )

+ A∗
(

1
t

)
×Ψ∗

(
1
t

)
+ T

β

( 1
t )
− A∗

(
1
υ

)
×Ψ∗

(
1
υ

) ]
≤ 2

β

(
1
2 − β

(β+1)(β+2)

)
D∗(t, υ) + 2

β

(
β

(β+1)(β+2)

)
Q∗(t, υ)

,

that is

Γ(β)
( tυ

υ−t
)β
[
T

β

( 1
υ )

+ A∗
(

1
t

)
×Ψ∗

(
1
t

)
+ T

β

( 1
t )
− A∗

(
1
υ

)
×Ψ∗

(
1
υ

)
, Tβ

( 1
υ )

+ A∗
(

1
t

)
×

Ψ∗
(

1
t

)
+ T

β

( 1
t )
− A∗

(
1
υ

)
×Ψ∗

(
1
υ

)]
≤p

2
β

(
1
2 − β

(β+1)(β+2)

)
[D∗(t, υ), D∗(t, υ)]

+ 2
β

(
β

(β+1)(β+2)

)
[Q∗(t, υ), Q∗(t, υ)].

Thus,

Γ(β+1)
2

( tυ
υ−t

)β
[

T
β

( 1
υ )

+ A ◦Ψ
(

1
t

)
×Ψ ◦Ψ

(
1
t

)
+ T

β

( 1
t )
−A ◦Ψ

(
1
υ

)
×Ψ◦

Ψ
(

1
υ

)]
≤p

(
1
2 − β

(β+1)(β+2)

)
D(t, υ) +

(
β

(β+1)(β+2)

)
Q(t, υ).

and the theorem has been established. �

Theorem 6. Let A, Ψ ∈ LRHSX
(
[t, υ], K+

C
)
, and defined on the interval [t, υ] such that

A(κ) = [A∗(κ), A∗(κ)] and Ψ(κ) = [Ψ∗(κ), Ψ∗(κ)] for all κ ∈ [t, υ]. If A×Ψ ∈ L
(
[t, υ],K+

C
)

and fractional integral over [t, υ], then
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A
( 2tυ

t+υ

)×Ψ
( 2tυ

t+υ

) ≤p
Γ(β+1)

4
( tυ

υ−t
)β
[

T
β

( 1
υ )

+ A
(

1
t

)
×Ψ

(
1
t

)
+ T

β

( 1
t )
− A

(
1
υ

)
×Ψ

(
1
υ

) ]
+ 1

2

(
1
2 − β

(β+1)(β+2)

)
Q(t, υ)+

1
2

(
β

(β+1)(β+2)

)
D(t, υ),

where D(t, υ) = A(t) × Ψ(t) + A(υ) × Ψ(υ), Q(t, υ) = A(t) × Ψ(υ) + A(υ) × Ψ(t), and
D(t, υ) = [D∗(t, υ), D∗(t, υ)] and Q(t, υ) = [Q∗(t, υ), Q∗(t, υ)].

Proof. Consider A, Ψ ∈ LRHSX
(
[t, υ], K+

C
)
. Then, by hypothesis, we have

A∗
( 2tυ

t+υ

)×Ψ∗
( 2tυ

t+υ

)
≤ 1

4

⎡⎣ A∗
(

tυ
st+(1−s)υ

)
×Ψ∗

(
tυ

st+(1−s)υ

)
+A∗

(
tυ

st+(1−s)υ

)
×Ψ∗

(
tυ

(1−s)t+sυ

) ⎤⎦+ 1
4

⎡⎣ A∗
(

tυ
(1−s)t+sυ

)
×Ψ∗

(
tυ

st+(1−s)υ

)
+A∗

(
tυ

(1−s)t+sυ

)
×Ψ∗

(
tυ

(1−s)t+sυ

) ⎤⎦,

≤ 1
4

⎡⎣ A∗
(

tυ
st+(1−s)υ

)
×Ψ∗

(
tυ

st+(1−s)υ

)
+A∗

(
tυ

(1−s)t+sυ

)
×Ψ∗

(
tυ

(1−s)t+sυ

) ⎤⎦+ 1
4

⎡⎢⎢⎣
(sA∗(t) + (1− s)A∗(υ))
×((1− s)Ψ∗(t) + sΨ∗(υ))
+((1− s)A∗(t) + sA∗(υ))
×(sΨ∗(t) + (1− s)Ψ∗(υ))

⎤⎥⎥⎦,

= 1
4

⎡⎣ A∗
(

tυ
st+(1−s)υ

)
×Ψ∗

(
tυ

st+(1−s)υ

)
+A∗

(
tυ

(1−s)t+sυ

)
×Ψ∗

(
tυ

(1−s)t+sυ

) ⎤⎦+ 1
4

[ {
s2 + (1− s)2

}
Q∗(t, υ)

+{s(1− s) + (1− s)s}D∗(t, υ)

]
.

(21)

Multiplying inequality (21) by sβ−1 and integrating over (0, 1),

A∗
( 2tυ

t+υ

)×Ψ∗
( 2tυ

t+υ

)
≤ 1

4

⎡⎣ ∫ 1
0 sβ−1A∗

(
tυ

st+(1−s)υ

)
×Ψ∗

(
tυ

st+(1−s)υ

)
ds

+
∫ 1

0 sβ−1A∗
(

tυ
(1−s)t+sυ

)
×Ψ∗

(
tυ

(1−s)t+sυ

) ⎤⎦ds +

[
1
4Q∗(t, υ)

∫ 1
0 sβ−1

[
s2 + (1− s)2

]
ds

+2D∗(t, υ)
∫ 1

0 sβ−1s(1− s)ds

]
.

Taking κ = tυ
st+(1−s)υ and μ = tυ

(1−s)t+sυ

1
β A∗

( 2tυ
t+υ

)×Ψ∗
( 2tυ

t+υ

)
≤ Γ(β)

4
( tυ

υ−t
)β
[

T
β

( 1
υ )

+ A∗ ◦Ψ
(

1
t

)
×Ψ∗ ◦Ψ

(
1
t

)
+ T

β

( 1
t )
− A∗ ◦Ψ

(
1
υ

)
×Ψ∗ ◦Ψ

(
1
υ

) ]
+ 1

2β

(
1
2 − β

(β+1)(β+2)

)
Q∗(t, υ) + 1

2β

(
β

(β+1)(β+2)

)
D∗(t, υ),

1
β A∗

( 2tυ
t+υ

)×Ψ∗
( 2tυ

t+υ

)
≤ Γ(β)

4
( tυ

υ−t
)β
[

T
β

( 1
υ )

+ A∗ ◦Ψ
(

1
t

)
×Ψ∗ ◦Ψ

(
1
t

)
+ T

β

( 1
t )
− A∗ ◦Ψ

(
1
υ

)
×Ψ∗ ◦Ψ

(
1
υ

) ]
+ 1

2β

(
1
2 − β

(β+1)(β+2)

)
Q∗(t, υ) + 1

2β

(
β

(β+1)(β+2)

)
D∗(t, υ),

Similarly, for A∗(κ), we have

1
β A∗

( 2tυ
t+υ

)×Ψ∗
( 2tυ

t+υ

)
≤ Γ(β)

4
( tυ

υ−t
)β
[

T
β

( 1
υ )

+ A∗ ◦Ψ
(

1
t

)
×Ψ∗ ◦Ψ

(
1
t

)
+ T

β

( 1
t )
− A∗ ◦Ψ

(
1
υ

)
×Ψ∗ ◦Ψ

(
1
υ

) ]
+ 1

2β

(
1
2 − β

(β+1)(β+2)

)
Q∗(t, υ) + 1

2β

(
β

(β+1)(β+2)

)
D∗(t, υ),

,

that is

A
( 2tυ

t+υ

)×̃Ψ
( 2tυ

t+υ

) ≤p
Γ(β+1)

4
( tυ

υ−t
)β
[

T
β

( 1
υ )

+ A
(

1
t

)
×Ψ

(
1
t

)
+ T

β

( 1
t )
− A

(
1
υ

)
×Ψ

(
1
υ

) ]
+ 1

2

(
1
2 − β

(β+1)(β+2)

)
Q(t, υ)+

1
2

(
β

(β+1)(β+2)

)
D(t, υ).

Hence, the required result. �
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Theorem 7. Let A, Ψ ∈ LRHSX
(
[t, υ], K+

C
)
, and defined on the interval [t, υ] such that

A(κ) = [A∗(κ), A∗(κ)] and Ψ(κ) = [Ψ∗(κ), Ψ∗(κ)] for all κ ∈ [t, υ]. If A×Ψ ∈ L
(
[t, υ],K+

C
)

and fractional integral over [t, υ], then

2A
( 2tυ

t+υ

)×Ψ
( 2tυ

t+υ

) ≤p
Γ(β+1)

21−β

( tυ
υ−t

)β
[

T
β

( t+υ
2tυ )

+ A ◦Ψ
(

1
t

)
×Ψ ◦Ψ

(
1
t

)
+ T

β

( t+υ
2tυ )

− A ◦Ψ
(

1
υ

)
×Ψ ◦Ψ

(
1
υ

) ]
+(

1
2 − β2+3β

4(β+1)(β+2)

)
Q(t, υ) +

β2+3β
4(β+1)(β+2)D(t, υ),

where D(t, υ) = A(t) × Ψ(t) + A(υ) × Ψ(υ), Q(t, υ) = A(t) × Ψ(υ) + A(υ) × Ψ(t), and
D(t, υ) = [D∗(t, υ), D∗(t, υ)] and Q(t, υ) = [Q∗(t, υ), Q∗(t, υ)].

Proof. Consider A, Ψ ∈ LRHSX
(
[t, υ], K+

C
)
. Then, by hypothesis, we have

A∗
( 2tυ

t+υ

)×Ψ∗
( 2tυ

t+υ

)
≤ 1

4

⎡⎣ A∗
(

tυ
st+(1−s)υ

)
×Ψ∗

(
tυ

st+(1−s)υ

)
+A∗

(
tυ

st+(1−s)υ

)
×Ψ∗

(
tυ

(1−s)t+sυ

) ⎤⎦+ 1
4

⎡⎣ A∗
(

tυ
(1−s)t+sυ

)
×Ψ∗

(
tυ

st+(1−s)υ

)
+A∗

(
tυ

(1−s)t+sυ

)
×Ψ∗

(
tυ

(1−s)t+sυ

) ⎤⎦ ,

≤ 1
4

⎡⎣ A∗
(

tυ
st+(1−s)υ

)
×Ψ∗

(
tυ

st+(1−s)υ

)
+A∗

(
tυ

(1−s)t+sυ

)
×Ψ∗

(
tυ

(1−s)t+sυ

) ⎤⎦
+ 1

4

⎡⎢⎢⎣
(sA∗(t) + (1− s)A∗(υ))
×((1− s)Ψ∗(t) + sΨ∗(υ))
+((1− s)A∗(t) + sA∗(υ))
×(sΨ∗(t) + (1− s)Ψ∗(υ))

⎤⎥⎥⎦
= 1

4

⎡⎣ A∗
(

tυ
st+(1−s)υ

)
×Ψ∗

(
tυ

st+(1−s)υ

)
+A∗

(
tυ

(1−s)t+sυ

)
×Ψ∗

(
tυ

(1−s)t+sυ

) ⎤⎦
+ 1

4

[ {
s2 + (1− s)2

}
Q∗(t, υ)

+2s(1− s)D∗(t, υ)

]
.

(22)

Multiplying inequality (22) by 21+ββsβ−1 and then, integrating the obtain outcome
over

[
0, 1

2

]
,

A∗
( 2tυ

t+υ

)×Ψ∗
( 2tυ

t+υ

)
≤ 1

4

∫ 1
2

0 21+ββsβ−1
[
A∗

(
tυ

st+(1−s)υ

)
×Ψ∗

(
tυ

st+(1−s)υ

)
+A∗

(
tυ

(1−s)t+sυ

)
×Ψ∗

(
tυ

(1−s)t+sυ

) ]
ds

+ 1
4

[
Q∗(t, υ)

∫ 1
2

0 21+ββsβ−1
[
s2 + (1− s)2

]
ds + 2D∗(t, υ)

∫ 1
2

0 21+ββsβ−1s(1− s)ds
]

Taking κ = tυ
st+(1−s)υ and μ = tυ

(1−s)t+sυ
, then, we get

2 A∗
( 2tυ

t+υ

)×Ψ∗
( 2tυ

t+υ

)
≤ Γ(β+1)

21−β

( tυ
υ−t

)β
[

T
β

( 1
υ )

+ A∗ ◦Ψ
(

1
t

)
×Ψ∗ ◦Ψ

(
1
t

)
+ T

β

( 1
t )
− A∗ ◦Ψ

(
1
υ

)
×Ψ∗ ◦Ψ

(
1
υ

) ]
+
(

1
2 − β

(β+1)(β+2)

)
Q∗(t, υ) +

(
β

(β+1)(β+2)

)
D∗(t, υ).

. (23)

Similarly, for A∗(κ), we have

2 A∗
( 2tυ

t+υ

)×Ψ∗
( 2tυ

t+υ

)
≤ Γ(β+1)

21−β

( tυ
υ−t

)β
[

T
β

( 1
υ )

+ A∗ ◦Ψ
(

1
t

)
×Ψ∗ ◦Ψ

(
1
t

)
+ T

β

( 1
t )
− A∗ ◦Ψ

(
1
υ

)
×Ψ∗ ◦Ψ

(
1
υ

) ]
+
(

1
2 − β2+3β

4(β+1)(β+2)

)
Q∗(t, υ) +

β2+3β
4(β+1)(β+2)D

∗(t, υ).

. (24)

From (23) and (24), we have

2A
( 2tυ

t+υ

)×Ψ
( 2tυ

t+υ

) ≤p
Γ(β+1)

21−β

( tυ
υ−t

)β
[

T
β

( t+υ
2tυ )

+ A ◦Ψ
(

1
t

)
×Ψ ◦Ψ

(
1
t

)
+ T

β

( t+υ
2tυ )

− A ◦Ψ
(

1
υ

)
×Ψ ◦Ψ

(
1
υ

) ]
+(

1
2 − β2+3β

4(β+1)(β+2)

)
Q(t, υ) +

β2+3β
4(β+1)(β+2)D(t, υ).

Now, we present the reformative version of the generalized IV-RL-fractional integral
H-H Fejér inequality on convex interval. �
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Theorem 8. Let A ∈ LRHSX
(
[t, υ], K+

C
)
, and defined on the interval [t, υ] such that

A(κ) = [A∗(κ), A∗(κ)] for all κ ∈ [t, υ] ∈ [0, 1] and let A ∈ L
(
[t, υ],K+

C
)

and fractional

integral over [t, υ]. If D : [t, υ]→ R, D
(

1
1
t +

1
υ− 1

κ

)
= D(κ) ≥ 0, then

A
( 2tυ

t+υ

)[
T

β

( 1
υ )

+ (D ◦Ψ)
(

1
t

)
+ T

β

( 1
t )
−(D ◦Ψ)

(
1
υ

)]
≤p

[
T

β

( 1
υ )

+ (AD ◦Ψ)
(

1
t

)
+ T

β

( 1
t )
− (AD◦

Ψ)
(

1
υ

)]
≤p

A(t)+A(υ)
2

[
T

β
1
υ
+ (D ◦Ψ)

(
1
t

)
+ T

β
1
t
−(D ◦Ψ)

(
1
υ

)]
.

(25)

If A is LR-ऒ -concave IV-F, then, inequality (25) is reversed.

Proof. Since A ∈ LRHSX
(
[t, υ], K+

C
)
, then, we have

A∗
( 2tυ

t+υ

) ≤ 1
2

(
A∗

(
tυ

st+(1−s)υ

)
+A∗

(
tυ

(1−s)t+sυ

))
. (26)

Multiplying both sides by (26) by sβ−1D
(

tυ
(1−s)t+sυ

)
and then, integrating the resultant

with respect to s over [0, 1], we obtain

A∗
( 2tυ

t+υ

) ∫ 1
0 sβ−1D

(
tυ

(1−s)t+sυ

)
ds ≤ 1

2

⎛⎝ ∫ 1
0 sβ−1A∗

(
tυ

st+(1−s)υ

)
D
(

tυ
(1−s)t+sυ

)
ds

+
∫ 1

0 sβ−1A∗
(

tυ
(1−s)t+sυ

)
D
(

tυ
(1−s)t+sυ

)
ds

⎞⎠ . (27)

Let κ = tυ
st+(1−s)υ . Then, we have

2
( tυ

υ−t
)β
A∗

( 2tυ
t+υ

) ∫ 1
t

1
υ

(
κ − 1

υ

)β−1
D
(

1
κ

)
dκ

≤ ( tυ
υ−t

)β ∫ 1
t

1
υ

(
κ − 1

υ

)β−1
A∗

(
1

1
t +

1
υ− 1

κ

)
D
(

1
κ

)
dκ +

( tυ
υ−t

)β ∫ 1
t

t

(
κ − 1

υ

)β−1
A∗

(
1
κ

)
D
(

1
κ

)
dκ

=
( tυ

υ−t
)β ∫ 1

t
1
υ

(
1
t −κ

)β−1
A∗(κ)D

(
1

1
t +

1
υ− 1

κ

)
dκ +

( tυ
υ−t

)β ∫ 1
t

1
υ

(
κ − 1

υ

)β−1
A∗

(
1
κ

)
D
(

1
κ

)
dκ

= Γ(β)
( tυ

υ−t
)β
[
T

β

( 1
υ )

+ A∗D
(

1
t

)
+ T

β

( 1
t )
− A∗D

(
1
υ

)]
, (28)

Similarly, for A∗(κ), we have

2
(

tυ
υ− t

)β

A∗
(

2tυ
t + υ

) ∫ 1
t

1
υ

(
κ − 1

υ

)β−1
D

(
1
κ

)
dκ ≤ Γ(β)

(
tυ

υ− t

)β[
T

β

( 1
υ )

+ A∗D
(

1
t

)
+ T

β

( 1
t )
− A∗D

(
1
υ

)]
. (29)

From (28) and (29), we have

Γ(β)
( tυ

υ−t
)β[

A∗
( 2tυ

t+υ

)
, A∗

( 2tυ
t+υ

)]
.
[
T

β

( 1
υ )

+ D
(

1
t

)
+ T

β

( 1
t )
− D

(
1
υ

)]
≤ pΓ(β)

( tυ
υ−t

)β
[

T
β

( 1
υ )

+ A∗D
(

1
t

)
+ T

β

( 1
t )
− A∗D

(
1
υ

)
, T

β

( 1
υ )

+ A∗D
(

1
t

)
+ T

β

( 1
t )
− A∗D

(
1
υ

) ] ,

that is

A

(
2tυ

t + υ

)[
T

β

( 1
υ )

+ (D ◦Ψ)

(
1
t

)
+ T

β

( 1
t )
−(D ◦Ψ)

(
1
υ

)]
≤p

[
T

β

( 1
υ )

+ (AD ◦Ψ)

(
1
t

)
+ T

β

( 1
t )
− (AD ◦Ψ)

(
1
υ

)]
. (30)

Similarly, if A be a LR-ऒ -convex IV-F and sβ−1D
(

tυ
st+(1−s)υ

)
≥ 0, then, we have

sβ−1A∗
(

tυ
st+(1−s)υ

)
D
(

tυ
st+(1−s)υ

)
≤ sβ−1((1− s)A∗(t) + sA∗(υ))D

(
tυ

st+(1−s)υ

)
. (31)

And

sβ−1A∗
(

tυ
(1− s)t + sυ

)
D

(
tυ

st + (1− s)υ

)
≤ sβ−1(sA∗(t) + (1− s)A∗(υ))D

(
tυ

st + (1− s)υ

)
. (32)
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After adding (31) and (32), and integrating the resultant over [0, 1], we get∫ 1
0 sβ−1A∗

(
tυ

st+(1−s)υ

)
D
(

tυ
st+(1−s)υ

)
ds +

∫ 1
0 sβ−1A∗

(
tυ

(1−s)t+sυ

)
D
(

tυ
st+(1−s)υ

)
ds

≤ ∫ 1
0

[
sβ−1A∗(t){s + (1− s)}

(
tυ

st+(1−s)υ

)
+ sβ−1A∗(υ){(1− s) + s}

(
tυ

st+(1−s)υ

) ]
ds,

= A∗(t)
∫ 1

0 sβ−1D
(

tυ
st+(1−s)υ

)
ds +A∗(υ)

∫ 1
0 sβ−1D

(
tυ

st+(1−s)υ

)
ds.

Similarly, for A∗(κ), we have∫ 1
0 sβ−1A∗

(
tυ

st+(1−s)υ

)
D
(

tυ
st+(1−s)υ

)
ds +

∫ 1
0 sβ−1A∗

(
tυ

(1−s)t+sυ

)
D
(

tυ
st+(1−s)υ

)
ds =

A∗(t)
∫ 1

0 sβ−1D
(

tυ
st+(1−s)υ

)
ds +A∗(υ)

∫ 1
0 sβ−1D

(
tυ

st+(1−s)υ

)
ds.

From which, we have

Γ(β)
( tυ

υ−t
)β
[
T

β
1
υ
+ AD ◦Ψ(υ) + T

β

( 1
t )
− AD ◦Ψ

(
1
υ

)]
≤p Γ(β)

( tυ
υ−t

)β A(t)+A(υ)
2

[
T

β
1
υ
+ (D ◦Ψ)

(
1
t

)
+

T
β

( 1
t )
(D ◦Ψ)

(
1
υ

)]
,

that is[
T

β

( 1
υ )

+ AD ◦Ψ

(
1
t

)
+ T

β

( 1
t )
− AD ◦Ψ

(
1
υ

)]
≤p

A(t) +A(υ)

2

[
T

β

( 1
υ )

+ (D ◦Ψ)

(
1
t

)
+ T

β

( 1
t )
−(D ◦Ψ)

(
1
υ

)]
. (33)

By combining (30) and (33), we obtain the required inequality (25). �

Remark 5. Let one attempt to take β = 1. Then, from (25), we acquire the coming inequality,
which is also new one:

A

(
2tυ

t + υ

) ∫ υ

t

D(κ)
κ2 dκ ≤p

∫ υ

t

A(κ)
κ2 D(κ)dκ ≤p

A(t) +A(υ)

2

∫ υ

t

D(κ)
κ2 dκ

Let one attempt to take D(κ) = 1. Then, from (25), we obtain inequality (11).
Let one attempt to take D(κ) = 1 and β = 1, then, from (25), we get H-H inequality for

LR-ऒ -convex IV-F.

A

(
2tυ

t + υ

)
≤p

tυ
υ− t

∫ υ

t

A(κ)
κ2 dκ ≤p

A(t) +A(υ)

2
.

If one attempts to take A∗(κ) = A∗(κ), then, from (40), we acquire the fractional H-H Fejér
inequality, see [31].

Let one attempt to take A∗(κ) = A∗(κ) with β = 1. Then, from (25), we achieve the coming
inequality, see [3].

A

(
2tυ

t + υ

) ∫ υ

t

D(κ)
κ2 dκ ≤

∫ υ

t

A(κ)
κ2 D(κ)dκ ≤ A(t) +A(υ)

2

∫ υ

t

D(κ)
κ2 dκ.

If one attempts to take A∗(κ) = A∗(κ) with D(κ) = 1 then, from (25), we acquire the
coming classical inequality for ऒ -convex function.

A

(
2tυ

t + υ

)
≤ Γ(β + 1)

2(υ− t)β

[
T

β
1
t
−(A ◦Ψ)

(
1
υ

)
+ T

β
1
υ
+ (A ◦Ψ)

(
1
t

)]
≤ A(t) +A(υ)

2
.

If one attempts to take A∗(κ) = A∗(κ) and D(κ) = β = 1 then, from (25), we acquire the
coming classical inequality for ऒ -convex function.

A

(
2tυ

t + υ

)
≤ tυ

υ− t

∫ υ

t

A(κ)
κ2 dκ ≤ A(t) +A(υ)

2
.
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4. Conclusions

We use IV-RL-fractional integral operators to infer various inclusions in the H-H,
H-H-Fejér type inequalities, and some related inequalities in this paper. We show the
relationships between the examined results and previously published ones to show their
generic properties. In addition, some nontrivial examples are given to demonstrate the
accuracy of the results derived in the study. The point we wish to make here is that interval-
valued analyses are commonly used in practical mathematics, particularly in the field of
optimality analysis (see [22,23]). This important subject in interval-valued analysis using
fractional integral operators deserves to be explored further.

In our final view, we believe that our work can be generalized to other models of
fractional calculus, such as Atangana–Baleanu and Prabhakar fractional operators with
Mittag–Liffler functions in their kernels. We have left this consideration as an open problem
for the researchers who are interested in this field. The interested researchers can proceed
as done in references [15,16].
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Abstract: This present study describes a novel manta ray foraging optimization approach based non-
dominated sorting strategy, namely (NSMRFO), for solving the multi-objective optimization problems
(MOPs). The proposed powerful optimizer can efficiently achieve good convergence and distribution
in both the search and objective spaces. In the NSMRFO algorithm, the elitist non-dominated sorting
mechanism is followed. Afterwards, a crowding distance with a non-dominated ranking method is
integrated for the purpose of archiving the Pareto front and improving the optimal solutions coverage.
To judge the NSMRFO performances, a bunch of test functions are carried out including classical
unconstrained and constrained functions, a recent benchmark suite known as the completions
on evolutionary computation 2020 (CEC2020) that contains twenty-four multimodal optimization
problems (MMOPs), some engineering design problems, and also the modified real-world issue
known as IEEE 30-bus optimal power flow involving the wind/solar/small-hydro power generations.
Comparison findings with multimodal multi-objective evolutionary algorithms (MMMOEAs) and
other existing multi-objective approaches with respect to performance indicators reveal the NSMRFO
ability to balance between the coverage and convergence towards the true Pareto front (PF) and
Pareto optimal sets (PSs). Thus, the competing algorithms fail in providing better solutions while the
proposed NSMRFO optimizer is able to attain almost all the Pareto optimal solutions.

Keywords: multimodal multi-objective optimization; manta ray foraging optimizer; non-dominated
solution; crowing distance; engineering design problem; optimal power flow; renewable energy sources

1. Introduction

Nowadays, meta-heuristics become popular in different research areas for resolving
challenging optimization issues. These stochastic approaches are among the best and
effective strategies in finding optimal solutions, conflicting with the classical (deterministic)
optimization approaches which are devalued due to their drawbacks as local optima
stagnation [1], etc. In spite of the benefits of the intelligence algorithms, they require
some improvement to satisfy the diverse characteristics of complex real-world applications.
Features that mostly faced in real issues are uncertainty [2], dynamicity [3], combinatorial,
multiple objectives [4,5], constraints, etc. Along these lines, it is obviously seen that no
approach is qualified in resolving the diverse kind of optimization problems. In that regard,
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the No-Free Lunch (NFL) theorem [6] validates this and opens the way for developers to
create the newest approaches and enhances the quality of the existing ones.

Some of well-regarded meta-heuristic algorithms are: a genetic algorithm (GA), which
is the first stochastic algorithm inspired by John Holland in 1960 [7], followed by simulated
annealing (SA) in 1983 [8], particle swarm optimization (PSO) in 1995 by Kennedy [9],
and more approaches that were developed later such as ant bee colony (ABC) [10], arith-
metic optimization algorithm (AOA) [11], Harris hawks optimization (HHO) [12], sine
cosine algorithm (SCA) [13], black widow optimization (BWO) [14], dynamic differential
annealed optimization (DDAO) [15], levy flight distribution (LFD) [16], Salp swarm al-
gorithm (SSA) [17], Henry gas solubility optimization (HGSO) [18], manta ray foraging
optimization (MRFO) [19], and so on. All these developed stochastic algorithms are fre-
quently single-objective; therefore, the researchers improve them according to the nature
and complexity of their problems. Hence, in line with the aforementioned nature of ap-
plications, we have improved the new bio-inspired approach called manta ray foraging
optimization (MRFO) [19] with a view to cope with the multi-objective problems (MOPs),
which are the main focus of this paper.

During the two last years, several studies have guaranteed the superiority and effi-
ciency of the MRFO algorithm in solving global optimization problems, such as: Fahd et al. [20],
who applied the standard MRFO to perform the dynamic operation for connecting PV
into the grid system. The authors in [21] have examined the global maximum power
point of a partially shaded MJSC photovoltaic (PV) array applying the MRFO algorithm.
Regarding the work of Selem et al. [22], the MRFO was applied to define the unknown
electrical parameters of proton exchange membrane fuel cells stacks, which is considered
as a constrained optimization problem. In addition, El-Hameed et al. [23] used MRFO to
solve the solar module parameters’ identifications of a three diode equivalent model of
PV. In addition, in an attempt to ameliorate the performance of this suggested approach,
Dalia et al. [24] introduced a modified MRFO by using the fractional-order optimization
algorithms, in order to enhance its exploitation ability. Referring to [25], a binary version of
MRFO has been proposed using four S-Shaped and four V-Shaped transfer functions for the
feature selection problem. In the bio-medical area, Karrupusamy utilized a hybrid MRFO
to identify the issue in an existing brain tumor by using a convolutional neural network as a
classifier that classifies the features and supplies optimal classification results [26], etc. The
authors in [27] have used the multi-objective manta ray foraging optimization (MOMRFO)
based weighted sum to handle the optimal power flow (OPF) problem for hybrid AC and
multi-terminal direct current power grids. In Ref. [28], the authors applied the IMOMRFO
to solve the IEEE-30 and IEEE-57 OPF issues.

In accordance with the literature review, the multi-objective algorithms (MOAs) are
divided into two techniques: a priori versus a posteriori [29]. The first class converts
the multi-objective problem to a single one, by aggregating all objectives in one function
using a set of weights that are chosen by an expert in the problem domain (decision
makers). The drawback of this method appears when we generate the Pareto optimal set,
we should run the algorithm multiple times. Alternatively, the second class is the posteriori
technique which does not require any addition weights. In this method, the multi-objective
formulation is maintained and the Pareto optimal set is obtained in just one run; then, the
decision-making occurs after the optimization. In addition, the Pareto front of all kinds
of problems can be determined utilizing this posteriori technique, which is the focus of
this work, in which a new multi-objective version of MRFO based non-dominated sorting
approach named NSMRFO was developed.

Different shapes of fronts exist in multi-objective problems: linear, convex, concave,
separated, and so on. Therefore, to obtain an accurate approximation Pareto optimal
front for every multi-objective optimization issues, three fundamental challenges should
be addressed: distribution of solutions (coverage), accuracy (convergence), and local
fronts [30]. Thus, an efficient algorithm is the one that has the ability to balance between
them: avoid a premature convergence and extract a uniform distribution front covering the
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entire true Pareto optimal front. Some of the most popular multi-objective algorithms are:
Non-dominated sorting genetic algorithm (NSGA) [31,32], strength Pareto evolutionary
algorithm (SPEA) [33,34], multi-objective particle swarm optimization (MOPSO) [35], and
multi-objective evolutionary algorithm based on decomposition (MOEA/D) [36].

Since the multi-objective optimization problem appears, the non-dominated sorting
strategy with crowding distance and non-dominated ranking has been known as the
efficient and most significant mechanisms in handling the algorithms for solving the multi-
objective problems. The significant advantages of the NSGA-II and its borrowed MOAs
motivated us to suggest a novel multi-objective variant of the MRFO approach, which is
based on the NSGA-II outstanding operators. The search mechanism in MRFO is kept
similar in the NSMRFO optimizer. Furthermore, in order to assess the NSMRFO success,
various MMMOEAs with other MOEAs were investigated for comparisons with respect
to diverse indicator metrics in search and objective spaces. Thus, with accordance to the
statistical outcomes, the proposed NSMRFO outperformed its competitors and even the
existing MOMRFOs for different kinds of problems.

The main contributions of this paper are as follows:

• A new multi-objective version of manta ray foraging optimization based the crowding
distance and non-dominated sorting operators has been introduced.

• Various performance metrics have been employed in order to affirm the NSMRFO
effectiveness.

• The suggested NSMRFO was benchmarked on the standard unconstrained, constrained
multi-objective test suites, CEC2020 multi-modal multi-objective optimization func-
tions as well as engineering design problems to verify its validity.

• The IEEE 30-bus OPF as one of the most significant real-world issues in the power
system is investigated with wind/solar/small-hydro energy sources for the first time
with the multi-objective case.

The remainder of this paper is arranged in four sections as follows: Section 2 summa-
rizes the basic definitions of the multi-objective problems, and then describes the proposed
algorithm MRFO and the structure of its multi-objective version NSMRFO. Simulation
results, analyses, and competing algorithms are discussed in Section 3. As a final point,
Section 4 concludes this work and proposes some future research directions.

2. Multi-Objective Optimization

As mentioned before, the multi-objective problem is the subject of handling prob-
lems that need optimizing more than one objective simultaneously, which are mostly in
conflict. The basic mathematical formulation of the multi-objective optimization for such
minimization problem can be defined as:

Minimize: F(�x) =
{

f1(�x), f2(�x), . . . , fNobj(�x)
}

Subject to: gi(�x) ≥ 0, i = 1, 2, . . . , m

hi(�x) = 0, i = 1, 2, . . . , p

Li ≤ xi ≤ Ui, i = 1, 2, . . . , n

(1)

where F(�x) is the objective function to be optimized, hi(�x) is the equality constraints, gi(�x)
is the inequality constraints, Nobj, m, p, and n are the numbers of objective functions,
inequality constraints, equality constraints, and variables. Li and Ui are the boundaries of
the ith variable.

The arithmetic relational operators cannot be effective in multi-objective optimization
to compare the search space of different solutions. Alternatively, the Pareto optimal domi-
nance concept is utilized to determine which solution is better than another. The essential
definitions of dominance relation are defined as follows [37,38]:

Let us take two vectors �x = (x1, x2, . . . , xn) and �y = (y1, y2, . . . , yn)
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Definition 1 (Pareto Dominance). �x is said to dominate �y if and only if �x is partially less than �y
(i.e., �x ≤ �y):

∀i ∈ {1, 2, . . . , Nobj} : fi(�x) ≤ fi(�y) ∧ ∃i ∈ {1, 2, . . . , Nobj} : fi(�x) < fi(�y) (2)

Definition 2 (Pareto Optimality). �x ∈ X is called a Pareto-optimal solution iff:

��y ∈ X | F(�y) < F(�x) (3)

Definition 3 (Pareto Optimal Set). The Pareto optimal set is a set that comprises all Pareto
optimal solutions (neither �x dominates �y nor �y dominates �x):

Ps := {x, y ∈ X | ∃F(�y) > F(�x)} (4)

Definition 4 (Pareto Optimal Front). The Pareto optimal front is defined as:

Pf := {F(�x) | �x ∈ Ps} (5)

In such multi-objective optimization problem, a solution is the set of best non-dominated
solutions. Therefore, the Pareto optimal solutions projection in the objective space are kept
in a set called Pareto optimal front as illustrated in Figure 1. The solutions of both spaces
obviously reveal that the green shapes are better than the others, since they dominate all
other colors.

Figure 1. Parameter and objective spaces.

The concept of the MRFO standard version is explained briefly in the following section.

2.1. Manta Ray Foraging Optimizer (MRFO)

MRFO is among the recent algorithms proposed in 2020, inspired by giant known
critters of the sea called Manta Rays [19]. Figure 2 depicts the shape of a manta ray.
To establish this algorithm, the authors mimic three feeding behaviors of Manta Rays:
chain, somersault, and cyclone feeding. Furthermore, the manta rays are assumed as
search agents which explore the planktons’ location and proceed towards them. Then,
the planktons at significant concentration represent the best solution. The source code of
MRFO is given in https://www.mathworks.com/matlabcentral/fileexchange/73130-mant
a-ray-foraging-optimization-mrfo (accessed on 24 May 2021).

Following the population-based optimization algorithms, the steps of MRFO are
randomly initialized as illustrated below:

xi = Lbi + rand× (Ubi − Lbi), i = 1, . . . , N (6)

where Ub and Lb are the maximum and minimum bounds of variables in the search space,
rand is a random number between 0 and 1, rand ∈ [0, 1].

The three main operators are mathematically clarified in the next subsections.
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(a) (b)

Figure 2. Manta ray body form. (a) Manta ray in the ocean; (b) parts of a manta ray, dorsal, and ventral.

2.1.1. Chain Foraging

In this foraging strategy, about 50 Mantas line up head to tail forming an orderly
line. The chain swims towards the position of intense concentration of plankton with a
fully open mouth. The missing plankton by the leader (manta at the top of the chain) will
be devoured by the followers. In the course of the foraging process, the position of each
follower is updated towards the best source of plankton and individuals in front of it. This
foraging phase is depicted in Figure 3. The mathematical updating formulas are presented
as follows:

xt+1
i,j =

⎧⎨⎩ xt
i,j + r1 ·

(
xt

best,j − xt
i,j

)
+ α ·

(
xt

best,j − xt
i,j

)
, i = 1

xt
i,j + r2 ·

(
xt

i−1,j − xt
i,j

)
+ α ·

(
xt

best,j − xt
i,j

)
, i = 2, . . . , N

(7)

where xi,j is the position of ith manta ray in the jth dimension, r1 and r2 are the random
vector in range [0, 1], xt

best,j is the best plankton concentration position, and α is a weight
coefficient that is expressed as:

α = 2 · r3 ·
√
| log(r4)| (8)

where r3 and r4 introduce the random vector in range [0, 1].

Figure 3. Simulation model of chain foraging behavior.

2.1.2. Cyclone Foraging

Cyclone foraging phase follows the feeding strategy in WOA [39] in terms of spiral
movement. After discovering a significant amount of plankton in the profundity of the
ocean, the mantas move one behind another towards plankton making a spiral shape. This
foraging phase is illustrated in Figure 4. The manta updates its position based on its best
previous position and the manta in front of it.

The spiral-shaped movement is mathematically modeled as:

xt+1
i,j =

⎧⎨⎩ xbest,j + r5 ·
(

xt
best,j − xt

i,j

)
+ β ·

(
xt

best,j − xt
i,j

)
, i = 1

xbest,j + r6 ·
(

xt
i−1,j − xt

i,j

)
+ β ·

(
xt

best,j − xt
i,j

)
, i = 2, . . . , N

(9)
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where r5 and r6 present the random value in [0, 1]; β is the weight coefficient that is
formulated as:

β = 2er7
T−t+1

T · sin(2πr7) (10)

where r7 denotes the random vector in range [0, 1], and T and t are the maximum and
current iteration, respectively.

Figure 4. Simulation model of cyclone foraging behavior.

The cyclone foraging can be considered as the main phase in MRFO, in which it
performs the intensification (exploitation) and diversification (exploration) mechanisms.
The exploitation improvement is achieved based on considering the best plankton found so
far as a reference point. On the other hand, the exploration phase incites MRFO to reach the
overall optimal solution in accordance with the mathematical equations described below:

xrand,j = Lbj + r8 ·
(
Ubj − Lbj

)
(11)

xt+1
i,j =

⎧⎨⎩ xrand,j + r9

(
xrand,j − xt

i,j

)
+ β

(
xrand,j − xt

i,j

)
, i = 1

xrand,j + r10

(
xt

i−1,j − xt
ij

)
+ β

(
xrand,j − xt

i,j

)
, i = 2, . . . , N

(12)

where xrand,j is the random position generated inside the search space.

2.1.3. Somersault Foraging

The last phase in MRFO is somersault feeding, wherein the manta ray swims to and fro
around a pivot point and somersaults around itself to a new position. Figure 5 illustrates this
feeding behavior. The manta updates its position using the following mathematical model:

xt+1
i,j = xt

i,j + S ·
(

r11 · xbest,j − r12 · xt
i,j)
)

, i = 1, . . . , N (13)

where r11, r12 depict the random values between 0 and 1. S is the somersault factor, S = 2.

Figure 5. Simulation model of somersault foraging behavior.

MRFO’s diversification and intensification phases are balanced using the variations
value t/T, which is gradually increased. The expression t/T > rand denotes the explo-
ration stage, reversibly, and the exploitation process is adopted. The main steps followed
in MRFO are demonstrated in Figure 6.
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Figure 6. MRFO flowchart for the minimization problem.
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2.2. Proposed (NSMRFO)

As MRFO is relevant for single objective issues, we have developed a multi-objective
version of MRFO to handle problems with many fitness functions by applying the Pareto
dominance strategy. This variant is inspired from the non-dominated sorting genetic
algorithm (NSGA-II) approach, which is the most popular and efficient algorithm in the
area of multi-objective optimization in the literature. The non-dominated sorting (NDS)
technique employs the crowding distance to define an ordering among individuals and
preserve the diversity and the elitist mechanism. To compute all non-dominated solutions,
a ranking process is applied called non-dominated ranking (NDR), in which the front that
is not dominated by any solutions is assigned to rank 1, while rank 2 is in accordance
with the front that is dominated by at least one of the solutions, and so on; the ranking
scheme is described in Figure 7a. The crowding distance value of a particular solution is
the average distance of its two neighboring solutions as illustrated in Figure 7b. Therefore,
the less value of crowding distance denotes comparatively the higher crowded space and
conversely. The formulation of this crowding distance mechanism is defined as below:

CDi(j) =
fi(j + 1)− fi(j− 1)

f max
i − f min

i
(14)

where f min
i and f max

i are the minimum and maximum values of the ith objective function.

(a) (b)

Figure 7. Non-dominated ranking fonts (a); crowding-distance calculation (b).

It is worth discussing here that the (NDS) provides a probability to the dominated
solutions to be chosen as well, which enhances the diversification of the suggested algorithm.
The pseudo-code of NSMRFO is depicted in Algorithm 1. The computational space complexity
of NSMRFO is the same as NSGA-II of the order of O(MN2), where M is the number of
objectives, and N is the number of manta rays, while the computational complexity was
found to be much better than that of some of the approaches such as SPEA and NSGA,
which are of O(MN3).
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Algorithm 1 Non-Dominated Sorting Manta Ray Foraging Optimization

1: Initialize the NSMRFO parameters: design variables, bounds(Ub, Lb), population, and
termination criteria.

2: Generate a uniform random initial population of mantas x with respect to Ub and Lb.
3: Compute the fitness function of each manta and sort all of them.
4: Determine the non-dominated solutions in the initial population and save them in

Pareto archive.
5: Compute crowding distance for each Pareto archive member.
6: Select a position vector based on crowding distance value.
7: Compute the position vector and update the position of mantas following the MRFO

procedure.
8: Compute the fitness values of all the updated positions of mantas.
9: Determine the new non-dominated solutions in the population, save them in a Pareto

archive, then remove any dominated solutions in the Pareto archive.
10: Compute the crowding distance value for each Pareto archive member and eliminate as

many as necessary according to archive size with the lowest crowding distance value.
11: Perform non-dominated sorting according to the crowding distance mechanism, then

select the global best solution using the ranking scheme.
12: Display Pareto optimal set.

2.3. Evaluation Criteria

The employed performance metrics are described in this section. The performance
indicators are one of the techniques employed for measuring the potential of a multi-
objective algorithm in terms of the diversity and coverage. In this work, various metrics
are used such as generational distance (GD) [40], inverted generational distance (IGD) [41]
in search [42] and objective [42] spaces, spacing (SP) [43], Pareto sets proximity (rPSP) [44]
and reciprocal of hypervolume (rHV) [45], which are formulated as follows:

• Generational Distance (GD) [40]:

GD =

√
∑

npf
i=1 d2

i

npf
(15)

where np f is the number of obtained Pareto optimal solutions, and di indicates the Euclidean
distance between the ith Pareto optimal solution attained and the closest true Pareto optimal
solution in the reference set:

• Inverted Generational Distance (IGD) [41]:

IGD =

√
∑

ntp f
i=1

(
d′i
)2

ntp f
(16)

where ntp f is the number of true Pareto optimal solutions and d′i indicates the Euclidean
distance between the ith true Pareto optimal solution and the closest Pareto optimal solution
obtained in the reference set.
IGDX is the IGD in search space. IGDF is the IGD in objective space:

• Spacing (SP) [43]:

SP =

√√√√ 1
np f − 1

np f

∑
i=1

(
d̄− di

)2 (17)

where np f is the number of Pareto optimal solutions obtained. di indicates the Euclidean
distance between the ith Pareto optimal solution attained and the closest true Pareto optimal
solution in the reference set. d̄ is the average of all di.
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• Reciprocal of Pareto sets proximity (rPSP) [44]:

rPSP =
IGDX

CR
(18)

CR =

(
m

∏
i=1

δi

)1/2D

(19)

δi =

(
min

(
PFemax

i , PFtmax
i

)−max
(

PFemin
i , PFtmin

i
)

PFtmax
i − PFtmin

i

)2

(20)

where CR is the cover rate. m is the number of objective functions. D is the number of
decision variables. PFt, PFe are the true and obtained Pareto front, respectively:

• Reciprocal of hypervolume (rHV) [45]:

rHV(S, w) =
1

HV(S, w)
(21)

HV(S, w) = λD

(⋃
z∈S

[z; w]

)
(22)

where λD is the D-dimensional Lebesgue measure.

3. Experimental Results and Analysis

In this section, the effectiveness of the proposed multi-objective approach is carried out
by using 18 different unconstrained benchmark functions, the CEC2020 benchmark test that
contains 24 functions, four constrained problems, four engineering design problems, and
the IEEE 30-bus optimal power flow issue incorporating wind/solar/small-hydro power.
These test suites have different shapes of front like linear, convex, concave, connected,
disconnected, etc., as indicated in Table 1. Five analyses are investigated to prove the
robustness of the developed NSMRFO algorithm, the first one aims to assess the conver-
gence by using generation distance (GD) metric, the second evaluates the diversity by
computing the spacing (SP) metric, the inverse generation distance (IGD) in the search
and objective spaces metric, which intends to affirm the NSMRFO’s efficacy in balancing
between convergence and diversity, and the reciprocal of Pareto sets proximity (rPSP)
and hypervolume (rHV). Moreover, for evaluating the NSMRFO approach, 11 significant
multi-objective optimization algorithms are re-implemented, which are named: multi-
objective slime mould algorithm (MOSMA) [46], multi-objective bonobo optimizer based
decomposition (MOBO/D) [47], multi-objective multi-verse optimization (MOMVO) [48],
multi-objective water cycle algorithm (MOWCA) [49], non-dominated sorting grey wolf
optimizer (NSGWO) [50], multi-objective manta ray foraging optimizer (MOMRFO) [51],
improved multi-objective manta ray foraging optimizer (IMOMRFO) [28], non-sorting
genetic algorithm II (NSGA-II) [32], double niched non sorting genetic algorithm II (DN-
NSGA) [52], omni optimizer (OMNI) [53], a multi-objective particle swarm optimizer using
ring topology (MO_ Ring_ PSO_ SCD) [44], and their characteristics are shown in Table 2.
The MATLAB codes for these algorithms were downloaded from: https://aliasgharhei
dari.com/SMA.html (SMA), https://www.mathworks.com/matlabcentral/fileexchang
e/79843-multi-objective-bonobo-optimizer-with-decomposition-method (BO), https://
seyedalimirjalili.com/mvo (MVO), https://ali-sadollah.com/water-cycle-algorithm-wca
/ (WCA), https://www.mathworks.com/matlabcentral/fileexchange/75259-multi-object
ive-non-sorted-grey-wolf-mogwo-nsgwo?s_tid=srchtitle_nsgwo_1 (GWO), https://www.
mathworks.com/matlabcentral/fileexchange/103530-momrfo-multi-objective-manta-ray-
foraging-optimizer?s_tid=srchtitle_MOMRFO_1 (MRFO), https://www.mathworks.com/
matlabcentral/fileexchange/103895-improved-multi-objective-manta-ray-foraging-optim
ization?s_tid=srchtitle_MOMRFO_2 (IMRFO), and the codes of the other algorithms and the
CEC2020 test suite can be found https://www.mathworks.com/matlabcentral/fileexchang
e/103895-improved-multi-objective-manta-ray-foraging-optimization?s_tid=srchtitle_MO
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MRFO_2, respectively (all accessed on 7 August 2021). Each approach is executed on a
personal computer, Windows 8.1 (64-bit), core i5 with 4GB-RAM Processor @1:8 GHz using
MATLAB R2020a. All benchmark functions are executed 20 times for 1000 iterations and
100 populations, except the CEC2020 problem, which is executed 21 times for a population
pop = 200, and a maximum number of function evaluations equal to 10,000 ∗ pop. In addi-
tion, the OPF problem was repeated 20 time for pop = 100 and 200 iterations. Note that the
best performing algorithm is assessed based on the mean and standard deviation outcomes.
The quantitative and qualitative performance outcomes are illustrated in Tables 3–15 and
Figures 8–16, respectively. The outcomes of each set of benchmark functions are outlined
and discussed in the following sections.

Table 1. Descriptions of the unconstrained, constrained, and CEC2020 benchmark functions.

Case Name No. Objs Description

Classical test problems
F1 Schaffer1 2 Convex
F2 Schaffer2 2 Disconnected
F3 Kursawe 2 Degenerate, disconnected
F4 Poloni 2 Disconnected
F5 Fonseca2 2 Concave
F6 Viennet2 3 Connected
F7 Viennet3 3 Connected and asymmetric
ZDT test suite
F8 ZDT1 2 Convex
F9 ZDT2 2 Concave
F10 ZDT3 2 Disconnected
F11 ZDT4 2 Convex, many local optima
F12 ZDT6 2 Concave, nonuniform fitness landscape
YTD test suite
F13 YTD1 2 Disconnected
F14 YTD2 2 Disconnected
F15 YTD3 2 Disconnected
F16 YTD4 2 Disconnected
F17 YTD5 2 Disconnected
F18 YTD6 2 Disconnected
Constrained test suite
F19 OZY 2 Convex, mixed
F20 BNH 2 Convex
F21 SRN 2 Linear, degenerate
F22 CONSTR 2 Convex
CEC-2020 test suite
F23 MMF1 2 Convex
F24 MMF2 2 Convex
F25 MMF4 2 Concave
F26 MMF5 2 Convex
F27 MMF7 2 Convex
F28 MMF8 2 Convex
F29 MMF10 2 Convex
F30 MMF11 2 Convex
F31 MMF12 2 Convex
F32 MMF13 2 Convex
F33 MMF14 3 Concave
F34 MMF15 3 Concave
F35 MMF1_e 2 Convex
F36 MMF14_a 3 Concave
F37 MMF15_a 3 Concave
F38 MMF10_l 2 Convex
F39 MMF11_l 2 Convex
F40 MMF12_l 2 Convex
F41 MMF13_l 2 Convex
F42 MMF15_l 3 Concave
F43 MMF15_a_l 3 Concave
F44 MMF16_l1 3 Concave
F45 MMF16_l2 3 Concave
F46 MMF16_l3 3 Concave
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Table 2. Parameter settings of the tested algorithms.

Algorithms Parameters Values

NSMRFO Somersault factor S 2
MOSMA [46] - -
MOBO/D [47] alpha-bonobo (scab) 1.55

selected bonobo (scsb) 1.4
probability (rcpp) 0.004
Initial probability (pxgm-initial) 0.08
subgroup size factor (tsgsfactor-max) 0.07
Number of grids per dimension 7
Grid inflation rate 0.1
Leader selection pressure 2
Deletion selection pressure 2

MOMVO [48] maximum worm hole existence probability 1
minimum worm hole existence probability 0.2

MOWCA [49] number of rivers + sea (Nsr) 4
NSGWO [50] - -
MOMRFO [51] Somersault factor S 2

nGrid 30
IMOMRFO [28] Somersault factor S 2

3.1. Evaluation on Unconstrained Benchmark Functions

As mentioned above, the proposed approach is tested firstly on the classical uncon-
strained test problems with two and three objectives. The achieved mean and STD values
of 20 runs of each parameter metrics from NSMRFO and different approaches are presented
in Table 3 and indicated in bold. It is worth noting here that the better algorithm is the one
with the lower metric value. The suggested approach NSMRFO managed to outperform
the MOSMA [46], MOBO/D [47], MOMVO [48], MOWCA [49], MOMRFO [51], (IMOM-
RFO) [28], and (NSGA-II) [32] optimizer significantly on eight functions out of 18 cases
for GD, 14 out of 10 cases for IGD, and 14 out of 18 cases for SP metrics. By comparison,
MOSMA is better on SCH2 for all metrics, the MOWCA is best on FON2 for GD, on POL for
IGD, on POL, and VNT3 for SP, the MOMVO is best on just SCH1 for SP metric, the IMOM-
RFO is best on SCH1 for GD, and VNT2 for IGD; however, the NSGA-II and MOMRFO
offered a good solution on four and eight functions, respectively. By contrast, the MOBO/D
optimizer provides the worst results. Therefore, it may be observed from this table that the
NSMRFO approach is able to outperform all competitors on most cases. Furthermore, it is
also evident from Figures 8–10 that NSMRFO converges better toward a true Pareto front
with different features from diverse perspectives. In addition, the Pareto optimal solutions
have been well distributed over the true PF on the classical functions.

Table 3. GD, IGD, and SP metrics comparison based on unconstrained test suites.

Case Name NSMRFO MOSMA MOBO/D MOMVO MOWCA NSGA-II MOMRFO IMOMRFO

GD Metric

F1 SCH1 1.5186×10−3 1.5408×10−3 1.1205×10−3 1.6145×10−3 5.0232×10−3 1.4988×10−3 1.9728×10−3 1.0480×10−3

6.21×10−5 7.73×10−5 1.51×10−4 6.31×10−4 2.14×10−3 6.44×10−5 1.41×10−4 1.12×10−4

F2 SCH2 3.7839×10−3 3.1145×10−3 4.4024×10−3 3.5789×10−3 3.9098×10−3 3.0103×10+0 3.5790×10−3 3.5958×10−3

1.83×10−4 9.21×10−4 2.77×10−3 1.23×10−4 9.19×10−5 1.0829×10+0 3.62×10−4 3.20×10−4

F3 KUR 1.5001×10−3 4.8631×10−3 8.4540×10−3 3.3798×10−3 6.5932×10−3 6.6901×10−2 3.1843×10−3 3.4414×10−3

1.52×10−4 6.02×10−3 8.89×10−3 1.99×10−3 4.22×10−3 5.30×10−2 2.91×10−4 3.27×10−4

F4 POL 2.2210×10−2 5.6752×10−2 6.9886×10−2 1.2298×10−1 7.6231×10−2 5.8359×10−2 4.9070×10−2 7.1044×10−2

1.56×10−2 1.99×10−2 4.43×10−2 5.05×10−2 1.75×10−2 4.06×10−3 1.37×10−2 1.24×10−2

F5 FON2 2.3155×10−4 1.4972×10−4 6.5563×10−4 1.1445×10−3 1.4387×10−4 1.9174×10−4 2.8196×10−4 2.9866×10−4

2.49×10−5 1.82×10−5 9.49×10−5 5.71×10−4 3.65×10−5 2.61×10−5 4.1343×10−5 3.1249×10−5
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Table 3. Cont.

Case Name NSMRFO MOSMA MOBO/D MOMVO MOWCA NSGA-II MOMRFO IMOMRFO

F6 VNT2 4.0305×10−3 2.1878×10−2 1.8094×10−2 1.6617×10−2 1.9053×10−2 1.8746×10−2 1.1303×10−2 1.2150×10−2

9.00×10−4 6.02×10−3 1.02×10−3 6.12×10−3 7.44×10−4 1.20×10−3 1.34×10−3 1.86×10−3

F7 VNT3 2.3873×10−2 2.3977×10−2 2.8189×10−2 2.3966×10−2 2.0508×10−2 2.3930×10−2 1.6262×10−2 2.2563×10−2

1.27×10−3 1.12×10−3 3.31×10−2 1.06×10−3 6.24×10−3 1.49×10−3 1.77×10−3 4.08×10−3

F8 ZDT1 2.3319×10−4 3.6551×10−4 5.0011×10−4 3.8157×10−3 2.6413×10−4 3.6790×10−2 1.9395×10−4 3.7296×10−2

3.23×10−5 4.74×10−5 2.51×10−5 3.82×10−4 4.24×10−5 2.69×10−2 5.12×10−5 1.80×10−2

F9 ZDT2 9.3101×10−5 3.0210×10−4 2.3881×10−4 5.7435×10−3 5.8786×10−3 8.8345×10−2 1.1687×10−4 4.2670×10−2

4.36×10−6 5.52×10−5 8.69×10−5 3.93×10−4 9.36×10−3 7.92×10−2 3.11×10−5 3.74×10−2

F10 ZDT3 1.6294×10−4 2.1877×10−4 8.7873×10−4 1.9516×10−2 4.6262×10−4 2.0248×10−2 1.5360×10−4 3.6556×10−2

1.07×10−5 2.36×10−5 5.25×10−4 4.98×10−2 6.01×10−4 1.41×10−2 2.23×10−5 3.63×10−2

F11 ZDT4 2.2409×10−4 2.7059×10−4 9.3797×10−2 1.3951×10+0 1.2212×10+0 2.9861×10+0 3.8600×10−4 3.4435×10−4

4.91×10−5 5.52×10−5 4.58×10−2 7.42×10−1 1.26×10+0 1.04×10+0 5.23×10−5 2.54×10−4

F12 ZDT6 4.4226×10−2 1.9098×10−2 1.0946×10−4 1.2260×10−2 2.1251×10−1 1.8761×10−1 7.2768×10−5 6.5288×10−1

4.93×10−2 2.54×10−2 1.01×10−4 5.36×10−3 1.09×10−1 1.34×10−1 6.46×10−6 1.65×10−1

F13 TYD1 1.0438×10−3 6.7872×10−2 4.4802×10−2 5.7748×10−3 3.1187×10−2 1.3143×10−2 2.4044×10−2 -
4.20×10−4 7.30×10−3 2.77×10−2 7.05×10−4 7.32×10−3 6.49×10−3 7.55×10−3

F14 TYD2 7.2424×10−4 1.2213×10−1 4.8234×10−3 7.7742×10−3 2.3999×10−1 2.3745×10+0 6.5481×10−4 -
1.55×10−5 1.11×10−1 5.34×10−3 1.47×10−3 4.11×10−1 1.71×10+0 5.31×10−5

F15 TYD3 1.3413×10−3 2.6726×10−2 2.8383×10−3 1.0019×10−2 5.7059×10−3 5.4824×10+0 1.2825×10−3 -
6.72×10−5 2.34×10−2 1.39×10−3 1.77×10−3 5.16×10−3 2.96×10+0 1.43×10−4

F16 TYD4 6.5768×10−4 1.5877×10−3 1.4063×10−3 8.0617×10−3 1.4953×10−1 4.7620×10+0 1.1171×10−3 -
1.14×10−4 1.14×10−4 9.23×10−5 3.18×10−3 3.75×10−1 2.91×10+0 5.87×10−5

F17 TYD5 2.8699×10−4 5.3955×10−4 6.0136×10−4 1.5922×10−2 1.4687×10−3 14.962×10+0 4.6125×10−4 -
9.07×10−4 1.33×10−5 2.56×10−4 5.98×10−2 1.74×10−4 1.92×10+0 2.72×10−5

F18 TYD6 3.0338×10−3 7.3752×10−3 3.1964×10−3 5.7748×10−3 1.1735×10−2 12.040×10+0 2.7641×10−3 -
8.18×10−4 3.80×10−3 8.86×10−5 7.05×10−4 1.34×10−2 2.14×10+0 1.81×10−4

IGD Metric

F1 SCH1 4.9741×10−4 7.0139×10−4 1.4727×10−3 5.0232×10−3 5.0230×10−4 5.4182×10−4 7.3050×10−4 7.8791×10−4

5.99×10−5 8.08×10−5 5.88×10−4 2.14×10−3 3.73×10−5 5.72×10−5 8.13×10−5 1.06×10−4

F2 SCH2 4.6630×10−4 4.0565×10−4 2.4468×10−2 3.7958×10−3 4.5943×10−4 4.3624×10−2 7.9057×10−4 8.7927×10−4

2.85×10−5 1.69×10−5 1.94×10−2 5.96×10−4 1.38×10−5 1.30×10−4 4.52×10−5 1.25×10−4

F3 KUR 1.6326×10−4 4.5883×10−4 1.1761×10−3 8.0353×10−4 3.3578×10−4 3.4430×10−3 2.5796×10−4 2.5193×10−4

1.54×10−5 3.66×10−4 8.27×10−4 1.36×10−4 2.12×10−4 2.36×10−3 2.27×10−5 1.84×10−5

F4 POL 4.8896×10−4 4.9407×10−4 4.0539×10−2 5.9292×10−3 4.8057×10−4 5.5668×10−4 9.1231×10−4 8.0518×10−4

3.52×10−5 1.43×10−4 6.50×10−3 1.61×10−3 3.97×10−5 3.42×10−5 2.84×10−4 1.27×10−4

F5 FON2 2.7389×10−4 5.0585×10−4 6.4536×10−4 1.5838×10−3 2.9388×10−4 3.0779×10−4 4.0938×10−4 4.5341×10−4

9.53×10−6 1.45×10−4 1.32×10−4 3.27×10−4 3.99×10−5 2.15×10−5 5.24×10−5 6.94×10−5

F6 VNT2 3.8653×10−3 4.7815×10−3 1.2333×10−2 7.7099×10−3 4.4016×10−3 4.9972×10−3 2.7897×10−3 2.7698×10−3

4.80×10−4 1.29×10−3 2.25×10−3 1.19×10−3 9.41×10−4 8.71×10−4 3.17×10−4 2.05×10−4

F7 VNT3 1.4552×10−3 1.9514×10−3 2.1503×10−2 5.2610×10−3 1.4331×10−3 1.3868×10−3 1.4799×10−3 1.6787×10−3

6.37×10−4 2.02×10−4 2.33×10−2 6.11×10−4 2.42×10−4 1.49×10−4 1.79×10−4 1.48×10−4

F8 ZDT1 2.6206×10−4 4.7382×10−4 6.3507×10−4 2.0620×10−3 2.6266×10−4 1.5650×10−2 3.9012×10−4 1.7831×10−3

1.75×10−5 7.07×10−5 9.90×10−5 1.54×10−4 1.35×10−5 1.08×10−2 3.63×10−5 3.78×10−4

F9 ZDT2 2.7851×10−4 4.5857×10−4 5.2148×10−4 2.8492×10−3 8.2051×10−3 4.4870×10−2 3.9149×10−4 2.7908×10−3

2.10×10−5 2.53×10−5 1.18×10−4 1.97×10−4 1.13×10−2 4.22×10−2 2.89×10−5 7.71×10−4

F10 ZDT3 1.8616×10−4 2.8916×10−4 5.6483×10−4 2.1679×10−3 6.8846×10−4 7.7232×10−3 2.9073×10−4 1.5993×10−3

7.89×10−6 3.92×10−5 1.98×10−4 4.23×10−4 1.24×10−3 4.26×10−3 2.21×10−5 4.07×10−4

F11 ZDT4 2.6414×10−5 5.0698×10−4 1.9416×10−2 3.9102×10−1 1.6733×10−2 1.2540×10+0 3.7765×10−4 4.1458×10−4

2.55×10−5 8.23×10−5 7.71×10−3 2.14×10−1 2.36×10−2 4.47×10−1 3.03×10−5 3.31×10−5

F12 ZDT6 2.9553×10−4 4.6403×10−4 1.6486×10−3 6.8445×10−4 1.5553×10−2 9.3672×10−2 4.1577×10−4 5.6469×10−2

4.62×10−5 4.88×10−5 1.02×10−3 2.30×10−4 1.60×10−2 7.90×10−2 3.62×10−5 1.14×10−2

F13 TYD1 9.4440×10−4 3.2475×10−2 1.5235×10−2 2.9073×10−3 2.0043×10−2 1.1656×10−2 7.3191×10−3 -
4.92×10−4 2.83×10−3 7.62×10−3 6.13×10−3 6.34×10−3 7.15×10−3 1.43×10−3

F14 TYD2 2.9823×10−4 6.5423×10−3 1.5225×10−3 2.2408×10−3 2.1579×10−2 4.9072×10−1 6.3908×10−4 -
1.12×10−5 4.96×10−3 9.52×10−4 1.06×10−3 3.01×10−2 3.50×10−1 8.77×10−5

F15 TYD3 3.2263×10−4 7.7030×10−3 5.0933×10−3 1.6855×10−2 4.8173×10−3 8.8421×10−1 7.9035×10−4 -
9.51×10−6 5.96×10−3 3.99×10−3 5.85×10−3 4.09×10−3 4.68×10−1 8.47×10−5
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Table 3. Cont.

Case Name NSMRFO MOSMA MOBO/D MOMVO MOWCA NSGA-II MOMRFO IMOMRFO

F16 TYD4 3.4868×10−4 5.1097×10−4 3.2404×10−3 7.6373×10−3 1.7494×10−2 1.1066×10+0 6.9184×10−4 -
2.58×10−5 3.81×10−5 1.74×10−3 8.39×10−3 2.48×10−2 6.08×10−1 6.53×10−5

F17 TYD5 4.7951×10−4 1.2769×10−1 2.0048×10−3 8.0911×10−3 1.3432×10−1 3.1897×10+1 1.0127×10−3 -
6.02×10−5 2.09×10−2 3.72×10−2 4.25×10−3 2.92×10−7 4.19×10+0 1.17×10−4

F18 TYD6 4.3449×10−4 4.9312×10−2 1.0853×10−3 5.3901×10−3 7.1215×10−2 4.9147×10+0 7.5797×10−4 -
4.29×10−5 2.55×10−2 4.40×10−4 9.49×10−3 5.31×10−3 8.65×10−1 9.46×10−5

SP Metric

F1 SCH1 2.9654×10−2 3.9539×10−2 6.8903×10−2 2.0338×10−2 2.9242×10−2 3.1513×10−2 4.0819×10−2 3.8608×10−2

1.99×10−3 4.30×10−3 2.47×10−2 2.25×10−2 1.81×10−3 3.04×10−3 4.96×10−3 4.34×10−3

F2 SCH2 4.3778×10−2 4.2673×10−2 6.2204×10−1 5.2262×10−2 4.6848×10−2 3.3859×10−1 5.4329×10−2 6.3003×10−2

2.96×10−3 2.42×10−3 6.39×10−1 2.96×10−2 2.40×10−3 1.01×10−1 9.08×10−3 8.34×10−3

F3 KUR 6.4721×10−2 9.2719×10−2 2.6929×10−1 1.2020×10−1 8.4376×10−2 9.4290×10−2 1.1223×10−1 9.9612×10−2

2.32×10−2 1.45×10−2 1.76×10−1 4.12×10−2 2.01×10−2 3.80×10−2 1.76×10−2 1.93×10−2

F4 POL 8.1830×10−2 1.6050×10−1 2.1860×10−1 1.2687×10−1 8.1395×10−2 9.0758×10−2 2.6669×10−1 2.1438×10−1

8.11×10−3 1.03×10−1 1.77×10−1 1.39×10−1 5.88×10−3 9.35×10−3 9.68×10−2 1.14×10−1

F5 FON2 5.9240×10−3 1.2015×10−2 1.1867×10−2 1.4375×10−2 6.5275×10−3 7.0641×10−3 8.6261×10−3 9.2525×10−3

6.03×10−4 3.23×10−3 1.87×10−3 5.34×10−3 7.71×10−4 8.87×10−4 7.22×10−4 1.82×10−3

F6 VNT2 2.0346×10−2 5.7179×10−2 1.9270×10−2 2.3098×10−2 1.7122×10−2 1.4910×10−2 2.7402×10−2 2.0876×10−2

8.29×10−3 2.91×10−2 4.02×10−3 9.53×10−3 2.40×10−2 3.02×10−3 8.07×10−3 2.95×10−3

F7 VNT3 6.5468×10−2 6.3280×10−2 3.5118×10−1 1.0089×10−1 5.7043×10−2 6.6166×10−2 9.3950×10−2 8.0997×10−2

4.97×10−3 4.01×10−3 1.87×10−1 5.36×10−2 6.75×10−3 7.75×10−3 1.19×10−2 2.46×10−2

F8 ZDT1 6.8254×10−3 1.0333×10−2 1.7046×10−2 1.1959×10−2 8.3394×10−3 8.0300×10−3 9.0844×10−3 9.6005×10−2

5.83×10−4 1.41×10−3 6.28×10−3 1.90×10−3 5.23×10−4 1.57×10−3 1.19×10−3 6.65×10−2

F9 ZDT2 6.8695×10−3 9.9417×10−3 1.1725×10−2 1.6606×10−2 1.1321×10−2 4.1262×10−3 9.8885×10−3 9.0712×10−2

7.19×10−4 9.80×10−4 1.40×10−3 8.41×10−3 1.06×10−2 2.91×10−3 1.13×10−3 3.79×10−2

F10 ZDT3 8.1064×10−3 1.2409×10−2 1.3643×10−2 1.7348×10−2 1.0571×10−2 7.4131×10−3 1.2411×10−2 8.9649×10−2

6.43×10−4 1.83×10−3 3.84×10−3 5.88×10−3 4.74×10−3 1.06×10−3 2.09×10−3 9.45×10−2

F11 ZDT4 7.0857×10−3 9.2094×10−3 4.5038×10−2 7.7476×10−3 1.7807×10−1 2.7520×10−2 9.0207×10−3 9.4750×10−3

5.46×10−4 8.20×10−4 1.23×10−2 5.56×10−3 1.50×10−1 4.95×10−3 1.07×10−3 1.52×10−3

F12 ZDT6 1.5261×10−2 2.6212×10−2 1.6208×10−2 8.1444×10−2 7.5266×10−2 9.6715×10−2 8.5474×10−3 2.5094×10−1

1.96×10−2 1.96×10−2 6.73×10−3 5.14×10−2 3.31×10−2 1.17×10−1 1.41×10−3 1.66×10−1

F13 TYD1 2.8746×10−3 6.2895×10−2 5.2384×10−2 4.3920×10−3 1.6767×10−2 4.5573×10−3 1.4521×10−2 -
1.64×10−3 1.29×10−2 3.20×10−2 2.70×10−3 1.41×10−2 1.32×10−3 7.21×10−3

F14 TYD2 1.4202×10−2 1.9431×10−1 6.3481×10−2 3.6429×10−2 1.0145×10−1 8.5839×10−3 2.2990×10−2 -
9.67×10−4 1.35×10−1 5.01×10−2 2.27×10−2 9.47×10−2 1.26×10−2 3.27×10−3

F15 TYD3 1.8745×10−2 1.1549×10−1 2.9293×10−1 1.0838×10−1 7.0163×10−2 3.6667×10−2 3.1919×10−2 -
1.31×10−3 5.56×10−2 2.67×10−1 1.25×10−1 4.47×10−2 9.76×10−3 5.67×10−3

F16 TYD4 2.4070×10−2 2.5290×10−2 7.4783×10−2 4.1287×10−2 1.5601×10−1 2.6227×10−2 3.0307×10−2 -
6.41×10−3 1.79×10−3 2.69×10−2 4.11×10−2 2.32×10−1 2.40×10−2 4.02×10−3

F17 TYD5 4.4231×10−3 1.8844×10−2 5.1214×10−2 3.8197×10−2 - - 6.0025×10−3 -
4.11×10−4 5.95×10−2 8.54×10−2 4.56×10−3 - - 8.99×10−4

F18 TYD6 1.2875×10−2 8.2821×10−2 2.5104×10−2 4.2786×10−2 3.2520×10−2 - 1.8811×10−2 -
1.15×10−3 4.12×10−2 1.02×10−2 1.07×10−2 2.80×10−2 - 2.33×10−3

Underlined values indicate the best results.

3.2. Evaluation on Constrained Benchmark Functions

To evaluate the accuracy of the developed NSMRFO approach, four constrained test
functions with different Pareto optimal fronts and three analysis metrics were investigated.
Inspecting the obtained Pareto fronts in Figure 11, and the outcomes in Table 4, it is clearly
seen that the suggested NSMRFO yields a higher convergence and coverage toward the true
PF on all constrained benchmark functions. For the numerical results, NSMRFO ranks first
for the majority of functions except on BNH and CONSTR for GD, and BNH, SRN for IGD in
which it ranks second compared to the aforementioned well-known competitive techniques,
and OZY for SP. Note that the optimal findings are marked in boldface and underlined.
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Figure 8. Obtained Pareto front of NSMRFO on classical test suites.
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Figure 9. Obtained Pareto front of NSMRFO on ZDT test suites.
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Figure 10. Obtained Pareto front of NSMRFO on TYD test suites.
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Figure 11. Obtained Pareto front of NSMRFO on constrained test suites.

Table 4. GD, IGD, and SP metrics comparison based on constrained test suites.

Problem NSMRFO
MOSMA

[46]
MOBO/D

[47]
MOMVO

[48]
MOWCA

[49]
NSGA-II

[32]
MOMRFO

[51]
IMOMRFO

[28]

GD Metric

OZY 4.0885×10−1 1.8977×10+0 9.6335×10−1 4.1926×10−1 1.2504×10+0 8.5422×10−1 4.8528×10−1 4.1772×10−1

2.29×10−1 6.90×10−1 5.91×10−1 4.29×10−1 7.76×10−1 5.94×10−1 1.74×10−1 2.04×10−1

BNH 3.4178×10−1 3.6565×10−1 2.0107×10−1 2.8575×10−1 3.3953×10−1 2.0462×10+0 2.2904×10+0 1.1858×10+0

1.75×10−2 1.52×10−2 8.17×10−2 2.16×10−1 1.46×10−2 8.52×10−2 1.78×10−1 1.56×10−1

SRN 3.7131×10−2 1.3030×10−1 8.0926×10−2 3.6668×10−1 6.5713×10−2 4.3051×10−2 6.2583×10−2 7.6938×10−2

6.99×10−3 6.53×10−2 4.67×10−2 8.97×10−2 6.97×10−3 6.91×10−3 8.83×10−3 1.18×10−2

CONSTR 6.0167×10−4 1.0382×10−3 6.9108×10−4 8.1620×10−4 7.2413×10−4 7.0693×10−4 6.0098×10−4 8.0662×10−4

1.50×10−4 5.55×10−4 4.14×10−5 4.02×10−4 7.28×10−5 4.62×10−5 4.88×10−5 6.47×10−5

256



Fractal Fract. 2022, 6, 194

Table 4. Cont.

Problem NSMRFO
MOSMA

[46]
MOBO/D

[47]
MOMVO

[48]
MOWCA

[49]
NSGA-II

[32]
MOMRFO

[51]
IMOMRFO

[28]

IGD Metric

OZY 1.4014×10−3 9.7966×10−3 9.965×10−3 2.2981×10−3 6.4842×10−3 4.3475×10−3 4.2650×10−3 1.5178×10−3

1.18×10−3 2.07×10−3 6.43×10−3 2.04×10−3 2.21×10−3 5.31×10−3 2.80×10−3 2.07×10−3

BNH 6.7915×10−4 1.1293×10−3 1.9024×10−3 4.4141×10−3 6.6386×10−4 1.8246×10−4 2.4874×10−4 2.0763×10−4

3.39×10−5 9.31×10−5 1.22×10−3 7.06×10−4 4.39×10−5 1.78×10−5 1.16×10−5 2.20×10−5

SRN 9.7172×10−5 2.7928×10−4 1.9607×10−4 5.9502×10−4 8.9740×10−5 1.0583×10−4 1.2501×10−4 1.4485×10−4

6.88×10−6 2.28×10−4 6.97×10−5 8.07×10−5 1.49×10−6 1.46×10−5 7.45×10−6 1.17×10−5

CONSTR 2.5255×10−4 1.0344×10−3 1.6097×10−3 1.7429×10−3 2.6802×10−4 2.7118×10−4 4.7669×10−4 3.5283×10−4

4.44×10−5 2.92×10−4 8.93×10−4 4.30×10−4 4.31×10−5 1.51×10−5 6.21×10−5 4.98×10−5

SP Metric

OZY 1.9039×10+0 8.0601×10+0 2.3336×10+0 2.0649×10+0 2.0314×10+0 1.3227×10+0 1.6335×10+0 1.3983×10+0

8.93×10−1 2.85×10+0 2.03×10+0 4.42×10−1 1.41×10+0 2.48×10−1 2.66×10−1 1.23×10−1

BNH 7.1873×10−1 8.7699×10−1 1.8574×10+0 1.2154×10+0 7.595×10−1 7.5542×10−1 9.4169×10−1 1.4736×10+0

6.39×10−2 8.93×10−2 8.78×10−1 5.76×10−1 6.94×10−2 7.37×10−2 1.32×10−1 4.43×10−1

SRN 1.3558×10+0 3.6172×10+0 2.3050×10+0 2.9495×10+0 1.5216×10+0 1.4977×10+0 2.1824×10+0 2.2106×10+0

1.16×10−1 3.10×10+0 5.83×10−1 4.47×10+0 9.96×10−2 1.67×10−1 3.49×10−1 4.86×10−1

CONSTR 1.2579×10−2 4.2564×10−2 1.7483×10−1 3.7418×10−2 4.3448×10−2 4.3658×10−2 8.4588×10−2 5.1093×10−2

2.87×10−2 3.74×10−3 5.34×10−2 2.26×10−2 4.46×10−3 2.91×10−3 1.05×10−2 2.97×10−3

Underlined values indicate the best results.

3.3. Evaluation on CEC2020 Benchmark Functions

This subsection presents the performance of the suggested technique NSMRFO in
CEC2020 multimodal multi-objective optimization (MMO) problems using four indicator
metrics, the rPSP and IGDX that reflect the quality of the Pareto set in the search space,
and the rHV and IGDF that reflect the quality of the Pareto front in the objective space.
The functions of the remaining MMO problems are characterized by different geometries’
linear and nonlinear concave and convex functions. To illustrate the effectiveness of the
multi-objective MRFO version, six well-known competitors are adopted for comparison
such as: NSGA-II [32], DN-NSGAII [52], OMNI-OPT [53], MO_Ring_PSO_SCD [44], MOM-
RFO [51], IMOMRFO [28]. The numerical statistical results of the obtained parameter
indexes in search and objective spaces by each approach are summarized in Table 5. It is
worth noting that the optimal results of each indicator are the lowest values. The under-
lined bold solutions indicate the algorithms’ optimum result. Additionally, the last five
rows posted in this table present the results score of each approach, in which the NSMRFO
ranks first by providing 47 optimal solutions out of a 96 benchmark suite, which means
twenty-four functions times four indicators. By contrast, the MOMRFO, OMNI-OPT, and
DN-NSGAII competitor approaches show the worst scores. It can be clearly observed
from the perspective of the search space values that the crowding distance mechanism has
the capability to efficiently increase the PS convergence and diversity of the optimization
algorithms. However, In spite of the same strategy used in NSGAII, DN-NSGAII, and the
proposed optimizer, they offered a significant different performance, which means that
the NSMRFO diversity and convergence are improved. The IMOMRFO was the closest
approach of NSMRFO, where it ranks second by having 20 best values out of 96, and it
offered good search space results and poor objective space results. The NSGAII performed
a little better on the objective space, especially the rHV metric. The CEC2020 corresponding
box plots of the four metrics rPSP, rHV, IGDX, and IGDF are depicted in Figure 12. Accord-
ing to this figure, the NSMRFO achieved the indicator minimum values in most MMFs
such as MMF1, MMF4, MMF5, MMF7, MMF8, MMF11, MMF12, MMF13, MMF14, MMF15,
MMF1_e, MMF14_a, MMF15_a, MMF10_l, rHV on MMF11_l, rPSP and rHV on MMF12_l,
rHV on MMF13_l, rPSP and rHV on MMF15_a_l. In addition, the NSMRFO is more stable
compared to its competitor approaches. To sum up, the suggested optimizer achieves
the best rank performance in terms of all indicator metrics compared to its competing
algorithms, and have significant stability.
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Figure 12. Box plots for the four metrics rPSP, rHV, IGDX, and IGDF on CEC2020 problems.

3.4. Evaluation on Engineering Design Problems

For examining the applicability of an algorithm, the engineering design problems can
be very beneficial. In this subsection, four engineering functions are considered in order to
assess the capability of NSMRFO in dealing with the real-word problems. The first one is
4-bar truss, and it aims to optimize the volume and deflection with four dimensions. The
disk brake consists of minimizing the stopping time and weight of a brake system with
four dimensions. The third engineering problem is the welded beam that tends to decrease
the vertical deflection and cost of fabrication with four dimensions. The speed reducer as
a last function attempts to reduce its stress and total weight with seven dimensions. For
results verification, seven well-known approaches are applied. The statistical results are
summarized in Table 6, and it is evident that NSMRFO can outrank the other algorithms
on the most problems except the 4-bar truss for the GD metric, the welded beam for
GD and SP metrics, and disk brake for SP metric; it ranks first in 8 out of 12 test suites.
Accordingly, the NSGA-II and MOMRFO are the closest competitors where they provide
good estimations on two functions over 12. However, concerning the other algorithms
MOSMA, MOBO/D, MOMVO and IMOMRFO, they have the lowest results. As illustrated
in Figure 13, the NSMRFO Pareto front shows higher approximations toward the true PFs
in terms of coverage and convergence.
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Figure 13. Obtained Pareto front of NSMRFO on engineering design test suites. (a) 4-bar truss;
(b) disk brake; (c) welded beam; (d) speed reducer.
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3.5. Evaluation on OPF Incorporating Wind/Solar/Small-Hydro Energy
3.5.1. Problem Methodology
Wind power

The wind cost can be expressed as below:

CTw = Cdw + Cuew + Coew (23)

with
Cdw = dwPws (24)

Cuew = Kuew(Pwav − Pws) = Kuew

∫ Pwr

Pws
(pw − Pws) fw(pw)dpw (25)

Coew = Koew(Pws − Pwav) = Koew

∫ Pws

0
(Pws − pw) fw(pw)dpw (26)

where dw, Koew, and Kuew are the coefficients of direct, over, and under estimation cost,
respectively. Pws,i, Pwav are the scheduled and actual available power, respectively. Pwr is
rated power output from the plant. fw(pw) is the probability density function of the wind
power plant.

Solar power

The total solar cost can be formulated as follows:

CTs = Cds + Cues + Coes (27)

with
Cds = dsPss (28)

Cues = Kues(Psav − Pss) = Kues ∗ fs(Psav > Pss) ∗ [E(Psav > Pss)− Pss] (29)

Coes = Koes(Pss − Psav) = KoeS ∗ fs(Psav < Pss) ∗ [Pss − E(Psav < Pss)] (30)

where ds, Koes and Kues are the coefficients of direct, over and under estimation cost of
solar power generator. Pss, Psav are the scheduled and actual available power, respectively.
fs(Psav < Pss) The probability of occurrence of solar power shortage. E(Psav > Pss) and
E(Psav < Pss) are the expectations of solar power above and below Pss.

Small-hydro power

The Small-hydro power is defined as follows:

CTsh = Cdsh + Cuesh + Coesh (31)

with
Cds = dsPss + dhPhs (32)

Cuesh = Kuesh(Pshav − Pssh ) = Kuesh ∗ fsh (Pshav > Pssh ) ∗ [E(Pshav > Pssh )− Pssh ] (33)

Coesh = Koesh(Pshs − Pshav) = Koesh ∗ fsh(Pshav < Pshs) ∗ [Pshs − E(Pshav < Pshs)] (34)

where dh is the small-hydro direct cost coefficient. Koesh and Kuesh are the coefficients
of over and under estimation cost of combined solar and small-hydro power generator.
Pshs, Pshav are the scheduled and actual available power, respectively. E(Pshav > Pshs) and
E(Pshav < Pshs) are the expectations of combined system power above and below Pshs.
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Objective functions

• Total cost

The network total cost including the thermal/wind/solar/small-hydro generators is mod-
eled as follows:

F1 = min{FT + CTw + CTs + CTsh}. (35)

where
FT = ∑

Ng
i=1 ai + biPtgi + ciP2

tgi + |di ∗ sin(ei ∗ (Pmin
tgi − Ptgi))| (36)

ai, bi and ci are the conventional generators cost coefficients. di and ei are the coefficients
for the valve-point loading effect.

• Emission

The emission function is formulated using an exponential function as shown below [54]:

F2 = E = min

{
Ng

∑
i=1

10−2
(

αi + βiPgi + γiP2
gi

)
+ ξi exp

(
λiPgi

)}
(37)

where αi, βi, γi, ξi, and λi are the emission coefficients of the power plant.

• Voltage deviation

The voltage deviation is calculated by:

F3 = VD = min
{

∑
Npq
i=1 |VLi − 1.0|

}
(38)

• Power loss

The Power loss is calculated by:

F4 = Ploss = min
{

∑Nl
l=1 Gl(i,j)(V2

i + V2
j − 2ViVjcos(δij))

}
(39)

where Gl(i,j) represents the conductance of line l. δij = δi − δj represents the voltage angle
difference between bus i and bus j.

Constraints

• Equality constraints

The power flow equations are assumed as equality constraints that are represented by:{
Pgi − Pdi − |Vi|∑Nb

j=1 |Vj|[Gijcos(θij) + Bijsin(θij)] = 0
Qgi −Qdi − |Vi|∑Nb

j=1 |Vj|[Gijsin(θij)−Bijcos(θij)] = 0
(40)

where Nb is the number of buses. Qgi and Pgi are generated reactive and active power,
respectively. Qdi and Pdi are reactive and active power demand, respectively. Gij and Bij
represent the admittance matrix components Yij = Gij + jBij called the conductance and
susceptance.

• Inequality constraints

The inequality constraints are given as below:

− Generator constraints:

Vmin
gi ≤ Vgi ≤ Vmax

gi i = 1, ..., Ng (41)

Pmin
tgi ≤ Ptgi ≤ Pmax

tgi i = 1, ..., Ntg (42)

Pmin
ws,i ≤ Pws,i ≤ Pmax

ws,i i = 1, ..., Nwg (43)

Pmin
ss,i ≤ Pss,i ≤ Pmax

ss,i i = 1, ..., Nsg (44)
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Pmin
shs,i ≤ Pshs,i ≤ Pmax

shs,i i = 1, ..., Nshg (45)

Qmin
tgi ≤ Qtgi ≤ Qmax

tgi i = 1, ..., Ntg (46)

Qmin
ws,i ≤ Qws,i ≤ Qmax

ws,i i = 1, ..., Nwg (47)

Qmin
ss,i ≤ Qss,i ≤ Qmax

ss,i i = 1, ..., Nsg (48)

Qmin
shs,i ≤ Qshs,i ≤ Qmax

shs,i i = 1, ..., Nshg (49)

− Security constraints:

Vmin
Li ≤ VLi ≤ Vmax

Li i = 1, ..., Npq (50)

Sli ≤ Smax
li i = 1, ..., Nl (51)

where Nl is the number of transmission lines. Sli and Smax
li indicate the maximum limit of

the transmission line.

3.5.2. Results of the OPF Problem

To assess performance of the suggested algorithm NSMRFO against other approaches,
several cases related to the modified IEEE 30-bus optimal power flow problem integrating
wind/solar/small-hydro power are investigated. This test system comprises 41 branches,
6 generating units in which 3 thermal generators at buses 1, 2, and 8, the wind and solar
plants at buses 5 and 11, respectively, while combined solar and small-hydro generators are
connected to bus 13 as summarized in Table 7. The detailed input data for the considered
IEEE 30-bus system are given in [54]. The thermal generators’ coefficients are provided in
Table 8. Solar irradiance, wind distribution, and small-hydro river flow rate are modeled us-
ing Lognormal, Weibull, and Gumbel probability density function (PDF), respectively [54].
These PDF parameters are listed in Table 9. Additionally, in terms of the optimization issue,
the system has 11 control variables, with various constraints and objective functions for a
total active and reactive power demands of 283.4 MW and 126.2 MVAR, respectively.

Table 7. The characteristics of the system.

Systems 30-Bus [54]
Characteristics Value Details

Buses 30 -
Branches 41 -
Generators 3 Buses: 1, 2, and 8
Slack bus 1 Buse: 1
Wind generators 1 Buses: 5
Solar generators 2 Buse: 11 and 13
Small-hydro generators 1 Buse: 13
Active and reactive power - 283.4 MW, 126.2 MVAr
Control variables 11 -

Table 8. Cost and emission coefficients of thermal generators [54].

Generator Bus a b c d e α β γ ξ λ

IEEE-30
Pg1 1 30 2 0.00375 18 0.037 0.04091 −0.05554 0.06490 0.0002 6.667
Pg2 2 25 1.75 0.0175 16 0.038 0.02543 −0.06047 0.05638 0.0005 3.333
Pg3 8 20 3.25 0.00834 12 0.045 0.05326 −0.03550 0.03380 0.002 2

To validate the suggested approach, five well-known stochastic algorithms are em-
ployed as competitors, namely MOMVO [48], MOWCA [49], NSGWO [50], MOMRFO [51],
and IMOMRFO [28]. The test system under study is examined via three case studies defined
as follows:

• Minimizing the total cost and emission;
• Minimizing the total cost and voltage deviation;
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• Minimizing the total cost and power loss.

Table 9. Characteristic details of wind/solar/small-hydro generators [54].

Wind Power (bus 5) Solar Power (bus 11) Combined Solar/Small-Hydro Power (bus 13)

Test
Systems

No. of
Turbines

Pwr
(MW)

Parameters of
Weibull PDF

Psr
(MW)

Parameters of
Lognormal PDF

Psr
(MW)

Parameters of
Lognormal PDF

Phr
(MW)

Parameters of
Gumbel PDF

IEEE-30 25 75 k = 2 50 μ = 5.2 45 μ = 5 5 λ = 15
c = 9 σ = 0.6 σ = 0.6 γ = 1.2

The optimum settings of the control variables, their allowable ranges, the numerical
best outcomes of each objective, and the best compromise solutions (BCS) are depicted in
Tables 10–15. Furthermore, their optimal Pareto fronts are illustrated in Figures 14a–16a.
It is worth noting that all the findings are generated after twenty independent runs for
a population size of 100 and 200 iterations. According to the aforementioned tables, it
is obviously seen that the NSMRFO’ results are remarkably better than the competitor
approaches in all cases, notably the best compromise solutions’ tables. In addition, it is
clearly observed from the figures that the suggested NSMRFO can generate the superior
Pareto non-dominated solutions with good distribution and good diversification front in
comparison to other algorithms. As shown in Figures 14b–16b, the BCS’ voltage profile
PQ of load buses do not exceed their limits, and remained within the minimum and
maximum bounds.
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Figure 14. Optimal Pareto fronts of all the algorithms for case 1. (a) Pareto front of optimal solutions;
(b) voltage profile of PQ buses.
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Figure 15. Optimal Pareto fronts of all the algorithms for case 2. (a) Pareto front of optimal solutions;
(b) voltage profile of PQ buses.
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Figure 16. Optimal Pareto fronts of all the algorithms for case 3. (a) Pareto front of optimal solutions;
(b) voltage profile of PQ buses.

3.6. Discussion

As previously stated, the main difference between the suggested approach and its
competitors is the better diversity and accuracy for the majority of the problems, in which
the NSMRFO ranks first, followed by the MOMRFO on the unconstrained problems, the
NSGA-II on the constrained test suite, the NSGA-II on the engineering problems, and the
IMOMRFO on the CEC2020 benchmark MMO functions, while the MOWCA gives a little
better score. By contrast, the MOSMA, MOMVO and MOBO/D provide the worst rank.
However, on the other hand, the NSMRFO generates very challenging and competitive
solutions on most benchmark test suites. In summary, all quantitative and qualitative
outcomes and analysis reveal the higher accuracy and significant diversity of NSMRFO in
dealing with different unconstrained, constrained, CEC 2020 multimodal multi-objective,
and engineering benchmark functions. This comes from the strong ability of MRFO in
exploitation and exploration as long as the NSMRFO employs similar mechanisms as its
single approach, and inherits its high convergence. In addition, the crowding distance
and archive selection methodologies also contribute to the NSMRFO high coverage and
convergence.

4. Conclusions

In this work, the ability of a suggested multi-objective manta ray foraging optimizer
known as NSMRFO to handle problems with different characteristics has been tested. The
NSMRFO optimizer has been developed on the basis of NSGA-II operators as crowding
distance, elitist non-dominated sorting, and an archive mechanism. A set of test functions
have been employed to benchmark the performance of the NSMRFO approach from
different perspectives that include: seven classical, ZDT, TYD, four constrained, twenty-four
CEC2020, four problems for engineering design, and the IEEE 30-bus OPF with renewable
sources wind/solar/small-hydro power. Additionally, to qualitatively affirm the achieved
solutions, the original true Pareto fronts have been compared to those obtained. Thereby, for
performance assessment, various performance metrics in search and objective spaces have
utilized such generational distance (GD), inverted generational distance (IGDX and IGDF),
spacing metric, reciprocal Pareto sets proximity (rPSP), and reciprocal hypervolume (rHV).
Thus, NSMRFO can relatively provide an accurate estimation shape with closer distance to
the true PF compared to the multimodal multi-objective evolutionary approaches and some
recent competitive algorithms. The NSMRFO impressive performance leads to handling
challenging real-world problems in various engineering fields for future works.
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Abstract: This study presents an innovative strategy for load frequency control (LFC) using a
combination structure of tilt-derivative and tilt-integral gains to form a TD-TI controller. Furthermore,
a new improved optimization technique, namely the quantum chaos game optimizer (QCGO) is
applied to tune the gains of the proposed combination TD-TI controller in two-area interconnected
hybrid power systems, while the effectiveness of the proposed QCGO is validated via a comparison
of its performance with the traditional CGO and other optimizers when considering 23 bench
functions. Correspondingly, the effectiveness of the proposed controller is validated by comparing its
performance with other controllers, such as the proportional-integral-derivative (PID) controller based
on different optimizers, the tilt-integral-derivative (TID) controller based on a CGO algorithm, and the
TID controller based on a QCGO algorithm, where the effectiveness of the proposed TD-TI controller
based on the QCGO algorithm is ensured using different load patterns (i.e., step load perturbation
(SLP), series SLP, and random load variation (RLV)). Furthermore, the challenges of renewable energy
penetration and communication time delay are considered to test the robustness of the proposed
controller in achieving more system stability. In addition, the integration of electric vehicles as
dispersed energy storage units in both areas has been considered to test their effectiveness in achieving
power grid stability. The simulation results elucidate that the proposed TD-TI controller based on the
QCGO controller can achieve more system stability under the different aforementioned challenges.

Keywords: improved chaos game optimization; TD-TI controller; load frequency control; renewable
energy sources; electrical vehicles

1. Introduction

Recently, the world has become voracious in utilizing electrical power due to the
growth of industrial and residential loads. Therefore, it was necessary to establish new
electrical power grids to accommodate the load demands. As a result, energy planners
were directed to penetrate the renewable energy sources (RESs) with the traditional power
grids in the electrical power system to reduce the demerits of these traditional units. In
addition, the penetration of RESs with newly established power systems is considered to
have an economically good and positive rate that saves in the utilization of the oil, coal,
and gas that operate traditional power plants, whereas the resulting flames from burning
oil and coal lead to the release of carbon dioxide gas, causing an increase in the ozone
hole and an increase in the global warming phenomenon [1]. Although the presence of
RESs in electrical power grids reduces the severity of the resulting pollution from the
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traditional units, these renewable sources suffer from a lack of system inertia. As a result
of the reduction in power system inertia caused by renewable sources, the stability and
security of the system (i.e., more fluctuations in system frequency) will be affected [2,3].
Moreover, several reasons lead to more frequency fluctuations, such as a mismatching
between the generated power and the demand power, system parameter variations, and
different sorts of load variations. Hence, the fluctuations in system frequency can be tackled
by the LFC [4]. Researchers have done their best to develop several control techniques for
achieving reliability in power systems by attaining system frequency and tie-line power
flow within tolerable limits.

Many interests have been prompted by researchers to address the issue of LFC in
different structures of the power system; (i.e., the single-area power system [5,6], the multi-
area interconnected power system [7–10], and the deregulated power system [11,12]). In
addition, several different control techniques have been implemented to overcome the
system frequency fluctuations, such as the intelligent control techniques (i.e., fuzzy logic
controllers [13], artificial neural networks [14], and adaptive neuro-fuzzy controllers [15]).
Moreover, several robust control techniques have been utilized to enhance the power sys-
tem performance, such as the H-infinite technique [16] and μ-synthesis [17]. Furthermore,
optimal control techniques, such as the linear quadratic Gaussian [18] and linear quadratic
regulator [19], are implemented to attain the frequency within tolerable limits. In this
regard, the majority of the industrial control loop is the proportional-integral-derivative
(PID), due to its reputable merits (i.e., simpleness in construction, applicability, function-
ality, comfort, and inexpensiveness) [20]. Even so, it suffers from a bulky, complicated
process when selecting its parameters using trial and error methods. Thus, researchers
have been striving to accomplish the optimal PID controller, according to the different
optimization techniques utilized in getting the optimal controller parameters. This design
of the optimal PID controller leads to ensuring a reliable system performance in compari-
son to the conventional PID controller when facing the uncertainties in a studied power
grid. Accordingly, several optimization techniques have been utilized to fine-tune the
optimal PID controller parameters meticulously, including the grasshopper optimization
algorithm [21], the ant colony optimization technique [22], the Jaya algorithm [23], and the
class topper optimization algorithm [24].

On the other side, the fractional order controllers (FOCs) have become a distinct candi-
date in power system stabilizing due to their merits (i.e., flexibility in configuration and a
higher degree of freedom). The FOCs have several types of poles, such as the hyper-damped
poles, that need to be fine-tuned. Accordingly, this leads to an expansion in the stable
region, giving more flexibility in the controller design process [25]. Furthermore, there are
several types of controllers belonging to the FOC family; the fractional –order-proportional-
integral-derivative (FOPID) is one member of this family that has been presented in [26,27].
The FOPID controller has been utilized in several electrical power systems [28,29]. More-
over, the TID controller represents one of the FOCs; it looks exactly like the PID controller
in construction except for one difference, which is that the proportional parameter is tilted
with a (1/s1/n) transfer function. This additional transfer function provides the optimization
process with better feedback and good tracking performance. Lately, the TID controller has
been implemented for solving the LFC problem due to its good merits (i.e., it can change
the parameters of the closed-loop system; it has a tremendous ability in disturbance rejec-
tion; and it has more reliability with robustness) [30,31]. There is no doubt that fractional
calculus provides several options to researchers for creativity and diversity in controller
designing. As a result, different engineering problems have been solved by utilizing the
amalgamation of the FOPID and TID properties as a hybrid controller [32]. In addition, the
researchers’ minds are destined to implement another strategy in control design, which is
the cascaded controllers (CCs) form that includes one controller followed by another one;
the CCs have more tuning knobs that give better results than in the utilization of non-crude
CCs. Thus, many scientific studies have been presented using the different CCs to solve
the LFC problem [33,34]. Another construction has been applied while designing different
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controllers for studying the LFC issue, which depends on the combination of two different
controllers to take the benefits of both controllers. There are examples of the combination
of different proposed controllers from literature, such as the combination of the model
predictive control (MPC) controller with the linear quadratic Gaussian controller [35] and
the combination of an adaptive MPC with the recursive polynomial model estimator [36].
Furthermore, a new controller structure, labeled as a feed-forward/feed-backward con-
troller, has been presented to reduce the disadvantages of the PID and TID controllers
during system uncertainties that affect the input of the control signal. Thus, many studies
have been presented to elucidate the robustness of the feed-forward/feed-backward con-
troller structure in achieving system stability. The integral-proportional-derivative (I-PD)
controller and the integral-tilt-derivative (I-TD) controller have been proposed to cope with
the LFC problem, achieving more system stability compared to the PID and TID controllers,
respectively [37,38].

The achievement of system stability is not dependent on the controller design only,
but the utilized optimization technique represents a critical issue that must be selected
carefully to attain the optimal controller parameters. Previously, the traditional optimiza-
tion methods such as the tracking approach [39] and the aggregation methods [40] were
applied for regulating the system frequency. In fact, the traditional optimization methods
suffer from several drawbacks, such as slump, deathtrap in local minimums, the need
for more iterations, and dependence on their initial conditions to attain the optimal so-
lution. So, meta-heuristic optimization techniques such as the artificial bee colony [41],
salp swarm algorithm (SSA) [42], and whale optimization algorithm (WOA) [43] have
been proposed to overcome all of the previous drawbacks. Though the meta-heuristic
optimization algorithms are not usually guaranteed to find the optimal global solution,
they can often find a sufficiently good solution in a reasonable time. So, they are an
alternative to exhaustive search, which would take exponential time. Moreover, these
techniques have several demerits, such as slowing in the rate of convergence, poor local
search capability, and local optimum convergence. In this regard, algorithmic scientists
have improved these techniques to diminish all of their previous drawbacks. Examples of
improved algorithms utilized to achieve system stability are presented as the improved
stochastic fractal search algorithm [44] and the sine augmented scaled sine cosine [45]. In
this regard, the authors in this work proposed an improved algorithm known as QCGO to
select the suggested combining TD-TI controller parameters to attain the optimal studied
power grid performance.

Referring to the aforementioned literature related to the LFC issue, there are several
control strategies that depend on the designer experience, such as the MPC, the H-infinite
techniques, and the fuzzy logic control, that can attain the desired performance, but their
parameter-selecting strategies take a long time. In addition, the conventional PID controller
has some difficulties when facing system uncertainties. Moreover, several studies have been
presented utilizing conventional algorithms and meta-heuristic optimization techniques
that have many demerits in comparison to the improved techniques that develop the
searching process and obtain the global solution with a few search agents. Furthermore,
several previous studies did not consider the different challenges that face power systems
(i.e., different types of load variations such as series SLP and RLV, the high penetration of
RESs, and communication time delay). According to the above salient observations, this
study proposed a new control construction labeled as a combining TD-TI controller that
is derived from the form of a TID controller to enhance the studied system stability. The
parameters of the proposed combining TD-TI controller can be selected by utilizing the
improved algorithm QCGO when considering the challenges of high RESs penetration,
different load perturbation types, and communication time delay.

The studied work in this paper is presented to overcome the limitations of the pre-
viously published works in the literature. Table 1 elucidates the differences between this
work and the other published works related to the LFC issue.
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Table 1. The motivation of current work compared with other published works.

References [6] [9] [28] [32] [37] [38] This Study

Controller
structure

PI/PID
controller

PI/PD
controller

FOPID/TID
controller

Combining of
FOPID-TID
controller

I-PD
controller

I-TD
controller

Combining
TD-TI

controller

Controller
design

adoption

Firefly
algorithm

Backtracking
search

algorithm

Improved
PSO

Manta ray
foraging

optimization
algorithm
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The main contributions of this work can be elucidated in detail as follows:

i. The proposal of a control structure combining TD-TI controllers for LFC of the hybrid
two-area interconnected power systems.

ii. The proposal of a novel technique known as QCGO via improving the quantum
mechanics of the CGO algorithm based on the particle swarm optimizer (PSO) to
improve the exploration and exploitation strategies of the main CGO algorithm.

iii. The application of the improved CGO to select the optimal parameters of the proposed
controller structure.

iv. The validation of the performance of the proposed algorithm through a fair-maiden
comparison between the proposed QCGO algorithm and other previous techniques
(i.e., Supply-demand-based optimization (SDO), WOA, butterfly optimization algo-
rithm (BOA), and the conventional CGO), based on applying 23 bench functions,
as well as a fair comparison between the proposed algorithm and other previous
algorithms (i.e., CGO, SSA), considering the proposed controller in the multi-area
power grid for frequency stability analysis.

v. The consideration of several challenges, such as the high RESs penetration in both
areas, different load perturbation types, and communication time delay to study the
system stability state.

vi. The comparison of the performance of the proposed control TD-TI structure based
on QCGO with other available controllers, such as the PID-based teaching learning-
based optimization (TLBO) [46]; the PID-based arithmetic optimization algorithm
(AOA) [47]; the proposed TD-TI control structure based on CGO; the proposed TD-
TI control structure based on SSA; the TID controller based on CGO; and the TID
controller based on QCGO, is presented to ensure the effectiveness and robustness
of the proposed control structure based on the QCGO algorithm in achieving more
system reliability and stability.
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vii. The consideration of the integration of electrical vehicles (EVs) in both areas to support
the proposed controller in overcoming the system frequency excursions during high
renewables penetration.

The remainder of this article is organized into several sections that are clarified as
follows: the studied system topology which considers the high penetration of RESs and
EVs is illustrated in Section 2. Section 3 discusses the proposed control approach and the
formulation of the studied problem. Then, the procedure of the improved QCGO technique
is given in Section 4. Moreover, the simulation results according to the different scenarios
are clarified in Section 5. Finally, Section 6 summarizes the conclusions of the current work.

2. The Studied System Topology

2.1. Two-Area Interconnected Hybrid Power Grid Configuration

In this article, the issue of LFC related to electrical power grids has been addressed by
conducting a study on two-area interconnected hybrid power systems. The studied power
grid encompasses two interconnected areas, which include several conventional generation
power plants, such as the thermal unit, hydropower unit, and gas unit. The capacity of
each area in the studied power grid that includes the three traditional units (i.e., thermal,
hydro, and gas) is 2000 MW of rated power [48], of which the largest percentage of electrical
power sharing went to the thermal power plant, which contributes 1087 MW, then the
hydropower plant, which contributes 653 MW, and the gas turbine, sharing the generated
power with 262 MW. The investigated power grid is presented as a simplified model shown
in Figure 1.

Figure 1. The studied power grid schematic diagram.

Figure 2 shows the block diagram of the studied two-area interconnected hybrid
power grid. The transfer functions in the studied power grid are listed in Table 2. The
amalgamation of the TD-TI controller is proposed to be equipped in both areas for each
generation unit to minimize the oscillations in the frequencies of both areas and the tie-line
power flow between them. The attitude of the input signal of the proposed combining
TD-TI controller can be represented as the ACE, while the attitude of the output signal can
be represented as the action of the secondary/supplementary control on each generation
power plant, in order to obtain extra active power for enhancing the power grid perfor-
mance. Table 3 elucidates all the parameters included in the studied power grid with their
nominal values. The ACEs in both areas can be obtained according to the formulas that
follow in Equations (1) and (2) [47]:
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ACE1 = ΔCtie1−2 + B1Δi1 (1)

ACE2 = ΔCtie2−1 + B2Δi2 (2)

Figure 2. The transfer function model of the studied power grid.

Table 2. The transfer functions that are presented in the studied power grid.

Control Block Transfer Functions

Thermal Governor
1

Tsg·s + 1

Reheater of Thermal Turbine
Kr·Tr·s + 1

Tr·s + 1

Thermal Turbine
1

Tt·s + 1

Hydro Governor
1

Tgh·s + 1

Transient Droop Compensation
Trs·s + 1
Trh·s + 1

Hydro Turbine
−Tw·s + 1
0.5Tw·s + 1

Valve Positioner of Gas Turbine
1

bg·s + cg

Speed Governor of Gas Turbine
xc·s + 1
Yc·s + 1

Fuel System and Combustor
Tcr·s + 1
Tf c·s + 1

Gas Turbine Dynamics
1

Tcd·s + 1
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Table 2. Cont.

Control Block Transfer Functions

Power System 1
Kps1

Tps1·s + 1

Power System 2
Kps2

Tps2·s + 1

Electrical Vehicle 1
KEV1

TEV1·s + 1

Electrical Vehicle 2 KEV2
TEV2·s + 1

Table 3. The standard parameter values of the two interconnected identical areas [47].

Parameter Descriptions Symbol Standard Values

Frequency bias factor Bi 0.4312 MW/Hz
Coefficient of synchronizing T12 0.0433 MW

The regulation constant of thermal turbine
The regulation constant of hydropower plant

The regulation constant of gas turbine

R1
R2
R3

2.4 HZ/MW
2.4 HZ/MW
2.4 HZ/MW

Control area capacity ratio a12 −1
Participation factor for a thermal unit KT 0.543478
Participation factor for a hydro unit KH 0.326084

Participation factor for a gas unit KG 0.130438
Gain constant of power system Kps 68.9566

The time constant of the power system Tps 11.49 s
Governor time constant Tsg 0.08 s
Turbine time constant Tt 0.3 s

Gain of reheater steam turbine Kr 0.3
The time constant of reheater steam turbine Tr 10 s

Speed governor time constant of hydro turbine Tgh 0.2 s
Speed governor reset time of the hydro turbine Trs 5 s

The transient droop time constant of hydro turbine speed governor Trh 28.75 s
Nominal string time of water in penstock Tw 1 s
Gas turbine constant of valve positioner bg 0.05

Valve positioner of gas turbine cg 1
The lag time constant of the gas turbine speed governor Yc 1 s

The lead time constant of the gas turbine speed governor Xc 0.6 s
Gas turbine combustion reaction time delay Tcr 0.01 s

Gas turbine fuel time constant Tf c 0.23 s
Gas turbine compressor discharge volume–time constant Tcd 0.2 s

Gain of electrical vehicle KEV 1
The time constant of electrical vehicle TEV 0.28 s

2.2. The Installation of Wind Farm Model

This work presents the high penetration of RESs, including wind power in the in-
vestigated hybrid power grid. The professional software MATLAB/SIMULINK program
(R2015a) (The MathWorks, Inc., Natick, MA, USA) is used in implementing the simplified
model of wind power in order to share its energy in the first area of the studied power
grid. The aforementioned wind power model generates power in the same way as the real
behavior of the generated power from real wind farms. This is achieved using a white-noise
block that is utilized in getting a random speed, which is multiplied by the wind speed, as
shown in Figure 3 [47]. The captured output power from the wind model can be formulated
in the following equations [47].

Pwt =
1
2
ρATv3

wCp(λ,β) (3)
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Cp(λ,β) = C1

(
C2

λi
−C3β−C4β

2 −C5

)
× e

−C6
λi + C7λT (4)

λT = λOP
T =

ωTrT

VW
(5)

1
λi

=
1

λT + 0.08β
− 0.035

β3 + 1
(6)

Figure 3. The implemented model of wind power using MATLAB/Simulink program (R2015a).

All of these mentioned parameter values for the utilized wind farm are presented
in [47]. Figure 4 shows the random output power of 257 wind turbine units of 750 KW for
each wind power unit. The value of the generated power from the studied wind farm is
about 192 MW.

Figure 4. The output power of the wind model.

2.3. The Installation of the PV Model

The Photovoltaic (PV) model can be built by utilizing the professional software MAT-
LAB/SIMULINK program (R2015a) described in Figure 5. The generated output power
from the model is similar to the real generated output power from a real PV plant. In
addition, the output energy of the PV model is penetrated in the second area of the studied
power grid at about 116 MW. Here, the white-noise block in the MATLAB program (R2015a)
is used for obtaining random output oscillations that are multiplied by the standard output
power generated from a real PV plant. The generated energy from the presented PV model
can be obtained as formulated in Equation (7) [6]. Figure 6 clarifies the random output
power generated from the PV model.
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ΔPsolar = 0.6×√
Psolar (7)

Figure 5. The implemented model of the solar power plant using MATLAB/Simulink (R2015a) program.

Figure 6. The output power of the photovoltaic model.

2.4. The Installation of EV Model

EVs can participate in frequency regulation effectively due to the receiving of the
LFC order and pass this signal to the EV to control the power during the charging and
discharging process. Moreover, the response of the LFC signal can be limited through
the availability of the numbers of controllable EVs in the studied power grid and by the
state of the charge related to their capacity, whereas the model of the EV is similar to
the model of the battery energy storage system, due to the included batteries that supply
extra energy to the power grid during fluctuations for regulating the frequency excursions.
However, the batteries in EVs may not be in full charging capacity due to the nature of
EVs being of mobility and load, which affects the amount of extra energy to tackle the LFC
problem. Thus, it is important to check the level of the EV charging to ensure more system
enhancement under different system fluctuations. The output power from an EV can be
obtained by the first-order transfer function, including the electrical vehicle time constant
TEV , which equals 0.28 s in series with the electrical vehicle controllers’ gain, KEV , which
equals 1, where KEV is represented as the ratio of the exchange in charging power of the
EV’s batteries to the change of system frequency. The transfer function that represents the
EV model is formulated in Equation (8) [49]. Figure 7 describes the EV model that was built
in the MATLAB/SIMULINK program (R2015a).

KEV
1 + s TEV

(8)
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Figure 7. The implemented model of the electrical vehicle using MATLAB/Simulink (R2015a).

3. Control Methodology and Problem Formulation

Due to the high RES penetration, communication time delay, and various types of
load perturbations, it is essential to implement a robust controller to enhance the system
performance during abnormal conditions. Hence, this study proposes a newly developed
controller construction known as a combining TD-TI controller to overcome any fluctuations
resulting from the previous considerations/challenges. Moreover, the proposed controller
parameters have been selected based on an improved algorithm labeled as QCGO.

3.1. The Proposed Control Strategy

This paper presents an efficient controller labeled as the combining TD-TI controller,
which represents an improved modified structure of the TID controller that is shown in
Figure 8. The TID controller is a sort of fractional order controller (FOC) that depends on
the fractional-order calculus in its design. The TID controller construction is similar to
the PID controller construction except for one difference, which is that the proportional
parameter is tilted with a (1/s1/n) transfer function. In this regard, this paper proposed a
combining TD-TI controller, as derived from TID controller, due to the merits of the TID,
such as the ability to tune easily, superior fluctuations rejection, and better sensitivity due
to variations of the system parametric [50]. The proposed combining TD-TI controller is
utilized to enhance the studied power grid performance, such as by damping frequency
oscillations in both areas and overcoming fluctuations related to the tie-line power flow.
Furthermore, the proposed combining TD-TI controller parameters are selected utilizing
an improved QCGO algorithm. In general, the transfer function of the combining TD-TI
controller is formulated as follows [50]:

Gi1, TD(s) =
Kti

S
1
n
+ KdiS (9)

Gi2, TI(s) =
Kti

S
1
n
+

Kii
s

(10)

Gi, total(s) = Gi1, TD(s) + Gi2, TI(s) (11)

where i refers to the specified proposed controller of the (thermal, hydro, and gas) turbines;
thus, (i = 1, 2, 3). The gain values (Kti, Kii, and Kdi) are selected within the range of [0, 10],
and n is tuned in the range of [1, 10]. The control signal of the ith area can be expressed as
follows [38]:

Ui(s) = Gi, total(s) × ACEi(s) (12)
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Figure 8. The construction of the proposed combining tilt-derivative and tilt-integral controller.

According to the process of controller designing, there are several sorts of performance
criteria, such as the integral time absolute error (ITAE), the integral of squared error (ISE),
the integral time squared error (ITSE), and the integral of absolute error (IAE). The criteria
of ITAE and ISE are often utilized in the literature for minimizing the objective function
due to their merits in comparison to ITSE and IAE, whereas the strategy of the ISE criteria
in minimizing the objective function is the integrating of the square of error signal over
simulation time. For ease, the ISE criteria can effectively dampen the large errors compared
to the small errors as the square of the large errors is larger than the square of the small
errors. It can be said that the ISE criteria can penalize the large errors with tolerance for
the presence of continuous small errors along with time simulation. Thus, the authors of
this work do not hesitate in putting in the ITAE criteria utilized in minimizing the objective
function because of the multiplication of the time term by the integral of the absolute error.
The multiplied time term in ITAE criteria makes the optimization process more fast which
achieves more system stability than utilizing the ISE criteria [51]. The ITAE criteria can be
formulated as follows [47]:

J = ITAE =
∫ Tsim

0
t. [|Δ f1| + |Δ f2 | + |ΔPtie |] dt (13)

where dt is represented as the time interval for taking the error signals’ samples over the
simulation process.

3.2. The Proposed Optimization Technique

In this subsection, the CGO method is briefly described; then, the process of the QCGO
technique is presented.

3.2.1. Chaos Game Optimization (CGO) Algorithm

This algorithm is based on certain rules of the chaos theory, where the arrangement of
fractals is by the chaos game idea. Firstly, an initialization procedure is configured by deter-
mining the initial positions of the solution candidates from the following equations [52]:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1
X2
.
.

Xi
.
.

Xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
1 x2

1 . . . .. xj
1 . . . ..xd

1
x1

2 x2
2 . . . .. xj

2 . . . ..xd
2

. . . .

. . . .
x1

i x2
i . . . .. xj

i . . . ..xd
i

. . . .

. . . .
x1

n x2
n . . . .. xj

n . . . ..xd
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
{

i = 1, 2, . . . ., m
j = 1, 2, . . . .., d

(14)

289



Fractal Fract. 2022, 6, 220

xj
i(0) = xj

i,min + rand.
(

xj
i,max − xj

i,min

)
,
{

i = 1, 2, . . . ., m
j = 1, 2, . . . .., d

(15)

where d denotes the dimension of the problem and m refers to the total number of initialized
candidates inside the search space. xj

i,min, xj
i,max are the lower and upper bounds of the

decision variables. The position updating process for the temporary triangles is presented
in Figure 9. The mathematical representation of the seed1

i , as shown in Figure 9a, is as
follows [52]:

seed1
i = Xi + αi × (βi −GB− γi ×MGi), i = 1, 2, . . . ., m (16)

where GB is the global best, αi represents the movement limitation factor, and βi and γi
denote vectors randomly created by numbers in the range of [0, 1]. MGi is the mean group.
From Figure 9b, seed2

i can be calculated as follows [52]:

seed2
i = GB + αi × (βi × Xi − γi ×MGi), i = 1, 2, . . . ., m (17)

While seed3
i , which is displayed in Figure 9c, is mathematically computed as be-

low [52]:
seed3

i = MGi + αi × (βi × Xi − γi ×GB), i = 1, 2, . . . ., m (18)

Finally, seed4
i , which is shown in Figure 9d, can be mathematically represented as

follows [52]:
seed4

i = Xi

(
xk

i = xk
i + R

)
, k = [1, 2, . . . ., d] (19)

where R refers to a vector with random numbers in the range of [0, 1].

Figure 9. Position updating process for the temporary triangles [53].

3.2.2. The Proposed Quantum Chaos Game Optimization (QCGO) Algorithm

In this subsection, quantum mechanics is used to develop the original CGO algorithm.
This quantum model of a CGO algorithm is called here QCGO algorithm. Quantum
mechanics was employed to develop the PSO in [54]. In the quantum model, by employing
the Monte Carlo method, the solution xnew4 is calculated from this equation [54]:

If h ≥ 0.5
xnew1 = p + α·|Mbesti − Xi| · ln(1/u) (20)

Else
xnew1 = p− α·|Mbesti − Xi| · ln(1/u) (21)

End.
where α refers to a design parameter, u and h denote uniform probability distribution in
the range [0, 1], and Mbest is the mean best of the population and is defined as the mean of
the GB positions. It can be calculated as follows [54]:
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Mbest =
1
N

N

∑
l=1

pg,l(i) (22)

where g is the index of the best solution among all the solutions.

4. The Procedure of the Improved QCGO Algorithm

The Performance of QCGO

The proposed QCGO algorithm competency and performance are evaluated on the nu-
merous benchmark functions, using the statistical measurements, such as best values, mean
values, median values, worst values, and standard deviation (STD), for the best solutions
achieved using the proposed technique and the other well-known algorithms. The results
attained by the QCGO technique are compared with three recent meta-heuristic techniques,
including SDO [55], WOA [56], and BOA [57], in addition to the conventional CGO. All
of the mentioned techniques were executed for the maximum number of iterations of the
function of 200 and a population size of 50 for 20 independent runs, using Matlab R2016a
working on Windows 8.1, 64 bit (Microsoft, Albuquerque, NM, USA). All computations
were performed on a Core i5-4210U CPU@ 2.40 GHz of speed (Intel Corporation, Santa
Clara, CA, USA) and 8 GB of RAM. Figure 10 shows the qualitative metrics on F1, F2, F3,
F5, F6, F8, F10, F12, F15, F18, and F22, with 2D views of the functions, convergence curve,
average fitness history, and search history.

Figure 10. Cont.
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Figure 10. Qualitative metrics of nine benchmark functions using the proposed quantum chaos
game optimizer algorithm: 2D views of the functions, search history, average fitness history, and
convergence curve.

Tables 4–6 show the statistical results of the proposed QCGO technique and other al-
gorithms when applied for the three types of benchmark functions (unimodal, multimodal,
and composite, respectively). The best-obtained values using the QCGO, CGO, SDO, WOA,
and BOA algorithms are displayed in bold. It is clearly seen that the QCGO algorithm
achieves the optimal solution for most of those benchmark functions. The convergence
curves of these techniques for those functions are illustrated in Figure 11, and the boxplots
for each algorithm for these functions are displayed in Figure 12. From those figures, it is
seen that the QCGO technique reached a stable point for all functions, and the boxplots of
the proposed QCGO technique are very narrow and stable for most functions compared to
the other techniques.
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Table 4. Results of unimodal benchmark functions.

Function QCGO CGO SDO WOA BOA

F1

Best 2.4 ×10−126 1.52 ×10−58 1.39 ×10−55 1.92 ×10−40 3.87 ×10−08

Mean 1.4 ×10−122 4.97 ×10−55 1.37 ×10−51 7.2 ×10−34 4.96 ×10−08

Median 4.8 ×10−124 3.86 ×10−56 3.74 ×10−54 2.28 ×10−35 4.95 ×10−08

Worst 1.2 ×10−121 3.9 ×10−54 8.43 ×10−51 4.34 ×10−33 6 ×10−08

Std 3.7 ×10−122 9.85 ×10−55 2.74 ×10−51 1.34 ×10−33 4.94 ×10−09

F2

Best 4.2 ×10−65 3.64 ×10−31 1.83 ×10−29 4.41 ×10−24 4.26 ×10−06

Mean 1.85 ×10−63 9.17 ×10−29 3.76 ×10−25 5.82 ×10−21 5.71 ×10−06

Median 6.63 ×10−64 1.96 ×10−29 1.13 ×10−26 1.34 ×10−21 5.77 ×10−06

Worst 7.99 ×10−63 9.73 ×10−28 3.98 ×10−24 5.99 ×10−20 7.58 ×10−06

Std 2.41 ×10−63 2.23 ×10−28 9.1 ×10−25 1.34 ×10−20 9.92 ×10−07

F3

Best 2.68 ×10−42 2.41 ×10−40 6.27 ×10−46 0.027608 3.85 ×10−08

Mean 1.66 ×10−36 6.69 ×10−37 6.91 ×10−34 1.518335 4.67 ×10−08

Median 4.45 ×10−39 1.39 ×10−38 1.4 ×10−39 1.011391 4.61 ×10−08

Worst 1.82 ×10−35 7.13 ×10−36 1.38 ×10−32 3.914695 5.57 ×10−08

Std 4.41 ×10−36 1.68 ×10−36 3.09 ×10−33 1.18435 5.02 ×10−09

F4

Best 5.12 ×10−53 3.76 ×10−37 1.11 ×10−26 0.99528 8.45 ×10−06

Mean 6.71 ×10−51 3.7 ×10−23 4.52 ×10−23 53.18395 1.02 ×10−05

Median 2.13 ×10−51 1.4 ×10−23 1.14 ×10−23 60.93168 1.02 ×10−05

Worst 3.32 ×10−50 1.81 ×10−22 1.94 ×10−22 89.09969 1.15 ×10−05

Std 9.43 ×10−51 5.38 ×10−23 6.34 ×10−23 29.69543 8.51 ×10−07

F5

Best 18.11582 17.11845 27.90967 27.88483 28.89058
Mean 19.57861 19.61026 28.65096 28.27419 28.92369

Median 19.35622 19.29265 28.74726 28.43647 28.91978
Worst 22.2175 21.59463 28.98699 28.7227 28.96927

Std 1.149609 1.224882 0.295026 0.28925 0.021273

F6

Best 1.75 ×10−14 6.75 ×10−14 0.039957 0.303542 4.311051
Mean 2.86 ×10−12 2.63 ×10−12 2.568541 0.655907 5.211726

Median 7.7 ×10−14 6.23 ×10−13 2.038779 0.62203 5.06303
Worst 4.89 ×10−11 2.57 ×10−11 7.250251 1.16408 6.168001

Std 1.09 ×10−11 6.11 ×10−12 1.852701 0.210811 0.509499

F7

Best 1.02 ×10−05 0.000197 8.66 ×10−05 0.0004 0.000983
Mean 0.000263 0.00092 0.002356 0.00542 0.002696

Median 0.000231 0.00085 0.001136 0.003763 0.002776
Worst 0.000768 0.001975 0.013813 0.019069 0.005116

Std 0.000177 0.000583 0.003331 0.005011 0.001104

The best values obtained are in bold.

Table 5. Results of multimodal benchmark functions.

Function QCGO CGO SDO WOA BOA

F8

Best −1671.01 −1770.26 −1655 −1909.05 −921.028
Mean −1465.24 −1490.19 −1312.83 −1786.9 −766.513

Median −1453.48 −1483.32 −1385.86 −1907.06 −778.594
Worst −1313.6 −1235.22 −598.802 −1632.06 −647.792

Std 108.2831 123.7418 294.008 138.0759 61.76107

F9

Best 0.00 0.00 4.33 ×10−30 0.00 5.17 ×10−09

Mean 0.00 0.00 1.75 ×10−22 1.14 ×10−14 0.003376
Median 0.00 0.00 4.17 ×10−25 0.00 3.86 ×10−06

Worst 0.00 0.00 3.02 ×10−21 1.14 ×10−13 0.047754
Std 0.00 0.00 6.75 ×10−22 2.97 ×10−14 0.010836

F10

Best 8.88 ×10−16 8.88 ×10−16 8.88 ×10−16 4.44 ×10−15 1.67 ×10−05

Mean 2.49 ×10−15 3.2 ×10−15 8.88 ×10−16 1.33 ×10−14 4.77 ×10−05

Median 8.88 ×10−16 4.44 ×10−15 8.88 ×10−16 1.15 ×10−14 4.55 ×10−05

Worst 4.44 ×10−15 4.44 ×10−15 8.88 ×10−16 3.29 ×10−14 7.94 ×10−05

Std 1.81 ×10−15 1.74 ×10−15 0.00 8.11 ×10−15 1.69 ×10−05
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Table 5. Cont.

Function QCGO CGO SDO WOA BOA

F11

Best 0.00 0.00 0.00 0.00 3.23 ×10−08

Mean 0.00 0.00 0.00 0.021832 4.29 ×10−08

Median 0.00 0.00 0.00 0.00 4.22 ×10−08

Worst 0.00 0.00 0.00 0.26626 5.81 ×10−08

Std 0.00 0.00 0.00 0.068973 6.29 ×10−09

F12

Best 3.66 ×10−16 1.34 ×10−15 0.001152 0.006052 0.33315
Mean 5.69 ×10−15 8.04 ×10−14 0.23467 0.022239 0.565424

Median 2.26 ×10−15 1.93 ×10−14 0.067805 0.015529 0.562862
Worst 3.32 ×10−14 5.01 ×10−13 1.492821 0.087947 0.754521

Std 8.06 ×10−15 1.36 ×10−13 0.352063 0.018774 0.108748

F13

Best 6.36 ×10−14 7.4 ×10−13 0.046216 0.400281 2.497296
Mean 0.007142 0.036733 1.867552 0.687522 2.894224

Median 0.005494 0.010987 1.934246 0.598054 2.982946
Worst 0.043949 0.233414 2.999924 1.321352 3.109356

Std 0.010254 0.065978 0.961284 0.248523 0.153028

The best values obtained are in bold.

Table 6. Results of composite benchmark functions.

Function QCGO CGO SDO WOA BOA

F14

Best 0.998004 0.998004 0.998004 0.998004 0.998004
Mean 0.998004 0.998004 3.494696 2.230204 1.301281

Median 0.998004 0.998004 1.495017 1.495017 1.024436
Worst 0.998004 0.998004 12.67051 10.76318 2.983027

Std 0.00 5.09 ×10−17 3.953203 2.241367 0.534994

F15

Best 0.000307 0.000307 0.000307 0.000311 0.000315
Mean 0.000307 0.000353 0.00067 0.000626 0.000487

Median 0.000307 0.000307 0.000527 0.000578 0.000405
Worst 0.000307 0.001223 0.002121 0.001528 0.000917

Std 1.68 ×10−19 0.000205 0.000473 0.000342 0.000173

F16

Best −1.03163 −1.03163 −1.03163 −1.03163 −1.40747
Mean −1.03163 −1.03163 −1.03005 −1.03163 −1.18199

Median −1.03163 −1.03163 −1.03163 −1.03163 −1.18517
Worst −1.03163 −1.03163 −1.00046 −1.03163 −1.07213

Std 2.22 ×10−16 2.28 ×10−16 0.006966 1.94 ×10−08 0.088213

F17

Best 0.397887 0.397887 0.397887 0.397887 0.398293
Mean 0.397887 0.397887 0.397987 0.397896 0.409332

Median 0.397887 0.397887 0.397887 0.39789 0.406611
Worst 0.397887 0.397887 0.399795 0.397967 0.461881

Std 0.00 0.00 0.000426 1.78 ×10−05 0.014049

F18

Best 3.00 3.00 3.00 3.000001 3.000586
Mean 3.00 3.00 3.001185 3.000069 3.092676

Median 3.00 3.00 3.00 3.000026 3.054728
Worst 3.00 3.00 3.023537 3.000668 3.425476

Std 2.7 ×10−16 6.03 ×10−16 0.005261 0.000147 0.108993

F19

Best −0.30048 −0.30048 −0.30048 −0.30048 −0.30048
Mean −0.30048 −0.30048 −0.2893 −0.30048 −0.30048

Median −0.30048 −0.30048 −0.30038 −0.30048 −0.30048
Worst −0.30048 −0.30048 −0.19165 −0.30048 −0.30048

Std 1.14 ×10−16 1.14 ×10−16 0.026531 1.14 ×10−16 3.74 ×10−06

F20

Best −3.322 −3.322 −3.322 −3.31923 −3.3× 10−05

Mean −3.26849 −3.28038 −3.09697 −2.98949 −1.6× 10−06

Median −3.322 −3.322 −3.2031 −3.15019 −1.5× 10−40

Worst −3.2031 −3.2031 −0.89904 −1.57922 −2× 10−134

Std 0.060685 0.058182 0.550986 0.479795 7.35 ×10−06
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Table 6. Cont.

Function QCGO CGO SDO WOA BOA

F21

Best −10.1532 −10.1532 −10.1532 −10.1528 −4.61081
Mean −10.1532 −9.90058 −8.703 −7.35262 −4.0759

Median −10.1532 −10.1532 −10.1532 −10.0113 −4.12522
Worst −10.1532 −5.10077 −4.99677 −2.59723 −3.18003

Std 3.21 ×10−15 1.129757 2.23952 3.245445 0.379957

F22

Best −10.4029 −10.4029 −10.4029 −10.4008 −4.76031
Mean −10.4029 −10.4029 −8.45822 −7.90953 −3.74931

Median −10.4029 −10.4029 −10.4029 −10.2376 −3.64889
Worst −10.4029 −10.4029 −1.0677 −3.69711 −2.93305

Std 3.05 ×10−15 3.36 ×10−15 3.128689 2.779744 0.479377

F23

Best −10.5364 −10.5364 −10.5364 −10.5297 −4.51577
Mean −9.99562 −9.93332 −7.90449 −7.3919 −3.38426

Median −10.5364 −10.5364 −10.5357 −7.79854 −3.60414
Worst −5.12848 −3.83543 −3.79083 −1.67334 −1.95854

Std 1.664525 1.868952 3.015319 3.33909 0.720921

The best values obtained are in bold.

Figure 11. Cont.

295



Fractal Fract. 2022, 6, 220

Figure 11. The convergence curves of the proposed QCGO algorithm and four other algorithms for
23 benchmark functions.

Figure 12. Cont.
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Figure 12. Boxplots of the proposed QCGO algorithm and four other algorithms for 23 bench-
mark functions.
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5. Simulation Results and Discussions

In this study, the proposed control strategy is implemented in the secondary control
loop with the high integration of RESs, considering different load variation types to restore
the studied system frequency at the pre-defined value, where the presented control strategy
relied on the combining TD-TI controller, which is optimally designed by an improved
QCGO algorithm to obtain the minimum value of the frequency fluctuations for the studied
power grid. Moreover, the performance of the suggested control strategy is compared
with other control strategies (i.e., TID and PID). All of the simulation results for the
studied two-area, multi-unit power grid are implemented using the professional software
MATLAB/SIMULINK® program (R2015a) to ensure the efficacy of the proposed controller
in enhancing the studied system performance. The code of the proposed QCGO algorithm
is an m-file linked to the studied model for the optimization process. The simulation
results are performed on a PC with Intel Core i5-2.60 GHz with 4.00 GB of RAM. The
frequency stability has been assessed by applying different operating conditions through
the following scenarios.

• Scenario A: evaluation of the studied power grid performance considering various
load variation types (i.e., SLP, series SLP, and RLV).

• Scenario B: evaluation of the studied power grid performance considering high pene-
tration of RESs in both areas with series SLP and RLV.

• Scenario C: evaluation of the studied power grid performance considering communi-
cation time delay.

• Scenario D: evaluation of the studied power grid performance considering EV integra-
tion in both areas.

The studied power grid performance can be evaluated by measuring the value of
the best objective function that is represented by the ITAE value over the iterations. For
most, several initial considerations must be addressed while optimizing the proposed
TD-TI controller using the proposed improved QCGO algorithm, such as the search agent
number that equals 30 and the total iterations/attempts that equal 100. The convergence
curve that is shown in Figure 13 clarifies the performance of the proposed combining
TD-TI controller based on QCGO compared to the combining TD-TI controller based on
CGO and SSA and compared with the TID controller based on QCGO and CGO. The
demonstrated convergence curve can be obtained considering a 1% SLP at 10 s in the first
area of the studied power grid, without any RESs penetration in both areas. It is clear that
the proposed combining TD-TI controller based on QCGO attained the lowest value of
the objective function compared to the other mentioned controllers that relied on various
optimization techniques. As a result, the convergence curve elucidates the effectiveness
of the proposed QCGO algorithm. It can be seen that the curve behavior of the proposed
TD-TI based on QCGO starts with a 0.1098 objective function value; then, this value drops
along the iterations to end up at the final iteration with a 0.0729 objective function value,
whereas the behavior of the proposed controller/proposed algorithm can be described as it
reaches the best objective function value quickly compared to the other utilized controllers
via different techniques. Moreover, it can be said, the rest curve behaviors are far from
the optimum goal achieved by the suggested controller using QCGO, demonstrating its
robustness in damping the oscillations effectively.

Scenario A: evaluation of the studied system performance considering different load
variation types (i.e., SLP, series SLP, and random load).

This scenario included a fair-maiden comparison between the proposed combining
TD-TI controller utilizing the QCGO algorithm and the other published controllers, such
as the PID controller based on TLBO and AOA. Moreover, the proposed combining TD-TI
controller based on the improved QCGO technique was compared with different mentioned
controllers, such as the TID controller based on QCGO and CGO and the combining TD-TI
controller based on CGO and SSA, to test the stability of the studied power grid performance.
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Figure 13. The convergence curve characteristics of QCGO, CGO, and salp swarm algorithm.

Case A.1: The SLP was selected as a challenge by applying it in the first area of
the studied power grid to test the efficacy of the proposed combining TD-TI controller
in enhancing the system performance. The applicable SLP occurred at 10 s with a 1%
value, whereas the SLP can occur in the electrical power grids through disconnecting some
generators from all the generation stations that may lead to blackouts with the shutdown of
all the stations’ generators. In addition, SLP may be represented as an unexpected switch
of the connected electrical loads that may lead to instability in the system performance by
increasing the wear and tear on the generators in the power grid.

Case A.1.1: This case presents a comparison between the performance of the proposed
combining TD-TI controller in this work and the other published performances of the PID
controller, to prove the efficacy of the proposed controller in attaining the main target
(damping frequency oscillations). Table 7 indicates all of the aforementioned controller
parameters that are utilized in diminishing the fluctuations in the system frequency and
power flow in the tie line. In addition, Figure 14 clarifies a comparison between the different
dynamic studied system responses (i.e., Δ f1, Δ f2, and ΔPtie) of the proposed combining
TD-TI controller, using QCGO and the PID controller based on TLBO and AOA, and
considering a 1% SLP in the first area.

Table 8 illustrates the various specifications of the system performance, such as over-
shoot (Osh), undershoot (Ush), and the objective function values related to fluctuations
in both the area frequencies and the power flow within the tie line. Table 8 clarifies the
superiority of the proposed combining TD-TI controller-based, improved QCGO algorithm
to achieve stability in the studied power grid. For ease, Table 9 denotes the percentage
improvements in Ush and Osh for combining TD-TI/QCGO and PID/AOA, based on
the PID/TLBO.
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Table 7. The optimum parameters of the different controllers.

Controller Properties Thermal Hydro Gas

Combining
TD-TI-based QCGO

kt1 = 9.9999, kd1 = 9.9988,
n1 = 3.5626

kt2 = 9.9991, ki2 = 5.4425,
n2 = 3.5311

kt1 = 9.9834, kd1 = 3.8871,
n1 = 9.9468

kt2 = 9.5835, ki2 = 1.0016,
n2 = 9.9508

kt1 = 9.998, kd1 = 9.9973,
n1 = 3.7621

kt2 = 9.9951, ki2 = 9.9704,
n2 = 1.2938

Combining TD-TI-based CGO

kt1 = 9.9998, kd1 = 6.9628,
n1 = 3.5715

kt2 = 9.9977, ki2 = 5.033,
n2 = 3.4737

kt1 = 9.98, kd1 = 2.7245,
n1 = 9.9129

kt2 = 7.2945, ki2 = 1.052,
n2 = 9.9827

kt1 = 9.9998, kd1 = 8.4098,
n1 = 1.2782

kt2 = 9.9966, ki2 = 9.9989,
n2 = 6.9549

Combining TD-TI-based SSA

kt1 = 9.9998, kd1 = 8.985,
n1 = 2.9819

kt2 = 9.1794, ki2 = 9.3854,
n2 = 2.8288

kt1 = 5.3557, kd1 = 4.68,
n1 = 2.1217

kt2 = 8.5211, ki2 = 1.0925,
n2 = 5.1176

kt1 = 9.9998, kd1 = 1.0849,
n1 = 9.6003

kt2 = 9.9628, ki2 = 7.6555,
n2 = 1.4599

TID-based QCGO
kt1 = 9.8753, ki1 = 9.9302,

kd1 = 7.9837,
n1 = 2.6219

kt1 = 9.7665, ki1 = 1.0797,
kd1 = 4.9139,
n1 = 8.0894

kt1 = 9.9041, ki1 = 9.9922,
kd1 = 1.6516,
n1 = 9.2214

TID-based CGO
kt1 = 9.9993, ki1 = 9.7827,

kd1 = 8.7199,
n1 = 3.5979

kt1 = 9.9525, ki1 = 1.4282,
kd1 = 5.1353,
n1 = 7.5851

kt1 = 9.9486, ki1 = 9.9844,
kd1 = 4.0435,
n1 = 3.3106

PID-based TLBO [46] kp1 = 4.1468, ki1 = 4.0771,
kd1 = 2.0157

kp1 = 1.0431, ki1 = 0.6030,
kd1 = 2.2866

kp1 = 4.7678, ki1 = 3.7644,
kd1 = 4.9498

PID-based AOA [47] kp1 = 10, ki1 = 1.5975,
kd1 = 2.7449

kp1 = 1.5975, ki1 = 0.0837,
kd1 = 0.0875

kp1 = 10, ki1 = 10,
kd1 = 1.2779

Table 8. The transient response specifications of the presented system for case A.1.1.

Controller Properties
Dynamic Response of

(Δf1)
Dynamic Response of

(Δf2)
Dynamic Response of

(ΔPtie)
Objective Function

Value (ITAE)

Combining TD-TI
based on QCGO

Osh and Ush
×(10−3 )

Osh = 0.819
Ush = −7.875

Osh = 0.0028
Ush = −1.744

Osh = 0.0015
Ush = −0.5361 J = 0.075

PID based on AOA
Osh and Ush
×(10−3 ) [47]

Osh = 1.158
Ush = −11.42

Osh = 0.02096
Ush = −4.443

Osh = 0.01107
Ush = −1.249 J = 0.189

PID based on TLBO
Osh and Ush
×(10−3 ) [46]

Osh = 1.7217
Ush = −19.7259

Osh = 0.4363
Ush = −12.7986

Osh = 0.1712
Ush = −3.0782 J = 0.402

Table 9. Percentage improvement in Ush and Osh values for combining TD-TI/QCGO and PID/AOA
based on PID controller via TLBO for scenario A.1.1.

Controller
Δf1
Ush Osh

Δf2
Ush Osh

ΔPtie
Ush Osh

Combining TD-TI based on QCGO 60.01 52.43 86.4 99.36 82.6 99.12
PID based on AOA 42.11 32.70 65.29 95.2 59.42 93.53

The optimum values are bolded.
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Figure 14. Dynamic power grid responses in case A.1.1: (a) Δf1 (b) Δf2 (c) ΔPtie.
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As can be seen, the improved QCGO algorithm utilized in fine-tuning the proposed
combining TD-TI controller obtains the optimal controller parameters, which leads to
attaining the optimal solution with a 0.075 objective function value. The obtained objective
function value related to the proposed controller using an improved QCGO algorithm is
the best compared to those attained from the published PID controller based on TLBO
and AOA, which equal 0.402 and 0.189, respectively. It can be seen that the proposed
combining TD-TI controller-based QCGO achieves a higher percentage in improving all
system dynamic performance. For example, the percentage improvement in Ush and Osh of
Δf1 related to combining TD-TI/QCGO is 60.01% and 52.43%, respectively. In contrast, the
percentage improvement in Ush and Osh of Δf1 related to PID/AOA is 42.11% and 32.70%,
respectively.

Case A.1.2: This case presents a suggestion of utilizing the TID controller based on
CGO and QCGO to compare it with the proposed combining TD-TI controller based on
QCGO to test the robustness of the proposed one in regulating the studied system frequency.
All of the previously mentioned controller parameters are presented in Table 7. Moreover,
Figure 15 describes a fair comparison between all of the dynamic system responses related
to the proposed combining TD-TI controller based on QCGO and all those responses of the
TID controller based on CGO and QCGO.

Table 10 illustrates the different specifications of the system performance, such as Osh,
Ush, and the objective function values related to excursions in both the area frequencies and
the power flow within the tie line. Table 10 clarifies the superiority of the proposed com-
bining TD-TI controller-based improved QCGO algorithm in achieving system reliability.
In addition, Table 11 clarifies the percentage improvements in Ush and Osh for combining
TD-TI/QCGO and TID/(CGO, QCGO) based on the PID/TLBO.

Table 10. The transient response specifications of the presented system for case A.1.2.

Controller Properties
Dynamic Response of

(Δf1)
Dynamic Response of

(Δf2)
Dynamic Response of

(ΔPtie)
Objective Function

Value (ITAE)

Combining TD-TI
based on QCGO

Osh and Ush
×(10−3 )

Osh = 0.819
Ush = −7.875

Osh = 0.0028
Ush = −1.744

Osh = 0.0015
Ush = −0.5361 J = 0.075

TID based on QCGO
Osh and Ush
×(10−3 )

Osh = 1.893
Ush = −11.468

Osh = 0.3257
Ush = −3.45

Osh = 0.0424
Ush = −0.8862 J = 0.1351

TID based on CGO
Osh and Ush
×(10−3 )

Osh = 1.705
Ush = −10.341

Osh = 0.3784
Ush = −2.763

Osh = 0.0381
Ush = −0.7397 J = 0.1381

The optimum values are bolded.

Table 11. Percentage improvement in Ush and Osh values for combining TD-TI/QCGO and PID/AOA
based on PID controller via TLBO for scenario A.1.2.

Controller
Δf1
Ush Osh

Δf2
Ush Osh

ΔPtie
Ush Osh

Combining TD-TI based on QCGO 60.01 52.43 86.4 99.36 82.6 99.12
TID based on QCGO 41.86 −9.95 73.04 25.35 71.21 75.23
TID based on CGO 47.6 0.97 78.4 13.27 75.97 77.75

The optimum values are bolded.
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Figure 15. Dynamic power grid responses in case A.1.2: (a) Δf1 (b) Δf2 (c) ΔPtie.
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Table 10 clarifies that the obtained objective function value related to the proposed
controller using an improved QCGO algorithm that equals 0.075 is the best compared
to those attained from the TID controller based on CGO and QCGO, which equal 0.1381
and 0.1351, respectively. Moreover, Table 11 denotes that the proposed combining TD-
TI controller-based QCGO achieves a higher percentage in improving all of the system
dynamic performance. For example, the percentage improvement in Ush and Osh of Δf2

related to combining TD-TI/QCGO is 86.4% and 99.36%, respectively. In contrast, the
percentage improvement in Ush and Osh of Δf2 related to TID/QCGO is 73.04% and 25.35%,
respectively.

Case A.1.3: This case presents the SSA algorithm as a meta-heuristic optimization
technique to tune the proposed combining TD-TI controller and make a comparison be-
tween it and the CGO and QCGO techniques in selecting the optimal controller parameters
to prove that the improved QCGO algorithm can achieve more system stability compared
to utilizing the different mentioned algorithms. Table 7 presents the aforementioned con-
troller parameters that were utilized in overcoming the LFC problem in the studied power
grid. Moreover, Figure 16 describes a fair comparison between all of the dynamic system
responses related to the proposed combining TD-TI controller based on QCGO and all
those responses of the combining TD-TI controller based on SSA and CGO.

Table 12 illustrates the different specifications of the system performance, such as Osh,
Ush, and the objective function values related to the oscillations in both the area frequencies
and the power flow within the tie line. Table 12 clarifies the superiority of the proposed
combining TD-TI controller-based, improved QCGO algorithm in achieving system re-
liability. In addition, Table 13 clarifies the percentage improvements in Ush and Osh for
combining TD-TI/QCGO and combining TD-TI/(CGO, SSA), based on the PID/TLBO.

Table 12. The transient response specifications of the presented system for case A.1.3.

Controller Properties
Dynamic Response of

(Δf1)
Dynamic Response of

(Δf2)
Dynamic Response of

(ΔPtie)
Objective Function

Value (ITAE)

Combining TD-TI
based on QCGO

Osh and Ush
×(10−3 )

Osh = 0.819
Ush = −7.875

Osh = 0.0028
Ush = −1.744

Osh = 0.0015
Ush = −0.5361 J = 0.075

Combining TD-TI
based on CGO
Osh and Ush
×(10−3 )

Osh = 1.097
Ush = −8.95

Osh = 0.0025
Ush = −2.383

Osh = 0.00136
Ush = −0.665 J = 0.078

Combining TD-TI
based on SSA
Osh and Ush
×(10−3 )

Osh = 1.763
Ush = −9.978

Osh = 0.0896
Ush = −2.713

Osh = 0.0124
Ush = −0.7125 J = 0.087

Table 13. Percentage improvement in Ush and Osh values for combining TD-TI/QCGO and PID/AOA
based on PID controller via TLBO for scenario A.1.3.

Controller
Δf1
Ush Osh

Δf2
Ush Osh

ΔPtie
Ush Osh

Combining TD-TI based on QCGO 60.01 52.43 86.4 99.36 82.6 99.12
Combining TD-TI based on CGO 54.63 36.28 81.38 99.43 78.4 99.21
Combining TD-TI based on SSA 49.42 −2.4 78.8 79.46 76.85 92.76

The optimum values are bolded.
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Figure 16. Dynamic power grid responses in case A.1.3: (a) Δf1 (b) Δf2 (c) ΔPtie.
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Table 12 clarifies that the obtained objective function value related to the suggested
controller using an improved QCGO algorithm that equals 0.075 is the best compared to
those attained from the combining TD-TI controller based on CGO and SSA, which equal
0.078 and 0.087, respectively. Moreover, Table 13 denotes that the proposed combining
TD-TI controller-based QCGO achieves a higher percentage in improving all of the system
dynamic performance. For example, the percentage improvement in Ush and Osh of ΔPtie
related to combining TD-TI/QCGO is 82.6% and 99.12%, respectively. In contrast, the
percentage improvement in Ush and Osh of ΔPtie related to combining TD-TI/SSA is
76.85% and 92.76%, respectively.

Case A.2: In this case, the performance of the proposed combining TD-TI controller
optimized with an improved QCGO algorithm has been tested and assessed by subjecting
a series SLP in the first area of the studied power grid. The series SLP is represented as an
emulation of the series changing in the realistic connected loads. It can be said that the
series SLP is considered as a series-forced switch of generators or series interrupts of the
connected loads. Figure 17 describes the applied form of the series SLP. In addition, the
different dynamic system responses are indicated in Figure 18 to elucidate the superiority
of the suggested combining TD-TI controller based on QCGO compared to those of the
other controllers optimized with different algorithms (i.e., combining TD-TI based on CGO
and SSA) in the presence of the series SLP in the first area.

Figure 17. The form of the applied series step load perturbation.

Figure 18. Cont.
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Figure 18. Dynamic power grid responses in case A.2: (a) Δf1 (b) Δf2 (c) ΔPtie.

Table 14 illustrates the values of Osh and Ush related to the different system dynamic
responses (i.e., Δf1, Δf2, and ΔPtie) according to oscillations in both the area frequencies
and the power flow within the tie line. Table 14 clarifies the superiority of the proposed
combining TD-TI controller-based improved QCGO algorithm in achieving system stability.
In addition, Table 15 clarifies the percentage improvements in Ush and Osh for combining
TD-TI/QCGO and combining TD-TI/CGO based on the combining TD-TI/SSA.

Table 14 clarifies that the suggested controller using an improved QCGO algorithm
achieves more system stability after looking at the obtained results of the Osh and Ush
values. Moreover, Table 15 denotes that the proposed combining TD-TI controller-based
QCGO achieves a higher percentage in improving all of the system dynamic performance.
For example, the percentage improvement in Ush and Osh of Δf1 related to combining
TD-TI/QCGO is 26.13% and 25.71%, respectively. In contrast, the percentage improvement
in Ush and Osh of Δf1 related to combining TD-TI/CGO is 15.81% and 14.29%, respectively.
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Table 14. The transient response specifications of the presented system for case A.2.

Controller Properties Dynamic Response of (Δf1) Dynamic Response of (Δf2) Dynamic Response of (ΔPtie)

Combining TD-TI based on
QCGO

Osh and Ush
×(10−3 )

Osh = 15.6
Ush = −22.9

Osh = 3.5
Ush = −5.1

Osh = 1.000
Ush = −1.67

Combining TD-TI based on
CGO

Osh and Ush
×(10−3 )

Osh = 18.00
Ush = −26.1

Osh = 4.85
Ush = −7.3

Osh = 1.3
Ush = −1.9

Combining TD-TI based on
SSA

Osh and Ush
×(10−3 )

Osh = 21.000
Ush = −31.000

Osh = 5.510
Ush = −8.6

Osh = 1.40
Ush = −2.15

Table 15. Percentage improvement in Ush and Osh values for combining TD-TI/QCGO and combin-
ing TD-TI/CGO based on combining TD-TI/SSA for scenario A.2.

Controller
Δf1
Ush Osh

Δf2
Ush Osh

ΔPtie
Ush Osh

Combining TD-TI based on QCGO 26.13 25.71 40.7 36.48 22.33 28.6
Combining TD-TI based on CGO 15.81 14.29 15.12 11.98 11.63 6.43

The optimum values are bolded.

Case A.3: In this case, the studied power grid has been subjected to RLVs in the first
area. The RLVs are a diverse combination of series perturbations in industrial connected
loads to the grid that cause the same effects on the grid (i.e., unbalance in electrical power
grid and the occurrence of blackout). The RLV is formed in Figure 19. In addition, Figure 20
describes the different dynamic power system responses explaining the efficacy of the
proposed combining TD-TI controller based on QCGO in achieving more of a reduction
in the system frequency fluctuations and the power flow in the tie line compared to the
other ones.

Figure 19. The form of the applied random load variation.
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Figure 20. Dynamic power grid responses in case A.3: (a) Δf1 (b) Δf2 (c) ΔPtie.
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Table 16 illustrates the values of Osh and Ush related to the different system dynamic
responses (i.e., Δf1, Δf2, and ΔPtie) according to the oscillations in both the area frequencies
and the power flow within the tie line. Table 16 presents the robustness of the proposed
combining TD-TI controller-based improved QCGO algorithm in achieving system stability.
In addition, Table 17 clarifies the percentage improvements in Ush and Osh for combining
TD-TI/QCGO and combining TD-TI/CGO based on the combining TD-TI/SSA.

Table 16. The transient response specifications of the presented system for case A.3.

Controller Properties Dynamic Response of (Δf1) Dynamic Response of (Δf2) Dynamic Response of (ΔPtie)

Combining TD-TI based on
QCGO

Osh and Ush
×(10−3 )

Osh = 7.4
Ush = −11.9

Osh = 1.4
Ush = −2.2

Osh = 0.51
Ush = −0.76

Combining TD-TI based on
CGO

Osh and Ush
×(10−3 )

Osh = 8.40
Ush = −13.5

Osh = 2.3
Ush = −3.6

Osh = 0.65
Ush = −1.000

Combining TD-TI based on
SSA

Osh and Ush
×(10−3 )

Osh = 10.000
Ush = −15.000

Osh = 2.60
Ush = −4.08

Osh = 0.72
Ush = −1.14

Table 17. Percentage improvement in Ush and Osh values for combining TD-TI/QCGO and combin-
ing TD-TI/CGO based on combining TD-TI/SSA for scenario A.3.

Controller
Δf1
Ush Osh

Δf2
Ush Osh

ΔPtie
Ush Osh

Combining TD-TI based on QCGO 20.67 26.00 46.08 46.15 33.33 29.17
Combining TD-TI based on CGO 10.00 16.00 11.76 11.54 12.28 9.72

The optimum values are bolded.

Table 16 clarifies that the proposed controller via an improved QCGO algorithm
achieves more system stability after looking at the obtained results of the Osh and Ush
values. Additionally, Table 17 denotes that the proposed combining TD-TI controller-based
QCGO achieves a higher percentage in improving all of the system dynamic performance.
For example, the percentage improvement in Ush and Osh of Δf1 related to combining
TD-TI/QCGO is 20.67% and 26.00%, respectively. However, the percentage improvement
in Ush and Osh of Δf1 related to combining TD-TI/CGO is 10.00% and 16.00%, respectively.

Scenario B: evaluation of the studied system performance considering high penetra-
tion of RESs in both areas with series SLP and RLV.

Another challenge of high penetrating of RESs (i.e., wind energy in the first area
and PV energy in the second area) is addressed in this study to test the robustness of the
proposed combining TD-TI controller in reducing the studied system fluctuations. The
series SLP and RLV are applied in the first area as well as integration of the RESs in the
power grid. The penetration of RESs represents a burden on the studied power grid due to
their demerits (i.e., lack of system inertia).

Case B.1: robustness test for the proposed combining TD-TI controller optimized by
improved QCGO considering high RES penetration as well as series SLP challenge.

This section clarifies the dynamic system performance of the investigated power grid,
taking into consideration a series SLP, high penetration of wind energy at t = 100 s in
the first area and PV at t = 200 s in the second area. These mentioned challenges have
been presented to ensure the reliability and effectiveness of the proposed combining TD-TI
controller based on an improved QCGO algorithm in enhancing the studied power grid
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performance. Figure 21 clarifies the applicable series SLP form in the first area. Moreover, all
the dynamic power grid responses represented in Δf1, Δf2 and ΔPtie are shown in Figure 22.

Figure 21. The form of the applied series SLP.

Table 18 illustrates the values of Osh and Ush related to the aforementioned system
dynamic responses due to deviations in both the area frequencies and the power flow
within the tie line. Table 18 presents the robustness of the proposed combining TD-TI
controller-based improved QCGO algorithm in achieving system reliability. In addition,
Table 19 clarifies the percentage improvements in Ush and Osh for combining TD-TI/QCGO
and combining TD-TI/CGO based on the combining TD-TI/SSA.

Table 18. The transient response specifications of the presented system for case B.1.

Controller Properties Dynamic Response of (Δf1) Dynamic Response of (Δf2) Dynamic Response of (ΔPtie)

Combining TD-TI based on
QCGO

Osh and Ush
×(10−3 )

Osh = 71.0
Ush = −22.0

Osh = 40.3
Ush = −7.4

Osh = 4.8
Ush = −2.7

Combining TD-TI based on
CGO

Osh and Ush
×(10−3 )

Osh = 81.0
Ush = −27.0

Osh = 46.0
Ush = −8.1

Osh = 6.1
Ush = −3.6

Combining TD-TI based on
SSA

Osh and Ush
×(10−3 )

Osh = 96.000
Ush = −30.000

Osh = 51.1
Ush = −9.5

Osh = 6.5
Ush = −3.88

Table 19. Percentage improvement in Ush and Osh values for combining TD-TI/QCGO and combin-
ing TD-TI/CGO based on combining TD-TI/SSA for scenario B.1.

Controller
Δf1
Ush Osh

Δf2
Ush Osh

ΔPtie
Ush Osh

Combining TD-TI based on QCGO 26.67 26.04 22.11 21.14 30.41 26.15
Combining TD-TI based on CGO 10.00 15.63 14.74 9.98 7.22 6.15

The optimum values are bolded.
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Figure 22. Dynamic power grid responses in case B.1: (a) Δf1 (b) Δf2 (c) ΔPtie.

It can be summarized that Table 18 clarifies that the proposed controller/proposed
algorithm achieves more system stability after showing the obtained results of the Osh
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and Ush values. In this regard, Table 19 clarifies that the proposed combining TD-TI
controller-based QCGO achieves a higher percentage in improving all of the system dy-
namic performance. For example, the percentage improvement in Ush and Osh of ΔPtie
related to combining TD-TI/QCGO is 30.41% and 26.15%, respectively. However, the
percentage improvement in Ush and Osh of ΔPtie related to combining TD-TI/CGO is 7.22%
and 6.15%, respectively.

Case B.2: robustness test for the proposed combining TD-TI controller optimized by
improved QCGO considering high RES penetration as well as RLV.

This section includes a robustness test by the penetrating of RESs at both areas of the
studied power grid with the applicable RLV in the first area. This test summarized the
superiority of the proposed combining TD-TI controller based on an improved QCGO algo-
rithm in overcoming the frequency excursions for the studied power grid. The applicable
RLV is shown in Figure 23. Moreover, the behavior of both the area frequencies and the
power flow in the tie line is clarified in Figure 24.

Figure 23. The form of the applied RLV.

Table 20 elucidates the values of Osh and Ush related to all the mentioned system
dynamic responses due to the deviations in both the area frequencies and the power flow
within the tie line. Table 20 proves the robustness of the proposed controller/proposed
algorithm in achieving system reliability. In addition, Table 21 clarifies the percentage
improvements in Ush and Osh for combining TD-TI/QCGO and combining TD-TI/CGO
based on the combining TD-TI/SSA.

Table 20. The transient response specifications of the presented system for case B.2.

Controller Properties Dynamic Response of (Δf1) Dynamic Response of (Δf2) Dynamic Response of (ΔPtie)

Combining TD-TI based on
QCGO

Osh and Ush
×(10−3 )

Osh = 72.0
Ush = −10.0

Osh = 40.0
Ush = −4.0

Osh = 4.7
Ush = −2.5

Combining TD-TI based on
CGO

Osh and Ush
×(10−3 )

Osh = 81.0
Ush = −12.0

Osh = 46.0
Ush = −5.1

Osh = 6.0
Ush = −3.69

Combining TD-TI based on
SSA

Osh and Ush
×(10−3 )

Osh = 93.000
Ush = −16.000

Osh = 51.4
Ush = −9.4

Osh = 6.4
Ush = −3.83

313



Fractal Fract. 2022, 6, 220

Table 21. Percentage improvement in Ush and Osh values for combining TD-TI/QCGO and combin-
ing TD-TI/CGO based on combining TD-TI/SSA for scenario B.2.

Controller
Δf1
Ush Osh

Δf2
Ush Osh

ΔPtie
Ush Osh

Combining TD-TI based on QCGO 37.50 22.58 57.45 22.18 34.73 26.56
Combining TD-TI based on CGO 25.00 12.9 45.74 10.51 3.66 6.25

The optimum values are bolded.

It can be said that Table 20 clarifies that the proposed controller/proposed algorithm
achieves more system stability after knowing the obtained results of the Osh and Ush values.
In this regard, Table 21 clarifies that the proposed controller/proposed algorithm achieves
a higher percentage in improving all of the system dynamic performance. For example,
the percentage improvement in Ush and Osh of Δf1 related to combining TD-TI/QCGO is
37.50% and 22.58%, respectively. However, the percentage improvement in Ush and Osh of
Δf1 related to combining TD-TI/CGO is 25.00% and 12.9%, respectively.

Figure 24. Cont.
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Figure 24. Dynamic power grid responses in case B.2: (a) Δf1 (b) Δf2 (c) ΔPtie.

Scenario C: evaluation of the studied system performance considering communication
time delay, high penetration of RESs in both areas, and RLV.

This scenario presents the suggestion of the communication time delay challenge
that is applied before and after the control action with a 0.01 s time delay value and also
considers the applicable random load with high RES penetration to test the robustness
of the suggested combining TD-TI controller in system stabilizing. The RLV behavior is
described in Figure 25. Moreover, the different dynamic system responses represented in
Δf1, Δf2, and ΔPtie are shown in Figure 26.

Figure 25. The form of the applied RLV.

Figure 26 summarizes and elucidates the effectiveness of the proposed controller via
the proposed technique in achieving system stability and reliability after testing the effect
of the time delay in the controller action and in receiving the error signal. The proposed
QCGO/combining TD-TI scheme shows excellent results in overcoming all the challenges
and gaining more system stability.
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Figure 26. Dynamic power grid responses in case C: (a) Δf1 (b) Δf2 (c) ΔPtie.
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Scenario D: evaluation of the studied system performance, considering the effect of
EV integration, high penetration of RESs in both areas, and RLV.

This scenario presents the integration of EVs in both areas of the studied power
grid to test the effectiveness of EVs in regulating the studied system frequency and the
power flow between both areas. Figure 27 shows the applicable RLV in the first area.
Figure 28 illustrates the charging/discharging power of both the EVs that are integrated
into both areas of the studied power grid. Moreover, the various dynamic system responses
represented in Δf1, Δf2 and ΔPtie are described in Figure 29.

Table 22 presents the values of Osh and Ush related to all the different mentioned
system dynamic responses due to the deviations in the both area frequencies and the power
flow within the tie line. Table 22 proves that the proposed controller/proposed algorithm
considering EV penetration in the studied system achieves more system stability compared
to not utilizing these EVs. In addition, Table 23 clarifies the percentage improvements in
Ush and Osh for combining TD-TI/QCGO with and without penetration of the EVs based
on the combining TD-TI/SSA.

Figure 27. The form of the applied RLV.

Figure 28. The charging/discharging power of the applicable EVs in both areas.
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Figure 29. Dynamic power grid responses in case D: (a) Δf1 (b) Δf2 (c) ΔPtie.
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Table 22. The transient response specifications of the presented system for case D.

Controller Properties Dynamic Response of (Δf1) Dynamic Response of (Δf2) Dynamic Response of (ΔPtie)

Combining TD-TI based on
QCGO with EVs

Osh and Ush
×(10−3 )

Osh = 62.1
Ush = −8.4

Osh = 36.0
Ush = −1.9

Osh = 4.16
Ush = −2.2

Combining TD-TI based on
QCGO without EVs

Osh and Ush
×(10−3 )

Osh = 72.0
Ush = −10.0

Osh = 40.0
Ush = −4.0

Osh = 4.7
Ush = −2.5

Table 23. Percentage improvement in Ush and Osh values for combining TD-TI/QCGO and combin-
ing TD-TI/CGO based on combining TD-TI/SSA for scenario D.

Controller
Δf1
Ush Osh

Δf2
Ush Osh

ΔPtie
Ush Osh

Combining TD-TI based on QCGO
with EVs

47.5 33.23 79.79 29.96 42.56 35

Combining TD-TI based on QCGO
without EVs

37.5 22.58 57.45 22.18 34.73 26.56

The optimum values are bolded.

It can be observed that Table 22 clarifies that the proposed controller/proposed algo-
rithm achieves more system stability after presenting the values of the obtained Osh and Ush.
In this regard, Table 23 clarifies that the proposed controller/proposed algorithm achieves
a higher percentage in improving all system dynamic performance, whereas the percentage
improvement in Ush and Osh of Δf1 related to combining TD-TI/QCGO considering EV
penetration is 47.50% and 33.23%, respectively. In contrast, the percentage improvement
in Ush and Osh of Δf1 related to combining TD-TI/CGO without EV penetration is 37.50%
and 22.58%, respectively. In brief, the integration of EVs in the studied power grid can aid
in dampening the frequency fluctuations due to their energy storage power which feeds
the system with the extra power at abnormal conditions to obtain all the system dynamic
responses within the tolerable limits.

6. Conclusions

This paper includes main points that are clarified as mentioned below:

• A new control structure was proposed based on the TID controller labeled as a com-
bining TD-TI controller for frequency stabilizing in the power grid.

• A multi-area interconnected hybrid power system that includes several traditional
units (i.e., thermal, hydro, and gas) has been presented in this work to test the efficacy
of the combining TD-TI controller.

• An improved algorithm was proposed named QCGO to develop the searching strategy
of the main CGO algorithm to attain the optimum solution.

• Twenty-three bench functions were applied to prove the effectiveness of the improved
QCGO algorithm compared to other different techniques (i.e., SDO, WOA, BOA, and
the conventional CGO).

• The robustness of the QCGO-TD-TI controller has been validated by a fair comparison
between its performance and other performances of TD-TI controllers based on the
algorithms from the literature (i.e., SSA, TLBO, and AOA).

• The CGO-TD-TI controller performance was compared with the QCGO-TD-TI con-
troller to ensure that the improved QCGO algorithm attains more optimal results than
the main CGO algorithm.
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• The efficacy of the suggested combining TD-TI controller has been ensured through
a fair-maiden comparison between its performance and the performances of other
mentioned controllers (i.e., TID and PID).

• Several scenarios have been presented in this work to study the effectiveness of
the suggested controller in tackling the problem of LFC, such as applying different
load variation types, the high penetration of RESs in both areas, and applying the
communication time delay.

• EV integration was proposed in both areas to test its performance in enhancing the
studied power grid frequency.

• All previous simulation results have confirmed the ability of the proposed combining
TD-TI controller to effectively handle the LFC problem. Moreover, the improved
QCGO algorithm proved its robustness in selecting the optimal controller parameters,
which led to achieving more system stability.

Author Contributions: Conceptualization, A.H.A.E., M.K., M.H.H. and S.K.; data curation, A.M.A.;
formal analysis, A.H.A.E., M.K. and M.H.H.; funding acquisition, A.M.A. and S.K.; investigation,
A.H.A.E., M.K. and M.H.H.; methodology, A.M.A. and S.K.; project administration, A.H.A.E., M.K.
and M.H.H.; resources, A.M.A. and S.K.; supervision, S.K. and A.M.A.; validation, A.H.A.E., M.K.
and M.H.H.; visualization, A.H.A.E., M.K. and M.H.H.; writing-original draft, A.H.A.E., M.K. and
M.H.H.; writing-review and editing, A.M.A. and S.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Deputyship for Research & Innovation, Ministry of
Education in Saudi Arabia through the project number “IF_2020_NBU_416”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors extend their appreciation to the Deputyship for Research & Innova-
tion, Ministry of Education in Saudi Arabia for funding this research work through the project number
“IF_2020_NBU_416”. The authors gratefully thank the Prince Faisal bin Khalid bin Sultan Research
Chair in Renewable Energy Studies and Applications (PFCRE) at Northern Border University for
their support and assistance.

Conflicts of Interest: The authors declare that there is no conflict of interest.

Nomenclature
Symbols Parameters
SLP Step load perturbation
RLV Random load variation
TID Tilt-Integral-Derivative
TI-TD Combining Tilt-Integral Tilt-Derivative
PID Proportional-Integral-Derivative
FOCs Fractional-Order Controllers
FOPID Fractional-Order PID
CCs Cascaded Controllers
MPC Model predictive control
I-PD Integral-Proportional Derivative
I-TD Integral-Tilt Derivative
PSO Particle swarm optimization
SDO Supply-demand-based optimization
WOA Whale optimization algorithm
AOA Arithmetic optimization algorithm
TLBO Teaching learning-based optimization
SSA Salp swarm algorithm
BOA Butterfly optimization algorithm
CGO Chaos game optimization
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QCGO Improved chaos game optimization
LFC Load frequency control
ACE Area control error
p.u Per unit
ith Subscript refers to the specified area
EVs Electrical vehicles
RESs Renewable energy sources
Osh overshoot
Ush undershoot
Pwt Wind turbine output power
ρ The air density
AT The area swept by the blades of a turbine
VW The wind speed
Cp The coefficient of the rotor blades
C1-C7 The turbine coefficients
β The pitch angle
rT The radius of the rotor
ωT The rotor speed
λT The optimum tip-speed ratio
λi The intermittent tip-speed ratio
B1 Frequency bias factor of Area 1
B2 Frequency bias factor of Area 2
Δ f 1 Frequency deviation in area 1
Δ f 2 Frequency deviation in area 2
ΔPtie1−2 Tie-line power flow from area 1 to area 2
ΔPtie2−1 Tie-line power flow from area 2 to area 1
T12 Coefficient of synchronizing
R1 Regulation constant of thermal turbine
R2 Regulation constant of hydropower plant
R3 Regulation constant of gas turbine
a12 Control area capacity ratio
KT Participation factor for thermal unit
KH Participation factor for hydro unit
KG Participation factor for a gas unit
Kps Gain constant of power system
Tps The time constant of the power system
Tsg Governor time constant
Tt Turbine time constant
Kr Gain of reheater steam turbine
Tr Time constant of reheater steam turbine
Tgh Speed governor time constant of hydro turbine
Trs Speed governor reset time of the hydro turbine
Trh The transient droop time constant of hydro turbine speed governor
Tw Nominal string time of water in penstock
bg Gas turbine constant of valve positioner
cg Valve positioner of gas turbine
Yc The lag time constant of the gas turbine speed governor
Xc The lead time constant of the gas turbine speed governor
Tcr Gas turbine combustion reaction time delay
Tf c Gas turbine fuel time constant
Tcd Gas turbine compressor discharge volume–time constant
KEV Gain of electrical vehicle
TEV The time constant of electrical vehicle
ITAE Integral time absolute error
ISE Integral square error
IAE Integral absolute error
ITSE Integral time squared error
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Kt The tilted gain
Ki The integral gain
Kd The derivative gain
n The tilt fractional component n �=0
Kp The proportional gain
dt The time interval for taking error signals’ samples
Tsim Total time of simulation process
J The objective function
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