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Hatun Özlem Güney, Georgia Irina Oros and Shigeyoshi Owa
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Editorial

New Developments in Geometric Function Theory
Georgia Irina Oros

Department of Mathematics and Computer Science, Faculty of Informatics and Sciences, University of Oradea,
RO-410087 Oradea, Romania; georgia_oros_ro@yahoo.co.uk

1. Introduction

This Special Issue aims to highlight the latest developments in the research concerning
complex-valued functions from the perspective of geometric function theory. Contributions
were sought regarding any aspect of subordination and superordination, different types of
operators specific to the research in this field, and special functions involved in univalent
function theory with the hope that new approaches would emerge regarding the introduc-
tion and study of special classes of univalent functions using operators and the classical
theories of differential subordination and superordination, as well as the newer adapted
theories of strong differential subordination and superordination and fuzzy differential
subordination and superordination. Authors were invited to submit their latest results
related to analytic functions in all their variety and also related to their applications in other
fields of research. Quantum calculus and its applications related to geometric function
theory were also expected to provide interesting outcomes. The presentation of the results
obtained by using any other technique that can be applied in the field of complex analysis
and its applications was also encouraged.

This Special Issue is devoted especially to complex analysis and was proposed as a
means to find new approaches using geometric function theory, to inspire further develop-
ment in this field.

2. Overview of the Published Papers

The present Special Issue contains 14 papers accepted for publication after a rigorous
reviewing process.

In the study [1], Richard D. Carmichael considers vector-valued analytic functions and
distributions with values in Banach or Hilbert space. It is proved that certain vector-valued
measurable functions generate the analytic functions using the Fourier–Laplace transform,
and conversely, measurable functions are generated from the analytic functions, and it
is shown that the analytic functions are representable through the generated measurable
functions. Certain specific properties are obtained for the analytic functions and measur-
able functions, and it is proved that, under specified conditions, the analytic functions
considered are in fact vector-valued Hardy functions, which immediately result in Cauchy
and Poisson integral representations. The existence of boundary values of the analytic
functions on the topological boundary is investigated, and problems to consider in future
research are suggested. Notably, the author is convinced that future studies can focus on
the integral representation, boundary values, and applications of the functions defined in
this paper.

In another study [2], Hatun Özlem Güney, Georgia Irina Oros, and Shigeyoshi Owa
provide an application of the well-known Sălăgean differential operator for defining a
new operator, through which a new class of functions is defined, which has the classes
of starlike and convex functions of order α as special cases. The renowned Jack–Miller–
Mocanu lemma is applied for obtaining interesting properties for the newly defined class
of functions. The new operator defined in this paper can be used to introduce other specific
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subclasses of analytic functions, and quantum calculus can be also investigated in future
studies.

The research of Gangadharan Murugusundaramoorthy and Teodor Bulboacă pre-
sented in reference [3] involves the new subclasses of bi-univalent functions defined in
the open-unit disk, which are associated with the Gegenbauer polynomials and satisfy
subordination conditions. Coefficient estimates are established for the defined classes,
and the remarkable Fekete–Szegő problem is also considered. For particular values of
the parameters involved in the definition of the classes, the results obtained in this paper
provide new insights into the Yamakawa family of bi-starlike functions associated with the
Chebyshev and Legendre polynomials, which are left as an exercise to interested readers.

The authors of reference [4], Alaa H. El-Qadeem and Ibrahim S. Elshazly, study the
Hadamard product features of certain subclasses of p-valent meromorphic functions defined
in the punctured open-unit disc using the q-difference operator. Convolution properties
and coefficient estimates are also established regarding the new subclasses defined in this
study. The authors suggest that future researchers focus on the use of these subclasses in
studies involving the theories of differential subordination and superordination and also
the investigation of the Fekete–Szegő problem.

In the research presented in reference [5], Georgia Irina Oros, Gheorghe Oros, and
Ancut,a Maria Rus use the confluent hypergeometric function embedded in the theory of
strong differential superordinations. The form of the confluent hypergeometric function
and that of the previously defined Kummer–Bernardi and Kummer–Libera operators
are adopted by considering certain classes of analytic functions depending on an extra
parameter previously introduced related to the theory of strong differential subordination
and superordination. Strong differential superordinations are investigated, and the best
subordinates are given. The applications of the established theoretical results are illustrated
through two examples. As potential future studies, the authors suggest the use of the
dual notion of strong differential subordination for investigations concerning the confluent
hypergeometric function and the two operators used in the present study, which could
yield sandwich-type results if combined with the results contained in this paper.

The topic of introducing new subclasses of bi-starlike and bi-convex functions of a
complex order associated with the Erdély–Kober-type integral operator in the open-unit
disc is considered by Alhanouf Alburaikan, Gangadharan Murugusundaramoorthy, and
Sheza M. El-Deeb [6]. The estimates of initial coefficients are given, and Fekete–Szegő
inequalities are investigated for the functions in those classes. Several consequences of the
results are also highlighted as examples.

For the study presented in reference [7], Feras Yousef, Ala Amourah, Basem Aref
Frasin, and Teodor Bulboacă again consider certain new subclasses of bi-univalent func-
tions by exploiting the zero-truncated Poisson distribution probabilities and involving
Gegenbauer polynomials and the concept of subordination. Coefficient-related problems
are investigated, and the Fekete–Szegő functional problem is solved for those classes. The
authors suggest that the results offered in this paper would lead to other different new
results involving Legendre and Chebyshev polynomials.

Considering the importance of the logarithmic coefficients, in reference [8], Sevtap
Sümer Eker, Bilal Şeker, Bilal Çekiç, and Mugur Acu obtain the sharp bounds for the second
Hankel determinant concerning the logarithmic coefficients of strongly starlike functions
and strongly convex functions. The results presented here could inspire further studies that
focus on other subclasses of univalent functions and obtain the boundaries for higher-order
Hankel determinants.

New results on the radius of uniform convexity of two kinds of normalization of the
Bessel function Jν in the case of ν ∈ (−2,−1) are presented by Luminiţa-Ioana Cotîrlă,
Pál Aurel Kupán, and Róbert Szász in reference [9]. This study provides alternative proof
regarding the radius of convexity of order alpha. The authors also provide alternative
proof regarding the radius of convexity of order alpha and derive an interesting correlation
between convexity and uniform convexity.
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The research presented by Richard D. Carmichael in reference [10] is connected to
the results obtained in reference [1]. A boundary value result concerning vector-valued
tempered distributions as the boundary values of vector-valued analytic functions is given
under the general norm growth on the analytic function, which is equivalent to the growth
of Tillmann. The second goal of this paper was to obtain a Cauchy integral representation
of the analytic functions by using the generally known structure of the spectral function
and the structure of the tempered distributional boundary value. The analytic function
used to obtain the boundary value was equated to the product of a polynomial and the
constructed Cauchy integral. This paper concerns theoretical mathematics; however, the
considered topics find applications in mathematical physics and the field of mathematics
involving physical problems.

New results are obtained concerning fuzzy differential subordination theory and are
highlighted by Alina Alb Lupas, [11]. A previously introduced operator defined by apply-
ing the Riemann–Liouville fractional integral to the convex combination of well-known
Ruscheweyh and Sălăgean differential operators is used for defining a new fuzzy subclass.
The convex property of this class is proved, and certain fuzzy differential subordinations
involving the functions from this class and the operator mentioned earlier are obtained.
The best fuzzy dominants are given for the considered fuzzy differential subordinations
in theorems, and interesting corollaries emerge when specific functions with remarkable
geometric properties are used as the best fuzzy dominants. Inspired by the research pre-
sented here, researchers can apply the operator used in this paper in future studies for the
introduction of other subclasses of analytic functions. The dual theory of fuzzy differential
superordination can also be used for obtaining similar results involving the operator and
the class defined in this paper.

Using beta-negative binomial distribution series and Laguerre polynomials, Isra Al-
Shbeil, Abbas Kareem Wanas, Afis Saliu, and Adriana Cătaş [12] investigate a new family
of normalized holomorphic and bi-univalent functions associated with Ozaki close-to-
convex functions. They provide estimates on the initial Taylor–Maclaurin coefficients and
discuss Fekete–Szegő type inequality for the functions in this family in the special case of
generalized Laguerre polynomials.

A symmetric–convex differential formula of normalized Airy functions in the open-
unit disk is developed by Samir B. Hadid and Rabha W. Ibrahim in reference [13]. The
equation is taken into account as a differential operator in the development of a class of
normalized analytic functions. Two-dimensional wave propagation in the earth–ionosphere
wave path using k-symbol Airy functions is used for the investigation. It is shown that the
standard wave-mode working formula may be determined by orthogonality considerations
without the use of intricate justifications of the complex plane.

The applications of fractional differential operators in the field of geometric function
theory are obtained by Mohammad Faisal Khan, Shahid Khan, Saqib Hussain, Maslina
Darus, and Khaled Matarneh in reference [14]. The fractional differential operator and the
Mittag–Leffler functions are combined to formulate and arrange a new operator of fractional
calculus. A new class of normalized analytic functions is introduced using the newly defined
fractional operator, and some of its interesting geometric properties are discussed in the
open-unit disk. The authors suggest that the operator introduced here can be utilized to
define other classes of analytic functions or to generalize other types of differential operators.

3. Conclusions

The 14 papers published as part of this Special Issue entitled “New Developments in
Geometric Function Theory” concern a broad range of subjects. Researchers interested in
different aspects of geometric function theory and its related topics would find interesting
insights and inspiring results, leading to increased reference to these contributions and the
propagation of this Special Issue to a large audience.

Acknowledgments: The guest editor of this Special Issue would like to thank all the authors who
decided to submit their works and have contributed to the success of this Special Issue, as well as
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all the reviewers for their time, constructive remarks, and help in maintaining high standards for
the published materials. Special thanks are also given to the editors of Axioms and especially to the
Managing Editor of this Special Issue, Alex Zhang.

Conflicts of Interest: The author declares no conflict of interest.
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Article

Generalized Vector-Valued Hardy Functions
Richard D. Carmichael

Department of Mathematics and Statistics, Wake Forest University, Winston-Salem, NC 27109, USA;
carmicha@wfu.edu

Abstract: We consider analytic functions in tubes Rn + iB ⊂ Cn with values in Banach space or
Hilbert space. The base of the tube B will be a proper open connected subset of Rn, an open connected
cone in Rn, an open convex cone in Rn, and a regular cone in Rn, with this latter cone being an
open convex cone which does not contain any entire straight lines. The analytic functions satisfy
several different growth conditions in Lp norm, and all of the resulting spaces of analytic functions
generalize the vector valued Hardy space Hp in Cn. The analytic functions are represented as the
Fourier–Laplace transform of certain vector valued Lp functions which are characterized in the
analysis. We give a characterization of the spaces of analytic functions in which the spaces are in fact
subsets of the Hardy functions Hp. We obtain boundary value results on the distinguished boundary
Rn + i{0} and on the topological boundary Rn + i∂B of the tube for the analytic functions in the
Lp and vector valued tempered distribution topologies. Suggestions for associated future research
are given.

Keywords: analytic functions; vector valued Hardy functions; boundary values

MSC: 32A26; 32A35; 32A40; 42B30

1. Introduction

In [1] and related work, we defined and analyzed vector-valued Hardy Hp(TB,X )
functions on tubes TB = Rn + iB ⊂ Cn with values in Banach space X . We showed that any
Banach space X vector-valued analytic function on TB which obtained a X vector-valued
distributional boundary value was a Hp(TB,X ), 1 ≤ p ≤ ∞, function with values in
Banach space X if the X vector-valued boundary value was a Lp(Rn,X ), 1 ≤ p ≤ ∞,
function. We showed that the Hp(TB,X ), 1 ≤ p ≤ ∞, functions admitted a representation
by the Poisson integral of Lp(Rn,X ), 1 ≤ p ≤ ∞, functions if the values of the analytic
functions were in a certain type of Banach space and then obtained a pointwise growth
estimate for the Hp(TB,X ) functions for this Banach space. In additional analysis, we
have obtained many general results concerning Hp(TB,X ) functions with values in Banach
space including representations as Fourier–Laplace, Cauchy, and Poisson integrals and the
existence of boundary values.

Previously, we defined generalizations of Hp(TB) functions in the scalar-valued case
by using several more general growth conditions on the Lp norm of the analytic functions.
Some of these scalar-valued results are contained in [2] (Chapter 5); other such results
in the scalar-valued case are contained in papers listed under the author’s name in the
references in [1,2]. In this paper, we build upon these scalar-valued generalizations of
Hp(TB) functions by considering the vector-valued case of functions and distributions
with values in Banach or Hilbert space. The generalizations of the vector-valued analytic
functions in Hp(TB,X ), X being a Banach space, which we consider here are defined in
Section 4 of this paper. Our results are obtained for the base B of the tube TB successively
being a proper open connected subset of Rn, an open connected cone in Rn, an open
convex cone in Rn, and a regular cone in Rn, with this latter cone being an open convex
cone which does not contain any entire straight lines; as the base B of the tube TB is
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specialized, increasingly precise results are obtained in the analysis. For B being a proper
open connected subset of Rn we show, for example, that the growth condition that defines
the functions which generalize the Hardy functions can, in certain circumstances, be
extended to the boundary of the base B of the tube TB. At the open convex cone stage in
our analysis we are able to show the equivalence of two types of vector-valued functions
which generate Hp(TB,X ) functions. In the cone setting for base B we show that certain
elements of the defined analytic functions are in fact Hp(TB) functions which leads to the
representation of these functions as Fourier–Laplace, Cauchy, and Poisson integrals. In the
case that B is a regular cone we study the boundary values on the topological boundary
of the tube defined by the cone as points in B approach a point on its boundary through
circular bands within B. In general, our goal in this paper is to obtain results for the
functions defined in Section 4 treated as generalizations of Hp(TB,X ) functions and as
generalizations of the scalar-valued functions noted in [2] (Chapter 5) and in some of our
papers referenced in [2] and hence to generalize results concerning Hp(TB,X ) spaces and
concerning the scalar-valued functions noted in [2] (Chapter 5) and in certain references
of [2] to these new spaces of analytic functions. Additionally, our goal is to obtain additional
new results for the analytic functions of Section 4 which we accomplish.

As noted above, the vector-valued analytic functions considered in this paper are
defined in Section 4. In Section 5, we show that certain vector-valued measurable functions
generate the analytic functions by the Fourier–Laplace transform; conversely, in Section 6,
we generate the measurable functions from the analytic functions and show that the analytic
functions are representable through the generated measurable functions. As the base B of
the tube TB is made more specific the analytic functions and measurable functions obtain
more specific properties. In Section 7, we show that under specified conditions the analytic
functions considered are in fact vector-valued Hardy H2 functions which immediately
results in Cauchy and Poisson integral representations. Section 8 concerns the existence
of boundary values of the analytic functions in vector-valued Lp and in vector-valued S ′
topologies on both the distinguished boundary and the topological boundary of the tube.
Problems for future research are considered in Section 9, and conclusions are provided in
Section 10.

2. Definitions and Notation

Throughout, X will denote a Banach space, H will denote a Hilbert space, N will
denote the norm of the specified Banach or Hilbert space, and Θ will denote the zero vector
of the specified Banach or Hilbert space. We reference Dunford and Schwartz [3] for integra-
tion of vector-valued functions and for vector-valued analytic functions. For foundational
information concerning vector-valued distributions we refer to Schwartz ([4,5]).

The n-dimensional notation used in this paper will be the same as that in [1,2]. The
information concerning cones in Rn needed here is contained in [2] (Chapter 1). We recall
some very important notation and concepts of cones here that are necessary for this paper.
C ⊂ Rn is a cone (with vertex at 0 = (0, 0, ..., 0) ∈ Rn) if y ∈ C implies λy ∈ C for all
positive scalars λ. The intersection of C with the unit sphere |y| = 1 is called the projection
of C and is denoted pr(C). A cone C′ such that pr(C′) ⊂ pr(C) is a compact subcone of C
which we will denote as C′ ⊂⊂ C. The function

uC(t) = sup
y∈pr(C)

(−〈t, y〉), t ∈ Rn,

is the indicatrix of C. The dual cone C∗ of C is defined as

C∗ = {t ∈ Rn : 〈t, y〉 ≥ 0 for all y ∈ C}

and satisfies C∗ = {t ∈ Rn : uC(t) ≤ 0}. An open convex cone which does not contain any
entire straight lines will be called a regular cone. See [2] (Section 1.2) for examples of cones
in Rn. In this paper, we will be concerned with the distance from a point in a cone to the
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boundary of the cone; for C being an open connected cone in Rn, the distance from y ∈ C
to the topological boundary ∂C of C is

d(y) = inf{|y− y1| : y1 ∈ ∂C}.

For an open connected cone C ⊂ Rn, we know from [2] (p. 6, (1.14)) that

d(y) = inf
t∈pr(C∗)

〈t, y〉, y ∈ C,

and 0 < d(y) ≤ |y|, y ∈ C. Additionally, d(λy) = λd(y), λ > 0.
The Lp(Rn,X ) functions, 1 ≤ p ≤ ∞, with values in X and their norm |h|p are noted

in [3] (Chapter III). The Fourier transform on L1(Rn) or L1(Rn,X ) is given in [2] (p. 3). All
Fourier (inverse Fourier) transforms on scalar or vector-valued functions will be denoted
φ̂ = F [φ(t); x] (F−1[φ(t); x]). As stated in [6] the Plancherel theory is not true for vector-
valued functions except when X = H, a Hilbert space. The Plancherel theory is complete
in the L2(Rn,H) setting in that the inverse Fourier transform is the inverse mapping of the
Fourier transform with F−1F = I = FF−1 with I being the identity mapping.

As usual, we denote S(Rn) as the tempered functions with associated distributions
being S ′(Rn) or associated vector-valued distributions being S ′(Rn,X ). The Fourier
transform on S ′(Rn) and on S ′(Rn,X ) is the usual such definition and is given in [4]
(p. 73).

Let B be an open subset of Rn and X be a Banach space. The Hardy space Hp(TB,X ),
0 < p < ∞, consists of those analytic functions f(z) on the tube TB = Rn + iB ⊂ Cn with
values in the Banach space X such that for some constant M > 0 and every y ∈ B

∫

Rn
(N (f(x + iy)))pdx ≤ M;

the usual modification is made for the case p = ∞.

3. Cauchy and Poisson Kernels and Integrals

Let C be a regular cone in Rn. C∗ is the dual cone of C. The Cauchy kernel correspond-
ing to TC = Rn + iC is

K(z− t) =
∫

C∗
e2πi〈z−t,η〉dη, t ∈ Rn, z ∈ TC.

The Poisson kernel corresponding to TC is

Q(z; t) =
K(z− t)K(z− t)

K(2iy)
=
|K(z− t)|2

K(2iy)
, t ∈ Rn, z ∈ TC.

Referring to [2] (Chapters 1 and 4) for details, we know for z ∈ TC that K(z− ·) ∈
D(∗, Lp) ⊂ DLp , 1 < p ≤ ∞; and Q(z; ·) ∈ D(∗, Lp) ⊂ DLp , 1 ≤ p ≤ ∞, where ∗ is
Beurling (Mp) or Roumieu {Mp}. These ultradifferentiable functions are contained in the
Schwartz space DLp = D(Lp,Rn). Because of the combined properties of the Cauchy and
Poisson kernels from [2], we know that the Cauchy and Poisson integrals

∫

Rn
h(t)K(z− t)dt, z ∈ TC,

and ∫

Rn
h(t)Q(z; t)dt, z ∈ TC,

are well defined for h ∈ Lp(Rn,X ), 1 ≤ p < ∞, and h ∈ Lp(Rn,X ), 1 ≤ p ≤ ∞,
respectively, for X being a Banach space.
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We conclude this section with a boundary value calculation concerning the integral
which defines the Cauchy kernel. Our calculations here provide motivation and guidance
for boundary value results concerning the analytic functions considered in this paper which
we obtain subsequently. Let C be a regular cone and put

K(z) =
∫

C∗
e2πi〈z,t〉dt, z ∈ TC.

We know that K(z) is analytic in TC and is a bounded function of x ∈ Rn for y ∈ C.
Thus, K(x + iy) ∈ S ′(Rn) as a function of x ∈ Rn for y ∈ C. Let IC∗(t) denote the
characteristic function of C∗. We have the following result concerning points on the
boundary of C, ∂C.

Theorem 1. Let yo ∈ ∂C. We have

lim
y→yo ,y∈C

K(x + iy) = F [IC∗(t)e−2π〈yo ,t〉]

in the strong topology of S ′(Rn).

Proof. For yo ∈ ∂C, choose a sequence of points {ym}, m = 1, 2, ..., in C which converges
to yo. We have

〈yo, t〉 = lim
ym→yo

〈ym, t〉 ≥ 0, t ∈ C∗.

Thus, e−2π〈yo ,t〉 IC∗(t) ∈ S ′(Rn) and F [e−2π〈yo ,t〉 IC∗(t)] ∈ S ′(Rn). Let φ ∈ S(Rn) and
y ∈ C.

〈K(x + iy)−F [e−2π〈yo ,t〉 IC∗(t)], φ(x)〉
= 〈F [(e−2π〈y,t〉 − e−2π〈yo ,t〉)IC∗(t)], φ(x)〉
= 〈(e−2π〈y,t〉 − e−2π〈yo ,t〉)IC∗(t), φ̂(t)〉.

Now

|(e−2π〈y,t〉 − e−2π〈yo ,t〉)IC∗(t)φ̂(t)| ≤ (e−2π〈y,t〉) + e−2π〈yo ,t〉)IC∗(t)|φ̂(t)| ≤ 2|φ̂(t)|.

By the Lebesgue dominated convergence theorem, we have

lim
y→yo ,y∈C

K(x + iy) = F [IC∗(t)e−2π〈yo ,t〉]

in the weak topology of S ′(Rn). Since S(Rn) is a Montel space we have this convergence
in the strong topology of S ′(Rn) also.

In Theorem 1, notice that 0 is on the boundary of C. Thus, for yo = 0,

lim
y→0,y∈C

K(x + iy) = F [IC∗(t)]

in the strong topology of S ′(Rn) in the conclusion of Theorem 1.

4. The Analytic Functions

As previously noted, we have studied vector-valued Hardy spaces in [1]; previous to
this analysis we had generalized scalar-valued Hardy spaces by placing a more general
bound on the Lp norm of the scalar-valued analytic function. These main scalar-valued
generalizations are contained in [2] with other related work referenced in [2]. In the
scalar-valued generalizations, we obtained Fourier–Laplace transform representation of

8
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the analytic functions and characterized the measurable function which generated this
representation along with related results.

Given our recent work in studying vector-valued Hardy spaces, we now desire to
study vector-valued generalizations of vector-valued Hardy spaces.

In this section, we introduce and define the vector-valued analytic functions that we
study here. Throughout this section, B will denote a proper open connected subset of Rn

unless stated otherwise; and, as previously stated, X will denote a Banach space with
norm N .

Definition 1. Hp
A(T

B,X ), 1 ≤ p < ∞, is the set of analytic functions f(z) on TB with values in
X such that

|f(x + iy)|p = (
∫

Rn
(N (f(x + iy)))pdx)1/p ≤ M(1 + (d(y))−r)se2πA|y|, y ∈ B,

where r ≥ 0, s ≥ 0, A ≥ 0, and M = M(f, p, A, r, s) > 0.

Definition 2. Rp
A(T

B,X ), 1 ≤ p < ∞, is the set of analytic functions f(z) on TB with values in
X such that

|f(x + iy)|p ≤ M(1 + |y|−r)se2πA|y|, y ∈ B,

where r ≥ 0, s ≥ 0, A ≥ 0, and M = M(f, p, A, r, s) > 0.

Definition 3. Vp
A(T

B,X ), 1 ≤ p < ∞, is the set of analytic functions f(z) on TB with values in
X such that

|f(x + iy)|p ≤ Me2πA|y|, y ∈ B,

were A ≥ 0 and M = M(f, p, A) > 0.

We consider situations and examples which help emphasize containment of these
spaces although the definitions of these sets of functions show the containment in many
cases. If B is an open connected cone we know from Section 2 that d(y) ≤ |y|, y ∈ B; thus,
Rp

A(T
B,X ) ⊆ Hp

A(T
B,X ) in general in this case. For specific examples which help show

proper containment let us just consider scalar-valued analytic functions in half planes in
C1. Let B = (0, ∞); thus, T(0,∞) = R1 + i(0, ∞). We have

f (z) =
e−2πiz

z(i + z)
∈ R2

1(T
(0,∞),C1) ∩ H2

1(T
(0,∞),C1), y = Im(z) ∈ (0, ∞),

as
|| f (x + iy||L2(R1) ≤ π1/2(1 + y−1)e2πy, y = Im(z) > 0;

but this f (z) is not in V2
1 (T

(0,∞),C1). We have

f (z) =
e−2πiz

i + z
∈ V2

1 (T
(0,∞),C1)

but is not in H2(T(0,∞),C1). Of course f (z) = 1/(i + z) ∈ H2(T(0,∞),C1) and hence is
in all of V2

1 (T
(0,∞),C1), R2

1(T
(0,∞),C1), and H2

1(T
(0,∞),C1). These examples help to see

the containment of the defined spaces and the Hardy functions for most of the specified
conditions on the base B of the tube TB in our analysis in this paper.

For our next set of analytic functions, we must remember properties of sequences
Mp, p = 0, 1, 2, ..., with which ultradifferentiable functions and ultradistributions are
defined. These sequences and properties are discussed in [2] (Section 2.1). In this pa-
per, we are principally concerned with the properties (M.1) and (M.3′) and with the
associated function

9
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M∗(ρ) = sup
p

log(ρp p!M0/Mp), 0 < ρ < ∞.

With these facts in mind we define additional vector-valued analytic functions.

Definition 4. For B, being a proper open connected subset of Rn which does not contain 0,
Hp
∗ (TB,X ), 1 ≤ p < ∞, is the set of analytic functions f(z) on TB with values in X such that

|f(x + iy)|p ≤ K(1 + (d(y))−r)seM∗(w/|y|), y ∈ B,

where r ≥ 0, s ≥ 0, w > 0, and K = K(f, p, r, s, w) > 0.

With Definition 4 in place, we can now state definitions for Rp
∗(TB,X ) and Vp

∗ (TB,X )
from Definition 4 similarly as we did for Rp

A(T
B,X ) and Vp

A(T
B,X ) from Definition 1.

In the scalar-valued case, we have proved that the Cauchy integral of ultradistributions
U ∈ D′(∗, Lp), where ∗ is Beurling (Mp) or Roumieu {Mp}, is analytic in TC and satisfies
the growth of Definition 4 where C is a regular cone in Rn; see [2] (Section 4.2). Addition-
ally, we have obtained boundary value results for scalar-valued functions of the type in
Definition 4 in [2] (Chapter 5).

Throughout this paper, results concerning Hp
∗ (TB,X ) and its subsets and associated

norm growth bounds are obtained under the assumption that the sequence of positive
numbers Mp, p = 0, 1, 2, ..., from which the associated function M∗(ρ) is defined, will
always be assumed to satisfy properties (M.1) and (M.3′) in [2] (p. 13).

5. Measurable Functions Generating Analytic Functions

The results which we will prove in this paper are obtained for functions in Hp
A(T

B,X )

of Definition 1 and for functions in Hp
∗ (TB,X ) of Definition 4 by very similar methods.

The results corresponding to Hp
A(T

B,X ) however are somewhat more general in nature
than the corresponding ones for Hp

∗ (TB,X ). Thus, we will concentrate our proofs on the
results corresponding to Hp

A(T
B,X ) and subsequently state the corresponding results for

Hp
∗ (TB,X ) which will be denoted by a * next to the result number.

We begin by obtaining properties on measurable functions which we will use to
generate analytic functions in Hp

A(T
B,X ). Let B be a proper open connected subset of Rn

and let X be a Banach space. Let 1 ≤ p < ∞ and g(t) be a X valued measurable function
on Rn such that

|e−2π〈y,t〉g(t)|p ≤ M(1 + (d(y))−r)se2πA|y|, y ∈ B, (1)

where r ≥ 0, s ≥ 0, A ≥ 0, and M = M(g, p, A, r, s) > 0 do not depend on y ∈ B.

Theorem 2. For B, being a proper open connected subset of Rn and X being a Banach space let
g(t) be a X valued measurable function on Rn such that (1) holds for y ∈ B and for 1 ≤ p < ∞.
We have

f(z) =
∫

Rn
g(t)e2πi〈z,t〉dt, z = x + iy ∈ TB, (2)

is a X valued analytic function of z ∈ TB.

Proof. Let yo ∈ B. Choose an open neighborhood N(yo; r), r > 0, and a compact subset
S ⊂ B such that yo ∈ N(yo; r) ⊂ S ⊂ B. Decompose Rn into a union of a finite number of
non-overlapping cones C1, C2, ..., Ck each having vertex at 0 and such that whenever two
points y1 and y2 belong to one of these cones the angle between the rays from 0 to y1 and
from 0 to y2 is less than π/4 radians; and hence 〈y1, y2〉 = |y1||y2|cos(θ) > |y1||y2|21/2/2
where θ is the angle between the two rays. There is a δ > 0 such that 0 < δ < r and
{y : |y− yo| = δ} ⊂ N(yo; r). Put ε = 2πpδ/21/2 > 0. For each j = 1, 2, ..., k choose a fixed
yj such that yo − yj ∈ Cj and |yj − yo| = δ. For each j = 1, 2, ..., k let t ∈ Cj; we have
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〈yo − yj, t〉 ≥ |yo − yj||t|/21/2, t ∈ Cj, j = 1, 2, ..., k.

Thus, for t ∈ Cj, j = 1, 2, ..., k,,

ε|t| = (2πpδ/21/2)|t| = 2πp|yo − yj||t|/21/2 ≤ 2πp〈yo − yj, t〉 = −2πp〈yj − yo, t〉.

Hence, for each j = 1, 2, ..., k, using (1) we have
∫

Cj

e−2πp〈yo ,t〉eε|t|(N (g(t)))pdt

≤
∫

Cj

e−2πp〈yo ,t〉e−2πp〈yj−yo ,t〉(N (g(t)))pdt =
∫

Cj

e−2πp〈yj ,t〉(N (g(t)))pdt

≤
∫

Rn
(N (e−2π〈yj ,t〉g(t)))pdt ≤ Mp(1 + (d(yj))

−r)spe2πpA|yj |

and

∫

Rn
e−2πp〈yo ,t〉eε|t|(N (g(t)))pdt =

k

∑
j=1

∫

Cj

e−2πp〈yo ,t〉eε|t|(N (g(t)))pdt

≤ Mp
k

∑
j=1

(1 + (d(yj))
−r)spe2πpA|yj | (3)

for arbitrary yo ∈ B. For p = 1 and the fact that (ε|t|/2) ≤ ε|t|, t ∈ Rn, we have from
(3) that

∫

Rn
e−2π〈yo ,t〉eε|t|/2N (g(t))dt ≤ M

k

∑
j=1

(1 + (d(yj))
−r)se2πA|yj |. (4)

For 1 < p < ∞, Hölder’s inequality, the identity eε|t|/2p = eε|t|/pe−ε|t|/2p and (3) yield
∫

Rn
e−2π〈yo ,t〉eε|t|/2pN (g(t))dt ≤ ||e−ε|t|/2p||Lq(Rn)|e−2π〈yo ,t〉eε|t|/pg(t)|p

≤ M||e−ε|t|/2p||Lq(Rn)

(
k

∑
j=1

(1 + (d(yj))
−r)spe2πpA|yj |

)1/p

(5)

where 1/p + 1/q = 1. If |y− yo| < ε/4πp, y = Im(z), 1 ≤ p < ∞, then for z = x + iy

N (g(t)e2πi〈z,t〉) = e−2π〈y,t〉N (g(t)) = e−2π〈y−yo ,t〉e−2π〈yo ,t〉N (g(t))

≤ e2π|y−yo ||t|e−2π〈yo ,t〉N (g(t)) ≤ e−2π〈yo ,t〉eε|t|/2pN (g(t)) (6)

for all t ∈ Rn. (4) and (5) now show that the right side of (6) is a L1(Rn) function which
is independent of y = Im(z) such that |y− yo| < ε/4πp for all cases 1 ≤ p < ∞. Since
yo ∈ B is arbitrary we conclude from (6) that f (z) defined by (2) is a X valued analytic
function of z ∈ TB. Further, (6) proves that e−2π〈y,t〉g(t) ∈ L1(Rn,X ), y ∈ B, for all cases
1 ≤ p < ∞ in addition to the fact that e−2π〈y,t〉g(t) ∈ Lp(Rn,X ), y ∈ B, for each of the
specific cases for p, 1 ≤ p < ∞, because of the assumption (1). The proof is complete.

The exact same method of proof used for Theorem 2 yields the following result
corresponding to the growth for Hp

∗ (TB,X ).

Theorem 3. Let B be a proper open connected subset of Rn which does not contain 0 ∈ Rn, and let
X be a Banach space. Let 1 ≤ p < ∞ and g(t) be a X valued measurable function on Rn such that

|e−2π〈y,t〉g(t)|p ≤ M(1 + (d(y))−r)seM∗(w/|y|), y ∈ B,
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where r ≥ 0, s ≥ 0, w > 0, and M = M(g, p, r, s, w) > 0 are independent of y ∈ B. We have

f(z) =
∫

Rn
g(t)e2πi〈z,t〉dt, z ∈ TB,

is a X valued analytic function of z ∈ TB.

The Fourier transform of vector-valued functions Lp(Rn,X ) with the Plancherel theory
and Parseval identity holding occurs only if p = 2 and X = H, a Hilbert space. For
p = 2 in order to have an isomorphism of the Fourier transform of L2(Rn,X ) onto itself
with the Parseval identity holding it is necessary and sufficient that X = H, a Hilbert
space [6] (pp. 45, 61). We use the Fourier transform considerably in this paper, and its use
is the reason we sometimes restrict the result to p = 2 and X = H. We obtain a corollary to
Theorem 2.

Corollary 1. Let B be a proper open connected subset of Rn andH be a Hilbert space. Let g(t) be a
H valued measurable function on Rn such that (1) holds for p = 2. We have f(z) ∈ H2

A(T
B,H)

for f(z) defined in (2).

Proof. f(z) is analytic in TB by Theorem 2. By the assumption (1) for p = 2 and the
proof of Theorem 2, e−2π〈y,t〉g(t) ∈ L1(Rn,H) ∩ L2(Rn,H) for y ∈ B. Thus, f(x + iy) =
F [e−2π〈y,t〉g(t); x], y ∈ B, with the Fourier transform being in the L1(Rn,H) and the
L2(Rn,H) cases. By the Parseval equality |f(x + iy)|2 = |e−2π〈y,t〉g(t)|2 for y ∈ B. From (1)
the desired growth on f(x + iy) of Definition 1 is obtained, and f(z) ∈ H2

A(T
B,H).

Under certain circumstances, the growth on the L2(Rn,H) function e−2π〈y,t〉g(t), y ∈
B, in Corollary 1 can be extended to hold for y ∈ B.

Corollary 2. Assume the hypotheses of Corollary 1 with the addition that (1) holds for p = 2 with
r = 0 or s = 0. We have f(z) ∈ V2

A(T
B,H) for f(z) defined in (2) and

|e−2π〈y,t〉g(t)|2 ≤ Me2πA|y|, y ∈ B.

Further if 0 ∈ ∂B then g ∈ L2(Rn,H).

Proof. From the proof of Corollary 1 and Definition 3, we have f(z) ∈ V2
A(T

B,H) for r = 0
or s = 0 in (1). Let yo ∈ ∂B and let {ym} be a sequence of points in B which converges to yo.
By Fatou’s lemma we have

∫

Rn
e−4π〈yo ,t〉(N (g(t)))2dt ≤ lim sup

m→∞

∫

Rn
e−4π〈ym ,t〉(N (g(t)))2dt

≤ lim sup
m→∞

M2e4πA|ym | = M2e4πA|yo |

and
|e−2π〈yo ,t〉g(t)|2 ≤ Me2πA|yo |.

Thus, (1) holds with r = 0 or s = 0 for y ∈ B. If 0 ∈ ∂B then g(t) ∈ L2(Rn,H) from
the above inequality for yo = 0.

For B being a proper open connected subset of Rn and X being a Banach space, assume
(1) holds for 1 ≤ p < ∞ with r = 0 or s = 0 and for g having values in X . The proof of
Corollary 2 shows that (1) will hold for y ∈ B in this situation.

We study the extension of f(z) or e−2π〈y,t〉g(t), y ∈ B, in norm to the ∂B in greater
detail later in this paper in section 8.

The proof of the following result is the same as that of Corollary 1 using Theorem 3.

12



Axioms 2022, 11, 39

Corollary 3. Let B be a proper open connected subset of Rn which does not contain 0 ∈ Rn, and let
H be a Hilbert space such that the growth of Theorem 3 holds for p = 2. We have f(z) ∈ H2∗(TB,H)
for f(z) defined in (2).

In several following results, we restrict the base B of the tube TB to cones and obtain
additional properties of the function g(t) in the results. Throughout supp(g) denotes the
support of g.

Theorem 4. Let C be an open connected cone in Rn and 1 ≤ p < ∞. Let g(t) be a Banach space
X valued measurable function on Rn such that (1) holds for y ∈ C. We have supp(g) ⊆ {t ∈ Rn :
uC(t) ≤ A} almost everywhere (a.e.).

Proof. Assume g(t) 6= Θ on a set of positive measure in {t ∈ Rn : uC(t) > A}; there
is a point to ∈ {t ∈ Rn : uC(t) > A} such that g(t) 6= Θ on a set of positive measure
in the neighborhoods N(to, η) = {t ∈ Rn : |t − to| < η} for arbitrary η > 0. Since
to ∈ {t ∈ Rn : uC(t) > A} there is a point yo ∈ pr(C) ⊂ C such that (−〈to, yo〉) > A ≥ 0.
Using the continuity of (−〈t, yo〉) at to as a function of t, there is a fixed σ > 0 and a fixed
neighborhood N(to; η′) such that −〈t, yo〉) > A + σ > 0 for all t ∈ N(to; η′). Choose η
above to be η′. For any λ > 0 we have

− 〈λyo, t〉 = −λ〈yo, t〉 > λA + λσ > 0, t ∈ N(to; η′), λ > 0. (7)

yo ∈ pr(C) ⊂ C and C being a cone imply λyo ∈ C, λ > 0. From (7) and (1) with y = λyo
we have for all λ > 0 that

e2πp(λA+λσ)
∫

N(to ;η′)
(N (g(t)))pdt ≤

∫

N(to ;η′)
e−2π〈λyo ,t〉(N (g(t)))pdt

≤
∫

Rn
e−2πp〈λyo ,t〉(N (g(t)))pdt ≤ Mp(1 + (d(λyo))

−r)spe2πpA|λyo |

= Mp(1 + λ−r(d(yo))
−r)spe2πpλA (8)

since yo ∈ pr(C) and d(λyo) = λd(yo). The integral on the left of (8) is finite. From (8)
we have

(1 + λ−r(d(yo))
−r)−spe2πpλσ

∫

N(to ,η′)
(N (g(t)))pdt ≤ Mp (9)

for all λ > 0 with σ > 0 being fixed and independent of λ. Recall that yo depends only
on to. The constants d(yo), r, s, p, σ, η′, and M are all independent of λ > 0. We have
(1 + λ−r(d(yo))−r)−sp = 1 if r = 0 or s = 0, and (1 + λ−r(d(yo))−r)−sp → 1 as λ → ∞ if
r > 0 and s > 0. We let λ → ∞ in (9) and conclude that g(t) = Θ almost everywhere in
N(to; η′) which contradicts the fact that g(t) 6= Θ on a set of positive measure in N(to, η′).
Thus, g(t) = Θ a.e. in {t ∈ Rn : uC(t) > A}, and supp(g) ⊆ {t ∈ Rn : uC(t) ≤ A} a.e.
since {t ∈ Rn : uC(t) ≤ A} is a closed set in Rn.

The proof of the corresponding result for the growth of Theorem 3 can be obtained by
similar techniques as in Theorem 4.

Theorem 5. Let C be an open connected cone in Rn and 1 ≤ p < ∞. Let g(t) be a Banach space
X valued measurable function on Rn such that the growth of Theorem 3 holds for y ∈ C. We have
supp(g) ⊆ C∗ a.e.

In [7,8], Vladimirov introduced a space of measurable functions on Rn, denoted S ′0,
which when multiplied by a polynomial raised to a suitable negative power become L2(Rn)
functions. Analysis concerning the space S ′0 can also be found in [9,10]. We now extend this
space to the vector-valued case and for p such that 1 ≤ p < ∞. We then show that these
new spaces of functions become equivalent to the measurable functions g of the preceding
results in this section for each p and for the base of the tube being open convex cones in Rn.
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Definition 5. Let X be a Banach space. S ′p(Rn,X ), 1 ≤ p < ∞, is the set of all measurable
functions g(t), t ∈ Rn, with values in X such that there exists a real number m ≥ 0 for which
(1 + |t|p)−mg(t) ∈ Lp(Rn,X ).

First note that S ′p(Rn,X ) ⊂ S ′(Rn,X ), 1 ≤ p < ∞. In our first result concerning the
spaces S ′p(Rn,X ) the base of the tube TC will be an open connected cone.

Theorem 6. Let C be an open connected cone in Rn and 1 ≤ p < ∞. Let g(t) be a measurable func-
tion on Rn with values in a Banach space X such that (1) holds for y ∈ C. We have g ∈ S ′p(Rn,X )
and supp(g) ⊆ {t ∈ Rn : uC(t) ≤ A} a.e.

Proof. The support property of g has been proved in Theorem 4. We now prove that
g ∈ S ′p(Rn,X ). Choose a fixed point yo ∈ pr(C) and put Y = {y : y = λyo, 0 < λ ≤ 1} ⊂ C;
choose a fixed compact subcone C′ ⊂⊂ C such that yo ∈ C′. We have Y ⊂ C′ ⊂⊂ C. Let
y ∈ Y be arbitrary; using (1) we have

∫

Rn
e−2πp〈y,t〉(N (g(t)))pdt ≤ Mp(1 + (d(y))−r)spe2πpA|y|, y ∈ C,

and hence

(d(y))rsp
∫

Rn
e−2πp〈y,t〉(N (g(t)))pdt ≤ Mp(1 + (d(y))r)spe2πpA|y|, y ∈ C. (10)

(10) holds in particular for y ∈ Y for which |y| = λ|yo| = λ, 0 < λ ≤ 1, since yo ∈ pr(C);
and 〈y, t〉 ≤ |y||t|, t ∈ Rn, implies (−|y||t|) ≤ −〈y, t〉, t ∈ Rn. Corresponding to C′ ⊂⊂ C
we use [7] (p. 6, (1.14)) and obtain δ = δ(C′) > 0 depending only on C′ and not on y ∈ C′

such that
0 < δ|y| ≤ d(y) ≤ |y|, y ∈ C′ ⊂⊂ C. (11)

Using (11) and (10), we have

(δλ)rsp
∫

Rn
e−2πpλ|t|(N (g(t)))pdt ≤ (d(y))rsp

∫

Rn
e−2πp〈y,t〉(N (g(t)))pdt

≤ Mp(1 + (d(y)))r)spe2πpA|y| ≤ Mp(1 + λr)e2πpλA (12)

for y = λyo ∈ Y ⊂ C′ ⊂⊂ C, 0 < λ ≤ 1, with δ being independent of C′ and hence
independent of y ∈ Y and independent of λ, 0 < λ ≤ 1. Let ε > 1 be fixed. Multiply both
sides of (12) by λ−1+ε and integrate the result from (12) over 0 < λ ≤ 1 with respect to λ
to obtain

∫ 1

0
λ−1+ε(δλ)rsp

∫

Rn
e−2πpλ|t|(N (g(t)))pdtdλ ≤ Mp

∫ 1

0
λ−1+ε(1 + λr)spe2πpλAdλ.

Now multiply this inequality by δ−rsp and use Fubini’s theorem on the left to obtain

∫

Rn
(N (g(t)))p

∫ 1

0
λrsp−1+εe−2πpλ|t|dλdt ≤ Mpδ−rsp

∫ 1

0
λ−1+ε(1 + λr)pse2πpλAdλ. (13)

We note that all constants M, δ, r, s, p, ε, and A are independent of y = λyo ∈ Y and
hence independent of λ, 0 < λ ≤ 1. Using the change of variable u = 2πpλ|t| in the inner
integral on the left of (13) and considering the cases 0 < |t| ≤ 1/2πp and |t| > 1/2πp
we obtain

∫ 1

0
λrsp−1+εe−2πpλ|t|dλ = (2πp|t|)−rsp−ε

∫ 2πp|t|

0
ursp−1+εe−udu ≥ (14)

14
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{
(ersp + εe)−1(1 + |t|p)−rs−ε/p for 0 < |t| ≤ 1/2πp

(2πp)−rsp−ε
∫ 1

0 ursp−1+εe−udu(1 + |t|p)−rs−ε/p for |t| > 1/2πp
.

}

Put

K = min {(ersp + εe)−1, (2πp)−rsp−ε
∫ 1

0 ursp−1+εe−udu} > 0.

From (14), we have

∫ 1

0
λrsp−1+εe−2πpλ|t|dλ ≥ K(1 + |t|p)−rs−ε/p, |t| > 0, (15)

with this inequality holding also at t = 0 by adjusting the constant K if needed. Putting
(15), which holds for all t ∈ Rn now, into (13) and recalling ε > 1, we have

K
∫

Rn
(1 + |t|p)−rs−ε/p(N (g(t)))pdt ≤ Mpδ−rsp

∫ 1

0
λ−1+ε(1 + λr)pse2πpλAdλ

≤ Mpδ−rsp2pse2πpA

with the right side being a fixed constant. Thus, (1 + |t|p)−rs/p−ε/p2
g(t) ∈ Lp(Rn,X ), and

g ∈ S ′p(Rn,X ) since (rs/p + ε/p2) ≥ 0.

We similarly obtain the following result from Theorem 5.

Theorem 7. Let C be an open connected cone in Rn and 1 ≤ p < ∞. Let g(t) be a Banach space
X valued measurable function on Rn such that the growth of Theorem 3 holds for y ∈ C. We have
g ∈ S ′p(Rn,X ) and supp(g) ⊆ C∗ a.e.

In order for the converse implication of Theorem 6 to hold we need the cone C to be
convex as well as open.

Theorem 8. Let C be an open convex cone in Rn, 1 ≤ p < ∞, and A ≥ 0. Let g ∈ S ′p(Rn,X )
with supp(g) ⊆ {t ∈ Rn : uC(t) ≤ A} a.e. where X is a Banach space. We have g is a measurable
function with values in X such that (1) holds for all y ∈ C.

Proof. From [9] (p. 74, Lemma 3), {t ∈ Rn : uC(t) ≤ A} = C∗ + N(0; A), N(0; A) = {t ∈
Rn : |t| < A}, since the cone C is open and convex here. Thus, t ∈ {t ∈ Rn : uC(t) ≤ A}
yields t = t1 + t2, t1 ∈ C∗, t2 ∈ N(0; A). Since g ∈ S ′p(Rn,X ), g is measurable on Rn and
(1 + |t|p)−mg(t) ∈ Lp(Rn,X ) for some m ≥ 0; thus

∫

Rn
(1 + |t|p)−mp(N (g(t)))pdt ≤ K < ∞

for a constant K > 0. Let y ∈ C be arbitrary. We have
∫

Rn
e−2πp〈y,t〉(N (g(t)))pdt

=
∫

C∗+N(0;A)
e−2πp〈y,t〉(1 + |t|p)mp(1 + |t|p)−mp(N (g(t))))pdt

≤ sup
t∈C∗+N(0;A)

((1 + |t|p)mpe−2πp〈y,t〉)
∫

Rn
(1 + |t|p)−mp(N (g(t)))pdt

≤ K sup
t∈C∗+N(0;A)

(1 + |t|p)mpe−2πp〈y,t〉 (16)

≤ K sup
t1∈C∗ ,t2∈N(0;A)

(1 + (|t1|+ |t2|)p)mpe−2πp〈y,t1+t2〉.

15
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For t2 ∈ N(0; A), we have |t2| ≤ A and

e−2πp〈y,t2〉 ≤ e2πp|t2||y| ≤ e2πpA|y|, t2 ∈ N(0; A), y ∈ C. (17)

For t1 ∈ C∗, we have t1 = λ1t∗1 where λ1 ≥ 0 and t∗1 ∈ pr(C∗). From Section 2 we have

d(y) = inf
u∈pr(C∗)

〈u, y〉 = − sup
u∈pr(C∗)

(−〈u, y〉), y ∈ C. (18)

For y ∈ C, using (17) and (18) we continue (16) as
∫

Rn
e−2πp〈y,t〉(N (g(t)))pdt

≤ Ke2πpA|y| sup
λ1≥0,t∗1∈pr(C∗)

((1 + (λ1 + A)p)mpe−2πpλ1〈t∗1 ,y〉)

≤ Ke2πpA|y| sup
λ1≥0

((1 + (λ1 + A)p)mpe−2πpλ1d(y)) (19)

≤ K(1 + (1 + A)p)mpe2πpA|y| sup
λ1≥0

((1 + λ
p
1 )

mpe−2πpλ1d(y))

≤ K(1 + (1 + A)p)mpe2πpA|y| sup
λ1≥0

((1 + λ1)
mp2

e−2πpλ1d(y)).

The supremum in the last line of (19) is a maximum which can be obtained using
the first derivative test. If (mp2 − 2πpd(y)) > 0 then m > 0 and the supremum occurs at
λ1 = (mp2 − 2πpd(y))/2πpd(y), and in this case

sup
λ1≥0

((1 + λ1)
mp2

e−2πpλ1d(y)) ≤
(

1 +
mp2 − 2πpd(y)

2πpd(y)

)mp2

≤
(

1 +
mp2

2πpd(y)

)mp2

=
(mp

2π

)mp2( 2π

mp
+

1
d(y)

)mp2

≤ max{1,
(mp

2π

)mp2

}(1 + (d(y))−1)mp2
.

If (mp2 − 2πpd(y)) ≤ 0, the supremum in the last line of (19) occurs at λ1 = 0 and

sup
λ1≥0

((1 + λ1)
mp2

e−2πpλ1d(y)) = 1 ≤ (1 + (d(y))−1)mp2
.

Combining (19) with the above two estimates on the supremum over λ1 ≥ 0 we have
for y ∈ C

∫

Rn
e−2πp〈y,t〉(N (g(t)))pdt

≤ K(1 + (1 + A)p)mpmax{1,
(mp

2π

)mp2

}(1 + (d(y))−1)mp2
e2πpA|y|.

Taking the pth root of this inequality, we obtain (1) holding for all y ∈ C with r = 1
and s = mp.

For C being an open convex cone in Rn Theorems 6 and 8 show that g being a Banach
space X valued measurable function with (1) holding for y ∈ C, A ≥ 0, and 1 ≤ p < ∞ is
an equivalent statement to g ∈ S ′p(Rn,X ) with supp(g) ⊆ {t ∈ Rn : uC(t) ≤ A} a.e. for
A ≥ 0 and 1 ≤ p < ∞. Thus, for any future result concerning open convex cones C, these
two statements are interchangeable in hypotheses.

16
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If A = 0, {t ∈ Rn : uC(t) ≤ 0} = C∗. In this case we have the following corollary to
Theorem 8.

Corollary 4. Let C be an open convex cone in Rn and 1 ≤ p < ∞. Let g ∈ S ′p(Rn,X ) for X
being a Banach space and supp(g) ⊆ C∗ a.e. We have

|e−2π〈y,t〉g(t)|p ≤ M(1 + (d(y))−1)mp, y ∈ C,

for constants M > 0 and m ≥ 0.

6. Analytic Functions Generating Measurable Functions

In this section, we consider generalized vector-valued Hardy functions and construct
measurable functions which yield Fourier–Laplace transform representations. This material
is followed in Section 7 by representing the analytic functions, in particular cases, by Cauchy
and Poisson integrals.

We use the Fourier transform on L2(Rn,H) considerably in this section and in Section 7.
This causes us to restrict the results to p = 2 and functions having values in Hilbert space
H as previously discussed in Section 2 in relation to the function Fourier transform.

To prove the Fourier–Laplace representation of functions in H2
A(T

B,H) in terms of a
constructed measurable function we first need the following lemma.

Lemma 1. Let B be a proper open connected subset of Rn. Let f(z) ∈ H2
A(T

B,H)),where H is
Hilbert space, and be bounded for x = Re(z) ∈ Rn and y = Im(z) in any compact subset of B. Let
ε > 0. Put

gε,y(t) =
∫

Rn
e−ε ∑n

j=1 z2
j f(x + iy)e−2πi〈x+iy,t〉dx, y ∈ B, (20)

and
gy(t) = F−1[e2π〈y,t〉f(x + iy); t], y ∈ B, t ∈ Rn, (21)

in L2(Rn,H). We have gε,y(t) is independent of y ∈ B for any ε > 0;

lim
ε→0+

|gε,y(t)− gy(t)|2 = 0, y ∈ B; (22)

and gy(t) is independent of y ∈ B.

Proof. For y ∈ B and t ∈ Rn, f(x + iy) ∈ L2(Rn,H) and e2π〈y,t〉f(x + iy) ∈ L2(Rn,H)

as functions of x ∈ Rn. Further, (e2π〈y,t〉e−ε ∑n
j=1 z2

j f(x + iy)) ∈ L1(Rn,H) ∩ L2(Rn,H) for
y ∈ B and t ∈ Rn. Thus, both gε,y(t) and gy(t) are well defined for y ∈ B and both are in
L2(Rn,H). We assume here that 0 < ε ≤ 1 since we are letting ε→ 0+ in (22). We have for
y ∈ B

|gε,y(t)− gy(t)|2 = |F−1[e2π〈y,t〉(e−ε ∑n
j=1 z2

j − 1)f(x + iy); t]|2
= |e2π〈y,t〉(e−ε ∑n

j=1 z2
j − 1)f(x + iy)|2. (23)

For 0 < ε ≤ 1

(N (e2π〈y,t〉(e−ε ∑n
j=1 z2

j − 1)f(x + iy)))2

= |e−ε ∑n
j=1 z2

j − 1|2e4π〈y,t〉(N (f(x + iy)))2

≤ (|e−εz2
1 |...|e−εz2

n |+ 1)2e4π〈y,t〉(N (f(x + iy)))2

≤ (e|y|
2
+ 1)2e4π〈y,t〉(N (f(x + iy)))2,

17
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and the right side of this inequality is independent of 0 < ε ≤ 1 and is integrable as
a function of x ∈ Rn. By the Lebesgue dominated convergence theorem (22) follows
from (23).

To show that gε,y(t) is independent of y ∈ B let S be any compact subset of B, and let
y ∈ S ⊂ B. We have

|e−ε ∑n
j=1 z2

j | ≤ eεna2
e−ε|x|2 , x ∈ Rn, y ∈ S,

where a = maxy∈S{|y1|, |y2|, ..., |yn|}. For y ∈ S ⊂ B and t ∈ Rn

∫

S
N (e−ε ∑n

j=1 z2
j f(x + iy)e−2πi〈x+iy,t〉dy

=
∫

S
|e−ε ∑n

j=1 z2
j ||e−2πi〈x+iy,t〉|N (f(x + iy))dy

≤ ASeεna2
e−ε|x|2

∫

S
e2π|y||t|dy (24)

where AS is a bound on N (f(x + iy)) for x ∈ Rn and y ∈ S; and the right side of (24)
approaches 0 as |x| → ∞. An application of the Caucyh-Poincare theorem yields gε,y is
independent of y ∈ S for any ε > 0 and hence independent of y ∈ B for any ε > 0 since S
is any arbitrary compact subset of B. In the future we refer to gε,y, y ∈ B, as gε since this
function is independent of y ∈ B for any ε > 0.

Now to prove that gy(t) ∈ L2(Rn,H) is independent of y ∈ B let y1 and y2 both be
points of B. Since gε = gε,y is independent of y ∈ B, for any ε > 0 we have

|gy1
(t)− gy2

(t)|2 = |gy1
(t)− gε,y1

(t) + gε,y2
(t)− gy2

(t)|2
≤ |gy1

(t)− gε,y1
(t)|2 + |gy2

(t)− gε,y2
(t)|2. (25)

Letting ε→ 0+ in (25) and using (22), the right side of (25) approaches 0 while the left
side is independent of ε > 0. Thus, gy1

(t) = gy2
(t) a.e., t ∈ Rn, and gy(t) defined in (21) is

independent of y ∈ B. We write gy(t) defined in (21) as g(t), y ∈ B, t ∈ Rn, in the future;
and recall that g(t) ∈ L2(Rn,H).

We obtain a Fourier–Laplace representation of elements in H2
A(T

B,H) now.

Theorem 9. Let B be a proper open connected subset of Rn. Let f(z) ∈ H2
A(T

B,H), where H is
Hilbert space, and be bounded for x = Re(z) ∈ Rn and y = Im(z) in any compact subset of B.
There is a measurable function g(t) ∈ L2(Rn,H) for which

|e−2π〈y,t〉g(t)|2 ≤ M(1 + (d(y))−r)se2πA|y|, y ∈ B, (26)

where r ≥ 0, s ≥ 0, A ≥ 0, and M = M(g, r, s, A) > 0 are independent of y ∈ B; and

f(z) =
∫

Rn
g(t)e2πi〈z,t〉dt, z ∈ TB. (27)

Proof. From Lemma 1 the function g(t) = gy(t) defined in (21) is independent of y ∈ B
and is in L2(Rn,H). From (21)

e−2π〈y,t〉g(t) = F−1[f(x + iy); t], y ∈ B, (28)

and by the Parseval equality

|e−2π〈y,t〉g(t)|2 = |f(x + iy)|2, y ∈ B,

18
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where e−2π〈y,t〉g(t) ∈ L2(Rn,H), y ∈ B. Thus, (26) holds from the norm growth on
f(z) ∈ H2

A(T
B,H). Using the now obtained Equation (26), by the proof of Theorem 2 for

p = 2 we have e−2π〈y,t〉g(t) ∈ L1(Rn,H) ∩ L2(Rn,H), y ∈ B, and
∫

Rn
g(t)e2πi〈z,t〉dt = F [e−2π〈y,t〉g(t); x], z = x + iy ∈ TB,

is analytic in TB with the Fourier transform being the L1(Rn,H) transform. Thus, from (28),

f(z) = F [e−2π〈y,t〉g(t); x] =
∫

Rn
g(t)e2πi〈z,t〉dt, z = x + iy ∈ TB,

with the Fourier transform being in both the L1(Rn,H) and L2(Rn,H) sense, and (27) is
obtained.

The structure of the proofs of Lemma 1 and Theorem 9 can be used to prove a result
like Theorem 9 for functions in H2∗(TB,H); we state this result now.

Theorem 10. Let B be an open connected subset of Rn which does not contain 0 ∈ Rn. Let
f(z) ∈ H2∗(TB,H), whereH is Hilbert space, and be bounded for x = Re(z) ∈ Rn and y = Im(z)
in any compact subset of B. There is a measurable function g(t) ∈ L2(Rn,H) for which

|e−2π〈y,t〉g(t)|2 ≤ M(1 + (d(y))−r)seM∗(w/|y|), y ∈ B,

where r ≥ 0, s ≥ 0, w > 0, andM = M(g, r, s, w) > 0 are independent of y ∈ B; and

f(z) =
∫

Rn
g(t)e2πi〈z,t〉dt, z ∈ TB.

By restricting the base B in Theorem 9, further information is obtained.

Corollary 5. Let C be an open connected cone in Rn. Let f(z) ∈ H2
A(T

C,H), whereH is Hilbert
space, and be bounded for x = Re(z) ∈ Rn and y = Im(z) in any compact subset of C. There is
a measurable function g ∈ L2(Rn,H) ∩ S′2(Rn,H) with supp(g) ⊆ {t ∈ Rn : uC(t) ≤ A} a.e.
such that (26) and (27) hold. Further, if C is an open convex cone in Rn we have

lim
y→0,y∈C

|f(x + iy)−F [g(t); x]|2 = 0, (29)

and
lim

y→0,y∈C
f(x + iy) = F [g(t); x] (30)

in the strong topology of S ′(Rn,H).

Proof. The existence of g ∈ L2(Rn,H) such that (26) and (27) hold follow from Theorem 9.
The facts that g ∈ S ′2(Rn,H) with supp(g) ⊆ {t ∈ Rn : uC(t) ≤ A} a.e. now follow by
Theorem 6. Let us further assume that the cone C is open and convex. From the proof
of Theorem 8 we know that {t ∈ Rn : uC(t) ≤ A} = C∗ + N(0; A) where C∗ is the dual
cone of C and N(0; A) = {t ∈ Rn : |t| < A} since C is assumed to be convex now. Thus,
t ∈ {t ∈ Rn : uC(t) ≤ A} yields t = t1 + t2, t1 ∈ C∗, t2 ∈ N(0; A) as in the proof of
Theorem 8. Returning to the proof of Theorem 9 we have for y ∈ C

|f(x + iy)−F [g(t); x]|2 = |F [e−2π〈y,t〉g(t); x]−F [g(t); x]|2
= |F [(e−2π〈y,t〉 − 1)g(t); x]|2 = |(e−2π〈y,t〉 − 1)g(t)|2. (31)
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In (29) and (30), we prove limit properties as y → 0, y ∈ C; so we assume that
|y| ≤ 1, y ∈ C, in the remainder of this proof. For t = t1 + t2 ∈ C∗ + N(0; A) we have

(N ((e−2π〈y,t〉 − 1)g(t)))2 = |e−2π〈y,t〉 − 1|2(N (g(t)))2 (32)

≤ (e−2π〈y,t〉 + 1)2(N (g(t)))2 = (e−2π〈y,t1〉e−2π〈y,t2〉 + 1)2(N (g(t)))2

≤ (1 + e2πA)2(N (g(t)))2

for |y| ≤ 1, y ∈ C, where 〈y, t1〉 ≥ 0, y ∈ C and t1 ∈ C∗, and |t2| ≤ A for t2 ∈ N(0; A).
Since g ∈ L2(Rn,H) and supp(g) ⊆ C∗ + N(0; A), (32) and the Lebesgue dominated
convergence theorem combined with (31) prove (29). For (30), let φ ∈ S(Rn). Using the
Hölder inequality we have

N (〈f(x + iy), φ(x)〉 − 〈F [g(t); x], φ(x)〉
≤
∫

Rn
N ((f(x + iy)−F [g(t); x])φ(x))dx

≤ |f(x + iy)−F [g(t); x]|2||φ||L2(Rn),

and the use of (29) now shows (30) in the weak topology of S ′(Rn,H). But S(Rn) is a
Montel space; thus, (30) also holds in the strong topology of S ′(Rn,H).

We now desire a converse result to Corollary 5 in the setting of tubes TC where C is an
open connected cone in Rn.

Corollary 6. Let C be an open connected cone in Rn and H be a Hilbert space. Let g(t) be
a H valued measurable function on Rn such that (26) holds. We have g ∈ S ′2(Rn,H) with
supp(g) ⊆ {t ∈ Rn : uC(t) ≤ A} a.e., and f(z) ∈ H2

A(T
C,H) for f(z)defined as in (27) for

z ∈ TC. Further, if C is an open convex cone in Rn we have (30) holding in the strong topology of
S ′(Rn,H).

Proof. We apply Theorem 6 and Corollary 1 to obtain g ∈ S ′2(Rn,H) with supp(g) ⊆
{t ∈ Rn : uC(t) ≤ A} a.e. and to obtain that f(z) defined as in (27) for z ∈ TC is an
element of H2

A(T
C,H). Now assume that C is an open convex cone in the remainder of

this proof to obtain (30) here. Since g ∈ S ′2(Rn,H) ⊂ S ′(Rn,H), the Fourier transform
F [g] is well defined in S ′(Rn,H). From the proof of Corollary 1 we have e−2π〈y,t〉g(t) ∈
L1(Rn,H) ∩ L2(Rn,H) for y ∈ C. Thus, f(x + iy) = F [e−2π〈y,t〉g(t); x], y ∈ C, with
the Fourier transform being in the L1(Rn,H), the L2(Rn,H), and the S ′(Rn,H) cases.
Recalling that supp(g) ⊆ {t ∈ Rn : uC(t) ≤ A} a.e. and referring to [9] (p. 119), we
choose a function λ(t) ∈ C∞, t ∈ Rn, such that for any n-tuple α of nonnegative integers
|Dαλ(t)| ≤ Mα, t ∈ Rn, where Mα is a constant which depends only on α; and for
ε > 0, λ(t) = 1 for t on an ε neighborhood of {t ∈ Rn : uC(t) ≤ A}, and λ(t) = 0 for
t ∈ Rn but not on a 2ε neighborhood of {t ∈ Rn : uC(t) ≤ A}. For φ ∈ S(Rn) we have for
y ∈ C

〈f(x + iy), φ(x)〉 = 〈F [e−2π〈y,t〉g(t); x], φ(x)〉 = 〈λ(t)e−2π〈y,t〉g(t),F [φ(x); t]〉.

For C being convex we apply [9] (p. 74, Lemma 3) as in our proof of Theorem 8 to
obtin {t ∈ Rn : uC(t) ≤ A} = C∗ + N(0; A). The result (30) in this corollary now follows
from the above equality, φ ∈ S(Rn), by the same analysis in [9] (p. 119, lines 2–22) in the
weak topology of S ′(Rn,H) as y → 0, y ∈ C; and the weak topology implies the strong
topology of S ′(Rn,H) as in the proof of (30) in Corollary 5. The proof is complete.

Note that we can not say that g ∈ L2(Rn,H) in Corollary 6 and hence can not obtain
the convergence (29) in this converse of Corollary 5.

For B being a proper open connected subset of Rn and X being a Banach space,
the spaces Vp

A(T
B,X ) follow as subspaces of Hp

A(T
B,X ) (or appropriately of Rp

A(T
B,X ))
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by letting either r = 0 or s = 0 in the norm growth defining these other spaces. Thus,
Theorem 9 holds for f(z) ∈ V2

A(T
B,H); and by the proof of Theorem 9, (26) will hold for

the obtained function g in the form

|e−2π〈y,t〉g(t)|2 ≤ e2πA|y|, y ∈ B.

Using the same proof as in Corollary 2 we then can extend the norm growth on
e−2π〈y,t〉g(t) to hold for y ∈ B. This is stated in the following corollary to Theorem 9.

Corollary 7. Let B be a proper open connected subset of Rn. Let f(z) ∈ V2
A(T

B,H), where H is
Hilbert space, and be bounded for x = Re(z) ∈ Rn and y = Im(z) in any compact subset of B.
There is a measurable function g(t) ∈ L2(Rn,H) for which

|e−2π〈y,t〉g(t)|2 ≤ Me2πA|y|, y ∈ B,

where A ≥ 0 and M = M(g, A) > 0 are independent of y ∈ B; and

f(z) =
∫

Rn
g(t)e2πi〈z,t〉dt, z ∈ TB.

For the base of the tube being an open connected cone in Rn we have the following
corollary of Theorem 10 by combining Theorems 7 and 10. The limit properties in the
following corollary will hold for C being an open connected cone inRn by similar techniques
as in the proof of Corollary 5; C does not need to be convex here for these limit properties
to hold because the support of g is in C∗.

Corollary 8. Let C be an open connected cone in Rn. Let f(z) ∈ H2∗(TC,H), whereH is Hilbert
space, and be bounded for x = Re(z) ∈ Rn and y = Im(z) in any compact subset of C. There is a
measurable function g(t) ∈ L2(Rn,H) ∩ S ′2(Rn,H) with supp(g) ⊆ C∗ a.e. such that the norm
inequality for e−2π〈y,t〉g(t) and the representation of f(z) hold as in the conclusions of Theorem 10.
Further we have

lim
y→0,y∈C

|f(x + iy)−F [g(t); x]|2 = 0

and
lim

y→0,y∈C
f(x + iy) = F [g(t); x]

in the strong topology of S ′(Rn,H).

7. Subsets of H2(TC,H)

Let C be an open connected cone in Rn, and 1 ≤ p < ∞. Let g(t) be a measurable
function on Rn with values in a Banach space X such that

|e−2π〈y,t〉g(t)|p ≤ M(1 + (d(y))−r)se2πA|y|, y ∈ C, (33)

where A ≥ 0, r ≥ 0, s ≥ 0, and M = M(g, p, r, s, A) > 0, or

|e−2π〈y,t〉g(t)|p ≤ M(1 + (d(y))−r)seM∗(w/|y|), y ∈ C, (34)

where w > 0, r ≥ 0, s ≥ 0, and M = M(g, p, w, r, s) > 0 with all constants being
independent of y ∈ C. We have from Theorems 4 and 5 that supp(g) ⊆ {t ∈ Rn : uC(t) ≤
A} a.e. and supp(g) ⊆ C∗ a.e. respectively. Restricting to p = 2 and letting X = H, a
Hilbert space, now we have from Corollarys 1 and 3 that the function

f(z) =
∫

Rn
g(t)e2πi〈z,t〉dt, z ∈ TC,
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is an element of H2
A(T

C,H) or H2∗(TC,H), respectively. Conversely, we have proved in
Corollary 5 or Corollary 8 that if f(z) ∈ H2

A(T
C,H) or f(z) ∈ H2∗(TC,H) and in each case

f(z) is bounded for x = Re(z) and y = Im(z) in any compact subset of C then in each case
there exists a measurable function g ∈ L2(Rn,H) ∩ S ′2(Rn,H) with supp(g) ⊆ {t ∈ Rn :
uC(t) ≤ A} a.e. and (33) holds for p = 2 or supp(g) ⊆ C∗ a.e. and (34) holds for p = 2 with

f(z) =
∫

Rn
g(t)e2πi〈z,t〉dt, z ∈ TC,

in each case.
We will now show from these results that both spaces H2

0(T
C,H), A = 0, and

H2∗(TC,H) are subsets of the Hardy space H2(TC,H) and obtain immediate results from
these subset properties.

Theorem 11. Let C be an open connected cone in Rn and H be a Hilbert space. Let f(z) ∈
H2

0(T
C,H) or f(z) ∈ H2∗(TC,H) and in either case be bounded for x = Re(z) ∈ Rn and y =

Im(z) in any compact subset of C. In either case there is a measurable function g(t) ∈ L2(Rn,H)∩
S ′2(Rn,H) with supp(g) ⊆ C∗ a.e. such that

f(z) =
∫

Rn
g(t)e2πi〈z,t〉dt, z ∈ TC;

sup
y∈C
|f(x + iy)|2 = sup

y∈C
|e−2π〈y,t〉g(t)|2 = |g|2;

and f(z) ∈ H2(TC,H).

Proof. As noted previously in this section a function g ∈ L2(Rn,H)∩S ′2(Rn,H) is obtained
from previous results such that

f(z) =
∫

Rn
g(t)e2πi〈z,t〉dt, z ∈ TC.

Further from the analysis leading to Corollarys 5 and 8 we know e−2π〈y,t〉g(t) ∈
L1(Rn,H) ∩ L2(Rn,H), y ∈ C, in both cases. If A = 0, {t ∈ Rn : uC(t) ≤ 0} = C∗; thus, in
both cases supp(g) ⊆ C∗ a.e. In both cases we have

|f(x + iy)|2 = |e−2π〈y,t〉g(t)|2, y ∈ C.

In both cases
∫

Rn
(N (e−2π〈y,t〉g(t)))2dt =

∫

C∗
(e−4π〈y,t〉(N (g(t)))2dt ≤

∫

C∗
(N (g(t)))2dt = |g|22

for all y ∈ C. We thus have for all y ∈ C

|f(x + iy)|2 = |e−2π〈y,t〉g(t)|2 ≤ |g|2, y ∈ C,

which yields f(x + iy) ∈ H2(TC,H). Further,

sup
y∈C
|f(x + iy)|2 = sup

y∈C
|e−2π〈y,t〉g(t)|2 ≤ (

∫

C∗
(N (g(t)))2dt)1/2 = |g|2. (35)

But 0 ∈ C∗ = {t ∈ Rn : 〈t, y〉 ≥ 0 for all y ∈ C}. Hence, the inequality in (35) is
an equality.

Because of this result we have immediate consequences for f(x + iy) in either space
in Theorem 11 from previously proven results. If C is an open convex cone in Rn which
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contains an entire straight line then f(z) = Θ, z ∈ TC, for both cases of f(z) in Theorem 11.
If C is a regular cone in Rn then

f(z) =
∫

Rn
F [g(u); t]K(z− t)dt =

∫

Rn
F [g(u); t]Q(z; t)dt, z ∈ TC,

for the function g(t) in Theorem 11 and for both cases of f(z) in Theorem 11. Further, we
note that Vindas has proved using functional analysis techniques in [1] that for C being a reg-
ular cone in Rn and X being a dual Banach space having the Radon-Nikodým property, any
f(z) ∈ Hp(TC,X ), 1 ≤ p ≤ ∞, is the Poisson integral of some h ∈ Lp(Rn,X ), 1 ≤ p ≤ ∞.
We say more about the use of functional analysis techniques in obtaining results corre-
sponding to those of this paper and those of [1] in Section 9 below.

8. Boundary Values on the Topological Boundary

In Corollary 5 we obtained boundary value properties of H2
A(T

C,H) functions on
the distinguished boundary of the tube TC where C is an open convex cone in Rn. The
boundary values were obtained in the L2(Rn,H) and S ′(Rn,H) topologies. We now inves-
tigate boundary value properties of a subset of H2

A(T
C,H) on the topological boundary of

the tube.
Our basic result in this section depends on the cone C being regular. We consider the

subset R2
A(T

C,H) of H2
A(T

C,H) consisting of analytic functions f(z) in TC with values in
H such that

|f(x + iy)|2 ≤ M(1 + |y|−r)se2πA|y|, y ∈ C, (36)

where A ≥ 0, r ≥ 0, s ≥ 0, and M = M(f, A, r, s) > 0 are all independent of y ∈ C.
We prove that R2

A(T
C,H) functions have boundary values on the topological boundary

of TC again in the L2(Rn,H) and S ′(Rn,H) topologies. We have R2
A(T

C,H) ⊆ H2
A(T

C,H)
since 0 < d(y) ≤ |y| for y in any open connected cone in Rn from [2] (p. 6, (1.14)); recall
Section 2 above.

Before proving our main result in this section we focus on the growth bound as in
(36). If we had used this growth bound of (36) in the inequality (1) for e−2π〈y,t〉g(t) and
in the inequality for |f(x + iy)|p which defines Hp

A(T
B,X ), that is if we replace d(y) by |y|

in the growth bound, then the results, proofs, and conclusions from Theorem 2 through
Theorem 11 in Sections 5–7 will all hold as before. In any conclusion in these results that
contains the growth bound, the growth bound in the conclusion will be that of (36). We
state this to emphasize the content of our proofs in this section which deal with R2

A(T
C,H)

instead of H2
A(T

C,H).

Theorem 12. Let C be a regular cone in Rn. Let f(z) ∈ R2
A(T

C,H) and be bounded for
x = Re(z) ∈ Rn and y = Im(z) in any compact subset of C. Let yo ∈ ∂C, yo 6= 0. There
exists a function F(x + iyo) ∈ L2(Rn,H) such that

lim
y→yo

|f(x + iy)− F(x + iyo)|2 = 0 (37)

for y ∈ {y ∈ C : 0 < a < |y| < b} where a and b are any constants such that 0 < a < |yo| < b; and

lim
y→yo

f(x + iy) = F(x + iyo) (38)

in the strong topology of S ′(Rn,H) with y ∈ {y ∈ C : 0 < a < |y| < b} again where a and b are
any constants such that 0 < a < |yo| < b.

Proof. As noted previously the growth (36) for R2
A(T

C,H) functions is a special case of the
growth for H2

A(T
C,H) functions since 0 < d(y) ≤ |y|, y ∈ C. Thus, f(z), z ∈ TC, in this

theorem satisfies the hypotheses of Corollary 5; and the conclusions of Corollary 5 follow

23



Axioms 2022, 11, 39

for the f(z), z ∈ TC, here. In fact the construction of proofs above leading to Corollary 5 for
the growth bound of type

M(1 + (d(y))−r)se2πA|y|, y ∈ C,

would be the same for the growth of type (36) with d(y) replaced by |y| in the analysis of
the proofs as noted before. Thus, there is a measurable function g ∈ L2(Rn,H)∩ S ′2(Rn,H)
with supp(g) ⊆ {t ∈ Rn : uC(t) ≤ A} a.e. such that (26) and (27) hold with d(y) replaced
by |y| in (26), and z = x + iy ∈ TC. From the construction of g in Lemma 1 and the proof of
Theorem 2, e−2π〈y,t〉g(t) ∈ L1(Rn,H) ∩ L2(Rn,H), y ∈ C. Let yo ∈ ∂C, the boundary of C,
yo 6= 0. Since |yo| > 0 choose constants a and b such that 0 < a < |yo| < b and consider the
band {y ∈ C : 0 < a < |y| < b} ⊂ C. Let {ym}, m = 1, 2, ..., be a sequence of points in this
band which converges to yo. For each ym, m = 1, 2, ..., in this band

∫

Rn
(N (e−2π〈ym ,t〉g(t)))2dt ≤ M2(1 + |ym|−r)2se4πA|ym | ≤ M2(1 + a−r)2se4πbA.

Using Fatou’s lemma we have
∫

Rn
(N (e−2π〈yo ,t〉g(t)))2dt ≤ lim sup

ym→yo

∫

Rn
(N (e−2π〈ym ,t〉g(t)))2dt

≤ M2(1 + a−r)2se4πbA;

and e−2π〈yo ,t〉g(t) ∈ L2(Rn,H) for yo ∈ ∂C; further e−2π〈yo ,t〉g(t) ∈ L2(Rn,H) even if yo =
0 since g ∈ L2(Rn,H). Recall g ∈ L2(Rn,H) ∩ S ′2(Rn,H) and e−2π〈y,t〉g(t) ∈ L1(Rn,H) ∩
L2(Rn,H), y ∈ C. Form

F(x + iyo) = F [e−2π〈yo ,t〉g(t); x], yo ∈ ∂C, yo 6= 0;

thus, F(x + iyo) ∈ L2(Rn,H), yo ∈ ∂C, yo 6= 0. From the definition of F(x + iyo) and
Corollary 5 we have

|f(x + iy)− F(x + iyo)|2 = |F [(e−2π〈y,t〉 − e−2π〈yo ,t〉)g(t); x]|2
= |(e−2π〈y,t〉 − e−2π〈yo ,t〉)g(t)|2, (39)

for y ∈ C and yo ∈ ∂C, yo 6= 0. We consider
∫

Rn
(N ((e−2π〈y,t〉 − e−2π〈yo ,t〉)g(t)))2dt

and want to show that this integral approaches 0 as y→ yo, y ∈ {y ∈ C : 0 < a < |y| < b}.
We have supp(g) ⊆ {t ∈ Rn : uC(t) ≤ A} = C∗ + N(0; A) since C is open and convex as
noted before in the proof of Theorem 8; thus, t ∈ {t ∈ Rn : uC(t) ≤ A} implies t = t1 + t2

where t1 ∈ C∗ and t2 ∈ N(0, A). For y ∈ {y ∈ C : 0 < a < |y| < b} with 0 < a < |yo| < b
by definition of a and b we have for almost all t ∈ Rn

(N ((e−2π〈y,t〉 − e−2π〈yo ,t〉)g(t)))2 = |e−2π〈y,t1+t2〉 − e−2π〈yo ,t1+t2〉|2(N (g(t)))2.

Since t1 ∈ C∗, 〈y, t1〉 ≥ 0 for all y ∈ C which implies 〈yo, t1〉 ≥ 0 also. Continuing the
preceding inequality we have for t1 ∈ C∗, t2 ∈ N(0, A), and all y ∈ {y ∈ C : 0 < a < |y| < b}

(N ((e−2π〈y,t〉 − e−2π〈yo ,t〉)g(t)))2 ≤ (e−2π〈y,t2〉 + e−2π〈yo ,t2〉)2(N (g(t)))2

≤ (e2π|y||t2 + e2π|yo ||t2|)2(N (g(t)))2 ≤ 4e4πbA(N (g(t)))2

with the bound being independent of y ∈ {y ∈ C : 0 < a < |y| < b} and being in L1(Rn)
since g ∈ L2(Rn,H). Since (e−2π〈y,t〉 − e−2π〈yo ,t〉)g(t) → Θ as y → yo, y ∈ {y ∈ C : 0 <
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a < |y| < b} with 0 < a < |yo| < b, the Lebesgue dominated convergence theorem and (39)
yield (37).

To prove (38) let φ ∈ S(Rn) and yo ∈ ∂C, yo 6= 0. As before choose constants a and b
such that 0 < a < |yo| < b. For y ∈ {y ∈ C : 0 < a < |y| < b} we have

N (〈f(x + iy), φ(x)〉 − 〈F(x + iyo), φ(x)〉)
≤
∫

Rn
N ((f(x + iy)− F(x + iyo))φ(x))dx

≤ |f(x + iy)− F(x + iyo)|2||φ||L2(Rn).

Using (37) we obtain (38) in the weak topology of S ′(Rn,H) as y→ yo, y ∈ {y ∈ C :
0 < a < |y| < b} with 0 < a < |yo| < b. Now (38) is obtained in the strong topology of
S ′(Rn,H) since S(Rn) is a Montel space. The proof is complete.

Since both R2
A(T

C,H) and V2
A(T

C,H) are subsets of H2
A(T

C,H), functions in both
of these subset spaces satisfy (29) and (30) on the distinguished boundary of TC with C
being a regular cone. Also V2

A(T
C,H) functions will have the results of Theorem 12 since

V2
A(T

C,H) ⊆ R2
A(T

C,H).
Boundary value results for the analytic functions on the topological boundary of the

tube may be able to be obtained for various types of base sets C of the tube TC. For example
one could consider C to be an open polyhedron in Rn as defined in [11] and [12] (p. 97).
One could follow this situation by considering an open convex subset B of Rn with yo
being a point on its boundary; consideration could be given then to constructing an open
polyhedron in B with yo as boundary point and approaching yo within the open polyhedron
as Stein and Weiss have done in [12] (p. 98) for functions in H2(TB). Clearly the types of
boundary values available will depend on the specifics of the analytic functions and on the
base of the tube if boundary values exist at all. More will be stated in Section 9 concerning
boundary values.

We have previously obtained boundary value results on the distinguished boundary
of the tube for functions of type Vp

∗ (TC), 1 < p ≤ 2, in the scalar-valued ultradistribution
sense where C is a regular cone in Rn. That is, the norm growth on the analytic functions
on TC is

||f(x + iy)||Lp(Rn) ≤ KeM∗(w/|y|), y ∈ C,

where w > 0 and K = K(f, p, w) are independent of y ∈ C. We have proved that such
functions obtain a boundary value at 0 in the ultradistribution space D′((Mp), L1(Rn)). We
refer to [2] (p. 106, Theorem 5.2.1) and the preceding analysis in [2] (Section 5.2).

9. Suggested Research

In this section, we suggest problems to consider in future research which are associated
with the analysis of this paper.

Let B be an open connected subset of Rn. Stein and Weiss use a bound condition on
Hp(TB) obtained in [12] (p. 99, Lemma 2.12) to prove [12] (p. 93, Theorem 2.3), the represen-
tation theorem for functions in H2(TB). The bound condition holds for z in a tube whose
base is restricted uniformly away from the complement of B. We have used a similarly
needed growth condition, obtained in [2] (p. 87, Lemma 5.1.3), on the analytic functions
studied in [2] (Chapter 5) in relation to boundary values in ultradistribution spaces.

Starting with Lemma 1 in Section 6 of this paper we have used the following assump-
tion on f(z) ∈ H2

A(T
B,H) to obtain several results; the assumption on f(z) is that it "be

bounded for x = Re(z) ∈ Rn and y =Im(z) in any compact subset of B". We conjecture
that a bound condition like [12] (p. 99, Lemma 2.12) holds for f(z) ∈ Hp

A(T
B,X ); such a

result will allow us to delete the above quoted assumption used in Sections 6–8.
Additionally we suggest research to obtain a bound condition like [12] (p. 99, Lemma 2.12)

for functions in Hp(TB,X ).
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Throughout this paper we have obtained boundary value results both on the distin-
guished boundary of the tube and on the topological boundary of the tube. In every case a
question that had to be considered was the method to approach a point on the boundary by
points in the base in order to obtain a desired result. Our results before Section 8 concerned
tubes with base being a regular cone, an open connected cone in Rn, or a proper open
connected subset of Rn. In these cases we could approach a considered boundary point yo
on the boundary of the base by a sequence of points within the base. Because of the nature
of the analytic functions considered in Section 8 we needed to approach any boundary
point yo, yo 6= 0, on the boundary of the base, a regular cone, by a sequence of points inside
a band contained in the cone in order to obtain the desired result. Indications of other
boundary point approaches for consideration were stated at the end of Section 8.

Stein and Weiss [12] (pp. 94–98) discuss situations in which boundary values on the
boundary of tubes can not be obtained as points within the base arbitrarily approach the
point yo on the boundary of the base. In the first case a specific type of analytic function was
constructed in order to show the non-existence of a boundary value for arbitrary approach
to a point on the boundary by points within the base. In the second case a H2(TB) function
was constructed for which no limit in the L2 norm existed for arbitrary approach to 0 within
B; but if the base B was suitably restricted, any function in H2(TB) for the restricted base B
was shown to have a boundary value at any point on ∂B. Considerations of the approach
to the boundary by points within bases B of other types than those of this paper could be
made concerning the types of analytic functions defined in this paper. Are there base sets B
in which an analytic function will not have a boundary value at a specified point yo ∈ ∂B
or such that there could be a boundary value if the base B is specialized?

The basic results of Section 5, Theorems 2, 4, 6 and 8, have all been proved for the most
general appropriate situation. B was an open connected subset of Rn or open (or convex)
connected cone in Rn; values were in Banach space X ; results held for all p, 1 ≤ p < ∞, in
Section 5. In Sections 6–8, the base B of the tube remained an open connected subset of Rn

or a cone in Rn as appropriate; but all of the main results of these sections were proved for
values in Hilbert spaceH with p = 2.

Of course the reason for the restrictions in these sections to p = 2 and values inH is
that the primary tool in our proofs was the Fourier transform which, as previously noted,
is available in its desired completeness to the specific cases of p = 2 and values inH. We
desire to extend the results of Sections 6–8 to 1 ≤ p < ∞ and values in Banach space X
as appropriate by using different techniques. This has been done by Vindas in [1] where
functional analysis techniques have been used to extend the Poisson integral representation
of functions in Hp(TC,H) from p = 2 with values in H to 1 ≤ p ≤ ∞ with values in
X . See [1] (Theorem 2); similarly see also [1] (Theorem 1). Use of functional analysis
techniques and accumulated knowledge related to vector-valued fuctions to obtain the
desired extensions of the results noted in this paragraph should be considered. Extensions
of results from p = 2 to 1 ≤ p < ∞ could possibly also be obtained here for Hilbert space
H by applying limit processes using the p = 2 case. We believe that the basic results of
Sections 6–8 can be extended to 1 ≤ p < ∞ and values in Banach space X as appropriate.
We suggest consideration of this extension in future research.

For p = 2 we have proved in previous work that the S ′(Rn) Fourier transform maps
the distribution spaceD′L2(Rn)

one-one and onto S ′2; further we have proved that the S ′(Rn)

Fourier transform maps D′Lp(Rn), 1 ≤ p < 2, one-one and into S ′q, (1/p) + (1/q) = 1.
The proofs are obtained using the characterization results for the form of elements in
D′Lp(Rn), 1 ≤ p ≤ 2. With knowledge of a characterization of elements in the vector-valued
distribution space equivalent toD′L2(Rn)

we conjecture that the S ′(Rn,H) Fourier transform

maps this vector-valued distribution space one-one and onto S ′2(Rn,H). Of course the
values of the vector-valued distributions would need to be in Hilbert spaceH because of
the probable use of the function Fourier transform on L2(Rn,H) functions.
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Results similar to those of this paper may be in order concerning the functions defined
as H(C) in [7]. We leave this for future research.

10. Conclusions

As stated in Section 1 our goal in this paper was to obtain results for the analytic
functions defined in Section 4 treated as generalizations of Hp(TB,X ) functions and as
generalizations of the scalar-valued functions noted in [2] (Chapter 5) and in some of
our papers referenced in [2] and hence to generalize results concerning Hp(TB,X ) spaces
and concerning the functions of [2] (Chapter 5) to these new spaces of analytic functions.
Additionally, we stated that our goal also was to obtain additional new results for the
analytic fuctions of Section 4.

We were successful in our goals in Section 5 for all of the results there that had as
assumption that g(t) was a X valued measurable function for which the growth (1) held
and for all of the results that had as assumption that g ∈ S ′p(Rn,X ); these results held for
X being a Banach space and for all p, 1 ≤ p < ∞.

We were partially successful in our goals in Section 6 where the results depended
on hypotheses on the analytic function concerning X and p. Because our proofs of these
results depended on the Fourier transform we had to restrict X to H, a Hilbert space,
and p = 2 as described previously. But under these restrictions in Section 6 we were
able to obtain Fourier–Laplace integral representation and boundary value results on the
distinguished boundary of the tube for the analytic functions. In Section 7, we were able to
prove containment of certain analytic functions from Definitions 1–4 in the Hardy space
H2(TC,H). In Section 8, we were able to obtain boundary value results on the topological
boundary of the tube domain for the functions considered there. We desire to have the
results of Sections 6–8 holding as well for X being a Banach space and for 1 ≤ p < ∞.

In our previous work concerning scalar-valued generalizations of Hp(TB) functions
we have been able to obtain results under the assumption on the analytic functions of
the type in Sections 6–8 for all p, 1 ≤ p < ∞. That is we have obtained Fourier–Laplace
integral representation and boundary value results for all p, 1 ≤ p < ∞, on the assumed
scalar-valued analytic function. Additionally, we have obtained Cauchy and Poisson
integral representations as appropriate. Because of the existence of these results for all p
in the scalar-valued case we have emphasized in Section 9 our belief that the basic results
of Sections 6–8 can be extended to 1 ≤ p < ∞ and to values in Banach space X under
assumption on the analytic function in the results. We believe that new techniques apart
from the Fourier transform will be used to obtained these desired results as described in
Section 9. We pursue the analysis of these topics for the generalized setting in the future.

The author believes that there is considerable additional interesting analysis in the
generalized format of the results in this paper that can be obtained in regards to integral
representation, boundary values, and applications for the functions of Definitions 1–4.
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Abstract: As an application of the well-known Sălăgean differential operator, a new operator is
introduced and, using this, a new class of functions Sn(α) is defined, which has the classes of starlike
and convex functions of order α as special cases. Original results related to the newly defined class
are obtained using the renowned Jack–Miller–Mocanu lemma. A relevant example is given regarding
the applications of a new proven result concerning interesting properties of class Sn(α).

Keywords: analytic function; starlike function of order α; convex function of order α; Sălăgean
differential operator; Alexander integral operator

1. Introduction and Preliminaries

Many operators have been used since the beginning of the study of analytic functions.
The most interesting of these are the differential and integral operators. Since the beginning
of the 20th century, many mathematicians, especially J.W. Alexander [1], S.D. Bernardi [2]
and R.J. Libera [3], have worked on integral operators. It has become easier to introduce
new classes of univalent functions with the use of operators. In his article, published in
1983, Sălăgean introduced differential and integral operators, which bear his name. Those
operators were very inspiring and many mathematicians have obtained new, interesting
results using these operators. In particular, researchers have introduced many new opera-
tors, examined their properties, and further used the newly defined operators to introduce
classes of univalent functions with remarkable properties. At the same time, some mathe-
maticians obtained interesting results in different lines of research by combining differential
and integral operators, where Sălăgean differential operator was involved, as is seen, for
example, in very recent papers [4–6]. The topic of strong differential subordination was
also approached recently using Sălăgean differential operator in [7], and new operators
were introduced using a fractional integral of Sălăgean and Ruscheweyh operators in [8].
The operators introduced using the Sălăgean differential operator were also recently used
to obtain results related to the celebrated Fekete–Szegö inequality [9].

In this work, we introduce a new class as an application of the Sălăgean operator and
discuss some interesting problems with this class.

Let A be the class of functions f of the form

f (z) = z +
∞

∑
k=2

akzk (1)
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which are analytic in the open unit disc U = {z ∈ C : |z| < 1} and S be the subclass of A
consisting of univalent functions. Also,

S∗(α) =
{

f ∈ A : Re
(

z f ′(z)
f (z)

)
> α, z ∈ U, 0 ≤ α < 1

}

is the class of starlike functions of order α and

K(α) =
{

f ∈ A : Re
(

1 +
z f ′′(z)
f ′(z)

)
> α, z ∈ U, 0 ≤ α < 1

}

is the class of convex functions of order α.
Let us start by recalling the well-known definitions for the Sălăgean differential and

integral operators.

Definition 1 (Sălăgean [10]). For f ∈ A, the Sălăgean differential operator Dn is defined by
Dn : A→ A,

D0 f (z) = f (z) = z +
∞

∑
k=2

akzk, (2)

D1 f (z) = D f (z) = z f ′(z) = z +
∞

∑
k=2

kakzk, (3)

Dn f (z) = D(Dn−1 f (z)) = z +
∞

∑
k=2

knakzk (n = 1, 2, 3, · · · ), (4)

and Sălăgean integral operator D−n is defined by

D−1 f (z) =
∫ z

0

f (t)
t

dt = z +
∞

∑
k=2

1
k

akzk (5)

and

D−n f (z) = D−1(D−n+1 f (z)) = z +
∞

∑
k=2

1
kn akzk (n = 1, 2, 3, · · · ). (6)

In view of Definition 1, the following new operator is introduced:

Definition 2. For f ∈ A

Dj f (z) = z +
∞

∑
k=2

kjakzk (j = · · · ,−2,−1, 0, 1, 2, · · · ). (7)

With the above operator Dj f , we introduce the subclass Sn(α).

Definition 3. The subclass Sn(α) of A consists of functions f , which satisfy

Re
(

Dn+1 f (z)
Dn f (z)

)
> α (n = · · · ,−2,−1, 0, 1, 2, · · · ) (8)

for z ∈ U, where 0 ≤ α < 1.

Remark 1. Since D0 f (z) = f (z), D1 f (z) = z f ′(z) and D2 f (z) = z f ′(z) + z2 f ′′(z), f ∈
S0(α) satisfies

Re
(

z f ′(z)
f (z)

)
> α (z ∈ U), (9)
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and f ∈ S1(α) satisfies

Re
(

1 +
z f ′′(z)
f ′(z)

)
> α (z ∈ U). (10)

Therefore, f ∈ S0(α) = S∗(α) is starlike of order α in U, and f ∈ S1(α) = K(α) is convex of order
α in U (cf. Robertson [11]). Since D−1 f is Alexander integral operator, D−n f (n = 1, 2, 3, · · · ) is
the generalization for Alexander integral operator (cf. Alexander [1]).

For a function f ∈ A, we introduce

Mp(r, f ) =





(
1

2π

∫ 2π
0 | f (reiθ)|pdθ

) 1
p , (0 < p < ∞)

max|z|≤r| f (z)| , (p = ∞).

(11)

For the above Mp(r, f ), we define

Hp =
{

f ∈ A : ‖ f ‖p = limr→1−Mp(r, f ) < ∞
}

. (12)

To discuss our problems, we have to introduce the following lemmas.

Lemma 1 (Wilken and Feng [12]). If f ∈ S1(α), then f ∈ S0(β), where

β = β(α) =





2α−1
2(1−21−2α)

, (α 6= 1
2 )

1
2log2 = 0.7213 . . . , (α = 1

2 ).
(13)

The result is sharp.

Lemma 2 (Eenigenburg and Keogh [13]). If f ∈ S0(α) and

f (z) 6= z
(1− zeiθ)2 , (14)

then there exists δ = δ( f ) > 0 such that f (z)
z ∈ H

δ+ 1
2(1−α) .

Lemma 3 (Nunokawa [14]). Let a function p be analytic in U with p(0) = 1. If p satisfies

Re(p(z) + zp′(z)) >
1− 2log2

2(1− log2)
= −0.629 . . . (z ∈ U) (15)

then Rep(z) > 0 (z ∈ U).

Lemma 4 (Duren [15]). If a function p is analytic in U and Rep(z) > 0 (z ∈ U), then p ∈ Hp

(0 < p < 1).

Lemma 5 (Kim, Lee and Srivastava [16]). If f ∈ A satisfies zγ f (z) ∈ Hp (0 < p < ∞) for
some real γ, then f ∈ Hp (0 < p < ∞).

Lemma 6 (Duren [15]). If f ∈ A satisfies f ′ ∈ Hp (0 < p < 1), then f ∈ H
p

1−p .

Discussing our problems for Sălăgean operator, we need to introduce the following
lemma due to Miller and Mocanu [17,18] (also, by Jack [19]).

Lemma 7 (Miller and Mocanu [17,18]). Let the function w given by

w(z) = bnzn + bn+1zn+1 + bn+2zn+2 + . . . , n ∈ N (16)
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be analytic in U with w(0) = 0. If |w(z)| attains its maximum value on the circle |z| = r at a point
z0 ∈ U, then a real number k ≥ n exists, such that

z0w′(z0)

w(z0)
= k (17)

and

Re
(

1 +
z0w′′(z0)

w′(z0)

)
≥ k. (18)

The original results obtained by the authors and presented in this paper are contained
in the next section. A new operator is introduced with Sălăgean differential operator as
the inspiration. Using this newly introduced operator, a new class of functions denoted
by Sn(α) is defined, with known classes as particular cases. Certain properties involving
the applications of Sălăgean differential operator related to class Sn(α) are discussed in
the theorems and corollaries. Examples are also included to prove the applications of the
proved results.

2. Main Results

Now, we derive the following result.

Theorem 1. If f ∈ Sn(α), then f ∈ Sn−j(αj), where n > j ≥ 0 and

αj =





2αj−1−1

2(1−2
1−2αj−1 )

, (αj 6= 1
2 )

1
2log2 = 0.7213 . . . , (αj =

1
2 ).

(19)

Further, if
Dn−j f (z) 6= z

(1− zeiθ)2(1−αj)
, (20)

then there exists δ > 0, such that Dn−j f ∈ H
δ+ 1

2(1−αj) .

Proof. We note that if f ∈ Sn(α), then

Re
(

Dn+1 f (z)
Dn f (z)

)
> α0 (z ∈ U), (21)

where α0 = α. Since

Dn+1 f (z) = z(Dn f (z))′ = z(Dn−1 f (z))′ + z2(Dn−1 f (z))′′ (22)

and
Dn f (z) = z(Dn−1 f (z))′, (23)

we see that

Re

(
Dn+1 f (z)

Dn f (z)

)
= Re

(
1 +

z(Dn−1 f (z))′′

(Dn−1 f (z))′

)
> α0 (z ∈ U). (24)
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Applying Lemma 1, we say that

f ∈ Sn(α0)⇔ Dn−1 f ∈ S1(α0)

⇒ Dn−1 f ∈ S0(α1)

⇔ Dn−2 f ∈ S1(α1)

⇒ Dn−2 f ∈ S0(α2)

⇔ Dn−3 f ∈ S1(α2)

...

⇔ Dn−j f ∈ S0(αj−1)

⇒ Dn−j f ∈ S1(αj).

(25)

This implies that

Re
(

z(Dn−j f (z))′

Dn−j f (z)

)
= Re

(
Dn−j+1 f (z)

Dn−j f (z)

)
> αj (z ∈ U), (26)

that is, that f ∈ Sn−j(αj). Further, applying Lemma 2, we see that if

Dn−j f (z) 6= z

(1− zeiθ)2(1−αj)
, (27)

then there exists δ > 0, such that Dn−j f ∈ H
δ+ 1

2(1−αj) .

Example 1. Let us consider a function f belonging to the class S3(α). Then f ∈ S2(α1) with
(19), where

α1 =





2α−1
2(1−21−2α)

, (α 6= 1
2 )

1
2log2 = 0.7213 . . . , (α = 1

2 ).
(28)

Further, f ∈ S1(α2), where

α2 =





2α1−1
2(1−21−2α1 )

, (α1 6= 1
2 )

1
2log2 = 0.7213 . . . , (α1 = 1

2 ).
(29)

Also, f ∈ S0(α3), where

α3 =





2α2−1
2(1−21−2α2 )

, (α2 6= 1
2 )

1
2log2 = 0.7213 . . . , (α2 = 1

2 ).
(30)

If we consider the case of α = 1
4 , then we have

α1 =
1

4(
√

2− 1)
.
= 0.60355, (31)

α2 =
3− 2

√
2

4(
√

2− 1)(1− 2
1−
√

2
2 )

.
= 0.77436, (32)

and
α3

.
= 0.8672. (33)
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Further, if we consider the case of α = 1
8 , then

α1 =
3

8( 4
√

8− 1)
.
= 0.55002, (34)

and

α2 =
7− 4 4

√
8

8( 4
√

8− 1)(1− 2
4 4√8−7

4( 4√8−1) )

.
= 0.60607. (35)

Remark 2. For some positive integer j, we know that

αj+1 =
2αj − 1

2(1− 21−2αj)
, (αj 6= 1

2 ). (36)

If we consider

g(αj) = αj+1 − αj =
2αj − 1

2(1− 21−2αj)
− αj , (αj 6= 1

2 ), (37)

g(0) = 1
2 and g(1) = 0. From this fact, we know that αj < αj+1 for 0 ≤ αj < 1. This implies that

0 ≤ α < α1 < α2 < · · · < αj < · · · < 1. (38)

Letting j = n in Theorem 1, we see

Corollary 1. If f ∈ Sj(α), then f ∈ S0(αj). If

f (z) 6= z

(1− zeiθ)2(1−αj)
, (39)

then there exists δ > 0, such that f ∈ H
δ+ 1

2(1−αj) .

Next we have

Theorem 2. If f ∈ A satisfies

Re
(

Dn+1 f (z)
z

)
=

1− 2log2
2(1− log2)

= −0.629 . . . (z ∈ U) (40)

for some n ∈ N, then there exists pj, such that Dn−j+1 f ∈ Hpj , where

pj >
1

j− k + 1
(k = 1, 2, 3, · · · , j) (41)

and j ≤ n + 1.

Proof. If we define p by

p(z) =
Dn f (z)

z
, (42)

then p is analytic in U with p(0) = 1. Since

p(z) + zp′(z) =
Dn+1 f (z)

z
, (43)

we see that

Re
(

Dn+1 f (z)
z

)
= Re

(
p(z) + zp′(z)

)
>

1− 2log2
2(1− log2)

(z ∈ U). (44)
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Applying Lemma 3, we have that

Rep(z) = Re
(

Dn f (z)
z

)
> 0 (z ∈ U). (45)

Using Lemma 4, we know that

Dn f (z)
z

∈ Hp1 (0 < p1 <
1
j
), (46)

that is, that (Dn−1 f (z))′ ∈ Hp1 . By Lemma 6, we have that

Dn−1 f ∈ Hp2 (0 < p2 =
p1

1− p1
<

1
j− 1

). (47)

Noting that
Dn−1 f (z) = z(Dn−2 f (z))′, (48)

we obtain that
Dn−2 f ∈ Hp3 (0 < p3 =

p2

1− p2
<

1
j− 2

). (49)

Repeating the above, we have that

Dn−j+2 f ∈ Hpj−1 (0 < pj−1 <
1
2
). (50)

Finally, we get
Dn−j+1 f ∈ Hpj (0 < pj < 1). (51)

Making j = n + 1 in Theorem 2, we have

Corollary 2. If f ∈ A satisfies

Re
(

Dn+1 f (z)
z

)
>

1− 2log2
2(1− log2)

= −0.629 . . . (z ∈ U), (52)

then, there exists pn+1 such that f ∈ Hpn+1 (0 < pn+1 < 1).

Next, we derive

Theorem 3. If f ∈ A satisfies
∣∣∣∣
Dn+2 f (z)
Dn+1 f (z)

− 1
∣∣∣∣ <

5α− 2α2 − 1
2α

(z ∈ U), (n ∈ N) (53)

for some real α ( 1
3 ≤ α ≤ 1

2 ), or

∣∣∣∣
Dn+2 f (z)
Dn+1 f (z)

− 1
∣∣∣∣ <

α− 2α2 + 1
2α

(z ∈ U), (n ∈ N) (54)

for some real α ( 1
2 ≤ α < 1), then Dn f ∈ S0(α), that is, Dn f is starlike of order α in U. Further, if

Dn−j f (z) 6= z

(1− zeiθ)2(1−αj)
, (55)
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then, there exists δ > 0 such that Dn−j f ∈ H
δ+ 1

2(1−αj) , where

αj =





2αj−1−1

2(1−2
1−2αj−1 )

, (αj−1 6= 1
2 )

1
2log2 = 0.7213 . . . , (αj−1 = 1

2 )

(56)

and j ≤ n.

Proof. Define a function w by

Dn+1 f (z)
Dn f (z)

=
1 + (1− 2α)w(z)

1− w(z)
(w(z) 6= 1). (57)

It follows from the above that

Dn+2 f (z)
Dn+1 f (z)

− Dn+1 f (z)
Dn f (z)

=
(1− 2α)zw′(z)

1 + (1− 2α)w(z)
+

zw′(z)
1− w(z)

. (58)

Therefore, we have that

Dn+2 f (z)
Dn+1 f (z)

− 1 =

(
w(z)

1− w(z)

){
2(1− α) +

zw′(z)
w(z)

(
1 +

(1− 2α)(1− w(z))
1 + (1− 2α)w(z)

)}
. (59)

Suppose that there exists a point z0 ∈ U, such that

max|z|≤|z0||w(z)| = |w(z0)| = 1 (w(z0) 6= 1). (60)

Then, Lemma 7 say that w(z0) = eiθ and z0w′(z0) = kw(z0) (k ≥ 1). This implies that

∣∣∣∣
Dn+2 f (z0)

Dn+1 f (z0)
− 1
∣∣∣∣ =

∣∣∣∣
eiθ

1− eiθ

∣∣∣∣
∣∣∣∣2(1− α) + k

(
1 +

(1− 2α)(1− eiθ)

1 + (1− 2α)eiθ

)∣∣∣∣

≥ 2(1− α0) + k∣∣1− eiθ
∣∣ − k|1− 2α|∣∣1 + (1− 2α)eiθ

∣∣

≥ 2(1− α0) + k
2

− k|1− 2α|
2α

.

(61)

If 1
3 ≤ α < 1

2 , then ∣∣∣∣
Dn+2 f (z0)

Dn+1 f (z0)
− 1
∣∣∣∣ ≥

5α− 2α2 − 1
2α

(62)

and if 1
2 ≤ α < 1, then ∣∣∣∣

Dn+2 f (z0)

Dn+1 f (z0)
− 1
∣∣∣∣ ≥

α− 2α2 + 1
2α

. (63)

This contradicts our condition of the theorem. Thus we say that |w(z)| < 1 for all z ∈ U.
From the definition (57) for w, we obtain that

Re
(

Dn+1 f (z)
Dn f (z)

)
> α (z ∈ U). (64)

This means that Dn f ∈ S0(α). Letting α = α0 and using Lemma 1, we obtain Dn−j f ∈
S0(αj), where αj is given by (56). Applying Lemma 2, we know that if

Dn−j f (z) 6= z

(1− zeiθ)2(1−αj)
, (65)
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then, there exists δ > 0 such that Dn−j f ∈ H
δ+ 1

2(1−αj) .

Making j = n in Theorem 3, we have

Corollary 3. If f ∈ A satisfies
∣∣∣∣
Dn+2 f (z)
Dn+1 f (z)

− 1
∣∣∣∣ <

5α− 2α2 − 1
2α

(z ∈ U), (66)

for some real α ( 1
3 ≤ α ≤ 1

2 ), or

∣∣∣∣
Dn+2 f (z)
Dn+1 f (z)

− 1
∣∣∣∣ <

α− 2α2 + 1
2α

(z ∈ U), (67)

for some real α ( 1
2 ≤ α < 1), then Dn f ∈ S0(α). If

f (z) 6= z
(1− zeiθ)2(1−αn)

, (68)

then, there exists δ > 0, such that f ∈ Hδ+ 1
2(1−αn) .

3. Conclusions

Inspired by the classic and well-known Sălăgean differential operator, a new operator
is introduced in Definition 2. By applying this operator, a new class of functions is defined,
denoted by Sn(α). It is shown that classes of starlike and convex functions of the order α
are obtained for specific values of n. Some interesting problems concerning the class Sn(α)
are discussed in the theorems and corollaries. One example is given as an application for
special cases of n for the class Sn(α). The new operator defined in this paper can be used
to introduce other certain subclasses of analytic functions. Quantum calculus can be also
associated for future studies, as can be seen in paper [20] regarding the Sălăgean differential
operator and involving symmetric Sălăgean differential operator in paper [21]. Symmetry
properties can be investigated for this operator, taking the symmetric Sălăgean derivative
investigated in [22] as inspiration.
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Abstract: In this paper, we introduce and investigate new subclasses (Yamakawa-type bi-starlike
functions and another class of Lashin, both mentioned in the reference list) of bi-univalent functions
defined in the open unit disk, which are associated with the Gegenbauer polynomials and satisfy
subordination conditions. Furthermore, we find estimates for the Taylor–Maclaurin coefficients |a2|
and |a3| for functions in these new subclasses. Several known or new consequences of the results are
also pointed out.

Keywords: starlike and convex functions; hadamard product; subordination; bi-univalent functions;
Fekete–Szegő problem; Gegenbauer polynomials; Yamakawa-type bi-starlike functions

MSC: 30C45; 30C50

1. Introduction and Preliminaries

In geometric function theory, there have been numerous interesting and fruitful us-
ages of a wide variety of special functions, q-calculus and special polynomials; for ex-
ample, the Fibonacci polynomials, the Faber polynomials, the Lucas polynomials, the
Pell polynomials, the Pell–Lucas polynomials, and the Chebyshev polynomials of the
second kind. The Horadam polynomials are potentially important in a variety of disci-
plines in the mathematical, physical, statistical, and engineering sciences. Gegenbauer
polynomials or ultra spherical polynomials Gλ

n can be obtained using the Gram–Schmidt
orthogonalization process for polynomials in the domain (−1, 1) with the weight factor
(
1− `2)λ− 1

2 , λ > −1
2

. Also, G0
n(`) is defined as lim

λ→0

Gλ
n(`)

λ
, and for λ 6= 0 the resulting

polynomial Rn(`) is multiplied by a number which makes the value at ` = 1 equal to
(2λ)n/n! = 2λ(2λ + 1)(2λ + 2) . . . (2λ + n − 1)/n!. For λ = 0 and n 6= 0, the value at

` = 1 is
2
n

, while G0
0(`) = 1.

The Gegenbauer polynomials (for details, see Kim et al. [1] and references cited

therein) are given in terms of the Jacobi polynomials P(ν,υ)
n , with ν = υ = λ− 1

2
,
(

λ > −1
2

,

λ 6= 0
)

, defined by

Gλ
n(`) =

Γ
(

λ + 1
2

)
Γ(n + 2λ)

Γ(2λ)Γ
(

n + λ + 1
2

)P(
λ− 1

2 ,λ− 1
2 )

n (`)

=

(
n + 2λ− 1

n

) n

∑
k=0

(n
k)(2λ + n)k(

λ + 1
2

)
k

(
`− 1

2

)k
, (1)

39



Axioms 2022, 11, 92

where (a)n := a(a + 1)(a + 2) . . . (a + n− 1), and (a)0 := 1.
From (1), it follows that Gλ

n(`) is a polynomial of degree n with real coefficients, and

Gλ
n(1) =

(
n + 2λ− 1

n

)
, while the leading coefficient of Gλ

n(`) is 2n
(

n + λ− 1
n

)
. By the

theory of Jacobi polynomials, for µ = υ = λ− 1
2

, with λ > −1
2

, and λ 6= 0, we get

Gλ
n(−`) = (−1)nGλ

n(`).

It is easy to show that Gλ
n(`) is a solution of the Gegenbauer differential equation

(1− `2)y′′ − (2λ)`y′ + n(n + 2λ)y = 0,

with ` = 0 an ordinary point; this means that we can express the solution in the form of a

power series y =
∞
∑

n=0
an`n, and the Rodrigues formula for the Gegenbauer polynomials is

(see [2,3]) as follows:

(
1− `2

)λ− 1
2
Gλ

n(`) =
(−2)n(λ)n

n!(n + 2λ)n

(
d
d`

)n(
1− `2

)n+λ− 1
2 ,

and the above relation can be easily derived from the properties of Jacobi polynomials.
The generating function of Gegenbauer polynomials is given by (see [1,4])

2λ− 1
2

(1− 2`t + t2)
1
2
(

1− `t +
√

1− 2`t + t2
)λ− 1

2
=

(
λ− 1

2

)
n

(2λ)n
Gλ

n(`)t
n, (2)

and this equality can be derived from the generating function of Jacobi polynomials.
From the above relation (2), we note that

1

(1− 2`t + t2)
λ
=

∞

∑
n=0

Gλ
n(`)t

n, t ∈ C, |t| < 1, ` ∈ [−1, 1], λ ∈
(
−1

2
,+∞

)
\ {0}, (3)

and the proof is given in [4] and Kim et al. [1] (also, see [5]) where the authors extensively
studied many results from different perspectives. For λ = 1, the relation (3) gives the

ordinary generating function for the Chebyshev polynomials, and for λ =
1
2

, we obtain the
ordinary generating function for the Legendre polynomials (see also [6]).

In 1935, Robertson [7] proved an integral representation for the typically real-valued
function class TR having the form

f (z) = z +
∞

∑
n=2

anzn, z ∈ ∆ := {z ∈ C : |z| < 1}, (4)

which is holomorphic in the open unit disc ∆, real for z ∈ (−1, 1), and satisfies the condition

Im f (z) Im z > 0, z ∈ ∆\(−1, 1).

Namely, f ∈ TR if and only if it has the representation

f (z) =
∫ 1

−1

z
1− 2`z + z2 dµ, z ∈ ∆,

where µ is a probability measure on [−1, 1]. The class TR has been extended in [8] to the
class TR(λ), λ > 0, which was defined by
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f (z) =
∫ 1

−1
Φλ

` (z) dµ(`), z ∈ ∆, −1 ≤ ` ≤ 1, (5)

where
Φλ

` (z) :=
z

(1− 2`z + z2)
λ

, z ∈ ∆, −1 ≤ ` ≤ 1, (6)

and µ is a probability measure on [−1, 1]. The function Φλ
` (z) has the following Taylor–

Maclaurin series expansion:

Φλ
` (z) = z +Gλ

1 (`)z
2 +Gλ

2 (`)z
3 +Gλ

3 (`)z
4 + · · ·+Gλ

n−1(`)z
n + . . . , (7)

where Gλ
n(`) denotes the Gegenbauer (or ultra spherical) polynomials of order λ and degree

n in `, which are generated by

Φλ
` (z) =

∞

∑
n=0

Gλ
n(`)z

n = z
(

1− 2`z + z2
)−λ

.

In particular,

Gλ
0 (`) = 1, Gλ

1 (`) = 2λ`, Gλ
2 (`) = 2λ(λ + 1)`2 − λ = 2(λ)2`

2 − λ. (8)

Of course, we have TR(1) ≡ TR, and if f given by (5) is written in the power expansion
series (4), then we have

an =
∫ 1

−1
Gλ

n−1(`) dµ(`).

One can easily see that the class TR(λ), λ > 0, is a compact and convex set in the linear

space of holomorphic functions f (z) = z +
∞
∑

n=2
an zn which are holomorphic in ∆, endowed

with the topology of local uniform convergence on compact subsets of ∆. The importance
of the class TR(λ), λ > 0, follows as well from the paper of Hallenbeck [9], who studied the
extreme points of some families of univalent functions and proved that

coS∗R(1− λ) = TR(λ), and ext coS∗R(1− λ) =

{
z

(1− 2`z + z2)
λ

: ` ∈ [−1; 1]

}
,

where “co A” denotes the closed convex hull of A, “ext A” represents the set of the extremal
points of A, while S∗R(ϑ) denotes the class of holomorphic functions given by (5), which
are univalent and starlike of order ϑ, ϑ ∈ [0, 1), in ∆, and have real coefficients.

Let A represents the class of functions whose members are of the form

f (z) = z +
∞

∑
n=2

anzn, z ∈ ∆, (9)

which are analytic in ∆, and let S be the subclass of A whose members are univalent in
∆. The Koebe one quarter theorem [10] ensures that the image of ∆ under every univalent

function f ∈ A contains a disk of radius
1
4

. Thus every univalent function f has an inverse

f−1 satisfying

f−1( f (z)) = z, (z ∈ ∆) and f
(

f−1(w)
)
= w,

(
|w| < r0( f ), r0( f ) ≥ 1

4

)
.

A function f ∈ A is said to be bi-univalent in ∆ if both f and f−1 are univalent in ∆,
and let Σ denote the class of bi-univalent functions defined in the unit disk ∆. Since f ∈ Σ
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has the Maclaurin series given by (9), a computation shows that its inverse g = f−1 has
the expansion

g(w) = f−1(w) = w− a2w2 +
(

2a2
2 − a3

)
w3 + . . . . (10)

We notice that the class Σ is not empty. For instance, the functions

f1(z) =
z

1− z
, f2(z) =

1
2

log
1 + z
1− z

, f3(z) = − log(1− z)

with their corresponding inverses

f−1
1 (w) =

w
1 + w

, f−1
2 (w) =

e2w − 1
e2w + 1

, f−1
3 (w) =

ew − 1
ew

are elements of Σ. However, the Koebe function is not a member of Σ. Lately,
Srivastava et al. [11] have essentially revived the study of analytic and bi-univalent
functions; this was followed by such works as those of [12–17]. Several authors have
introduced and examined subclasses of bi-univalent functions and obtained bounds for the
initial coefficients (see [11–13,15]), bi-close-to-convex functions [18,19], and bi-prestarlike
functions by Jahangiri and Hamidi [20].

Orthogonal polynomials have been broadly considered in recent years from vari-
ous perceptions due to their importance in mathematical physics, mathematical statistics,
engineering, and probability theory. Orthogonal polynomials that appear most often in
applications are the classical orthogonal polynomials (Hermite polynomials, Laguerre poly-
nomials, and Jacobi polynomials). The previously mentioned Fibonacci polynomials, Faber
polynomials, the Lucas polynomials, the Pell polynomials, the Pell–Lucas polynomials, the
Chebyshev polynomials of the second kind, and Horadam polynomials have been studied
in several papers from a theoretical point of view and recently in the case of bi-univalent
functions (see [21–28] also the references cited therein).

Here, in this article, we associate certain bi-univalent functions with Gegenbauer
polynomials and then explore some properties of the class of bi-starlike functions based on
earlier work of Srivastava et al. (also, see [11]). In addition, motivated by recent works by
Murugusundaramoorthy et al. [29], Wannas [30] and Amourah et al. [31], we introduce
a new subclass of the Yamakawa-type bi-starlike function class (see [32]) associated with
Gegenbauer polynomials, obtain upper bounds of the initial Taylor coefficients |a2| and
|a3| for the functions f ∈ GYΣ

(
Φλ

`

)
defined by subordination, and consider the remarkable

Fekete–Szegő problem. We also provide relevant connections of our results with those of
some earlier investigations.

First, we define a new subclass Yamakawa-type bi-starlike in the open unit disk,
associated with Gegenbauer polynomials as below.

Unless otherwise stated, we let 0 ≤ ϑ ≤ 1, λ >
1
2

and ` ∈
(

1
2

, 1
]

.

Definition 1. For 0 ≤ ϑ ≤ 1 and ` ∈
(

1
2

, 1
]

, a function f ∈ Σ of the form (9) is said to be in the

class GYΣ
(
ϑ, Φλ

`

)
if the following subordinations hold:

f (z)
(1− ϑ)z + ϑz f ′(z)

≺ Φλ
` (z), (11)

and
g(w)

(1− ϑ)w + ϑwg′(w)
≺ Φλ

` (w) (12)

where z, w ∈ ∆, Φλ
` is given by (6), and g = f−1 is given by (10).
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By specializing the parameter ϑ, we state a new subclass of Yamakawa-type bi-starlike
in the open unit disk, associated with Gegenbauer polynomials as below:

Remark 1. For ϑ = 1, we get YS∗Σ
(
Φλ

`

)
:= GYΣ

(
1, Φλ

`

)
, thus f ∈ YS∗Σ

(
Φλ

`

)
if f ∈ Σ and the

following subordinations hold:

f (z)
z f ′(z)

≺ Φλ
` (z) and

g(w)

wg′(w)
≺ Φλ

` (w)

where z, w ∈ ∆, and g = f−1 is given by (10).

Remark 2. For ϑ = 0, we get NΣ
(
Φλ

`

)
:= GYΣ

(
0, Φλ

`

)
, thus f ∈ NΣ

(
Φλ

`

)
if f ∈ Σ and the

following subordinations hold:

f (z)
z
≺ Φλ

` (z) and
g′(w)

w
≺ Φλ

` (w)

where z, w ∈ ∆ and g = f−1 is given by (10).

Note that if in the above Remarks 1 and 2, we choose λ = 1 or λ =
1
2

, then we can

state the new subclasses of YS∗Σ
(
Φλ

`

)
and NΣ

(
Φλ

`

)
related with Chebyshev polynomials

and Legendre polynomials, respectively.

2. Initial Taylor Coefficients Estimates for the Functions of GYΣ

(
ϑ, Φλ

`

)

To obtain our first results, we need the following lemma:

Lemma 1 ([33], p. 172). Assume that ω(z) =
∞
∑

n=1
ωnzn, z ∈ U, is an analytic function in U such

that |ω(z)| < 1 for all z ∈ U. Then,

|ω1| ≤ 1, |ωn| ≤ 1− |ω1|2, n = 2, 3, . . . .

In the next result, we obtain the upper bounds for the modules of the first two
coefficients for the functions that belong to the class GYΣ

(
ϑ, Φλ

`

)
.

Theorem 1. Let f given by (9) be in the class GYΣ
(
ϑ, Φλ

`

)
. Then,

|a2| ≤
2λ`
√

2λ`√∣∣(1− 6ϑ + 6ϑ2)4λ2`2 − 2
(
2(λ)2`2 − λ

)
(1− 2ϑ)2

∣∣
, (13)

and

|a3| ≤
2(λ`)2(1− 2ϑ− 2ϑ2)

|(1− 3ϑ)(1− 2ϑ)2| +
2λ`

|1− 3ϑ| , (14)

where ϑ 6= 1
3

.

Proof. Let f ∈ GYΣ
(
ϑ, Φλ

`

)
and g = f−1. From the definition in Formulas (11) and (12),

we have
f (z)

(1− ϑ)z + ϑz f ′(z)
= Φλ

` (u(z)) (15)

and
g(w)

(1− ϑ)w + ϑwg′(w)
= Φλ

` (v(w)), (16)
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where the functions u and v are of the form

u(z) = c1z + c2z2 + . . . , (17)

and
v(w) = d1w + d2w2 + . . . , (18)

are analytic in ∆ with u(0) = 0 = v(0), and |u(z)| < 1, |v(w)| < 1, for all z, w ∈ ∆. From
Lemma 1 it follows that

|cj| ≤ 1 and |dj| ≤ 1, for all j ∈ N. (19)

Replacing (17) and (18) in (15) and (16), respectively, we have

f (z)
(1− ϑ)z + ϑz f ′(z)

= 1 +Gλ
1 (`)u(z) +Gλ

2 (`)u
2(z) + . . . , (20)

and
g(w)

(1− ϑ)w + ϑwg′(w)
= 1 +Gλ

1 (`)v(w) +Gλ
2 (`)v

2(w) + . . . . (21)

In view of (9) and (10), from (20) and (21), we obtain

1 + (1− 2ϑ)a2z +
[
(1− 3ϑ)a3 − 2ϑ(1− 2ϑ)a2

2

]
z2 + . . .

= 1 +Gλ
1 (`)c1z +

[
Gλ

1 (`)c2 +Gλ
2 (`)c

2
1

]
z2 + . . . ,

and

1− (1− 2ϑ)(α)a2w +
{(

1− 4ϑ + 2ϑ2
)

a2
2 − (1− 3λ)a3

}
w2 + . . .

= 1 +Gλ
1 (`)d1w +

[
Gλ

1 (`)d2 +Gλ
2 (`)d

2
1

]
w2 + . . . ,

which yields the following relations:

(1− 2ϑ)a2 = Gλ
1 (`)c1, (22)

(1− 3ϑ)a3 − 2ϑ(1− 2ϑ)a2
2 = Gλ

1 (`)c2 +Gλ
2 (`)c

2
1, (23)

and

−(1− 2ϑ)a2 = Gλ
1 (`)d1, (24)

−(1− 3ϑ)a3 +
(

1− 4ϑ + 2ϑ2
)

a2
2 = Gλ

1 (`)d2 +Gλ
2 (`)d

2
1. (25)

From (22) and (24), it follows that

c1 = −d1, (26)

and

2(1− 2ϑ)2a2
2 = [Gλ

1 (`)]
2(c2

1 + d2
1),

a2
2 =

[Gλ
1 (`)]

2

2(1− 2ϑ)2 (c
2
1 + d2

1) (27)

Adding (23) and (25), using (27), we obtain

a2
2 =

[Gλ
1 (`)]

3(c2 + d2)

(1− 6ϑ + 6ϑ2)[Gλ
1 (`)]

2 − 2(1− 2ϑ)2Gλ
2 (`)

. (28)
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Applying (19) for the coefficients c2 and d2 and using (8), we obtain the
Inequality (13).

By subtracting (25) from (23), using (26) and (27), we get

a3 =
Gλ

1 (`)(c2 − d2)

2(1− 3ϑ)
+

(
1− 2ϑ− 2ϑ2)[Gλ

1 (`)]
2

2(1− 3ϑ)
a2

2 (29)

=

(
1− 2ϑ− 2ϑ2)[Gλ

1 (`)]
2(c2

1 + d2
1)

4(1− 3ϑ)(1− 2ϑ)2 +
Gλ

1 (`)(c2 − d2)

2(1− 3ϑ)
.

Using (8) and once again applying (19) for the coefficients c1, c2, d1, and d2, we deduce
the required Inequality (14).

By taking ϑ = 0 or ϑ = 1 and ` ∈ (0, 1), one can easily state the upper bounds for
|a2| and |a3| for the function classes GYΣ(0, Φ) =: NΣ

(
Φλ

`

)
and GYΣ(1, Φ) =: YS∗Σ

(
Φλ

`

)
,

respectively, as follows:

Remark 3. Let f given by (9) be in the class NΣ
(
Φλ

`

)
. Then,

|a2| ≤
2λ`
√

2λ`√∣∣4λ2`2 − 2
(
2(λ)2`2 − λ

)∣∣
,

and
|a3| ≤ 2(λ`)2 + 2λ`.

Remark 4. Let f given by (9) be in the class YS∗Σ
(
Φλ

`

)
. Then,

|a2| ≤
2λ`
√

2λ`√∣∣4λ2`2 − 2
(
2(λ)2`2 − λ

)∣∣
,

and
|a3| ≤ 3(λ`)2 + λ`.

Remark 5. Let f given by (9) be in the class GY∗Σ
(
ϑ, Φ1

`

)
. Then,

|a2| ≤
2`
√

2`√∣∣(1− 6ϑ + 6ϑ2)4`2 − 2(4`2 − 1)(1− 2ϑ)2
∣∣
,

and

|a3| ≤
2`2(1− 2ϑ− 2ϑ2)

|(1− 3ϑ)(1− 2ϑ)2| +
2`

|1− 3ϑ| ,

where ϑ 6= 1
3

.

Remark 6. Let f given by (9) be in the class GY∗Σ
(

ϑ, Φ1/2
`

)
. Then, for ` 6= 1√

2
,

|a2| ≤
`
√
`√∣∣(1− 6ϑ + 6ϑ2)`2 − (3`2 − 1)(1− 2ϑ)2

∣∣
,

and

|a3| ≤
`2(1− 2ϑ− 2ϑ2)

2|(1− 3ϑ)(1− 2ϑ)2| +
`

|1− 3ϑ| ,
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where ϑ 6= 1
3

.

In the above Remarks 3 and 4, by fixing λ = 1 and λ =
1
2

, we obtain the new estimates

of |a2| and |a3| for the function classes YS∗Σ
(
Φλ

`

)
and NΣ

(
Φλ

`

)
related with Chebyshev

polynomials and Legendre polynomials, respectively.

3. Fekete–Szegő Inequality for the Function Class GYΣ

(
ϑ, Φλ

`

)

Due to the result of Zaprawa [34], in this section, we obtain the Fekete–Szegő inequality
for the function classes GYΣ

(
ϑ, Φλ

`

)
.

Theorem 2. Let f given by (9) be in the class GYΣ
(
ϑ, Φλ

`

)
, and µ ∈ R. Then, we have

|a3 − µa2
2| ≤





2λ`

|1− 3ϑ| , if |h(µ)| ≤ 1
2|1− 3ϑ| ,

4λ`|h(µ)|, if |h(µ)| ≥ 1
2|1− 3ϑ| ,

where

h(µ) :=
2λ`2[2λ2`2(1− 2ϑ− 2ϑ2)− µ(1− 3ϑ)

]

(1− 3ϑ)
{

2λ`2(1− 6ϑ + 6ϑ2)− (1− 2ϑ)2[2(λ + 1)`2 − 1]
} ,

and ϑ 6= 1
3

.

Proof. If f ∈ GYΣ
(
ϑ, Φλ

`

)
is given by (9), from (28) and (29), we have

a3 − µa2
2 =

Gλ
1 (`)(c2 − d2)

2(1− 3ϑ)
+

((
1− 2ϑ− 2ϑ2)[Gλ

1 (`)]
2

2(1− 3ϑ)
− µ

)
a2

2

=
Gλ

1 (`)(c2 − d2)

2(1− 3ϑ)
+

((
1− 2ϑ− 2ϑ2)[Gλ

1 (`)]
2

2(1− 3ϑ)
− µ

)

× [Gλ
1 (`)]

3(c2 + d2)

(1− 6ϑ + 6ϑ2)[Gλ
1 (`)]

2 − 2(1− 2ϑ)2Gλ
2 (`)

=Gλ
1 (`)

[(
h(µ) +

1
2(1− 3ϑ)

)
c2 +

(
h(µ)− 1

2(1− 3ϑ)

)
d2

]
,

where

h(µ) =
(
(
1− 2ϑ− 2ϑ2)[Gλ

1 (`)]
2 − 2µ(1− 3ϑ))[Gλ

1 (`)]
3

2(1− 3ϑ){(1− 6ϑ + 6ϑ2)[Gλ
1 (`)]

2 − 2(1− 2ϑ)2Gλ
2 (`)}

.

Now, by using (8)

a3 − µa2
2 =2λ`

[(
h(µ) +

1
2(1− 3ϑ)

)
c2 +

(
h(µ)− 1

2(1− 3ϑ)

)
d2

]
,

where

h(µ) =
2λ2`2[2λ2`2(1− 2ϑ− 2ϑ2)− µ(1− 3ϑ)

]

(1− 3ϑ)
{

2λ2`2(1− 2ϑ + 2ϑ2)− λ(1− 2ϑ)2[2(λ + 1)`2 − 1]
}

=
2λ`2[2λ2`2(1− 2ϑ− 2ϑ2)− µ(1− 3ϑ)

]

(1− 3ϑ)
{

2λ`2(1− 6ϑ + 6ϑ2)− (1− 2ϑ)2[2(λ + 1)`2 − 1]
}

Therefore, in view of (8) and (19), we conclude that the required inequality holds.
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4. The Subclass MΣ

(
τ, Φλ

`

)
of Bi-Univalent Functions

In [35] Obradović et al. gave some criteria for univalence expressed by Re f ′(z) > 0
for the linear combination

τ

(
1 +

z f ′′(z)
f ′(z)

)
+ (1− τ)

1
f ′(z)

, τ ≥ 1, z ∈ ∆.

Based on the above definitions, recently, Lashin [36] introduced and studied new
subclasses of the bi-univalent function. In our further discussions, unless otherwise stated,

we let τ ≥ 1, λ >
1
2

, and ` ∈
(

1
2

, 1
]

.

Definition 2. A function f ∈ Σ given by (9) is said to be in the class MΣ
(
τ, Φλ

`

)
if it satisfies

the conditions

τ

(
1 +

z f ′′(z)
f ′(z)

)
+ (1− τ)

1
f ′(z)

≺ Φλ
` (z) (30)

and

τ

(
1 +

wg′′(w)

g′(w)

)
+ (1− τ)

1
g′(w)

≺ Φλ
` (w) (31)

where τ ≥ 1, z, w ∈ ∆, Φλ
` is given by (6), and the function g = f−1 is given by (10).

Remark 7. For the particular case τ = 1, a function f ∈ Σ given by (9) is said to be in the class
MΣ

(
Φλ

`

)
=: KΣ

(
Φλ

`

)
if it satisfies the subordination relations

1 +
z f ′′(z)
f ′(z)

≺ Φλ
` (z) and 1 +

wg′′(w)

g′(w)
≺ Φλ

` (w),

z, w ∈ ∆, Φλ
` is given by (6), and g = f−1 is given by (10).

Theorem 3. Let f be given by (9) and f ∈MΣ
(
τ, Φλ

`

)
, with τ ≥ 1. Then,

|a2| ≤ min





λ`

2(2τ − 1)
;

λ`
√

2λ`

2
√∣∣(1 + τ)λ2`2 − 4(2τ − 1)2[2`2(λ)2 − λ]

∣∣



, (32)

and

|a3| ≤ min
{

2λ`

3(3τ − 1)
+

λ2`2

4(2τ − 1)2 ;

2λ`

3(3τ − 1)
+

2λ3`3
∣∣(1 + τ)λ2`)2

1 − (2τ − 1)2[2`2(λ)2 − λ]
∣∣

}
.

Proof. f ∈MΣ
(
τ, Φλ

`

)
, from (30) and (31) it follows that

τ

(
1 +

z f ′′(z)
f ′(z)

)
+ (1− τ)

1
f ′(z)

= Φλ
` (u(z)), (33)

and

τ

(
1 +

wg′′(w)

g′(w)

)
+ (1− τ)

1
g′(w)

= Φλ
` (v(w)), (34)

where the functions u and v are analytic in ∆ with u(0) = 0 = v(0), such that |u(z)| < 1,
|v(w)| < 1, for all z, w ∈ ∆, and are of the form (17) and (18), respectively.
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From (33) and (34), we have

1 + 2(2τ − 1)a2z +
[
3(3τ − 1)a3 + 4(1− 2τ)2a2

2

]
z2 + . . .

= 1 +Gλ
1 (`)c1z +

[
Gλ

1 (`)c2 +Gλ
2 (`)c

2
1

]
z2 + . . . ,

and

1− 2(2τ − 1)a2w +
[
2(5τ − 1)a2

2 − 3(3τ − 1)a3

]
w2 − . . .

= 1 +Gλ
1 (`)d1w +

[
Gλ

1 (`)d2 +Gλ
2 (`)d

2
1

]
w2 + . . . ,

and equating the coefficients of the above two relations, we get

2(2τ − 1)a2 = Gλ
1 (`)c1, (35)

3(3τ − 1)a3 + 4(1− 2τ)a2
2 = Gλ

1 (`)c2 +Gλ
2 (`)c

2
1, (36)

and

−2(2τ − 1)a2 = Gλ
1 (`)d1, (37)

2(5τ − 1)a2
2 − 3(3τ − 1)a3 = Gλ

1 (`)d2 +Gλ
2 (`)d

2
1. (38)

From (35) and (37), we get
p1 = −q1 (39)

From (35), by using the Inequality (19) for the coefficients cj and dj, from (8), we have

|a2| ≤
Gλ

1 (`)

2(2τ − 1)
=

λ`

(2τ − 1)
.

Furthermore,

8(2τ − 1)2a2
2 =

(
Gλ

1 (`)
)2(

c2
1 + d2

1

)
,

that is,

a2
2 =

(
Gλ

1 (`)
)2(c2

1 + d2
1
)

8(2τ − 1)2 . (40)

Thus, from the Inequality (19) and using (8), we obtain

|a2| ≤
Gλ

1 (`)

4(2τ − 1)
=

λ`

2(2τ − 1)
. (41)

Now, from (36), (38) and using (40), we get

[
2(1 + τ)

(
Gλ

1 (`)
)2
− 8(2τ − 1)2Gλ

2 (`)
]
a2

2 =
(
Gλ

1 (`)
)3

(c2 + d2). (42)

Thus, according to (42), we obtain

a2
2 =

(
Gλ

1 (`)
)3
(c2 + d2)

2(1 + τ)
(
Gλ

1 (`)
)2 − 8(2τ − 1)2Gλ

2 (`)
,

hence,

|a2| ≤
λ`
√

2λ`

2
√∣∣(1 + τ)λ2`2 − 4(2τ − 1)2[2`2(λ)2 − λ]

∣∣
, (43)

and the Inequality (32) is proved.
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From (36), (38) and using (39), we get

a3 =
Gλ

1 (`)(c2 − d2)

6(3τ − 1)
+ a2

2, (44)

which implies

|a3| ≤
2λ`

3(3τ − 1)
+ |a2

2|. (45)

From this inequality, using (41), we obtain

|a3| ≤
2λ`

3(3τ − 1)
+

λ2`2

4(2τ − 1)2 .

Combining (45) and (43), it follows that

|a3| ≤
2λ`

3(3τ − 1)
+

2λ3`3
∣∣(1 + τ)λ2`)2

1 − (2τ − 1)2[2`2(λ)2 − λ]
∣∣ .

Motivated by the result of Zaprawa [34], we discuss the Fekete–Szegő inequality [37]
for the functions f ∈MΣ

(
τ, Φλ

`

)
.

Theorem 4. For ν ∈ R, let f ∈MΣ
(
τ, Φλ

`

)
be given by (9). Then,

∣∣∣a3 − νa2
2

∣∣∣ ≤





2λ`

3(3τ − 1)
, if |h(ν)| ≤ 1

6(3τ − 1)
,

4|h(ν)|, if |h(ν)| ≥ 1
6(3τ − 1)

,

where

h(ν) =
(1− ν)λ`2

4
{
(1 + τ)λ`2 − (2τ − 1)2[2`2(λ + 1)− 1]

} . (46)

Proof. If f ∈MΣ
(
τ, Φλ

`

)
be given by (9), from (44) we have

a3 − νa2
2 =

Gλ
1 (`)(c2 − d2)

6(3τ − 1)
+ (1− ν)a2

2. (47)

By substituting (42) in (47), we obtain

a3 − νa2
2 =

Gλ
1 (`)(c2 − d2)

6(3τ − 1)
+

(1− ν)
(
Gλ

1 (`)
)3
(c2 + d2)

2(1 + τ)
(
Gλ

1 (`)
)2 − 8(2τ − 1)2Gλ

2 (`)

= Gλ
1 (`)

[(
h(ν) +

1
6(3τ − 1)

)
c2 +

(
h(ν)− 1

6(3τ − 1)

)
d2

]
,

where

h(ν) =
(1− ν)

(
Gλ

1 (`)
)2

2(1 + τ)
(
Gλ

1 (`)
)2 − 8(2τ − 1)2Gλ

2 (`)
.

From (8), it follows

a3 − νa2
2 = 2λ`

[(
h(ν) +

1
6(3τ − 1)

)
c2 +

(
h(ν)− 1

6(3τ − 1)

)
d2

]
, (48)

where the function h is given by (46). Hence, by using the triangle inequality for the
modulus of (48) together with (19), we get our result.
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For ν = 1 the above theorem reduces to the following special case:

Remark 8. If f ∈MΣ
(
τ, Φλ

`

)
is given by (9), then

∣∣∣a3 − a2
2

∣∣∣ ≤ 2λ`

3(3τ − 1)
.

5. Conclusions

Yamakawa-type bi-starlike functions related with the Gegenbauer polynomials are
defined for the first time, and initial Taylor coefficients and Fekete–Szegő inequality are

obtained. Further, by fixing λ = 1 or λ =
1
2

, the Gegenbauer polynomials lead to the
Chebyshev polynomials and the Legendre polynomials, respectively. Hence, our results
represent a new study of the Yamakawa family of bi-starlike functions associated with
Chebyshev and Legendre polynomials, which are also not considered in the literature. We
have left this as an exercise to interested readers.
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Abstract: We study the Hadamard product features of certain subclasses of p-valent meromorphic
functions defined in the punctured open-unit disc using the q-difference operator. For functions
belonging to these subclasses, we obtained certain coefficient estimates and inclusion characteristics.
Furthermore, linkages between the results given here and those found in previous publications
are highlighted.
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1. Introduction

LetMp stand for the class of functions of the form:

f (z) = z−p +
∞

∑
k=−p+1

akzk, (1)

which are analytic in the perforated unit disc U∗ = U\{0} = {z : z ∈ C : 0 < |z| < 1}. The
classMp refers to the a class of p-valent meromorphic functions. It is worth noting that
M1 =M, which is the class of univalent meromorphic functions. If the function g ∈ Mp
is given by

g(z) = z−p +
∞

∑
k=−p+1

bkzk,

then the Hadamard product (or convolution) of f and g is provided by

( f ∗ g)(z) = z−p +
∞

∑
k=−p+1

akbkzk = (g ∗ f )(z).

Interesting traits such as coefficient estimates, subordination relations and univalence
features related some subclasses of p-valent functions were obtained in [1–3] (see also, [4]).
With the help of the q-differential operator, a new subclass of meromorphic multivalent
functions in the Janowski domain were introduced by Bakhtiar et al. in [5] (see also, [6]).
Moreover, new subclasses of meromorphically p-valent functions were defined using
q-derivative operator and investigations related to geometric properties of the class are
conducted in [7–9].

If f and g are analytic in the open unit disc U, we say that f is subordinate to g, written
as f ≺ g in U or f (z) ≺ g(z)(z ∈ U), if there exists a Schwarz function w(z), which (by
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definition) is analytic in U with w(0) = 0 and |w(z)| < 1, (z ∈ U) such that f (z) = g(w(z))
(z ∈ U) [10].

For 0 < q < 1, the q-difference operator, which was introduced by Jackson [11], is
characterised with

∂q f (z) =





f (qz)− f (z)
(q−1)z , z 6= 0,

f
′
(0), z = 0.

The Jackson q-difference operator is another name for the q-difference operator. Addi-
tionally, for f given by (1), one can write

∂q f (z) = −q−p[p]qz−p−1 +
∞

∑
k=−p+1

[k]qakzk−1(z ∈ U∗), (2)

where [k]q =
(

1− qk
)

/(1− q) is the well-known q-bracket, limq→1− [k]q = k and

limq→1− ∂q f (z) = f ′(z).
Now, for n ∈ N0 = N∪ {0}, we define the operator Dn

p,q :Mp −→Mp with the help
of the q-difference operator, as follows:

D0
p,q f (z) = f (z),

D1
p,q f (z) = z−p∂q

(
zp+1 f (z)

)
,

Dn
p,q f (z) = z−p∂q

(
zp+1Dn−1

p,q f (z)
)
(n ∈ N),

then

Dn
p,q f (z) = z−p +

∞

∑
k=−p+1

[k + p + 1]nq akzk (n ∈ N0), (3)

which satisfies the following recurrence relation:

qp+1z∂q

(
Dn

p,q f (z)
)
= Dn+1

p,q f (z)− [p + 1]qD
n
p,q f (z). (4)

Definition 1. Utilising the q-derivative ∂q f (z), the subclassesMS∗p,q(A, B) andMKp,q(A, B)
are introduced as follows:

MS∗p,q(A, B) =

{
f ∈ Mp :

−qpz∂q f (z)
[p]q f (z)

≺ 1 + Az
1 + Bz

}
, (5)

(0 < q < 1;−1 ≤ B < A ≤ 1; z ∈ U),

and

MKp,q(A, B) =

{
f ∈ Mp :

−qp∂q
(
z∂q f (z)

)

[p]q∂q f (z)
≺ 1 + Az

1 + Bz
, z ∈ U

}
, (6)

(0 < q < 1;−1 ≤ B < A ≤ 1; z ∈ U).

Using (5) and (6), we have the following equivalence relation:

f (z) ∈ MKp,q(A, B)⇐⇒ − qpz∂q f (z)
[p]q

∈ MS∗p,q(A, B). (7)

Remark 1. We list the following subclasses by specialising the parameters p, q, A and B:

(i)MS∗p,q(1− 2α,−1) =MS∗p,q(α) = { f ∈ Mp : Re
(
− qpz∂q f (z)

[p]q f (z)

)
> α; 0 ≤ α < 1, z ∈ U}

the subclass of p-valent meromorphic q-starlike functions, andMKp,q(1− 2α,−1) =MKp,q(α) =
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{ f ∈ Mp : Re
(
− qp∂q(z∂q f (z))

[p]q∂q f (z)

)
> α; 0 ≤ α < 1, z ∈ U} the subclass of p-valent meromorphic

q-convex functions;

(ii)MS∗1,q(1− 2α,−1) = MS∗q(α) = { f ∈ M : Re
(
− qz∂q f (z)

f (z)

)
> α; 0 ≤ α < 1, z ∈ U}

the subclass of meromorphic q-starlike functions, andMK1,q(1− 2α,−1) =MKq(α) = { f ∈
M : Re

(
− q∂q(z∂q f (z))

∂q f (z)

)
> α; 0 ≤ α < 1, z ∈ U} the subclass of meromorphic q-convex

functions;
(iii) limq→1−MS∗p,q(A, B) =MS∗p(A, B) = { f ∈ Mp : − z f ′(z)

p f (z) ≺ 1+Az
1+Bz ; −1 ≤ B < A ≤

1, z ∈ U}, and limq→1−MKp,q(A, B) = MKp(A, B) = { f ∈ Mp : − 1
p

(
1 + z f ′′(z)

f ′(z)

)
≺

1+Az
1+Bz ; −1 ≤ B < A ≤ 1, z ∈ U}, were introduced and studied by Ali and Ravichandran [12];

(iv) limq→1−MS∗1,q(1 − 2α,−1) = MS∗(α) = { f ∈ M : Re
(
− z f ′(z)

f (z)

)
> α; 0 ≤ α <

1, z ∈ U}, and limq→1−MKp,q(1− 2α,−1) =MK(α) = { f ∈ M : Re
(
−1− z f ′′(z)

f ′(z)

)
> α;

0 ≤ α < 1, z ∈ U}, were introduced and studied by Kaczmarski [13];
(v) limq→1−MS∗1,q(1,−1) = MS∗, and limq→1−MK1,q(1,−1) = MK, which are well-
known function classes of meromorphic starlike and meromorphic convex functions, respectively; see
Pommerenke [14], Clunie [15] and Miller [16] for more details.

Definition 2. For n ∈ N0 and 0 < q < 1, we define the following subclasses:

MS∗p,q(n; A, B) =
{

f ∈ Mp : Dn
p,q f (z) ∈ MS∗p,q(A, B)

}
, (8)

(n ∈ N0; 0 < q < 1;−1 ≤ B < A ≤ 1; z ∈ U),

and
MKp,q(n; A, B) =

{
f ∈ Mp : Dn

p,q f (z) ∈ MKp,q(A, B)
}

, (9)

(n ∈ N0; 0 < q < 1;−1 ≤ B < A ≤ 1; z ∈ U).

It is easy to show that

f (z) ∈ MKp,q(n; A, B) ⇐⇒ − qpz∂q f (z)
[p]q

∈ MS∗p,q(n; A, B). (10)

There is extensive literature dealing with convolution properties of different fami-
lies of analytic and meromorphic functions; for details, see [17–23]. More recently, the
quantum derivative was utilised by Seoudy and Aouf [24] (see also [25]) to introduce the
convolution features for certain classes of analytic functions. Here, we use the quantum
derivative to obtain some convolution properties of the meromorphic functions. For this
purpose, we defined the new classes MS∗p,q(A, B) and MKp,q(A, B). The convolution
results are followed by some consequences such as necessary and sufficient conditions, the
estimates of coefficients and inclusion characteristics of the subclassesMS∗p,q(n; A, B) and
MKp,q(n; A, B).

2. Convolution Properties

Theorem 1. The function f given by (1) is in the classMS∗p,q(A, B), if and only if

zp
[

f (z) ∗ 1 + (C− q)z
zp(1− z)(1− qz)

]
6= 0 (z ∈ U), (11)

for all

C =
B + e−iθ

A− [p]qB− q[p− 1]qe−iθ ; θ ∈ [0, 2π), (12)
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and also for C = 0.

Proof. It is simple to check the following two equalities

f (z) ∗ 1
zp(1− z)

= f (z) (13)

and

f (z) ∗
(

1
qzp(1− z)(1− qz)

−
[1 + p]q

qzp(1− z)

)
= qpz∂q f (z) (14)

In view of (5), f ∈ MS∗p,q(A, B), if and only if (1.4) holds. Since the function 1+Az
1+Bz

is analytic function on U, it follows that f (z) 6= 0, z ∈ U∗; that is zp f (z) 6= 0, z ∈ U, and
using the first identity of (13). That is the same as saying that the relation (11) is satisfied
for C = 0. According to the concept of subordination of two functions in (14), there exists
an analytic function w(z) in U with w(0) = 0, |w(z)| < 1 in such a way that

−qpz∂q f (z)
[p]q f (z)

=
1 + Aw(z)
1 + Bw(z)

(z ∈ U),

which leads to

−qpz∂q f (z)
[p]q f (z)

6= 1 + Aeiθ

1 + Beiθ ( f (z) 6= 0, z ∈ U; 0 ≤ θ < 2π),

or
zp
[(

qpz∂q f (z)
)(

1 + Beiθ
)
+ [p]q f (z)

(
1 + Aeiθ

)]
6= 0 (15)

We may now deduce the following from (13)–(15):

zp

[(
f (z) ∗

1− [1 + p]q(1− qz)

qzp(1− z)(1− qz)

)(
1 + Beiθ

)
+
(

1 + Aeiθ
)(

f (z) ∗ 1
zp(1− z)

)]
6= 0,

zp


 f (z) ∗




(
1− [1 + p]q + q[1 + p]qz

)(
1 + Beiθ)+ q(1− qz)

(
1 + Aeiθ)

qzp(1− z)(1− qz)




 6= 0,

but 1− [1 + p]q = −q[p]q; then, the condition became

zp


 f (z) ∗




q
(
[1 + p]qz− [p]q

)(
1 + Beiθ)+ q(1− qz)

(
1 + Aeiθ)

qzp(1− z)(1− qz)




 6= 0,

or,

zp


 f (z) ∗




(
[1 + p]qz− [p]q

)(
1 + Beiθ)+ (1− qz)

(
1 + Aeiθ)

zp(1− z)(1− qz)




 6= 0,

or, equivalent to

zp


 f (z) ∗




1− [p]q +
(

A− [p]qB
)

eiθ +
(
[1 + p]q − q +

(
[1 + p]qB− qA

)
eiθ
)

z

zp(1− z)(1− qz)




 6= 0,

or,

zp


 f (z) ∗



−q[p− 1]q +

(
A− [p]qB

)
eiθ +

(
[1 + p]q − q +

(
[1 + p]qB− qA

)
eiθ
)

z

zp(1− z)(1− qz)




 6= 0,
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or,

zp




f (z) ∗




1 +

(
[1+p]q−q+

(
[1+p]qB−qA

)
eiθ
)

z

−q[p−1]q+
(

A−[p]qB
)

eiθ

zp(1− z)(1− qz)

((
A− [p]qB

)
eiθ − q[p− 1]q

)






6= 0,

by dividing both sides by the non-zero quantity
(

A− [p]qB
)

eiθ − q[p− 1]q, then we have

zp




f (z) ∗




1 +

(
[1+p]q−q+

(
[1+p]qB−qA

)
eiθ
)

z

−q[p−1]q+
(

A−[p]qB
)

eiθ

zp(1− z)(1− qz)






6= 0,

which is the same as

zp




f (z) ∗




1 +

(
[1+p]q−q+

(
[1+p]qB−qA

)
eiθ+q

(
−q[p−1]q+

(
A−[p]qB

)
eiθ
)

−q[p−1]q+
(

A−[p]qB
)

eiθ
− q

)
z

zp(1− z)(1− qz)






6= 0,

or,

zp




f (z) ∗




1 +

(
[1+p]q−q−q2[p−1]q+

(
[1+p]q−q[p]q

)
Beiθ

−q[p−1]q+
(

A−[p]qB
)

eiθ
− q

)
z

zp(1− z)(1− qz)






6= 0,

but [1 + p]q − q− q2[p− 1]q = [1 + p]q − q[p]q = 1, then the convolution condition became

zp


 f (z) ∗




1 +
(

e−iθ+B
A−[p]qB−q[p−1]qe−iθ − q

)
z

zp(1− z)(1− qz)





 6= 0,

This leads to (11), proving the first part of Theorem 1.
In contrast, because (11) holds for C = 0, it follows that zp f (z) 6= 0 for all z ∈ U, and

hence the function.

ϕ(z) =
−qpz∂q f (z)
[p]q f (z)

,

is analytic in U (i.e., it is regular at z0 = 0, with ϕ(0) = 1). We obtain that because the
assumption (11) is equivalent to (15), as shown in the first section of the proof.

−qpz∂q f (z)
[p]q f (z)

6= 1 + Aeiθ

1 + Beiθ (θ ∈ [0, 2π), f (z) 6= 0, z ∈ U), (16)

if we denote
ψ(z) =

1 + Az
1 + Bz

, (17)

therefore ϕ(U) ∩ ψ(∂U) = φ, with the help of the relation (16). Thus, the simply con-
nected domain ϕ(U) is included in a connected component of C\ψ(∂U). As a result,
a connected component of C\ψ(∂U) includes the simply connected domain ϕ(U). The
fact that ϕ(0) = ψ(0) and the univalence of the function ψ lead to the conclusion that
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ϕ(z) ≺ ψ(z). This completes the proof of the second item of Theorem 1 by representing the
subordination (5), i.e., f ∈ MS∗p,q(A, B).

Remark 2. (i) We obtain the results obtained in the paper of Aouf et al. in [17] (Theorem 4, with
λ = 0 and b = 1) by putting p = 1 and q → 1− in Theorem 1. See also, Bulboacă et al. [20]
(Theorem 1, with b = 1) and El-Ashwah [21] (Theorem 1, with p = 1);

(ii) Putting p = 1, q → 1−, A = 1 and B = −1 in Theorem 1, we obtain the result of
Aouf et al. [18] (Theorem 1, with b = m = 1).

In Theorem 1, we have the following corollary if A = 1− 2α and B = −1.

Corollary 1. The function f defined by (1) is in the classMS∗p,q(α), if and only if

zp


 f (z) ∗

1+

(
(1+q2 [p−1]q)e−iθ−q(1−2α+[p]q)

1−2α+[p]q−q[p−1]qe−iθ

)
z

zp(1−z)(1−qz)


 6= 0 (z ∈ U),

Taking q→ 1−, A = 1− 2α and B = −1 in Theorem 1, we obtain the following corollary.

Corollary 2. The function f expressed in (1) belongs toMS∗p(α), if and only if

zp


 f (z) ∗

1 +
[

2(1−α)+p(e−iθ−1)
1−2α+p−(p−1)e−iθ

]
z

zp(1− z)2


 6= 0 (z ∈ U),

Theorem 2. The function f of the form (1) is a member of the classMKp,q(A, B), if and only if

zp


 f (z) ∗

1− (1−qp+2)−q(1−qp−1)(C−q)
1−qp z− q(1−qp+1)(C−q)

1−qp z2

zp(1− z)(1− qz)(1− q2z)


 6= 0 (z ∈ U), (18)

for all C defined by (12), and also for C = 0.

Proof. If

g(z) =
1 + (C− q)z

zp(1− z)(1− qz)
, (19)

then

− qpz∂qg(z)
[p]q

=
−qpz
[p]q

[
1

(q− 1)z
(g(qz)− g(z))

]

which leads to

− qpz∂qg(z)
[p]q

=

1−
(
(1−qp+2)−q(1−qp−1)(C−q)

1−qp

)
z−

(
q(1−qp+1)(C−q)

1−qp

)
z2

zp(1− z)(1− qz)(1− q2z)
(20)

The following identity remains true for two functions, f and g, which belong toMp.

(
− qpz∂q f (z)

[p]q

)
∗ g(z) = f (z) ∗

(
− qpz∂qg(z)

[p]q

)
. (21)

Now, by using equivalence relation (7) and Theorem 1, the proof can be achieved by
applying (20) and (21).
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Remark 3. (i) Putting p = 1 and q→ 1− in Theorem 2, we arrive at the results of Aouf et al. [17]
(Theorem 6, with λ = 0 and b = 1) and Bulboacă et al. [20] (Theorem 2, with b = 1), and
El-Ashwah [21] (Theorem 2, with p = 1);
(ii) Putting p = 1, q → 1−, A = 1 and B = −1 in Theorem 2, we reach the conclusion of
Aouf et al. [18] (Theorem 3, with b = m = 1).

As a result, we have the following corollary by taking A = 1− 2α and B = −1 in
Theorem 2.

Corollary 3. The function f ∈ MKp,q(α), if and only if

zp
[

f (z) ∗ 1− Dz− Ez2

zp(1− z)(1− qz)(1− q2z)

]
6= 0 (z ∈ U),

where

D =

(
1− qp+2)− q

(
1− qp−1)

( (
1+q2[p−1]q

)
e−iθ−q(1−2α+[p]q)

1−2α+[p]q−q[p−1]qe−iθ

)

1− qp ,

and

E =
q
(
1− qp+1)((1 + q2[p− 1]q

)
e−iθ − q

(
1− 2α + [p]q

))

(1− qp)
(

1− 2α + [p]q − q[p− 1]qe−iθ
) .

As a result, we have the following corollary by taking q→ 1−, A = 1− 2α and B = −1
in Theorem 2.

Corollary 4. The function f ∈ MKp(α), if and only if

zp


 f (z) ∗

1− 2p(1−2α+p)−(2p2−p−1)e−iθ

p(1−2α+p)−p(p−1)e−iθ z− (p+2)(pe−iθ−(1−2α+p))−1
p(1−2α+p)−p(p−1)e−iθ z2

zp(1− z)3


 6= 0 (z ∈ U).

Theorem 3. The following are necessary and sufficient requirements for the function f ∈ Mp to
be in the classMS∗p,q(n; A, B):

1 +
∞

∑
k=−p+1

[k + p + 1]nq akzk+p 6= 0 (z ∈ U), (22)

or

1 +
∞

∑
k=−p+1

(
[k + p]qC + 1

)
[k + p + 1]nq akzk+p 6= 0 (z ∈ U), (23)

where C is defined by (12).

Proof. Let f ∈ Mp, then, by using Theorem 1 and (8) we have f ∈ MS∗p,q(n; A, B), if and
only if

zp
[(

Dn
q f
)
(z) ∗ 1 + (C− q)z

zp(1− z)(1− qz)

]
6= 0 (z ∈ U), (24)

for all C = B+e−iθ

A−[p]qB−q[p−1]qe−iθ ; θ ∈ [0, 2π), and also for C = 0. Since

1 + (0− q)z
zp(1− z)(1− qz)

= z−p +
∞

∑
k=−p+1

zk, (25)

by using (3) and (25) in (24) in case of C = 0, then we can obtain (22).
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Similarly, it can be shown that

1 + (C− q)z
zp(1− z)(1− qz)

= z−p +
∞

∑
k=−p+1

(
[k + p]qC + 1

)
zk, (26)

then using (3) and (26) in (24), we can obtain (23). The proof is complete.

The next theorem can be established using the same method, and the proof is eliminated.

Theorem 4. The following are necessary and sufficient requirements for the function f ∈ Mp to
be in the classMKp,q(n; A, B):

1−
∞

∑
k=−p+1

q[k]q[k + p + 1]nq akzk+p 6= 0 (z ∈ U), (27)

or

1−
∞

∑
k=−p+1

q[k]q
(
[k + p]qC + 1

)
[k + p + 1]nq akzk+p 6= 0 (z ∈ U). (28)

3. Estimates of Coefficients and Inclusion Characteristics

In this section, as an application of Theorems 3 and 4, we introduce some estimates of
the coefficients ak(k ≥ −p + 1) of functions of the form (1) which belong to the two main
classesMS∗p,q(n; A, B) andMKp,q(n; A, B), respectively. Moreover, we give the inclusion
relationships of the two classes.

Theorem 5. If the function f ∈ Mp fulfills the inequalities

∞

∑
k=−p+1

[k + p + 1]nq |ak| < 1, (29)

and
∞

∑
k=−p+1

(
[k + p]q|C|+ 1

)
[k + p + 1]nq |ak| < 1, (30)

then f ∈ MS∗p,q(n; A, B).

Proof. According to (29), a simple calculation shows that
∣∣∣∣∣1 +

∞

∑
k=−p+1

[k + p + 1]nq akzk+p

∣∣∣∣∣ ≥ 1−
∣∣∣∣∣

∞

∑
k=−p+1

[k + p + 1]nq akzk+p

∣∣∣∣∣

≥ 1−
∞

∑
k=−p+1

[k + p + 1]nq |ak||z|k+p

> 1−
∞

∑
k=−p+1

[k + p + 1]nq |ak| > 0
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which leads to satisfaction of (22), then f ∈ MS∗p,q(n; A, B). Similarly, using the assumption
(30), we conclude that

∣∣∣∣∣1 +
∞

∑
k=−p+1

(
[k + p]qC + 1

)
[k + p + 1]nq akzk+p

∣∣∣∣∣

≥ 1−
∣∣∣∣∣

∞

∑
k=−p+1

(
[k + p]qC + 1

)
[k + p + 1]nq akzk+p

∣∣∣∣∣

≥ 1−
∞

∑
k=−p+1

(
[k + p]q|C|+ 1

)
[k + p + 1]nq |ak||z|k+p

> 1−
∞

∑
k=−p+1

(
[k + p]q|C|+ 1

)
[k + p + 1]nq |ak| > 0,

which shows that (23) holds true and f ∈ MS∗p,q(n; A, B); the proof is finished.

Similarly, results regardingMKp,q(n; A, B) can be introduced as follows:

Theorem 6. If the function f ∈ Mp fulfills the inequalities

∞

∑
k=−p+1

q[k]q[k + p + 1]nq |ak| < 1, (31)

and
∞

∑
k=−p+1

q[k]q
(
[k + p]q|C|+ 1

)
[k + p + 1]nq |ak| < 1, (32)

then f ∈ MKp,q(n; A, B).

Now, using the appropriate technique due to Ahuja [26], we introduce the inclusion
relationships ofMS∗p,q(n; A, B) andMKp,q(n; A, B), respectively.

Theorem 7. If n ∈ No, then

MS∗p,q(n + 1; A, B) ⊂MS∗p,q(n; A, B). (33)

Proof. If f ∈ MS∗p,q(n + 1; A, B), then using Theorem 3, we can write

1 +
∞

∑
k=−p+1

[k + p + 1]n+1
q akzk+p 6= 0 (z ∈ U), (34)

or

1 +
∞

∑
k=−p+1

(
[k + p]qC + 1

)
[k + p + 1]n+1

q akzk+p 6= 0 (z ∈ U), (35)

but (34) and (35) can be written as follows:
(

1 +
∞

∑
k=−p+1

[k + p + 1]qzk+p

)
∗
(

1 +
∞

∑
k=−p+1

[k + p + 1]nq akzk+p

)
6= 0, (36)

and
(

1 +
∞

∑
k=−p+1

[k + p + 1]qzk+p

)
∗
(

1 +
∞

∑
k=−p+1

(
[k + p]qC + 1

)
[k + p + 1]nq akzk+p

)
6= 0. (37)
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Let us really define the function

h1(z) = 1 +
∞

∑
k=−p+1

[k + p + 1]qzk+p. (38)

We note that the assumption that h1(z) = 0 leads to |z| > 1, Thus, we deduce that
h1(z) 6= 0. Using the property that if h1 ∗ g 6= 0 and h1 6= 0, then g 6= 0. Thus from (36) and
(37) and using the function h1(z) 6= 0, we obtain

1 +
∞

∑
k=−p+1

[k + p + 1]nq akzk+p 6= 0, (39)

and

1 +
∞

∑
k=−p+1

(
[k + p]qC + 1

)
[k + p + 1]nq akzk+p 6= 0, (40)

then Theorem 3 tells us that f ∈ MS∗p,q(n; A, B).

The following theorem gives the inclusion relationship regardingMKp,q(n; A, B).

Theorem 8. For n ∈ N0, we have

MKp,q(n + 1; A, B) ⊂MKp,q(n; A, B). (41)

Our results in Theorems 7 and 8 above can be utilised to introduce the following consequences.

Corollary 5. Suppose that m = n + 1, n + 2, . . . (n ∈ N0). Then

f ∈ MS∗p,q(m; A, B) =⇒ f ∈ MS∗p,q(n; A, B).

Equivalently, if
Dm

q f (z) ∈ MS∗p,q(A, B),

then
f ∈ MS∗p,q(n; A, B).

Corollary 6. Suppose that m = n + 1, n + 2, . . . (n ∈ N0). Then

f ∈ MKp,q(m; A, B) =⇒ f ∈ MKp,q(n; A, B).

Equivalently, if
Dm

q f (z) ∈ MKp,q(A, B),

then
f ∈ MKp,q(n; A, B).

4. Conclusions

We have defined a new operator on the set of meromorphically multivalent functions.
With the help of this operator, we introduced the new subclasses MKp,q(n; A, B) and
MS∗p,q(n; A, B). The study was concentrated on convolution conditions. Our suggestions
for future studies on these subclasses is to use them in studies involving the theories of
differential subordination and superordination. Additionally, one can define the results
concerning the calculation of the bounds of coefficients of the bi-univalent functions, also
obtaining the Fekete–Szegö functionals.
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Abstract: In the research presented in this paper, confluent hypergeometric function is embedded
in the theory of strong differential superordinations. In order to proceed with the study, the form
of the confluent hypergeometric function is adapted taking into consideration certain classes of
analytic functions depending on an extra parameter previously introduced related to the theory of
strong differential subordination and superordination. Operators previously defined using confluent
hypergeometric function, namely Kummer–Bernardi and Kummer–Libera integral operators, are
also adapted to those classes and strong differential superordinations are obtained for which they are
the best subordinants. Similar results are obtained regarding the derivatives of the operators. The
examples presented at the end of the study are proof of the applicability of the original results.

Keywords: analytic function; starlike function; convex function; strong differential superordination;
best subordinant; confluent (Kummer) hypergeometric function

1. Introduction

The theory of strong differential subordination was initiated by Antonino and Roma-
guera [1] as a generalization of the classical concept of differential subordination introduced
by Miller and Mocanu [2,3]. The results obtained by Antonino and Romaguera for the
case of strong Briot–Bouquet differential subordinations inspired the development of the
general theory related to strong differential subordination as seen for the classical case of
differential subordination which is synthetized in [4]. The main aspects of strong differen-
tial subordination theory were established in a paper published in 2009 [5] by stating the
three problems on which the theory is based on and by defining the notions of solution of a
strong differential subordination and dominant of the solutions of the strong differential
subordination. The class of admissible functions, a basic tool in the study of strong differ-
ential subordinations, was also introduced in this paper. The theory developed rapidly
especially through studies associated to different operators like Liu–Srivastava operator [6],
a generalized operator [7], multiplier transformation [8,9], Komatu integral operator [10],
Sălăgean operator and Ruscheweyh derivative [11] or a certain differential operator [12].
The topic is still interesting for researchers as it is obvious from the numerous publications
in the last two years when multiplier transformation and Ruscheweyh derivative [13] or
integral operators [14] were used for obtaining new strong subordination results. We can
refer to [15,16] for applications of differential operators in the analyses of phenomena from
mathematical biology.

The dual notion of strong differential superordination was introduced also in 2009 [17]
following the pattern set by Miller and Mocanu for the classical notion of differential
superordination [18]. The special case of first order strong differential superordinations
was next investigated [19]. Strong differential superodinations were applied to a general
equation [20] and they were also related to different operators such as generalized Sălăgean
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and Ruscheweyh operators [21], new generalized derivative operator [22], or certain general
operators [23]. This notion is still popular as it can be proved by listing a few more papers
than already shown, published recently [24–26].

In 2012 [27], some interesting new classes were introduced related to the theory
of strong differential subordination and superordination. They are intensely used for
obtaining new results ever since they were connected to the studies.

The study presented in this paper uses those classes which we list as follows:
For U = {z ∈ C : |z| < 1} the unit disc of the complex plane, there are some notations

used: U = {z ∈ C : |z| ≤ 1} and ∂U = {z ∈ C : |z| = 1}. H(U) denotes the class of
holomorphic functions in the unit disc.

Let H
(
U ×U

)
denote the class of analytic functions in U ×U.

The following subclasses of H
(
U ×U

)
are defined in [27]:

Hζ [a, n] =
{

f ∈ H
(
U ×U

)
: f (z, ζ) = a + an(ζ)zn + an+1(ζ)zn+1 + . . . , z ∈ U, ζ ∈ U

}

with ak(ζ) holomorphic functions in U, k ≥ n, a ∈ C, n ∈ N.

HζU(U) =
{

f ∈ Hζ [a, n] : f (·, ζ) univalent in U for all ζ ∈ U
}

Aζn =
{

f ∈ H
(
U ×U

)
: f (z, ζ) = z + an+1(ζ)zn+1 + . . . , z ∈ U, ζ ∈ U

}
, with Aζ1 = Aζ

and ak(ζ) holomorphic functions in U, k ≥ n + 1, n ∈ N.

S∗ζ =

{
f ∈ Aζ : Re

z f ′z(z, ζ)

f (z, ζ)
> 0, z ∈ U, ζ ∈ U

}

denotes the class of starlike functions in U ×U.

Kζ =

{
f ∈ Aζ : Re

(
z f ′′z2(z, ζ)

f ′z(z, ζ)
+ 1

)
> 0, z ∈ U, ζ ∈ U

}

denotes the class of convex functions in U ×U.
For obtaining the original results of this paper, the following definitions and notations

introduced in [27] are necessary:

Definition 1 ([27]). Let h(z, ζ)and f (z, ζ) be analytic functions in U×U. The function f (z, ζ) is
said to be strongly subordinate to h(z, ζ), or h(z, ζ) is said to be strongly superordinate to f (z, ζ) if
there exists a function w analytic in U with w(0) = 0, |w(z)| < 1 such that f (z, ζ) = h(w(z), ζ),
for all ζ ∈ U, z ∈ U. In such a case, we write

f (z, ζ)
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This lemma will be used in the next section for proving the theorems which contain 
the original results. Another helpful result which will be used is the next lemma proved 
in [28]. 

Lemma 2. [28] Let ℎ(𝑧, 𝜁) be convex in 𝑈 for all 𝜁 ∈  𝑈ഥ with ℎ(0, 𝜁) = 𝑎, 𝛾 ≠ 0, 𝑅𝑒 𝛾 > 0 and 𝑝 ∈ 𝐻ሾ𝑎, 1ሿ ∩ 𝑄. If 𝑝(𝑧, 𝜁) + ௭ᇲ (௭,)ఊ  is univalent in 𝑈 for all 𝜁 ∈  𝑈ഥ,  ℎ(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁) + 𝑧𝑝௭ᇱ (𝑧, 𝜁)𝛾  

and 𝑞(𝑧, 𝜁) = 𝛾𝑧ఊ න ℎ(𝑡, 𝜁)𝑡ఊିଵ𝑑𝑡௭
 , 

then 𝑞(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁), 𝑧 ∈ 𝑈, 𝜁 ∈  𝑈ഥ. 
The function 𝑞 is convex and is the best subordinant. 

The connection between univalent function theory and hypergeometric functions 
was established in 1985 when de Branges used the generalized hypergeometric function 
for proving Bieberbach’s conjecture [29]. Once hypergeometric functions were considered 
in studies regarding univalent functions, confluent hypergeometric function was used in 
many investigations. One of the first papers which investigated confluent hypergeometric 
function and gave conditions for its univalence was published in 1990 [30]. Ever since 
then, aspects of its univalence were further investigated [31,32], it was considered in con-
nection with other important functions [33–37] and it was used in the definition of new 

h(z, ζ), z ∈ U, ζ ∈ U.

Remark 1 ([27]). (a) If f (z, ζ) is analytic in U × U and univalent in U for ζ ∈ U, then
Definition 1 is equivalent to:

f (0, ζ) = h(0, ζ), for all ζ ∈ U and f
(
U ×U

)
⊂ h

(
U ×U

)
.

(b) If f (z, ζ) = f (z), h(z, ζ) = h(z), then the strong superordination becomes the usual superordination.

Definition 2 ([27]). We denote by Qζ the set of functions q(·, ζ) that are analytic and injective, as
function of z, on U\E(q(z, ζ)) where

E(q(z, ζ)) =

{
ξ ∈ ∂U : lim

z→ξ
q(z, ζ) = ∞

}

and are such that q′z(ξ, ζ) 6= 0 for ξ ∈ ∂U\E(q(z, ζ)), ζ ∈ U.
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The subclass of Qζ for which q(0, ζ) = a is denoted by Qζ(a).

Definition 3 ([27]). Let Ωζ be a set in C, q(·, ζ) ∈ Ωζ , and n a positive integer. The class of
admissible functions Φn

[
Ωζ , q(·, ζ)

]
consists of those functions ϕ : C3 ×U ×U → C that satisfy

the admissibility condition
ϕ(r, s, t; ξ, ζ) ∈ Ωζ (A)

whenever r = q(z, ζ), s = zq′z(z, ζ)
m , Re

( t
s + 1

)
≤ 1

m Re
[

zq′′
z2 (z,ζ)

q′z(z,ζ) + 1
]

, z ∈ U, ξ ∈ U\E(q(·, ζ))

and m ≥ n ≥ 1. When n = 1 we write Φ1
[
Ωζ , q(·, ζ)

]
as Φ

[
Ωζ , q(·, ζ)

]
.

In the special case when h(·, ζ) is an analytic mapping of U ×U onto Ωζ 6= C we denote the class
Φn
[
h
(
U ×U

)
, q(z, ζ)

]
by Φn[h(z, ζ) , q(z, ζ)].

If ϕ : C2 ×U ×U → C , then the admissibility condition (A) reduces to

ϕ

(
q(z, ζ),

zq′z(z, ζ)

m
; ξ, ζ

)
∈ Ωζ , (A’)

where z ∈ U, ζ ∈ U, ξ ∈ U\E(q(·, ζ)) and m ≥ n ≥ 1.

Miller—Mocanu lemma given in [18] was rewritten in [27] for functions p(z, ζ) and
q(z, ζ) as follows:

Lemma 1 ([17,27]). Let p(z, ζ) ∈ Q(a) and let q(z, ζ) = a + an(ζ)zn + an+1(ζ)zn+1 + . . . with
ak(ζ) holomorphic functions in U, k ≥ n, q(z, ζ) 6≡ a and n ≥ 1. If q(z, ζ) is not subordinate
to p(z, ζ), then there exist points z0 = r0eiθ0 ∈ U and ξ0 ∈ ∂U\E(p(z, ζ)) and an m ≥ n ≥ 1
for which q

(
U ×Ur0

)
⊂ p

(
U ×U

)
and

(i) q(z0, ζ) = p(ξ0, ζ),
(ii) z0q′z(z0, ζ) = mξ0 p′z(ξ0, ζ) and

(iii) Re
(

z0q′′
z2 (z0, ζ)

q′z(z0, ζ)
+ 1
)
≥ mRe

(
ξ0 p′′

z2 (ξ0, ζ)

p′z(ξ0, ζ)
+ 1
)

.

This lemma will be used in the next section for proving the theorems which contain
the original results. Another helpful result which will be used is the next lemma proved
in [28].

Lemma 2 ([28]). Let h(z, ζ) be convex in U for all ζ ∈ U with h(0, ζ) = a, γ 6= 0, Re γ > 0
and p ∈ Hζ [a, 1] ∩Q. If p(z, ζ) +

zp′z(z, ζ)
γ is univalent in U for all ζ ∈ U,

h(z, ζ)
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If 𝜑: ℂଶ × 𝑈 × 𝑈ഥ → ℂ, then the admissibility condition (A) reduces to 𝜑 ቆ𝑞(𝑧, 𝜁), 𝑧𝑞௭ᇱ (𝑧, 𝜁)𝑚 ; 𝜉, 𝜁ቇ ∈ 𝛺, (A’)

where 𝑧 ∈ 𝑈, 𝜁 ∈  𝑈ഥ, 𝜉 ∈ 𝑈ഥ\𝐸൫𝑞(∙, 𝜁)൯ and 𝑚 ≥ 𝑛 ≥ 1. 
Miller—Mocanu lemma given in [18] was rewritten in [27] for functions 𝑝(𝑧, 𝜁) and 𝑞(𝑧, 𝜁) as follows: 

Lemma 1. ([17],[27]) Let 𝑝(𝑧, 𝜁) ∈ 𝑄(𝑎) and let 𝑞(𝑧, 𝜁) = 𝑎 + 𝑎(𝜁)𝑧 + 𝑎ାଵ(𝜁)𝑧ାଵ + ⋯ 
with 𝑎(𝜁) holomorphic functions in 𝑈ഥ, 𝑘 ≥ 𝑛, 𝑞(𝑧, 𝜁) ≢ 𝑎 and 𝑛 ≥ 1. If 𝑞(𝑧, 𝜁) is not subor-
dinate to 𝑝(𝑧, 𝜁), then there exist points 𝑧 = 𝑟𝑒ఏబ ∈ 𝑈 and 𝜉 ∈ 𝜕𝑈\𝐸൫𝑝(𝑧, 𝜁)൯ and an 𝑚 ≥𝑛 ≥ 1 for which 𝑞(𝑈 × 𝑈ഥబ) ⊂ 𝑝(𝑈 × 𝑈ഥ) and (𝑖) 𝑞(𝑧, 𝜁) = 𝑝(𝜉, 𝜁), (𝑖𝑖) 𝑧𝑞௭ᇱ (𝑧, 𝜁) = 𝑚𝜉𝑝௭ᇱ (𝜉, 𝜁) and (𝑖𝑖𝑖) 𝑅𝑒 ቆ𝑧𝑞௭మᇱᇱ (𝑧, 𝜁)𝑞௭ᇱ (𝑧, 𝜁) + 1ቇ ≥ 𝑚𝑅𝑒 ቆ𝜉𝑝௭మᇱᇱ (𝜉, 𝜁)𝑝௭ᇱ (𝜉, 𝜁) + 1ቇ. 

This lemma will be used in the next section for proving the theorems which contain 
the original results. Another helpful result which will be used is the next lemma proved 
in [28]. 

Lemma 2. [28] Let ℎ(𝑧, 𝜁) be convex in 𝑈 for all 𝜁 ∈  𝑈ഥ with ℎ(0, 𝜁) = 𝑎, 𝛾 ≠ 0, 𝑅𝑒 𝛾 > 0 and 𝑝 ∈ 𝐻ሾ𝑎, 1ሿ ∩ 𝑄. If 𝑝(𝑧, 𝜁) + ௭ᇲ (௭,)ఊ  is univalent in 𝑈 for all 𝜁 ∈  𝑈ഥ,  ℎ(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁) + 𝑧𝑝௭ᇱ (𝑧, 𝜁)𝛾  

and 𝑞(𝑧, 𝜁) = 𝛾𝑧ఊ න ℎ(𝑡, 𝜁)𝑡ఊିଵ𝑑𝑡௭
 , 

then 𝑞(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁), 𝑧 ∈ 𝑈, 𝜁 ∈  𝑈ഥ. 
The function 𝑞 is convex and is the best subordinant. 

The connection between univalent function theory and hypergeometric functions 
was established in 1985 when de Branges used the generalized hypergeometric function 
for proving Bieberbach’s conjecture [29]. Once hypergeometric functions were considered 
in studies regarding univalent functions, confluent hypergeometric function was used in 
many investigations. One of the first papers which investigated confluent hypergeometric 
function and gave conditions for its univalence was published in 1990 [30]. Ever since 
then, aspects of its univalence were further investigated [31,32], it was considered in con-
nection with other important functions [33–37] and it was used in the definition of new 

p(z, ζ) +
zp′z(z, ζ)

γ

and

q(z, ζ) =
γ

zγ

z∫

0

h(t, ζ)tγ−1dt,
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q(z, ζ)
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p(z, ζ), z ∈ U, ζ ∈ U.

The function q is convex and is the best subordinant.

The connection between univalent function theory and hypergeometric functions was
established in 1985 when de Branges used the generalized hypergeometric function for
proving Bieberbach’s conjecture [29]. Once hypergeometric functions were considered
in studies regarding univalent functions, confluent hypergeometric function was used in
many investigations. One of the first papers which investigated confluent hypergeometric
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function and gave conditions for its univalence was published in 1990 [30]. Ever since
then, aspects of its univalence were further investigated [31,32], it was considered in
connection with other important functions [33–37] and it was used in the definition of
new operators [38]. This prolific function is used in the present paper for obtaining results
related to another topic, strong differential superordinations. The function is considered
as follows:

Definition 4 ([30]). Let a and c be complex numbers with c 6= 0,−1,−2, . . . and consider

φ(a, c; z) = 1 +
a
c
· z
1!

+
a(a + 1)
c(c + 1)

· z
2

2!
+ . . . , z ∈ U (1)

This function is called confluent (Kummer) hypergeometric function, is analytic in C, and satisfies
Kummer’s differential equation:

z·w′′(z) + [c− z]·w′(z)− a·w(z) = 0.

If we let

(d)k =
Γ(d + k)

Γ(d)
= d(d + 1)(d + 2) . . . (d + k− 1) and (d)0 = 1,

then (1) can be written in the form

φ(a, c; z) =
∞

∑
k=0

(a)k
(c)k
· z

k

k!
=

Γ(c)
Γ(a)

·
∞

∑
k=0

Γ(a + k)
Γ(c + k)

· z
k

k!
(2)

In the study conducted for obtaining the original results presented in the next section
of this paper, the operators introduced in [38] are adapted to the subclasses of H

(
U ×U

)

defined in [27] as follows:

Definition 5 ([38]). Let φ(a, c; z) be given by (1) and let γ > 0. The integral operator
B : Hζ [1, 1]→ Hζ [1, 1],

B[φ(a(ζ), c(ζ); z, ζ)] = B(a(ζ), c(ζ); z, ζ) =
γ

zγ

z∫

0

φ(a(ζ), c(ζ); t, ζ)tγ−1dt (3)

z ∈ U, ζ ∈ U, is called Kummer–Bernardi integral operator.
For γ = 1 the integral operator L : Hζ [1, 1]→ Hζ [1, 1] is defined as

L[φ(a(ζ), c(ζ); z, ζ)] = L(a(ζ), c(ζ); z, ζ) =
1
z

z∫

0

φ(a(ζ), c(ζ); t, ζ)dt, (4)

z ∈ U, ζ ∈ U , which is called Kummer–Libera integral operator.

The form of the confluent hypergeometric function adapted to the new classes de-
pending on the extra parameter ζ needed in the studies related to strong differential
superordination theory is given in the next section. Strong differential superordinations are
proved in the theorems for which the operators given by (3) and (4) and their derivatives
with respect to z are the best subordinants considering γ in relation (3) both a real number,
γ > 0, and a complex number with Re γ > 0. Examples are constructed as proof of the
applicability of the new results.
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2. Main Results

Considering confluent hypergeometric function defined by (1) or (2), if coefficients a
and c complex numbers are replaced by holomorphic functions a(ζ), c(ζ) depending on
the parameter ζ ∈ U, the function changes its form into the following:

φ(a(ζ), c(ζ); z, ζ) = 1 +
a(ζ)
c(ζ)
· z
1!

+
a(ζ)[a(ζ) + 1]
c(ζ)[c(ζ) + 1]

· z
2

2!
+ . . . , z ∈ U, (5)

where (ζ) 6= 0, c(ζ) 6= 0,−1,−2, . . ..
In [32], Corollary 4 the convexity in the unit disc of the function φ(a, c; z) given by (1)

was proved. This property extends to the new form of the function (a(ζ), c(ζ); z, ζ), as seen
in (5).

The first original theorem presented in this paper uses the convexity of the function
φ(a(ζ), c(ζ); z, ζ) and the methods related to strong differential superordination theory
in order to find necessary conditions for Kummer–Bernardi integral operator presented
in Definition 5 to be the best subordinant of a certain strong differential superordination
involving confluent hypergeometric function φ(a(ζ), c(ζ); z, ζ).

Theorem 1. Consider the confluent hypergeometric function φ(a(ζ), c(ζ); z, ζ) defined by (5) and
Kummer–Bernardi integral operator B(a(ζ), c(ζ); z, ζ) given by (3). Let ϕ : C2 ×U ×U → C be
an admissible function with the properties seen in Definition 3. Suppose that φ(a(ζ), c(ζ); z, ζ) is a
univalent solution of the equation

φ(a(ζ), c(ζ); z, ζ) = ϕ
(

B(a(ζ), c(ζ); z, ζ), z·B′z(a(ζ), c(ζ); z, ζ); z, ζ
)
. (6)

If ϕ ∈ Φn
[
h
(
U ×U

)
, q(z, ζ)

]
, p(z, ζ) ∈ Qζ(1) and ϕ(p(z, ζ), z·p′z(z, ζ); z, ζ) are univalent in

U for all ζ ∈ U, then strong superordination

φ(a(ζ), c(ζ); z, ζ)
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then 𝑞(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁), 𝑧 ∈ 𝑈, 𝜁 ∈  𝑈ഥ. 
The function 𝑞 is convex and is the best subordinant. 

The connection between univalent function theory and hypergeometric functions 
was established in 1985 when de Branges used the generalized hypergeometric function 
for proving Bieberbach’s conjecture [29]. Once hypergeometric functions were considered 
in studies regarding univalent functions, confluent hypergeometric function was used in 
many investigations. One of the first papers which investigated confluent hypergeometric 
function and gave conditions for its univalence was published in 1990 [30]. Ever since 
then, aspects of its univalence were further investigated [31,32], it was considered in con-
nection with other important functions [33–37] and it was used in the definition of new 

ϕ
(

p(z, ζ), z·p′z(z, ζ); z, ζ
)

(7)

implies

B(a(ζ), c(ζ); z, ζ)
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If 𝜑: ℂଶ × 𝑈 × 𝑈ഥ → ℂ, then the admissibility condition (A) reduces to 𝜑 ቆ𝑞(𝑧, 𝜁), 𝑧𝑞௭ᇱ (𝑧, 𝜁)𝑚 ; 𝜉, 𝜁ቇ ∈ 𝛺, (A’)

where 𝑧 ∈ 𝑈, 𝜁 ∈  𝑈ഥ, 𝜉 ∈ 𝑈ഥ\𝐸൫𝑞(∙, 𝜁)൯ and 𝑚 ≥ 𝑛 ≥ 1. 
Miller—Mocanu lemma given in [18] was rewritten in [27] for functions 𝑝(𝑧, 𝜁) and 𝑞(𝑧, 𝜁) as follows: 

Lemma 1. ([17],[27]) Let 𝑝(𝑧, 𝜁) ∈ 𝑄(𝑎) and let 𝑞(𝑧, 𝜁) = 𝑎 + 𝑎(𝜁)𝑧 + 𝑎ାଵ(𝜁)𝑧ାଵ + ⋯ 
with 𝑎(𝜁) holomorphic functions in 𝑈ഥ, 𝑘 ≥ 𝑛, 𝑞(𝑧, 𝜁) ≢ 𝑎 and 𝑛 ≥ 1. If 𝑞(𝑧, 𝜁) is not subor-
dinate to 𝑝(𝑧, 𝜁), then there exist points 𝑧 = 𝑟𝑒ఏబ ∈ 𝑈 and 𝜉 ∈ 𝜕𝑈\𝐸൫𝑝(𝑧, 𝜁)൯ and an 𝑚 ≥𝑛 ≥ 1 for which 𝑞(𝑈 × 𝑈ഥబ) ⊂ 𝑝(𝑈 × 𝑈ഥ) and (𝑖) 𝑞(𝑧, 𝜁) = 𝑝(𝜉, 𝜁), (𝑖𝑖) 𝑧𝑞௭ᇱ (𝑧, 𝜁) = 𝑚𝜉𝑝௭ᇱ (𝜉, 𝜁) and (𝑖𝑖𝑖) 𝑅𝑒 ቆ𝑧𝑞௭మᇱᇱ (𝑧, 𝜁)𝑞௭ᇱ (𝑧, 𝜁) + 1ቇ ≥ 𝑚𝑅𝑒 ቆ𝜉𝑝௭మᇱᇱ (𝜉, 𝜁)𝑝௭ᇱ (𝜉, 𝜁) + 1ቇ. 

This lemma will be used in the next section for proving the theorems which contain 
the original results. Another helpful result which will be used is the next lemma proved 
in [28]. 

Lemma 2. [28] Let ℎ(𝑧, 𝜁) be convex in 𝑈 for all 𝜁 ∈  𝑈ഥ with ℎ(0, 𝜁) = 𝑎, 𝛾 ≠ 0, 𝑅𝑒 𝛾 > 0 and 𝑝 ∈ 𝐻ሾ𝑎, 1ሿ ∩ 𝑄. If 𝑝(𝑧, 𝜁) + ௭ᇲ (௭,)ఊ  is univalent in 𝑈 for all 𝜁 ∈  𝑈ഥ,  ℎ(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁) + 𝑧𝑝௭ᇱ (𝑧, 𝜁)𝛾  

and 𝑞(𝑧, 𝜁) = 𝛾𝑧ఊ න ℎ(𝑡, 𝜁)𝑡ఊିଵ𝑑𝑡௭
 , 

then 𝑞(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁), 𝑧 ∈ 𝑈, 𝜁 ∈  𝑈ഥ. 
The function 𝑞 is convex and is the best subordinant. 

The connection between univalent function theory and hypergeometric functions 
was established in 1985 when de Branges used the generalized hypergeometric function 
for proving Bieberbach’s conjecture [29]. Once hypergeometric functions were considered 
in studies regarding univalent functions, confluent hypergeometric function was used in 
many investigations. One of the first papers which investigated confluent hypergeometric 
function and gave conditions for its univalence was published in 1990 [30]. Ever since 
then, aspects of its univalence were further investigated [31,32], it was considered in con-
nection with other important functions [33–37] and it was used in the definition of new 

p(z, ζ), z ∈ U, ζ ∈ U.

The function q(z, ζ) = B(a(ζ), c(ζ); z, ζ) is the best subordinant.

Proof. Using relation (3) we obtain

zγ·B(a(ζ), c(ζ); z, ζ) = γ

z∫

0

φ(a(ζ), c(ζ); t, ζ)tγ−1dt. (8)

Differentiating (8) with respect to z, following a simple calculation, the next equation
is obtained:

B(a(ζ), c(ζ); z, ζ) +
1
γ

z·B′z(a(ζ), c(ζ); z, ζ); z, ζ) = φ(a(ζ), c(ζ); z, ζ). (9)

Using relation (9), strong superordination (7) becomes:

B(a(ζ), c(ζ); z, ζ) +
1
γ

z·B′z(a(ζ), c(ζ); z, ζ); z, ζ)
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Definition 3. [27] Let 𝛺 be a set in ℂ, 𝑞(∙, 𝜁) ∈ 𝛺, and 𝑛 a positive integer. The class of ad-
missible functions 𝛷ൣ𝛺, 𝑞(∙, 𝜁)൧ consists of those functions 𝜑: ℂଷ × 𝑈 × 𝑈ഥ → ℂ that satisfy the 
admissibility condition 𝜑(𝑟, 𝑠, 𝑡; 𝜉, 𝜁) ∈ 𝛺  (A)

whenever 𝑟 =  𝑞(𝑧, 𝜁), 𝑠 = ௭ᇲ (௭,) , 𝑅𝑒 ቀ௧௦ + 1ቁ ≤ ଵ 𝑅𝑒 ୯మ'' (,)୯' (,) + 1൨ , 𝑧 ∈ 𝑈, 𝜉 ∈ 𝑈ഥ\𝐸൫𝑞(∙, 𝜁)൯ 
and 𝑚 ≥ 𝑛 ≥ 1. When 𝑛 = 1 we write Φଵൣ𝛺, 𝑞(∙, 𝜁)൧ as Φൣ𝛺, 𝑞(∙, 𝜁)൧. 
In the special case when ℎ(∙, 𝜁) is an analytic mapping of 𝑈 × 𝑈ഥ onto 𝛺 ≠ ℂ we denote the class Φሾℎ(𝑈 × 𝑈ഥ) , 𝑞(𝑧, 𝜁)ሿ by Φሾℎ(𝑧, 𝜁) , 𝑞(𝑧, 𝜁)ሿ. 
If 𝜑: ℂଶ × 𝑈 × 𝑈ഥ → ℂ, then the admissibility condition (A) reduces to 𝜑 ቆ𝑞(𝑧, 𝜁), 𝑧𝑞௭ᇱ (𝑧, 𝜁)𝑚 ; 𝜉, 𝜁ቇ ∈ 𝛺, (A’)

where 𝑧 ∈ 𝑈, 𝜁 ∈  𝑈ഥ, 𝜉 ∈ 𝑈ഥ\𝐸൫𝑞(∙, 𝜁)൯ and 𝑚 ≥ 𝑛 ≥ 1. 
Miller—Mocanu lemma given in [18] was rewritten in [27] for functions 𝑝(𝑧, 𝜁) and 𝑞(𝑧, 𝜁) as follows: 

Lemma 1. ([17],[27]) Let 𝑝(𝑧, 𝜁) ∈ 𝑄(𝑎) and let 𝑞(𝑧, 𝜁) = 𝑎 + 𝑎(𝜁)𝑧 + 𝑎ାଵ(𝜁)𝑧ାଵ + ⋯ 
with 𝑎(𝜁) holomorphic functions in 𝑈ഥ, 𝑘 ≥ 𝑛, 𝑞(𝑧, 𝜁) ≢ 𝑎 and 𝑛 ≥ 1. If 𝑞(𝑧, 𝜁) is not subor-
dinate to 𝑝(𝑧, 𝜁), then there exist points 𝑧 = 𝑟𝑒ఏబ ∈ 𝑈 and 𝜉 ∈ 𝜕𝑈\𝐸൫𝑝(𝑧, 𝜁)൯ and an 𝑚 ≥𝑛 ≥ 1 for which 𝑞(𝑈 × 𝑈ഥబ) ⊂ 𝑝(𝑈 × 𝑈ഥ) and (𝑖) 𝑞(𝑧, 𝜁) = 𝑝(𝜉, 𝜁), (𝑖𝑖) 𝑧𝑞௭ᇱ (𝑧, 𝜁) = 𝑚𝜉𝑝௭ᇱ (𝜉, 𝜁) and (𝑖𝑖𝑖) 𝑅𝑒 ቆ𝑧𝑞௭మᇱᇱ (𝑧, 𝜁)𝑞௭ᇱ (𝑧, 𝜁) + 1ቇ ≥ 𝑚𝑅𝑒 ቆ𝜉𝑝௭మᇱᇱ (𝜉, 𝜁)𝑝௭ᇱ (𝜉, 𝜁) + 1ቇ. 

This lemma will be used in the next section for proving the theorems which contain 
the original results. Another helpful result which will be used is the next lemma proved 
in [28]. 

Lemma 2. [28] Let ℎ(𝑧, 𝜁) be convex in 𝑈 for all 𝜁 ∈  𝑈ഥ with ℎ(0, 𝜁) = 𝑎, 𝛾 ≠ 0, 𝑅𝑒 𝛾 > 0 and 𝑝 ∈ 𝐻ሾ𝑎, 1ሿ ∩ 𝑄. If 𝑝(𝑧, 𝜁) + ௭ᇲ (௭,)ఊ  is univalent in 𝑈 for all 𝜁 ∈  𝑈ഥ,  ℎ(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁) + 𝑧𝑝௭ᇱ (𝑧, 𝜁)𝛾  

and 𝑞(𝑧, 𝜁) = 𝛾𝑧ఊ න ℎ(𝑡, 𝜁)𝑡ఊିଵ𝑑𝑡௭
 , 

then 𝑞(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁), 𝑧 ∈ 𝑈, 𝜁 ∈  𝑈ഥ. 
The function 𝑞 is convex and is the best subordinant. 

The connection between univalent function theory and hypergeometric functions 
was established in 1985 when de Branges used the generalized hypergeometric function 
for proving Bieberbach’s conjecture [29]. Once hypergeometric functions were considered 
in studies regarding univalent functions, confluent hypergeometric function was used in 
many investigations. One of the first papers which investigated confluent hypergeometric 
function and gave conditions for its univalence was published in 1990 [30]. Ever since 
then, aspects of its univalence were further investigated [31,32], it was considered in con-
nection with other important functions [33–37] and it was used in the definition of new 

ϕ
(

p(z, ζ), z·p′z(z, ζ); z, ζ
)
. (10)

Let ϕ : C2 ×U ×U → C be an admissible function, ϕ(r, s; z, ζ) ∈ Φn
[
h
(
U×U

)
, q(z, ζ)

]
,

defined by:

ϕ(r, s; z, ζ) = r +
1
γ

s, r, s ∈ C, γ > 0. (11)

Taking r = B(a(ζ), c(ζ); z, ζ), s = z·B′z(a(ζ), c(ζ); z, ζ); z, ζ) relation (11) becomes:

69
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ϕ(B(a(ζ), c(ζ); z, ζ), z·B′z(a(ζ), c(ζ); z, ζ); z, ζ) )
= B(a(ζ), c(ζ); z, ζ) + 1

γ z·B′z(a(ζ), c(ζ); z, ζ); z, ζ). (12)

Using relation (12) in (10) we get:

ϕ
(

B(a(ζ), c(ζ); z, ζ), z·B′z(a(ζ), c(ζ); z, ζ); z, ζ
)

Axioms 2022, 11, x FOR PEER REVIEW 3 of 12 
 

Definition 3. [27] Let 𝛺 be a set in ℂ, 𝑞(∙, 𝜁) ∈ 𝛺, and 𝑛 a positive integer. The class of ad-
missible functions 𝛷ൣ𝛺, 𝑞(∙, 𝜁)൧ consists of those functions 𝜑: ℂଷ × 𝑈 × 𝑈ഥ → ℂ that satisfy the 
admissibility condition 𝜑(𝑟, 𝑠, 𝑡; 𝜉, 𝜁) ∈ 𝛺  (A)

whenever 𝑟 =  𝑞(𝑧, 𝜁), 𝑠 = ௭ᇲ (௭,) , 𝑅𝑒 ቀ௧௦ + 1ቁ ≤ ଵ 𝑅𝑒 ୯మ'' (,)୯' (,) + 1൨ , 𝑧 ∈ 𝑈, 𝜉 ∈ 𝑈ഥ\𝐸൫𝑞(∙, 𝜁)൯ 
and 𝑚 ≥ 𝑛 ≥ 1. When 𝑛 = 1 we write Φଵൣ𝛺, 𝑞(∙, 𝜁)൧ as Φൣ𝛺, 𝑞(∙, 𝜁)൧. 
In the special case when ℎ(∙, 𝜁) is an analytic mapping of 𝑈 × 𝑈ഥ onto 𝛺 ≠ ℂ we denote the class Φሾℎ(𝑈 × 𝑈ഥ) , 𝑞(𝑧, 𝜁)ሿ by Φሾℎ(𝑧, 𝜁) , 𝑞(𝑧, 𝜁)ሿ. 
If 𝜑: ℂଶ × 𝑈 × 𝑈ഥ → ℂ, then the admissibility condition (A) reduces to 𝜑 ቆ𝑞(𝑧, 𝜁), 𝑧𝑞௭ᇱ (𝑧, 𝜁)𝑚 ; 𝜉, 𝜁ቇ ∈ 𝛺, (A’)

where 𝑧 ∈ 𝑈, 𝜁 ∈  𝑈ഥ, 𝜉 ∈ 𝑈ഥ\𝐸൫𝑞(∙, 𝜁)൯ and 𝑚 ≥ 𝑛 ≥ 1. 
Miller—Mocanu lemma given in [18] was rewritten in [27] for functions 𝑝(𝑧, 𝜁) and 𝑞(𝑧, 𝜁) as follows: 

Lemma 1. ([17],[27]) Let 𝑝(𝑧, 𝜁) ∈ 𝑄(𝑎) and let 𝑞(𝑧, 𝜁) = 𝑎 + 𝑎(𝜁)𝑧 + 𝑎ାଵ(𝜁)𝑧ାଵ + ⋯ 
with 𝑎(𝜁) holomorphic functions in 𝑈ഥ, 𝑘 ≥ 𝑛, 𝑞(𝑧, 𝜁) ≢ 𝑎 and 𝑛 ≥ 1. If 𝑞(𝑧, 𝜁) is not subor-
dinate to 𝑝(𝑧, 𝜁), then there exist points 𝑧 = 𝑟𝑒ఏబ ∈ 𝑈 and 𝜉 ∈ 𝜕𝑈\𝐸൫𝑝(𝑧, 𝜁)൯ and an 𝑚 ≥𝑛 ≥ 1 for which 𝑞(𝑈 × 𝑈ഥబ) ⊂ 𝑝(𝑈 × 𝑈ഥ) and (𝑖) 𝑞(𝑧, 𝜁) = 𝑝(𝜉, 𝜁), (𝑖𝑖) 𝑧𝑞௭ᇱ (𝑧, 𝜁) = 𝑚𝜉𝑝௭ᇱ (𝜉, 𝜁) and (𝑖𝑖𝑖) 𝑅𝑒 ቆ𝑧𝑞௭మᇱᇱ (𝑧, 𝜁)𝑞௭ᇱ (𝑧, 𝜁) + 1ቇ ≥ 𝑚𝑅𝑒 ቆ𝜉𝑝௭మᇱᇱ (𝜉, 𝜁)𝑝௭ᇱ (𝜉, 𝜁) + 1ቇ. 

This lemma will be used in the next section for proving the theorems which contain 
the original results. Another helpful result which will be used is the next lemma proved 
in [28]. 

Lemma 2. [28] Let ℎ(𝑧, 𝜁) be convex in 𝑈 for all 𝜁 ∈  𝑈ഥ with ℎ(0, 𝜁) = 𝑎, 𝛾 ≠ 0, 𝑅𝑒 𝛾 > 0 and 𝑝 ∈ 𝐻ሾ𝑎, 1ሿ ∩ 𝑄. If 𝑝(𝑧, 𝜁) + ௭ᇲ (௭,)ఊ  is univalent in 𝑈 for all 𝜁 ∈  𝑈ഥ,  ℎ(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁) + 𝑧𝑝௭ᇱ (𝑧, 𝜁)𝛾  

and 𝑞(𝑧, 𝜁) = 𝛾𝑧ఊ න ℎ(𝑡, 𝜁)𝑡ఊିଵ𝑑𝑡௭
 , 

then 𝑞(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁), 𝑧 ∈ 𝑈, 𝜁 ∈  𝑈ഥ. 
The function 𝑞 is convex and is the best subordinant. 

The connection between univalent function theory and hypergeometric functions 
was established in 1985 when de Branges used the generalized hypergeometric function 
for proving Bieberbach’s conjecture [29]. Once hypergeometric functions were considered 
in studies regarding univalent functions, confluent hypergeometric function was used in 
many investigations. One of the first papers which investigated confluent hypergeometric 
function and gave conditions for its univalence was published in 1990 [30]. Ever since 
then, aspects of its univalence were further investigated [31,32], it was considered in con-
nection with other important functions [33–37] and it was used in the definition of new 

ϕ
(

p(z, ζ), z·p′z(z, ζ); z, ζ
)
.

Using Definition 1 and Remark 1, a), considering strong differential subordination (7)
we get:

φ(a(ζ), c(ζ); 0, ζ) = ϕ(p(0, ζ), 0; 0, ζ)

and
φ
(
U ×U

)
⊂ ϕ

(
U ×U

)
. (13)

Interpreting relation (13) we conclude that

ϕ
(

p(ξ, ζ), ξ·p′z(ξ, ζ); ξ, ζ
)

/∈ φ
(
U ×U

)
, ξ ∈ ∂U, ζ ∈ U. (14)

For ξ = ξ0 ∈ ∂U, relation (14) becomes:

ϕ
(

p(ξ0, ζ), ξ0·p′z(ξ0, ζ); ξ0, ζ
)

/∈ φ
(
U ×U

)
, ζ ∈ U. (15)

Using relation (6) we get:

ϕ
(

B(a(ζ), c(ζ); z, ζ), z·B′z(a(ζ), c(ζ); z, ζ); z, ζ
)
∈ φ

(
U ×U

)
, z ∈ U, ζ ∈ U. (16)

For z = z0 ∈ U, (16) is written as:

ϕ
(

B(a(ζ), c(ζ); z0, ζ), z0·B′z(a(ζ), c(ζ); z0, ζ); z0, ζ
)
∈ φ

(
U ×U

)
, z0 ∈ U, ζ ∈ U. (17)

In order to finalize the proof, Lemma 1 and admissibility condition (A′) will be applied.
Suppose that q(z, ζ) = B(a(ζ), c(ζ); z, ζ) is not subordinate to p(z, ζ) for z ∈ U, ζ ∈ U.

Then, using Lemma 1, we know that there are points z0 = r0eiθ0 ∈ U and ξ0 ∈ ∂U\E(p(z, ζ))
and an m ≥ n ≥ 1such that

(z0, ζ) = B(a(ζ), c(ζ); z0, ζ) = p(ξ0, ζ) and

z0·q′z(z0, ζ) = z0·B′z(a(ζ), c(ζ); z0, ζ) = mξ0 p′z(ξ0, ζ).

Using those conditions with r = q(z0, ζ) and s = z0·q′z(z0,ζ)
m for ξ = ξ0 in Definition 3

and taking into consideration the admissibility condition (A′), we obtain:

ϕ(p(ξ0, ζ), ξ0p′z(ξ0, ζ); ξ0, ζ) = ϕ
(

B(a(ζ), c(ζ); z0, ζ), z0·B′z(a(ζ),c(ζ);z0,ζ)
m ; z0, ζ

)

∈ φ
(
U ×U

)
.

Using m = 1 in the previous relation, we get

ϕ(p(ξ0, ζ), ξ0 p′z(ξ0, ζ); ξ0, ζ) = ϕ(B(a(ζ), c(ζ); z0, ζ), z0·B′z(a(ζ), c(ζ); z0, ζ); z0, ζ)
∈ φ

(
U ×U

)

and using (17) we write

ϕ
(

p(ξ0, ζ), ξ0p′z(ξ0, ζ); ξ0, ζ
)
∈ φ

(
U ×U

)
, z ∈ U, ζ ∈ U,

which contradicts the result obtained in relation (15). Hence, the assumption made is false
and we must have:

B(a(ζ), c(ζ); z, ζ)
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Definition 3. [27] Let 𝛺 be a set in ℂ, 𝑞(∙, 𝜁) ∈ 𝛺, and 𝑛 a positive integer. The class of ad-
missible functions 𝛷ൣ𝛺, 𝑞(∙, 𝜁)൧ consists of those functions 𝜑: ℂଷ × 𝑈 × 𝑈ഥ → ℂ that satisfy the 
admissibility condition 𝜑(𝑟, 𝑠, 𝑡; 𝜉, 𝜁) ∈ 𝛺  (A)

whenever 𝑟 =  𝑞(𝑧, 𝜁), 𝑠 = ௭ᇲ (௭,) , 𝑅𝑒 ቀ௧௦ + 1ቁ ≤ ଵ 𝑅𝑒 ୯మ'' (,)୯' (,) + 1൨ , 𝑧 ∈ 𝑈, 𝜉 ∈ 𝑈ഥ\𝐸൫𝑞(∙, 𝜁)൯ 
and 𝑚 ≥ 𝑛 ≥ 1. When 𝑛 = 1 we write Φଵൣ𝛺, 𝑞(∙, 𝜁)൧ as Φൣ𝛺, 𝑞(∙, 𝜁)൧. 
In the special case when ℎ(∙, 𝜁) is an analytic mapping of 𝑈 × 𝑈ഥ onto 𝛺 ≠ ℂ we denote the class Φሾℎ(𝑈 × 𝑈ഥ) , 𝑞(𝑧, 𝜁)ሿ by Φሾℎ(𝑧, 𝜁) , 𝑞(𝑧, 𝜁)ሿ. 
If 𝜑: ℂଶ × 𝑈 × 𝑈ഥ → ℂ, then the admissibility condition (A) reduces to 𝜑 ቆ𝑞(𝑧, 𝜁), 𝑧𝑞௭ᇱ (𝑧, 𝜁)𝑚 ; 𝜉, 𝜁ቇ ∈ 𝛺, (A’)

where 𝑧 ∈ 𝑈, 𝜁 ∈  𝑈ഥ, 𝜉 ∈ 𝑈ഥ\𝐸൫𝑞(∙, 𝜁)൯ and 𝑚 ≥ 𝑛 ≥ 1. 
Miller—Mocanu lemma given in [18] was rewritten in [27] for functions 𝑝(𝑧, 𝜁) and 𝑞(𝑧, 𝜁) as follows: 

Lemma 1. ([17],[27]) Let 𝑝(𝑧, 𝜁) ∈ 𝑄(𝑎) and let 𝑞(𝑧, 𝜁) = 𝑎 + 𝑎(𝜁)𝑧 + 𝑎ାଵ(𝜁)𝑧ାଵ + ⋯ 
with 𝑎(𝜁) holomorphic functions in 𝑈ഥ, 𝑘 ≥ 𝑛, 𝑞(𝑧, 𝜁) ≢ 𝑎 and 𝑛 ≥ 1. If 𝑞(𝑧, 𝜁) is not subor-
dinate to 𝑝(𝑧, 𝜁), then there exist points 𝑧 = 𝑟𝑒ఏబ ∈ 𝑈 and 𝜉 ∈ 𝜕𝑈\𝐸൫𝑝(𝑧, 𝜁)൯ and an 𝑚 ≥𝑛 ≥ 1 for which 𝑞(𝑈 × 𝑈ഥబ) ⊂ 𝑝(𝑈 × 𝑈ഥ) and (𝑖) 𝑞(𝑧, 𝜁) = 𝑝(𝜉, 𝜁), (𝑖𝑖) 𝑧𝑞௭ᇱ (𝑧, 𝜁) = 𝑚𝜉𝑝௭ᇱ (𝜉, 𝜁) and (𝑖𝑖𝑖) 𝑅𝑒 ቆ𝑧𝑞௭మᇱᇱ (𝑧, 𝜁)𝑞௭ᇱ (𝑧, 𝜁) + 1ቇ ≥ 𝑚𝑅𝑒 ቆ𝜉𝑝௭మᇱᇱ (𝜉, 𝜁)𝑝௭ᇱ (𝜉, 𝜁) + 1ቇ. 

This lemma will be used in the next section for proving the theorems which contain 
the original results. Another helpful result which will be used is the next lemma proved 
in [28]. 

Lemma 2. [28] Let ℎ(𝑧, 𝜁) be convex in 𝑈 for all 𝜁 ∈  𝑈ഥ with ℎ(0, 𝜁) = 𝑎, 𝛾 ≠ 0, 𝑅𝑒 𝛾 > 0 and 𝑝 ∈ 𝐻ሾ𝑎, 1ሿ ∩ 𝑄. If 𝑝(𝑧, 𝜁) + ௭ᇲ (௭,)ఊ  is univalent in 𝑈 for all 𝜁 ∈  𝑈ഥ,  ℎ(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁) + 𝑧𝑝௭ᇱ (𝑧, 𝜁)𝛾  

and 𝑞(𝑧, 𝜁) = 𝛾𝑧ఊ න ℎ(𝑡, 𝜁)𝑡ఊିଵ𝑑𝑡௭
 , 

then 𝑞(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁), 𝑧 ∈ 𝑈, 𝜁 ∈  𝑈ഥ. 
The function 𝑞 is convex and is the best subordinant. 

The connection between univalent function theory and hypergeometric functions 
was established in 1985 when de Branges used the generalized hypergeometric function 
for proving Bieberbach’s conjecture [29]. Once hypergeometric functions were considered 
in studies regarding univalent functions, confluent hypergeometric function was used in 
many investigations. One of the first papers which investigated confluent hypergeometric 
function and gave conditions for its univalence was published in 1990 [30]. Ever since 
then, aspects of its univalence were further investigated [31,32], it was considered in con-
nection with other important functions [33–37] and it was used in the definition of new 

p(z, ζ) for z ∈ U, ζ ∈ U.
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Since q(z, ζ) = B(a(ζ), c(ζ); z, ζ) satisfies the differential Equation (6), we conclude
that q(z, ζ) = B(a(ζ), c(ζ); z, ζ) is the best subordinant. �

Remark 2. For γ = 1, instead of Kummer–Bernardi integral operator, Kummer–Libera integral
operator defined in (4) is used in Theorem 1 and the following corollary can be written:

Corollary 1. Consider the confluent hypergeometric function φ(a(ζ), c(ζ); z, ζ) defined by (5) and
Kummer–Libera integral operator L(a(ζ), c(ζ); z, ζ) given by (4). Let ϕ : C2 ×U ×U → C be
an admissible function with the properties seen in Definition 3. Suppose that φ(a(ζ), c(ζ); z, ζ) is a
univalent solution of the equation

φ(a(ζ), c(ζ); z, ζ) = ϕ
(

L(a(ζ), c(ζ); z, ζ), z·L′z(a(ζ), c(ζ); z, ζ); z, ζ
)
.

If ϕ ∈ Φn
[
h
(
U ×U

)
, q(z, ζ)

]
, p(z, ζ) ∈ Qζ(1) and ϕ(p(z, ζ), z·p′z(z, ζ); z, ζ) are univalent in

U for allζ ∈ U, then strong superordination

φ(a(ζ), c(ζ); z, ζ)
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Definition 3. [27] Let 𝛺 be a set in ℂ, 𝑞(∙, 𝜁) ∈ 𝛺, and 𝑛 a positive integer. The class of ad-
missible functions 𝛷ൣ𝛺, 𝑞(∙, 𝜁)൧ consists of those functions 𝜑: ℂଷ × 𝑈 × 𝑈ഥ → ℂ that satisfy the 
admissibility condition 𝜑(𝑟, 𝑠, 𝑡; 𝜉, 𝜁) ∈ 𝛺  (A)

whenever 𝑟 =  𝑞(𝑧, 𝜁), 𝑠 = ௭ᇲ (௭,) , 𝑅𝑒 ቀ௧௦ + 1ቁ ≤ ଵ 𝑅𝑒 ୯మ'' (,)୯' (,) + 1൨ , 𝑧 ∈ 𝑈, 𝜉 ∈ 𝑈ഥ\𝐸൫𝑞(∙, 𝜁)൯ 
and 𝑚 ≥ 𝑛 ≥ 1. When 𝑛 = 1 we write Φଵൣ𝛺, 𝑞(∙, 𝜁)൧ as Φൣ𝛺, 𝑞(∙, 𝜁)൧. 
In the special case when ℎ(∙, 𝜁) is an analytic mapping of 𝑈 × 𝑈ഥ onto 𝛺 ≠ ℂ we denote the class Φሾℎ(𝑈 × 𝑈ഥ) , 𝑞(𝑧, 𝜁)ሿ by Φሾℎ(𝑧, 𝜁) , 𝑞(𝑧, 𝜁)ሿ. 
If 𝜑: ℂଶ × 𝑈 × 𝑈ഥ → ℂ, then the admissibility condition (A) reduces to 𝜑 ቆ𝑞(𝑧, 𝜁), 𝑧𝑞௭ᇱ (𝑧, 𝜁)𝑚 ; 𝜉, 𝜁ቇ ∈ 𝛺, (A’)

where 𝑧 ∈ 𝑈, 𝜁 ∈  𝑈ഥ, 𝜉 ∈ 𝑈ഥ\𝐸൫𝑞(∙, 𝜁)൯ and 𝑚 ≥ 𝑛 ≥ 1. 
Miller—Mocanu lemma given in [18] was rewritten in [27] for functions 𝑝(𝑧, 𝜁) and 𝑞(𝑧, 𝜁) as follows: 

Lemma 1. ([17],[27]) Let 𝑝(𝑧, 𝜁) ∈ 𝑄(𝑎) and let 𝑞(𝑧, 𝜁) = 𝑎 + 𝑎(𝜁)𝑧 + 𝑎ାଵ(𝜁)𝑧ାଵ + ⋯ 
with 𝑎(𝜁) holomorphic functions in 𝑈ഥ, 𝑘 ≥ 𝑛, 𝑞(𝑧, 𝜁) ≢ 𝑎 and 𝑛 ≥ 1. If 𝑞(𝑧, 𝜁) is not subor-
dinate to 𝑝(𝑧, 𝜁), then there exist points 𝑧 = 𝑟𝑒ఏబ ∈ 𝑈 and 𝜉 ∈ 𝜕𝑈\𝐸൫𝑝(𝑧, 𝜁)൯ and an 𝑚 ≥𝑛 ≥ 1 for which 𝑞(𝑈 × 𝑈ഥబ) ⊂ 𝑝(𝑈 × 𝑈ഥ) and (𝑖) 𝑞(𝑧, 𝜁) = 𝑝(𝜉, 𝜁), (𝑖𝑖) 𝑧𝑞௭ᇱ (𝑧, 𝜁) = 𝑚𝜉𝑝௭ᇱ (𝜉, 𝜁) and (𝑖𝑖𝑖) 𝑅𝑒 ቆ𝑧𝑞௭మᇱᇱ (𝑧, 𝜁)𝑞௭ᇱ (𝑧, 𝜁) + 1ቇ ≥ 𝑚𝑅𝑒 ቆ𝜉𝑝௭మᇱᇱ (𝜉, 𝜁)𝑝௭ᇱ (𝜉, 𝜁) + 1ቇ. 

This lemma will be used in the next section for proving the theorems which contain 
the original results. Another helpful result which will be used is the next lemma proved 
in [28]. 

Lemma 2. [28] Let ℎ(𝑧, 𝜁) be convex in 𝑈 for all 𝜁 ∈  𝑈ഥ with ℎ(0, 𝜁) = 𝑎, 𝛾 ≠ 0, 𝑅𝑒 𝛾 > 0 and 𝑝 ∈ 𝐻ሾ𝑎, 1ሿ ∩ 𝑄. If 𝑝(𝑧, 𝜁) + ௭ᇲ (௭,)ఊ  is univalent in 𝑈 for all 𝜁 ∈  𝑈ഥ,  ℎ(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁) + 𝑧𝑝௭ᇱ (𝑧, 𝜁)𝛾  

and 𝑞(𝑧, 𝜁) = 𝛾𝑧ఊ න ℎ(𝑡, 𝜁)𝑡ఊିଵ𝑑𝑡௭
 , 

then 𝑞(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁), 𝑧 ∈ 𝑈, 𝜁 ∈  𝑈ഥ. 
The function 𝑞 is convex and is the best subordinant. 

The connection between univalent function theory and hypergeometric functions 
was established in 1985 when de Branges used the generalized hypergeometric function 
for proving Bieberbach’s conjecture [29]. Once hypergeometric functions were considered 
in studies regarding univalent functions, confluent hypergeometric function was used in 
many investigations. One of the first papers which investigated confluent hypergeometric 
function and gave conditions for its univalence was published in 1990 [30]. Ever since 
then, aspects of its univalence were further investigated [31,32], it was considered in con-
nection with other important functions [33–37] and it was used in the definition of new 

ϕ
(

p(z, ζ), z·p′z(z, ζ); z, ζ
)

implies

L(a(ζ), c(ζ); z, ζ)
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Definition 3. [27] Let 𝛺 be a set in ℂ, 𝑞(∙, 𝜁) ∈ 𝛺, and 𝑛 a positive integer. The class of ad-
missible functions 𝛷ൣ𝛺, 𝑞(∙, 𝜁)൧ consists of those functions 𝜑: ℂଷ × 𝑈 × 𝑈ഥ → ℂ that satisfy the 
admissibility condition 𝜑(𝑟, 𝑠, 𝑡; 𝜉, 𝜁) ∈ 𝛺  (A)

whenever 𝑟 =  𝑞(𝑧, 𝜁), 𝑠 = ௭ᇲ (௭,) , 𝑅𝑒 ቀ௧௦ + 1ቁ ≤ ଵ 𝑅𝑒 ୯మ'' (,)୯' (,) + 1൨ , 𝑧 ∈ 𝑈, 𝜉 ∈ 𝑈ഥ\𝐸൫𝑞(∙, 𝜁)൯ 
and 𝑚 ≥ 𝑛 ≥ 1. When 𝑛 = 1 we write Φଵൣ𝛺, 𝑞(∙, 𝜁)൧ as Φൣ𝛺, 𝑞(∙, 𝜁)൧. 
In the special case when ℎ(∙, 𝜁) is an analytic mapping of 𝑈 × 𝑈ഥ onto 𝛺 ≠ ℂ we denote the class Φሾℎ(𝑈 × 𝑈ഥ) , 𝑞(𝑧, 𝜁)ሿ by Φሾℎ(𝑧, 𝜁) , 𝑞(𝑧, 𝜁)ሿ. 
If 𝜑: ℂଶ × 𝑈 × 𝑈ഥ → ℂ, then the admissibility condition (A) reduces to 𝜑 ቆ𝑞(𝑧, 𝜁), 𝑧𝑞௭ᇱ (𝑧, 𝜁)𝑚 ; 𝜉, 𝜁ቇ ∈ 𝛺, (A’)

where 𝑧 ∈ 𝑈, 𝜁 ∈  𝑈ഥ, 𝜉 ∈ 𝑈ഥ\𝐸൫𝑞(∙, 𝜁)൯ and 𝑚 ≥ 𝑛 ≥ 1. 
Miller—Mocanu lemma given in [18] was rewritten in [27] for functions 𝑝(𝑧, 𝜁) and 𝑞(𝑧, 𝜁) as follows: 

Lemma 1. ([17],[27]) Let 𝑝(𝑧, 𝜁) ∈ 𝑄(𝑎) and let 𝑞(𝑧, 𝜁) = 𝑎 + 𝑎(𝜁)𝑧 + 𝑎ାଵ(𝜁)𝑧ାଵ + ⋯ 
with 𝑎(𝜁) holomorphic functions in 𝑈ഥ, 𝑘 ≥ 𝑛, 𝑞(𝑧, 𝜁) ≢ 𝑎 and 𝑛 ≥ 1. If 𝑞(𝑧, 𝜁) is not subor-
dinate to 𝑝(𝑧, 𝜁), then there exist points 𝑧 = 𝑟𝑒ఏబ ∈ 𝑈 and 𝜉 ∈ 𝜕𝑈\𝐸൫𝑝(𝑧, 𝜁)൯ and an 𝑚 ≥𝑛 ≥ 1 for which 𝑞(𝑈 × 𝑈ഥబ) ⊂ 𝑝(𝑈 × 𝑈ഥ) and (𝑖) 𝑞(𝑧, 𝜁) = 𝑝(𝜉, 𝜁), (𝑖𝑖) 𝑧𝑞௭ᇱ (𝑧, 𝜁) = 𝑚𝜉𝑝௭ᇱ (𝜉, 𝜁) and (𝑖𝑖𝑖) 𝑅𝑒 ቆ𝑧𝑞௭మᇱᇱ (𝑧, 𝜁)𝑞௭ᇱ (𝑧, 𝜁) + 1ቇ ≥ 𝑚𝑅𝑒 ቆ𝜉𝑝௭మᇱᇱ (𝜉, 𝜁)𝑝௭ᇱ (𝜉, 𝜁) + 1ቇ. 

This lemma will be used in the next section for proving the theorems which contain 
the original results. Another helpful result which will be used is the next lemma proved 
in [28]. 

Lemma 2. [28] Let ℎ(𝑧, 𝜁) be convex in 𝑈 for all 𝜁 ∈  𝑈ഥ with ℎ(0, 𝜁) = 𝑎, 𝛾 ≠ 0, 𝑅𝑒 𝛾 > 0 and 𝑝 ∈ 𝐻ሾ𝑎, 1ሿ ∩ 𝑄. If 𝑝(𝑧, 𝜁) + ௭ᇲ (௭,)ఊ  is univalent in 𝑈 for all 𝜁 ∈  𝑈ഥ,  ℎ(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁) + 𝑧𝑝௭ᇱ (𝑧, 𝜁)𝛾  

and 𝑞(𝑧, 𝜁) = 𝛾𝑧ఊ න ℎ(𝑡, 𝜁)𝑡ఊିଵ𝑑𝑡௭
 , 

then 𝑞(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁), 𝑧 ∈ 𝑈, 𝜁 ∈  𝑈ഥ. 
The function 𝑞 is convex and is the best subordinant. 

The connection between univalent function theory and hypergeometric functions 
was established in 1985 when de Branges used the generalized hypergeometric function 
for proving Bieberbach’s conjecture [29]. Once hypergeometric functions were considered 
in studies regarding univalent functions, confluent hypergeometric function was used in 
many investigations. One of the first papers which investigated confluent hypergeometric 
function and gave conditions for its univalence was published in 1990 [30]. Ever since 
then, aspects of its univalence were further investigated [31,32], it was considered in con-
nection with other important functions [33–37] and it was used in the definition of new 

p(z, ζ), z ∈ U, ζ ∈ U.

The function q(z, ζ) = L(a(ζ), c(ζ); z, ζ) is the best subordinant.

Theorem 2. Let q(z, ζ) be a convex function in the unit disc for all ζ ∈ U, consider the confluent
hypergeometric function φ(a(ζ), c(ζ); z, ζ) defined by (5) and Kummer–Bernardi integral operator
B(a(ζ), c(ζ); z, ζ) given by (3). Let ϕ : C2 ×U ×U → C be an admissible function with the
properties seen in Definition 3 and define the analytic function

h(z, ζ) =

(
1 +

1
γ

)
q(z, ζ) +

1
γ

z·q′z(z, ζ), z ∈ U, ζ ∈ U.

If φ′z(a(ζ), c(ζ); z, ζ) and B′z(a(ζ), c(ζ); z, ζ) ∈ Hζ [1, 1]∩Qζ(1) are univalent functions in U for
all ζ ∈ U, then strong differential superordination

h(z, ζ)
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Definition 3. [27] Let 𝛺 be a set in ℂ, 𝑞(∙, 𝜁) ∈ 𝛺, and 𝑛 a positive integer. The class of ad-
missible functions 𝛷ൣ𝛺, 𝑞(∙, 𝜁)൧ consists of those functions 𝜑: ℂଷ × 𝑈 × 𝑈ഥ → ℂ that satisfy the 
admissibility condition 𝜑(𝑟, 𝑠, 𝑡; 𝜉, 𝜁) ∈ 𝛺  (A)

whenever 𝑟 =  𝑞(𝑧, 𝜁), 𝑠 = ௭ᇲ (௭,) , 𝑅𝑒 ቀ௧௦ + 1ቁ ≤ ଵ 𝑅𝑒 ୯మ'' (,)୯' (,) + 1൨ , 𝑧 ∈ 𝑈, 𝜉 ∈ 𝑈ഥ\𝐸൫𝑞(∙, 𝜁)൯ 
and 𝑚 ≥ 𝑛 ≥ 1. When 𝑛 = 1 we write Φଵൣ𝛺, 𝑞(∙, 𝜁)൧ as Φൣ𝛺, 𝑞(∙, 𝜁)൧. 
In the special case when ℎ(∙, 𝜁) is an analytic mapping of 𝑈 × 𝑈ഥ onto 𝛺 ≠ ℂ we denote the class Φሾℎ(𝑈 × 𝑈ഥ) , 𝑞(𝑧, 𝜁)ሿ by Φሾℎ(𝑧, 𝜁) , 𝑞(𝑧, 𝜁)ሿ. 
If 𝜑: ℂଶ × 𝑈 × 𝑈ഥ → ℂ, then the admissibility condition (A) reduces to 𝜑 ቆ𝑞(𝑧, 𝜁), 𝑧𝑞௭ᇱ (𝑧, 𝜁)𝑚 ; 𝜉, 𝜁ቇ ∈ 𝛺, (A’)

where 𝑧 ∈ 𝑈, 𝜁 ∈  𝑈ഥ, 𝜉 ∈ 𝑈ഥ\𝐸൫𝑞(∙, 𝜁)൯ and 𝑚 ≥ 𝑛 ≥ 1. 
Miller—Mocanu lemma given in [18] was rewritten in [27] for functions 𝑝(𝑧, 𝜁) and 𝑞(𝑧, 𝜁) as follows: 

Lemma 1. ([17],[27]) Let 𝑝(𝑧, 𝜁) ∈ 𝑄(𝑎) and let 𝑞(𝑧, 𝜁) = 𝑎 + 𝑎(𝜁)𝑧 + 𝑎ାଵ(𝜁)𝑧ାଵ + ⋯ 
with 𝑎(𝜁) holomorphic functions in 𝑈ഥ, 𝑘 ≥ 𝑛, 𝑞(𝑧, 𝜁) ≢ 𝑎 and 𝑛 ≥ 1. If 𝑞(𝑧, 𝜁) is not subor-
dinate to 𝑝(𝑧, 𝜁), then there exist points 𝑧 = 𝑟𝑒ఏబ ∈ 𝑈 and 𝜉 ∈ 𝜕𝑈\𝐸൫𝑝(𝑧, 𝜁)൯ and an 𝑚 ≥𝑛 ≥ 1 for which 𝑞(𝑈 × 𝑈ഥబ) ⊂ 𝑝(𝑈 × 𝑈ഥ) and (𝑖) 𝑞(𝑧, 𝜁) = 𝑝(𝜉, 𝜁), (𝑖𝑖) 𝑧𝑞௭ᇱ (𝑧, 𝜁) = 𝑚𝜉𝑝௭ᇱ (𝜉, 𝜁) and (𝑖𝑖𝑖) 𝑅𝑒 ቆ𝑧𝑞௭మᇱᇱ (𝑧, 𝜁)𝑞௭ᇱ (𝑧, 𝜁) + 1ቇ ≥ 𝑚𝑅𝑒 ቆ𝜉𝑝௭మᇱᇱ (𝜉, 𝜁)𝑝௭ᇱ (𝜉, 𝜁) + 1ቇ. 

This lemma will be used in the next section for proving the theorems which contain 
the original results. Another helpful result which will be used is the next lemma proved 
in [28]. 

Lemma 2. [28] Let ℎ(𝑧, 𝜁) be convex in 𝑈 for all 𝜁 ∈  𝑈ഥ with ℎ(0, 𝜁) = 𝑎, 𝛾 ≠ 0, 𝑅𝑒 𝛾 > 0 and 𝑝 ∈ 𝐻ሾ𝑎, 1ሿ ∩ 𝑄. If 𝑝(𝑧, 𝜁) + ௭ᇲ (௭,)ఊ  is univalent in 𝑈 for all 𝜁 ∈  𝑈ഥ,  ℎ(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁) + 𝑧𝑝௭ᇱ (𝑧, 𝜁)𝛾  

and 𝑞(𝑧, 𝜁) = 𝛾𝑧ఊ න ℎ(𝑡, 𝜁)𝑡ఊିଵ𝑑𝑡௭
 , 

then 𝑞(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁), 𝑧 ∈ 𝑈, 𝜁 ∈  𝑈ഥ. 
The function 𝑞 is convex and is the best subordinant. 

The connection between univalent function theory and hypergeometric functions 
was established in 1985 when de Branges used the generalized hypergeometric function 
for proving Bieberbach’s conjecture [29]. Once hypergeometric functions were considered 
in studies regarding univalent functions, confluent hypergeometric function was used in 
many investigations. One of the first papers which investigated confluent hypergeometric 
function and gave conditions for its univalence was published in 1990 [30]. Ever since 
then, aspects of its univalence were further investigated [31,32], it was considered in con-
nection with other important functions [33–37] and it was used in the definition of new 

φ′z(a(ζ), c(ζ); z, ζ) (18)

implies

q(z, ζ)
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many investigations. One of the first papers which investigated confluent hypergeometric 
function and gave conditions for its univalence was published in 1990 [30]. Ever since 
then, aspects of its univalence were further investigated [31,32], it was considered in con-
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B′z(a(ζ), c(ζ); z, ζ), z ∈ U, ζ ∈ U.

Proof. Using relation (9) from the proof of Theorem 1 and differentiating it with respect to
z, we obtain:

φ′z(a(ζ), c(ζ); z, ζ) =

(
1 +

1
γ

)
B′z(a(ζ), c(ζ); z, ζ) +

1
γ

z·B′′z2(a(ζ), c(ζ); z, ζ), z ∈ U, ζ ∈ U. (19)

Using (19), strong differential superordination (18) becomes:

h(z, ζ)
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(
1 +

1
γ

)
B′z(a(ζ), c(ζ); z, ζ) +

1
γ

z·B′′z2(a(ζ), c(ζ); z, ζ). (20)

For the proof of this theorem to be complete, Lemma 1 and the admissibility condition
(A′) will be applied.

In order to do that, we define the admissible function ϕ : C2 ×U ×U → C ,
ϕ(r, s; z, ζ) ∈ Φn

[
h
(
U ×U

)
, q(z, ζ)

]
, given by:

ϕ(r, s; z, ζ) =

(
1 +

1
γ

)
r +

1
γ

s, r, s ∈ C, γ > 0. (21)
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Taking r = B′z(a(ζ), c(ζ); z, ζ), s = z·B′′z2(a(ζ), c(ζ); z, ζ) relation (21) becomes:

ϕ
(

B′z(a(ζ), c(ζ); z, ζ), z·B′′z2(a(ζ), c(ζ); z, ζ); z, ζ
)

=
(

1 + 1
γ

)
B′z(a(ζ), c(ζ); z, ζ) + 1

γ z·B′′z2(a(ζ), c(ζ); z, ζ); z, ζ).
(22)

Using relation (22) in (20) we get:

h(z, ζ)

Axioms 2022, 11, x FOR PEER REVIEW 3 of 12 
 

Definition 3. [27] Let 𝛺 be a set in ℂ, 𝑞(∙, 𝜁) ∈ 𝛺, and 𝑛 a positive integer. The class of ad-
missible functions 𝛷ൣ𝛺, 𝑞(∙, 𝜁)൧ consists of those functions 𝜑: ℂଷ × 𝑈 × 𝑈ഥ → ℂ that satisfy the 
admissibility condition 𝜑(𝑟, 𝑠, 𝑡; 𝜉, 𝜁) ∈ 𝛺  (A)

whenever 𝑟 =  𝑞(𝑧, 𝜁), 𝑠 = ௭ᇲ (௭,) , 𝑅𝑒 ቀ௧௦ + 1ቁ ≤ ଵ 𝑅𝑒 ୯మ'' (,)୯' (,) + 1൨ , 𝑧 ∈ 𝑈, 𝜉 ∈ 𝑈ഥ\𝐸൫𝑞(∙, 𝜁)൯ 
and 𝑚 ≥ 𝑛 ≥ 1. When 𝑛 = 1 we write Φଵൣ𝛺, 𝑞(∙, 𝜁)൧ as Φൣ𝛺, 𝑞(∙, 𝜁)൧. 
In the special case when ℎ(∙, 𝜁) is an analytic mapping of 𝑈 × 𝑈ഥ onto 𝛺 ≠ ℂ we denote the class Φሾℎ(𝑈 × 𝑈ഥ) , 𝑞(𝑧, 𝜁)ሿ by Φሾℎ(𝑧, 𝜁) , 𝑞(𝑧, 𝜁)ሿ. 
If 𝜑: ℂଶ × 𝑈 × 𝑈ഥ → ℂ, then the admissibility condition (A) reduces to 𝜑 ቆ𝑞(𝑧, 𝜁), 𝑧𝑞௭ᇱ (𝑧, 𝜁)𝑚 ; 𝜉, 𝜁ቇ ∈ 𝛺, (A’)

where 𝑧 ∈ 𝑈, 𝜁 ∈  𝑈ഥ, 𝜉 ∈ 𝑈ഥ\𝐸൫𝑞(∙, 𝜁)൯ and 𝑚 ≥ 𝑛 ≥ 1. 
Miller—Mocanu lemma given in [18] was rewritten in [27] for functions 𝑝(𝑧, 𝜁) and 𝑞(𝑧, 𝜁) as follows: 

Lemma 1. ([17],[27]) Let 𝑝(𝑧, 𝜁) ∈ 𝑄(𝑎) and let 𝑞(𝑧, 𝜁) = 𝑎 + 𝑎(𝜁)𝑧 + 𝑎ାଵ(𝜁)𝑧ାଵ + ⋯ 
with 𝑎(𝜁) holomorphic functions in 𝑈ഥ, 𝑘 ≥ 𝑛, 𝑞(𝑧, 𝜁) ≢ 𝑎 and 𝑛 ≥ 1. If 𝑞(𝑧, 𝜁) is not subor-
dinate to 𝑝(𝑧, 𝜁), then there exist points 𝑧 = 𝑟𝑒ఏబ ∈ 𝑈 and 𝜉 ∈ 𝜕𝑈\𝐸൫𝑝(𝑧, 𝜁)൯ and an 𝑚 ≥𝑛 ≥ 1 for which 𝑞(𝑈 × 𝑈ഥబ) ⊂ 𝑝(𝑈 × 𝑈ഥ) and (𝑖) 𝑞(𝑧, 𝜁) = 𝑝(𝜉, 𝜁), (𝑖𝑖) 𝑧𝑞௭ᇱ (𝑧, 𝜁) = 𝑚𝜉𝑝௭ᇱ (𝜉, 𝜁) and (𝑖𝑖𝑖) 𝑅𝑒 ቆ𝑧𝑞௭మᇱᇱ (𝑧, 𝜁)𝑞௭ᇱ (𝑧, 𝜁) + 1ቇ ≥ 𝑚𝑅𝑒 ቆ𝜉𝑝௭మᇱᇱ (𝜉, 𝜁)𝑝௭ᇱ (𝜉, 𝜁) + 1ቇ. 

This lemma will be used in the next section for proving the theorems which contain 
the original results. Another helpful result which will be used is the next lemma proved 
in [28]. 

Lemma 2. [28] Let ℎ(𝑧, 𝜁) be convex in 𝑈 for all 𝜁 ∈  𝑈ഥ with ℎ(0, 𝜁) = 𝑎, 𝛾 ≠ 0, 𝑅𝑒 𝛾 > 0 and 𝑝 ∈ 𝐻ሾ𝑎, 1ሿ ∩ 𝑄. If 𝑝(𝑧, 𝜁) + ௭ᇲ (௭,)ఊ  is univalent in 𝑈 for all 𝜁 ∈  𝑈ഥ,  ℎ(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁) + 𝑧𝑝௭ᇱ (𝑧, 𝜁)𝛾  

and 𝑞(𝑧, 𝜁) = 𝛾𝑧ఊ න ℎ(𝑡, 𝜁)𝑡ఊିଵ𝑑𝑡௭
 , 

then 𝑞(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁), 𝑧 ∈ 𝑈, 𝜁 ∈  𝑈ഥ. 
The function 𝑞 is convex and is the best subordinant. 

The connection between univalent function theory and hypergeometric functions 
was established in 1985 when de Branges used the generalized hypergeometric function 
for proving Bieberbach’s conjecture [29]. Once hypergeometric functions were considered 
in studies regarding univalent functions, confluent hypergeometric function was used in 
many investigations. One of the first papers which investigated confluent hypergeometric 
function and gave conditions for its univalence was published in 1990 [30]. Ever since 
then, aspects of its univalence were further investigated [31,32], it was considered in con-
nection with other important functions [33–37] and it was used in the definition of new 

ϕ
(

B′z(a(ζ), c(ζ); z, ζ), z·B′′z2(a(ζ), c(ζ); z, ζ); z, ζ
)

.

Using Definition 1 and Remark 1, a) for this strong differential superordination, we get:

h(0, ζ) = ϕ
(

B′z(a(ζ), c(ζ); 0, ζ), 0; 0, ζ
)

and
h
(
U ×U

)
⊂ ϕ

(
U ×U

)
. (23)

Interpreting relation (23) we conclude that

ϕ
(

B′z(a(ζ), c(ζ); ξ, ζ), ξ·B′′z2(a(ζ), c(ζ); ξ, ζ); ξ, ζ
)

/∈ h
(
U ×U

)
, ξ ∈ ∂U, ζ ∈ U. (24)

For ξ = ξ0 ∈ ∂U, relation (24) becomes:

ϕ
(

B′z(a(ζ), c(ζ); ξ0, ζ), ξ0·B′′z2(a(ζ), c(ζ); ξ0, ζ); ξ0, ζ
)

/∈ h
(
U ×U

)
, ζ ∈ U. (25)

Suppose that q(z, ζ) is not subordinate to B′z(a(ζ), c(ζ); z, ζ) for z ∈ U, ζ ∈ U. Then, using
Lemma 1, we know that there are points z0 = r0eiθ0 ∈ U and ξ0 ∈ ∂U\E(B′z(a(ζ), c(ζ); z, ζ))
and an m ≥ n ≥ 1 such that

q(z0, ζ) = B′z(a(ζ), c(ζ); z0, ζ) = p(ξ0, ζ) and

z0q′z(z0, ζ) = mξ0B′′z2(a(ζ), c(ζ); z0, ζ) = mξ0 p′z(ξ0, ζ).

Using those conditions with r = B′z(a(ζ), c(ζ); z0, ζ) and s = ξ0B′′z2(a(ζ), c(ζ); z0, ζ)
for ξ = ξ0 in Definition 3 and taking into consideration the admissibility condition (A′),
we obtain:

ϕ(q(z0, ζ), z0q′z(z0, ζ); z0, ζ) = ϕ

(
B′z(a(ζ), c(ζ); z0, ζ),

ξ0B′′
z2 (a(ζ),c(ζ);ξ0,ζ)

m ; z0, ζ

)

∈ h
(
U ×U

)
.

Using m = 1 in the previous relation, we get

ϕ
(

B′z(a(ζ), c(ζ); z0, ζ), ξ0B′′z2(a(ζ), c(ζ); z0, ζ); z0, ζ
)
∈ h
(
U ×U

)
, ζ ∈ U,

which contradicts the result obtained in relation (25). Hence, the assumption made is false
and we must have:

q(z, ζ)
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B′z(a(ζ), c(ζ); z, ζ) for z ∈ U, ζ ∈ U.

�

Remark 3. For γ = 1, instead of Kummer–Bernardi integral operator, Kummer–Libera integral
operator defined in (4) is used in Theorem 2 and the following corollary can be written:

Corollary 2. Let q(z, ζ) be a convex function in the unit disc for all ζ ∈ U, consider the confluent
hypergeometric function φ(a(ζ), c(ζ); z, ζ) defined by (5) and Kummer–Libera integral operator
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L(a(ζ), c(ζ); z, ζ) given by (4). Let ϕ : C2 ×U ×U → C be an admissible function with the
properties seen in Definition 3 and define the analytic function:

h(z, ζ) =

(
1 +

1
γ

)
q(z, ζ) +

1
γ

z·q′z(z, ζ), z ∈ U, ζ ∈ U.

If φ′z(a(ζ), c(ζ); z, ζ) and L′z(a(ζ), c(ζ); z, ζ) ∈ Hζ [1, 1]∩Qζ(1) are univalent functions in U for
all ζ ∈ U, then strong differential superordination

h(z, ζ)
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φ′z(a(ζ), c(ζ); z, ζ)

implies

q(z, ζ)
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L′z(a(ζ), c(ζ); z, ζ), z ∈ U, ζ ∈ U.

In Theorems 1 and 2, parameter γ is a real number, γ > 0. In the next theorem,
a necessary and sufficient condition is determined such that Kummer–Bernardi integral
operator is the best subordinant for a certain strong differential superordination considering
γ a complex number with Re γ > 0.

Theorem 3. Let h(z, ζ) with h(0, ζ) = a be a convex function in the unit disc for all ζ ∈ U and
let γ be a complex number with Re γ > 0. Consider the confluent hypergeometric function
φ(a(ζ), c(ζ); z, ζ) defined by (5) and Kummer–Bernardi integral operator B(a(ζ), c(ζ); z, ζ) given
by (3). Let p(z, ζ) ∈ Hζ [a, 1] ∩Qζ(a).

If p(z, ζ) +
z·p′z(z,ζ)

γ is univalent in U for all ζ ∈ U and the following strong differential superordi-
nation is satisfied

B(a(ζ), c(ζ); z, ζ) +
z·B′z(a(ζ), c(ζ); z, ζ)

γ
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Lemma 1. ([17],[27]) Let 𝑝(𝑧, 𝜁) ∈ 𝑄(𝑎) and let 𝑞(𝑧, 𝜁) = 𝑎 + 𝑎(𝜁)𝑧 + 𝑎ାଵ(𝜁)𝑧ାଵ + ⋯ 
with 𝑎(𝜁) holomorphic functions in 𝑈ഥ, 𝑘 ≥ 𝑛, 𝑞(𝑧, 𝜁) ≢ 𝑎 and 𝑛 ≥ 1. If 𝑞(𝑧, 𝜁) is not subor-
dinate to 𝑝(𝑧, 𝜁), then there exist points 𝑧 = 𝑟𝑒ఏబ ∈ 𝑈 and 𝜉 ∈ 𝜕𝑈\𝐸൫𝑝(𝑧, 𝜁)൯ and an 𝑚 ≥𝑛 ≥ 1 for which 𝑞(𝑈 × 𝑈ഥబ) ⊂ 𝑝(𝑈 × 𝑈ഥ) and (𝑖) 𝑞(𝑧, 𝜁) = 𝑝(𝜉, 𝜁), (𝑖𝑖) 𝑧𝑞௭ᇱ (𝑧, 𝜁) = 𝑚𝜉𝑝௭ᇱ (𝜉, 𝜁) and (𝑖𝑖𝑖) 𝑅𝑒 ቆ𝑧𝑞௭మᇱᇱ (𝑧, 𝜁)𝑞௭ᇱ (𝑧, 𝜁) + 1ቇ ≥ 𝑚𝑅𝑒 ቆ𝜉𝑝௭మᇱᇱ (𝜉, 𝜁)𝑝௭ᇱ (𝜉, 𝜁) + 1ቇ. 

This lemma will be used in the next section for proving the theorems which contain 
the original results. Another helpful result which will be used is the next lemma proved 
in [28]. 

Lemma 2. [28] Let ℎ(𝑧, 𝜁) be convex in 𝑈 for all 𝜁 ∈  𝑈ഥ with ℎ(0, 𝜁) = 𝑎, 𝛾 ≠ 0, 𝑅𝑒 𝛾 > 0 and 𝑝 ∈ 𝐻ሾ𝑎, 1ሿ ∩ 𝑄. If 𝑝(𝑧, 𝜁) + ௭ᇲ (௭,)ఊ  is univalent in 𝑈 for all 𝜁 ∈  𝑈ഥ,  ℎ(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁) + 𝑧𝑝௭ᇱ (𝑧, 𝜁)𝛾  

and 𝑞(𝑧, 𝜁) = 𝛾𝑧ఊ න ℎ(𝑡, 𝜁)𝑡ఊିଵ𝑑𝑡௭
 , 

then 𝑞(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁), 𝑧 ∈ 𝑈, 𝜁 ∈  𝑈ഥ. 
The function 𝑞 is convex and is the best subordinant. 

The connection between univalent function theory and hypergeometric functions 
was established in 1985 when de Branges used the generalized hypergeometric function 
for proving Bieberbach’s conjecture [29]. Once hypergeometric functions were considered 
in studies regarding univalent functions, confluent hypergeometric function was used in 
many investigations. One of the first papers which investigated confluent hypergeometric 
function and gave conditions for its univalence was published in 1990 [30]. Ever since 
then, aspects of its univalence were further investigated [31,32], it was considered in con-
nection with other important functions [33–37] and it was used in the definition of new 

p(z, ζ) +
z·p′z(z, ζ)

γ
, (26)

then

q(z, ζ) = B(a(ζ), c(ζ); z, ζ)
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The function 𝑞 is convex and is the best subordinant. 
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in studies regarding univalent functions, confluent hypergeometric function was used in 
many investigations. One of the first papers which investigated confluent hypergeometric 
function and gave conditions for its univalence was published in 1990 [30]. Ever since 
then, aspects of its univalence were further investigated [31,32], it was considered in con-
nection with other important functions [33–37] and it was used in the definition of new 

p(z, ζ), z ∈ U, ζ ∈ U.

Function q(z, ζ) = B(a(ζ), c(ζ); z, ζ) is convex and is the best subordinant.

Proof. Lemma 2 will be used for the proof of this theorem. Using the definition of Kummer–
Bernardi operator given by (3) and differentiating this relation with respect to z, we obtain:

γ·zγ−1·B(a(ζ), c(ζ); z, ζ) + zγ·B′z(a(ζ), c(ζ); z, ζ) = γ·h(z, ζ)·zγ−1, z ∈ U, ζ ∈ U.

After a simple calculation, we get:

B(a(ζ), c(ζ); z, ζ) +
z·B′z(a(ζ), c(ζ); z, ζ)

γ
= h(z, ζ), z ∈ U, ζ ∈ U. (27)

Using (27), the strong differential subordination (26) becomes

h(z, ζ)
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where 𝑧 ∈ 𝑈, 𝜁 ∈  𝑈ഥ, 𝜉 ∈ 𝑈ഥ\𝐸൫𝑞(∙, 𝜁)൯ and 𝑚 ≥ 𝑛 ≥ 1. 
Miller—Mocanu lemma given in [18] was rewritten in [27] for functions 𝑝(𝑧, 𝜁) and 𝑞(𝑧, 𝜁) as follows: 
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This lemma will be used in the next section for proving the theorems which contain 
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in [28]. 
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and 𝑞(𝑧, 𝜁) = 𝛾𝑧ఊ න ℎ(𝑡, 𝜁)𝑡ఊିଵ𝑑𝑡௭
 , 

then 𝑞(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁), 𝑧 ∈ 𝑈, 𝜁 ∈  𝑈ഥ. 
The function 𝑞 is convex and is the best subordinant. 

The connection between univalent function theory and hypergeometric functions 
was established in 1985 when de Branges used the generalized hypergeometric function 
for proving Bieberbach’s conjecture [29]. Once hypergeometric functions were considered 
in studies regarding univalent functions, confluent hypergeometric function was used in 
many investigations. One of the first papers which investigated confluent hypergeometric 
function and gave conditions for its univalence was published in 1990 [30]. Ever since 
then, aspects of its univalence were further investigated [31,32], it was considered in con-
nection with other important functions [33–37] and it was used in the definition of new 

p(z, ζ) +
z·p′z(z, ζ)

γ
, z ∈ U, ζ ∈ U.

Since h(z, ζ) is a convex function and p(z, ζ) +
z·p′z(z,ζ)

γ is univalent in U for all
ζ ∈ U, by applying Lemma 2 we obtain:

q(z, ζ) = B(a(ζ), c(ζ); z, ζ)
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in [28]. 
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and 𝑞(𝑧, 𝜁) = 𝛾𝑧ఊ න ℎ(𝑡, 𝜁)𝑡ఊିଵ𝑑𝑡௭
 , 

then 𝑞(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁), 𝑧 ∈ 𝑈, 𝜁 ∈  𝑈ഥ. 
The function 𝑞 is convex and is the best subordinant. 

The connection between univalent function theory and hypergeometric functions 
was established in 1985 when de Branges used the generalized hypergeometric function 
for proving Bieberbach’s conjecture [29]. Once hypergeometric functions were considered 
in studies regarding univalent functions, confluent hypergeometric function was used in 
many investigations. One of the first papers which investigated confluent hypergeometric 
function and gave conditions for its univalence was published in 1990 [30]. Ever since 
then, aspects of its univalence were further investigated [31,32], it was considered in con-
nection with other important functions [33–37] and it was used in the definition of new 

p(z, ζ), z ∈ U, ζ ∈ U.

Since function q(z, ζ) = B(a(ζ), c(ζ); z, ζ) satisfies Equation (27) and is analytic in U
for all ζ ∈ U, we conclude that q(z, ζ) = B(a(ζ), c(ζ); z, ζ) is the best subordinant. �

Example 1. Let a = −1, c = i
2ζ , i

2ζ 6= 0,−1,−2, . . . , ζ 6= 0, γ ∈ C, Re γ > 0. We evaluate:
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φ

(
−1,

i
2ζ

; z, ζ

)
= 1 +

−1
i

2ζ

· z
1!

= 1− 2ζ·z
i

= 1 + 2iζz.

Further, we use this expression to obtain Kummer–Bernardi integral operator’s expression:

B
(

φ
(
−1, i

2ζ ; z, ζ
))

= γ
zγ

z∫
0

φ
(
−1, i

2ζ ; t, ζ
)

tγ−1dt = γ
zγ

z∫
0
(1 + 2iζt)tγ−1dt

= γ
zγ

(
zγ

γ + 2iζ zγ+1

γ+1

)
= 1 + 2iζ γ

γ+1 ·z.

Functions p(z, ζ) = 1 + zζ and p(z, ζ) +
z·p′z(z,ζ)

γ = 1 + z
(

ζ + ζ
γ

)
are univalent in U for

all ζ ∈ U.
Using Theorem 3, we get:
If the following strong differential superordination is satisfied

1 + 2iζ
γ

γ + 1
·z + 2iζ·z

γ + 1
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Definition 3. [27] Let 𝛺 be a set in ℂ, 𝑞(∙, 𝜁) ∈ 𝛺, and 𝑛 a positive integer. The class of ad-
missible functions 𝛷ൣ𝛺, 𝑞(∙, 𝜁)൧ consists of those functions 𝜑: ℂଷ × 𝑈 × 𝑈ഥ → ℂ that satisfy the 
admissibility condition 𝜑(𝑟, 𝑠, 𝑡; 𝜉, 𝜁) ∈ 𝛺  (A)

whenever 𝑟 =  𝑞(𝑧, 𝜁), 𝑠 = ௭ᇲ (௭,) , 𝑅𝑒 ቀ௧௦ + 1ቁ ≤ ଵ 𝑅𝑒 ୯మ'' (,)୯' (,) + 1൨ , 𝑧 ∈ 𝑈, 𝜉 ∈ 𝑈ഥ\𝐸൫𝑞(∙, 𝜁)൯ 
and 𝑚 ≥ 𝑛 ≥ 1. When 𝑛 = 1 we write Φଵൣ𝛺, 𝑞(∙, 𝜁)൧ as Φൣ𝛺, 𝑞(∙, 𝜁)൧. 
In the special case when ℎ(∙, 𝜁) is an analytic mapping of 𝑈 × 𝑈ഥ onto 𝛺 ≠ ℂ we denote the class Φሾℎ(𝑈 × 𝑈ഥ) , 𝑞(𝑧, 𝜁)ሿ by Φሾℎ(𝑧, 𝜁) , 𝑞(𝑧, 𝜁)ሿ. 
If 𝜑: ℂଶ × 𝑈 × 𝑈ഥ → ℂ, then the admissibility condition (A) reduces to 𝜑 ቆ𝑞(𝑧, 𝜁), 𝑧𝑞௭ᇱ (𝑧, 𝜁)𝑚 ; 𝜉, 𝜁ቇ ∈ 𝛺, (A’)

where 𝑧 ∈ 𝑈, 𝜁 ∈  𝑈ഥ, 𝜉 ∈ 𝑈ഥ\𝐸൫𝑞(∙, 𝜁)൯ and 𝑚 ≥ 𝑛 ≥ 1. 
Miller—Mocanu lemma given in [18] was rewritten in [27] for functions 𝑝(𝑧, 𝜁) and 𝑞(𝑧, 𝜁) as follows: 

Lemma 1. ([17],[27]) Let 𝑝(𝑧, 𝜁) ∈ 𝑄(𝑎) and let 𝑞(𝑧, 𝜁) = 𝑎 + 𝑎(𝜁)𝑧 + 𝑎ାଵ(𝜁)𝑧ାଵ + ⋯ 
with 𝑎(𝜁) holomorphic functions in 𝑈ഥ, 𝑘 ≥ 𝑛, 𝑞(𝑧, 𝜁) ≢ 𝑎 and 𝑛 ≥ 1. If 𝑞(𝑧, 𝜁) is not subor-
dinate to 𝑝(𝑧, 𝜁), then there exist points 𝑧 = 𝑟𝑒ఏబ ∈ 𝑈 and 𝜉 ∈ 𝜕𝑈\𝐸൫𝑝(𝑧, 𝜁)൯ and an 𝑚 ≥𝑛 ≥ 1 for which 𝑞(𝑈 × 𝑈ഥబ) ⊂ 𝑝(𝑈 × 𝑈ഥ) and (𝑖) 𝑞(𝑧, 𝜁) = 𝑝(𝜉, 𝜁), (𝑖𝑖) 𝑧𝑞௭ᇱ (𝑧, 𝜁) = 𝑚𝜉𝑝௭ᇱ (𝜉, 𝜁) and (𝑖𝑖𝑖) 𝑅𝑒 ቆ𝑧𝑞௭మᇱᇱ (𝑧, 𝜁)𝑞௭ᇱ (𝑧, 𝜁) + 1ቇ ≥ 𝑚𝑅𝑒 ቆ𝜉𝑝௭మᇱᇱ (𝜉, 𝜁)𝑝௭ᇱ (𝜉, 𝜁) + 1ቇ. 

This lemma will be used in the next section for proving the theorems which contain 
the original results. Another helpful result which will be used is the next lemma proved 
in [28]. 

Lemma 2. [28] Let ℎ(𝑧, 𝜁) be convex in 𝑈 for all 𝜁 ∈  𝑈ഥ with ℎ(0, 𝜁) = 𝑎, 𝛾 ≠ 0, 𝑅𝑒 𝛾 > 0 and 𝑝 ∈ 𝐻ሾ𝑎, 1ሿ ∩ 𝑄. If 𝑝(𝑧, 𝜁) + ௭ᇲ (௭,)ఊ  is univalent in 𝑈 for all 𝜁 ∈  𝑈ഥ,  ℎ(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁) + 𝑧𝑝௭ᇱ (𝑧, 𝜁)𝛾  

and 𝑞(𝑧, 𝜁) = 𝛾𝑧ఊ න ℎ(𝑡, 𝜁)𝑡ఊିଵ𝑑𝑡௭
 , 

then 𝑞(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁), 𝑧 ∈ 𝑈, 𝜁 ∈  𝑈ഥ. 
The function 𝑞 is convex and is the best subordinant. 

The connection between univalent function theory and hypergeometric functions 
was established in 1985 when de Branges used the generalized hypergeometric function 
for proving Bieberbach’s conjecture [29]. Once hypergeometric functions were considered 
in studies regarding univalent functions, confluent hypergeometric function was used in 
many investigations. One of the first papers which investigated confluent hypergeometric 
function and gave conditions for its univalence was published in 1990 [30]. Ever since 
then, aspects of its univalence were further investigated [31,32], it was considered in con-
nection with other important functions [33–37] and it was used in the definition of new 

1 + z
(

ζ +
ζ

γ

)
,

then

1 + 2iζ
γ

γ + 1
·z
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Definition 3. [27] Let 𝛺 be a set in ℂ, 𝑞(∙, 𝜁) ∈ 𝛺, and 𝑛 a positive integer. The class of ad-
missible functions 𝛷ൣ𝛺, 𝑞(∙, 𝜁)൧ consists of those functions 𝜑: ℂଷ × 𝑈 × 𝑈ഥ → ℂ that satisfy the 
admissibility condition 𝜑(𝑟, 𝑠, 𝑡; 𝜉, 𝜁) ∈ 𝛺  (A)

whenever 𝑟 =  𝑞(𝑧, 𝜁), 𝑠 = ௭ᇲ (௭,) , 𝑅𝑒 ቀ௧௦ + 1ቁ ≤ ଵ 𝑅𝑒 ୯మ'' (,)୯' (,) + 1൨ , 𝑧 ∈ 𝑈, 𝜉 ∈ 𝑈ഥ\𝐸൫𝑞(∙, 𝜁)൯ 
and 𝑚 ≥ 𝑛 ≥ 1. When 𝑛 = 1 we write Φଵൣ𝛺, 𝑞(∙, 𝜁)൧ as Φൣ𝛺, 𝑞(∙, 𝜁)൧. 
In the special case when ℎ(∙, 𝜁) is an analytic mapping of 𝑈 × 𝑈ഥ onto 𝛺 ≠ ℂ we denote the class Φሾℎ(𝑈 × 𝑈ഥ) , 𝑞(𝑧, 𝜁)ሿ by Φሾℎ(𝑧, 𝜁) , 𝑞(𝑧, 𝜁)ሿ. 
If 𝜑: ℂଶ × 𝑈 × 𝑈ഥ → ℂ, then the admissibility condition (A) reduces to 𝜑 ቆ𝑞(𝑧, 𝜁), 𝑧𝑞௭ᇱ (𝑧, 𝜁)𝑚 ; 𝜉, 𝜁ቇ ∈ 𝛺, (A’)

where 𝑧 ∈ 𝑈, 𝜁 ∈  𝑈ഥ, 𝜉 ∈ 𝑈ഥ\𝐸൫𝑞(∙, 𝜁)൯ and 𝑚 ≥ 𝑛 ≥ 1. 
Miller—Mocanu lemma given in [18] was rewritten in [27] for functions 𝑝(𝑧, 𝜁) and 𝑞(𝑧, 𝜁) as follows: 

Lemma 1. ([17],[27]) Let 𝑝(𝑧, 𝜁) ∈ 𝑄(𝑎) and let 𝑞(𝑧, 𝜁) = 𝑎 + 𝑎(𝜁)𝑧 + 𝑎ାଵ(𝜁)𝑧ାଵ + ⋯ 
with 𝑎(𝜁) holomorphic functions in 𝑈ഥ, 𝑘 ≥ 𝑛, 𝑞(𝑧, 𝜁) ≢ 𝑎 and 𝑛 ≥ 1. If 𝑞(𝑧, 𝜁) is not subor-
dinate to 𝑝(𝑧, 𝜁), then there exist points 𝑧 = 𝑟𝑒ఏబ ∈ 𝑈 and 𝜉 ∈ 𝜕𝑈\𝐸൫𝑝(𝑧, 𝜁)൯ and an 𝑚 ≥𝑛 ≥ 1 for which 𝑞(𝑈 × 𝑈ഥబ) ⊂ 𝑝(𝑈 × 𝑈ഥ) and (𝑖) 𝑞(𝑧, 𝜁) = 𝑝(𝜉, 𝜁), (𝑖𝑖) 𝑧𝑞௭ᇱ (𝑧, 𝜁) = 𝑚𝜉𝑝௭ᇱ (𝜉, 𝜁) and (𝑖𝑖𝑖) 𝑅𝑒 ቆ𝑧𝑞௭మᇱᇱ (𝑧, 𝜁)𝑞௭ᇱ (𝑧, 𝜁) + 1ቇ ≥ 𝑚𝑅𝑒 ቆ𝜉𝑝௭మᇱᇱ (𝜉, 𝜁)𝑝௭ᇱ (𝜉, 𝜁) + 1ቇ. 

This lemma will be used in the next section for proving the theorems which contain 
the original results. Another helpful result which will be used is the next lemma proved 
in [28]. 

Lemma 2. [28] Let ℎ(𝑧, 𝜁) be convex in 𝑈 for all 𝜁 ∈  𝑈ഥ with ℎ(0, 𝜁) = 𝑎, 𝛾 ≠ 0, 𝑅𝑒 𝛾 > 0 and 𝑝 ∈ 𝐻ሾ𝑎, 1ሿ ∩ 𝑄. If 𝑝(𝑧, 𝜁) + ௭ᇲ (௭,)ఊ  is univalent in 𝑈 for all 𝜁 ∈  𝑈ഥ,  ℎ(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁) + 𝑧𝑝௭ᇱ (𝑧, 𝜁)𝛾  

and 𝑞(𝑧, 𝜁) = 𝛾𝑧ఊ න ℎ(𝑡, 𝜁)𝑡ఊିଵ𝑑𝑡௭
 , 

then 𝑞(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁), 𝑧 ∈ 𝑈, 𝜁 ∈  𝑈ഥ. 
The function 𝑞 is convex and is the best subordinant. 

The connection between univalent function theory and hypergeometric functions 
was established in 1985 when de Branges used the generalized hypergeometric function 
for proving Bieberbach’s conjecture [29]. Once hypergeometric functions were considered 
in studies regarding univalent functions, confluent hypergeometric function was used in 
many investigations. One of the first papers which investigated confluent hypergeometric 
function and gave conditions for its univalence was published in 1990 [30]. Ever since 
then, aspects of its univalence were further investigated [31,32], it was considered in con-
nection with other important functions [33–37] and it was used in the definition of new 

1 + zζ, z ∈ U, ζ ∈ U.

Function q(z, ζ) = 1 + 2iζ γ
γ+1 ·z is convex and is the best subordinant.

Example 2. Let a = −1, c = i
2ζ , i

2ζ 6= 0,−1,−2, . . . , ζ 6= 0, γ = 1 + i ∈ C, Re γ = 1 > 0.
We evaluate:

φ

(
−1,

i
2ζ

; z, ζ

)
= 1 +

−1
i

2ζ

· z
1!

= 1− 2ζ·z
i

= 1 + 2iζz.

Further, we use this expression to obtain Kummer–Bernardi integral operator’s expression:

B
(

φ
(
−1, i

2ζ ; z, ζ
))

= γ
zγ

z∫
0

φ
(
−1, i

2ζ ; t, ζ
)

tγ−1dt = 1+i
z1+i

z∫
0
(1 + 2iζt)tγ−1dt

= 1+i
z1+i

(
z1+i

1+i + 2iζ z1+i+1

1+i+1

)
= 1 + 2iζ z(i+1)

i+2 = 1 + 2
5 (−1 + 3i)zζ.

Functions p(z, ζ) = 1 + zζ and p(z, ζ) +
z·p′z(z,ζ)

1+i = 1 + 3
2 zζ(3− i) are univalent in U for all

ζ ∈ U.
Using Theorem 3, we get:
If 1 + 3

2 zζ(3− i) is univalent in U for all ζ ∈ U and the following strong differential superordina-
tion is satisfied

1 + 2iζt
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Definition 3. [27] Let 𝛺 be a set in ℂ, 𝑞(∙, 𝜁) ∈ 𝛺, and 𝑛 a positive integer. The class of ad-
missible functions 𝛷ൣ𝛺, 𝑞(∙, 𝜁)൧ consists of those functions 𝜑: ℂଷ × 𝑈 × 𝑈ഥ → ℂ that satisfy the 
admissibility condition 𝜑(𝑟, 𝑠, 𝑡; 𝜉, 𝜁) ∈ 𝛺  (A)

whenever 𝑟 =  𝑞(𝑧, 𝜁), 𝑠 = ௭ᇲ (௭,) , 𝑅𝑒 ቀ௧௦ + 1ቁ ≤ ଵ 𝑅𝑒 ୯మ'' (,)୯' (,) + 1൨ , 𝑧 ∈ 𝑈, 𝜉 ∈ 𝑈ഥ\𝐸൫𝑞(∙, 𝜁)൯ 
and 𝑚 ≥ 𝑛 ≥ 1. When 𝑛 = 1 we write Φଵൣ𝛺, 𝑞(∙, 𝜁)൧ as Φൣ𝛺, 𝑞(∙, 𝜁)൧. 
In the special case when ℎ(∙, 𝜁) is an analytic mapping of 𝑈 × 𝑈ഥ onto 𝛺 ≠ ℂ we denote the class Φሾℎ(𝑈 × 𝑈ഥ) , 𝑞(𝑧, 𝜁)ሿ by Φሾℎ(𝑧, 𝜁) , 𝑞(𝑧, 𝜁)ሿ. 
If 𝜑: ℂଶ × 𝑈 × 𝑈ഥ → ℂ, then the admissibility condition (A) reduces to 𝜑 ቆ𝑞(𝑧, 𝜁), 𝑧𝑞௭ᇱ (𝑧, 𝜁)𝑚 ; 𝜉, 𝜁ቇ ∈ 𝛺, (A’)

where 𝑧 ∈ 𝑈, 𝜁 ∈  𝑈ഥ, 𝜉 ∈ 𝑈ഥ\𝐸൫𝑞(∙, 𝜁)൯ and 𝑚 ≥ 𝑛 ≥ 1. 
Miller—Mocanu lemma given in [18] was rewritten in [27] for functions 𝑝(𝑧, 𝜁) and 𝑞(𝑧, 𝜁) as follows: 

Lemma 1. ([17],[27]) Let 𝑝(𝑧, 𝜁) ∈ 𝑄(𝑎) and let 𝑞(𝑧, 𝜁) = 𝑎 + 𝑎(𝜁)𝑧 + 𝑎ାଵ(𝜁)𝑧ାଵ + ⋯ 
with 𝑎(𝜁) holomorphic functions in 𝑈ഥ, 𝑘 ≥ 𝑛, 𝑞(𝑧, 𝜁) ≢ 𝑎 and 𝑛 ≥ 1. If 𝑞(𝑧, 𝜁) is not subor-
dinate to 𝑝(𝑧, 𝜁), then there exist points 𝑧 = 𝑟𝑒ఏబ ∈ 𝑈 and 𝜉 ∈ 𝜕𝑈\𝐸൫𝑝(𝑧, 𝜁)൯ and an 𝑚 ≥𝑛 ≥ 1 for which 𝑞(𝑈 × 𝑈ഥబ) ⊂ 𝑝(𝑈 × 𝑈ഥ) and (𝑖) 𝑞(𝑧, 𝜁) = 𝑝(𝜉, 𝜁), (𝑖𝑖) 𝑧𝑞௭ᇱ (𝑧, 𝜁) = 𝑚𝜉𝑝௭ᇱ (𝜉, 𝜁) and (𝑖𝑖𝑖) 𝑅𝑒 ቆ𝑧𝑞௭మᇱᇱ (𝑧, 𝜁)𝑞௭ᇱ (𝑧, 𝜁) + 1ቇ ≥ 𝑚𝑅𝑒 ቆ𝜉𝑝௭మᇱᇱ (𝜉, 𝜁)𝑝௭ᇱ (𝜉, 𝜁) + 1ቇ. 

This lemma will be used in the next section for proving the theorems which contain 
the original results. Another helpful result which will be used is the next lemma proved 
in [28]. 

Lemma 2. [28] Let ℎ(𝑧, 𝜁) be convex in 𝑈 for all 𝜁 ∈  𝑈ഥ with ℎ(0, 𝜁) = 𝑎, 𝛾 ≠ 0, 𝑅𝑒 𝛾 > 0 and 𝑝 ∈ 𝐻ሾ𝑎, 1ሿ ∩ 𝑄. If 𝑝(𝑧, 𝜁) + ௭ᇲ (௭,)ఊ  is univalent in 𝑈 for all 𝜁 ∈  𝑈ഥ,  ℎ(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁) + 𝑧𝑝௭ᇱ (𝑧, 𝜁)𝛾  

and 𝑞(𝑧, 𝜁) = 𝛾𝑧ఊ න ℎ(𝑡, 𝜁)𝑡ఊିଵ𝑑𝑡௭
 , 

then 𝑞(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁), 𝑧 ∈ 𝑈, 𝜁 ∈  𝑈ഥ. 
The function 𝑞 is convex and is the best subordinant. 

The connection between univalent function theory and hypergeometric functions 
was established in 1985 when de Branges used the generalized hypergeometric function 
for proving Bieberbach’s conjecture [29]. Once hypergeometric functions were considered 
in studies regarding univalent functions, confluent hypergeometric function was used in 
many investigations. One of the first papers which investigated confluent hypergeometric 
function and gave conditions for its univalence was published in 1990 [30]. Ever since 
then, aspects of its univalence were further investigated [31,32], it was considered in con-
nection with other important functions [33–37] and it was used in the definition of new 

1 +
3
2

zζ(3− i),

then

1 +
2
5
(−1 + 3i)zζ
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Definition 3. [27] Let 𝛺 be a set in ℂ, 𝑞(∙, 𝜁) ∈ 𝛺, and 𝑛 a positive integer. The class of ad-
missible functions 𝛷ൣ𝛺, 𝑞(∙, 𝜁)൧ consists of those functions 𝜑: ℂଷ × 𝑈 × 𝑈ഥ → ℂ that satisfy the 
admissibility condition 𝜑(𝑟, 𝑠, 𝑡; 𝜉, 𝜁) ∈ 𝛺  (A)

whenever 𝑟 =  𝑞(𝑧, 𝜁), 𝑠 = ௭ᇲ (௭,) , 𝑅𝑒 ቀ௧௦ + 1ቁ ≤ ଵ 𝑅𝑒 ୯మ'' (,)୯' (,) + 1൨ , 𝑧 ∈ 𝑈, 𝜉 ∈ 𝑈ഥ\𝐸൫𝑞(∙, 𝜁)൯ 
and 𝑚 ≥ 𝑛 ≥ 1. When 𝑛 = 1 we write Φଵൣ𝛺, 𝑞(∙, 𝜁)൧ as Φൣ𝛺, 𝑞(∙, 𝜁)൧. 
In the special case when ℎ(∙, 𝜁) is an analytic mapping of 𝑈 × 𝑈ഥ onto 𝛺 ≠ ℂ we denote the class Φሾℎ(𝑈 × 𝑈ഥ) , 𝑞(𝑧, 𝜁)ሿ by Φሾℎ(𝑧, 𝜁) , 𝑞(𝑧, 𝜁)ሿ. 
If 𝜑: ℂଶ × 𝑈 × 𝑈ഥ → ℂ, then the admissibility condition (A) reduces to 𝜑 ቆ𝑞(𝑧, 𝜁), 𝑧𝑞௭ᇱ (𝑧, 𝜁)𝑚 ; 𝜉, 𝜁ቇ ∈ 𝛺, (A’)

where 𝑧 ∈ 𝑈, 𝜁 ∈  𝑈ഥ, 𝜉 ∈ 𝑈ഥ\𝐸൫𝑞(∙, 𝜁)൯ and 𝑚 ≥ 𝑛 ≥ 1. 
Miller—Mocanu lemma given in [18] was rewritten in [27] for functions 𝑝(𝑧, 𝜁) and 𝑞(𝑧, 𝜁) as follows: 

Lemma 1. ([17],[27]) Let 𝑝(𝑧, 𝜁) ∈ 𝑄(𝑎) and let 𝑞(𝑧, 𝜁) = 𝑎 + 𝑎(𝜁)𝑧 + 𝑎ାଵ(𝜁)𝑧ାଵ + ⋯ 
with 𝑎(𝜁) holomorphic functions in 𝑈ഥ, 𝑘 ≥ 𝑛, 𝑞(𝑧, 𝜁) ≢ 𝑎 and 𝑛 ≥ 1. If 𝑞(𝑧, 𝜁) is not subor-
dinate to 𝑝(𝑧, 𝜁), then there exist points 𝑧 = 𝑟𝑒ఏబ ∈ 𝑈 and 𝜉 ∈ 𝜕𝑈\𝐸൫𝑝(𝑧, 𝜁)൯ and an 𝑚 ≥𝑛 ≥ 1 for which 𝑞(𝑈 × 𝑈ഥబ) ⊂ 𝑝(𝑈 × 𝑈ഥ) and (𝑖) 𝑞(𝑧, 𝜁) = 𝑝(𝜉, 𝜁), (𝑖𝑖) 𝑧𝑞௭ᇱ (𝑧, 𝜁) = 𝑚𝜉𝑝௭ᇱ (𝜉, 𝜁) and (𝑖𝑖𝑖) 𝑅𝑒 ቆ𝑧𝑞௭మᇱᇱ (𝑧, 𝜁)𝑞௭ᇱ (𝑧, 𝜁) + 1ቇ ≥ 𝑚𝑅𝑒 ቆ𝜉𝑝௭మᇱᇱ (𝜉, 𝜁)𝑝௭ᇱ (𝜉, 𝜁) + 1ቇ. 

This lemma will be used in the next section for proving the theorems which contain 
the original results. Another helpful result which will be used is the next lemma proved 
in [28]. 

Lemma 2. [28] Let ℎ(𝑧, 𝜁) be convex in 𝑈 for all 𝜁 ∈  𝑈ഥ with ℎ(0, 𝜁) = 𝑎, 𝛾 ≠ 0, 𝑅𝑒 𝛾 > 0 and 𝑝 ∈ 𝐻ሾ𝑎, 1ሿ ∩ 𝑄. If 𝑝(𝑧, 𝜁) + ௭ᇲ (௭,)ఊ  is univalent in 𝑈 for all 𝜁 ∈  𝑈ഥ,  ℎ(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁) + 𝑧𝑝௭ᇱ (𝑧, 𝜁)𝛾  

and 𝑞(𝑧, 𝜁) = 𝛾𝑧ఊ න ℎ(𝑡, 𝜁)𝑡ఊିଵ𝑑𝑡௭
 , 

then 𝑞(𝑧, 𝜁) ⪻ 𝑝(𝑧, 𝜁), 𝑧 ∈ 𝑈, 𝜁 ∈  𝑈ഥ. 
The function 𝑞 is convex and is the best subordinant. 

The connection between univalent function theory and hypergeometric functions 
was established in 1985 when de Branges used the generalized hypergeometric function 
for proving Bieberbach’s conjecture [29]. Once hypergeometric functions were considered 
in studies regarding univalent functions, confluent hypergeometric function was used in 
many investigations. One of the first papers which investigated confluent hypergeometric 
function and gave conditions for its univalence was published in 1990 [30]. Ever since 
then, aspects of its univalence were further investigated [31,32], it was considered in con-
nection with other important functions [33–37] and it was used in the definition of new 

1 + zζ, z ∈ U, ζ ∈ U.

Function q(z, ζ) = 1 + 2
5 (−1 + 3i)zζ is convex and is the best subordinant.

3. Discussion

The study presented in this paper is inspired by the nice results published which
involve confluent hypergeometric function and certain operators defined by using this
interesting function. For this research, the environment of the theory of strong differential
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superordination is considered. Confluent hypergeometric function and Kummer–Bernardi
and Kummer–Libera operators defined in [38] are used in order to obtain certain strong
differential superordinations. Their best subordinants are given in the three theorems
proved in the main results part. Theorems 1 and 2 use the convexity of confluent hy-
pergeometric function φ(a(ζ), c(ζ); z, ζ) given in (5) where it is adapted to certain classes
of analytic functions specific for the theory of strong differential superordination. The
methods related to strong differential superordination theory are applied in order to find
necessary conditions for Kummer–Bernardi integral operator presented in Definition 5,
relation (3), to be the best subordinant of a certain strong differential superordination
involving confluent hypergeometric function φ(a(ζ), c(ζ); z, ζ). As corollary, the similar
result is given for Kummer–Libera operator. For those two theorems, the parameter γ is
a real number, γ > 0. In Theorem 3, γ ∈ C, with Re γ > 0 is considered and a necessary
and sufficient condition is determined such that Kummer–Bernardi integral operator to be
the best subordinant for a certain strong differential superordination. Two examples are
constructed for the case when γ ∈ C, with Re γ > 0.

4. Conclusions

In this paper, new strong differential superordinations are investigated using a special
form of confluent hypergeometric function given in (5) and two operators previously
introduced in [38]. In the three theorems proved as a result of the study, the two operators
called Kummer–Bernardi and Kummer–Libera integral operators are the best subordinants
of the strong differential superordinations.

The novelty of the study resides in the forms of the confluent hypergeometric function
and of the two operators considered by adaptation to the new classes depending on the
extra parameter ζ introduced in the theory of strong differential subordination in [27].

As future studies, the dual notion of strong differential subordination can be con-
sidered for investigations concerning confluent hypergeometric function and the two
operators used in the present study. Sandwich-type results could be obtained as seen in
recent papers [13,39,40].

New subclasses of univalent functions could be introduced in the context of strong
differential subordination and superordination theories using the operators presented in
this paper as seen in [41].

It might also be interesting to consider other hypergeometric functions and operators
defined with them following the ideas presented in this paper.
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Abstract: In the present paper, we introduce new subclasses of bi-starlike and bi-convex functions of
complex order associated with Erdély–Kober-type integral operator in the open unit disc and find the
estimates of initial coefficients in these classes. Moreover, we obtain Fekete-Szegő inequalities for
functions in these classes. Some of the significances of our results are pointed out as corollaries.
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bi-starlike and bi-convex functions of complex order; fractional calculus; Erdély–Kober-type
integral operator
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1. Introduction and Preliminaries

Let A signify the class of functions of the following form:

f (ξ) = ξ +
∞

∑
n=2

anξn (1)

which are analytic in the open unit disc U = {ξ : |ξ| < 1} and normalized as f (0) = 0 and
f ′(0) = 1. Furthermore, let S represent the class of all functions in A that are univalent in
U. Some of the imperative and well-investigated subclasses of the univalent function class
S include (for example) the class S∗(δ) of starlike functions of order δ in U and the class
K(δ) of convex functions of order δ (0 ≤ δ < 1) in U. It is known that if f ∈ S, then there
exists inverse function f−1 because normalization is defined in some neighborhood of the
origin. In some cases, f−1can be defined in the entire U. Clearly, f−1 is also univalent. For
this reason, class Σ is defined as follows.

It is well known that every function f ∈ S has an inverse f−1 defined by the following:

f−1( f (ξ)) = ξ (ξ ∈ U)

and f ( f−1(w)) = w (|w| < r0( f ); r0( f ) ≥ 1/4)

where the following is the case.

f−1(w) = g(w) = w− a2w2 + (2a2
2 − a3)w3 − (5a3

2 − 5a2a3 + a4)w4 + · · · . (2)
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A function f (ξ) ∈ A is said to be bi-univalent in U if both f (ξ) and f−1(ξ) are
univalent in U. Let Σ denote the class of bi-univalent functions in U given by (1). Note that
the following functions:

f1(ξ) =
ξ

1− ξ
, f2(ξ) =

1
2

log
1 + ξ

1− ξ
, f3(ξ) = − log(1− ξ)

with their corresponding inverses

f−1
1 (w) =

w
1 + w

, f−1
2 (w) =

e2w − 1
e2w + 1

, f−1
3 (w) =

ew − 1
ew

are elements of Σ (see [1–3]). Certain subclasses of Σ are explicitly bi-starlike functions
of order δ(0 < δ ≤ 1) denoted by S∗Σ(δ) and bi-convex function of order δ designated by
KΣ(δ) familiarized by Brannan and Taha [1]. For each f ∈ S∗Σ(δ) and f ∈ KΣ(δ), non-sharp
estimates on the first two Taylor–Maclaurin coefficients |a2| and |a3| were established [1,2],
but the problem to find the general coefficient bounds on the following Taylor–Maclaurin
coefficients:

|an| (n ∈ N \ {1, 2}; N := {1, 2, 3, · · · })
is still an open problem (see [1–5]). Several researchers (see [6–11]) have introduced and
explored some inspiring subclasses Σ and they have initiated non-sharp estimates |a2| and
|a3|. For two functions f1 and f2 ∈ A, we say that function f1 is subordinate to f2 if there
exists a Schwarz function ω that is holomorphic in U with property w(0) = 0; |ω(ξ)| < 1
and satisfying f1(ξ) = f2(w(ξ)) This subordination is symbolically written as f1(ξ) ≺
f2(ξ). Lately, Ma and Minda [12]-unified subclasses of starlike and convex functions are
subordinate to a general superordinate function. For this purpose, they considered an
analytic function W with positive real parts in the unit disk U,W(0) = 1,W′(0) > 0, and
W maps U onto a region starlike with respect to 1 and is symmetric with respect to the real
axis. In the consequence, it is assumed that W is an analytic function with positive real part
in the unit disk U, with W(0) = 1,W′(0) > 0, and W(U) is symmetric with respect to the
real axis. Such functions are of the following form.

W(ξ) = 1 + m1ξ + m2ξ2 + m3ξ3 + · · · , (m1 > 0). (3)

The study of operators plays a central role in geometric function theory and its cor-
related fields. In the recent years, there has been an collective importance in problems
concerning the evaluations of various differential and integral operators. For our study,
we recall the Erdély–Kober type ([13] Ch. 5; also see [14–17]) for the integral operator
definition, which shall be used throughout the paper as stated below.

Erdély–Kober Fractional-Order Derivative

Let κ > 0, ς, τ ∈ C be such that R(τ − ς) ≥ 0, an Erdély–Kober type integral operator:

I
ς,τ
κ : A→ A

be defined for R(τ − ς) > 0 and R(ς) > −κ by the following.

I
ς,τ
κ f (ξ) =

Γ(τ + κ)

Γ(ς + κ)

1
Γ(τ − ς)

1∫

0

(1− t)τ−ς−1tς−1 f (ξtκ)dt, κ > 0. (4)
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For κ > 0,R(τ− ς) ≥ 0, R(ϑ) > −κ and f ∈ A of the form (1), we have the following:

I
ς,τ
κ f (ξ) = ξ +

∞

∑
n=2

Γ(τ + κ)Γ(ς + nκ)

Γ(ς + κ)Γ(τ + nκ)
anξn (ξ ∈ U) (5)

= ξ +
∞

∑
n=2

Υς,τ
κ (n)anξn (ξ ∈ U) (6)

where the following is the case.

Υς,τ
κ (n) =

Γ(τ + κ)Γ(ς + nκ)

Γ(ς + κ)Γ(τ + nκ)
(7)

and Γ(n + 1) = n!.
Note that the following is the case.

I
ς,ς
κ f (ξ) = f (ξ)

Remark 1. By fixing the parameters ς, τ, ϑ as mentioned below, the operator Iς,τ
κ includes various

operators studied in the literature as cited below:

1. For ς = β; τ = α + β and κ = 1, we obtain the operator Qα
β f (ξ)(α ≥ 0; β > 1) studied by

Jung et al. [18];
2. For ς = α− 1; τ = β− 1 and κ = 1, we obtain the operator Lα,β f (ξ)(α; β ∈ C ∈ Z0;Z0 =

{0;−1;−2; · · · } studied by Carlson and Shafer [19];
3. For ς = ρ − 1; τ = l and κ = 1, we obtain the operator Iρ,l(ρ > 0; l > 1) studied by

Choi et al. [20];
4. For ς = α; τ = 0 and κ = 1, we obtain the operator Dα(α > 1) studied by Ruscheweyh [21];
5. For ς = 1; τ = n and µ = 1, we obtain the operator In(n > N0) studied in [22,23];
6. For ς = β; τ = β + 1 and κ = 1; we obtain the integral operator Iβ,1 which studied by

Bernardi [24];
7. For ς = 1; τ = 2 and κ = 1, we obtain the integral operator I1,1 = I studied by Libera [25]

and Livingston [26].

The motivation of our present investigation stems from (by Silverman and Silvia [27]
(also see [28])) the seminal paper on bi-univalent functions by Srivastava et al. [8] and
by the recent works by many authors (for example Deniz [7], Huo Tang et al. [6], EI-
Deeb et al. [29–31], and Murugusundaramoorthy and Janani [32]). In the present paper,
we introduce two new subclasses of the function class Σ of complex order ϑ ∈ C\{0},
involving the linear operator Iς,τ

κ given in Definition 1. We find estimates on the coefficients
|a2| and |a3| for functions f ∈ S

ς,τ
Σ,W(ϑ, `). Several related classes are also considered, and

connections to earlier known results are provided. Moreover we obtain the Fekete-Szegő
inequalities for f ∈ S

ς,τ
Σ,W(ϑ, `) and f ∈ K

ς,τ
Σ,W(ϑ, `).

Definition 1. Let f ∈ Σ be assumed by (1) and f ∈ S
ς,τ
Σ,W(ϑ, `), if the subsequent conditions holds:

1 +
1
ϑ

(
ξ(Iς,τ

κ f (ξ))′

I
ς,τ
κ f (ξ)

+

(
1 + ei`

2

)
ξ2(Iς,τ

κ f (ξ))′′

I
ς,τ
κ f (ξ)

− 1

)
≺W(ξ) (8)

and

1 +
1
ϑ

(
w(Iς,τ

κ g(w))′

I
ς,τ
κ g(w)

+

(
1 + ei`

2

)
w2(Iς,τ

κ g(w))′′

I
ς,τ
κ g(w)

− 1

)
≺W(w), (9)

where ϑ ∈ C\{0}; ` ∈ (−π, π]; ξ, w ∈ U and g is given by (2).

Definition 2. Let f ∈ Σ be assumed by (1) and f ∈ K
ς,τ
Σ,W(ϑ, `), if the subsequent conditions

are satisfied:
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1 +
1
ϑ



[ξ(Iς,τ

κ f (ξ))′ +
(

1+ei`

2

)
ξ2(Iς,τ

κ f (ξ))′′]′

(Iς,τ
κ f (ξ))′

− 1


 ≺W(ξ) (10)

and

1 +
1
ϑ




[w(Iς,τ
κ g(w))′ +

(
1+ei`

2

)
w2(Iς,τ

κ g(w))′′]′

(Iς,τ
κ g(w))′

− 1


 ≺W(w), (11)

where ϑ ∈ C\{0}; ` ∈ (−π, π]; ξ, w ∈ U and g is given by (2).

Remark 2. For a function f (ξ) ∈ Σ specified by (1) and for ` = π, interpret that Sς,τ
Σ,W(ϑ, `) ≡

S
ς,τ
Σ,W(ϑ) satisfies the ensuing conditions :

[
1 +

1
ϑ

(
ξ(Iς,τ

κ f (ξ))′

I
ς,τ
κ f (ξ)

− 1
)]
≺W(ξ) and

[
1 +

1
ϑ

(
w(Iς,τ

κ g(w))′

I
ς,τ
κ g(w)

− 1
)]
≺W(w)

where ϑ ∈ C\{0}; ξ, w ∈ U and g is given by (2).

Remark 3. A function f (ξ) ∈ Σ specified by (1) and for ` = π, we interpret that Kς,τ
Σ,W(ϑ, `) ≡

K
ς,τ
Σ,W(ϑ) satisfies the ensuing conditions correspondingly:

[
1 +

1
ϑ

(
ξ(Iς,τ

κ f (ξ))′′

(Iς,τ
κ f (ξ))′

)]
≺W(ξ) and

[
1 +

1
ϑ

(
w(Iς,τ

κ g(w))′′

(Iς,τ
κ g(w))′

)]
≺W(w),

where ϑ ∈ C\{0}; ξ, w ∈ U and g is given by (2).

Remark 4. For a function f (ξ) ∈ Σ given by (1) and for ϑ = 1, we note that Sς,τ
Σ,W(ϑ, `) ≡

S
ς,τ
Σ,W(`) and satisfies the following conditions, respectively:

(
ξ(Iς,τ

κ f (ξ))′

I
ς,τ
κ f (ξ)

+

(
1 + ei`

2

)
ξ2(Iς,τ

κ f (ξ))′′

I
ς,τ
κ f (ξ)

)
≺W(ξ)

and the following is the case.
(

w(Iς,τ
κ g(w))′

I
ς,τ
κ g(w)

+

(
1 + ei`

2

)
w2(Iς,τ

κ g(w))′′

I
ς,τ
κ g(w)

)
≺W(w).

Moreover, Kς,τ
Σ,W(ϑ, `) ≡ K

ς,τ
Σ,W(`) and it satisfies the following conditions:



[ξ(Iς,τ

κ f (ξ))′ +
(

1+ei`

2

)
ξ2(Iς,τ

κ f (ξ))′′]′

(Iς,τ
κ f (ξ))′


 ≺W(ξ)

and the following is the case:



[w(Iς,τ

κ g(w))′ +
(

1+ei`

2

)
w2(Iς,τ

κ g(w))′′]′

(Iς,τ
κ g(w))′


 ≺W(w),

where ` ∈ (−π, π]; ξ, w ∈ U and g is given by (2).

82



Axioms 2022, 11, 237

2. Coefficient Estimates for f ∈ S
ς,τ
Σ,W(ϑ, `) and f ∈ K

ς,τ
Σ,W(ϑ, `)

For notational simplicity, in the sequel we let the following be the case:

κ > 0,R(τ − ς) ≥ 0, R(ς) > −κ and I
ς,τ
κ f (ξ)

and it is provided by (5):

Υ2 = Υς,τ
κ (2) =

Γ(τ + κ)Γ(ς + 2κ)

Γ(ς + κ)Γ(τ + 2κ)
, (12)

Υ3 = Υς,τ
κ (3) =

Γ(τ + κ)Γ(ς + 3κ)

Γ(ς + κ)Γ(τ + 3κ)
(13)

and the following.
` ∈ (−π, π].

For deriving our main results, we need the following lemma.

Lemma 1. Ref. [33] states that if h ∈ P, then |ck| ≤ 2 for each k, where P is the family of all
functions h analytic in U for which <(h(ξ)) > 0 and the following is the case.

h(ξ) = 1 + c1ξ + c2ξ2 + · · · for ξ ∈ U.

Define the functions p(ξ) and q(ξ) by the following:

p(ξ) :=
1 + u(ξ)
1− u(ξ)

= 1 + ℘1ξ + ℘2ξ2 + · · ·

and the following.

q(w) :=
1 + v(w)

1− v(w)
= 1 + q1w + q2w2 + · · · .

It follows that the following is the case:

u(ξ) :=
p(ξ)− 1
p(ξ) + 1

=
1
2

[
℘1ξ +

(
℘2 −

℘2
1

2

)
ξ2 + · · ·

]

and

v(w) :=
q(w)− 1
q(w) + 1

=
1
2

[
q1w +

(
q2 −

q2
1

2

)
w2 + · · ·

]
.

Then, p(ξ) and q(w) are analytic in U with p(0) = 1 = q(0).
Since u, v : U → U, the functions p(ξ) and q(w) have a positive real part in U, and

|℘i| ≤ 2 and |qi| ≤ 2 for each i.

Theorem 1. Let f given by (1) be in the class Sς,τ
Σ,W(ϑ, `), ϑ ∈ C\{0} and ` ∈ (−π, π]. Then,

we have the following:

|a2| ≤
|ϑ|m1

√
m1√∣∣ϑ[(5 + 3ei`)Υ3 − (2 + ei`)Υ2

2]m
2
1 + (2 + ei`)2(m1 −m2)Υ2

2

∣∣
(14)

and the following.

|a3| ≤
|ϑ|2m2

1
|2 + ei`|2Υ2

2
+

|ϑ|m1

|5 + 3ei`|Υ3
. (15)
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Proof. It follows from (8) and (9) that we have the following:

1 +
1
ϑ

(
ξ(Iς,τ

κ f (ξ))′

I
ς,τ
κ f (ξ)

+

(
1 + ei`

2

)
ξ2(Iς,τ

κ f (ξ))′′

I
ς,τ
κ f (ξ)

− 1

)
= W(u(ξ)) (16)

and

1 +
1
ϑ

(
w(Iς,τ

κ g(w))′

I
ς,τ
κ g(w)

+

(
1 + ei`

2

)
w2(Iς,τ

κ g(w))′′

I
ς,τ
κ g(w)

− 1

)
= W(v(w)), (17)

where

W(u(ξ)) =
1
2

m1℘1ξ +

(
1
2
m1(℘2 −

℘2
1

2
) +

1
4

m2℘
2
1

)
ξ2 + · · · . (18)

and

W(v(w)) =
1
2

m1q1w +

(
1
2
m1(q2 −

q2
1

2
) +

1
4

m2q
2
1

)
w2 + · · · . (19)

For a given f (z) of form (1), a computation shows the following:

z f ′(z)
f (z)

= 1 + a2Υ2z + (2Υ3a3 − a2
2Υ2

2)z
2 + (3a4Υ4 + a3

2Υ3
2 − 3a3a2Υ2Υ3)z3 + · · ·

and
z f ′′(z)
f ′(z)

= 2a2Υ2
2z + (6a3Υ3 − 4a2

2Υ2
2)z

2 + · · · .

Using these in the left hand side of (16) and (17), a simple computation produces
the following:

1 +
1
ϑ

(
ξ(Iς,τ

κ f (ξ))′

I
ς,τ
κ f (ξ)

+

(
1 + ei`

2

)
ξ2(Iς,τ

κ f (ξ))′′

I
ς,τ
κ f (ξ)

− 1

)
= 1 +

1
ϑ
(2 + ei`)Υ2a2ς

+
1
ϑ

[
(5 + 3ei`)Υ3a3 − (2 + ei`)Υ2

2a2
2

]
ς2 + · · ·

and

1 +
1
ϑ

(
w(Iς,τ

κ g(w))′

I
ς,τ
κ g(w)

+

(
1 + ei`

2

)
w2(Iς,τ

κ g(w))′′

I
ς,τ
κ g(w)

− 1

)
= 1− 1

ϑ
(2 + ei`)Υ2a2w

+
1
ϑ

(
[2(5 + 3ei`)Υ3 − (2 + ei`)Υ2

2]a
2
2 − (5 + 3ei`)Υ3a3

)
w2 = · · · .

Thus, by equating the coefficients of ς and ς2 in (16) and (17), we obtain the following:

1
ϑ
(2 + ei`)Υ2a2 =

1
2

m1℘1, (20)

1
ϑ

[
(5 + 3ei`)Υ3a3 − (2 + ei`)Υ2

2a2
2

]
=

1
2

m1(℘2 −
℘2

1
2
) +

1
4

m2℘
2
1, (21)

− 1
ϑ
(2 + ei`)Υ2a2 =

1
2

m1q1, (22)

and

1
ϑ

(
[2(5 + 3ei`)Υ3 − (2 + ei`)Υ2

2]a
2
2 − (5 + 3ei`)Υ3a3

)
=

1
2

m1(q2 −
q2

1
2
) +

1
4

m2q
2
1. (23)

From (20) and (22), we obtain the following:

℘1 = −q1 (24)
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and

8(2 + ei`)2Υ2
2a2

2 = ϑ2m2
1(℘

2
1 + q2

1)

a2
2 =

ϑ2m2
1(℘

2
1 + q2

1)

8(2 + ei`)2Υ2
2

. (25)

Now, by adding (21) and (23) and then using (25), we obtain the following.

a2
2 =

ϑ2m3
1(℘2 + q2)(

4{ϑ[(5 + 3ei`)Υ3 − (2 + ei`)Υ2
2]m

2
1 + (2 + ei`)2(m1 −m2)Υ2

2}
) . (26)

Applying Lemma (1) to the coefficients ℘2 and q2, we have the following.

|a2| ≤
|ϑ|m1

√
m1√∣∣ϑ[(5 + 3ei`)Υ3 − (2 + ei`)Υ2

2]m
2
1 + (2 + ei`)2(m1 −m2)Υ2

2

∣∣
.

Next, in order to find the bound on |a3|, by subtracting (21) from (23) and using (24),
we obtain the following.

4
ϑ

(5 + 3ei`)

2
Υ3(a3 − a2

2) =
m1

2
(℘2 − q2)

a3 = a2
2 +

ϑm1(℘2 − q2)

4(5 + 3ei`)Υ3
. (27)

Substituting the value of a2
2 given by (25), we obtain the following.

a3 =
ϑ2m2

1(℘
2
1 + q2

1)

8(2 + ei`)2Υ2
2

+
ϑm1(℘2 − q2)

4(5 + 3ei`)Υ3
.

Applying Lemma 1 once again to the coefficients ℘1,℘2, q1 and q2, we obtain the
following.

|a3| ≤
|ϑ|2m2

1
|2 + ei`|2Υ2

2
+

|ϑ|m1

|5 + 3ei`|Υ3
.

Theorem 2. Let f given by (1) be in the following class: Kς,τ
Σ,W(ϑ, `), ϑ ∈ C\{0} and ` ∈ (−π, π].

Then, we have the following:

|a2| ≤
|ϑ|m1

√
m1√∣∣ϑ[3(5 + 3ei`)Υ3 − 4(2 + ei`)Υ2

2]m
2
1 + 4(2 + ei`)2(m1 −m2)Υ2

2

∣∣
(28)

and

|a3| ≤
|ϑ|2m2

1
4|2 + ei`|2Υ2

2
+

|ϑ|m1

3|5 + 3ei`|Υ3
. (29)

Proof. By Definition 2,the argument inequalities in (10) and (11) can be equivalently
written as follows:

1 +
1
ϑ



[ξ(Iς,τ

κ f (ξ))′ +
(

1+ei`

2

)
ξ2(Iς,τ

κ f (ξ))′′]′

(Iς,τ
κ f (ξ))′

− 1


 = W(u(ξ)) (30)
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and

1 +
1
ϑ



[w(Iς,τ

κ g(w))′ +
(

1+ei`

2

)
w2(Iς,τ

κ g(w))′′]′

(Iς,τ
κ g(w))′

− 1


 = W(v(w)), (31)

and proceeding as in the proof of Theorem 1, we can arrive at the following relations:

1 +
1
ϑ



[ξ(Iς,τ

κ f (ξ))′ +
(

1+ei`

2

)
ξ2(Iς,τ

κ f (ξ))′′]′

(Iς,τ
κ f (ξ))′

− 1


 = 1 + 2

ϑ (2 + ei`)Υ2a2ς

+
1
ϑ
[3(5 + 3ei`)Υ3a3 − 4(2 + ei`)Υ2

2a2
2]ς

2 + · · ·

and

1 +
1
ϑ



[w(Iς,τ

κ g(w))′ +
(

1+ei`

2

)
w2(Iς,τ

κ g(w))′′]′

(Iς,τ
κ g(w))′

− 1


 = 1− 2

ϑ
(2 + ei`)Υ2a2w

+
1
ϑ
[3(5 + 3ei`)(2a2

2 − a3)Υ3 − 4(2 + ei`)Υ2
2a2

2]w
2 + · · · .

From (30) and (31), equating the coefficients of ς and ς2, we obtain the following:

2
ϑ
(2 + ei`)Υ2a2 =

1
2

m1℘1, (32)

1
ϑ
[3(5 + 3ei`)Υ3a3 − 4(2 + ei`)Υ2

2a2
2] =

1
2

m1(℘2 −
℘2

1
2
) +

1
4

m2℘
2
1, (33)

and
− 2

ϑ
(2 + ei`)Υ2a2 =

1
2

m1q1, (34)

1
ϑ
[3(5 + 3ei`)(2a2

2 − a3)Υ3 − 4(2 + ei`)Υ2
2a2

2] =
1
2

m1(q2 −
q2

1
2
) +

1
4

m2q
2
1. (35)

From (32) and (34), we obtain the following:

℘1 = −q1 (36)

and
32(2 + ei`)2Υ2

2a2
2 = ϑ2m2

1(℘
2
1 + q2

1). (37)

If we add (33) and (35) and substitute value ℘2
1 + q2

1, we obtain the following.

a2
2 =

ϑ2m3
1(℘2 + q2)

4[ϑ[3(5 + 3ei`)Υ3 − 4(2 + ei`)Υ2
2]m

2
1 + 4(2 + ei`)2(m1 −m2)Υ2

2]
. (38)

Applying Lemma 1 to the coefficients ℘2 and q2, we have the desired inequality given
in (28).

Next, if we subtract (33) from (35), we easily observe the following.

12
ϑ

(5 + 3ei`)

2
(a3 − a2

2)Υ3 =
m1

2
(℘2 − q2)

a3 =
ϑm1(℘2 − q2)

12(5 + 3ei`)Υ3
+ a2

2
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Upon relieving the value of a2
2 given in (37), the above equation leads to the following.

a3 =
ϑm1(℘2 − q2)

12(5 + 3ei`)Υ3
+

ϑ2m2
1(℘

2
1 + q2

1)

32(2 + ei`)2Υ2
2

.

Applying Lemma (1) once again to the coefficients ℘1, ℘2, q1, and q2, we obtain the
preferred coefficient provided in (29).

Fixing ` = π in Theorems (1) and (2), we can state the coefficient estimates for the
functions in subclasses Sς,τ

Σ,W(ϑ) and K
ς,τ
Σ,W(ϑ), defined in Remark (2).

Corollary 1. Let f assumed as (1) be in the class Sς,τ
Σ,W(ϑ). Then, the following is the case.

|a2| ≤
|ϑ|m1

√
m1√

|ϑ|(2Υ3 − Υ2
2)m

2
1 + (m1 −m2)Υ2

2

and |a3| ≤
|ϑ|2m2

1
Υ2

2
+
|ϑ|m1

2Υ3
.

Corollary 2. Let f assumed as (1) be in class Kς,τ
Σ,W(ϑ). Then, we have the following.

|a2| ≤
|ϑ|m1

√
m1√

2|ϑ|(3Υ3 − 2Υ2
2)m

2
1 + 4(m1 −m2)Υ2

2

and |a3| ≤
|ϑ|2m2

1
4Υ2

2
+
|ϑ|m1

6Υ3
.

Fixing ϑ = 1 in Theorems (1) and (2), we can state the coefficient estimates for the
functions in the subclasses Sς,τ

Σ,W(`) and K
ς,τ
Σ,W(`) defined in Remark (4).

Corollary 3. Let f supposed by (1) be in class Sς,τ
Σ,W(`). Then, we have the following:

|a2| ≤
m1
√

m1√
|[(5 + 3ei`)Υ3 − (2 + ei`)Υ2

2]m
2
1 + (2 + ei`)2(m1 −m2)Υ2

2|

and the following is the case.

|a3| ≤
m2

1
|2 + ei`|2Υ2

2
+

m1

|5 + 3ei`|Υ3
.

Corollary 4. Let f supposed by (1) be in class Kς,τ
Σ,W(`). Then, we have the following:

|a2| ≤
m1
√

m1√
|[3(5 + 3ei`)Υ3 − 4(2 + ei`)Υ2

2]m
2
1 + 4(2 + ei`)2(m1 −m2)Υ2

2|

and

|a3| ≤
m2

1
4|2 + ei`|2Υ2

2
+

m1

3|5 + 3ei`|Υ3
.

3. Fekete-Szegő Inequality

In this section, we discuss the Fekete-Szegő results [34] due toZaprawa [35] for func-
tions f ∈ S

ς,τ
Σ,W(ϑ, `) and f ∈ K

ς,τ
Σ,W(ϑ, `).

Theorem 3. Let f assumed by (1) be in class Sς,τ
Σ,W(ϑ, `) and $ ∈ R. Then, we have the following:

| a3 − $a2
2 |≤





ϑm1
|5+3ei` |Υ3

, 0 ≤| φ($) |≤ ϑm1
4|5+3ei` |Υ3

4|φ($)|, |φ($)| ≥ ϑm1
4|5+3ei` |Υ3

.
.
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where the following is obtained.

φ($) =
(1− $)ϑ2m3

1
4{ϑ[(5 + 3ei`)Υ3 − (2 + ei`)Υ2

2]m
2
1 + (2 + ei`)2(m1 −m2)Υ2

2}
.

Proof. From (26) and (27), we have the following:

a3 − $a2
2 =

(1− $)ϑ2m3
1(℘2 + q2)(

4{ϑ[(5 + 3ei`)Υ3 − (2 + ei`)Υ2
2]m

2
1 + (2 + ei`)2(m1 −m2)Υ2

2}
) + ϑm1(℘2 − q2)

4(5 + 3ei`)Υ3

=

[
φ($) +

ϑm1

4(5 + 3ei`)Υ3

]
℘2 +

[
φ($)− ϑm1

4(5 + 3ei`)Υ3

]
q2

where the following is the case.

φ($) =
(1− $)ϑ2m3

1
4{ϑ[(5 + 3ei`)Υ3 − (2 + ei`)Υ2

2]m
2
1 + (2 + ei`)2(m1 −m2)Υ2

2}

Thus, by applying Lemma 1, we obtain the following.

| a3 − $a2
2 |≤





ϑm1
|5+3ei` |Υ3

, 0 ≤| φ($) |≤ ϑm1
4|5+3ei` |Υ3

4|φ($)|, |φ($)| ≥ ϑm1
4|5+3ei` |Υ3

.

In particular, by fixing $ = 1, we obtain the following.

| a3 − a2
2 |≤

ϑm1

|5 + 3ei`|Υ3
.

Theorem 4. Let f given by (1) be in class Kς,τ
Σ,W(ϑ, `) and ℵ ∈ R. Then, we have the following:

| a3 − ℵa2
2 |≤





ϑm1
3|5+3ei` |Υ3

, 0 ≤| φ(ℵ) |≤ ϑm1
12|5+3ei` |Υ3

4|φ(ℵ)|, |φ(ℵ)| ≥ ϑm1
12|5+3ei` |Υ3

.
.

where

φ(ℵ) = (1− ℵ)ϑ2m3
1

4[ϑ[3(5 + 3ei`)Υ3 − 4(2 + ei`)Υ2
2]m

2
1 + 4(2 + ei`)2(m1 −m2)Υ2

2]
.

Proof. From (27) and (38), we have the following.

a3 − ℵa2
2 =

(1− ℵ)ϑ2m3
1(℘2 + q2)

4[ϑ[3(5 + 3ei`)Υ3 − 4(2 + ei`)Υ2
2]m

2
1 + 4(2 + ei`)2(m1 −m2)Υ2

2]
+

ϑm1(℘2 − q2)

12(5 + 3ei`)Υ3

=

[
φ(ℵ) + ϑm1

12(5 + 3ei`)Υ3

]
℘2 +

[
φ(ℵ)− ϑm1

12(5 + 3ei`)Υ3

]
q2

where the following is the case.

φ(ℵ) = (1− ℵ)ϑ2m3
1

4[ϑ[3(5 + 3ei`)Υ3 − 4(2 + ei`)Υ2
2]m

2
1 + 4(2 + ei`)2(m1 −m2)Υ2

2]
.

Thus, by Lemma 1, we obtain the following.

| a3 − ℵa2
2 |≤





ϑm1
3|5+3ei` |Υ3

, 0 ≤| φ(ℵ) |≤ ϑm1
12|5+3ei` |Υ3

4|φ(ℵ)|, |φ(ℵ)| ≥ ϑm1
12|5+3ei` |Υ3

.
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In particular, by taking ℵ = 1, we obtain the following.

| a3 − a2
2 |≤

ϑm1

3|5 + 3ei`|Υ3
.

4. Conclusions

By fixing W(ξ) as listed below, one can determine new results as in Theorems 1–4 for
the subclasses introduced in this paper by suitably fixing m1 and m2:

1. For the class of strongly starlike functions, function W is given by W(ξ) =
(

1+ξ
1−ξ

)α
=

1 + 2αξ + 2α2ξ2 + · · · (0 < α ≤ 1), which gives m1 = 2α and m2 = 2α2, (see [36]);
2. On the other hand, if we take W(ξ) = 1+(1−2β)ξ

1−ξ = 1 + 2(1− β)ξ + 2(1− β)ξ2 +

· · · (0 ≤ β < 1), then m1 = m2 = 2(1− β), (see [36]);
3. For W(ξ) = 1+Aξ

1+Bξ (−1 ≤ B < A ≤ 1), we obtain class S∗(A, B) (see [37]);

4. For W(ξ) = 1 + 2
π2

(
log 1+

√
ξ

1−√ξ

)2
, which was considered and studied in [38];

5. For W(ξ) =
√

1 + ξ, the class is denoted by S∗L, , which was considered and studied
in [39] further in discussed [40];

6. For W(ξ) = ξ +
√

1 + ξ2, the class is denoted by S∗l ( see [41]);
7. If W(ξ) = 1 + 4

3 ξ + 2
3 ξ2, then such class denoted by S∗C was introduced in [42] and

further studied by [43];
8. For W(ξ) = eξ , class S∗e was defined and studied in [44,45];
9. For W(ξ) = cosh(ξ), the class is denoted by S∗cosh (see [46]);
10. For W(ξ) = 1 + sin(ξ), the class is denoted by S∗sin (see [47]); for details and further

investigation, (see [48]).

In the current paper, we mainly obtain the upper bounds of the initial Taylors coeffi-
cients of bi-starlike and bi-convex functions of complex order involving Erdély–Kober-type
integral operators in the open unit. Furthermore, we find the Fekete-Szegő inequalities
for the function in these classes. Several consequences of the results are also pointed out
as examples. Moreover, we note that by assuming W with some particular functions as
illustrated above, one can determine new results for the subclasses introduced in this
paper. Moreover, by fixing ` = 0 and ` = π in the above Theorems, we can easily state
the results for various subclasses of Σ illustrated in Remarks 2–4. By appropriately fixing
the parameters in Theorems 3 and 4, we can deduce the Fekete-Szegő functional for these
function classes. Moreover, motivating further research on the subject-matter of this, we
have chosen to draw the attention of the concerned readers toward a significantly large
number of interrelated publications(see [49–52]) and developments in the area of Geometric
Function Theory of Complex Analysis. In conclusion, we choose to reiterate an important
observation, which was offered in the recently published survey-cum-expository article by
Srivastava ([49], p. 340), who pointed out the fact that the results for the above-mentioned
or new q− analogues can easily (and possibly or unimportantly) be interpreted into the
equivalent results for the so-called (p; q)− analogues (with 0 < |q| < p ≤ 1) by smearing
some recognizable parametric and argument variations with the additional parameter p
being redundant.
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Abstract: The zero-truncated Poisson distribution is an important and appropriate model for many
real-world applications. Here, we exploit the zero-truncated Poisson distribution probabilities to
construct a new subclass of analytic bi-univalent functions involving Gegenbauer polynomials. For
functions in the constructed class, we explore estimates of Taylor–Maclaurin coefficients |a2| and |a3|,
and next, we solve the Fekete–Szegő functional problem. A number of new interesting results are
presented to follow upon specializing the parameters involved in our main results.

Keywords: analytic bi-univalent functions; zero-truncated Poisson distribution; Gegenbauer polyno-
mials; Fekete–Szegő functional problem

MSC: 30C45; 33C45; 60E05

1. Introduction

In discrete probability distributions, the Poisson distribution has found an extensive
and varied application in formulating probability models for a wide variety of real-life
phenomena dealing with counts of rare events, such as reliability theory, queueing systems,
epidemiology, medicine, industry, and many others. In some practical situations, only
positive counts would be available and the zero count is ignored or is impossible to be
observed at all. For instance: the length of stay in a hospital is recorded as a minimum of at
least one day, the number of journal articles published in different disciplines, the number
of occupants in passenger cars, etc. An appropriate Poisson distribution that applies to
such a case is called a zero-truncated Poisson distribution.

The probability density function of a discrete random variable X that follows a zero-
truncated Poisson distribution can be written as

Pm(X = s) =
ms

(em − 1)s!
, s = 1, 2, 3, . . . ,

where the parameter mean m > 0.
Now, we introduce a novel power series whose coefficients are probabilities of the

zero-truncated Poisson distribution

P(m, z) := z +
∞

∑
n=2

mn−1

(em − 1)(n− 1)!
zn, z ∈ U,

where m > 0 and U := {z ∈ C : |z| < 1} is the open unit disk. By ratio test, it is clear that
the radius of convergence of the above series is infinity.
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Orthogonal polynomials have been extensively studied in recent years from various
perspectives due to their importance in mathematical statistics, probability theory, math-
ematical physics, approximation theory, and engineering. From a mathematical point
of view, orthogonal polynomials often arise from solutions of ordinary differential equa-
tions under certain conditions imposed by certain model. Orthogonal polynomials that
appear most commonly in applications are the classical orthogonal polynomials (Hermite
polynomials, Laguerre polynomials, and Jacobi polynomials). The general subclass of
Jacobi polynomials is the set of Gegenbauer polynomials, this class includes Legendre
polynomials and Chebyshev polynomials as subclasses. To study the basic definitions
and the most important properties of the classical orthogonal polynomials, we refer the
reader to [1–4]. For a recent connection between the classical orthogonal polynomials and
geometric function theory, we mention [5–10].

Gegenbauer polynomials Cα
n(x) for n = 2, 3, . . . , and α > − 1

2 are defined by the
following three-term recurrence formula

Cα
0 (x) = 1;

Cα
1 (x) = 2αx; (1)

Cα
n(x) =

1
n
[
2x(n + α− 1)Cα

n−1(x)− (n + 2α− 2)Cα
n−2(x)

]
.

It is worth mentioning that by setting α = 1
2 and α = 1 in Equation (1), we immediately

obtain Legendre polynomials Pn(x) = C
1
2
n (x) and Chebyshev polynomials of the second

kind Un(x) = C1
n(x), respectively.

The generating function of Gegenbauer polynomials is given as

Hα(x, z) =
1

(1− 2xz + z2)
α ,

where x ∈ [−1, 1] and z ∈ U. For fixed x, the function Hα is analytic in U, so it can be
expanded in a Taylor–Maclaurin series, as follows:

Hα(x, z) =
∞

∑
n=0

Cα
n(x)zn, z ∈ U. (2)

2. Preliminaries and Definitions

Let A denote the class of all normalized analytic functions f written as

f (z) = z +
∞

∑
n=2

anzn, z ∈ U. (3)

Differential subordination of analytic functions provides excellent tools for study in
geometric function theory. The earliest problem in differential subordination was intro-
duced by Miller and Mocanu [11], see also [12]. The book of Miller and Mocanu [13] sums
up most of the advancement in the field and the references to the date of its publication.

Definition 1. Let f and g be two analytic functions in U. The function f is said to be subordinate
to g, written as f (z) ≺ g(z), if there is an analytic function ω in U with the properties

ω(0) = 0 and |ω(z)| < 1, z ∈ U,

such that
f (z) = g(ω(z)), z ∈ U.

Definition 2. A single-valued one-to-one function f defined in a simply connected domain is said
to be a univalent function.
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Let S denote the class of all functions f ∈ A, given by (3), that are univalent in U.
Hence, every function f ∈ S has an inverse given by

f−1(w) = w− a2w2 +
(

2a2
2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + . . . . (4)

Definition 3. A univalent function f is said to be bi-univalent in U if its inverse function f−1(w)
has an analytic univalent extension in U.

Let Σ denote the class of all functions f ∈ A that are bi-univalent in U given by (3).
For interesting subclasses of functions in the class Σ, see [14–24].

The coefficient functional

∆η( f ) = a3 − ηa2
2 =

1
6

(
f ′′′(0)− 3η

2
(

f ′′(0)
)2
)

(5)

of the analytic function f given by (3) is very important in the theory of analytic and univa-
lent functions. Thus, it is quite natural to ask about inequalities for ∆η( f ) corresponding to
subclasses of bi-univalent functions in the open unit disk U. The problem of maximizing
the absolute value of the functional ∆η( f ) is called the Fekete–Szegö problem [25]. There
are now several results of this type in the literature, each of them dealing with |a3 − ηa2

2|
for various classes of functions defined in terms of subordination (see, e.g., [26–31]).

Now, let us define the linear operator

χ : A → A

by

χm f (z) := P(m, z) ∗ f (z) = z +
∞

∑
n=2

mn−1

(em − 1)(n− 1)!
anzn, z ∈ U,

where the symbol “∗” denotes the Hadamard product of the two series.
To obtain our results we need the following lemma:

Lemma 1 ([32], p. 172). Assume that ω(z) =
∞
∑

n=1
ωnzn, z ∈ U, is an analytic function in U such

that |ω(z)| < 1 for all z ∈ U. Then, |ω1| ≤ 1, |ωn| ≤ 1− |ω1|2, n = 2, 3, . . . .

Motivated essentially by the earlier work of Amourah et al. [33], we construct, in
the next section, a new subclass of bi-univalent functions governed by the zero-truncated
Poisson distribution series and Gegenbauer polynomials. Then, we investigate the optimal
bounds for the Taylor–Maclaurin coefficients |a2| and |a3| and solve the Fekete–Szegő
functional problem for functions in our new subclass.

3. The Class ζΣ(x, α, δ, µ)

Consider the function f ∈ Σ given by (3), the function g = f−1 given by (4), and Hα

is the generating function of Gegenbauer polynomials given by (2). Now, we are ready to
define our new subclass of bi-univalent functions ζΣ(x, α, δ, µ) as follows.

Definition 4. A function f is said to be in the class ζΣ(x, α, δ, µ), if the following subordinations
are fulfilled:

(1− µ)
χm f (z)

z
+ µ(χm f (z))′ + δz(χm f (z))′′ ≺ Hα(x, z),

and

(1− µ)
χmg(w)

w
+ µ(χmg(w))′ + δw(χmg(w))′′ ≺ Hα(x, w),

where α > 0, µ, δ ≥ 0, and x ∈
(

1
2 , 1
]
.
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Upon allocating the parameters µ and δ, one can obtain several new subclasses of Σ,
as illustrated in the following two examples.

Example 1. A function f is said to be in the class ζΣ(x, α, µ) := ζΣ(x, α, 0, µ), if the following
subordinations are fulfilled:

(1− µ)
χm f (z)

z
+ µ(χm f (z))′ ≺ Hα(x, z),

and

(1− µ)
χmg(w)

w
+ µ(χmg(w))′ ≺ Hα(x, w),

where α > 0, µ ≥ 0, and x ∈
(

1
2 , 1
]
.

Example 2. A function f is said to be in the class ζΣ(x, α) := ζΣ(x, α, 0, 1), if the following
subordinations are fulfilled:

(χm f (z))′ ≺ Hα(x, z),

and
(χmg(w))′ ≺ Hα(x, w),

where α > 0 and x ∈
(

1
2 , 1
]
.

4. Main Results

Theorem 1. If the function f belongs to the class ζΣ(x, α, δ, µ), then

|a2| ≤
2αx(em − 1)

√
2x

m
√∣∣∣
[
2α(1 + 2µ + 6δ)(em − 1)− 2(1 + α)(1 + µ + 2δ)2

]
x2 + (1 + µ + 2δ)2

∣∣∣
, (6)

and

|a3| ≤
4α2x2(em − 1)2

m2(1 + µ + 2δ)2 +
4αx(em − 1)

m2(1 + 2µ + 6δ)
.

Proof. If f ∈ ζΣ(x, α, δ, µ), from the Definition 4 there exist two analytic functions in U that
are w and v, such that w(0) = v(0) = 0 and |ω(z)| < 1, |v(w)| < 1 for all z, w ∈ U, and

(1− µ)
χm f (z)

z
+ µ(χm f (z))′ + δz(χm f (z))′′ = Hα(x, ω(z)), z ∈ U, (7)

and

(1− µ)
χmg(w)

w
+ µ(χmg(w))′ + δw(χmg(w))′′ = Hα(x, v(w)), w ∈ U, (8)

From the equalities (7) and (8), we obtain

(1− µ)
χm f (z)

z
+ µ(χm f (z))′ + δz(χm f (z))′′

= 1 + Cα
1 (x)c1z +

[
Cα

1 (x)c2 + Cα
2 (x)c2

1

]
z2 + . . . , z ∈ U, (9)

and

(1− µ)
χmg(w)

w
+ µ(χmg(w))′ + δw(χmg(w))′′

= 1 + Cα
1 (x)d1w +

[
Cα

1 (x)d2 + Cα
2 (x)d2

1

]
w2 + . . . , w ∈ U, (10)
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where

ω(z) =
∞

∑
j=1

cjzj, z ∈ U, and v(w) =
∞

∑
j=1

djwj, w ∈ U. (11)

According to Lemma 1, if the above function ω and v has the form (11), then

|cj| ≤ 1 and |dj| ≤ 1 for all j ∈ N. (12)

Thus, upon comparing and equating the corresponding coefficients in (9) and (10),
we have

(1 + µ + 2δ)m
em − 1

a2 = Cα
1 (x)c1, (13)

(1 + 2µ + 6δ)m2

2(em − 1)
a3 = Cα

1 (x)c2 + Cα
2 (x)c2

1, (14)

− (1 + µ + 2δ)m
em − 1

a2 = Cα
1 (x)d1, (15)

and
(1 + 2µ + 6δ)m2

2(em − 1)

[
2a2

2 − a3

]
= Cα

1 (x)d2 + Cα
2 (x)d2

1. (16)

It follows from (13) and (15) that

c1 = −d1, (17)

and
2(1 + µ + 2δ)2m2

(em − 1)2 a2
2 = [Cα

1 (x)]2
(

c2
1 + d2

1

)
. (18)

If we add (14) and (16), we get

(1 + 2µ + 6δ)m2

(em − 1)
a2

2 = Cα
1 (x)(c2 + d2) + Cα

2 (x)
(

c2
1 + d2

1

)
. (19)

Substituting the value of
(
c2

1 + d2
1
)

from (18) in the right hand side of (19), we deduce that

[
(1 + 2µ + 6δ)− 2(1 + µ + 2δ)2

(em − 1)
Cα

2 (x)
[
Cα

1 (x)
]2

]
m2

(em − 1)
a2

2 = Cα
1 (x)(c2 + d2). (20)

Now, using (1), (12) and (20), we find that (6) holds.
Moreover, if we subtract (16) from (14), we obtain

(1 + 2µ + 6δ)m2

(em − 1)

(
a3 − a2

2

)
= Cα

1 (x)(c2 − d2) + Cα
2 (x)

(
c2

1 − d2
1

)
. (21)

Then, in view of (17) and (18), Equation (21) becomes

a3 =
(em − 1)2[Cα

1 (x)
]2

2m2(1 + µ + 2δ)2

(
c2

1 + d2
1

)
+

(em − 1)Cα
1 (x)

m2(1 + 2µ + 6δ)
(c2 − d2).

Thus, applying (1), we conclude that

|a3| ≤
4α2x2(em − 1)2

m2(1 + µ + 2δ)2 +
4αx(em − 1)

m2(1 + 2µ + 6δ)
,

and the proof of the theorem is complete.
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The following result addresses the Fekete–Szegő functional problem for functions in
the class ζΣ(x, α, δ, µ).

Theorem 2. If the function f belongs to the class ζΣ(x, α, δ, µ), then

∣∣∣a3 − ηa2
2

∣∣∣ ≤





4αx(em−1)
m2(1+2µ+6δ)

, if |η − 1| ≤ M,

8α2x3(em−1)2|1−η|∣∣∣∣m2

{
[2α(1+2µ+6δ)(em−1)−2(1+α)(1+µ+2δ)2]x2+(1+µ+2δ)2

}∣∣∣∣
, if |η − 1| ≥ M,

where

M :=

∣∣∣∣∣1−
(1 + µ + 2δ)2[2(1 + α)x2 − 1

]

2αx2(em − 1)(1 + 2µ + 6δ)

∣∣∣∣∣.

Proof. If f ∈ ζΣ(x, α, δ, µ), from (20) and (21) we get

a3 − ηa2
2 = (1− η)

(em − 1)2[Cα
1 (x)

]3
(c2 + d2)

m2
[
(em − 1)(1 + 2µ + 6δ)

[
Cα

1 (x)
]2 − 2(1 + µ + 2δ)2Cα

2 (x)
]

+
(em − 1)Cα

1 (x)
m2(1 + 2µ + 6δ)

(c2 − d2)

= Cα
1 (x)

[
h(η) +

(em − 1)
m2(1 + 2µ + 6δ)

]
c2 +

[
h(η)− (em − 1)

m2(1 + 2µ + 6δ)

]
d2,

where

h(η) =
(em − 1)2[Cα

1 (x)
]2
(1− η)

m2
[
(em − 1)(1 + 2µ + 6δ)

[
Cα

1 (x)
]2 − 2(1 + µ + 2δ)2Cα

2 (x)
] .

Then, in view of (1), we conclude that

∣∣∣a3 − ηa2
2

∣∣∣ ≤





4αx(em−1)
m2(1+2µ+6δ)

, if 0 ≤ |h(η)| ≤ (em−1)
m2(1+2µ+6δ)

,

4αx|h(η)|, if |h(η)| ≥ (em−1)
m2(1+2µ+6δ)

,

which completes the proof of Theorem 2.

5. Corollaries and Consequences

Corresponding essentially to the Example 1 (setting δ = 0) and Example 2 (setting
δ = 0 and µ = 1), from Theorems 1 and 2 we get the following consequences, respectively.

Corollary 1. If the function f belongs to the class ζΣ(x, α, µ), then

|a2| ≤
2αx(em − 1)

√
2x

m
√∣∣∣
[
2α(1 + 2µ)(em − 1)− 2(1 + α)(1 + µ)2

]
x2 + (1 + µ)2

∣∣∣
,

|a3| ≤
4α2x2(em − 1)2

m2(1 + µ)2 +
4αx(em − 1)
m2(1 + 2µ)

,
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and

∣∣∣a3 − ηa2
2

∣∣∣ ≤





4αx(em−1)
m2(1+2µ)

, if |η − 1| ≤ N,

8α2x3(em−1)2|1−η|∣∣∣∣m2

{
[2α(1+2µ)(em−1)−2(1+α)(1+µ)2]x2+(1+µ)2

}∣∣∣∣
, if |η − 1| ≥ N,

where

N :=

∣∣∣∣∣1−
(1 + µ)2[2(1 + α)x2 − 1

]

2αx2(em − 1)(1 + 2µ)

∣∣∣∣∣.

Corollary 2. If the function f belongs to the class ζΣ(x, α), then

|a2| ≤
2αx(em − 1)

√
2x

m
√
|[6α(em − 1)− 8(1 + α)]x2 + 4|

,

|a3| ≤
α2x2(em − 1)2

m2 +
4αx(em − 1)

3m2 ,

and

∣∣∣a3 − ηa2
2

∣∣∣ ≤





4αx(em−1)
3m2 , if |η − 1| ≤ L,

8α2x3(em−1)2|1−η|∣∣∣∣m2

{
[6α(em−1)−8(1+α)]x2+4

}∣∣∣∣
, if |η − 1| ≥ L,

where

L :=

∣∣∣∣∣1−
2
[
2(1 + α)x2 − 1

]

3αx2(em − 1)

∣∣∣∣∣.

6. Concluding Remarks

In the present work we have constructed a new subclass ζΣ(x, α, δ, µ) of normalized
analytic and bi-univalent functions governed with the zero-truncated Poisson distribution
series and Gegenbauer polynomials. For functions belonging to this class, we have made
estimates of Taylor–Maclaurin coefficients, |a2| and |a3|, and solved the Fekete–Szegő
functional problem. Furthermore, by suitably specializing the parameters δ and µ, one can
deduce the results for the subclasses ζΣ(x, α, µ) and ζΣ(x, α) which are defined, respectively,
in Examples 1 and 2.

The results offered in this paper would lead to other different new results for the classes
ζΣ(x, 1/2, δ, µ) for Legendre polynomials and ζΣ(x, 1, δ, µ) for Chebyshev polynomials.

It remains an open problem to derive estimates on the bounds of |an| for n ≥ 4, n ∈ N,
for the subclasses that have been introduced here.
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31. Bulut, S. Fekete-Szegő Problem for Starlike Functions Connected with k-Fibonacci Numbers. Math. Slov. 2021, 71, 823–830.

[CrossRef]
32. Nehari, Z. Conformal Mapping; McGraw-Hill: New York, NY, USA, 1952.
33. Amourah, A.; Frasin, B.A.; Ahmad, M.; Yousef, F. Exploiting the Pascal Distribution Series and Gegenbauer Polynomials to

Construct and Study a New Subclass of Analytic Bi-Univalent Functions. Symmetry 2022, 14, 147. [CrossRef]

100



Citation: Sümer Eker, S.; Şeker, B.;
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Abstract: The logarithmic coefficients are very essential in the problems of univalent functions theory.
The importance of the logarithmic coefficients is due to the fact that the bounds on logarithmic
coefficients of f can transfer to the Taylor coefficients of univalent functions themselves or to their
powers, via the Lebedev–Milin inequalities; therefore, it is interesting to investigate the Hankel
determinant whose entries are logarithmic coefficients. The main purpose of this paper is to obtain
the sharp bounds for the second Hankel determinant of logarithmic coefficients of strongly starlike
functions and strongly convex functions.

Keywords: logarithmic coefficient; Hankel determinant; strongly starlike; strongly convex

MSC: 30C45; 30C50

1. Introduction

Let A stand for the standard class of analytic functions of the form

f (z) = z +
∞

∑
k=2

akzk, z ∈ U = {z ∈ C : |z| < 1}, (1)

and let S be the class of functions in A, which are univalent in U.
A function f of the form (1) is said to be starlike of order α in U if

<
{

z f ′(z)
f (z)

}
> α (z ∈ U).

The set of all such functions is denoted by S∗(α).
Next, by K(α), we denote the class of convex functions of order α in U that satisfy the

following inequality:

<
{

1 +
z f ′′(z)
f ′(z)

}
> α (z ∈ U).

A function f of the form (1) is said to be strongly starlike of order α, (0 < α ≤ 1), in U if
∣∣∣∣ arg

z f ′(z)
f (z)

∣∣∣∣ <
πα

2
(z ∈ U). (2)
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The set of all such functions is denoted by S∗s (α). Moreover, a function f of the form (1)
is said to be strongly convex of order α, (0 < α ≤ 1), in U if

∣∣∣∣ arg

(
1 +

z f ′′(z)
f ′(z)

)∣∣∣∣ <
πα

2
(z ∈ U). (3)

The set of all such functions is denoted by Kc(α).
The class S∗s (α) was independently introduced by Brannan and Kirwan [1] and

Stankiewicz [2] (see also [3]). Clearly, S∗s (1) = S∗ is the class of starlike functions and
K∗c (1) = K is the class of convex functions in U. We should observe that as α increases
the sets S∗(α) and K(α) become smaller; however as α increases the sets S∗s (α) and Kc(α)
become larger. Furthermore, although the sharp coefficient bounds of the functions in the
classes S∗(α) and K(α) are known, sharp coefficient bounds for the functions in the sets
S∗s (α) and Kc(α) are much harder to obtain, and only partial results are known [1,4].

Let P denote the class of analytic functions p(z) in U satisfying p(0) = 1 and
<
(

p(z)
)
> 0. Thus, if p ∈ P , then have the following form:

p(z) = 1 +
∞

∑
k=1

ckzk, z ∈ U. (4)

Functions in P are called Carathedory functions.
Associated with each f ∈ S , is a well-defined logarithmic function

F f := log
f (z)

z
= 2

∞

∑
k=1

γkzk, z ∈ U. (5)

The numbers γk are called the logarithmic coefficients of f . The logarithmic coefficients
are very essential in the problems of univalent functions coefficients. The importance of the
logarithmic coefficients is due to the fact that the bounds on logarithmic coefficients of f
can transfer to the Taylor coefficients of univalent functions themselves or to their powers,
via the Lebedev–Milin inequalities.

Relatively little exact information is known about the logarithmic coefficients of f
when f ∈ S . The logarithmic coefficients of the Koebe function K(z) = z(1− z)−2 are
γk = 1/k. Because of the extremal properties of the Koebe function, one could expect that
γk ≤ 1/k, for each f ∈ S ; however, this conjecture is false even in the case k = 2. For the
whole class S , the sharp estimates of single logarithmic coefficients are known only for

|γ1| ≤ 1 and |γ2| ≤
1
2
+

1
e2 = 0.6353 . . .

and are unknown for k ≥ 3. Recently, logarithmic coefficients have been studied by various
authors and upper bounds of logarithmic coefficients of functions in some important
subclasses of S have been obtained (e.g., [5–10]). For a summary of some of the significant
results concerning the logarithmic coefficients for univalent functions, we refer to [11].

For q, n ∈ N, the Hankel determinant Hq,n( f ) of f ∈ A of form (1) is defined as

Hq,n( f ) =

∣∣∣∣∣∣∣∣∣

an an+1 · · · an+q−1
an+1 an+2 · · · an+q

...
...

...
an+q−1 an+q · · · an+2(q−1)

∣∣∣∣∣∣∣∣∣
.

The Hankel determinant H2,1( f ) = a3− a2
2 is the well-known Fekete–Szegö functional.

The second Hankel determinant H2,2( f ) is given by H2,2( f ) = a2a4 − a2
3.

102



Axioms 2022, 11, 369

The problem of computing the upper bound of Hq,n over various subfamilies of A
is interesting and widely studied in the literature on the geometric function theory of
complex analysis. The upper bounds of H2,2, H3,1 and higher-order Hankel determinants
for subclasses of analytic functions were obtained by various authors [12–24].

Very recently, Kowalczyk and Lecko [25] introduced the Hankel determinant Hq,n(Ff /2),
which are logarithmic coefficients of f , i.e.,

Hq,n(Ff /2) =

∣∣∣∣∣∣∣∣∣

γn γn+1 · · · γn+q−1
γn+1 γn+2 · · · γn+q

...
...

...
γn+q−1 γn+q · · · γn+2(q−1)

∣∣∣∣∣∣∣∣∣
.

For a function f ∈ S given in (1), by differentiating (5) one can obtain the following:

γ1 =
1
2

a2, γ2 =
1
2
(
a3 −

1
2

a2
2
)
, γ3 =

1
2
(
a4 − a2a3 +

1
3

a3
2
)
. (6)

Therefore, the second Hankel determinant of Ff /2 can be obtained by

H2,1(Ff /2) = γ1γ3 − γ2
2 =

1
4

(
a2a4 − a2

3 +
1

12
a4

2

)
. (7)

Furthermore, if f ∈ S , then for

fθ(z) = e−iθ f (eiθz) (θ ∈ R),

we find that (see [26])

H2,1

( Ffθ

2

)
= e4iθ H2,1

( Ff

2

)
.

Kowalczyk and Lecko [26] obtained sharp bounds for H2,1(Ff /2) for the classes of
starlike and convex functions of order α. The problem of computing the sharp bounds of
H2,1(Ff /2) for starlike and convex functions with respect to symmetric points in the open
unit disk has been considered by Allu and Arora [27].

In this paper, we calculate the sharp bounds for H2,1(Ff /2) = γ1γ3− γ2
2 for the classes

S∗s (α) and Kc(α).
To establish our main results, we will require the following Lemmas:

Lemma 1 ([28] (see also [26])). If p ∈ P is of the form (4) with c1 ≥ 0, then

c1 = 2d1,

c2 = 2d2
1 + 2(1− d2

1)d2,

c3 = 2d3
1 + 4(1− d2

1)d1d2 − 2(1− d2
1)d1d2

2 + 2(1− d2
1)(1− |d2|2)d3

(8)

for some d1 ∈ [0, 1] and d2, d3 ∈ U = {z ∈ C : |z| ≤ 1}.
For d1 ∈ U and d2 ∈ ∂U = {z ∈ C : |z| = 1}, there is a unique function p ∈ P with c1 and

c2 as in (8), namely

p(z) =
1 + (d1d2 + d1)z + d2z2

1 + (d1d2 − d1)z− d2z2
, z ∈ U.

Lemma 2 ([29]). Given real numbers A, B, C, let

Y(A, B, C) = max
{∣∣A + Bz + Cz2∣∣+ 1− |z|2 : z ∈ U

}
.
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I. If AC ≥ 0, then

Y(A, B, C) =





|A|+ |B|+ |C|, |B| ≥ 2(1− |C|),

1 + |A|+ B2

4(1−|C|) , |B| < 2(1− |C|).

II. If AC < 0, then

Y(A, B, C) =





1− |A|+ B2

4(1−|C|) , −4AC(C−2 − 1) ≤ B2 ∧ |B| < 2(1− |C|),

1 + |A|+ B2

4(1+|C|) , B2 < min{4(1 + |C|)2, −4AC(C−2 − 1)},

R(A, B, C), otherwise.

where

R(A, B, C) =





|A|+ |B| − |C|, |C|(|B|+ 4|A|) ≤ |AB|,

−|A|+ |B|+ |C|, |AB| ≤ |C|(|B| − 4|A|),

(|A|+ |C|)
√

1− B2

4AC , otherwise.

2. Second Hankel Determinant of Logarithmic Coefficients for the Class S∗s (α)
Theorem 1. Let α ∈ (0, 1]. If f ∈ S∗s (α), then

∣∣∣γ1γ3 − γ2
2

∣∣∣ ≤ α2

4
. (9)

This inequality is sharp. Equality holds for the function

f (z) = zexp

∫ z

0

(1− u2)−2α − 1
u

du, z ∈ U. (10)

Proof. Let α ∈ (0, 1] and f ∈ S∗s (α) be of the form (1). Then by (2) we have

z f ′(z)
f (z)

=
(

p(z)
)α, z ∈ U, (11)

for some function p ∈ P of the form (4). Since the class P and the functional |H2,1(Ff /2)|
are rotationally invariant, we may assume that c1 ∈ [0, 2] (i.e., in view of (8) that d1 ∈ [0, 1]).
Equating the coefficients, we obtain

a2 = αc1

a3 =
α

2

(
c2 −

1− 3α

2
c2

1

)

a4 =
α

3

(
c3 +

5α− 2
2

c1c2 +
17α2 − 15α + 4

12
c3

1

)
.

(12)
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Hence by using (6)–(8) we obtain

γ1γ3 − γ2
2 =

1
4

(
a2a4 − a2

3 +
1

12
a4

2

)

=
α2

576

[
(7 + α)(1− α)c4

1 − 12(1− α)c2
1c2 + 48c1c3 − 36c2

2

]

=
α2

36

[
(4− α2)d4

1 + 6α(1− d2
1)d

2
1d2 − (1− d2

1)
[
12d2

1 + 9(1− d2
1)
]
d2

2

+ 12(1− d2
1)(1− |d2|2)d1d3

]
.

(13)

Now, we may have the following cases on d1:
Case 1. Suppose that d1 = 1. Then by (13) we obtain

∣∣∣∣γ1γ3 − γ2
2

∣∣∣∣ =
α2

36
(4− α2)

Case 2. Suppose that d1 = 0. Then by (13) we obtain
∣∣∣∣γ1γ3 − γ2

2

∣∣∣∣ =
α2

4
|d2|2 ≤

α2

4
.

Case 3. Suppose that d1 ∈ (0, 1). By the fact that |d3| ≤ 1, applying the triangle
inequality to (13) we can write

∣∣∣∣γ1γ3 − γ2
2

∣∣∣∣ =
∣∣∣∣
α2(1− d2

1)

3

[
4− α2

12(1− d2
1)

d4
1 +

α

2
d2

1d2 −
12d2

1 + 9(1− d2
1)

12
d2

2 + (1− |d2|2)d1d3

]∣∣∣∣

≤ α2d1(1− d2
1)

3

[∣∣∣∣
4− α2

12(1− d2
1)

d3
1 +

α

2
d1d2 −

12d2
1 + 9(1− d2

1)

12d1
d2

2

∣∣∣∣+ 1− |d2|2
]

=
α2d1(1− d2

1)

3

[∣∣∣A + Bd2 + Cd2
2

∣∣∣+ 1− |d2|2
]

(14)

where

A =
4− α2

12(1− d2
1)

d3
1 B =

α

2
d1 C = −d2

1 + 3
4d1

.

Since AC < 0, we apply Lemma 2 only for the case II.
We consider the following sub-cases.
3 (a) Since

−4AC
( 1

C2 − 1
)
− B2 =

(4− α2)d2
1(d

2
1 + 3)

12(1− d2
1)

( 16d2
1

(d2
1 + 3)2

− 1
)
− α2d2

1
4
≤ 0

equivalent to (1− α2)d2
1 ≤ 9, which evidently holds for d1 ∈ (0, 1). Further, the inequality

|B| < 2(1− |C|) is equivalent to 3 + (1 + α)d2
1 − 4d1 < 0 which is false for d1 ∈ (0, 1).

3 (b) Since

4(1 + |C|)2 =
(d2

1 + 4d1 + 3)2

4d2
1

> 0

and

−4AC
( 1

C2 − 1
)
=

(4− α2)d2
1(d

2
1 − 9)

12(d2
1 + 3)

< 0,
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we see that the inequality

α2d2
1

4
< min

{
4(1 + |C|)2, −4AC(

1
C2 − 1)

}

is false for d1 ∈ (0, 1).
3 (c) The inequality

|C|
(
|B|+ 4|A|

)
− |AB| = (d2

1 + 3)
4d1

(
αd1

2
+

(4− α2)d3
1

3(1− d2
1)

)
− α(4− α2)d4

1
24(1− d2

1)
≤ 0,

is equivalent to

d4(8 + α3 − 2α2 − 7α) + d2(24− 6α2 − 6α) + 9α ≤ 0.

It is easy to verify that

d4(8 + α3 − 2α2 − 7α) + d2(24− 6α2 − 6α) + 9α

> d4(32 + α3 − 8α2 − 13α) + 9α > 0.

for d1 ∈ (0, 1). Thus, the inequality |C|
(
|B|+ 4|A|

)
≤ |AB| does not hold for α ∈ (0, 1]

and d1 ∈ (0, 1).
3 (d) We can write

|AB| − |C|
(
|B| − 4|A|

)
=

α(4− α2)d4
1

24(1− d2
1)
− (d2

1 + 3)
4d1

(
αd1

2
− (4− α2)d3

1
3(1− d2

1)

)

=
1

24(1− t)
(
K1t2 + L1t + M1

)

where t = d2
1 ∈ (0, 1) and

K1 = −α3 − 2α2 + 7α + 8

L1 = 6(4 + α− α2)

M1 = −9α.

It is easy to see that K1 > 0, L1 > 0 and M1 < 0, for α ∈ (0, 1].
For the equation K1t2 + L1t + M1, we have ∆ = 144(4 + 4α− α3) > 0. Since K1 > 0,

M1
K1

< 0 and K1 + L1 + M1 = 32− α3 − 8α2 + 4α > 0, for α ∈ (0, 1], the equation K1t2 +
L1t + M1 has positive unique root such that

0 < t1 =
−L1 +

√
∆

2K1
< 1,

Therefore, for d∗1 =
√

t1, it follows that |AB| = |C|
(
|B| − 4|A|

)
.

Moreover, |AB| ≤ |C|
(
|B| − 4|A|

)
, when d1 ∈ (0, d∗1 ], and |AB| ≥ |C|

(
|B| − 4|A|

)
,

when d1 ∈ [d∗1 , 1).
Then for d1 ∈ (0, d∗1 ], we can write from (14) and Lemma 2, we obtain

∣∣∣∣γ1γ3 − γ2
2

∣∣∣∣ ≤
α2d1(1− d2

1)

3

(
− |A|+ |B|+ |C|

)
= Φ(d1)

where
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Φ(d1) =
α2

36

(
− (4− α2)d4

1 + 3(1 + 2α)d2
1(1− d2

1) + 9(1− d2
1)
)

.

Since

Φ′(d1) =
−α2d1

9

[
(7 + 6α− α2)d2

1 + 3(1− α)
]
< 0,

for d1 ∈ [0, d∗1 ], Φ is a decreasing function on [0, d∗1 ]. This implies that

∣∣∣∣γ1γ3 − γ2
2

∣∣∣∣ ≤ Φ(0) =
α2

4
.

3 (e) Next consider the case d1 ∈ [d∗1 , 1]. Using the last case of Lemma 2,

∣∣∣∣γ1γ3 − γ2
2

∣∣∣∣ ≤
α2d1(1− d2

1)

3

((
|A|+ |C|

)
√

1− B2

4AC

)
= Ψ(d1)

where

Ψ(d1) =
α2

18
[9 + (1− α2)d4

1 − 6d2
1]

√
(1− α2)d2

1 + 3
(4− α2)(d2

1 + 3)
.

To find the maximum of the function Ψ(d1) on the interval d1 ∈ [d∗1 , 1], let us investi-
gate the derivative of Ψ(d1):

Ψ′(d1) =
−d2

1α2

18(4− α2)(d2
1 + 3)2

√
(4− α2)(d2

1 + 3)
(1− α2)d2

1 + 3

×
[

4(3− (1− α2)d2
1)(d

2
1 + 3)((1− α2)d2

1 + 3) + 3α2(9 + (1− α2)d4
1 − 6d2

1))

]
< 0,

since
4(3− (1− α2)d2

1 ≥ 8 + 4α2 > 0

and

9 + (1− α2)d4
1 − 6d2

1 ≥ 9− d2
1
(
6− (1− α2)d2

1
)
= 3 + (1− α2)d2

1 > 0

for α ∈ (0, 1] and d1 ∈ [d∗1 , 1]. Thus Ψ is a decreasing function on [d∗1 , 1].
Furthermore, Φ(d∗1) = Ψ(d∗1). This implies that

∣∣∣∣γ1γ3 − γ2
2

∣∣∣∣ ≤ Ψ(d1) ≤ Ψ(d∗1) = Φ(d∗1) ≤ Φ(0) =
α2

4
.

Summarizing parts from Cases 1–3, it follows the desired inequality.
In order to show that the inequality is sharp, let us set c1 = 0 and d2 = 1 into (8). Then,

we obtain c2 = 2 and c3 = 0. Hence by (12) we have a2 = a4 = 0 and a3 = α. This shows
that equality is attained for the function given in (10).

This completes the proof of the theorem.

For α = 1 we obtain the bounds for the class S∗ of starlike functions given in [25].

Corollary 1. Let f (z) ∈ S∗. Then

∣∣∣γ1γ3 − γ2
2

∣∣∣ ≤ 1
4

.

The inequality is sharp.
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3. Second Hankel Determinant of Logarithmic Coefficients for the Class Kc(α)

Theorem 2. Let α ∈ (0, 1]. If f ∈ Kc(α), then

∣∣∣γ1γ3 − γ2
2

∣∣∣ ≤





α2

36 , 0 < α ≤ 1
3

α2(13α2+18α+17)
144(α2+6α+4) , 1

3 < α ≤ 1.
(15)

The inequalities in (15) are sharp.

Proof. Let α ∈ (0, 1] and f ∈ Kc(α) be of the form (1). Then, by (3), we have

1 +
z f ′′(z)
f ′(z)

=
(

p(z)
)α, z ∈ U, (16)

for some function p ∈ P of the form (4). As in the proof of Theorem 1, we may assume that
c1 ∈ [0, 2] (i.e., in view of (8) that d1 ∈ [0, 1]). Equating the coefficients, we obtain

a2 =
α

2
c1

a3 =
α

6

(
c2 −

1− 3α

2
c2

1

)

a4 =
α

144

(
(17α2 − 15α + 4)c3

1 + 6(5α− 2)c1c2 + 12c3

)
.

(17)

Hence, by using (6)–(8) we obtain

γ1γ3 − γ2
2 =

1
4

(
a2a4 − a2

3 +
1

12
a4

2

)

=
α2

2304

[
(α2 − 6α + 4)c4

1 + 4(3α− 2)c2
1c2 + 24c1c3 − 16c2

2

]

=
α2

144

[
(2 + α2)d4

1 + 6α(1− d2
1)d

2
1d2 − (1− d2

1)
[
6d2

1 + 4(1− d2
1)
]
d2

2

+ 6(1− d2
1)(1− |d2|2)d1d3

]
.

(18)

Now, we may have the following cases on d1:
Case 1. Suppose that d1 = 1. Then, by (18) we obtain

∣∣∣∣γ1γ3 − γ2
2

∣∣∣∣ =
α2

144
(2 + α2)

Case 2. Suppose that d1 = 0. Then, by (18) we obtain
∣∣∣∣γ1γ3 − γ2

2

∣∣∣∣ =
α2

36
|d2|2 ≤

α2

36
.

Case 3. Suppose that d1 ∈ (0, 1). By the fact that |d3| ≤ 1, applying the triangle
inequality to (18) we can write
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∣∣∣∣γ1γ3 − γ2
2

∣∣∣∣ =
∣∣∣∣

α2

144

[
(2 + α2)d4

1 + 6α(1− d2
1)d

2
1d2

− (1− d2
1)
[
6d2

1 + 4(1− d2
1)
]
d2

2 + 6(1− d2
1)(1− |d2|2)d1d3

]∣∣∣∣

≤ α2d1(1− d2
1)

24

[∣∣∣∣
(2 + α2)

6(1− d2
1)

d3
1 + αd1d2 −

4 + 2d2
1

6d1
d2

2

∣∣∣∣+ 1− |d2|2
]

=
α2d1(1− d2

1)

24

[∣∣∣A + Bd2 + Cd2
2

∣∣∣+ 1− |d2|2
]

(19)

where

A =
2 + α2

6(1− d2
1)

d3
1 B = αd1 C = −2 + d2

1
3d1

.

Since AC < 0, we apply Lemma 2 only for the case II.
We consider the following sub-cases.
3 (a) Note that

−4AC
( 1

C2 − 1
)
− B2 =

−d2
1
[
d2

1(7α2 − 4) + 26α2 + 16
]

9(d2
1 + 2)

=
−d2

1
[
α2(7d2

1 + 26) + 4(4− d2
1)
]

9(d2
1 + 2)

≤ 0.

for d1 ∈ (0, 1) and α ∈ (0, 1]. On the other hand, we have

|B| − 2(1− |C|) = d2
1(3α + 2)− 6d1 + 4

3d1
.

Since ∆ = 4(1− 12α) ≤ 0 for 1
12 ≤ α < 1, we have

d2
1(3α + 2)− 6d1 + 4 ≥ 0.

Further, since ∆ = 4(1− 12α) > 0 for 0 < α < 1
12 , the equation

d2
1(3α + 2)− 6d1 + 4 = 0

has the roots

s1,2 =
3±
√

1− 12α

3α + 2

which are greater than 1. So

d2
1(3α + 2)− 6d1 + 4 > 0

for d1 ∈ (0, 1) and α ∈ (0, 1].
Consequently |B| < 2(1− |C|) does not hold for d1 ∈ (0, 1) and α ∈ (0, 1] .
3 (b) Since

4(1 + |C|)2 =
4(d2

1 + 3d1 + 2)2

9d2
1

> 0

and

−4AC
(

1
C2 − 1

)
= −2d2

1(4− d2
1)(α

2 + 2)
9(d2

1 + 2)
< 0,

we see that the inequality

α2d2
1 < min

{
4(1 + |C|)2, −4AC

(
1

C2 − 1
)}
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is false for d1 ∈ (0, 1).
3 (c) We can write

|C|
(
|B|+ 4|A|

)
− |AB| = 1

18(1− d2
1)
(K2d4

1 + L2d2
1 + M2)

where

K2 = −3α3 + 4α2 − 12α + 8

L2 = 8α2 − 6α + 16

M2 = 12α.

It is easy to see that L2 > 0 and M2 > 0, for α ∈ (0, 1].
There are two cases according to the sign of K2:

(i) If K2 ≥ 0, then we have

|C|
(
|B|+ 4|A|

)
− |AB| = 1

18(1− d2
1)
(K2d4

1 + L2d2
1 + M2) > 0.

(ii) If K2 < 0, then using the fact that α ∈ (0, 1] and d1 ∈ (0, 1), we can write

|C|
(
|B|+ 4|A|

)
− |AB| = 1

18(1− d2
1)

(
K2d4

1 + L2d2
1 + M2

)

>
1

18(1− d2
1)

(
K2 + L2d2

1 + M2
)

=
1

18(1− d2
1)

(
L2d2

1 − 3α3 + 4α2 + 8
)

≥ 1
18(1− d2

1)

(
L2d2

1 + 5 + 4α2) > 0.

Therefore, the inequality |C|
(
|B|+ 4|A|

)
≤ |AB| does not hold for α ∈ (0, 1] and d1 ∈ (0, 1).

3 (d) We can write

|AB| − |C|
(
|B| − 4|A|

)
=

α(α2 + 2)
6(1− d2

1)
d4

1 −
d2

1 + 2
3d1

(
αd1 − 4

α2 + 2
6(1− d2

1)
d3

1

)

=
1

18(1− t)
(
K3t2 + L3t + M3

)

where t = d2
1 ∈ (0, 1) and

K3 = 3α3 + 4α2 + 12α + 8

L3 = 8α2 + 6α + 16

M3 = −12α.

It is easy to see that K3 > 0, L3 > 0 and M3 < 0, for α ∈ (0, 1].
For the equation K3t2 + L3t + M3 = 0, we have ∆ > 0. Since M3

K3
< 0 and K3 + L3 +

M3 > 0, for α ∈ (0, 1], the equation K3t2 + L3t + M3 = 0 has a unique positive root t1 < 1.
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Thus, the inequality |AB| − |C|
(
|B| − 4|A|

)
≤ 0 holds for (0, d∗∗1 ], where d∗∗1 =

√
t1. So we

can write from (19) and Lemma 2,
∣∣∣∣γ1γ3 − γ2

2

∣∣∣∣ ≤
α2d1(1− d2

1)

24

(
− |A|+ |B|+ |C|

)

=
α2

144
Φ1(d1)

where

Φ1(d1) =
(

Dd4
1 + Ed2

1 + 4
)

,

and

D = −(α2 + 6α + 4)

E = 6α− 2.

If Φ′1(d1) = 2d1
(
2Dd2

1 + E
)
= 0, then d2

1 = − E
2D . So if E = 6α− 2 > 0, i.e., 1

3 < α ≤ 1,
then we have a critical point:

ξ =

√
− E

2D
=

√
3α− 1

α2 + 6α + 4
. (20)

Since

K3ξ4 + L3ξ2 + M3 = K3

(
3α− 1

α2 + 6α + 4

)2

+ L3

(
3α− 1

α2 + 6α + 4

)
+ M3

=
39α5 + 28α4 − 243α3 − 296α2 − 156α− 56

(α2 + 6α + 4)2

≤ −243α3 − 296α2 − 89α− 56
(α2 + 6α + 4)2

< 0,

we have 0 < ξ < d∗∗1 ; therefore, we obtain

∣∣∣∣γ1γ3 − γ2
2

∣∣∣∣ ≤
α2

144
Φ1(ξ)

=
α2(13α2 + 18α + 17)

144(α2 + 6α + 4)
,

for 1
3 < α ≤ 1.
Furthermore, if 0 < α ≤ 1

3 , then the function Φ1(d1) is decreasing on (0, d∗∗1 ]. Thus
we have

∣∣∣∣γ1γ3 − γ2
2

∣∣∣∣ ≤
α2

144
Φ1(d1)

≤ α2

36
.

3 (e) Next consider the case d1 ∈ [d∗∗1 , 1]. Using the last case of the Lemma 2,
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∣∣∣∣γ1γ3 − γ2
2

∣∣∣∣ ≤
α2d1(1− d2

1)

24

((
|A|+ |C|

)
√

1− B2

4AC

)

=
α2

144
Ψ1(d1)

where

Ψ1(d1) = (α2d4
1 − 2d2

1 + 4)

√
1 +

9α2(1− d2
1)

2(α2 + 2)(d2
1 + 2)

.

To find the maximum of the function Ψ1(d1) on the interval d1 ∈ [d∗∗1 , 1], let us
investigate the derivative of Ψ1(d1):

Ψ′1(d1) =
−d1

(α2 + 2)(d2
1 + 2)2

√
(α2 + 2)(d2

1 + 2)
(4− 7α2)d2

1 + 13α2 + 8
×

{
4(d2

1 + 2)
(

1− α2d2
1

)[(
4− 7α2

)
d2

1 + 13α2 + 8
]
+
(

α2d4
1 − 2d2

1 + 4
)

27α2

}
.

Since for d1 ∈ [d∗∗1 , 1]
(

4− 7α2
)

d2
1 + 13α2 + 8 = α2(13− 7d2

1) + 4(d2
1 + 2) > 0

and (
α2d4

1 − 2d2
1 + 4

)
= 4− d2

1(2− α2d2
1) ≥ 4− (2− α2d2

1) = 2 + α2d2
1 > 0,

for α ∈ (0, 1] and d1 ∈ [d∗∗1 , 1]. Thus Ψ1(d1) is a decreasing function on the interval [d∗∗1 , 1].
This implies that

∣∣∣∣γ1γ3 − γ2
2

∣∣∣∣ ≤
α2

144
Ψ1(d1) ≤

α2

144
Ψ1(d∗∗1 ) =

α2

144
Φ1(d∗∗1 ).

Summarizing parts from Cases 1–3, it follows the desired inequalities.
To show the sharpness for the case 0 < α ≤ 1

3 , consider the function

p1(z) =
1− z2

1 + z2 , (z ∈ U).

It is obvious that the function p1 is in P with c1 = c3 = 0 and c2 = −2. The
corresponding function f1 can be obtained from (16). Hence, by (17) we have a2 = a4 = 0
and a3 = − α

3 . From (18) we obtain
∣∣∣∣γ1γ3 − γ2

2

∣∣∣∣ =
α2

36
,

for 0 < α ≤ 1
3 .

For the case 1
3 < α ≤ 1, consider the function

p2(z) =
1− z2

1− 2ξz + z2 , (z ∈ U)

where ξ is given in (20). From Lemma 1, it is obvious that the function p2 is in P . The
corresponding function f2 can be obtained from (16), having the following coefficients:
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a2 = αξ,

a3 =
1
3

α
(
(1 + 3α)ξ2 − 1

)
,

a4 =
1

18
αξ
(
(17α2 + 15α + 4)ξ2 − 15α− 3

)
.

Hence from (18) we obtain
∣∣∣∣γ1γ3 − γ2

2

∣∣∣∣ =
α2(13α2 + 18α + 17)

144(α2 + 6α + 4)
.

This completes the proof.

For α = 1 we obtain the bounds for the class K of convex functions given in [25].

Corollary 2. Let f (z) ∈ K. Then

∣∣∣γ1γ3 − γ2
2

∣∣∣ ≤ 1
33

.

The inequality is sharp.

4. Discussion

In this work, we have obtained the sharp bounds for the second Hankel determinant
of logarithmic coefficients of strongly starlike functions and strongly convex functions.
Because of the importance of the logarithmic coefficients of univalent functions, our results
provide a basis for research on the Hankel determinant of the logarithmic coefficients of
the class of strongly starlike and strongly convex functions and other classes associated
with these classes. Furthermore, our results could also inspire further studies taking
other subclasses of S into consideration and/or obtaining the bounds for higher-order
Hankel determinants.
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Abstract: We determine in this paper new results about the radius of uniform convexity of two
kinds of normalization of the Bessel function Jν in the case ν ∈ (−2,−1), and provide an alternative
proof regarding the radius of convexity of order alpha. We then compare results regarding the
convexity and uniform convexity of the considered functions and determine interesting connections
between them.

Keywords: Bessel function; convex function; uniformly convex functions; radius of convexity
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1. Introduction

Let U(r) = {z ∈ C : |z| < r} be the disk, centered at zero, of radius r, where r > 0.
We denote by U(r) = U(0, r).
We say that a function f of the form

f (z) = z + a2z2 + . . . (1)

is convex on U(r) if and only if f (U(r)) is a convex domain in the set C and the function f
is univalent.

We know that the function f is convex on U(r) if and only if

Re
(

1 +
z f ′′(z)
f ′(z)

)
> 0, z ∈ U(r).

We say that f is a convex function of order α on U(r) if

Re
(

1 +
z f ′′(z)
f ′(z)

)
> α, z ∈ U(r).

The radius of convexity of order α for f is defined by the equality

rc
f (α) = sup

{
r ∈ (0, ∞) : Re

(
1 +

z f ′′(z)
f ′(z)

)
> α, z ∈ U(r)

}
. (2)

We say that f is uniformly convex in the disk U(r) if the function f has the form in (1),
it is a convex function, and it has the property that the arc f (γ) is convex for every circular
arc γ contained in the disk U(r) with center ζ, also in U(r). The function f is uniformly
convex in the disk U(r) if and only if

Re
(

1 +
z f ′′(z)
f ′(z)

)
>
∣∣∣ z f ′′(z)

f ′(z)

∣∣∣, z ∈ U(r).
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We know that the radius of uniform convexity is defined by

ruc
f (α) = sup

{
r ∈ (0, ∞) : Re

(
1 +

z f ′′(z)
f ′(z)

)
>
∣∣∣ z f ′′(z)

f ′(z)

∣∣∣, z ∈ U(r)
}

. (3)

The Bessel function of the first kind is defined by

Jν(z) =
∞

∑
n=0

(−1)n

n!Γ(n + ν + 1)
(
z/2

)2n+ν.

Consider the following normalized forms:

gν(z) = 2νΓ(1 + ν)z1−ν Jν(z) = z− 1
4(ν + 1)

z3 + . . . , (4)

and

hν(z) = 2νΓ(1 + ν)z1−ν/2 Jν(z
1
2 ) = z− 1

4(ν + 1)
z2 + . . . , (5)

where ν is a real number and −2 < ν < −1, and gν and hν are entire functions.
This article can be considered a continuation of previous papers [1,2] which dealt with

geometric properties of Bessel functions.
For more details about the geometric properties of Bessel functions, interested readers

are referred to the following papers: [1,3–13].
The aim of this work is to determine the radius of convexity of order α, rc

f (α) for
f = gν and f = hν and the radius of uniform convexity ruc

f (α) for the case ν ∈ (−2,−1)
and to derive an interesting connection between the convexity and uniform convexity.

In the next section, we provide several results which are necessary later in this work.

2. Preliminaries

Lemma 1 ([14], p. 483, Hurwitz). If ν ∈ (−2,−1), then Jν(z) has exactly two purely imaginary
conjugate complex zeros, and all the other zeros are real.

The zeros z−ν Jν(z) are taken to be ±jν,n, where n ∈ N∗ = {1, 2, 3, . . .}. We may
suppose, without restricting the generality, that jν,1 = ia, a > 0, and 0 < a < jν,2 < jν,3 <
· · · < jν,n < · · · .

Lemma 2 ([14], p. 502). The following equality holds

∞

∑
n=1

1
j2ν,n

=
1

4(ν + 1)
. (6)

Lemma 3 ([8]). In the notations of Lemma 2, we have

zg′ν(z)
gν(z)

= 1− 2
∞

∑
n=1

z2

j2ν,n − z2 , (7)

and
zh′ν(z)
hν(z)

= 1−
∞

∑
n=1

z
j2ν,n − z

. (8)

The series are uniformly convergent on every compact subset of C \ {±jν,n : n ∈ N∗}.
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Lemma 4 ([9]). If v ∈ C, δ ∈ R, and δ > ρ ≥ |v|, then
∣∣∣∣

v
δ− v

∣∣∣∣ ≤
ρ

δ− ρ
and

∣∣∣∣
v

(δ− v)2

∣∣∣∣ ≤
ρ

(δ− ρ)2 .

Proof. The following implications hold

|δ− v| ≥ δ− ρ⇒ 1
|δ− v| ≤

1
δ− ρ

⇒
∣∣∣ 1
(δ− v)2

∣∣∣ ≤ 1
(δ− ρ)2 .

If the last two inequalities are multiplied by the inequality |v| ≤ ρ, we obtain the
desired results.

Lemma 5. If v ∈ C, δ, γ ∈ R, γ ≥ δ > ρ ≥ |v|, then
∣∣∣∣

v2

(δ + v)(γ− v)

∣∣∣∣ ≤
ρ2

(δ− ρ)(γ + ρ)
. (9)

Proof. We can prove the second inequality of the following equivalence:
∣∣∣∣

1
(δ + v)(γ− v)

∣∣∣∣ ≤
1

(δ− ρ)(γ + ρ)
⇔ (δ− ρ)(γ + ρ) ≤

∣∣(δ + v)(γ− v)
∣∣, (10)

where γ ≥ δ > ρ ≥ |v|.
We prove the inequality (10) in two steps.
Let v = x + iy; then, it is obvious that

|(δ + v)(γ− v)
∣∣ =

√
[(δ + x)2 + y2][(+y2 + γ− x)2] ≥ |(γ− x)(δ + x)

∣∣, (11)

where γ ≥ δ > ρ ≥
√

x2 + y2.
On the other hand, a simple calculation results in

(δ + x)(γ− x) ≥ (δ− ρ)(γ + ρ), x ∈ [−ρ, ρ]. (12)

It is easily seen that (11) and (12) imply the second inequality of (10). Finally, multi-
plying the inequality ρ2 ≥ |v|2 by the first inequality of (10), we obtain (9) and the proof is
complete.

Lemma 6. If v ∈ C, δ, γ ∈ R, and γ ≥ δ > ρ ≥ |v|, then
∣∣∣∣
2v2[2γδ + (γ− δ)v]
(γ− v)2(δ + v)2

∣∣∣∣ ≤
2r2[2γδ− (γ− δ)ρ]

(γ + ρ)2(δ− ρ)2 . (13)

Proof. The inequality obviously holds provided that γ = δ (see (10)), thus, we have to
prove it in the case that γ > δ.

We can then prove the following inequality:
∣∣∣∣
2γδ + (γ− δ)v
(δ + v)(γ− v)

∣∣∣∣ ≤
2γδ− (γ− δ)ρ

(δ− ρ)(γ + ρ)
, γ ≥ δ > ρ ≥ |v|. (14)

We define z = x + iy and define the mapping

φ : [−ρ, ρ]→ R, φ(y) =
(ω + x)2 + y2

[(δ + x)2 + y2][(γ− x)2 + y2]
, ω =

2γδ

γ− δ
.
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Then, we have

φ′(y) = 2y
[(δ + x)2 + y2][(γ− x)2 + y2]− [(δ + x)2 + (γ− x)2 + 2y2][(ω + x)2 + y2]

[(δ + x)2 + y2]2[(γ− x)2 + y2]2
.

As φ′(y) < 0, y ∈ (0, ρ) and φ′(y) > 0, y ∈ (−ρ, 0), it follows that

φ(y) ≤ φ(0) =
(ω + x)2

[(δ + x)2][(γ− x)2]
, y ∈ [−ρ, ρ]. (15)

We can determine the maximum of the function

ϕ : [−ρ, ρ]→ R, ϕ(x) =
ω + x

(δ + x)(γ− x)
.

We have

ϕ′(x) =
x2 + 2ωx− γδ

(δ + x)2(γ− x)2

The derivative ϕ′(x) = 0 has one positive root, x1 =
√

ω2 + γδ−ω, and one negative
root, x2 = −

√
ω2 + γδ−ω. As x2 < −r and x1 ∈ (−ρ, ρ), it follows the inequality

ω + x
(δ + x)(γ− x)

= ϕ(x) ≤ max{ϕ(−ρ), ϕ(ρ)} = ϕ(−ρ) =
ω− ρ

(δ− ρ)(γ + ρ)
(16)

for every x ∈ [−ρ, ρ]. From (15) and (16), we have (14). Finally, multiplying the inequalities
(14), |v2| ≤ ρ2 and the first inequality of (10), we infer (13).

Lemma 7. If the functions gν and hν are defined by (4) and (5), respectively, then

zg′′ν (z)
g′ν(z)

= z
zJν+2(z)− 3Jν+1(z)

Jν(z)− zJν+1(z)
. (17)

zh′′ν (z)
h′ν(z)

=
zJν+2(z

1
2 )− 4z

1
2 Jν+1(z

1
2 )

4Jν(z
1
2 )− 2z

1
2 Jν+1(z

1
2 )

. (18)

Proof. We differentiate the equality (4), and at the second time we differentiate it logarith-
mically. After multiplying by z, we obtain the following equality:

zg′′ν (z)
g′ν(z)

=
z2 J′′ν (z) + 2z(1− ν)J′ν(z) + ν(ν− 1)Jν(z)

zJ′ν(z) + (1− ν)Jν(z)
.

The function Jν is a solution of the Bessel differential equation; thus, we can replace
the function z2 J′′ν using the equality z2 J′′ν (z) = (ν2 − z2)Jν(z)− zJ′ν(z), and it follows that

zg′′ν (z)
g′ν(z)

=
z(1− 2ν)J′ν(z) + (2ν2 − ν− z2)Jν(z)

zJ′ν(z) + (1− ν)Jν(z)
.

In the second step, we use the following well-known equality: zJ′ν(z) = νJν(z) −
zJν+1(z), and infer

zg′′ν (z)
g′ν(z)

=
z(2ν− 1)Jν+1(z)− z2 Jν(z)

Jν(z)− zJν+1(z)
.

Finally, we replace zJν(z) in the numerator by zJν(z) = 2(ν + 1)Jν+1(z)− zJν+2(z),
and obtain (17).
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We differentiate equality (5) twice, similarly to the case of the function gν, and obtain

zh′′ν (z)
h′ν(z)

=
ν(ν− 2)Jν(z

1
2 ) + (3− 2ν)z

1
2 J′ν(z

1
2 ) + zJ′′ν (z

1
2 )

2(2− ν)Jν(z
1
2 ) + 2z

1
2 J′ν(z

1
2 )

.

We use the equality zJ′′ν (z
1
2 ) = (ν2 − z)Jν(z

1
2 )− z

1
2 J′ν(z

1
2 ), and obtain

zh′′ν (z)
h′ν(z)

=
(2ν2 − 2ν− z)Jν(z

1
2 ) + (2− 2ν)z

1
2 J′ν(z

1
2 )

2(2− ν)Jν(z
1
2 ) + 2z

1
2 J′ν(z

1
2 )

.

Now, using the equality z
1
2 J′ν(z

1
2 ) = νJν(z

1
2 )− z

1
2 Jν+1(z

1
2 ), we infer

zh′′ν (z)
h′ν(z)

=
(2ν− 2)z

1
2 Jν+1(z

1
2 )− zJν(z

1
2 )

4Jν(z
1
2 )− 2z

1
2 Jν+1(z

1
2 )

,

and combining this with the equality z
1
2 Jν(z

1
2 ) = 2(ν + 1)Jν+1(z

1
2 ) − z

1
2 Jν+2(z

1
2 ), (18)

follows.

3. Main Results

Theorem 1. If α ∈ [0, 1) and ν ∈ (−2,−1), then the radius of convexity of order α for the
mapping gν is rc

ν(α) = r1, where r1 is the unique root of the equation

1 + r
Iν+2(r) + 3Iν+1(r)

Iν+1(r) + rIν(r)
= α (19)

in the interval (0, a).

Proof. According to the proof of Theorem 1 [2], the equalities

zg′ν(z)
gν(z)

= 1− 2
∞

∑
n=1

z2

j2ν,n − z2 ,
∞

∑
n=1

1
j2ν,n

=
1

4(ν + 1)
.

imply
zg′ν(z)
gν(z)

= 1− a2

2(1 + ν)

z2

a2 + z2 − 2
∞

∑
n=2

a2 + j2ν,n

j2ν,n

z4

(a2 + z2)(j2ν,n − z2)
.

The logarithmic differentation of this equality leads to

1 +
zg′′ν (z)
g′ν(z)

=

1− a2

2(1 + ν)

z2

a2 + z2 − 2
∞

∑
n=2

a2 + j2ν,n

j2ν,n

z4

(a2 + z2)(j2ν,n − z2)
− (20)

a2

1+ν
a2z2

(a2+z2)2 + 2 ∑∞
n=2

a2+j2ν,n
j2ν,n

2z4[2a2 j2ν,n+z2(j2ν,n−a2)]

(a2+z2)2(j2ν,n−z2)2

1− a2

2(1+ν)
z2

a2+z2 − 2 ∑∞
n=2

a2+j2ν,n
j2ν,n

z4

(a2+z2)(j2ν,n−z2)

.

It is proven in Theorem 1 [2] that the radius of starlikeness, r∗gν
, for the function gν is

the smallest root of the equation

1 +
a2

2(1 + ν)

r2

a2 − r2

−2
∞

∑
n=2

a2 + j2ν,n

j2ν,n

r4

(a2 − r2)(j2ν,n + r2)
= ir

g′ν(ir)
gν(ir)

= 0,
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in the interval (0, a). Thus, we have

0 < r∗gν
< a < jν,2 < jν,3 < · · · < jν,n < · · · . (21)

Taking into account that ν + 1 < 0, the equality (20) implies the following inequality:

Re
(

1 +
zg′′ν (z)
g′ν(z)

)
≥

1 +
a2

2(1 + ν)

∣∣∣ z2

a2 + z2

∣∣∣− 2
∞

∑
n=2

a2 + j2ν,n

j2ν,n

∣∣∣ z4

(a2 + z2)(j2ν,n − z2)

∣∣∣− (22)

− a2

1+ν

∣∣∣ a2z2

(a2+z2)2

∣∣∣+ 2 ∑∞
n=2

a2+j2ν,n
j2ν,n

∣∣∣ 2z4[2a2 j2ν,n+z2(j2ν,n−a2)]

(a2+z2)2(j2ν,n−z2)2

∣∣∣

1 + a2

2(1+ν)

∣∣∣ z2

a2+z2

∣∣∣− 2 ∑∞
n=2

a2+j2ν,n
j2ν,n

∣∣∣ z4

(a2+z2)(j2ν,n−z2)

∣∣∣

for every z ∈ U(r∗ν).
Using δ = a2, ρ = r2 and v = z2 in Lemma 4, we obtain

a2

2(1 + ν)

∣∣∣ z2

a2 + z2

∣∣∣ ≥ a2

2(1 + ν)

r2

a2 − r2 and
a2

2(1 + ν)

∣∣∣ z2

(a2 + z2)2

∣∣∣ ≥ (23)

a2

(a2 − r2)2
r2

2(1 + ν)
.

In a similar manner, Lemma 5 and Lemma 6 imply that

∣∣∣∣
z4

(a2 + z2)(j2ν,n − z2)

∣∣∣∣ ≤
r4

(a2 − r2)(j2ν,n + r2)
(24)

∣∣∣
2z4[2a2 j2ν,n + z2(j2ν,n − a2)]

(a2 + z2)2(j2ν,n − z2)2

∣∣∣ ≤ 2r4[2a2 j2ν,n − r2(j2ν,n − a2)]

(a2 − r2)2(j2ν,n + r2)2 .

Now, inequalities (22)–(24) imply the following inequality:

Re
(

1 +
zg′′ν (z)
g′ν(z)

)
≥

1 +
a2

2(1 + ν)

r2

a2 − r2 − 2
∞

∑
n=2

a2 + j2ν,n

j2ν,n

r4

(a2 − r2)(j2ν,n + r2)
− (25)

− a2

1+ν
a2r2

(a2−r2)2 + 2 ∑∞
n=2

a2+j2ν,n
j2ν,n

2r4[2a2 j2ν,n−r2(j2ν,n−a2)]

(a2−r2)2(j2ν,n+r2)2

1 + a2

2(1+ν)
z2

a2−r2 − 2 ∑∞
n=2

a2+j2ν,n
j2ν,n

r4

(a2−r2)(j2ν,n+r2)

= 1 +
irg′′ν (ir)
g′ν(ir)

= Φ(r),

provided that a > r∗gν
> |z|, where r∗gν

verifies the inequalities (21).
The following equalities hold: Φ(0) = 1 and limr↗r∗gν

Φ(r) = −∞. Consequently,

equation 1 + irg′′ν (ir)
g′ν(ir)

= α has a real root in the interval (0, r∗gν
). The smallest positive real

root of the equation 1 + irg′′ν (ir)
g′ν(ir)

= α is denoted by rc
gν
(α), and this root is the radius of

convexity of order α of the function gν. The first equality of Lemma 7 and the equality
Jν(iz) = iν Iν(z) imply that the equation 1 + irg′′ν (ir)

g′ν(ir)
= α is equivalent to (19).

We determine the radius of uniform convexity of the mapping gν in the next theorem.
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Theorem 2. If ν ∈ (−2,−1), then the radius of uniform convexity for the mapping gν is r∗ν(α) =
r2, where r2 is the smallest positive root of the equation

1
2
+ r

Iν+2(r) + 3Iν+1(r)
Iν+1(r) + rIν(r)

= 0 (26)

in the interval (0, r∗ν).

Proof. Equality (20) implies the following inequality:

∣∣∣ zg′′ν (z)
g′ν(z)

∣∣∣ ≤

− a2

2(1 + ν)

∣∣∣ z2

a2 + z2

∣∣∣+ 2
∞

∑
n=2

a2 + j2ν,n

j2ν,n

∣∣∣ z4

(a2 + z2)(j2ν,n − z2)

∣∣∣+ (27)

− a2

1+ν

∣∣∣ a2z2

(a2+z2)2

∣∣∣+ 2 ∑∞
n=2

a2+j2ν,n
j2ν,n

∣∣∣ 2z4[2a2 j2ν,n+z2(j2ν,n−a2)]

(a2+z2)2(j2ν,n−z2)2

∣∣∣

1 + a2

2(1+ν)

∣∣∣ z2

a2+z2

∣∣∣− 2 ∑∞
n=2

a2+j2ν,n
j2ν,n

∣∣∣ z4

(a2+z2)(j2ν,n−z2)

∣∣∣
.

We can again use inequalities (22) and (23), and in combination with (27), we have

∣∣∣ zg′′ν (z)
g′ν(z)

∣∣∣ ≤ − a2

2(1 + ν)

r2

a2 − r2 + 2
∞

∑
n=2

a2 + j2ν,n

j2ν,n

r4

(a2 − r2)(j2ν,n + r2)
+

− a2

1+ν
a2r2

(a2−r2)2 + 2 ∑∞
n=2

a2+j2ν,n
j2ν,n

2r4[2a2 j2ν,n−r2(j2ν,n−a2)]

(a2−r2)2(j2ν,n+r2)2

1 + a2

2(1+ν)
z2

a2−r2 − 2 ∑∞
n=2

a2+j2ν,n
j2ν,n

r4

(a2−r2)(j2ν,n+r2)

= − irg′′ν (ir)
g′ν(ir)

.

Inequalities (25) and (27) imply

Re
(

1 +
zg′′ν (z)
g′ν(z)

)
−
∣∣∣ zg′′ν (z)

g′ν(z)

∣∣∣ ≥ 1 + 2
irg′′ν (ir)
g′ν(ir)

, z ∈ U(r∗ν). (28)

The smallest positive root of the equation 1 + 2 irg′′ν (ir)
g′ν(ir)

= 0 in the interval (0, r∗ν) is
denoted by ruc

ν . According to (28), the value ruc
ν is the biggest with the property that

Re
(

1 +
zg′′ν (z)
g′ν(z)

)
−
∣∣∣ zg′′ν (z)

g′ν(z)

∣∣∣ > 0, z ∈ U(ruc
ν ).

Lemma 7 and the equality Jν(iz) = iν Iν(z) imply that the equation 1 + 2 irg′′ν (ir)
g′ν(ir)

= 0 is
equivalent to (26), completing the proof.

Theorems 1 and 2 imply the following result.

Corollary 1. The mapping gν is uniformly convex in the disk U(r) if and only if it is convex of
order 1

2 .

Theorem 3. If α ∈ [0, 1) and ν ∈ (−2,−1), then the radius of convexity of order α for the
mapping hν is rc

hν
(α) = r3, where r3 is the smallest real root of the equation

1 +
rIν+2(r

1
2 ) + 4r

1
2 Iν+1(r

1
2 )

4Iν(r
1
2 ) + 2r

1
2 Iν+1(r

1
2 )

= α (29)

in the interval (0, r∗hν
).
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Proof. According to the proof of Theorem 2 [2], the equalities

zh′ν(z)
hν(z)

= 1−
∞

∑
n=1

z
j2ν,n − z

,
∞

∑
n=1

1
j2ν,n

=
1

4(ν + 1)

imply
zh′ν(z)
hν(z)

= 1− a2

4(ν + 1)
· z

a2 + z
−

∞

∑
n=2

a2 + j2ν,n

j2ν,n
· z2

(a2 + z)
(

j2ν,n − z
) ,

where z ∈ U(0, r).
The logarithmic differentiation of the equality leads to

1 +
zh′′ν (z)
h′ν(z)

= 1− a2

4(ν + 1)
· z

a2 + z
−

∞

∑
n=2

a2 + j2ν,n

j2ν,n
· z2

(a2 + z)
(

j2ν,n − z
)−

−
a2

4(1+ν)
· a2z
(a2+z)2 + ∑∞

n=2
a2+j2ν,n

j2ν,n
· z2[2a2 j2ν,n+z(j2ν,n−a2)]

(j2ν,n−z)
2
(a2+z)2

1− a2

4a2+z ·
z

(ν+1) −∑∞
n=2

a2+j2ν,n
j2ν,n
· z2

(j2ν,n−z)(a2+z)

. (30)

It is proven in [2] that the radius of starlikeness, r∗hν
, for function hν is the smallest root

of the equation
−rh′ν(−r)

hν(−r)
= 0, r ∈

(
0, a2

)
, z ∈ U(0, r).

However,
−rh′ν(−r)

hν(−r)
= 1 +

a2

4(ν + 1)
· r

a2 − r
−

−
∞

∑
n=2

a2 + j2ν,n

j2ν,n
· r2

(a2 − r)
(

j2ν,n + r
) = 0, r ∈

(
0, a2

)
.

Taking into the account that ν + 1 < 0, we obtain from relation (30)

Re
(

1 +
zh′′ν (z)
h′ν(z)

)
≥ a2

4(ν + 1)
·
∣∣∣∣

z
a2 + z

∣∣∣∣−
∞

∑
n=2

a2 + j2ν,n

j2ν,n
·
∣∣∣∣∣

z2

(a2 + z)
(

j2ν,n − z
)
∣∣∣∣∣−

−
−a2

4(ν+1) ·
∣∣∣∣ a2z
(a2+z)2

∣∣∣∣+ ∑∞
n=2

a2+j2ν,n
j2ν,n
·
∣∣∣∣

z2[2a2 j2ν,n+z(j2ν,n−a2)]
(a2+z)2(j2ν,n−z)

2

∣∣∣∣

1 + a2

4(ν+1) ·
∣∣∣ z

a2+z

∣∣∣−∑∞
n

a2+j2ν,n
j2ν,n
·
∣∣∣∣ z2

(a2+z)(j2ν,n−z)

∣∣∣∣
(31)

and z ∈ U(0, r), r ∈
(

0, r∗hν

)
. We obtain from Lemmas 4 and 5 the following inequality:

Re
(

1 +
zh′′ν (z)
h′ν(z)

)
≥ 1 +

a2

4(ν + 1)
· r

a2 − r
−

∞

∑
n=2

a2 + j2ν,n

j2ν,n
· r2

(a2 − r)(a2 + r)
−

−
− a2

4(ν+1) · a2r
(a2−r)2 + ∑∞

n=2
a2+j2ν,n

j2ν,n
· r2[2a2 j2ν,n−r(j2ν,n−a2)]

(a2−r)2(j2ν,n+r)
2

1 + a2

4(ν+1) · r
a2−r −∑∞

n=2
a2+j2ν,n

j2ν,n
· r2

(a2−r)(j2ν,n−r)

= (32)

= 1− rh′′ν (−r)
h′ν(−r)

= ψ(r), a > r∗hν
> |z|,
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similarly to the proof of Theorem 1. The mapping

ψ :
(

0, r∗hν

)
→ R, ψ(r) = 1 +

−rh′′ν (−r)
h′ν(−r)

,

is strictly decreasing, and a > r∗hν
> |z|.

We then have lim
r↗r∗hν

ψ(r) = −∞, ψ(0) = 1, and the equation

1 +
−rh′′ν (−r)

h′ν(−r)
= α

has at least one real root in the interval
(

0, r∗hν

)
.

The smallest positive real root of the equation 1− rh′′ν (−r)
h′ν(−r) = α is denoted by rc

hν
(α),

and this root is the radius of convexity of order α of the function hν. The second equality
of Lemma 7 and the equality Jν(iz) = iν Iν(z) imply that the equation 1− rh′′ν (−r)

h′ν(−r) = α is
equivalent to (29).

Theorem 4. If α ∈ [0, 1) and ν ∈ (−2,−1), then the radius of uniform convexity of hν is
r∗hν

(α) = r4, where r4 is the smallest positive root of the equation

rIν+2(r
1
2 ) + 4r

1
2 Iν+1(r

1
2 )

4Iν(r
1
2 ) + 2r

1
2 Iν+1(r

1
2 )

=
1
2

(33)

in the interval (0, r∗hν
).

Proof. Equality (30) implies the following inequality:

∣∣∣∣
zh′′ν (z)
h′ν(z)

∣∣∣∣ ≤ −
a2

4(ν + 1)
·
∣∣∣∣

z
a2 + z

∣∣∣∣+
∞

∑
n=2

a2 + j2ν,n

j2ν,n
·
∣∣∣∣∣

z2

(a2 + z)
(

j2ν,n − z
)
∣∣∣∣∣+

+

−a2

4(ν+1) ·
∣∣∣∣ a2z
(a2+z)2

∣∣∣∣+ ∑∞
n=2

a2+j2ν,n
j2ν,n
·
∣∣∣∣

z2[2a2 j2ν,n+z(j2ν,n−a2)]
(a2+z)2(j2ν,n−z)

2

∣∣∣∣

1 + a2

4(ν+1) ·
∣∣∣ z

a2+z

∣∣∣−∑∞
n=2

a2+j2ν,n
j2ν,n
·
∣∣∣∣ z2

(a2+z)(j2ν,n−z)

∣∣∣∣
. (34)

We obtain the following from the relation (31), Lemma 4, and the relation (34):

∣∣∣∣
zh′′ν (z)
h′ν(z)

∣∣∣∣ ≤ −
a2

4(ν + 1)
· r

a2 − r
+

∞

∑
n=2

a2 + j2ν,n

j2ν,n
· r2

(a2 − r)
(

j2ν,n + r
)+

+

a2

4(ν+1) · a2r
(a2−r)2 + ∑∞

n=2
a2+j2ν,n

j2ν,n
· r2[2a2 j2ν,n−r(j2ν,n−a2)]

(a2−r)2(j2ν,n+r)
2

1− a2

4(a2−r) ·
r

ν+1 −∑∞
n=2

a2+j2ν,n
j2ν,n
· r2

(a2−r)(j2ν,n+r)

=
rh′′ν (−r)
h′ν(−r)

, |z| ≤ r < a2.

Inequalities (32) and (34) imply

Re
(

1 +
zh′′ν (z)
h′ν(z)

)
−
∣∣∣∣
zh′′ν (z)
h′ν(z)

∣∣∣∣ ≥ 1− 2rh′′ν (−r)
h′ν(−r)

, z ∈ U(r∗hν
). (35)

The smallest positive root of the equation 1− 2rh′′ν (−r)
h′ν(−r) = 0 in the interval (0, r∗hν

) is
denoted by ruc

hν
.

123



Axioms 2022, 11, 380

According to (35), the value ruc
hν

is the biggest with the property that

Re
(

1 +
zh′′ν (z)
h′ν(z)

)
−
∣∣∣∣
zh′′ν (z)
h′ν(z)

∣∣∣∣ > 0, z ∈ U(ruc
hν
).

The equation 1− 2rh′′ν (−r)
h′ν(−r) = 0 is equivalent to (33), completing the proof. Lemma 7 and

the equality Jν(iz) = iν Iν(z) imply that the equation 1− 2rh′′ν (−r)
h′ν(−r) = 0 is equivalent to (33).

From Theorems 3 and 4, we obtain the following corollary.

Corollary 2. The function hν is uniformly convex in the disk U(r) if and only if it is convex of
order 1

2 .
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Cauchy Integral and Boundary Value for Vector-Valued
Tempered Distributions
Richard D. Carmichael

Department of Mathematics, Wake Forest University, Winston-Salem, NC 27109, USA; carmicha@wfu.edu

Abstract: Using the historically general growth condition on scalar-valued analytic functions, which
have tempered distributions as boundary values, we show that vector-valued analytic functions in
tubes TC = Rn + iC obtain vector-valued tempered distributions as boundary values. In a certain
vector-valued case, we study the structure of this boundary value, which is shown to be the Fourier
transform of the distributional derivative of a vector-valued continuous function of polynomial
growth. A set of vector-valued functions used to show the structure of the boundary value is shown
to have a one–one and onto relationship with a set of vector-valued distributions, which generalize
the Schwartz space D′L2 (Rn); the tempered distribution Fourier transform defines the relationship
between these two sets. By combining the previously stated results, we obtain a Cauchy integral
representation of the vector-valued analytic functions in terms of the boundary value.

Keywords: analytic functions; vector-valued tempered distributions; boundary value; Cauchy integral

MSC: 32A26; 32A40; 46F12; 46F20

1. Introduction

Tillmann [1] introduced the analysis of analytic functions, which obtain tempered
distributional boundary values in S ′(Rn). In [1], Tillmann worked with scalar-valued
analytic functions in tubes TCµ = Rn + iCµ, where the Cµ = {y ∈ Rn : (−1)µj yj > 0, j =
1, . . . , n} with µ = (µ1, µ2, . . . , µn) being any of the 2n n-tuples, whose components are
either 0 or 1 and characterize the growth conditions on the analytic functions, which obtain
the S ′(Rn) boundary values. This analysis by Tillmann was motivated by the work by
Köthe in [2,3].

Using a more restrictive growth on the analytic functions, we showed in [4] that vector-
valued analytic functions in tubes TC = Rn + iC, where C is an open convex cone, having
this more restrictive growth obtain vector-valued tempered distributions in S ′(Rn,X ),
with X being a specified topological vector space. In this paper, our first objective is to
generalize this result of [4] to the general growth form of Tillmann for the vector-valued
analytic functions. We obtain this boundary value generalization in Section 4 of this paper.

Moreover, in Section 4, we study the structure of this boundary value in S ′(Rn,X ). To
do this, we first restrict the topological vector space X by imposing certain conditions on it
to ensure that the boundary value is the Fourier transform of a distributional derivative of
a continuous vector-valued function g, which has polynomial growth in the norm of the
space X . By further restricting X to be a Hilbert space, we show that function g is in a set
that has a one–one and onto relationship with a set of vector-valued distributions, which
generalize the D′L2(Rn) distributions of Schwartz. The relationship between these two sets
is obtained using the tempered distribution Fourier transform; the proof of this relationship
is proved in Section 3 of this paper. Using the relationships of these noted two sets, we are
able to obtain an additional structure of the tempered distribution boundary value of the
analytic functions in Section 4.

A few papers have been written concerning the construction of a Cauchy integral
for tempered distributions. All of these papers concern scalar-valued analytic functions
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and scalar-valued tempered distributions. The first paper known to this author was by
J. Sebastião e Silva [5] (Section 5) and concerned scalar-valued analytic functions and
tempered distributions in one dimension. An associated analysis by Sebastião e Silva is
contained in [6]. Carmichael [7] defined a Cauchy integral for tempered distributions in the
Cn setting corresponding to analytic functions in each of the 2n quadrant tubes TCµ ⊂ Cn

and showed that the analytic functions with growth, such as that of Tillmann in (C−R)n

could be recovered as the defined Cauchy integral of the tempered distribution boundary
value; the results of [7] can be extended to the vector-valued analytic functions in TCµ and
the tempered distribution setting considered in this paper by the same techniques as those
of [7]. The Cauchy integrals introduced by Sebastião e Silva in [5] and by Carmichael in [7]
are in fact equivalence classes of analytic functions defined by an integral involving the
Cauchy kernel.

Vladimirov [8–10] defined a Cauchy integral for tempered distributions associated
with analytic functions in general tubes TC = Rn + iC ⊂ Cn corresponding to open con-
vex cones C with the functions satisfying a growth condition similar to that of Tillmann.
Vladimirov has shown that the analytic functions that he has considered can be recovered
by a Cauchy integral involving the tempered distribution boundary values of the analytic
functions. An associated analysis by Vladimirov is contained in [11,12]. The works men-
tioned in this paragraph and the previous paragraph all concern scalar-valued analytic
functions and scalar-valued tempered distributions.

In Section 5 of this paper, we build on our analysis of Sections 3 and 4 to obtain a
Cauchy integral representation of the vector-valued analytic functions, which are shown
to have tempered vector-valued distributions as the boundary values in Section 4. The
proof of our result here and the form of the Cauchy integral representation are substantially
different from any of the previous results concerning Cauchy integral representation of the
analytic functions having tempered distribution boundary values.

2. Definitions and Notation

Throughout, X will denote a topological vector space with the stated appropriate
properties corresponding to the results that we wish to prove. For X being a normed space,
we denote the norm by N . Θ will denote the zero element of X ; and if X is a Hilbert space,
we denote the space byH. For integration of the vector-valued functions and vector-valued
analytic functions, we refer to Dunford and Schwartz [13]. For foundational information
concerning vector-valued distributions, we refer to Schwartz [14,15].

The n-dimensional notation to be used in this paper will be the same as in [16,17].
Note 0 = (0, 0, . . . , 0) is the origin in Rn. The information concerning cones C ⊂ Rn needed
is explicitly stated in [16] (Section 2) and [17] (Chapter 1). We do not repeat the definitions
and notations concerning cones as stated in [16] (Section 2), and we ask the reader to refer
to this reference.

The Lp(Rn,X ) functions, 1 ≤ p ≤ ∞, with values in a Banach space X and their
norm |h|p [13] (p. 119) are noted in [13] (Chapter III). The Fourier transform on L1(Rn) or
L1(Rn,X ) is given in [17] (p. 3). All Fourier (inverse Fourier) transforms on scalar or vector-
valued functions will be denoted φ̂(x) = F [φ(t); x] (F−1[φ(t); x]). As stated in [18,19], the
Plancherel theory is not true for vector-valued functions, except when X = H, a Hilbert
space. The Plancherel theory is complete in the L2(Rn,H) setting in that the inverse Fourier
transform is the inverse mapping of the Fourier transform with F−1F = I = FF−1 with I
being the identity mapping.

We denote S(Rn) as the tempered functions with associated distributions being S ′(Rn)
or associated vector-valued distributions being S ′(Rn,X ). The Fourier (inverse Fourier)
transform on S ′(Rn) and S ′(Rn,X ) is the usual definition and is given in [14] (p. 73).
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3. Fourier and Inverse Fourier Transform on a Function Subset of S ′(Rn,H)

Let X be a Banach space. We defined the space S ′p(Rn,X ), 1 ≤ p < ∞, in [16]. We
repeat the definition here because of the importance of these functions for our results in
this paper.

Definition 1. For a Banach space X , S ′p(Rn,X ), 1 ≤ p < ∞, is the set of all measurable
functions g(t), t ∈ Rn, with values in X such that there exists a real number m ≥ 0 for which
(1 + |t|p)−mg(t) ∈ Lp(Rn,X ).

Note that m can be taken as a nonnegative integer in Definition 1. As noted in [16],
S ′p(Rn,X ) ⊂ S ′(Rn,X ), 1 ≤ p < ∞. The spaces S ′p(Rn,X ) will be important in this paper.

Throughout this paper, the differential operator Dt, t ∈ Rn will take the form

Dt =
−1
2πi

(
∂

∂t1
, ∂

∂t2
, ..., ∂

∂tn

)
.

Thus, for α being any n-tuple of nonnegative integers,

Dα
t =

(
−1
2πi

)|α|(
∂α1

∂t
α1
1

, ∂α2

∂tα2
2

, ..., ∂αn

∂tαn
n

)
.

The goal of this section is to show a one–one and onto relationship between the set
of functions S ′2(Rn,H) and another subset of S ′(Rn,H), whereH is a Hilbert space. This
relationship is obtained by both the Fourier and inverse Fourier transforms in S ′(Rn,H).
We define the space that has this stated relationship to S ′2(Rn,H), as follows.

Definition 2. Let m be any nonnegative integer. The set of Hilbert space H-valued generalized
functions in S ′(Rn,H) of the form

Vt = ∑
|α|≤m

Dα
t gα(t)

where gα ∈ L2(Rn,H), |α| ≤ m, will be denoted as L2(Rn,H).

We emphasize that L2(Rn,H) ⊂ S ′(Rn,H). When H = C1, note that L2(Rn,C1) =
D′L2(Rn), the Schwartz space of distributions contained in S ′(Rn) of the form of finite sums
of distributional derivatives of L2(Rn) functions. For φ ∈ DL2(Rn), the Schwartz space
that is the set of test functions for D′L2(Rn), the application 〈V, φ〉, V ∈ D′L2(Rn), yields
a complex number. In exactly the same way, for V ∈ L2(Rn,H) and φ ∈ DL2(Rn), the
application 〈V, φ〉 yields an element ofH; and the algebraic and differentiation calculations
on the form 〈V, φ〉 hold for V ∈ L2(Rn,H), as usual, just as these calculations hold on the
form 〈V, φ〉 for V ∈ S ′(Rn,H) and φ ∈ S(Rn). This is an important note in relation to our
construction of the Cauchy integral (later in this paper).

We now obtain the relationship between S ′2(Rn,H) and L2(Rn,H) for any Hilbert
spaceH.

Lemma 1. The S ′(Rn,H) Fourier transform maps S ′2(Rn,H) one-one and onto L2(Rn,H). The
S ′(Rn,H) inverse Fourier transform maps L2(Rn,H) one-one and onto S ′2(Rn,H).

Proof. Let the function g ∈ S ′2(Rn,H). From Definition 1, there is a real number m ≥ 0
for which (1 + |t|2)−mg(t) ∈ L2(Rn,H), and m can be taken as a nonnegative integer.
Since g ∈ S ′2(Rn,H) ⊂ S ′(Rn,H), the Fourier transform of g in S ′(Rn,H) is an element of
S ′(Rn,H); we put Vx = F [g]x. Let φ ∈ S(Rn), and let ∆ denote the Laplace operator in
the variable x ∈ Rn. Using integration by parts, we have
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〈Vx, φ(x)〉 = 〈g(t),F [φ(x); t]〉

= 〈 g(t)
(1 + |t|2)m ,

∫

Rn
φ(x)(1 + |t|2)me2πi〈x,t〉dx〉 (1)

= 〈 g(t)
(1 + |t|2)m ,F [(1− (4π2)−1∆)mφ(x); t]〉

= 〈F [ g(t)
(1 + |t|2)m ; x], (1− (4π2)−1∆)mφ(x)〉.

Since (1 + |t|2)−mg(t) ∈ L2(Rn,H), then h(x) = F [(1 + |t|2)−mg(t); x] ∈ L2(Rn,H). From
(1), we have

〈Vx, φ(x)〉 = 〈(1− (4π2)−1∆)mh(x), φ(x)〉,

and Vx = F [g]x = (1 − (4π2)−1∆)mh(x) ∈ L2(Rn,H). Thus, the S ′(Rn,H) Fourier
transform maps S ′2(Rn,H) to L2(Rn,H).

We now desire to prove that any element of L2(Rn,H) is the S ′(Rn,H) Fourier trans-
form of an element in S ′2(Rn,H). Let V ∈ L2(Rn,H) and φ ∈ S(Rn). By Definition 2, there
is a nonnegative integer m, such that

Vt = ∑
|α|≤m

Dα
t gα(t)

with gα(t) ∈ L2(Rn,H), |α| ≤ m. Since L2(Rn,H) ⊂ S ′(Rn,H), F−1[V]x exists in
S ′(Rn,H), and we have for the nonnegative integer m

〈F−1[V]x, φ(x)〉 = ∑
|α|≤m

〈Dα
t gα(t),F−1[φ(x); t]〉

= ∑
|α|≤m

(−1)|α|〈gα(t), Dα
t

∫

Rn
φ(x)e−2πi〈x,t〉dx〉

= ∑
|α|≤m

(−1)|α|〈gα(t), (−1/2πi)|α|
∫

Rn
φ(x)(−2πi)|α|xαe−2πi〈x,t〉dx〉

= ∑
|α|≤m

〈(−1)|α|gα(t),
∫

Rn
xαφ(x)e−2πi〈x,t〉dx〉

= ∑
|α|≤m

〈(−1)|α|gα(t),F−1[xαφ(x); t]〉

= ∑
|α|≤m

〈F−1[(−1)|α|gα(t); x], xαφ(x)〉.

For each α, |α| ≤ m, put hα(x) = F−1[(−1)|α|gα(t); x]. We have hα(x) ∈ L2(Rn,H), |α| ≤
m, since each gα(t) ∈ L2(Rn,H); moreover, ∑|α|≤m hα(x) ∈ L2(Rn,H). Thus, we have

〈F−1[V]x, φ(x)〉 = ∑
|α|≤m

〈hα(x), xαφ(x)〉

= 〈 ∑
|α|≤m

xαhα(x), φ(x)〉, (2)

and F−1[V]x = ∑|α|≤m xαhα(x) in S ′(Rn,H). For the L2(Rn,H) norm | · |2 and the order
m of the summation defining V, we consider

|(1 + |x|2)−m−2 ∑
|α|≤m

xαhα(x)|2. (3)
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For |α| ≤ m, note that |xα| ≤ |x||α| ≤ (1 + |x|)|α| ≤ (1 + |x|)m. Since (1 + |x|)m ≤ 2m if
|x| ≤ 1 and (1 + |x|)m ≤ (1 + |x|2)m if |x| ≥ 1, then

|xα(1 + |x|2)−m−2| ≤ (1 + |x|)m(1 + |x|2)−m−2

≤ max
x∈Rn
{2m, (1 + |x|2)m}(1 + |x|2)−m−2

≤ max{2m, 1} = 2m

for |α| ≤ m since m ≥ 0 is a nonnegative integer. Thus, for the L2(Rn,H) norm in (3),
we have

|(1 + |x|2)−m−2 ∑
|α|≤m

xαhα(x)|2 ≤ 2m

∣∣∣∣∣∣ ∑
|α|≤m

hα(x)

∣∣∣∣∣∣
2

< ∞ (4)

since ∑|α|≤m hα(x) ∈ L2(Rn,H). Recalling (2), we have by (4) thatF−1[V]x = ∑|α|≤m xαhα(x) ∈
S ′2(Rn,H) for any V ∈ L2(Rn,H); and Vt = F [∑|α|≤m xαhα(x)]t in S ′(Rn,H). Thus, the
S ′(Rn,H) Fourier transform maps S ′2(Rn,H) onto L2(Rn,H); the fact that this mapping is
one–one follows directly from the fact that the Fourier transform is a one–one mapping
on S ′(Rn,H). The same statements and proofs as in this proof of Lemma 1 for the Fourier
transform hold in exactly the same way for the inverse Fourier transform on S ′(Rn,H);
and we have that the S ′(Rn,H) inverse Fourier transform maps L2(Rn,H) one–one and
onto S ′2(Rn,H). The proof of Lemma 1 is complete.

Let C be a regular cone in Rn; that is, C is an open convex cone in Rn, which does not
contain any entire straight line. C∗ = {t ∈ Rn : 〈t, y〉 ≥ 0 for all y ∈ C} is the dual cone of
C. We consider now the Cauchy kernel

K(z− t) =
∫

C∗
e2πi〈z−t,u〉du, z ∈ TC = Rn + iC, t ∈ Rn.

The ultradistributional test function spaces D(∗, Lp) ⊂ DLp(Rn), 1 < p ≤ ∞, where ∗ is
Beurling (Mp) or Roumieu {Mp}, defined in [17] (Section 2.3, p. 21). For C being a regular
cone, we proved in [17] (Section 4.1, Theorem 4.1.1) that K(z− ·) ∈ D(∗, Lp) ⊂ DLp(Rn)
for z ∈ TC, 1 < p ≤ ∞ , under specified conditions on the sequence Mp of positive
numbers, which we assume here. (See [17] (pp. 13–14, Theorem 4.1.1) for assumptions on
the sequence Mp.) The Schwartz space D′L2(Rn) consists of finite sums of distributional
derivatives of L2(Rn) functions; thus, the space L2(Rn,H|) is the extension of D′L2(Rn) to
vector-valued distributions with values inH. Thus, for p = 2, we emphasize that the form
〈Vt, K(z− t)〉, z ∈ TC, is well defined for V ∈ L2(Rn,H), and yields an element ofH; the
algebraic and differentiation calculations on the form 〈V, φ〉 hold for V ∈ L2(Rn,H) and
φ ∈ DL2(Rn), as usual, just as these calculations hold for the form 〈V, φ〉 for V ∈ S ′(Rn,H)
and φ ∈ S(Rn). We use this information in Section 5 of this paper.

4. Boundary Values in S ′(Rn,X )

Let C be an open convex cone in Rn. In [4] (Theorem 8), we proved that an analytic
function f(z), z ∈ TC, with values in a specified topological vector space X and satisfying
a certain norm growth obtained a vector-value-tempered distributional boundary value,
as y → 0, y ∈ C′ ⊂⊂ C, for any compact subcone C′ of C. The norm growth used
in [4] (Theorem 8) was not as general as the growth of Tillmann [1] in which the original
tempered distributional boundary value results in the scalar-valued case were obtained.
In this section, we extend the result [4] (Theorem 8) by assuming a norm growth on the
analytic function equivalent to that of Tillmann [1]; our result here also contains new
information concerning the boundary value. As a corollary of our result, we obtain a
precise representation of the boundary value when the conditions on the topological vector
space X are restricted.

Following Vladimirov [11] (p. 230), we shall use the term “spectral function” but
will extend the definition of this term to the vector-valued case. For an analytic function
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f(z), z ∈ TC = Rn + iC ⊂ Cn, with values in a topological vector space X , the spectral
function of f(z) is that vector-valued distribution V ∈ D′(Rn,X ), such that e−2π〈y,t〉Vt ∈
S ′(Rn,X ), y ∈ C; and f(x + iy) = F [e−2π〈y,t〉Vt]x in S ′(Rn,X ) for z = x + iy ∈ TC.

We begin by assuming that the topological vector space X is locally convex, separable,
and quasi-complete where quasi-complete is in the sense of Schwartz [15] (p. 198). We
further assume that X is a normed space with norm N . These stated assumptions on X
were the assumptions under which we obtained [4] (Theorem 8) and are the assumptions
on the topological vector space X under which we obtain Theorem 1 below.

Throughout the paper, by y→ 0, y ∈ C, we mean that y→ 0, y ∈ C′ ⊂⊂ C for every
compact subcone C′ ⊂⊂ C.

The following theorem generalizes and extends [4] (Theorem 8) for X , satisfying the
properties noted above.

Theorem 1. Let C be an open convex cone. Let f(z) be analytic in TC and have values in X . Let

N (f(x + iy)) ≤ M(1 + |z|)q|y|−r, z = x + iy ∈ TC, (5)

where M > 0 is a real constant, q is a nonnegative integer, r > 1 is an integer, and M, q, and r are
independent of z = x + iy ∈ TC. There exists an element U ∈ S ′(Rn,X ), such that

lim
y→0,y∈C

f(x + iy) = U (6)

in the weak and strong topologies of S ′(Rn,X ). Further, U = F [V] with V ∈ S ′(Rn,X ) being
the spectral function of f(z), z ∈ TC, , such that supp(V) ⊆ C∗.

Proof. We apply the proofs of [4] (Theorems 3 and 8). Note that in the second sentence of
the proof of [4] (Theorem 8) that the value of η ≥ 1 is arbitrary but fixed; in the present
proof, we simply take η = 1, where it is appropriate to use η = 1. Let λ > 0; put
ρ = σ + iλ, σ ∈ R1; and define f′(ρ; x, y) = f(x + ρy), y ∈ pr(C), where pr(C) denotes the
projection of C, which is the intersection of C with the unit sphere in Rn. (Thus, |y| = 1
if y ∈ pr(C).) f′(ρ; x, y) is an analytic function of ρ in the half plane λ = Im(ρ) > 0 and
has values in X . We have f′(ρ; x, y) = f(x + ρy) = f((x + σy) + iλy), λ > 0, for z = x + iy
with y ∈ pr(C); and note that λy ∈ C for λ > 0 and y ∈ pr(C). Now for y = Im(z) ∈ pr(C)
and 0 < λ ≤ η = 1 we have

N (f′(ρ; x, y)) ≤ M(1 + |(x + σy) + iλy|)q|λy|−r

= M(1 + (λ2 + |x + σy|2)1/2)qλ−r

≤ M(1 + (1 + (|x|+ |σ|)2)1/2)qλ−r (7)

≤ M(1 + ((1 + |x|+ |σ|)2)1/2)qλ−r

= M(2 + |x|+ |σ|)qλ−r

which is of the form, with norm N replacing the absolute value, of [4] (15), which is used
in exactly the same way in the proof of [4] (Theorem 8) as in the proof of [4] (Theorem 3).
Thus, for y = Im(z) ∈ pr(C) and 0 < λ ≤ η = 1 the bound on N (f′(ρ; x, y)) is in the
proper form to proceed with the proof of this present Theorem 1 exactly as in the form
of the proofs of [4] (Theorems 3 and 8). We obtain the structured function of the form
Λ(−r−1)f′(ρ; x, y), y ∈ pr(C), which satisfies the growth (similar to [4] (37))

N (Λ(−r−1)f′(ρ; x, y)) ≤ M(r+1)(2 + |x|+ |σ|)q(2 + |σ|)r+1

for 0 < λ ≤ η = 1 where M(r+1) is a positive constant, and obtains the representation
(similar to [4] (38))

f(x + ρy) = f′(ρ; x, y) =
∂r+1(Λ(−r−1)f′(ρ; x, y))

∂σr+1 , σ = Re(ρ).

130



Axioms 2022, 11, 392

Now, we proceed in our proof of Theorem 1 in exactly the same way as in [4] (Theorem 8)
(p. 328) to obtain the desired boundedness properties leading to the existence of an element
V ∈ D′(Rn,X ), such that e−2π〈y,t〉Vt ∈ S ′(Rn,X ), y ∈ C, and f(z) = F [e−2π〈y,t〉Vt]x, z =
x + iy ∈ TC , in S ′(Rn,X ) from the results of Schwartz [14] (Prop. 22, p. 76). (These results
of Schwartz [14] (Prop. 22, p. 76) were obtained in their original scalar-valued case in [20];
the related results were then obtained by Lions [21]). Thus, V ∈ D′(Rn,X ) is the spectral
function of f(z), z ∈ TC . The remainder of the proof of [4] (Theorem 8, pp. 329–330) and
the succeeding discussion after the conclusion of the proof of [4] (Theorem 8) can be applied
to the present proof of Theorem 1 in the same way to yield that, in fact, V ∈ S ′(Rn,X )
and that

lim
y→0,y∈C

f(x + iy) = lim
y→0,y∈C

F [e−2π〈y,t〉Vt] = F [V] = U (8)

in the weak topology of S ′(Rn,X ). However, S(Rn) is a Montel space; thus, the con-
vergence in (8) is in the strong topology of S ′(Rn,X ) as well. We emphasize that V ∈
S ′(Rn,X ) and that U = F [V] ∈ S ′(Rn,X ) is the desired boundary value in (6) as obtained
in (8).

We now prove that supp(V) ⊆ C∗. Let to ∈ C∗ = Rn \ C∗; C∗ is an open set
in Rn since C∗ is a closed set. From the definition of C∗, for to ∈ C∗, there is a point
yo ∈ C, such that 〈yo, to〉 < 0. Using the fact that C∗ is open and the continuity of
〈t, yo〉 at to ∈ C∗ as a function of t, there is a fixed τ > 0 and a fixed neighborhood
N(to; γ) = {t ∈ Rn : |t − to| < γ, γ > 0} ⊂ C∗, such that 〈t, yo〉 < −τ < 0 for all
t ∈ N(to; γ). Let φ ∈ D(Rn), such that supp(φ) ⊂ N(to, γ). Recall that V ∈ S ′(Rn,X ),
such that e−2π〈y,t〉Vt ∈ S ′(Rn,X ), y ∈ C, and f(x + iy) = F [e−2π〈y,t〉Vt]x, z = x + iy ∈ TC,
in S ′(Rn,X ). Thus e−2π〈y,t〉Vt = F−1[f(x + iy)]t, x + iy ∈ TC, in S ′(Rn,X ); or Vt =
e2π〈y,t〉F−1[(x + iy)]t, x + iy ∈ TC, in S ′(Rn,X ). Let y = βyo, yo ∈ C, β > 0, now. We
have y = βyo ∈ C and

〈V, φ〉 = 〈e2π〈βyo ,t〉F−1[f(x + iβyo]t, φ(t)〉
= 〈F−1[f(x + iβyo]t, e2π〈βyo ,t〉φ(t)〉 (9)

= 〈f(x + iβyo),F−1[e2π〈βyo ,t〉φ(t); x]〉
=
∫

Rn
f(x + iβyo)

∫

supp(φ)
e2π〈βyo ,t〉φ(t)e−2πi〈x,t〉dtdx

for the function φ ∈ D(Rn) chosen above. Using integration by parts and letting ∆ denote
the Laplacian in the t ∈ Rn variable, we have for any positive integer m

N
(∫

Rn
f(x + iβyo)

∫

supp(φ)
e2π〈βyo ,t〉φ(t)e−2πi〈x,t〉dtdx

)
(10)

= N
(∫

Rn

f(x + iβyo)

(1 + |x|2)m

∫

supp(φ)
e2π〈βyo ,t〉φ(t)(1 + |x|2)me−2πi〈x,t〉dtdx

)

= N
(∫

Rn

f(x + iβyo)

(1 + |x|2)m

∫

supp(φ)
(1− ∆

4π2 )
m(e2π〈βyo ,t〉φ(t))e−2πi〈x,t〉dtdx

)
.

(For the present, the positive integer m is arbitrary; later, we explicitly choose m to obtain the
desired convergence of all integrals through Equation (15) below). For the interior integral
over supp(φ) in (10), we note that by applying (1− (∆/4π2))m to the product e2π〈βyo ,t〉φ(t)
and then bounding the terms in the resulting sum, including the terms involving 2π or it
powers, we obtain a finite sum of terms involving powers of β(yo)j, j = 1, . . . , n, multiplied
by e2π〈βyo ,t〉, where (yo)j is the jth component of yo, j = 1, . . . , n, and multiplied by bounds
on φ(t) or one of its partial derivatives with e2π〈βyo ,t〉 in each term of the sum. Of course,
the boundedness of φ(t) and any of its partial derivatives are valid because of the compact
support of φ(t). Moreover, note that |β(yo)j| ≤ β|yo|, j = 1, . . . , n. Thus, since the interior
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integral in (10) is over supp(φ) ⊂ N(to; γ), we obtain the following bound on this interior
integral:

∣∣∣∣
∫

supp(φ)
(1− ∆

4π2 )
m(e2π〈βyo ,t〉φ(t))e−2πi〈x,t〉dt

∣∣∣∣

≤
∫

supp(φ)
|(1− ∆

4π2 )
m(e2π〈βyo ,t〉φ(t))|dt (11)

≤ Tsupp(φ)(1 + β|yo|)4(m+1) sup
t∈supp(φ)

e2π〈βyo ,t〉

where Tsupp(φ) is a positive constant depending only on supp(φ). Using (11) in (10), we have

N
(∫

Rn

f(x + iβyo)

(1 + |x|2)m

∫

supp(φ)
(1− ∆

4π2 )
m(e2π〈βyo ,t〉φ(t))e−2πi〈x,t〉dtdx

)

≤ Tsupp(φ)(1 + β|yo|)4(m+1) sup
t∈supp(φ)

e2π〈βyo ,t〉
∫

Rn

N (f(x + iβyo))

(1 + |x|2)m dx (12)

where yo ∈ C, β > 0 is arbitrary, and supp(φ) ⊂ N(to; γ) ⊂ C∗, to ∈ C∗, γ > 0 and fixed.
As noted before, since 〈yo, to〉 < 0 and C∗ is open, by the continuity of 〈t, yo〉 at to ∈ C∗ as a
function of t ∈ Rn, the fixed τ > 0 is chosen and the fixed N(to; γ) ⊂ C∗ is chosen, such
that 〈t, yo〉 < −τ < 0 for all t ∈ N(to; γ) ⊂ C∗. Since supp(φ) ⊂ N(to; γ), we have

sup
t∈supp(φ)

e2π〈βyo ,t〉 ≤ e−2πτβ,

which yields from (12)

N
(∫

Rn

f(x + iβyo)

(1 + |x|2)m

∫

supp(φ)
(1− ∆

4π2 )
m(e2π〈βyo ,t〉φ(t))e−2πi〈x,t〉dtdx

)

≤ Tsupp(φ)e
−2πτβ(1 + β|yo|)4(m+1)

∫

Rn

N (f(x + iβyo))

(1 + |x|2)m dx (13)

where yo ∈ C, τ > 0, and γ > 0 are fixed and are independent of the arbitrary β > 0. We
now bound the integral on the right of the inequality in (13) using the assumed growth (5)
on f(z), z ∈ TC; (13) holds for all β > 0. To obtain the supp(V) containment result, we are
going to let β→ ∞ in (13); thus, we may assume that β > 1 in the remainder of this proof.
By simple calculations and for β > 1 , we have

1 + |x + iβyo| = β(
1
β
+ ((
|x|
β
)2 + |yo|2)1/2) ≤ β(1 + (|x|2 + |yo|2)1/2)

and
(1 + |x + iβyo|)q ≤ βq(1 + (|x|2 + |yo|2)1/2)q ≤ βq(1 + |yo|+ |x|)q.

Hence, from (5),
N (f(x + iβyo)) ≤ Mβq(1 + |yo|+ |x|)q|βyo|−r

and

∫

Rn

N (f(x + iβyo))

(1 + |x|2)m dx ≤ Mβq−r|yo|−r
∫

Rn

(1 + |yo|+ |x|)q

(1 + |x|2)m dx. (14)

Combining (10), (12), (13), and (14) yields
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N
(∫

Rn
f(x + iβyo)

∫

supp(φ)
e2π〈βyo ,t〉φ(t)e−2πi〈x,t〉dtdx

)
(15)

≤ MTsupp(φ)(1 + β|yo|)4(m+1)βq−r|yo|−re−2πτβ
∫

Rn

(1 + |yo|+ |x|)q

(1 + |x|2)m dx.

The positive integer m in (15) was introduced in (10), and at that point in the proof, m
was arbitrary. We now choose m, such that m > 2(q + n + 1). With this choice of m, the
integral in (15) converges where yo ∈ C is a fixed point in C; further, with this choice of
m, all calculations from (10) leading to (15) are valid and the integrals converge. Because
of the exponential term e−2πτβ, where τ > 0 is fixed and now β > 1 is arbitrary, the
right side of (15) has limit 0 as β → ∞. Thus, from (9) 〈V, φ〉 = Θ for φ ∈ D(Rn),
such that supp(φ) ⊂ N(to, γ) ⊂ C∗ for to being an arbitrary but fixed point in the open
set C∗ = Rn \ C∗. That is, for each fixed point, to ∈ C∗ = Rn \ C∗, with C∗ being an
open set, there is a neighborhood N(to; γ) ⊂ C∗ of to, such that for all φ ∈ D(Rn) with
supp(φ) ⊂ N(to; γ), we have 〈V, φ〉 = Θ. Thus, V vanishes on a neighborhood of each
point of C∗; this proves that V vanishes on the open set C∗ = Rn \C∗. Thus, supp(V) ⊆ C∗,
which is a closed set in Rn. The proof of Theorem 1 is complete.

Yoshinaga [22] (Proposition 3) provides a representation of the tempered vector-
valued distributions in the case of the topological vector space X being a complete space
of type (DF). Yoshinaga’s result is as follows for X , being a complete space of type (DF):
V ∈ S ′(Rn,X ), if and only if there exists a continuous function g on Rn with values in
X , an integer k ≥ 0, and a n-tuple α of nonnegative integers, such that V = Dαg and
{g(t)/(1 + |t|2)kn; t ∈ Rn} is a bounded subset of X . (In fact, in Yoshinaga’s symbolism,
α = (k, k, ..., k).)

The functions S ′2(Rn,X ) of Definition 1 are an integral part of the following corollary
to Theorem 1; recall that these functions are defined by the necessity for X being a Banach
space. We know that a Banach space satisfies all of the conditions on X stated prior to
Theorem 1 and also is a complete norm space of type (DF); since a Hilbert space is a Banach
space, a Hilbert space also satisfies all of these stated conditions on X . Thus, the above-
stated result of Yoshinaga and Theorem 1 of this paper both hold for X being a Banach or
Hilbert space.

We obtain a corollary of Theorem 1 now in which more precise information is obtained
concerning the spectral function V and the boundary value U of Theorem 1.

Corollary 1. Let C be an open convex cone and X be a Banach space. Let f(z) be analytic in
TC = Rn + iC, have values in X , and satisfy (5). There is a continuous function g ∈ S ′2(Rn,X )
with supp(g) ⊆ C∗ a.e. and an n-tuple α of nonnegative integers, such that the spectral function
V ∈ S ′(Rn,X ) of Theorem 1 has the form Vt = Dα

t g(t), and there is U = F [V] ∈ S ′(Rn,X )
such that

lim
y→0,y∈C

f(x + iy) = U

in the weak and strong topologies of S ′(Rn,X ). Further, for X = H being a Hilbert space, we
have F [g] ∈ L2(Rn,H); and the boundary value U ∈ S ′(Rn,H) has the form

Ux = xαF [g]x = xα(1− ∆
4π2 )

mh(x) (16)

in S ′(Rn,H) where h ∈ L2(Rn,X ), α is an n-tuple of nonnegative integers, and m ≥ 0 is a real
number that can be taken to be a nonnegative integer.

Proof. We apply the results of Theorem 1 and consider the spectral function V ∈ S ′(Rn,X )
obtained in Theorem 1 where X is a Banach space in this corollary. As per the result
of Yoshinaga [22] (Proposition 3) stated above, there is a continuous function g on Rn
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with values in X , an n-tuple α of nonnegative integers, and an integer k ≥ 0, such that
Vt = Dα

t g(t) and { g(t)
(1+|t|2)kn ; t ∈ Rn} is a bounded subset of X . (In Yoshinaga’s symbolism,

α is the n-tuple with all components being k.) Thus, there is a real constant R > 0, such that

N
(

g(t)
(1 + |t|2)kn

)
=
N (g(t))

(1 + |t|2)kn ≤ R, t ∈ Rn.

For the integer k ≥ 0, we have

∫

Rn
(N
(

g(t)
(1 + |t|2)(k+2)n

)
)2dt

=
∫

Rn

(
1

(1 + |t|2)2n

)2
(N
(

g(t)
(1 + |t|2)kn

)
)2dt

≤ R2
∫

Rn

1
(1 + |t|2)4n dt < ∞

which proves that g ∈ S ′2(Rn,X ). Further, supp(g) ⊆ C∗ a.e. since supp(V) ⊆ C∗. From
Theorem 1, the boundary value U ∈ S ′(Rn,X ) in (6) is U = F [V], the Fourier transform
of the spectral function V ∈ S ′(Rn,X ) in S ′(Rn,X ). Moreover, from Theorem 1, the
boundary value U is obtained in both the weak and strong topologies of S ′(Rn,X ).

Now, let X = H, a Hilbert space, in this Corollary 1. Since g ∈ S ′2(Rn,H), then
F [g] ∈ L2(Rn,H) in S ′(Rn,H) by Lemma 1. We know from the above that the boundary
value U ∈ S ′(Rn,H) is U = F [V], and V ∈ S ′(Rn,H) has the form Vt = Dα

t g(t) in
S ′(Rn,H). Let φ ∈ S(Rn). We have

〈U, φ〉 = 〈F [V], φ〉 = 〈V, φ̂〉 = 〈Dα
t g(t), φ̂(t)〉

= (−1)|α|
∫

Rn
g(t)Dα

t

∫

Rn
φ(x)e2πi〈x,t〉dxdt

= (−1)|α|
∫

Rn
g(t)

∫

Rn
φ(x)(−1/2πi)|α|(2πi)|α|xαe2πi〈x,t〉dxdt

= 〈g(t),F [xαφ(x); t]〉 = 〈F [g]x, xαφ(x)〉 = 〈xαF [g]x, φ(x)〉.

Thus, Ux = xαF [g]x in S ′(Rn,H) with g ∈ S ′2(Rn,H). Since g ∈ S ′2(Rn,H), by definition
there is a real number m ≥ 0, such that g(t)/(1 + |t|2)m ∈ L2(Rn,H), and m can be
taken to be a nonnegative integer. We have—by the proof of Lemma 1—that F [g]x =
(1− (4π2)−1∆)mh(x) ∈ L2(Rn,H) in S ′(Rn,H), where h ∈ L2(Rn,H) and ∆ is the Laplace
operator in the x ∈ Rn variable. Combining equalities, we have

Ux = xαF [g]x = xα(1− ∆
4π2 )

mh(x)

in S ′(Rn,H) with h ∈ L2(Rn,H), which is (16). The proof is complete.

5. Cauchy Integral

A Cauchy integral of tempered distributions S ′(Rn) has been defined in one and many
dimensions. Of course, the main problem in making such a definition is that the Cauchy
kernel is not a tempered function in S(Rn); an arbitrary element of S ′(Rn) applied to the
Cauchy kernel is not well defined.

Let C be a regular cone in Rn; that is, C is an open convex cone that does not contain
an entirely straight line. With C∗ being the dual cone of C, the Cauchy kernel function is

K(z− t) =
∫

C∗
e2πi〈z−t,u〉du, z ∈ TC, t ∈ Rn,

as defined in Section 3. For the tube TC being the upper or lower half-planes in C1 or the
tube defined by one of the 2n quadrant cones Cµ = {y ∈ Rn : (−1)µj yj > 0, j = 1, . . . , n}
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where µ is any of the 2n n-tuples whose components are either 0 or 1, the Cauchy kernel
takes the usual form. In order to generate an element of S(Rn) from the Cauchy kernel
in the half plane setting in C1 and the tube defined by a quadrant cone, one divides the
Cauchy kernel by a certain specifically chosen polynomial.

Sebastião e Silva [5] introduced a Cauchy integral for tempered distributions in the
half-plane setting. Carmichael [7] defined a Cauchy integral for tempered distributions in
the Cn setting corresponding to analytic functions in the quadrant cone setting TCµ in Cn

and showed that the analytic functions in (C−R)n, which have distributional boundary
values in S ′(Rn), can be recovered as the Cauchy integral of the boundary value; the
results of [7] can be extended to the vector-valued tempered distributions considered in
this paper by the same techniques as those in [7]. The Cauchy integrals introduced by both
Sebastião e Silva and Carmichael are in fact equivalence classes of analytic functions defined
by an integral involving the Cauchy kernel. Vladimirov [8–10] has defined a Cauchy
integral for tempered distributions associated with analytic functions in general tubes
TC = Rn + iC ⊂ Cn corresponding to regular cones C similar to the analytic functions we
considered in this paper. Vladimirov showed that the analytic functions that he considered
can be recovered by a Cauchy integral involving the tempered distributional boundary
values of the analytic functions. The papers mentioned in this paragraph all concern
scalar-valued analytic functions and distributions.

In this section, we build on our analyses of Sections 3 and 4 to obtain a Cauchy integral
representation of the vector-valued analytic functions, which we considered in Theorem
1 and in Corollary 1. The proof of our results here—and the forms of our results—are
different from any of the previous results concerning the Cauchy integral of the tempered
distribution representation of the analytic functions. By our technique here, we do not
need to divide the Cauchy kernel or the boundary value in (16) by a specified form of the
polynomial and do not need to apply other special features of proof previously used by the
authors in order to obtain that our Cauchy integral is well defined and that the analytic
function considered is represented by a Cauchy integral involving the boundary value.

The Cauchy integral representation of the analytic functions that we considered in this
paper follows. Note that cone C in the following result is assumed to be a regular cone. In
Theorem 1 and Corollary 1, we assumed that cone C was an open convex cone. However,
an open convex cone could contain an entirely straight line; in this case, the dual cone has
measure 0 and K(z− t) = 0, z ∈ TC, t ∈ Rn. To avoid this triviality, we assume that cone
C in the following Cauchy integral representation is a regular cone.

Theorem 2. Let C be a regular cone in Rn and H be a Hilbert space. Let f(z) be analytic in
TC = Rn + iC, have values inH, and satisfy (5). There is a continuous function g ∈ S ′2(Rn,H)
with supp(g) ⊆ C∗ a.e. and an n-tuple α of nonnegative integers, such that

f(z) = zα〈F [g]ν, K(z− ν)〉, z ∈ TC, (17)

in S ′(Rn,H). Further,

〈F [g]ν, K(z− ν)〉 = Θ, z ∈ T−C, (18)

in S ′(Rn,H).

Proof. From Theorem 1, there is an element V ∈ S ′(Rn,H), the spectral function of
f(z), z ∈ TC, such that e−2π〈y,t〉Vt ∈ S ′(Rn,H), y ∈ C; supp(V) ⊆ C∗; and f(z) =
F [e−2π〈y,t〉Vt]x, y ∈ C, in S ′(Rn,H). Further, by Corollary 1, there is a continuous
function g ∈ S ′2(Rn,H) with supp(g) ⊆ C∗ a.e. and an n-tuple α of nonnegative integers,
such that Vt = Dα

t g(t), t ∈ Rn. Now, let φ ∈ S(Rn) and z = x + iy ∈ TC. Recall that we
have defined the differential operator D to be Dt = (−1/2πi)( ∂

∂t1
, . . . , ∂

∂tn
). We have

135



Axioms 2022, 11, 392

〈f(x + iy), φ(x)〉 = 〈F [e−2π〈y,t〉Vt]x, φ(x)〉
= 〈e−2π〈y,t〉Vt, φ̂(t)〉 = 〈Vt,

∫

R
φ(x)e2πi〈z,t〉dx〉

= 〈Dα
t g(t),

∫

Rn
φ(x)e2πi〈z,t〉dx〉 (19)

= (−1)|α|
∫

C∗
g(t)

∫

Rn
φ(x)(−1/2πi)|α|(2πi)|α|zαe2πi〈z,t〉dxdt

=
∫

C∗
g(t)

∫

Rn
φ(x)zαe−2π〈y,t〉e2πi〈x,t〉dxdt

=
∫

C∗
e−2π〈y,t〉g(t)F [zαφ(x); t]dt

= 〈zαF [IC∗(t)e−2π〈y,t〉g(t)]x, φ(x)〉

where IC∗(t) is the characteristic function of C∗. We have proven in [17] (Lemma 4.2.1,
p. 62) that IC∗(t)e−2π〈y,t〉 ∈ Lp, y ∈ C, for all p, 1 ≤ p ≤ ∞. Since g ∈ S ′2(Rn,H), then
F [g]x ∈ L2(Rn,H) in S ′(Rn,H) by Lemma 1. Recall also from Section 3 that the Cauchy
kernel K(z− ·) ∈ D(∗, Lp) ⊂ DLp(Rn), 1 < p ≤ ∞, for z ∈ TC with C being a regular cone
and that an element of L2(Rn,H) applied to K(z− ·), z ∈ TC, is a well-defined function of
z ∈ TC. Continuing (19) and using convolution, we now have

〈f(x + iy), φ(x)〉 = 〈zα(F [g] ∗ F [IC∗(t)e−2π〈y,t〉])x, φ(x)〉
= 〈zα〈F [g]ν,F [IC∗(t)e−2π〈y,t〉](x−ν)〉, φ(x)〉

= 〈zα〈F [g]ν,
∫

C∗
e2πi〈z−ν,t〉dt〉, φ(x)〉 (20)

= 〈zα〈F [g]ν, K(z− ν)〉, φ(x)〉

where IC∗(t) is the characteristic function of C∗. Since g ∈ S ′2(Rn,H), then F [g] ∈
L2(Rn,H) by Lemma 1; and as previously noted, F [g] applied to the Cauchy kernel
is a well-defined function of z ∈ TC and is an analytic function of z ∈ TC with values inH.
Thus, from (20) we have obtained

f(z) = zα〈F [g]ν, K(z− ν)〉, z ∈ TC,

in S ′(Rn,H), and (17) is obtained.
To prove (18), first note that for a regular cone, C, −C is also a regular cone; and (−C)∗

= −C∗. Thus, for z ∈ T−C and φ ∈ S(Rn),

〈〈F [g]ν, K(z− ν)〉, φ(x)〉 = 〈〈F [g]ν,
∫

−C∗
e−2π〈y,t〉e2πi〈x−ν,t〉dt〉, φ(x)〉

= 〈〈F [g]ν,F [I−C∗(t)e−2π〈y,t〉](x−ν〉, φ(x)〉 (21)

= 〈〈(F [g] ∗ F [I−C∗(t)e−2π〈y,t〉])x〉, φ(x)〉
= 〈F [I−C∗(t)e−2π〈y,t〉g(t)]x, φ(x)〉.

Now I−C∗(t) = 0 if t /∈ −C∗ and, hence, if t ∈ C∗. This fact coupled with the fact
that supp(g) ⊆ C∗ a.e. yields I−C∗(t)e−2π〈y,t〉g(t) = Θ a.e. for t ∈ Rn and y ∈ −C.
Hence F [I−C∗(t)e−2π〈y,t〉g(t)]x = Θ, x ∈ Rn, y ∈ −C, in (21). Thus, from (21), we have
〈F [g]ν, K(z− ν)〉 = Θ, z ∈ T−C, in S ′(Rn,H); and (18) is obtained.

6. Conclusions

Tillmann [1] obtained the original analysis concerning the scalar-valued tempered
distributions S ′(Rn) as boundary values of analytic functions. We proved a boundary value
result concerning vector-valued tempered distributions S ′(Rn,X ) as boundary values of
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vector-valued analytic functions in [4] (Theorem 8) but used a norm growth condition on
the analytic functions, which was a special case for the growth of Tillmann. We desired
to obtain a result, such as [4] (Theorem 8), but under the general norm growth on the
analytic function, which was equivalent to the growth of Tillmann. We achieved this
first goal of this paper in Theorem 1 for vector-valued analytic functions f(z) on tubes
TC = Rn + iC with C being an open convex cone. The values of the analytic functions
and the tempered distributions were in a very general type of topological vector space.
We achieved additional information in Theorem 1 concerning the spectral function of the
analytic function.

We asked if additional information concerning the spectral function and the boundary
value could be obtained if the topological vector space X was restricted somewhat. We
obtained the desired information in Corollary 1 by restricting X to be a Banach space and
then a Hilbert space; we showed the structure of the spectral function and the boundary
value in these cases for X . Integral to this analysis was the Lemma 1 result, which proved
the relation under the Fourier transform between two important subsets of S ′(Rn,H) for
our results in Corollary 1. It is important to note that the reason to restrict to Hilbert space
H (which we do in our results) is that the Plancherel theory for the Fourier transform of the
functions holds if and only if the functions have value in the Hilbert space.

The second principal goal of this paper was to obtain a Cauchy integral representation
of the analytic functions considered in Theorem 1 and Corollary 1. Sebastião e Silva,
Carmichael, and Vladimirov have obtained and studied the Cauchy integral of tempered
distributions S ′(Rn) in the scalar-valued case and in one and several dimensions; see the
papers of these authors in the references. Their analyses basically concerned dividing the
Cauchy kernel or the boundary value by a suitable polynomial whose order was large
enough to make the quotient when evaluated by the tempered distribution to be well
defined, or used other special features of proof that we do not use here.

In Section 5 of this paper, we constructed our Cauchy integral used in the representa-
tion of the assumed analytic function in a different manner by using the general known
structure of the spectral function and our proven structure of the tempered distributional
boundary value in S ′(Rn,H) forH being a Hilbert space. The analytic function obtaining
the boundary value in S ′(Rn,H) was shown to be equated to the product of a polynomial
and the constructed Cauchy integral.

This paper concerns theoretical mathematics, yet the topics considered find applica-
tions in mathematical physics and in mathematics that are applied to physical problems.
We survey historically some areas of application in the scalar-valued case. We recall the
work of Streater and Wightman [23] in studying quantum field theory. In a field theory, the
“vacuum expectation values” are tempered distributions, which are boundary values in
the tempered distribution topology of analytic functions with the analytic functions being
Fourier–Laplace transforms. In addition, a field theory can be recovered from its “vacuum
expectation values”; see [23] (Chapter 3). A similar field theory analysis using boundary
values of analytic functions is contained in the work by Simon [24]. We also reference
Raina [25] concerning “form factor bounds” in particle physics in which tempered distribu-
tional boundary values, which are of a special form, imply that the analytic functions that
obtain these boundary values are Hardy Hp functions; this fact is then used in the analysis
of the “form factor bounds”. See also the associated papers listed in the references of [25].

As noted in Vladimirov [8], scalar-valued analytic functions of the type that we con-
sidered in this paper can arise in applying the Fourier–Laplace transform to convolution
equations, which describe linear homogeneous processes with causality that find applica-
tion in the quantum field theory, theory of electrical circuits, scattering of electromagnetic
waves, and linear thermodynamic systems; refer to the list of references in [8]. We also
note paper [26] by Vladimirov, concerning the linear conjugacy of scalar-valued analytic
functions of several complex variables, which are again of the type that we considered in
this paper with respect to growth. The linear conjugacy analysis involves scalar-valued
tempered distributional boundary values of analytic functions represented as Fourier–
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Laplace integrals. Vladimirov [26] (p. 207) states that many problems arising in mathemati-
cal physics reduce to the problem of linear conjugacy involving tempered distributions;
Vladimirov [26] provides examples of such problems.

The survey of applications above (concerning the type of analysis used in this paper)
involve scalar-valued functions and distributions. Yet, a close consideration of the linear
conjugacy problem of [26], together with the vector-valued analysis of this paper, leads
one to believe that the linear conjugacy problem can be extended to the vector-valued
case. Further, in an analysis of the stated applications above, one must sometimes obtain a
distributional solution of a partial differential equation; such calculations can be extended
to the vector-valued case. We suggest that the considerable related analyses to the results
of this paper and the results of related references in this paper can be achieved in the
vector-valued case and will work toward this end in the future.
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Fuzzy Differential Subordinations

Obtained for Riemann–Liouville

Fractional Integral of Ruscheweyh
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Abstract: New results concerning fuzzy differential subordination theory are obtained in this paper
using the operator denoted by D−λ

z Ln
α , previously introduced by applying the Riemann–Liouville

fractional integral to the convex combination of well-known Ruscheweyh and Sălăgean differential
operators. A new fuzzy subclass DLFn (δ, α, λ) is defined and studied involving the operator D−λ

z Ln
α .

Fuzzy differential subordinations are obtained considering functions from class DLFn (δ, α, λ) and the
fuzzy best dominants are also given. Using particular functions interesting corollaries are obtained
and an example shows how the obtained results can be applied.

Keywords: differential operator; fuzzy differential subordination; fuzzy best dominant; fractional
integral

MSC: 30C45; 30A10; 33C05

1. Introduction

The concept of fuzzy set, introduced by Lotfi A. Zadeh in 1965 [1], has opened the
way for a new theory called fuzzy set theory. It has developed intensely, nowadays having
applications in many branches of science and technology.

The fuzzy set concept was applied for developing new directions of study in many
mathematical theories. In geometric function theory, it was used for introducing the new
concepts of fuzzy subordination [2] and fuzzy differential subordinations [3] as generaliza-
tions of the classical notion of differential subordination due to Miller and Mocanu [4,5].
The main aspects regarding the theory of differential subordination can be found in [6].
Steps in the evolution of the theory of fuzzy differential subordination can be followed
in [7].

The general context of the study presented in this paper contains notions familiar to
geometric function theory merged with fuzzy set theory. We first present the main classes of
analytic functions involved and the definitions regarding fuzzy differential subordination
theory.

U = {z ∈ C : |z| < 1} represents the unit disc of the complex plane and H(U) the
space of holomorphic functions in U.

Consider A = { f ∈ H(U) : f (z) = z + a2z2 + . . . , z ∈ U}, and H[a, m] = { f ∈
H(U) : f (z) = a + amzm + am+1zm+1 + . . . , z ∈ U}, for a ∈ C and m ∈ N.

We remember the usual definitions needed for fuzzy differential subordination:

Definition 1 ([8]). A fuzzy subset of X is a pair (M, FA), with M = {x ∈ X : 0 < FM(x) ≤ 1}
the support of the fuzzy set and FM : X → [0, 1] the membership function of the fuzzy set. It is
denoted M = supp(M, FM).

Remark 1. When M ⊂ X, we have FM(x) =
{

1, if x ∈ M,
0, if x /∈ M.
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Evidently F∅(x) = 0, x ∈ X, and FX(x) = 1, x ∈ X.

Definition 2 ([2]). Let D ⊂ C and let z0 ∈ D be a fixed point. We take the functions f , g ∈ H(D).
The function f is said to be fuzzy subordinate to g and we write f ≺F g, if there exists a function
F : C→ [0, 1] such that f (z0) = g(z0) and Ff (D) f (z) ≤ Fg(D)g(z), z ∈ D.

Remark 2. (1) If g is univalent, then f ≺F g if and only if f (z0) = g(z0) and f (D) ⊂ g(D).
(2) Such a function F : C→ [0, 1] can be consider F(z) = |z|

1+|z| , F(z) = 1
1+|z| .

(3) If D = U the conditions become f (0) = g(0) and f (U) ⊂ g(U), which is equivalent to
the classical definition of subordination.

Definition 3 ([3]). Consider h an univalent function in U and ψ : C3 × U → C, such that
h(0) = ψ(a, 0; 0) = a. When the fuzzy differential subordination

Fψ(C3×U)ψ(p(z), zp′(z), z2 p′′(z); z) ≤ Fh(U)h(z), z ∈ U, (1)

is satisfied for an analytic function p in U, such that p(0) = a, then p is called a fuzzy solution
of the fuzzy differential subordination. A fuzzy dominant of the fuzzy solutions of the fuzzy
differential subordination is an univalent function q for which Fp(U)p(z) ≤ Fq(U)q(z), z ∈ U, for
all p satisfying (1). The fuzzy best dominant of (1) is a fuzzy dominant q̃, such that Fq̃(U) q̃(z) ≤
Fq(U)q(z), z ∈ U, for all fuzzy dominants q of (1).

Lemma 1 ([6]). Consider h ∈ A. If Re
(

zh′′(z)
h′(z) + 1

)
> − 1

2 , z ∈ U, then 1
z
∫ z

0 h(t)dt is a convex
function, z ∈ U.

Lemma 2 ([9]). Consider a convex function h with h(0) = a, and γ ∈ C∗ such that Re γ ≥ 0.
When p ∈ H[a, m], ψ : C2 × U → C, ψ(p(z), zp′(z); z) = 1

γ zp′(z) + p(z) is an analytic
function in U and

Fψ(C2×U)

(
1
γ

zp′(z) + p(z)
)
≤ Fh(U)h(z), z ∈ U,

then
Fp(U)p(z) ≤ Fg(U)g(z) ≤ Fh(U)h(z), z ∈ U,

with the convex function g(z) = γ

mz
γ
m

∫ z
0 h(t)t

γ
m−1dt, z ∈ U as the fuzzy best dominant.

Lemma 3 ([9]). Consider a convex function g in U and define h(z) = mαzg′(z) + g(z), z ∈ U,
with m ∈ N and α > 0.

If p(z) = g(0) + pmzm + pm+1zm+1 + . . . , z ∈ U, is a holomorphic function in U and

Fp(U)

(
p(z) + αzp′(z)

)
≤ Fh(U)h(z), z ∈ U,

then we obtain the sharp result

Fp(U)p(z) ≤ Fg(U)g(z), z ∈ U.

The original results exposed in this paper are obtained using the well-known
Ruscheweyh and Sălăgean differential operators combined with Riemann–Liouville frac-
tional integral. The resulting operator was introduced in [10], where it was used for obtain-
ing results involving classical differential subordination theory. The necessary definitions
are reminded:
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Definition 4 (Ruscheweyh [11]). The Ruscheweyh operator Rn is introduced by Rn : A → A,

R0 f (z) = f (z),

R1 f (z) = z f ′(z),

. . .

(n + 1)Rn+1 f (z) = nRn f (z) + z(Rn f (z))′,

for f ∈ A, n ∈ N, z ∈ U.

Remark 3. For a function f (z) = z + ∑∞
j=2 ajzj ∈ A, the Ruscheweyh operator can be written

using the following form Rn f (z) = z + ∑∞
j=2

Γ(n+j)
Γ(n+1)Γ(j) ajzj, z ∈ U, where Γ denotes the gamma

function.

Definition 5 (Sălăgean [12]). The Sălăgean operator Sn is introduced by Sn : A → A,

S0 f (z) = f (z),

S1 f (z) = z f ′(z),

. . .

Sn+1 f (z) = z(Sn f (z))′,

for f ∈ A, n ∈ N, z ∈ U.

Remark 4. For a function f (z) = z + ∑∞
j=2 ajzj ∈ A, the Sălăgean operator can be written using

the following form Sn f (z) = z + ∑∞
j=2 jnajzj, z ∈ U.

Definition 6 ([13]). Define the linear operator Ln
α : A → A, given by

Ln
α f (z) = αSn f (z) + (1− α)Rn f (z), z ∈ U,

where α ≥ 0, n ∈ N.

Remark 5. For a function f (z) = z + ∑∞
j=2 ajzj ∈ A, the defined operator can be written using

the following form Ln
α f (z) = z + ∑∞

j=2

[
αjn + (1− α)

Γ(n+j)
Γ(n+1)Γ(j)

]
ajzj, z ∈ U.

We also remind the definition of Riemann–Liouville fractional integral:

Definition 7 ([14]). The Riemann–Liouville fractional integral of order λ applied to an analytic
function f is defined by

D−λ
z f (z) =

1
Γ(λ)

∫ z

0

f (t)

(z− t)1−λ
dt,

with λ > 0.

In [10] we defined the Riemann–Liouville fractional integral applied to the operator
Ln

α as follows:

Definition 8 ([10]). The Riemann–Liouville fractional integral applied to the differential operator
Ln

α f is introduced by

D−λ
z Ln

α f (z) =
1

Γ(λ)

∫ z

0

Ln
α f (t)

(z− t)1−λ
dt =

1
Γ(λ)

∫ z

0

t

(z− t)1−λ
dt +

∞

∑
j=2

(
αjn + (1− α)

Γ(n + j)
Γ(n + 1)Γ(j)

)
aj

∫ z

0

tj

(z− t)1−λ
dt,
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where α ≥ 0, λ > 0 and n ∈ N.

Remark 6. For a function f (z) = z + ∑∞
j=2 ajzj ∈ A, the Riemann–Liouville fractional integral

of Ln
α f has the following form

D−λ
z Ln

α f (z) =
1

Γ(2 + λ)
z1+λ +

∞

∑
j=2

[
αjmΓ(j + 1)
Γ(j + λ + 1)

+
(1− α)jΓ(m + j)

Γ(m + 1)Γ(j + λ + 1)

]
ajzj+λ,

and D−λ
z Ln

α f (z) ∈ H[0, λ + 1].

The results exposed in this paper follow a line of research concerned with fuzzy
differential subordinations which is popular nowadays, namely introducing new operators
and using them for defining and studying new fuzzy classes of functions.

Fuzzy differential subordinations involving Ruscheweyh and Sălăgean differential
operators were obtained in many studies, such as [15]. New operators introduced using
fractional integral and applied in fuzzy differential subordination theory were studied
in [16] where Riemann–Liouville fractional integral is applied for Gaussian hypergeometric
function and in [17] where Riemann–Liouville fractional integral is combined with confluent
hypergeometric function.

Motivated by the nice results obtained in fuzzy differential subordination theory using
Ruscheweyh and Sălăgean differential operators and fractional integral applied to different
known operators, the study presented in this paper uses the previously defined operator
D−λ

z Ln
α given in Definition 8 applied for obtaining new fuzzy differential subordinations.

In the next section, a new fuzzy class will be defined and studied in order to obtain fuzzy
differential subordinations inspired by recently published studies concerned with the same
topic seen in [18–20].

The main results contained in Section 2 of the paper, begin with the definition of a new
fuzzy class DLFn (δ, α, λ) for which the operator D−λ

z Ln
α given in Definition 8 is used. The

property of this class to be convex is proved and certain fuzzy differential subordinations
involving functions from the class and the operator D−λ

z Ln
α are obtained. The fuzzy best

dominants are given for the considered fuzzy differential subordinations in theorems
which generate interesting corollaries when specific functions with remarkable geometric
properties are used as fuzzy best dominants. An example is also shown in order to prove
the applicability of the new results.

2. Main Results

The usage of the operator D−λ
z Ln

α seen in Definition 8 defines a new fuzzy subclass of
analytic functions as follows:

Definition 9. The class DLFn (δ, α, λ) is composed of all functions f ∈ A with the property

F
(D−λ

z Ln
α f )

′
(U)

(
D−λ

z Ln
α f (z)

)′
> δ, z ∈ U,

where n ∈ N, δ ∈ [0, 1), α ≥ 0, λ > 0.

We begin studying this subclass of functions:

Theorem 1. DLFn (δ, α, λ) is a convex set.

Proof. Taking the functions

fk(z) = z +
∞

∑
j=2

ajkzj, k = 1, 2, z ∈ U,
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belonging to the class DLFn (δ, α, λ), we have to prove that the function

h(z) = γ1 f1(z) + γ2 f2(z)

belongs to the class DLFn (δ, α, λ) with γ1, γ2 ≥ 0, γ1 + γ2 = 1.

We have h′(z) = (γ1 f1 + γ2 f2)
′(z) = γ1 f ′1(z) + γ2 f ′2(z), z ∈ U, and(

D−λ
z Ln

αh(z)
)′

=
(

D−λ
z Ln

α(γ1 f1 + γ2 f2)(z)
)′

= γ1
(

D−λ
z Ln

α f1(z)
)′
+ γ2

(
D−λ

z Ln
α f2(z)

)′.
and we can write

F
(D−λ

z Ln
α h)
′
(U)

(
D−λ

z Ln
αh(z)

)′
= F

(D−λ
z Ln

α(γ1 f1+γ2 f2))
′
(U)

(
D−λ

z Ln
α(γ1 f1 + γ2 f2)(z)

)′
=

F
(D−λ

z Ln
α(γ1 f1+γ2 f2))

′
(U)

(
γ1
(

D−λ
z Ln

α f1(z)
)′
+ γ2

(
D−λ

z Ln
α f2(z)

)′)
=

F
(γ1D−λ

z Ln
α f1)

′
(U)

(
γ1(D−λ

z Ln
α f1(z))

′)
+F
(γ2D−λ

z Ln
α f2)

′
(U)

(
γ2(D−λ

z Ln
α f2(z))

′)

2 =
F
(D−λ

z Ln
α f1)

′
(U)

(D−λ
z Ln

α f1(z))
′
+F
(D−λ

z Ln
α f2)

′
(U)

(D−λ
z Ln

α f2(z))
′

2 .
Having f1, f2 ∈ DLFn (δ, α, λ) we get δ < F

(D−λ
z Ln

α f1)
′
(U)

(
D−λ

z Ln
α f1(z)

)′ ≤ 1 and δ <

F
(D−λ

z Ln
α f2)

′
(U)

(
D−λ

z Ln
α f2(z)

)′ ≤ 1, z ∈ U.

In these conditions δ <
F
(D−λ

z Ln
α f1)

′
(U)

(D−λ
z Ln

α f1(z))
′
+F
(D−λ

z Ln
α f2)

′
(U)

(D−λ
z Ln

α f2(z))
′

2 ≤ 1 and
we get δ < F

(D−λ
z Ln

α h)
′
(U)

(
D−λ

z Ln
αh(z)

)′ ≤ 1, equivalently with h ∈ DLFn (δ, α, λ) and

DLFn (δ, α, λ) is a convex set.

We give fuzzy differential subordinations obtained for the operator D−λ
z Ln

a .

Theorem 2. Considering a convex function g in U and defining h(z) = g(z) + 1
c+2 zg′(z), with

c > 0, z ∈ U, when f ∈ DLFn (δ, α, λ) and G(z) = c+2
zc+1

∫ z
0 tc f (t)dt, z ∈ U, then

F
(D−λ

z Ln
a f )
′
(U)

(
D−λ

z Ln
α f (z)

)′
≤ Fh(U)h(z), z ∈ U, (2)

implies the sharp result

F
(D−λ

z Ln
a G)

′
(U)

(
D−λ

z Ln
αG(z)

)′
≤ Fg(U)g(z), z ∈ U.

Proof. Differentiating relation

zc+1G(z) = (c + 2)
∫ z

0
tc f (t)dt,

considering z as variable, we get (c + 1)G(z) + zG′(z) = (c + 2) f (z) and

(c + 1)D−λ
z Ln

αG(z) + z
(

D−λ
z Ln

αG(z)
)′

= (c + 2)D−λ
z Ln

α f (z), z ∈ U,

and differentiating it again with respect to z, we obtain

(
D−λ

z Ln
αG(z)

)′
+

1
c + 2

z
(

D−λ
z Ln

αG(z)
)′′

=
(

D−λ
z Ln

α f (z)
)′

, z ∈ U.

and the inequality (2) representing the fuzzy differential subordination can be written

FD−λ
z Ln

α G(U)

(
1

c + 2
z
(

D−λ
z Ln

αG(z)
)′′

+
(

D−λ
z Ln

αG(z)
)′)
≤ Fg(U)

(
1

c + 2
zg′(z) + g(z)

)
.
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Denoted
p(z) =

(
D−λ

z Ln
αG(z)

)′
, z ∈ U,

where p ∈ H[1, n], we obtain

Fp(U)

(
1

c + 2
zp′(z) + p(z)

)
≤ Fg(U)

(
1

c + 2
zg′(z) + g(z)

)
, z ∈ U.

Applying Lemma 3, we get

F
(D−λ

z Ln
α G)

′
(U)

(
D−λ

z Ln
αG(z)

)′
≤ Fg(U)g(z), z ∈ U,

and g is the best dominant.

We give an inclusion result for the class DLFn (δ, α, λ):

Theorem 3. Taking h(z) = 1+(2δ−1)z
1+z and G(z) = c+2

zc+1

∫ z
0 tc f (t)dt, z ∈ U, with δ ∈ [0, 1),

c > 0, n ∈ N, α ≥ 0, λ > 0, then

G
[

DLFn (δ, α, λ)
]
⊂ DLFn (δ∗, α, λ), (3)

where δ∗ = 2δ− 1 + 2(2 + c)(1− δ)
∫ 1

0
tc+1

t+1 dt.

Proof. Making the same steps such as in the proof of Theorem 2, taking account the
hypothesis of Theorem 3 and that h(z) = 1+(2δ−1)z

1+z is a convex function, we obtain

Fp(U)

(
1

c + 2
zp′(z) + p(z)

)
≤ fh(U)h(z),

with p(z) =
(

D−λ
z Ln

αG(z)
)′, z ∈ U.

Applying Lemma 2, we get

F
(D−λ

z Ln
α G)

′
(U)

(
D−λ

z Ln
αG(z)

)′
≤ Fg(U)g(z) ≤ Fh(U)h(z),

where

g(z) =
2 + c

nz
2+c

n

∫ z

0
t

2+c
n −1 1 + (2δ− 1)t

1 + t
dt = (2δ− 1) +

2(c + 2)(1− δ)

nz
c+2

n

∫ z

0

t
2+c

n −1

t + 1
dt.

Since the function g is convex and g(U) is symmetric with respect to the real axis, we
can write

FD−λ
z Ln

α G(U)

(
D−λ

z Ln
αG(z)

)′
≥ min
|z|=1

Fg(U)g(z) = Fg(U)g(1) (4)

and δ∗ = g(1) = 2δ− 1 + 2(2+c)(1−δ)
n

∫ 1
0

t
2+c

n −1

t+1 dt, that give the inclusion (3).

Theorem 4. Taking a convex function g with the property g(0) = 0, define h(z) = g(z) + zg′(z),
z ∈ U. When f ∈ A, n ∈ N, α ≥ 0, λ > 0, and the fuzzy differential subordination holds

F
(D−λ

z Ln
α f )

′
(U)

(
D−λ

z Ln
α f (z)

)′
≤ Fh(U)h(z), z ∈ U, (5)

then we get the sharp result

FD−λ
z Ln

α f (U)

D−λ
z Ln

α f (z)
z

≤ Fg(U)g(z), z ∈ U.
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Proof. Considering p(z) = D−λ
z Ln

α f (z)
z ∈ H[0, λ], we can write zp(z) = D−λ

z Ln
α f (z), z ∈ U,

and differentiating it we get zp′(z) + p(z) =
(

D−λ
z Ln

α f (z)
)′, z ∈ U.

The inequality (5) can be written as following

Fp(U)

(
zp′(z) + p(z)

)
≤ Fh(U)h(z) = Fg(U)

(
zg′(z) + g(z)

)
, z ∈ U,

and applying Lemma 3, we get the sharp result

F
(D−λ

z Ln
α f )

′
(U)

D−λ
z Ln

α f (z)
z

≤ Fg(U)g(z), z ∈ U.

Example 1. Consider

g(z) =
−2z
1 + z

a convex function in U and we obtain that g(0) = 0, g′(z) = −2
(1+z)2 . Define

h(z) = g(z) + zg′(z) =
−2z
1 + z

− 2z

(1 + z)2 =
−2z2 − 4z

(1 + z)2 .

Take α = 2, n = 1, f (z) = z + z2, z ∈ U, and after a short computation we obtain

L1
2 f (z) = z + 2z2

and

D−λ
z L1

2 f (z) =
1

Γ(λ)

∫ z

0

L1
2 f (t)

(z− t)1−λ
dt =

1
Γ(λ)

∫ z

0

t + 2t2

(z− t)1−λ
dt

=
1

Γ(λ + 2)
z1+λ +

4
Γ(λ + 3)

z2+λ

and differentiating it

(
D−λ

z L1
2 f (z)

)′
=

1
Γ(λ + 1)

zλ +
4

Γ(λ + 2)
zλ+1.

Applying Theorem 4 we get the following fuzzy differential subordination

1
Γ(1 + λ)

zλ +
4

Γ(2 + λ)
z1+λ ≺F

−2z2 − 4z

(1 + z)2 , z ∈ U,

induce the following fuzzy differential subordination

1
Γ(2 + λ)

zλ +
4

Γ(3 + λ)
z1+λ ≺F

−2z
1 + z

, z ∈ U.

Theorem 5. Taking a holomorphic function h, such that h(0) = 0 and Re
(

1 + zh′′(z)
h′(z)

)
> − 1

2 ,
z ∈ U, when f ∈ A, n ∈ N, α ≥ 0, λ > 0, and the fuzzy differential subordination holds

F
(D−λ

z Ln
α f )

′
(U)

(
D−λ

z Ln
α f (z)

)′
≤ Fh(U)h(z), z ∈ U, (6)

then

FD−λ
z Ln

α f (U)

D−λ
z Ln

α f (z)
z

≤ Fq(U)q(z), z ∈ U,

where the fuzzy best dominant q(z) = 1
z
∫ z

0 h(t)dt is convex.
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Proof. Considering Re
(

1 + zh′′(z)
h′(z)

)
> − 1

2 , z ∈ U, and using Lemma 1, we deduce that

q(z) = 1
z
∫ z

0 h(t)dt is a convex function and it is a solution of the differential equation
defining the fuzzy differential subordination (6) zq′(z) + q(z) = h(z), therefore it is the
fuzzy best dominant.

Differentiating zp(z) = D−λ
z Ln

α f (z), we get
(

D−λ
z Ln

α f (z)
)′

= zp′(z) + p(z), z ∈ U,
and (6) can be written

Fp(U)

(
zp′(z) + p(z)

)
≤ Fh(U)h(z), z ∈ U.

Applying Lemma 3, we get

FD−λ
z Ln

α f (U)

D−λ
z Ln

α f (z)
z

≤ Fq(U)q(z), z ∈ U.

Corollary 1. Taking the convex function in U, h(z) = 1+(2δ−1)z
1+z , with δ ∈ [0, 1), when f ∈ A

and the fuzzy differential subordination holds

F
(D−λ

z Ln
α f )

′
(U)

(
D−λ

z Ln
α f (z)

)′
≤ Fh(U)h(z), z ∈ U, (7)

then

FD−λ
z Ln

α f (U)

D−λ
z Ln

α f (z)
z

≤ Fq(U)q(z), z ∈ U,

where the fuzzy best dominant q(z) = 2δ− 1 + 2(1− δ) ln(z+1)
z , z ∈ U, is convex.

Proof. Taking h(z) = 1+(2δ−1)z
1+z , we obtain h(0) = 1, h′(z) = −2(1−δ)

(1+z)2 and h′′(z) = 4(1−δ)

(1+z)3 ,

therefore Re
(

zh′′(z)
h′(z) + 1

)
= Re

(
1−z
1+z

)
= Re

(
1−ρ cos θ−iρ sin θ
1+ρ cos θ+iρ sin θ

)
= 1−ρ2

1+2ρ cos θ+ρ2 > 0 > − 1
2 .

Following the same steps like in the proof of Theorem 5 with p(z) = D−λ
z Ln

α f (z)
z , the

fuzzy differential subordination (7) can be written

FD−λ
z Ln

α f (U)

(
zp′(z) + p(z)

)
≤ Fh(U)h(z), z ∈ U.

Applying Lemma 2 for m = 1 and γ = 1, we obtain

FD−λ
z Ln

α f (U)

D−λ
z Ln

α f (z)
z

≤ Fq(U)q(z),

where

q(z) =
1
z

∫ z

0
h(t)dt =

1
z

∫ z

0

1 + (2δ− 1)t
t + 1

dt =

2δ− 1 +
2(1− δ)

z

∫ z

0

1
t + 1

dt = 2δ− 1 + 2(1− δ)
ln(z + 1)

z
, z ∈ U.

Example 2. Consider

h(z) =
−2z
1 + z

and we obtain that h(0) = 0, h′(z) = −2
(1+z)2 and h′′(z) = 4

(1+z)3 .

Taking account that

Re
(

1 +
zh′′(z)
h′(z)

)
= Re

(
1− z
1 + z

)
= Re

(
1− ρ cos θ − iρ sin θ

1 + ρ cos θ + iρ sin θ

)
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=
1− ρ2

1 + 2ρ cos θ + ρ2 > 0 > −1
2

,

h is a convex function in U.
Taking α = 2, n = 1, f (z) = z + z2, z ∈ U, as in Example 1, we have

L1
2 f (z) = z + 2z2

and
D−λ

z L1
2 f (z) =

1
Γ(λ + 2)

z1+λ +
4

Γ(λ + 3)
z2+λ

and differentiating it

(
D−λ

z L1
2 f (z)

)′
=

1
Γ(λ + 1)

zλ +
4

Γ(λ + 2)
zλ+1.

Additionally, we get

q(z) =
1
z

∫ z

0

−2t
1 + t

dt =
2 ln(1 + z)

z
− 2.

Applying Theorem 5 we get the following fuzzy differential subordination

1
Γ(1 + λ)

zλ +
4

Γ(2 + λ)
z1+λ ≺F

2z
1 + z

, z ∈ U,

induce the following fuzzy differential subordination

1
Γ(2 + λ)

z1+λ +
4

Γ(3 + λ)
z2+λ ≺F

2 ln(1 + z)
z

− 2, z ∈ U.

Theorem 6. Taking a convex function g with the property g(0) = 0 and defining h(z) = zg′(z) +
g(z), z ∈ U, when f ∈ A, n ∈ N, α ≥ 0, λ > 0, and the fuzzy differential subordination

FD−λ
z Ln

α f (U)

(
zD−λ

z Ln+1
α f (z)

D−λ
z Ln

α f (z)

)′
≤ Fh(U)h(z), z ∈ U, (8)

holds, then we obtain the sharp result

FD−λ
z Ln

α f (U)

zD−λ
z Ln+1

α f (z)
D−λ

z Ln
α f (z)

≤ Fg(U)g(z), z ∈ U.

Proof. Considering p(z) = D−λ
z Ln+1

α f (z)
D−λ

z Ln
α f (z)

and differentiating it we get zp′(z) + p(z) =
(

zLn+1
α f (z)

Ln
α f (z)

)′
. With this notation, inequality (8) can be written as

Fp(U)

(
zp′(z) + p(z)

)
≤ Fh(U)h(z) = Fg(U)

(
zg′(z) + g(z)

)
, z ∈ U.

Applying Lemma 3, we get

FD−λ
z Ln

α f (U)

D−λ
z Ln+1

α f (z)
D−λ

z Ln
α f (z)

≤ Fg(U)g(z), z ∈ U.

Example 3. Consider

g(z) =
−2z
1 + z
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and

h(z) = g(z) + zg′(z) =
−2z2 − 4z

(1 + z)2

as given in Example 1.
Taking α = 2, n = 1, f (z) = z + z2, z ∈ U, as in Example 1, we get

L1
2 f (z) = z + 2z2

and
L2

2 f (z) = z + 2z2

and applying Riemann–Liouville fractional integral of order λ we have

D−λ
z L1

2 f (z) =
1

Γ(λ + 2)
z1+λ +

4
Γ(λ + 3)

z2+λ = D−λ
z L2

2 f (z).

Applying Theorem 6 we get the following fuzzy differential subordination

1 ≺F
−2z2 − 4z

(1 + z)2 , z ∈ U,

induce the following fuzzy differential subordination

z ≺F
−2z
1 + z

, z ∈ U.

Theorem 7. Taking a convex function g with the property g(0) = 0 and defining h(z) =
λzg′(z) + g(z), z ∈ U, α ≥ 0, λ, δ > 0, when f ∈ A and the fuzzy differential subordina-
tion

FD−λ
z Ln

α f (U)

((
D−λ

z Ln
α f (z)

z

)δ−1(
D−λ

z Ln
α f (z)

)′
)
≤ Fh(U)h(z) , z ∈ U, (9)

holds, then we obtain the sharp result

FD−λ
z Ln

α f (U)

(
D−λ

z Ln
α f (z)

z

)δ

≤ Fg(U)g(z), z ∈ U.

Proof. Considering p(z) =
(

D−λ
z Ln

α f (z)
z

)δ
∈ H[0, λδ], and differentiating it we obtain

zp′(z) = δ

(
D−λ

z Ln
α f (z)

z

)δ−1(
D−λ

z Ln
α f (z)

)′
− δ

(
D−λ

z Ln
α f (z)

z

)δ

= δ

(
D−λ

z Ln
α f (z)

z

)δ−1(
D−λ

z Ln
α f (z)

)′
− δp(z),

and 1
δ zp′(z) + p(z) =

(
D−λ

z Ln
α f (z)

z

)δ−1(
D−λ

z Ln
α f (z)

)′, z ∈ U.
Inequality (9) can be written

Fp(U)

(
1
δ

zp′(z) + p(z)
)
≤ Fh(U)h(z) = Fg(U)

(
λzg′(z) + g(z)

)
, z ∈ U.

Applying Lemma 3 for α = 1
δ and m = λδ, we get

FD−λ
z Ln

α f (U)

(
D−λ

z Ln
α f (z)

z

)δ

≤ Fg(U)g(z), z ∈ U.
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Example 4. Consider

g(z) =
−2z
1 + z

and

h(z) = g(z) + zg′(z) =
−2z2 − 4z

(1 + z)2

as given in Example 1.
Taking α = 2, n = 1, f (z) = z + z2, z ∈ U, as in Example 1, we obtain

L1
2 f (z) = z + 2z2

and
D−λ

z L1
2 f (z) =

1
Γ(λ + 2)

z1+λ +
4

Γ(λ + 3)
z2+λ

and differentiating it

(
D−λ

z L1
2 f (z)

)′
=

1
Γ(λ + 1)

zλ +
4

Γ(λ + 2)
zλ+1.

Applying Theorem 7 we get the following fuzzy differential subordination

(
1

Γ(λ + 2)
zλ +

4
Γ(λ + 3)

z1+λ

)δ−1( 1
Γ(1 + λ)

zλ +
4

Γ(2 + λ)
z1+λ

)
≺F
−2z2 − 4z

(1 + z)2 , z ∈ U,

induce the following fuzzy differential subordination

(
1

Γ(λ + 2)
zλ +

4
Γ(λ + 3)

z1+λ

)δ

≺F
−2z
1 + z

, z ∈ U.

Theorem 8. Considering a holomorphic function h, such that h(0) = 0 and Re
(

1 + zh′′(z)
h′(z)

)
>

− 1
2 , z ∈ U, when f ∈ A, α ≥ 0, λ, δ > 0, and the fuzzy differential subordination

FD−λ
z Ln

α f (U)

((
D−λ

z Ln
α f (z)

z

)δ−1(
D−λ

z Ln
α f (z)

)′
)
≤ Fh(U)h(z), z ∈ U, (10)

holds, then

FD−λ
z Ln

α f (U)

(
D−λ

z Ln
α f (z)

z

)δ

≤ Fq(U)q(z), z ∈ U,

where the fuzzy best dominant q(z) = 1
z
∫ z

0 h(t)dt is convex.

Proof. Considering p(z) =
(

D−λ
z Ln

α f (z)
z

)δ
∈ H[0, λδ], after differentiating it and making an

easy computation, we get

1
δ

zp′(z) + p(z) =
(

D−λ
z Ln

α(z)
z

)δ−1(
D−λ

z Ln
α f (z)

)′
, z ∈ U,

and inequality (10) can be written

Fp(U)

(
1
δ

zp′(z) + p(z)
)
≤ Fh(U)h(z), z ∈ U.
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Applying Lemma 2, we obtain

FD−λ
z Ln

α f (U)

(
D−λ

z Ln
α f (z)

z

)δ

≤ Fq(U)q(z), z ∈ U.

Taking into account that Re
(

1 + zh′′(z)
h′(z)

)
> − 1

2 , z ∈ U, applying Lemma 1 we obtain

that q(z) = 1
z
∫ z

0 h(t)dt is a convex function and it is a solution of the differential equation
of the fuzzy differential subordination (10) zq′(z) + q(z) = h(z), thus it is the fuzzy best
dominant.

Example 5. Considering

h(z) =
−2z
1 + z

,

as in Example 2, a convex function which satisfy conditions from Theorem 8, and taking α = 2,
n = 1, f (z) = z + z2, z ∈ U, we obtain

L1
2 f (z) = z + 2z2

and
D−λ

z L1
2 f (z) =

1
Γ(λ + 2)

z1+λ +
4

Γ(λ + 3)
z2+λ

and differentiating it

(
D−λ

z L1
2 f (z)

)′
=

1
Γ(λ + 1)

zλ +
4

Γ(λ + 2)
zλ+1.

Additionally, we get

q(z) =
1
z

∫ z

0

−2t
1 + t

dt =
2 ln(1 + z)

z
− 2.

Applying Theorem 8 we get the following fuzzy differential subordination

(
1

Γ(λ + 2)
zλ +

4
Γ(λ + 3)

z1+λ

)δ−1( 1
Γ(1 + λ)

zλ +
4

Γ(2 + λ)
z1+λ

)
≺F

2z
1 + z

, z ∈ U,

induce the following fuzzy differential subordination

(
1

Γ(λ + 2)
zλ +

4
Γ(λ + 3)

z1+λ

)δ

≺F
2 ln(1 + z)

z
− 2, z ∈ U.

Theorem 9. Considering a convex function g with the property g(0) = 1
λ+1 and defining h(z) =

zg′(z) + g(z), z ∈ U, λ > 0, α ≥ 0, n ∈ N, when f ∈ A and the fuzzy differential subordination

FD−λ
z Ln

α f (U)


1− D−λ

z Ln
α f (z)

(
D−λ

z Ln
α f (z)

)′′
[(

D−λ
z Ln

α f (z)
)′]2


 ≤ Fh(U)h(z), z ∈ U,

holds, then we obtain the sharp result

FD−λ
z Ln

α f (U)


 D−λ

z Ln
α f (z)

z
(

D−λ
z Ln

α f (z)
)′


 ≤ Fg(U)g(z), z ∈ U.
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Proof. Differentiating p(z) = D−λ
z Ln

α f (z)
z(D−λ

z Ln
α f (z))

′ we obtain zp′(z) + p(z) = 1−
D−λ

z Ln
α f (z)(D−λ

z Ln
α f (z))

′′
[
(D−λ

z Ln
α f (z))

′]2 , z ∈ U.

Using this notation, the fuzzy differential subordination can be written

Fp(U)

(
zp′(z) + p(z)

)
≤ Fh(U)h(z) = Fg(U)

(
zg′(z) + g(z)

)
, z ∈ U,

and applying Lemma 3, we obtain the sharp result

FD−λ
z Ln

α f (U)


 D−λ

z Ln
α f (z)

z
(

D−λ
z Ln

α f (z)
)′


 ≤ Fg(U)g(z), z ∈ U.

3. Conclusions

Applying the theory of fuzzy differential subordination, we studied a subclass of
analytic function DLFn (δ, α, λ) newly introduced regarding the operator D−λ

z Ln
α . Several

interesting properties are obtained for the defining subclass DLFn (δ, α, λ). New fuzzy
differential subordinations are obtained for D−λ

z Ln
α . To show how the results would be

applied it is give an example. The operator D−λ
z Ln

α introduced in Definition 8 and the
subclass DLFn (δ, α, λ) introduced in Definition 9 can be objects in other future studies.
Other subclasses of analytic functions can be introduced regarding this operator and some
properties for these subclasses can be investigated regarding coefficient estimates, closure
theorems, distortion theorems, neighborhoods, and the radii of starlikeness, convexity, or
close-to-convexity.

The dual theory of fuzzy differential superordination introduced in [21] could be used
for obtaining similar results involving the operator D−λ

z Ln
α and the class LFn (δ, α, λ) which

could be combined with the results presented here for sandwich-type theorems, as seen
in [17].
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Abstract: In the present paper, due to beta negative binomial distribution series and Laguerre poly-
nomials, we investigate a new family FΣ(δ, η, λ, θ; h) of normalized holomorphic and bi-univalent
functions associated with Ozaki close-to-convex functions. We provide estimates on the initial
Taylor–Maclaurin coefficients and discuss Fekete–Szegő type inequality for functions in this family.

Keywords: bi-univalent function; Laguerre polynomial; coefficient bound; Fekete–Szegő problem;
beta negative binomial distribution; subordination

1. Introduction

Consider the setA of functions f which are holomorphic in the unit disk D = {|z| < 1}
in the complex plane C, of the form:

f (z) = z +
∞

∑
n=2

anzn, z ∈ D. (1)

Let S be the subset of A which contains univalent functions in D having the form (1).
As we can see in [1], due to the Koebe one-quarter theorem, every function f ∈ S has an
inverse f−1 such that f−1( f (z)) = z, (z ∈ D) and f ( f−1(w)) = w, (|w| < r0( f ), r0( f ) ≥ 1

4 ).
With f on the form (1), we have

f−1(w) = w− a2w2 +
(

2a2
2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · , |w| < r0( f ). (2)

We called a function f ∈ A as bi-univalent in D, if both f and f−1 are univalent in D.
The set of bi-univalent functions in D is denoted by Σ.

In recent years, Srivastava et al. [2] reconsidered the study of holomorphic and bi-
univalent functions. In this sense, we pursued a kind of surveys represented by those of
Ali et al. [3], Bulut et al. [4], Srivastava et al. [5] and others (see, for example, [6–18]).

The polynomial solution φ(τ) of the differential equation (see [19])

τφ′′ + (1 + γ− τ)φ′ + nφ = 0,

consists on the generalized Laguerre polynomial Lγ
n(τ), where γ > −1 and n is non-

negative integers.
We defined by

Hγ(τ, z) =
∞

∑
n=0

Lγ
n(τ)zn =

e−
τz

1−z

(1− z)γ+1 , (3)
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the generating function of generalized Laguerre polynomial Lγ
n(τ), where τ ∈ R and z ∈ D.

Similarly, the generalized Laguerre polynomials is given by the following recurrence relations:

Lγ
n+1(τ) =

2n + 1 + γ− τ

n + 1
Lγ

n(τ)−
n + γ

n + 1
Lγ

n−1(τ) (n ≥ 1),

with the initial conditions

Lγ
0 (τ) = 1, Lγ

1 (τ) = 1 + γ− τ and Lγ
2 (τ) =

τ2

2
− (γ + 2)τ +

(γ + 1)(γ + 2)
2

. (4)

Obviously, if γ = 0 the generalized Laguerre polynomial implies the simple Laguerre
polynomial, i.e., L0

n(τ) = Ln(τ).
Consider two functions f and g holomorphic in D. We say that the function f is

subordinate to g, if there exists a function w, holomorphic in D with w(0) = 0, and |w(z)| <
1, (z ∈ D) such that f (z) = g(w(z)). We denote this relation by f ≺ g or f (z) ≺ g(z) (z ∈
D). In addition, if the function g is univalent in D, then we get the following equivalence
(see [20]), f (z) ≺ g(z) ⇐⇒ f (0) = g(0) and f (D) ⊂ g(D).

From a theoretical standpoint, the Poisson, Pascal, logarithmic, binomial and Borel
distributions have all been examined in some depth in geometric function theory (see for
example [21–26]).

For a discrete random variable x, we say that it has a beta negative binomial distribu-
tion if it takes the values 0, 1, 2, 3, · · · with the probabilities

B(η + θ, λ)

B(η, λ)
, θ

B(η + θ, λ + 1)
B(η, λ)

,
1
2

θ(θ + 1)
B(η + θ, λ + 2)

B(η, λ)
, · · · ,

respectively, where η, θ and λ are the parameters.

Prob(x = τ) =

(
θ + τ − 1

τ

)
B(η + θ, λ + τ)

B(η, λ)

=
Γ(θ + τ)

τ!Γ(θ)
Γ(η + θ)Γ(λ + τ)Γ(η + λ)

Γ(η + θ + λ + τ)Γ(η)Γ(λ)

=
(η)θ(θ)τ(λ)τ

(η + λ)θ(θ + η + λ)ττ!
,

where (α)n is the Pochhammer symbol defined by

(α)n =
Γ(α + n)

Γ(α)
=

{
1 (n = 0),
α(α + 1) . . . (α + n− 1) (n ∈ N).

Wanas and Al-Ziadi [27] developed the following power series whose coefficients are
beta negative binomial distribution probabilities:

Xθ
η,λ(z) = z +

∞

∑
n=2

(η)θ(θ)n−1(λ)n−1

(η + λ)θ(θ + η + λ)n−1(n− 1)!
zn (z ∈ D; η, λ, θ > 0).

By the well-known ratio test, we deduce that the radius of convergence of the above
power series is infinity.

We recall the linear operator Bθ
η,λ : A −→ A, as can be found in (see [27])

Bθ
η,λ f (z) = Xθ

η,λ(z) ∗ f (z) = z +
∞

∑
n=2

(η)θ(θ)n−1(λ)n−1

(η + λ)θ(θ + η + λ)n−1(n− 1)!
anzn z ∈ D,

where (∗) represents the Hadamard product (or convolution) of two series.
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2. Main Results

We open the main section by introducing the family FΣ(δ, η, λ, θ; h) as follows:

Definition 1. Suppose that 1
2 ≤ δ ≤ 1, η, λ, θ > 0 and h is analytic in D, h(0) = 1. We say that

the function f ∈ Σ is in the family FΣ(δ, η, λ, θ; h) if the following subordinations hold:

2δ− 1
2δ + 1

+
2

2δ + 1


1 +

z
(
Bθ

η,λ f (z)
)′′

(
Bθ

η,λ f (z)
)′


 ≺ h(z)

and

2δ− 1
2δ + 1

+
2

2δ + 1


1 +

w
(
Bθ

η,λ f−1(w)
)′′

(
Bθ

η,λ f−1(w)
)′


 ≺ h(w),

where f−1 is given by (2).

For δ = 1
2 in Definition 1, the family FΣ(δ, η, λ, θ; h) reduces to the family SΣ(η, λ, θ; h)

of bi-starlike functions such that the following subordinations hold:

1 +
z
(
Bθ

η,λ f (z)
)′′

(
Bθ

η,λ f (z)
)′ ≺ h(z)

and

1 +
w
(
Bθ

η,λ f−1(w)
)′′

(
Bθ

η,λ f−1(w)
)′ ≺ h(w).

Theorem 1. Suppose that 1
2 ≤ δ ≤ 1 and η, λ, θ > 0. If f ∈ Σ of the form (1) is in the family

FΣ(δ, η, λ, θ; h), with h(z) = 1 + e1z + e2z2 + · · · , then

|a2| ≤
(2δ + 1)Γ(η + θ + λ + 1)Γ(η)Γ(λ)|e1|

4θΓ(η + θ)Γ(λ + 1)Γ(η + λ)
=
|e1|
Υ

(5)

and

|a3| ≤ min

{
max

{∣∣∣ e1

Φ

∣∣∣,
∣∣∣∣∣
e2

Φ
+

Ψe2
1

Υ2Φ

∣∣∣∣∣

}
, max

{∣∣∣ e1

Φ

∣∣∣,
∣∣∣∣∣
e2

Φ
− (2Φ−Ψ)e2

1
Υ2Φ

∣∣∣∣∣

}}
, (6)

where
Υ = 4θΓ(η+θ)Γ(λ+1)Γ(η+λ)

(2δ+1)Γ(η+θ+λ+1)Γ(η)Γ(λ) ,

Φ = 6θ(θ+1)Γ(η+θ)Γ(λ+2)Γ(η+λ)
(2δ+1)Γ(η+θ+λ+2)Γ(η)Γ(λ) ,

Ψ = 8θ2Γ2(η+θ)Γ2(λ+1)Γ2(η+λ)
(2δ+1)Γ2(η+θ+λ+1)Γ2(η)Γ2(λ)

.

(7)

Proof. Assume that f ∈ FΣ(δ, η, λ, θ; h). Then, there exist two holomorphic functions
φ, ψ : D −→ D given by

φ(z) = r1z + r2z2 + r3z3 + · · · (z ∈ D) (8)

and
ψ(w) = s1w + s2w2 + s3w3 + · · · (w ∈ D), (9)
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with φ(0) = ψ(0) = 0, |φ(z)| < 1, |ψ(w)| < 1, z, w ∈ D such that

1 +
2

2δ + 1

z
(
Bθ

η,λ f (z)
)′′

(
Bθ

η,λ f (z)
)′ = 1 + e1φ(z) + e2φ2(z) + · · · (10)

and

1 +
2

2δ + 1

w
(
Bθ

η,λ f−1(w)
)′′

(
Bθ

η,λ f−1(w)
)′ = 1 + e1ψ(w) + e2ψ2(w) + · · · . (11)

Using (8)–(11), one obtains

1 +
2

2δ + 1

z
(
Bθ

η,λ f (z)
)′′

(
Bθ

η,λ f (z)
)′ = 1 + e1r1z +

[
e1r2 + e2r2

1

]
z2 + · · · (12)

and

1 +
2

2δ + 1

w
(
Bθ

η,λ f−1(w)
)′′

(
Bθ

η,λ f−1(w)
)′ = 1 + e1s1w +

[
e1s2 + e2s2

1

]
w2 + · · · . (13)

Since |φ(z)| < 1 and |ψ(w)| < 1, z, w ∈ D, we deduce
∣∣rj
∣∣ ≤ 1 and

∣∣sj
∣∣ ≤ 1 (j ∈ N). (14)

In view of (12) and (13), after simplifying, we obtain

4θΓ(η + θ)Γ(λ + 1)Γ(η + λ)

(2δ + 1)Γ(η + θ + λ + 1)Γ(η)Γ(λ)
a2 = e1r1, (15)

6θ(θ + 1)Γ(η + θ)Γ(λ + 2)Γ(η + λ)

(2δ + 1)Γ(η + θ + λ + 2)Γ(η)Γ(λ)
a3 −

8θ2Γ2(η + θ)Γ2(λ + 1)Γ2(η + λ)

(2δ + 1)Γ2(η + θ + λ + 1)Γ2(η)Γ2(λ)
a2

2 (16)

= e1r2 + e2r2
1,

− 4θΓ(η + θ)Γ(λ + 1)Γ(η + λ)

(2δ + 1)Γ(η + θ + λ + 1)Γ(η)Γ(λ)
a2 = e1s1 (17)

and

6θ(θ + 1)Γ(η + θ)Γ(λ + 2)Γ(η + λ)

(2δ + 1)Γ(η + θ + λ + 2)Γ(η)Γ(λ)

(
2a2

2 − a3

)
− 8θ2Γ2(η + θ)Γ2(λ + 1)Γ2(η + λ)

(2δ + 1)Γ2(η + θ + λ + 1)Γ2(η)Γ2(λ)
a2

2 (18)

= e1s2 + e2s2
1.

From (15) and (17), we derive inequality (5). Applying (7), then (15) and (16) become

Υa2 = e1r1, Φa3 −Ψa2
2 = e1r2 + e2r2

1 (19)

which yields
Φ
e1

a3 = r2 +

(
e2

e1
+

Ψe1

Υ2

)
r2

1, (20)

and on using the known sharp result ([28], p. 10):

|r2 − µr2
1| ≤ max{1, |µ|} (21)
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for all µ ∈ C, we obtain ∣∣∣∣
Φ
e1

∣∣∣∣|a3| ≤ max
{

1,
∣∣∣∣
e2

e1
+

Ψe1

Υ2

∣∣∣∣
}

. (22)

Similarly, (17) and (18) become

− Υa2 = e1s1, Φ(2a2
2 − a3)−Ψa2

2 = e1s2 + e2s2
1. (23)

These equalities provide

− Φ
e1

a3 = s2 +

(
e2

e1
− (2Φ−Ψ)e1

Υ2

)
s2

1. (24)

Applying (21), we deduce
∣∣∣∣
Φ
e1

∣∣∣∣|a3| ≤ max
{

1,
∣∣∣∣
e2

e1
− (2Φ−Ψ)e1

Υ2

∣∣∣∣
}

. (25)

Inequality (6) follows from (22) and (25).

Furthermore, we use the generating function (3) of the generalized Laguerre poly-
nomials Lγ

n(τ) as h(z). As a consequence, from (4), we obtain e1 = 1 + γ − τ and
e2 = τ2

2 − (γ + 2)τ + (γ+1)(γ+2)
2 , and then, Theorem 1 is reduced to the following corollary.

Corollary 1. If f ∈ Σ of the form (1) is in the class FΣ(δ, η, λ, θ; Hγ(τ, z)), then

|a2| ≤
(2δ + 1)Γ(η + θ + λ + 1)Γ(η)Γ(λ)|1 + γ− τ|

4θΓ(η + θ)Γ(λ + 1)Γ(η + λ)
=
|1 + γ− τ|

Υ

and

|a3| ≤ min

{
max

{∣∣∣∣
1 + γ− τ

Φ

∣∣∣∣,
∣∣∣∣∣

τ2

2 − (γ + 2)τ + (γ+1)(γ+2)
2

Φ
+

Ψ(1 + γ− τ)2

Υ2Φ

∣∣∣∣∣

}
,

max

{∣∣∣∣
1 + γ− τ

Φ

∣∣∣∣,
∣∣∣∣∣

τ2

2 − (γ + 2)τ + (γ+1)(γ+2)
2

Φ
− (2Φ−Ψ)(1 + γ− τ)2

Υ2Φ

∣∣∣∣∣

}}
,

for all δ, η, λ, θ such that 1
2 ≤ δ ≤ 1 and η, λ, θ > 0, where Υ, Φ, Ψ are defined by (7) and Hγ(τ, z)

is given by (3).

In the following theorem, we develop “the Fekete–Szegő Problem” for the family
FΣ(δ, η, λ, θ; h).

Theorem 2. If f ∈ Σ of the form (1) is in the class FΣ(δ, η, λ, θ; h), then

∣∣∣a3 − ηa2
2

∣∣∣ ≤ |e1|
Φ

min
{

max
{

1,
∣∣∣∣
e2

e1
+

(Ψ + ηΦ)e1

Υ2

∣∣∣∣
}

, max
{

1,
∣∣∣∣
e2

e1
− (2Φ−Ψ− ηΦ)e1

Υ2

∣∣∣∣
}}

, (26)

for all δ, η, λ, θ such that 1
2 ≤ δ ≤ 1 and η, λ, θ > 0, where Υ, Φ, Ψ are defined by (7).

Proof. According to the notations from the proof of Theorem 1 and from (19) and (20),
we obtain

a3 − ηa2
2 =

e1

Φ

(
r2 +

(
e2

e1
+

(Ψ + ηΦ)e1

Υ2

)
r2

1

)
. (27)

Applying the well-known sharp result |r2 − µr2
1| ≤ max{1, |µ|}, one obtains

|a3 − ηa2
2| ≤

|e1|
Φ

max
{

1,
∣∣∣∣
e2

e1
+

(Ψ + ηΦ)e1

Υ2

∣∣∣∣
}

. (28)
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Similarly, from (23) and (24), we derive

a3 − ηa2
2 = − e1

Φ

(
s2 +

(
e2

e1
− (2Φ−Ψ− ηΦ)e1

Υ2

)
s2

1

)
(29)

and in view of |s2 − µs2
1| ≤ max{1, |µ|}, we get

|a3 − ηa2
2| ≤

|e1|
Φ

max
{

1,
∣∣∣∣
e2

e1
− (2Φ−Ψ− ηΦ)e1

Υ2

∣∣∣∣
}

. (30)

Inequality (26) follows from (28) and (30).

Corollary 2. If f ∈ Σ of the form (1) is in the class FΣ(δ, η, λ, θ; Hγ(τ, z)), then
∣∣∣a3 − ηa2

2

∣∣∣

≤ |1 + γ− τ|
Φ

min

{
max

{
1,

∣∣∣∣∣
τ2

2 − (γ + 2)τ + (γ+1)(γ+2)
2

1 + γ− τ
+

(Ψ + ηΦ)(1 + γ− τ)

Υ2

∣∣∣∣∣

}
,

max

{
1,

∣∣∣∣∣
τ2

2 − (γ + 2)τ + (γ+1)(γ+2)
2

1 + γ− τ
− (2Φ−Ψ− ηΦ)(1 + γ− τ)

Υ2

∣∣∣∣∣

}}
,

for all δ, η, λ, θ such that 1
2 ≤ δ ≤ 1 and η, λ, θ > 0, where Υ, Φ, Ψ are given by (7) and Hγ(τ, z)

is given by (3).

3. Conclusions

In the present survey, we considered a certain class of bi-univalent functions, denoted
by FΣ(δ, η, λ, θ; h), representable in the form of a Hadamard product of two power series.
The coefficients of the first one, developed by Wanas and Al-Ziadi in [27], are beta negative
binomial distribution probabilities. Furthermore, the Fekete–Szegő Problem was developed,
by making use of the newly introduced family. Consequently, inequalities of Fekete–Szegő
type were obtained in the special case of generalized Laguerre polynomials.
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15. Wanas, A.K.; Cotîrlǎ, L.-I. Applications of (M− N)-Lucas polynomials on a certain family of bi-univalent functions. Mathematics

2022, 10, 595. [CrossRef]
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Abstract: The notion of k-symbol special functions has recently been introduced. This new concept
offers many interesting geometric properties for these special functions including logarithmic con-
vexity. The aim of the present paper is to exploit essentially two-dimensional wave propagation
in the earth-ionosphere wave path using k-symbol Airy functions (KAFs) in the open unit disk.
It is shown that the standard wave-mode working formula may be determined by orthogonality
considerations without the use of intricate justifications of the complex plane. By taking into account
the symmetry-convex depiction of the KAFs, the formula combination is derived.

Keywords: analytic function; inequalities; univalent function; open unit disk; symmetric differential
operator; airy functions; normalization; complex wave equation; k-symbol calculus

MSC: 30C45; 30C15; 33C10

1. Introduction

When Diaz and Pariguan [1] were assessing Feynman integrals, they introduced and
researched k-gamma functions. Because they provide a generic integral representation of the
relevant functions, these integrals are fundamentally important in high-energy physics [2].
K-gamma functions have since been developed which have a variety of consequences for
mathematics and applications. In light of significant applications in quantum chemistry,
Karwowski and Witek [3] employed k-special functions for determining the solution of the
complex Schrodinger equation for the harmonium and similar designs. In their collected
papers, there is a great deal of attention to the theory of measurement and combination
versions for the k-maximizing factorial numbers that are used as examples as well as to the
combinatorics of the Pochhammer k-symbol.

K-gamma functions were employed for combination analysis by Lackner and Lack-
ner [4] in light of significant applications in statistics. Applications of various k-gamma
function types have eliminated the major concerns, and, as a result, multiple publications
analyzing k-gamma functions have been made available. Fractional calculus plays a vital
role in simulating real-world issues [5]. It is perhaps surprising that k-gamma functions and
associated k-Pochhammer symbols are also used in the field of fractional calculus functions.
Fractional kinetic equations, including k-Mittag–Leffler functions, have been solved by
Agarwal et al. [6]. In [7], Set et al. employed the k-calculus equivalent of the Riemann–
Liouville singular kernel. More in-depth discussion can be found in [8,9]. Review of the
literature on k-gamma functions has led us to conclude that, on the one hand, k-gamma
functions have stimulated the study of mathematical ideas using novel methods, and on
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the other hand, that the application of these functions in diverse situations is fundamental.
The k-symbol calculus has recently been proposed as a tool for modifying, generalizing,
and analyzing classes of analytic functions, such as differential, integral, and convolution
operators in the open unit disk [10–13].

Airy functions (AFs), which are the solutions of ℵ′′(ξ)− ξℵ(ξ) = 0, and Legendre
functions, are frequently used in place of the propagating wave functions in the approxi-
mate solution due to their asymptotic expansions. In their investigation on the optics of a
raindrop, Olivier and Soares provided a thorough justification for the Airy hypothesis [14].
The theory of electromagnetic diffraction, the propagation of radio waves, the propagation
of light, and physical optics are all fields in which AFs play a vital role. Additionally, they
are often employed in research, as described in [15]. Applications of AFs are discussed
in relation to the two characteristics of symmetry and convexity. Studies using radiation
exploit the symmetry characteristic (see [16–18]). The convexity feature is used in lens
research (see [19–21]).

To solve a complex k-symbol wave equation on the open unit disk, we use the char-
acteristics of k-symbol Airy functions. We first give the k-symbol Airy functions in the
normalized form in order to describe how the solution of the wave equation behaves.
Investigation of the geometric characteristics is made easier by this. We establish that the
normalized formula has several interesting special functions. We then locate the symmetry-
convex representation of the KAFs to investigate the propagation of two-dimensional
waves in a complicated domain. To acquire the univalent solution, which is crucial for
solving the complex wave equation, we seek to demonstrate a set of necessary conditions.
It is demonstrated that the fundamental working formula for the wave theory may be
derived from orthogonality considerations without the need for a thorough explanation in
the complex plane. The formula is coupled with consideration of the symmetry-convex
representation of the KAFs. The approach is presented in Section 2, the findings are detailed
and discussed in Section 3, and conclusions are drawn in Section 4.

2. Approaches

Different ideas that are considered in the conclusion are covered below.

2.1. Normalized Airy Function

The Airy functions are formulated by the integral structure

ℵ(ξ) =
∫ +∞

−∞
exp(i[ξt + t3/3])dt

achieving the power series

ℵ1(ξ) =

(
1

32/3π

) ∞

∑
n=0




3n/3Γ( n+1
3 ) sin

(
2(n + 1)π

3

)

Γ(n + 1)


ξn

=

(
1

32/3π

)(
Γ(

1
3
) sin

(
2π

3

))
+

(
1

32/3π

)(
31/3Γ(

2
3
) sin

(
4π

3

))
ξ

+

(
1

32/3π

) ∞

∑
n=2




3n/3Γ( n+1
3 ) sin

(
2(n + 1)π

3

)

Γ(n + 1)


ξn

=
1

(32/3Γ(2/3))
− ξ

(31/3Γ(1/3))
+

ξ3

(6× 32/3Γ(2/3))
− ξ4

(12(31/3Γ(1/3)))
+ O(ξ5)
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and

ℵ2(ξ) =

(
1

31/6π

) ∞

∑
n=0




3n/3Γ( n+1
3 )

∣∣∣∣sin
(

2(n + 1)π
3

)∣∣∣∣
Γ(n + 1)


ξn

=

(
1

31/6π

)(
Γ(

1
3
)

∣∣∣∣sin
(

2π

3

)∣∣∣∣
)
+

(
1

31/6π

)(
31/3Γ(

2
3
)

∣∣∣∣sin
(

4π

3

)∣∣∣∣
)

ξ

+

(
1

31/6π

) ∞

∑
n=2




3n/3Γ( n+1
3 )

∣∣∣∣sin
(

2(n + 1)π
3

)∣∣∣∣
Γ(n + 1)


ξn

=
1

31/6Γ(2/3)
+

31/6ξ

Γ(1/3)
+

ξ3

6× 31/6Γ(2/3)
+

ξ4

4× 35/6Γ(1/3)
+ O(ξ5).

By setting g(0) = 0 and g′(0) = 1, we aim to normalize Airy functions. We can
examine the geometrical structure of these functions using this technique. The normalized
power series are as follows:

Y1(ξ) =



ℵ1(ξ)−

(
1

(32/3Γ(2/3))

)

(
− 1
(31/3Γ(1/3))

)




= ξ − ξ3Γ(1/3))
(6(31/3Γ(2/3)))

+ . . .

:= ξ +
∞

∑
n=2

ynξn,

where

yn :=




3(n−1)/3Γ( n+1
3 ) sin

(
2(n + 1)π

3

)

Γ( 2
3 ) sin

(
4π

3

)
Γ(n + 1)




= −2× 3n−3/2 sin(2/3π(n + 1))Γ((n + 1)/3))
(Γ(2/3)Γ(n + 1))

;

and

Y2(ξ) =



ℵ2(ξ)−

(
1

31/6π

)(
Γ( 1

3 )

∣∣∣∣sin
(

2π

3

)∣∣∣∣
)

(
1

31/6π

)(
31/3Γ( 2

3 )

∣∣∣∣sin
(

4π

3

)∣∣∣∣
)




= ξ +
∞

∑
n=2




3(n−1)/3Γ( n+1
3 )

∣∣∣∣sin
(

2(n + 1)π
3

)∣∣∣∣

Γ( 2
3 )

∣∣∣∣sin
(

4π

3

)∣∣∣∣Γ(n + 1)


ξn

= ξ +
ξ3Γ(1/3))

(6× 31/3Γ(2/3))
+ . . .

= ξ +
∞

∑
n=2
|yn|ξn.
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2.2. K-Symbol Calculus

The k-symbol gamma function Γk, often known as the motivate gamma function, is
formulated as follows [1]:

Γk(ξ) = lim
n→∞

n!kn(nk)
ξ
k−1

(ξ)n,k
,

where
(ξ)n,k := ξ(ξ + k)(ξ + 2k) . . . (ξ + (n− 1)k)

and

(ξ)n,k =
Γk(ξ + nk)

Γk(ξ)
.

Based on the definition of Γk,, we present the normalized k-symbole functions as follows:

[Y1]k(ξ) = ξ − ξ3Γk(1/3))
(6(31/3Γk(2/3)))

+ . . .

:= ξ +
∞

∑
n=2

[yn]kξn,

where

[yn]k := −2× 3n−3/2 sin(2/3π(n + 1))Γk((n + 1)/3))
(Γk(2/3)Γk(n + 1))

;

and

[Y2]k(ξ) = ξ +
ξ3Γk(1/3))

(6× 31/3Γk(2/3))
+ . . .

= ξ +
∞

∑
n=2
|[yn]k|ξn.

The following outcomes demonstrate some characteristics of the k−symbol Airy
functions (see Figure 1).

Proposition 1. The following outcomes are accurate for k-special functions

•

[Y1]k(ξ) =
Gk(4/3)31/3/Gk(1/3)
Gk(5/3)32/3/Gk(2/3)

− Gk(4/3)31/3/Gk(1/3)
3

(
[I−1/3]k(

2ξ3/2

3
)(ξ3/2)1/3 − ξ[I1/3]k((2ξ3/2)/3))

(ξ3/2)1/3

)
,

where Gk is the k-Barnes function satisfying Gk(n) = (Γk(n))n−1

κ(n) (κ is the κ function) and
[In]k(ξ) is the k-modified Bessel function.

•

[Y1]k(ξ) = −
(

1/3[J−1/3]k(2/3(−ξ)3/2)((−ξ)3/2)1/3
)
(Gk(4/3)31/3/Gk(1/3)

− Gk(4/3)31/3/Gk(1/3)
Gk(5/3)32/3/Gk(2/3)

− ξ[J1/3]k(2/3(−ξ)3/2)(Gk(4/3)31/3)/Gk(1/3)
3((−ξ)3/2)1/3 ,

where [Jn]k(ξ) indicates the k-Bessel function.

164



Axioms 2022, 11, 590

•

[Y2]k(ξ) =

ξ [0F1]k(; 4/3; ξ3/9)31/6

Γk(1/3)
− 1

Γk(2/3)31/6 +
[0F1]k(; 2/3; ξ3/9)

Γk(2/3)31/6

31/6/Γk(1/3)
,

where [ 0F1]k represents the k-hypergeometric function.

Figure 1. The graph of the normalized Airy functions Y1,Y2, respectively.

2.3. K-Airy Differential Operator

Using the normalized k-Airy functions, we then define the symmetric-convex differential
operator. For an analytic function normalized in the open unit disk Λ := {ξ ∈ C : |ξ| < 1},
we have the following structure:

υ(ξ) = ξ +
∞

∑
n=2

anξn,

The following power series is produced using the convoluted operator (∗) and the
normalized Airy function [Y1]k(ξ)

(υ ∗ [Y1)]k(ξ) = ([Y1]k ∗ υ)(ξ) = ξ +
∞

∑
n=2

an[yn]kξn, ξ ∈ Λ.

By considering the above convoluted product, we define the following normalized
k-Airy symmetric-convex differential operator (KASCO):

[Ωβ]k(ξ) = (1− β)ξ(υ ∗ [Y1]k)
′(ξ)− βξ(υ ∗ [Y1]k)

′(−ζ)

= (1− β)

(
ξ +

∞

∑
n=2

nan[yn]kξn

)
− β

(
−ξ +

∞

∑
n=2

nan[yn]k(−1)nξn

)

= ξ +
∞

∑
n=2

nan[yn]k[(1− β) + β(−1)n+1]ξn

:= ξ +
∞

∑
n=2

nan[yn]kvn(β)ξn ξ ∈ Λ,
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where
vn(β) := [(1− β) + β(−1)n+1].

The m-dimensional KASCO is illustrated as follows:

[Ωβ]
2
k(ζ) = [Ωβ]k([Ωβ]k)(ξ)

= (1− β)ξ([Ωβ]k)
′(ξ)− βξ([Ωβ]k)

′(−ξ)

= (1− β)

(
ξ +

∞

∑
n=2

n2an[yn]kvn(β)ξn

)
− β

(
−ξ +

∞

∑
n=2

n2an[yn]kvn(β)(−1)nξn

)

= ξ +
∞

∑
n=2

nan[yn]kvn(β)[(1− β) + β(−1)n+1]ξn

= ξ +
∞

∑
n=2

n2an[yn]kv2
n(β)ξn ξ ∈ Λ.

Generally, the m-formula is given by (see Figure 2)

[Ωβ]
m
k (ξ) = ξ +

∞

∑
n=2

nman[yn]kvm
n (β)ξn ξ ∈ Λ. (1)

Note that, under the consideration data k = 1, β = 0 and [yn]k ≈ 1,, this implies the
Salagean differential operator [22].

Figure 2. The graph of KASCO, when m = k = 1, β = 1/2, 1/4, 3/4 accordingly.

2.4. Univalent Solution of the k-Wave Equation

In an effort to develop the wave equation, we suggest utilizing the parametric Koebe
function. The Koebe function is an extreme function that belongs to the family of convex
univalent functions. The Koebe function σ(ξ) = ξ/(1− ξ)2 maps the unit disk conformally
onto the complex plane C with a slit along the disk |ξ| < 1/4. We utilize the rotate Koebe
function of the structure

σt(ξ) =
ξ

(1− eitξ)2 = ξ +
∞

∑
n=2

nei(n−1)tξn, ξ ∈ Λ.
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The operator Ωk
α acts on σ(ξ), producing the following expansion

[Ωβ]
m
k (ξ; t) = ξ +

∞

∑
n=2

n1+mei(n−1)t[yn]kvm
n (β)ξn ξ ∈ Λ. (2)

Using the operator (2), we proceed to formulate the complex wave equation. The
complex wave equation is considered in the formula

(
∂2

∂t2 + ε2 ∂2

∂ξ2

)
[Ωβ]

m
k (ξ; t) = Σ(ξ), (3)

where [Ωβ]
m
k (ξ; t) indicates the m-iterative wave amplitude in Λ with the convex parameter

β ∈ [0, 1] and Σ is known as the non-linear functional of the wave under consideration
owing Σ(0) = 0 and Σ′(0) = 1 (normalized function in Λ). A unique instance is examined
in [23], when Σ(ξ) = 0 and [Ωβ]

m
k (ξ; t) = [Ωβ]

m(ξ; t).
We provide a univalent outcome to the wave equation. The univalent result is signif-

icant in wave equations (see [24–27]). The wave peaks necessarily travel faster than the
troughs and ultimately reach these levels since the solutions to the wave equations are
known to be erroneous for infinite layers as they are not univalent functions. The primary
requirement to achieve an analytic univalent solution fulfilling the inequality is covered
in the next section <([Ωβ]

m
k (ξ; t)′) > 0 where ′ = d/dξ). Alternatively, the answer is a

complex domain Λ with a limited rotation function. In this instance, the gradients continue
to increase, but eventually these effects start to occur, slowing this expansion. The precise
behavior of the solution in Λ, which cannot be predicted from the wave equation, depends
on the form of the dissipation components that are taken into account.

3. Results and Discussion

This section describes our findings for the univalent solution of Equation (3) for
various hypotheses concerning Σ.

Proposition 2. Consider Equation (3). If the operator [Ωβ]
m
k (ξ; t) fulfils the symmetrical inequality

<
(

ξ[Ωβ]
m
k (ξ; t)′

[Ωβ]
m
k (ξ; t)− [Ωβ]

m
k (−ξ; t)

)
> 0 (4)

then [Ωβ]
m
k (ξ; t) is a univalent outcome for Equation (3).

Proof. The normalization formula of [Ωβ]
m
k (ξ; t) yields [[Ωβ]

m
k (0; t) = 0 and [Ωβ]

m
k (0; t)′ =

1. Replacing −ξ by ξ in the inequality (4), we get

<
(

ξ[Ωβ]
m
k (−ξ; t)′

[Ωβ]
m
k (ξ; t)− [Ωβ]

m
k (−ξ; t)

)
> 0. (5)

Combining inequalities (4) and (5), we receive

<
(

ξ
(
[Ωβ]

m
k (−ξ; t)′ − [Ωβ]

m
k (−ξ; t)′

)

[Ωβ]
m
k (ξ; t)− [Ωβ]

m
k (−ξ; t)

)
> 0. (6)

This shows that [Ωβ]
m
k (ξ; t)− [Ωβ]

m
k (−ξ; t) is univalent in Λ. In view of the Kaplan The-

orem of uni-valency [28], we obtain [Ωβ]
m
k (ξ; t) is a univalent outcome

of Equation (3).

Different conditions for [Ωβ]
m
k (ξ; t) to be univalently solvable are shown in the following

outcomes.
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Proposition 3. For Equation (3), assume that the operator [Ωβ]
m
k (ξ; t) violates the relation

<
(
[Ωβ]

m
k (ξ; t)′ + λ(ξ)[Ωβ]

m
k (ξ; t)′′

)
> 0 (7)

where λ(ξ) is an analytic function in Λ with a non-negative real part. Then [Ωβ]
m
k (ξ; t) is a

univalent outcome for Equation (3).

Proof. Assume that (7) is a true inequality. Formulate an admissible function ∆ : C2 → C,
as follows:

∆(ρ, ς) = ρ(ξ) + λ(ξ)ς(ξ).

In view of the assumption (7), and by letting

ρ(ξ) := [Ωβ]
m
k (ξ; t)′, ς(ζ) := ξ[Ωβ]

m
k (ξ; t)′′,

we have that
<
(
∆
(
[Ωβ]

m
k (ξ; t)′, ξ[Ωβ]

m
k (ξ; t)′′

))
> 0.

According to Theorem 5 of [29], we conclude that

<
(
[Ωβ]

m
k (ξ; t)′

)
> 0,

which leads to [Ωβ]
m
k (ξ; t) is a univalent solution of Equation (3).

Extra conditions on [Ωβ]
m
k (ξ; t) to be univalent. The following outcome is a relation

between [Ωβ]
m
k (ξ; t) and Σ(ξ) in Equation (3).

Proposition 4. Assume that Equation (3), where Σ(ξ) is a bounded function in Λ, with

inf
(

Σ(ξ1)− Σ(ξ2)

ξ1 − ξ2

)
> 0, ξ1, ξ2 ∈ Λ.

If
∣∣∣∣∣

ξ

[Ωβ]
m
k (ξ; t)

− ξ

Σ(ξ)

∣∣∣∣∣ ≤
2 inf

(
Σ(ξ1)− Σ(ξ2)

ξ1 − ξ2

)

[supξ∈Λ(Σ(ξ))]2
;

which leads to [Ωβ]
m
k (ξ; t) is a univalent solution for Equation (3).

Proof. Let [Ωβ]
m
k (ξ; t) = ξ +∑∞

n=2 ϑnζn and Σ(ξ) = ξ +∑∞
n=2 ϕnξn. Formulate the function

F : Λ→ Λ, as follows:

F(ξ) = [
ξ

[Ωβ]
m
k (ξ; t)

− ξ

Σ(ξ)
]′′.

Clearly, F(ξ) is analytic in Λ. Integrating both sides, we get

[
ξ

[Ωβ]
m
k (ξ; t)

− ξ

Σ(ξ)
]′ = ϕ2 − ϑ2 +

∫ ξ

0
F(τ)dτ.

Consequently, we have

[
ξ

[Ωβ]
m
k (ξ; t)

− ξ

Σ(ξ)
] = (ϕ2 − ϑ2)ξ +

∫ ξ

0
ds
∫ s

0
F(τ)dτ.

Therefore, a calculation gives that

[Ωβ]
m
k (ξ; t) =

Σ(ξ)
1 + (ϕ2 − ϑ2)Σ(ξ) + Σ(ξ)( f (ξ)/ξ)

,
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where

f (ξ) =
∫ ξ

0
ds
∫ s

0
F(τ)dτ.

A calculation yields that

(
f (ξ)

ξ

)′
=

1
ξ2

∫ ξ

0
t f ′′(t)dt =

1
ξ2

∫ ξ

0
τF(τ)dτ.

By virtue of the assumption, we have

∣∣∣∣
f (ξ2)

ξ2
− f (ξ1)

ξ1

∣∣∣∣ =
∣∣∣∣∣
∫ ξ2

ξ1

(
f (ξ)

ξ

)′
dξ

∣∣∣∣∣

≤




2 inf
(

Σ(ξ1)− Σ(ξ2)

ξ1 − ξ2

)

[supξ∈Λ(Σ(ξ))]2



( |ξ2 − ξ1|

2

)
,

where ξ1 6= ξ2. The next step is to prove that [Ωβ]
m
k (ξ1; t) 6= [Ωβ]

m
k (ξ2; t) or

∣∣[Ωβ]
m
k (ξ1; t)− [Ωβ]

m
k (ξ2; t)

∣∣ > 0, ξ1 6= ξ2.

∣∣[Ωβ]
m
k (ξ1; t)− [Ωβ]

m
k (ξ2; t)

∣∣

=

∣∣∣∣Σ(ξ1)− Σ(ξ2) + Σ(ξ2)Σ(ξ1)

(
f (ξ2)

ξ2
− f (ξ1)

ξ1

)∣∣∣∣
∣∣∣∣1 + (ϕ2 − ϑ2)Σ(ξ1) + Σ(ξ1)

(
f (ξ1)

ξ1

)∣∣∣∣
∣∣∣∣1 + (ϕ2 − ϑ2)Σ(ξ2) + Σ(ξ2)

(
f (ξ2)

ξ2

)∣∣∣∣

>

|Σ(ξ1)− Σ(ξ2)| − inf
(

Σ(ξ1)− Σ(ξ2)

ξ1 − ξ2

)
(ξ2 − ξ1)

∣∣∣∣1 + (ϕ2 − ϑ2)Σ(ξ1) + Σ(ξ1)

(
f (ξ1)

ξ1

)∣∣∣∣
∣∣∣∣1 + (ϕ2 − ϑ2)Σ(ξ2) + Σ(ξ2)

(
f (ξ2)

ξ2

)∣∣∣∣
≥ 0.

Consequently, we obtain that [Ωβ]
m
k (ξ; t) is a univalent solution of Equation (3)

in Λ.

Some unique examples of Proposition 4 are as follows:

Corollary 1. If ∣∣∣∣∣

(
ξ

[Ωβ]
m
k (ξ; t)

)′′∣∣∣∣∣ ≤ 2,

then [Ωβ]
m
k (ξ; t) is a univalent solution.

Proof. By putting Σ(ξ) = ξ in Proposition 4, we have the result. Note that this result is
sharp when

[Ωβ]
m
k (ξ; t) =

ξ

(1 + ξ)2+`
,

where ∣∣∣∣∣

(
ξ

[Ωβ]
m
k (ξ; t)

)′′∣∣∣∣∣ = (2 + `)(1 + `)(1 + ξ)`, ` > 0.

By Corollary 1, we have
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Corollary 2. If

[Ωβ]
m
k (ξ; t) =

ξ

1 + ∑∞
n=1 bnξn ,

where
∞

∑
n=2

n(n− 1)|bn| ≤ 2,

then [Ωβ]
m
k (ξ; t) is a univalent solution.

The concluding remarks are presented below.

Remark 1.

• Solutions that are periodic exist because n − 1 is an integer with Keobe function. Since
individual modes do not necessarily have to be periodic, this restriction is not required. Instead,
the value of t will be determined by the boundary conditions. Furthermore, it is asserted that
<(t) > 0 without sacrificing generality, and special emphasis is given to solutions that behave
as exp(it). The waves in the direction of positive t are attenuated in this way. The form of the
waves traveling in the direction of negative t is the same (symmetric sense).

• The way in which the concept is developed here readily lends itself to many generalizations.
This represents an intriguing situation when the height of the top border varies along the
direction of propagation. The normalized analytic function is seen as a function of ξ ∈ Λ to
obtain the normalized univalent solution in the complex model under study.

• It may be anticipated that a waveguide with slowly changing characteristics will not differ
greatly from a waveguide with a constant cross-section based on fundamental principles. The
structure of the modes may be used to identify a normalized waveguide with a univalent
function. The ideal ground conductivity is now standardized to a value that is very near
to unity.

4. Conclusions

A symmetric-convex differential formula of normalized Airy functions in the open
unit disk was developed. This equation was taken into account as a differential operator
working on a class of normalized analytic functions. The proposed operator (KASCO)
was shown to be a solution to a wave equation in the following phase of this inquiry.
We provided the necessary requirements for KASCO to be a univalent solution because
we sought to analyze the geometric shape of the solution (symmetry and convexity).
Based on the theory of the wave equation of a complex variable, the univalent solution is a
particularly delicate property. Based on the theory of geometric functions, this characteristic
leads to several geometric presentations for the solution.
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1. Introduction and Definitions

Let A denote the class of functions η of the form

η(z) = z +
∞

∑
n=2

anzn, (1)

which are analytic in the open unit disk

U = {z ∈ C : |z| < 1}

and satisfy the normalization condition

η(0) = η
′
(0)− 1 = 0.

Furthermore, we denote by S the subclass of A consisting of functions of the form (1),
which are also univalent in U.

For two functions η, y ∈ A, we say that η subordinated to y, written as

η(z) ≺ y(z),

or equivalently
η(z) = y(k(z)),

where, k(z) is the Schwarz function in U along with the condition, (see [1])

k(0) = 0 and |k(z)| < 1.
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If y is univalent in U, then

η(z) ≺ y(z)⇐⇒ η(0) = y(0) and η(U) ⊂ y(U).

The majorization of two analytic function (η � y) if and only if

η(z) = k(z)y(z), z ∈ U,

and also the coefficient inequality is satisfied

|an| ≤ |bn|.

There exists a wide formation between the subordination and majorization [2] in U for
established different classes including the the class of starlike functions (S∗):

Re

(
zη
′
(z)

η(z)

)
> 0, z ∈ U

and convex functions (C):

1 + Re

(
zη
′′
(z)

η
′(z)

)
> 0, z ∈ U.

Related to classes S∗ and C, we define the class P of analytic functions m ∈ P , which are
normalized by

m(z) = 1 +
∞

∑
n=1

cnzn,

such that
Rem(z) > 0 in U and m(0) = 1.

The convolution (∗) of η and y, defined by

(η ∗ y)(z) =
∞

∑
n=0

anbnzn,

where,

y(z) =
∞

∑
n=0

bnzn, (z ∈ U).

Srivastava et al. [3] geometrically explored the class of complex fractional operators
(differential and integral) and Ibrahim [4] provided the generality for a class of analytic
functions into two-dimensional fractional parameters in U. Number of authors used these
operators to illustrate various subclasses of analytic functions, fractional analytic functions
and differential equations of complex variable [5–7].

Definition 1. Pochhammer symbol (α)n can be defined as:

(α)n = α(α + 1) . . . (α + n− 1) if n 6= 0

and
(α)n = 1 if n = 0.

Definition 2. The (α)n can be expressed in terms of the Gamma function as:

(α)n =
Γ(α + n)

Γ(α)
, (n ∈ N).
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In [8], Mittag-Leffler introduced Mittag-Leffler functionsHα(z) as:

Hα(z) =
∞

∑
n=0

1
Γ(αn + 1)

zn, (α ∈ C, Re(α)) > 0,

and its generalizationHα,β(z) introduced by Wiman [9] as:

Hα,β(z) =
∞

∑
n=0

1
Γ(αn + β)

zn, (α, β ∈ C, Re(α), Re(β)) > 0. (2)

Now we define the normalization of Mittag-Leffler functionMα,β(z) as follows:

Mα,β(z) = zΓ(β)Hα,β(z)

Mα,β(z) = z +
∞

∑
n=2

Γ(β)

Γ(α(n− 1) + β)
zn, (3)

where, z ∈ U, Reα > 0, β ∈ C\{0,−1,−2, . . . }).
A function f ∈ A is called bounded turning if it satisfies the condition

Re
(

η
′
(z)
)
> 0.

For 0 ≤ ν < 1, let B(v) denote the class of functions η of the form (1), so that Re
(

η
′)

> v
in U. The functions in B(v) are called functions of bounded turning (c.f. [1], Vol. II).
Nashiro–Warschowski Theorem (see, e.g., [1], Vol. I) stated that the functions in B(v) are
univalent and also close-to-convex in U. Now recall the definition of classR of bounded
turning functions and can be defined as:

R =

{
η ∈ A : η

′
(z) ≺ 1 + z

1− z
, z ∈ U

}
.

In [3], Srivastava and Owa gave definitions for fractional derivative operator and fractional
integral operator in the complex z-plane C as follows:

The fractional integral of order δ is defined for a function η(z), by

Iδ
z η(z) ≡ I−δ

z η(z) =
1

Γ(δ)

z∫

0

(z− t)δ−1η(t)d(t), (δ > 0).

The fractional derivative operator Dz of order δ is defined by

Dδ
zη(z) = Dz I1−δ

z η(z)

=
1

Γ(1− δ)
Dz

z∫

0

η(t)

(z− t)δ
d(t), (0 ≤ δ < 1).

where, the function η(z) is analytic in the simply-connected region of the complex z-plane
C containing the origin, and the multiplicity of (z− t)−δ is removed by requiring log(z− t)
to be real when (z− t) > 0.

Let δ > 0 and m be the smallest integer, and the extended fractional derivative of η(z)
of order δ is defined as:

Dδ
zη(z) = Dm

z Im−δ
z η(z), 0 ≤ δ, n > −1, (4)
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provided that it exists. We find from (4) that is

Dδ
zzn =

Γ(n + 1)
Γ(n + 1− δ)

zn−δ, (0 ≤ δ < 1, n > −1)

and

Iδ
z zn =

Γ(n + 1)
Γ(n + 1− δ)

zn+δ, (0 < δ, n > −1).

Owa and Srivastava [10], defined the differential integral operator Ωδ
z : A → A in the term

of series:

Ωδ
zη(z) =

Γ(2− δ)

Γ(2)
zδDδ

zη(z) (5)

= z +
∞

∑
n=2

Γ(2− δ)Γ(n + 1)
Γ(2)Γ(n + 1− δ)

anzn,

where,
(δ < 2, and z ∈ U).

Here, Dδ
zη(z) represents the fractional integral of η(z) of order δ when −∞ < δ < 0 and a

fractional derivative of η(z) of order δ when 0 ≤ δ < 2.
Now, by using the definition of convolution on (3) and (5), we define fractional

differential integral operator Dδ,α,β
z : A → A, associated with normalized Mittag-Leffler

functionMα,β(z) as follows:

D
δ,α,β
z η(z) = z +

∞

∑
n=2

(
Γ(2− δ)Γ(n + 1)
Γ(2)Γ(n + 1− δ)

)(
Γ(β)

Γ(α(n− 1) + β)

)
anzn,

where,
(δ < 2, Reα > 0, β ∈ C\{0,−1,−2, . . . }), z ∈ U.

It is noted that
D0,0,1

z η(z) = η(z).

Again, by using fractional differential integral operator D
δ,α,β
z , we also define a linear

multiplier fractional differential integral operator α
β∆δ,m

λ as follows:

α
β∆δ,m

λ η(z) =α
β ∆δ,1

λ

(
α
β∆δ,m−1

λ η(z)
)

, (6)

where,
α
β∆δ,0

λ η(z) = η(z),

and
α
β∆δ,1

λ η(z) = (1− λ)D
δ,α,β
z η(z) + λzD

(
D

δ,α,β
z η(z)

)
.

It is seen from η(z) given by (1) and from (6), we have

α
β∆δ,m

λ η(z) = z +
∞

∑
n=2

A(λ, δ, α, β, m, n)anzn, (7)

where,

A(λ, δ, α, β, m, n) =
[(

Γ(2− δ)Γ(n + 1)
Γ(2)Γ(n + 1− δ)

)(
Γ(β)

Γ(α(n− 1) + β)

)
(1− λ + nλ)

]m

and
(δ < 2, m ∈ N, λ ≥ 0, Reα > 0, β ∈ C\{0,−1,−2, . . . }), z ∈ U.
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Remark 1. When, δ = 0, α = 0, and β = 1, in (7) then it is reduced to the operator given by
Al-Oboudi [11].

Remark 2. For, δ = 0, λ = 1, α = 0, and β = 1 in (7) then it is reduced to the operator given by
Salagean [12].

Definition 3. A function η ∈ A, is in the class β
αS∗δ,m

λ (σ) if and only if

β
αS∗δ,m

λ (σ) =





η ∈ A :
z
(

α
β∆δ,m

λ η(z)
)′

α
β∆δ,m

λ η(z)
≺ σ(z), σ(0) = 1





.

Definition 4. A function η ∈ A, is in the class α
β Jδ,m

λ (L, M, b) if and only if

α
β Jδ,m

λ (L, M, b) =



η ∈ A : 1 +

1
b




2
(

α
β∆δ,m

λ η(z)
)

α
β∆δ,m

λ η(z)−α
β ∆δ,m

λ η(−z)


 ≺ 1 + Lz

1 + Mz



.

The following lemmas will be use to prove our main results.

Lemma 1 ([13]). For $ ∈ C and a positive integer n, the class of analytic functions is given by

H(η, n) =
{

η : η(z) = $ + $nzn + $n+1zn+1 + . . .
}

.

(i) Let l ∈ R. Then
Re
(

η(z) + lzη
′
(z)
)
> 0 −→ Re(η(z)) > 0.

Moreover, l > 0 and η ∈ H(1, n), then there is constant δ > 0 and k > 0, such that

k = k(l, δ, n)

and

η(z) + lzη
′
(z) ≺

(
1 + z
1− z

)k
−→ η(z) ≺

(
1 + z
1− z

)δ

.

(ii) For η ∈ H(1, n), and for fixed real number l > 0 and let c ∈ [0, 1), so that

Re
(

η2(z) + 2η(z)(zDη(z))
)
> c −→ Re(η(z)) > l.

(iii) Let η ∈ H(η, n), with Re(η) > 0, then

Re
(

η(z) + zη
′
(z) + z2η

′′
(z)
)
> 0,

or for N : U → R, such that

Re

(
η(z) +

(
zη
′
(z)

η(z)

)
N(z)

)
> 0.

Then
Re(η(z)) > 0.

2. Main Results

To make use of Lemma 1, first of all, we illustrate differential integral operator
α
β∆δ,m

λ η(z) is also bounded turning function.
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Theorem 1. Let η ∈ A, and

(i) α
β∆δ,m

λ η(z) is of bounded turning function.

(ii)
(

α
β∆δ,m

λ η(z)
)′
≺
(

1 + z
1− z

)k
, k > 0, z ∈ U.

(iii) Re



(

α
β∆δ,m

λ η(z)
)′



α
β∆δ,m

λ η(z)

z




 >

c
2

, c ∈ [0, 1).

(iv) Re


z
(

α
β∆δ,m

λ η(z)
)′′
−
(

α
β∆δ,m

λ η(z)
)′

+ 2




α
β∆δ,m

λ η(z)

z




 > 0.

(v) Re
((

z
(

α
β∆δ,m

λ η(z)
)′

/α
β∆δ,m

λ η(z)
)
+ 2
(

α
β∆δ,m

λ η(z)/z
))

> 1.

Then 


α
β∆δ,m

λ η(z)

z


 ∈ P(λ), for some λ ∈ [0, 1).

Proof. Define a function m(z) as follows:

m(z) =
α
β∆δ,m

λ η(z)

z
, z ∈ U. (8)

Then computation implies that

zm
′
(z) + m(z) =

(
α
β∆δ,m

λ η(z)
)′

.

From the first inequality (i), we have α
β∆δ,m

λ η(z) is bounding turning function, and this give
us

Re
(

zm
′
(z) + m(z)

)
> 0.

Thus, Lemma 1, part (i) implies that

Re(m(z)) > 0.

Hence (i) is proved. Accordingly, part (ii) is confirmed.
By the virtue of Lemma 1 and part (i), let l > 0, such that k = k(l) and

α
β∆δ,m

λ η(z)

z
≺
(

1 + z
1− z

)l
.

This indicates that

Re




α
β∆δ,m

λ η(z)

z


 > λ, λ ∈ [0, 1).

Suppose that

Re
(

m2(z) + 2m(z).zm
′
(z)
)

= 2Re




α
β∆δ,m

λ η(z)

z



(

α
β∆δ,m

λ η(z)
)′
−

α
β∆δ,m

λ η(z)

2z




 > c, c ∈ [0, 1). (9)
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From the Lemma 1 and part (ii), there exists a fixed real number l > 0 and satisfying the
condition

Re(m(z)) > l

and

m(z) =
α
β∆δ,m

λ η(z)

z
∈ P(λ).

It follows from (9) that

Re
((

α
β∆δ,m

λ η(z)
))′

> 0.

Taking the derivative (8), we then obtain

Re
(

m(z) + zm
′
(z) + z2m

′′
(z)
)

= Re


z
(

α
β∆δ,m

λ η(z)
)′′
−
(

α
β∆δ,m

λ η(z)
)′

+ 2




α
β∆δ,m

λ η(z)

z




 > 0.

Hence, Lemma 1 (ii) implies that

Re




α
β∆δ,m

λ η(z)

z


 > 0.

The logarithmic differentiation of (8) yields

Re

(
m(z) +

zm
′
(z)

m(z)
+ z2m

′′
(z)

)

= Re




z
(

α
β∆δ,m

λ η(z)
)′

α
β∆δ,m

q,λ η(z)
+ 2




α
β∆δ,m

λ η(z)

z


− 1


 > 0.

Hence, Lemma 1 (iii) implies, where N(z) = 1,

Re




α
β∆δ,m

λ η(z)

z


 > 0.

Now we find the upper bounds of the operator α
β∆δ,m

λ η(z) by using the exponential

integral in U, which provided η ∈
(

β
αS∗δ,m

λ (σ)
)

.

Theorem 2. Let η ∈
(

β
αS∗δ,m

λ (σ)
)

, where σ(z) is convex in U. Then,

α
β∆δ,m

λ η(z) ≺ z exp
∫ z

0

σ(φ(w))− 1
w

dw, (10)

where, φ(z) is analytic in U having condition

φ(0) = 0 and |φ(z)| < 1.
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Furthermore, for |z| = ξ, we have

exp
∫ 1

0

σ(φ(−ξ))− 1
w

dξ ≤

∣∣∣∣∣∣

α
β∆δ,m

λ η(z)

z

∣∣∣∣∣∣
≤ exp

∫ 1

0

σ(φ(ξ))− 1
w

dξ.

Proof. By the hypothesis we received the following conclusion:

z
(

α
β∆δ,m

λ η(z)
)′

α
β∆δ,m

λ η(z)
≺ σ(z)

z
(

α
β∆δ,m

λ η(z)
)′

α
β∆δ,m

λ η(z)
= σ(φ(z)), z ∈ U,

and (
α
β∆δ,m

λ η(z)
)′

α
β∆δ,m

λ η(z)
− 1

z
=

σ(φ(z))− 1
z

. (11)

Consequently, integrating (11), we obtain

log




α
β∆δ,m

λ η(z)

z


 =

∫ z

0

σ(φ(w)− 1
w

dw. (12)

By the definition of subordination we attain

α
β∆δ,m

λ η(z) ≺ z exp
∫ z

0

σ(Ψ(w)− 1
w

dw.

Hence (10) is proved.
Note that the function σ(z) convex and symmetric with respect to real axis. That is

σ(−ζ|z|) ≤ Re{σ(Ψ(ξz)} ≤ σ(ξ|z|) (0 < ξ < 1, z ∈ U),

then we have the inequalities

σ(−ξ) ≤ σ(−ξ|z|), σ(ξ|z|) ≤ σ(ξ).

Consequently, we obtain

∫ 1

0

σ(Ψ(−ξ|z|))− 1
ξ

dξ ≤ Re
∫ 1

0

σ(Ψ(ξ))− 1
ξ

dξ ≤
∫ 1

0

σ(Ψ(ξ|z|))− 1
ξ

dξ.

In the sight of Equation (12), we obtain

∫ 1

0

σ(Ψ(−ξ|z|))− 1
ξ

dξ ≤ log

∣∣∣∣∣∣

α
β∆δ,m

λ η(z)

z

∣∣∣∣∣∣
≤
∫ 1

0

σ(Ψ(ξ|z|))− 1
ξ

dξ.

which implies that

exp
∫ 1

0

σ(Ψ(−ξ|z|))− 1
ξ

dξ ≤

∣∣∣∣∣∣

α
β∆δ,m

λ η(z)

z

∣∣∣∣∣∣
≤ exp

∫ 1

0

σ(Ψ(ξ|z|))− 1
ξ

dξ.
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Hence, we have

exp
∫ 1

0

σ(Ψ(−ξ))− 1
ξ

dξ ≤

∣∣∣∣∣∣

α
β∆δ,m

λ η(z)

z

∣∣∣∣∣∣
≤ exp

∫ 1

0

σ(Ψ(ξ))− 1
ξ

dξ.

Now we investigate the sufficient condition of η to be in the class α
βS∗,δ,m

λ (σ), where σ

is convex univalent satisfying σ(0) = 1.

Theorem 3. If η ∈ A, satisfies the inequality

z
(

α
β∆δ,m

λ η(z)
)′

α
β∆δ,m

λ η(z)


2 +

z
(

α
β∆δ,m

λ η(z)
)′′

(
α
β∆δ,m

λ η(z)
)′


−




z
(

α
β∆δ,m

λ η(z)
)′

α
β∆δ,m

λ η(z)


 ≺ σ(z),

then, η ∈α
β S∗,δ,m

λ (σ).

Proof. Let

m(z) =
z
(

α
β∆δ,m

λ η(z)
)′

α
β∆δ,m

λ η(z)

and m(z) = 1 in the inequality

m(z) + m(z)
(

zm
′
(z)
)
≺ σ(z),

then, we obtain

m(z) + m(z)
(

zm
′
(z)
)

=
z
(

α
β∆δ,m

λ η(z)
)′

α
β∆δ,m

λ η(z)
×


2 +

z
(

α
β∆δ,m

λ η(z)
)′′

(
α
β∆δ,m

λ η(z)
)′ −




z
(

α
β∆δ,m

λ η(z)
)′

α
β∆δ,m

λ η(z)





 ≺ σ(z).

This implies that

m(z) =
z
(

α
β∆δ,m

λ η(z)
)′

α
β∆δ,m

λ η(z)
≺ σ(z),

that is
η ∈

(
α
βS∗,δ,m

λ (σ)
)

.

Corollary 1. Let the assumption of Theorem 3. Then,

z
(

α
β∆δ,m

λ η(z)
)′

α
β∆δ,m

λ η(z)
×


1 +

z
(

α
β∆δ,m

λ η(z)
)′′

(
α
β∆δ,m

λ η(z)
)′


−




z
(

α
β∆δ,m

λ η(z)
)′

α
β∆δ,m

λ η(z)


� σ

′
(z).

Proof. Let

m(z) =
z
(

α
β∆δ,m

λ η(z)
)′

α
β∆δ,m

λ η(z)
.
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In the view of Theorem 3, we have

z
(

α
β∆δ,m

λ η(z)
)′

α
β∆δ,m

λ η(z)
≺ σ(z),

where, σ ∈ C. Then, by [2] (Theorem 3), we obtain

m
′
(z)� σ

′
(z)

for some z ∈ U, where

m
′
(z) =

z
(

α
β∆δ,m

λ η(z)
)′

α
β∆δ,m

λ η(z)


1 +

z
(

α
β∆δ,m

λ η(z)
)′′

(
α
β∆δ,m

λ η(z)
)′


−




z
(

α
β∆δ,m

λ η(z)
)′

α
β∆δ,m

λ η(z)


.

It is well known that the function σ(z) = eθz, 1 < |θ| ≤ π
2 is not convex in U, where the

domain σ(U) is lima-bean (see [13], p. 123). Now, we can find the same result of Theorem 3
as follows:

Theorem 4. If η ∈ A, it satisfies the inequality

1 +
z
(

α
β∆δ,m

λ η(z)
)′′

(
α
β∆δ,m

λ η(z)
)′ ≺ eθz.

Then,
η ∈

(
α
βS∗,δ,m

λ (eθz)
)

.

Proof. Let

m(z) =
z
(

α
β∆δ,m

λ η(z)
)′

α
β∆δ,m

λ η(z)
.

After some simple computation implies that

m(z) +
zm

′
(z)

m(z)

=




z
(

α
β∆δ,m

λ η(z)
)′

α
β∆δ,m

λ η(z)


+


 z

(
α
β∆δ,m

λ η(z)
)′

α
β∆δ,m

λ η(z)




1 +

z
(

α
β∆δ,m

λ η(z)
)′′

(
α
β∆δ,m

λ η(z)
)′ −


 z

(
α
β∆δ,m

λ η(z)
)′

α
β∆δ,m

λ η(z)






z
(

α
β∆δ,m

λ η(z)
)′

α
β∆δ,m

λ η(z)

=


1 +

z
(

α
β∆δ,m

λ η(z)
)′′

(
α
β∆δ,m

λ η(z)
)′


 ≺ eθz.

This implies that (see [13], p. 123)

m(z) =
z
(

α
β∆δ,m

λ η(z)
)′

α
β∆δ,m

λ η(z)
≺ eθz,
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that is
η ∈

(
α
βS∗,δ,m

λ (eθz)
)

.

Theorem 5. If η ∈
(

α
β Jδ,m

λ (L, M, b)
)

, then

M(z) =
1
2
[η(z)− η(−z)]

satisfies

1 +
1
b




z
(

α
β∆δ,m

λ B(z)
)′

(
α
β∆δ,m

λ B(z)
)


 ≺ 1 + Lz

1 + Mz
,

Re

(
zB′(z)
B(z)

)
≥ 1− ϑ2

1 + ϑ2 , |z| = ϑ < 1.

Proof. Let η ∈
(

α
β Jδ,m

λ (L, M, b)
)

, then there occurs a function J(z) such that

b(J(z)− 1) =
2z
(

α
β∆δ,m

λ η(z)
)′

α
β∆δ,m

λ η(z)−α
β ∆δ,m

λ η(−z)
,

b(J(−z)− 1) =
2z
(

α
β∆δ,m

λ η(−z)
)′

α
β∆δ,m

q,λ η(−z)−α
β ∆δ,m

q,λ η(z)
.

This confirm that

1 +
1
b




z
(

α
β∆δ,m

λ G(z)
)′

(
α
β∆δ,m

λ G(z)
) − 1


 =

J(z) + J(−z)
2

.

However, J satisfies

J(z) ≺ 1 + Lz
1 + Mz

,

which is univalent, then we get

1 +
1
b




z
(

α
β∆δ,m

λ G(z)
)′

α
β∆δ,m

λ G(z)
− 1


 ≺ 1 + Lz

1 + Mz
.

Additionally, G(z) is starlike in z, and which implies that

h(z) =
zG(z)′
G(z) ≺

1− z2

1 + z2 .

Hence, their exist a Schwarz function w(z), such that |w(z)| ≤ |z| < 1, k(0) = 0, we get

h(z) ≺ 1− w(z)2

1 + w(z)2 ,

which leads to

w(ζ)2 =
1− h(ζ)
1 + h(ζ)

, ζ ∈ z, |ζ| = r < 1.
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A simple calculation yields
∣∣∣∣
1− h(ζ)
1 + h(ζ)

∣∣∣∣ = |w(ζ)|2 ≤ |ζ|2.

Therefore, we get the following inequalities:

∣∣∣∣∣h(ζ)−
1 + |ζ|4

1− |ζ|4

∣∣∣∣∣

2

≤ 4|ζ|4
(

1− |ζ|4
)2 ,

∣∣∣∣∣h(ζ)−
1 + |ζ|4

1− |ζ|4

∣∣∣∣∣ ≤
2|ζ|2(

1− |ζ|4
) .

Thus, we have

Re

(
zG ′(z)
G(z)

)
≥ 1− ϑ2

1 + ϑ2 , |ζ| = ϑ < 1.

This completes the proof of Theorem 5.

Example 1. Let

zη
′
(z)

η(z)
=

z
(

α
β∆δ,m

λ η(z)
)′

α
β∆δ,m

λ η(z)
,

α
β∆δ,m

λ η(z) =
z

(1− z)2 , η ∈ A.

Then the solution of zη
′
(z)

η(z) = 1+z
1−z is formulated as follows:

α
β∆δ,m

λ η(z) =
z

(1− z)2 , η ∈ A.

Moreover, the solution of the equation

η(z) +
zη
′
(z)

η(z)
=

1 + z
1− z

is approximated to
η(z) =

z
1− z

.

3. Conclusions

Many researchers have discussed some applications of fractional differential operator
in different areas of mathematics. In this paper, we combined fractional differential operator
and the Mittag-Leffler functions and formulated a new operator of fractional calculus for
a class of normalized functions in the open unit disk. We considered this operator on the
two classes of analytic functions and investigated some of its applications in the field of
geometric function theory. The suggested operator can be utilized to define some more
classes of analytic functions or to generalize other types of differential operators.
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