
Ministry of Education and Science of Ukraine
Sumy State University

Dvornichenko A. V.,
Lysenko O. V.

DISCRETE MATHEMATICS
AND THEORY OF ALGORITHMS

Lecture notes

In four parts
Part I

Sumy
Sumy State University

2022

Ministry of Education and Science of Ukraine
Sumy State University

DISCRETE MATHEMATICS
AND THEORY OF ALGORITHMS

Lecture notes
for students of speciality 113”Applied Mathematics”

of full-time course of studies

In four parts
Part I

Approved at the meeting
of the department of Applied
Mathematics and Complex Sys-
tems Modeling as a lecture
notes on the discipline ”Discrete
Mathematics and Theory of Al-
gorithms”.
Minutes №5 of 29.06.2022.

Sumy
Sumy State University

2022

Discrete Mathematics and Theory of Algorithms : lecture notes :
in four parts / compilers: A. V. Dvornichenko, O. V. Lysenko. —
Sumy : Sumy State University, 2022. — Part I. — 275 p.

Department of Applied Mathematics and Modeling of Complex Sys-
tems

Contents

1 FUNDAMENTALS OF MATHEMATICAL LOGIC 10
1.1 Propositional Logic . 10

1.1.1 Introduction . 10
1.1.2 Propositions . 11
1.1.3 Conditional Statements 16
1.1.4 Truth Tables of Compound Propositions 23
1.1.5 Precedence of Logical Operators 24
1.1.6 Logic and Bit Operations 25

1.2 Applications of Propositional Logic 27
1.2.1 Introduction . 27
1.2.2 Translating English Sentences 27
1.2.3 System Specifications 28
1.2.4 Boolean Searches 30
1.2.5 Logic Puzzles . 31
1.2.6 Logic Circuits . 33

1.3 Propositional Equivalences 34
1.3.1 Introduction . 34
1.3.2 Logical Equivalences 35
1.3.3 Using De Morgan’s Laws 40
1.3.4 Constructing New Logical Equivalences 41
1.3.5 Propositional Satisfiability 43
1.3.6 Applications of Satisfiability 44
1.3.7 Solving Satisfiability Problems 47

1.4 Predicates and Quantifiers 48
1.4.1 Introduction . 48
1.4.2 Predicates . 49

4

CONTENTS 5

1.4.3 Quantifiers . 52
1.4.4 Quantifiers over finite domains 59
1.4.5 Quantifiers with Restricted Domains 60
1.4.6 Precedence of Quantifiers 61
1.4.7 Binding Variables 61
1.4.8 Logical Equivalences Involving Quantifiers 62
1.4.9 Negating Quantified Expressions 63
1.4.10 Translating from English into Logical Expressions 66
1.4.11 Using Quantifiers in System Specifications 69
1.4.12 Examples from Lewis Carroll 70

1.5 Nested Quantifiers . 71
1.5.1 Introduction . 71
1.5.2 Understanding Statements Involving Nested Quan-

tifiers . 72
1.5.3 The Order of Quantifiers 74
1.5.4 Translating Mathematical Statements into State-

ments Involving Nested Quantifiers 77
1.5.5 Translating from Nested Quantifiers into English 78
1.5.6 Translating English Sentences into Logical Ex-

pressions . 79
1.5.7 Negating Nested Quantifiers 81

1.6 Rules of Inference . 83
1.6.1 Introduction . 83
1.6.2 Valid Arguments in Propositional Logic 84
1.6.3 Rules of Inference for Propositional Logic 86
1.6.4 Using Rules of Inference to Build Arguments . . 89
1.6.5 Resolution . 91
1.6.6 Fallacies . 92
1.6.7 Rules of Inference for Quantified Statements . . 94
1.6.8 Combining Rules of Inference for Propositions and

Quantified Statements 96
1.7 Introduction to Proofs 97

1.7.1 Introduction . 97
1.7.2 Some Terminology 98
1.7.3 Understanding How Theorems Are Stated 99
1.7.4 Methods of Proving Theorems 99

6 CONTENTS

1.7.5 Direct Proofs . 100
1.7.6 Proof by Contraposition 102
1.7.7 Proofs by Contradiction 106
1.7.8 Mistakes in Proofs 112
1.7.9 Just a Beginning 114

1.8 Proof Methods and Strategy 114
1.8.1 Introduction . 114
1.8.2 Exhaustive Proof and Proof by Cases 115
1.8.3 Existence Proofs 122
1.8.4 Uniqueness Proofs 125
1.8.5 Proof Strategies 126
1.8.6 Looking for Counterexamples 129
1.8.7 Proof Strategy in Action 130
1.8.8 Tilings . 131
1.8.9 The Role of Open Problems 136

2 BASIC STRUCTURES: SETS, FUNCTIONS. . . 139
2.1 Sets . 140

2.1.1 Introduction . 140
2.1.2 Venn Diagrams 145
2.1.3 Subsets . 146
2.1.4 The Size of a Set 149
2.1.5 Power Sets . 150
2.1.6 Cartesian Products 151
2.1.7 Using Set Notation with Quantifiers 154
2.1.8 Truth Sets and Quantifiers 154

2.2 Set Operations . 155
2.2.1 Introduction . 155
2.2.2 Set Identities . 160
2.2.3 Generalized Unions and Intersections 164
2.2.4 Computer Representation of Sets 167

2.3 Functions . 170
2.3.1 One-to-One and Onto Functions 175
2.3.2 Inverse Functions and Compositions of Functions 180
2.3.3 The Graphs of Functions 185
2.3.4 Some Important Functions 186
2.3.5 Partial Functions 191

CONTENTS 7

2.4 Sequences and Summations 192
2.4.1 Introduction . 192
2.4.2 Sequences . 192
2.4.3 Recurrence Relations 195
2.4.4 Special Integer Sequences 199
2.4.5 Summations . 202

2.5 Cardinality of Sets . 209
2.5.1 Introduction . 209
2.5.2 Countable Sets 210
2.5.3 An Uncountable Set 213

3 Algorithms 219
3.1 Algorithms . 220

3.1.1 Introduction . 220
3.1.2 Searching Algorithms 224
3.1.3 Sorting . 228
3.1.4 String Matching 231
3.1.5 Creedy Algorithms 233
3.1.6 The Halting Problem 238

3.2 The Growth of Functions 240
3.2.1 Introduction . 240
3.2.2 Big-O Notation 241
3.2.3 Big-O Estimates for Some Important Functions . 246
3.2.4 The Growth of Combinations of Functions 251
3.2.5 Big-Omega and Big-Theta Notation 254

3.3 Complexity of Algorithms 257
3.3.1 Introduction . 257
3.3.2 Time Complexity 257
3.3.3 Complexity of Matrix Multiplication 263
3.3.4 Algorithmic Paradigms 266
3.3.5 Understanding the Complexity of Algorithms . . 268

Introduction

A discrete mathematics and theory of algorithms course has more
than one purpose. Students should learn a particular set of mathe-
matical facts and how to apply them; more importantly, such a course
should teach students how to think logically and mathematically. To
achieve these goals, this text stresses mathematical reasoning and the
different ways problems are solved. Five important themes are inter-
woven in this text: mathematical reasoning, combinatorial analysis,
discrete structures, algorithmic thinking, and applications and model-
ing. A successful discrete mathematics and theory of algorithms course
should carefully blend and balance all five themes.

1. Mathematical Reasoning: Students must understand math-
ematical reasoning in order to read, comprehend, and construct
mathematical arguments. This text starts with a discussion of
mathematical logic, which serves as the foundation for the sub-
sequent discussions of methods of proof. Both the science and
the art of constructing proofs are addressed. The technique of
mathematical induction is stressed through many different types
of examples of such proofs and a careful explanation of why math-
ematical induction is a valid proof technique.

2. Combinatorial Analysis: An important problem-solving skill
is the ability to count or enumerate objects. The discussion of
enumeration in this book begins with the basic techniques of
counting. The stress is on performing combinatorial analysis to
solve counting problems and analyze algorithms, not on applying
formulae.

3. Discrete Structures: A course in discrete mathematics should

8

CONTENTS 9

teach students how to work with discrete structures, which are
the abstract mathematical structures used to represent discrete
objects and relationships between these objects. These discrete
structures include sets, permutations, relations, graphs, trees, and
finite-state machines.

4. Algorithmic Thinking: Certain classes of problems are solved
by the specification of an algorithm. After an algorithm has been
described, a computer program can be constructed implementing
it. The mathematical portions of this activity, which include
the specification of the algorithm, the verification that it works
properly, and the analysis of the computer memory and time
required to performit, are all covered in this text. Algorithms
are described using both English and an easily understood form
of pseudocode.

5. Applications and Modeling: Discrete mathematics has appli-
cations to almost every conceivable area of study. There are many
applications to computer science and data networking in this text,
as well as applications to such diverse areas as chemistry, biology,
linguistics, geography, business, and the Internet. These applica-
tions are natural and important uses of discrete mathematics and
are not contrived. Modeling with discrete mathematics is an ex-
tremely important problem-solving skill, which students have the
opportunity to develop by constructing their own models in some
of the exercises. That is why there are many different examples
in this text.

In the lecture materials, we used a number of books, among which
we will single out the wonderful book by [1]. In the first part of the
lecture notes, we consider the following sections: “Basics: logic and
proofs”, “Basic structures: sets, functions, sequences and sums” and
“Algorithms”.

Chapter 1

FUNDAMENTALS OF
MATHEMATICAL LOGIC

1.1 Propositional Logic

1.1.1 Introduction

The rules of logic give precise meaning to mathematical statements.
These rules are used to distinguish between valid and invalid mathe-
matical arguments. Because a major goal of this book is to teach the
reader how to understand and how to construct correct mathematical
arguments, we begin our study of discrete mathematics with an intro-
duction to logic.

Besides the importance of logic in understanding mathematical rea-
soning, logic has numerous applications to computer science. These
rules are used in the design of computer circuits, the construction of
computer programs, the verification of the correctness of programs,
and in many other ways. Furthermore, software systems have been
developed for constructing some, but not all, types of proofs auto-
matically.We will discuss these applications of logic in this and later
chapters.

10

1.1.2 Propositions 11

1.1.2 Propositions

Our discussion begins with an introduction to the basic building
blocks of logic propositions. A proposition is a declarative sentence
(that is, a sentence that declares a fact) that is either true or false, but
not both.

�
EXAMPLE. 1

All the following declarative sentences are propositions.

1. Washington, D.C., is the capital of the United States of America.
2. Toronto is the capital of Canada.
3. 1 + 1 = 2.
4. 2 + 2 = 3.

Propositions 1 and 3 are true, whereas 2 and 4 are false.

Some sentences that are not propositions are given in this Example
2.

�
EXAMPLE. 2

Consider the following sentences.

1. What time is it?
2. Read this carefully.
3. x+ 1 = 2.
4. x+ y = z.

Sentences 1 and 2 are not propositions because they are not declarative
sentences. Sentences 3 and 4 are not propositions because they are
neither true nor false. Note that each of sentences 3 and 4 can be
turned into a proposition if we assign values to the variables. We will
also discuss other ways to turn sentences such as these into propositions
in Section 1.4.

We use letters to denote propositional variables (or sentential
variables), that is, variables that represent propositions, just as letters
are used to denote numerical variables. The conventional letters used

12 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

for propositional variables are p, q, r, s, The truth value of
a proposition is true, denoted by T, if it is a true proposition, and
the truth value of a proposition is false, denoted by F, if it is a false
proposition. Propositions that cannot be expressed in terms of simpler
propositions are called atomic propositions.

The area of logic that deals with propositions is called the propo-
sitional calculus or propositional logic. It was first developed sys-
tematically by the Greek philosopher Aristotle more than 2300 years
ago.

We now turn our attention to methods for producing new proposi-
tions from those that we already have. These methods were discussed by
the English mathematician George Boole in 1854 in his book The Laws
of Thought. Many mathematical statements are constructed by com-
bining one or more propositions. New propositions, called compound
propositions, are formed from existing propositions using logical op-
erators.

Definition 1.1.1 Let p be a proposition. The negation of p, de-
noted by ¬p (also denoted by p̄), is the statement

“It is not the case that p.”
The proposition ¬p is read “not p”. The truth value of the negation

of p,¬p , is the opposite of the truth value of p.

Remark! The notation for the negation operator is not stan-
dardized. Although ¬p and p̄ are the most common notations used
in mathematics to express the negation of p, other notations you
might see are ∼ p, −p, p′, Np, and !p.

�
EXAMPLE. 3

Find the negation of the proposition “Michael’s PC runs Linux” and express
this in simple English.�� ��Solution: The negation is “It is not the case that Michael’s PC runs
Linux.” This negation can be more simply expressed as “Michael’s PC does
not run Linux.”

1.1.2 Propositions 13

Table 1.1: The
Truth Table for
the Negation of a
Proposition.

p ¬p

T F
F T

Table 1.1 displays the truth table for the
negation of a proposition p. This table has a
row for each of the two possible truth values of
p. Each row shows the truth value of ¬p corre-
sponding to the truth value of p for this row.

The negation of a proposition can also be
considered the result of the operation of the
negation operator on a proposition. The nega-
tion operator constructs a new proposition from
a single existing proposition. We will now in-
troduce the logical operators that are used to
form new propositions from two or more exist-
ing propositions. These logical operators are also

called connectives.

Definition 1.1.2 Let p and q be propositions. The conjunction of
p and q, denoted by p∧q, is the proposition “p and q.” The conjunction
p ∧ q is true when both p and q are true and is false otherwise.

Table 1.2: The
Truth Table for the
Conjunction of Two
Propositions.

p q p ∧ q

T T T
T F F
F T F
F F F

Table 1.2 displays the truth table of p ∧ q.
This table has a row for each of the four possible
combinations of truth values of p and q. The
four rows correspond to the pairs of truth values
TT, TF, FT, and FF , where the first truth value
in the pair is the truth value of p and the second
truth value is the truth value of q.

Note that in logic the word “but” sometimes
is used instead of “and” in a conjunction. For
example, the statement “The sun is shining, but
it is raining” is another way of saying “The sun
is shining and it is raining.”

�
EXAMPLE. 4

Find the conjunction of the propositions p and q
where p is the proposition “Rebecca’s PC has more than 16 GB free hard disk
space” and q is the proposition “The processor in Rebecca’s PC runs faster
than 1 GHz.”

14 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC
�� ��Solution: The conjunction of these propositions, p ∧ q, is the proposition

“Rebecca’s PC has more than 16 GB free hard disk space, and the processor
in Rebecc’s PC runs faster than 1 GHz.” This conjunction can be expressed
more simply as “Rebecca’s PC has more than 16 GB free hard disk space, and
its processor runs faster than 1 GHz.” For this conjunction to be true, both
conditions given must be true. It is false when one or both of these conditions
are false.

Definition 1.1.3 Let p and q be propositions. The disjunction of
p and q, denoted by p ∨ q, is the proposition “p or q.” The disjunction
p ∨ q is false when both p and q are false and is true otherwise.

Table 1.3 displays the truth table for p ∨ q.

Table 1.3: The Truth
Table for the Disjunc-
tion of Two Proposi-
tions.

p q p ∨ q

T T T
T F T
F T T
F F F

The use of the connective or in a disjunc-
tion corresponds to one of the two ways the
word or is used in English, namely, as an in-
clusive or. A disjunction is true when at
least one of the two propositions is true. That
is, p ∨ q is true when both p and q are true
or when exactly one of p and q is true.

�
EXAMPLE. 5

Translate the statement “Students who have
taken calculus or introductory computer science
can take this class” in a statement in proposi-
tional logic using the propositions p: “A student
who has taken calculus can take this class” and q:
“A student who has taken introductory computer

science can take this class.”�� ��Solution: We assume that this statement means that students who have
taken both calculus and introductory computer science can take the class, as
well as the students who have taken only one of the two subjects. Hence,
this statement can be expressed as p∨ q, the inclusive or, or disjunction, of p
and q.

1.1.2 Propositions 15

�
EXAMPLE. 6

What is the disjunction of the propositions p and q, where p and q are the
same propositions as in Example 4?�� ��Solution: The disjunction of p and q, p ∨ q, is the proposition “Rebecca’s
PC has at least 16 GB free hard disk space, or the processor in Rebecca’s PC
runs faster than 1 GHz.”

This proposition is true when Rebecca’s PC has at least 16 GB free
hard disk space, when the PC’s processor runs faster than 1 GHz, and
when both conditions are true. It is false when both of these conditions
are false, that is, when Rebecca’s PC has less than 16 GB free hard
disk space and the processor in her PC runs at 1 GHz or slower.

Besides its use in disjunctions, the connective or is also used to
express an exclusive or. Unlike the disjunction of two propositions p
and q, the exclusive or of these two propositions is true when exactly
one of p and q is true; it is false when both p and q are true (and when
both are false).

Definition 1.1.4 Let p and q be propositions. The exclusive or
of p and q, denoted by (or p ⊕ q), is the proposition that is true when
exactly one of p and q is true and is false otherwise.

The truth table for the exclusive or of two propositions is displayed
in Table 1.4.

�
EXAMPLE. 7

Let p and q be the propositions that state “A student can have a salad with
dinner” and “A student can have soup with dinner,” respectively. What is
p⊕ q, the exclusive or of p and q?�� ��Solution: The exclusive or of p and q is the statement that is true when
exactly one of p and q is true. That is, p ⊕ q is the statement “A student
can have soup or salad, but not both, with dinner.” Note that this is often
stated as “A student can have soup or a salad with dinner,” without explicitly

16 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

stating that taking both is not permitted.

1.1.3 Conditional Statements

We will discuss several other important ways in which propositions
can be combined.

Definition 1.1.5 Let p and q be propositions. The conditional
statement p→ q is the proposition “if p, then q.” The conditional state-
ment p → q is false when p is true and q is false, and true otherwise.
In the conditional statement p → q, p is called the hypothesis (or an-
tecedentor premise) and q is called the conclusion(or consequence).

The statement p → q is called a conditional statement because
p→ q asserts that q is true on the condition that p holds. A conditional
statement is also called an implication.

The truth table for the conditional statement p → q is shown in
Table 1.5. Note that the statement p → q is true when both p and q
are true and when p is false (no matter what truth value q has).

Because conditional statements play such an essential role in math-
ematical reasoning, a variety of terminology is used to express p → q.
You will encounter most if not all of the following ways to express this
conditional statement:

“if p, then q” “p implies q”
“if p, q” “p only if q”
“p is sufficient for q” “a sufficient condition for q is p”
“q if p” “q whenever p”
“q when p” “q is necessary for p”
“a necessary condition for p is q” “q follows from p”
“q unless p” “q provided that p”

A useful way to understand the truth value of a conditional state-
ment is to think of an obligation or a contract. For example, the pledge
many politicians make when running for office is

“If I am elected, then I will lower taxes.”

1.1.3 Conditional Statements 17

Table 1.4: The Truth Table for
the Exclusive Or of Two Propo-
sitions.

p q p⊕ q

T T F
T F T
F T T
F F F

Table 1.5: The Truth Table for
the Conditional Statement p →
q.

p q p→ q

T T T
T F F
F T T
F F F

If the politician is elected, voters would expect this politician to
lower taxes. Furthermore, if the politician is not elected, then voters
will not have any expectation that this person will lower taxes, although
the person may have sufficient influence to cause those in power to lower
taxes. It is only when the politician is elected but does not lower taxes
that voters can say that the politician has broken the campaign pledge.
This last scenario corresponds to the case when p is true but q is false
in p→ q.

Similarly, consider a statement that a professor might make: “If you
get 100% on the final, then you will get an A.”

If you manage to get 100% on the final, then you would expect to
receive an A. If you do not get 100%, you may or may not receive an
A depending on other factors. However, if you do get 100%, but the
professor does not give you an A, you will feel cheated.

Remark! Because some of the different ways to express the
implication p implies q can be confusing, we will provide some
extra guidance. To remember that “p only if q” expresses the same
thing as “if p, then q,” note that “p only if q” says that p cannot
be true when q is not true. That is, the statement is false if p is
true, but q is false. When p is false, q may be either true or false,
because the statement says nothing about the truth value of q.

For example, suppose your professor tells you:

18 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

“You can receive an A in the course only if your score on the final
is at least 90%.”

Then, if you receive an A in the course, then you know that your
score on the final is at least 90%. If you do not receive an A, you may
or may not have scored at least 90% on the final. Be careful not to use
“q only if p” to express p→ q because this is incorrect. The word “only”
plays an essential role here. To see this, note that the truth values of “q
only if p” p→ q are different when p and q have different truth values.
To see why ”q is necessary for p” is equivalent to “if p, then q,” observe
that “q is necessary for p” means that p cannot be true unless q is true,
or that if q is false, then p is false. This is the same as saying that if p
is true, then q is true. To see why “p is sufficient for q” is equivalent to
“if p, then q,” note that “p is sufficient for q” means if p is true, it must
be the case that q is also true. This is the same as saying that if p is
true, then q is also true.

To remember that “q unless ¬p” expresses the same conditional
statement as “if p, then q” note that “q unless ¬p” means that if ¬p is
false, then q must be true. That is, the statement “q unless ¬p” is false
when p is true but q is false, but it is true otherwise. Consequently, “q
unless p” and p→ q always have the same truth value.

We illustrate the translation between conditional statements and
English statements in Example 8.

�
EXAMPLE. 8

Let p be the statement “Maria learns discrete mathematics” and q the state-
ment “Maria will find a good job.” Express the statement p→ q as a statement
in English.�� ��Solution: From the definition of conditional statements, we see that when
p is the statement “Maria learns discrete mathematics” and q is the statement
“Maria will find a good job,” p→ q represents the statement

“If Maria learns discrete mathematics, then she will find a good job.”
There are many other ways to express this conditional statement in En-

glish. Among the most natural of these are
“Maria will find a good job when she learns discrete mathematics.”// “For

Maria to get a good job, it is sufficient for her to learn discrete mathematics.”
and

1.1.3 Conditional Statements 19

“Maria will find a good job unless she does not learn discrete mathemat-
ics.”

Note that the way we have defined conditional statements is more general
than the meaning attached to such statements in the English language. For
instance, the conditional statement in Example 8 and the statement

“If it is sunny, then we will go to the beach”
are statements used in normal language where there is a relationship be-

tween the hypothesis and the conclusion. Further, the first of these statements
is true unless Maria learns discrete mathematics, but she does not get a good
job, and the second is true unless it is indeed sunny, but we do not go to the
beach. On the other hand, the statement

“If Juan has a smartphone, then 2 + 3 = 5” are statements used in nor-
mal language where there is a relationship between the hypothesis and the
conclusion. Further, the first of these statements is true unless Maria learns
discrete mathematics, but she does not get a good job, and the second is true
unless it is indeed sunny, but we do not go to the beach. On the other hand,
the statement

“If Juan has a smartphone, then 2 + 3 = 5”
is true from the definition of a conditional statement, because its conclusion
is true. (The truth value of the hypothesis does not matter then.) The
conditional statement

“If Juan has a smartphone, then 2 + 3 = 6”
is true if Juan does not have a smartphone, even though 2 + 3 = 6 is false.

We would not use these last two conditional statements in natural lan-
guage (except perhaps in sarcasm), because there is no relationship between
the hypothesis and the conclusion in either statement. In mathematical rea-
soning, we consider conditional statements of a more general sort than we use
in English. The mathematical concept of a conditional statement is indepen-
dent of a cause- and - efect relationship between hypothesis and conclusion.
Our defnition of a conditional statement specifies its truth values; it is not
based on English usage. Propositional language is an artificial language; we
only parallel English usage to make it easy to use and remember.

The if-then construction used in many programming languages is
diferent from that used in logic. Most programming languages contain
statements such as if p then S, where p is a proposition and S is a
program segment (one or more statements to be executed). (Although
this looks as if it might be a conditional statement, S is not a proposi-
tion, but rather is a set of executable instructions.) When execution of

20 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

a program encounters such a statement, S is executed if p is true, but
S is not executed if p is false, as illustrated in Example 9.

�
EXAMPLE. 9

What is the value of the variable x after the statement
if 2 + 2 = 4 then x = x+ 1
if x = 0 before this statement is encountered? (The symbol = stands for

assignment. The statement x = x + 1 means the assignment of the value of
x+ 1 to x.)�� ��Solution: Because 2 + 2 = 4 is true, the assignment statement x = x+ 1

is executed. x has the value 0+1 = 1 after this statement is encountered.

CONVERSE, CONTRAPOSITIVE, AND INVERSE
We can form some new conditional statements starting with a con-

ditional statement p → q. In particular, there are three related condi-
tional statements that occur so often that they have special names. The
proposition q → p is called the converse of p → q. The contraposi-
tive of p→ q is the proposition ¬q → ¬p. The proposition ¬p→ ¬q is
called the inverse of p→ q. We will see that of these three conditional
statements formed from p→ q, only the contrapositive always has the
same truth value as p→ q.

We first show that the contrapositive, ¬q → ¬p, of a conditional
statement p → q always has the same truth value as p → q. To see
this, note that the contrapositive is false only when ¬p is false and ¬q
is true, that is, only when p is true and q is false. We now show that
neither the converse, q → p, nor the inverse, ¬p → ¬q, has the same
truth value as p→ q for all possible truth values of p and q. Note that
when p is true and q is false, the original conditional statement is false,
but the converse and the inverse are both true.

When two compound propositions always have the same truth val-
ues, regardless of the truth values of its propositional variables, we
call them equivalent. Hence, a conditional statement and its contra-
positive are equivalent. The converse and the inverse of a conditional
statement are also equivalent, as the reader can verify, but neither is
equivalent to the original conditional statement. (We will study equiv-

1.1.3 Conditional Statements 21

alent propositions in Section 1.3.) Take note that one of the most
common logical errors is to assume that the converse or the inverse of
a conditional statement is equivalent to this conditional statement.

We illustrate the use of conditional statements in Example 10.

�
EXAMPLE. 10

Find the contrapositive, the converse, and the inverse of the conditional state-
ment

“The home team wins whenever it is raining.”�� ��Solution: Because “q whenever p” is one of the ways to express the con-
ditional statement p→ q, the original statement can be rewritten as

“If it is raining, then the home team wins.”
Consequently, the contrapositive of this conditional statement is
“If the home team does not win, then it is not raining.”
The converse is
“If the home team wins, then it is raining.”
The inverse is
“If it is not raining, then the home team does not win.”
Only the contrapositive is equivalent to the original statement.

BICONDITIONALS We now introduce another way to combine
propositions that expresses that two propositions have the same truth
value.

Definition 1.1.6 Let p and q be propositions. The biconditional
statement p ↔ q is the proposition “p if and only if q.” The bicon-
ditional statement p ↔ q is true when p and q have the same truth
values, and is false otherwise. Biconditional statements are also called
bi-implications.

The truth table p↔ q is shown in Table 6. Note that the statementp↔
q is true when both the conditional statements p → q and q → p are
true and is false otherwise. That is why we use the words “if and only
if” to express this logical connective and why it is symbolically written
by combining the symbols → and ←. There are some other common
ways to express p↔ q:

22 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

“p is necessary and sufficient for q”
“if p then q, and conversely”
“p iff q.” “p exactly when q.”

The last way of expressing the biconditional statement p ↔ q uses
the abbreviation “iff” for “if and only if.” Note that p ↔ q has exactly
the same truth value as (p↔ q) ∧ (q ↔ p).

�
EXAMPLE. 11

Let p be the statement “You can take the flight,” and let q be the statement
“You buy a ticket.” Then p↔ q is the statement

“You can take the flight if and only if you buy a ticket.”
This statement is true if p and q are either both true or both false, that

is, if you buy a ticket and can take the flight or if you do not buy a ticket and
you cannot take the flight. It is false when p and q have opposite truth values,
that is, when you do not buy a ticket, but you can take the flight (such as
when you get a free trip) and when you buy a ticket but you cannot take the
flight (such as when the airline bumps you).

Table 1.6: The Truth
Table for the Bicondi-
tional p↔ q.

p q p↔ q

T T T
T F F
F T F
F F T

IMPLICIT USE OF BICONDI-
TIONALS

You should be aware that biconditionals
are not always explicit in natural language.
In particular, the “if and only if” construction
used in biconditionals is rarely used in com-
mon language. Instead, biconditionals are of-
ten expressed using an “if, then” or an “only
if” construction. The other part of the “if and
only if” is implicit. That is, the converse is
implied, but not stated. For example, con-
sider the statement in English “If you finish
your meal, then you can have dessert.” What
is really meant is “You can have dessert if and
only if you finish your meal.” This last state-

ment is logically equivalent to the two statements “If you finish your
meal, then you can have dessert” and “You can have dessert only if you

1.1.4 Truth Tables of Compound Propositions 23

Table 1.7: The Truth Table of (p ∨ ¬q)→ (p ∧ q).

p q ¬q p ∨ ¬q p ∧ q (p ∨ ¬q)→ (p ∧ q)

T T F T T T
T F T T F F
F T F F F T
F F T T F F

finish your meal.” Because of this imprecision in natural language, we
need to make an assumption whether a conditional statement in natural
language implicitly includes its converse. Because precision is essential
in mathematics and in logic, we will always distinguish between the
conditional statement p→ q and the biconditional statement p↔ q.

1.1.4 Truth Tables of Compound Propositions

We have now introduced five important logical connectives—conjunc-
tion, disjunction, exclusive or, implication, and the biconditional oper-
ator as well as negation.We can use these connectives to build up com-
plicated compound propositions involving any number of propositional
variables.We can use truth tables to determine the truth values of these
compound propositions, as Example 12 illustrates. We use a separate
column to find the truth value of each compound expression that oc-
curs in the compound proposition as it is built up. The truth values of
the compound proposition for each combination of truth values of the
propositional variables in it is found in the final column of the table.

�
EXAMPLE. 12

Construct the truth table of the compound proposition

(p ∨ ¬q)→ (p ∧ q)

24 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC
�� ��Solution: Because this truth table involves two propositional variables p and
q, there are four rows in this truth table, one for each of the pairs of truth
values TT , TF , FT , and FF . The first two columns are used for the truth
values of p and q, respectively. In the third column we find the truth value
of ¬q, needed to find the truth value of p ∨ ¬q, found in the fourth column.
The fifth column gives the truth value of p ∧ q. Finally, the truth value of
(p ∨ ¬q) → (p ∧ q) is found in the last column. The resulting truth table is
shown in Table 1.7.

1.1.5 Precedence of Logical Operators

We can construct compound propositions using the negation op-
erator and the logical operators defined so far.We will generally use
parentheses to specify the order in which logical operators in a com-
pound proposition are to be applied. For instance, (p ∨ q) ∧ (¬r) is
the conjunction of p ∨ q and ¬r. However, to reduce the number
of parentheses, we specify that the negation operator is applied be-
fore all other logical operators. This means that ¬p ∧ q is the con-
junction of ¬p and q, namely, (¬p) ∧ q, not the negation of the con-
junction of p and q, namely ¬(p ∧ q). (It is generally the case that
unary operators that involve only one object precede binary operators.)

Table 1.8: Precedence of
Logical Operators.

Operat Preceden

¬ 1

∧ 2
∨ 3

→ 4
↔ 5

Another general rule of precedence is
that the conjunction operator takes prece-
dence over the disjunction operator, so
that p ∧ q ∨ r means (p ∧ q) ∨ r rather
than p ∧ (q ∨ r). Because this rule may
be difficult to remember, we will continue
to use parentheses so that the order of the
disjunction and conjunction operators is
clear.

Finally, it is an accepted rule that the
conditional and biconditional operators,
→ and↔, have lower precedence than the
conjunction and disjunction operators, ∧
and ∨. Consequently, p ∨ q → r is the

1.1.6 Logic and Bit Operations 25

same as (p ∨ q) → r. We will use parentheses when the order of the
conditional operator and biconditional operator is at issue, although
the conditional operator has precedence over the biconditional opera-
tor. Table 1.8 displays the precedence levels of the logical operators,¬,
∧, ∨, → and ↔.

1.1.6 Logic and Bit Operations

Truth Bit
Value

T 1
F 0

Computers represent information using bits.
A bit is a symbol with two possible values,
namely, 0 (zero) and 1 (one). This meaning of
the word bit comes from binary digit, because
zeros and ones are the digits used in binary rep-
resentations of numbers. The well-known statis-
tician John Tukey introduced this terminology
in 1946. A bit can be used to represent a truth value, because there
are two truth values, namely, true and false. As is customarily done,
we will use a 1 bit to represent true and a 0 bit to represent false. That
is, 1 represents T (true), 0 represents F (false). A variable is called
a Boolean variable if its value is either true or false. Consequently, a
Boolean variable can be represented using a bit.

Table 1.9: Table for the Bit Operators OR, AND, and XOR.
x y x ∨ y x ∧ y x⊕ y

0 0 0 0 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 0

Computer bit operations correspond to the logical connectives.
By replacing true by a one and false by a zero in the truth tables for the
operators ∧, ∨, ⊕ and , the columns in Table 1.9 for the corresponding
bit operations are obtained.We will also use the notation OR, AND, and
XOR for the operators ∨, ∧, and ⊕ as is done in various programming
languages.

26 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

Information is often represented using bit strings, which are lists of
zeros and ones. When this is done, operations on the bit strings can be
used to manipulate this information.

Definition 1.1.7 A bit string is a sequence of zero or more bits.
The length of this string is the number of bits in the string.

�
EXAMPLE. 13

101010011 is a bit string of length nine.

We can extend bit operations to bit strings. We define the bitwise
OR, bitwise AND, and bitwise XOR of two strings of the same
length to be the strings that have as their bits the OR, AND, and
XOR of the corresponding bits in the two strings, respectively. We use
the symbols ∨, ∧, and to represent the bitwise OR, bitwise AND, and
bitwise XOR operations, respectively. We illustrate bitwise operations
on bit strings with Example 14.

�
EXAMPLE. 14

Find the bitwise OR, bitwise AND, and bitwise XOR of the bit strings 01
1011 0110 and 11 0001 1101. (Here, and throughout this book, bit strings will
be split into blocks of four bits to make them easier to read.)�� ��Solution: The bitwise OR, bitwise AND, and bitwise XOR of these strings
are obtained by taking the OR, AND, and XOR of the corresponding bits,
respectively. This gives us

01 1011 0110
11 0001 1101
11 1011 1111 bitwise OR
01 0001 0100 bitwise AND
10 1010 1011 bitwise XOR

1.2. APPLICATIONS OF PROPOSITIONAL LOGIC 27

1.2 Applications of Propositional Logic

1.2.1 Introduction

Logic has many important applications to mathematics, computer
science, and numerous other disciplines. Statements in mathematics
and the sciences and in natural language often are imprecise or am-
biguous. To make such statements precise, they can be translated into
the language of logic. For example, logic is used in the specification of
software and hardware, because these specifications need to be precise
before development begins. Furthermore, propositional logic and its
rules can be used to design computer circuits, to construct computer
programs, to verify the correctness of programs, and to build expert
systems. Logic can be used to analyze and solve many familiar puzzles.
Software systems based on the rules of logic have been developed for
constructing some, but not all, types of proofs automatically.We will
discuss some of these applications of propositional logic in this section
and in later chapters.

1.2.2 Translating English Sentences

There are many reasons to translate English sentences into expres-
sions involving propositional variables and logical connectives. In par-
ticular, English (and every other human language) is often ambiguous.
Translating sentences into compound statements (and other types of
logical expressions, which we will introduce later in this chapter) re-
moves the ambiguity. Note that this may involve making a set of rea-
sonable assumptions based on the intended meaning of the sentence.
Moreover, once we have translated sentences from English into logical
expressions we can analyze these logical expressions to determine their
truth values, we can manipulate them, and we can use rules of inference
to reason about them.

To illustrate the process of translating an English sentence into a
logical expression, consider Examples 1 and 2.

28 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

�
EXAMPLE. 1

How can this English sentence be translated into a logical expression?
“You can access the Internet from campus only if you are a computer

science major or you are not a freshman.”�� ��Solution: There are many ways to translate this sentence into a logical ex-
pression. Although it is possible to represent the sentence by a single proposi-
tional variable, such as p, this would not be useful when analyzing its meaning
or reasoning with it. Instead, we will use propositional variables to represent
each sentence part and determine the appropriate logical connectives between
them. In particular, we let a, c, and f represent “You can access the Internet
from campus,” “You are a computer science major”, and “You are a freshman”,
respectively. Noting that “only if” is one way a conditional statement can be
expressed, this sentence can be represented as

a→ (c ∨ ¬f)

�
EXAMPLE. 2

How can this English sentence be translated into a logical expression? “You
cannot ride the roller coaster if you are under 4 feet tall unless you are older
than 16 years old.”�� ��Solution: Let q, r, and s represent “You can ride the roller coaster”, “You
are under 4 feet tall”, and “You are older than 16 years old”, respectively.
Then the sentence can be translated to

(r ∧ ¬s)→ ¬q.
Of course, there are other ways to represent the original sentence as a

logical expression, but the one we have used should meet our needs.

1.2.3 System Specifications

Translating sentences in natural language (such as English) into
logical expressions is an essential part of specifying both hardware and
software systems. System and software engineers take requirements in
natural language and produce precise and unambiguous specifications

1.2.3 System Specifications 29

that can be used as the basis for system development. Example 3 shows
how compound propositions can be used in this process.

�
EXAMPLE. 3

Express the specification “The automated reply cannot be sent when the file
system is full” using logical connectives.�� ��Solution: One way to translate this is to let p denote “The automated
reply can be sent” and q denote “The file system is full”. Then ¬p represents
“It is not the case that the automated reply can be sent”, which can also be
expressed as “The automated reply cannot be sent”. Consequently, our speci-
fication can be represented by the conditional statement q → ¬p.

System specifications should be consistent, that is, they should
not contain conflicting requirements that could be used to derive a
contradiction.When specifications are not consistent, there would be
no way to develop a system that satisfies all specifications.

�
EXAMPLE. 4

Determine whether these system specifications are consistent:

“The diagnostic message is stored in the buffer or it is retransmitted.”
“The diagnostic message is not stored in the buffer.”
“If the diagnostic message is stored in the buffer, then it is retransmit-
ted.”�� ��Solution: To determine whether these specifications are consistent, we first

express them using logical expressions. Let p denote “The diagnostic message
is stored in the buffer” and let q denote “The diagnostic message is retrans-
mitted”. The specifications can then be written as p ∨ q, ¬p and p → q. An
assignment of truth values that makes all three specifications true must have p
false to make ¬p true. Because we want p∨q to be true but p must be false, q
must be true. Because p→ q is true when p is false and q is true, we conclude
that these specifications are consistent, because they are all true when p is
false and q is true. We could come to the same conclusion by use of a truth
table to examine the four possible assignments of truth values to p and q.

30 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

�
EXAMPLE. 5

Do the system specifications in Example 4 remain consistent if the specifica-
tion “The diagnostic message is not retransmitted” is added?�� ��Solution: By the reasoning in Example 4, the three specifications from
that example are true only in the case when p is false and q is true. However,
this new specification is ¬q, which is false when q is true. Consequently, these
four specifications are inconsistent.

1.2.4 Boolean Searches

Logical connectives are used extensively in searches of large col-
lections of information, such as indexes of Web pages. Because these
searches employ techniques from propositional logic, they are called
Boolean searches.

In Boolean searches, the connective AND is used to match records
that contain both of two search terms, the connective OR is used to
match one or both of two search terms, and the connective NOT (some-
times written as AND NOT) is used to exclude a particular search
term. Careful planning of how logical connectives are used is often
required when Boolean searches are used to locate information of po-
tential interest. Example 6 illustrates how Boolean searches are carried
out.

�
EXAMPLE. 6

Web Page Searching MostWeb search engines support Boolean searching
techniques, which usually can help findWeb pages about particular subjects.
For instance, using Boolean searching to find Web pages about universities
in New Mexico, we can look for pages matching NEW AND MEXICO AND
UNIVERSITIES. The results of this search will include those pages that con-
tain the three words NEW, MEXICO, and UNIVERSITIES. This will include
all of the pages of interest, together with others such as a page about new
universities in Mexico. (Note that in Google, and many other search engines,
the word “AND” is not needed, although it is understood, because all search
terms are included by default. These search engines also support the use of

1.2.5 Logic Puzzles 31

quotation marks to search for specific phrases. So, it may be more effective
to search for pages matching “New Mexico” AND UNIVERSITIES.)

Next, to find pages that deal with universities in New Mexico or Arizona,
we can search for pages matching (NEW AND MEXICO OR ARIZONA)
AND UNIVERSITIES. (Note: Here the AND operator takes precedence over
the OR operator. Also, in Google, the terms used for this search would be
NEW MEXICO OR ARIZONA.) The results of this search will include all
pages that contain the word UNIVERSITIES and either both the words NEW
and MEXICO or the word ARIZONA. Again, pages besides those of inter-
est will be listed. Finally, to find Web pages that deal with universities in
Mexico (and not New Mexico), we might first look for pages matching MEX-
ICO AND UNIVERSITIES, but because the results of this search will include
pages about universities in New Mexico, as well as universities in Mexico, it
might be better to search for pages matching (MEXICO AND UNIVERSI-
TIES) NOT NEW. The results of this search include pages that contain both
the words MEXICO and UNIVERSITIES but do not contain the word NEW.
(In Google, and many other search engines, the word “NOT” is replaced by
the symbol “-”. In Google, the terms used for this last search would be MEX-
ICO UNIVERSITIES - NEW.)

1.2.5 Logic Puzzles

Puzzles that can be solved using logical reasoning are known as logic
puzzles. Solving logic puzzles is an excellent way to practice working
with the rules of logic. Also, computer programs designed to carry
out logical reasoning often use well-known logic puzzles to illustrate
their capabilities. Many people enjoy solving logic puzzles, published
in periodicals, books, and on theWeb, as a recreational activity.

We will discuss two logic puzzles here.We begin with a puzzle orig-
inally posed by Raymond Smullyan, a master of logic puzzles, who has
published more than a dozen books containing challenging puzzles that
involve logical reasoning.

�
EXAMPLE. 7

In [2] Smullyan posed many puzzles about an island that has two kinds of

32 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

inhabitants, knights, who always tell the truth, and their opposites, knaves,
who always lie. You encounter two people A and B. What are A and B if A
says “B is a knight” and B says “The two of us are opposite types?”�� ��Solution: Let p and q be the statements that A is a knight and B is a
knight, respectively, so that ¬p and ¬q are the statements that A is a knave
and B is a knave, respectively. We first consider the possibility that A is a
knight; this is the statement that p is true. If A is a knight, then he is telling
the truth when he says that B is a knight, so that q is true, and A and B
are the same type. However, if B is a knight, then B ’s statement that A and
B are of opposite types, the statement (p ∧ ¬q) ∨ (¬p ∧ q), would have to be
true, which it is not, because A and B are both knights. Consequently, we
can conclude that A is not a knight, that is, that p is false.

If A is a knave, then because everything a knave says is false, A’s state-
ment that B is a knight, that is, that q is true, is a lie. This means that q is
false and B is also a knave. Furthermore, if B is a knave, then B ’s statement
that A and B are opposite types is a lie, which is consistent with both A and
B being knaves. We can conclude that both A and B are knaves.

Next, we pose a puzzle known as the muddy children puzzle for
the case of two children.

�
EXAMPLE. 8

A father tells his two children, a boy and a girl, to play in their backyard
without getting dirty. However, while playing, both children get mud on their
foreheads. When the children stop playing, the father says “At least one of you
has a muddy forehead,” and then asks the children to answer “Yes” or “No”
to the question: “Do you know whether you have a muddy forehead?” The
father asks this question twice. What will the children answer each time this
question is asked, assuming that a child can see whether his or her sibling has
a muddy forehead, but cannot see his or her own forehead? Assume that both
children are honest and that the children answer each question simultaneously.�� ��Solution: Let s be the statement that the son has a muddy forehead and
let d be the statement that the daughter has a muddy forehead. When the
father says that at least one of the two children has a muddy forehead, he is
stating that the disjunction s ∨ d is true. Both children will answer “No” the
first time the question is asked because each sees mud on the other child’s
forehead. That is, the son knows that d is true, but does not know whether
s is true, and the daughter knows that s is true, but does not know whether

1.2.6 Logic Circuits 331.2 Applications of Propositional Logic 21

p
p ∨ q

q

p

q

p p ∧ q

Inverter OR gate AND gate

¬p

FIGURE 1 Basic logic gates.

(p ∧ ¬q) ∨ ¬rq

p p ∧ ¬q

¬q

r
¬r

FIGURE 2 A combinatorial circuit.

Complicated digital circuits can be constructed from three basic circuits, called gates, shown
in Figure 1. The inverter, or NOT gate, takes an input bit p, and produces as output ¬p. The
OR gate takes two input signals p and q, each a bit, and produces as output the signal p ∨ q.
Finally, the AND gate takes two input signals p and q, each a bit, and produces as output the
signal p ∧ q. We use combinations of these three basic gates to build more complicated circuits,
such as that shown in Figure 2.

Given a circuit built from the basic logic gates and the inputs to the circuit, we determine
the output by tracing through the circuit, as Example 9 shows.

EXAMPLE 9 Determine the output for the combinatorial circuit in Figure 2.

Solution: In Figure 2 we display the output of each logic gate in the circuit. We see that the AND
gate takes input of p and ¬q, the output of the inverter with input q, and produces p ∧ ¬q.
Next, we note that the OR gate takes input p ∧ ¬q and ¬r , the output of the inverter with
input r , and produces the final output (p ∧ ¬q) ∨ ¬r . ▲

Suppose that we have a formula for the output of a digital circuit in terms of negations,
disjunctions, and conjunctions. Then, we can systematically build a digital circuit with the
desired output, as illustrated in Example 10.

EXAMPLE 10 Build a digital circuit that produces the output (p ∨ ¬r) ∧ (¬p ∨ (q ∨ ¬r)) when given input
bits p, q, and r .

Solution: To construct the desired circuit, we build separate circuits for p ∨ ¬r and for ¬p ∨
(q ∨ ¬r) and combine them using an AND gate. To construct a circuit for p ∨ ¬r , we use an
inverter to produce ¬r from the input r . Then, we use an OR gate to combine p and ¬r . To
build a circuit for¬p ∨ (q ∨ ¬r), we first use an inverter to obtain¬r . Then we use an OR gate
with inputs q and ¬r to obtain q ∨ ¬r . Finally, we use another inverter and an OR gate to get
¬p ∨ (q ∨ ¬r) from the inputs p and q ∨ ¬r .

To complete the construction, we employ a final AND gate, with inputs p ∨ ¬r and ¬p ∨
(q ∨ ¬r). The resulting circuit is displayed in Figure 3. ▲

We will study logic circuits in great detail in Chapter 12 in the context of Boolean algebra,
and with different notation.

Figure 1.1: Basic logic gates.

d is true.
After the son has answered “No” to the first question, the daughter can

determine that d must be true. This follows because when the first question
is asked, the son knows that s ∨ d is true, but cannot determine whether s is
true. Using this information, the daughter can conclude that d must be true,
for if d were false, the son could have reasoned that because s∨d is true, then
s must be true, and he would have answered “Yes” to the first question. The
son can reason in a similar way to determine that s must be true. It follows
that both children answer “Yes” the second time the question is asked.

1.2.6 Logic Circuits

Propositional logic can be applied to the design of computer hard-
ware. This was first observed in 1938 by Claude Shannon in his MIT
master’s thesis.

A logic circuit (or digital circuit) receives input signals p1, p2, . . .,
pn, each a bit [either 0 (off) or 1 (on)], and produces output signals
s1, s2, . . . , sn, each a bit. In this section we will restrict our attention
to logic circuits with a single output signal; in general, digital circuits
may have multiple outputs.

Complicated digital circuits can be constructed from three basic
circuits, called gates, shown in Figure 1.1. The inverter, or NOT
gate, takes an input bit p, and produces as output ¬p. The OR gate
takes two input signals p and q, each a bit, and produces as output the
signal p ∨ q. Finally, the AND gate takes two input signals p and q,
each a bit, and produces as output the signal p ∧ q.

Given a circuit built from the basic logic gates and the inputs to
the circuit, we determine the output by tracing through the circuit, as
Example 9 shows.

34 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC22 1 / The Foundations: Logic and Proofs

(p ∨ ¬r) ∧ (¬p ∨ (q ∨ ¬r))
r

p p ∨ ¬r

¬r

r

q

q ∨ ¬r
¬p ∨ (q ∨ ¬r)

¬r

p
¬p

FIGURE 3 The circuit for (p ∨ ¬r) ∧ (¬p ∨ (q ∨ ¬r)).

Exercises

In Exercises 1–6, translate the given statement into proposi-
tional logic using the propositions provided.

1. You cannot edit a protected Wikipedia entry unless you
are an administrator. Express your answer in terms of e:
“You can edit a protected Wikipedia entry” and a: “You
are an administrator.”

2. You can see the movie only if you are over 18 years old
or you have the permission of a parent. Express your an-
swer in terms of m: “You can see the movie,” e: “You are
over 18 years old,” and p: “You have the permission of a
parent.”

3. You can graduate only if you have completed the require-
ments of your major and you do not owe money to the
university and you do not have an overdue library book.
Express your answer in terms of g: “You can graduate,”
m: “You owe money to the university,” r: “You have com-
pleted the requirements of your major,” and b: “You have
an overdue library book.”

4. To use the wireless network in the airport you must pay
the daily fee unless you are a subscriber to the service.
Express your answer in terms of w: “You can use the wire-
less network in the airport,” d: “You pay the daily fee,”
and s: “You are a subscriber to the service.”

5. You are eligible to be President of the U.S.A. only if you
are at least 35 years old, were born in the U.S.A, or at the
time of your birth both of your parents were citizens, and
you have lived at least 14 years in the country. Express
your answer in terms of e: “You are eligible to be Pres-
ident of the U.S.A.,” a: “You are at least 35 years old,”
b: “You were born in the U.S.A,” p: “At the time of your
birth, both of your parents where citizens,” and r: “You
have lived at least 14 years in the U.S.A.”

6. You can upgrade your operating system only if you have
a 32-bit processor running at 1 GHz or faster, at least
1 GB RAM, and 16 GB free hard disk space, or a 64-
bit processor running at 2 GHz or faster, at least 2 GB
RAM, and at least 32 GB free hard disk space. Express
you answer in terms of u: “You can upgrade your oper-
ating system,” b32: “You have a 32-bit processor,” b64:

“You have a 64-bit processor,” g1: “Your processor runs
at 1 GHz or faster,” g2: “Your processor runs at 2 GHz or
faster,” r1: “Your processor has at least 1 GB RAM,” r2:
“Your processor has at least 2 GB RAM,” h16: “You have
at least 16 GB free hard disk space,” and h32: “You have
at least 32 GB free hard disk space.”

7. Express these system specifications using the proposi-
tions p “The message is scanned for viruses” and q “The
message was sent from an unknown system” together
with logical connectives (including negations).
a) “The message is scanned for viruses whenever the

message was sent from an unknown system.”

b) “The message was sent from an unknown system but
it was not scanned for viruses.”

c) “It is necessary to scan the message for viruses when-
ever it was sent from an unknown system.”

d) “When a message is not sent from an unknown system
it is not scanned for viruses.”

8. Express these system specifications using the proposi-
tions p “The user enters a valid password,” q “Access is
granted,” and r “The user has paid the subscription fee”
and logical connectives (including negations).
a) “The user has paid the subscription fee, but does not

enter a valid password.”

b) “Access is granted whenever the user has paid the
subscription fee and enters a valid password.”

c) “Access is denied if the user has not paid the subscrip-
tion fee.”

d) “If the user has not entered a valid password but has
paid the subscription fee, then access is granted.”

9. Are these system specifications consistent? “The system
is in multiuser state if and only if it is operating normally.
If the system is operating normally, the kernel is func-
tioning. The kernel is not functioning or the system is
in interrupt mode. If the system is not in multiuser state,
then it is in interrupt mode. The system is not in interrupt
mode.”

Figure 1.2: The circuit for (p ∨ ¬r) ∧ (¬p ∨ (q ∨ ¬r)).

�
EXAMPLE. 9

Build a digital circuit that produces the output (p∨ ≠ r) ∧ (̸= p ∨ (q∨ ≠ r))
when given input bits p, q, and r.�� ��Solution: To construct the desired circuit, we build separate circuits for
p ∨ ¬r and for ¬p ∨ (q ∨ ¬r) and combine them using an AND gate. To
construct a circuit for p∨¬r, we use an inverter to produce ¬r from the input
r. Then, we use an OR gate to combine p and ¬r. To build a circuit for
¬p∨ (q ∨¬r), we first use an inverter to obtain ¬r. Then we use an OR gate
with inputs q and ¬r to obtain q ∨ ¬r. Finally, we use another inverter and
an OR gate to get ¬p ∨ (q ∨ ¬r) from the inputs p and q ∨ ¬r.

To complete the construction, we employ a final AND gate, with inputs
p∨¬r and ¬p∨ (q ∨¬r). The resulting circuit is displayed in Figure 1.2.

1.3 Propositional Equivalences

1.3.1 Introduction

An important type of step used in a mathematical argument is the
replacement of a statement with another statement with the same truth
value. Because of this, methods that produce propositions with the
same truth value as a given compound proposition are used extensively
in the construction of mathematical arguments. Note that we will use
the term “compound proposition” to refer to an expression formed from
propositional variables using logical operators, such as p ∧ q.

1.3.2 Logical Equivalences 35

Table 1.10: Examples of a Tautology and a Contradiction.

p ¬p p ∨ ¬q p ∧ ¬p

T F T F
F T T F

We begin our discussion with a classification of compound proposi-
tions according to their possible truth values.

Definition 1.3.1 A compound proposition that is always true, no
matter what the truth values of the propositional variables that occur in
it, is called a tautology.A compound proposition that is always false
is called a contradiction. A compound proposition that is neither a
tautology nor a contradiction is called a contingency.

Tautologies and contradictions are often important in mathematical
reasoning. Example 1 illustrates these types of compound propositions.

�
EXAMPLE. 1

We can construct examples of tautologies and contradictions using just one
propositional variable. Consider the truth tables of p∨¬p and p∧¬p, shown
in Table 1.10. Because p∨¬p is always true, it is a tautology. Because p∧¬p
is always false, it is a contradiction.

1.3.2 Logical Equivalences

Compound propositions that have the same truth values in all pos-
sible cases are called logically equivalent. We can also define this
notion as follows.

Definition 1.3.2 The compound propositions p and q are called
logically equivalent if p ↔ q is a tautology. The notation p ≡ q
denotes that p and q are logically equivalent.

36 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

Remark! The symbol ≡ is not a logical connective, and p ≡ q
is not a compound proposition but rather is the statement that
p ↔ q is a tautology. The symbol⇔ is sometimes used instead of
≡ to denote logical equivalence.

Table 1.11: De Morgan’s Laws.

¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q

One way to determine whether two compound propositions are
equivalent is to use a truth table. In particular, the compound propo-
sitions p and q are equivalent if and only if the columns giving their
truth values agree.

Example 2 illustrates this method to establish an extremely impor-
tant and useful logical equivalence, namely, that of ¬(p∨q) with ¬p∧¬q.
This equivalence is one of the two De Morgan laws, shown in Table
1.11, named after the English mathematician Augustus De Morgan, of
the mid-nineteenth century.

Table 1.12: Truth Tables for ¬(p ∨ q) and ¬p ∧ ¬q

p q p ∨ q ¬(p ∨ q) ¬p ¬q ¬p ∧ q

T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

�
EXAMPLE. 2

Show that ¬(p ∨ q) and ¬p ∧ ¬q are logically equivalent.

1.3.2 Logical Equivalences 37

Table 1.13: Truth Tables for ¬p ∨ q and p→ q

p q ¬q p ∨ ¬q p ∧ q (p ∨ ¬q)→ (p ∧ q)

T T F T T T
T F T T F F
F T F F F T
F F T T F F

�� ��Solution: The truth tables for these compound propositions are displayed
in Table 1.12. Because the truth values of the compound propositions ¬(p∨q)
and ¬p∧¬q agree for all possible combinations of the truth values of p and q,
it follows that ¬(p ∨ q)↔ (¬p ∧ ¬q) is a tautology and that these compound
propositions are logically equivalent.

�
EXAMPLE. 3

Show that p→ q and ¬p ∨ q are logically equivalent.�� ��Solution: We construct the truth table for these compound propositions
in Table 1.13. Because the truth values of ¬p ∨ q and p → q agree, they are
logically equivalent.

We will now establish a logical equivalence of two compound propo-
sitions involving three different propositional variables p, q, and r. To
use a truth table to establish such a logical equivalence, we need eight
rows, one for each possible combination of truth values of these three
variables. We symbolically represent these combinations by listing the
truth values of p, q, and r, respectively. These eight combinations of
truth values are TTT, TTF, TFT, TFF, FTT, FTF, FFT, and FFF;
we use this order when we display the rows of the truth table. Note
that we need to double the number of rows in the truth tables we use
to showthat compound propositions are equivalent for each additional
propositional variable, so that 16 rows are needed to establish the logical

38 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

Table 1.14: A Demonstration That p∨ (q ∧ r) and (p∨ q)∧ (p∨ r) Are
Logically Equivalent.

p q r p ∧ q p ∨ (q ∧ r) p ∨ q p ∨ r) (p ∨ q) ∧ (p ∨ r)

T T T T T T T T
T T F F T T T T
T F T F T T T T
T F F F T T T T
F T T T T T T T
F T F F F T F F
F F T F F F T F
F F F F F F F F

equivalence of two compound propositions involving four propositional
variables, and so on. In general, 2n rows are required if a compound
proposition involves n propositional variables.

�
EXAMPLE. 4

Show that p∨ (q ∧ r) and (p∨ q)∧ (p∨ r) are logically equivalent. This is the
distributive law of disjunction over conjunction.�� ��Solution: We construct the truth table for these compound propositions
in Table 1.14. Because the truth values of p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r)

agree, these compound propositions are logically equivalent.

Table 1.15 contains some important equivalences. In these equiva-
lences, T denotes the compound proposition that is always true and F
denotes the compound proposition that is always false. We also display
some useful equivalences for compound propositions involving condi-
tional statements and biconditional statements in Table 1.16 and 1.17,
respectively. The reader is asked to verify the equivalences in Tables
1.15-1.17 in the exercises.

The associative law for disjunction shows that the expression p∨q∨r

1.3.2 Logical Equivalences 39

Table 1.15: Logical Equivalences.

Equivalence Name

p ∧T ≡ p Identity laws
p ∨ F ≡ p

p ∨T ≡ T Domination laws
p ∧ F ≡ F

p ∨ p ≡ p Idempotent laws
p ∧ p ≡ p

¬(¬p) ≡ p Double negation law

p ∨ q ≡ q ∨ p Commutative laws
p ∧ q ≡ q ∧ p

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r) Associative laws
(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) Distributive laws
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

¬(p ∧ q) ≡ ¬p ∨ ¬q De Morgan’s laws
¬(p ∨ q) ≡ ¬p ∧ ¬q

p ∨ (p ∧ q) ≡ p Absorption laws
p ∧ (q ∨ q) ≡ p

p ∨ ¬p ≡ T Negation laws
p ∧ ¬p ≡ F

40 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

Table 1.16: Logical Equiv-
alences Involving Conditional
Statements.
p→ q ≡ ¬p ∨ q
p→ q ≡ ¬q → ¬p
p ∨ q ≡ ¬p→ q
p ∧ q ≡ ¬(p→ ¬q)
¬(p→ q) ≡ p ∧ ¬q
(p→ q) ∧ (p→ r) ≡ p→ (q ∧ r)
(p→ r) ∧ (q → r) ≡ (p ∨ q)→ r
(p→ q) ∨ (p→ r) ≡ p→ (q ∨ r)
(p→ r) ∨ (q → r) ≡ (p ∧ q)→ r

Table 1.17: Logical Equivalences
Involving Biconditional State-
ments.

p↔ q ≡ (p→ q) ∧ (q → p)
p↔ q ≡ ¬p↔ ¬q
p↔ q ≡ (p ∧ q) ∨ (¬p ∧ ¬q)
¬(p↔ q) ≡ p↔ ¬q

is well defined, in the sense that it does not matter whether we first take
the disjunction of p with q and then the disjunction of p∨q with r, or if
we first take the disjunction of q and r and then take the disjunction ofp
with q∨r. Similarly, the expression p∧q∧r is well defined. By extending
this reasoning, it follows that p1 ∨ p2 ∨ . . . ∨ pn and p1 ∧ p2 ∧ . . . ∧ pn
are well defined whenever p1, p2, . . . , pn are propositions.

Furthermore, note that De Morgan’s laws extend to

¬(p1 ∨ p2 ∨ . . . ∨ pn) ≡ (¬p1 ∧ ¬p2 ∧ . . . ∧ ¬pn)

and
¬
(
p1 ∧ p2 ∧ . . . ∧ pn

)
≡

(
¬p1 ∨ ¬p2 ∨ . . . ∨ ¬pn

)
.

We will sometimes use the notation
∨n

j=1 pj for p1∨p2∨ . . .∨pn and∧n
j=1 pj for p1 ∧ p2 ∧ . . .∧ pn. Using this notation, the extended version

of De Morgan’s laws can be written concisely as ¬
∨n

j=1 pj ≡
∧n

j=1 ¬pj
and ¬

∧n
j=1 pj ≡

∨n
j=1 ¬pj .

1.3.3 Using De Morgan’s Laws

The two logical equivalences known as De Morgan’s laws are partic-
ularly important. They tell us how to negate conjunctions and how to
negate disjunctions. In particular, the equivalence ¬(p ∨ q) ≡ ¬p ∧ ¬q

1.3.4 Constructing New Logical Equivalences 41

tells us that the negation of a disjunction is formed by taking the con-
junction of the negations of the component propositions. Similarly, the
equivalence ¬(p∧q) ≡ ¬p∨¬q tells us that the negation of a conjunction
is formed by taking the disjunction of the negations of the component
propositions. Example 5 illustrates the use of De Morgan’s laws.

�
EXAMPLE. 5

Use De Morgan’s laws to express the negations of “Miguel has a cellphone and
he has a laptop computer” and “Heather will go to the concert or Steve will
go to the concert.”�� ��Solution: Let p be “Miguel has a cellphone” and q be “Miguel has a laptop
computer”. Then “Miguel has a cellphone and he has a laptop computer”
can be represented by p ∧ q. By the first of De Morgan’s laws, ¬(p ∧ q) is
equivalent to ¬p ∨ ¬q. Consequently, we can express the negation of our
original statement as “Miguel does not have a cellphone or he does not have
a laptop computer.”

Let r be “Heather will go to the concert” and s be “Steve will go to the
concert.” Then “Heather will go to the concert or Steve will go to the concert”
can be represented by r ∨ s. By the second of De Morgan’s laws, ¬(r ∨ s)

is equivalent to ¬r ∧ ¬s. Consequently, we can express the negation of our
original statement as “Heather will not go to the concert and Steve will not
go to the concert.”

1.3.4 Constructing New Logical Equivalences

The logical equivalences in Table 1.15, as well as any others that
have been established (such as those shown in Table 1.16 and Table
1.17), can be used to construct additional logical equivalences. The
reason for this is that a proposition in a compound proposition can be
replaced by a compound proposition that is logically equivalent to it
without changing the truth value of the original compound proposition.
This technique is illustrated in Examples 6–8, where we also use the
fact that if p and q are logically equivalent and q and r are logically
equivalent, then p and r are logically equivalent.

42 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

�
EXAMPLE. 6

Show that ¬(p→ q) and p ∧ ¬q are logically equivalent.�� ��Solution: We could use a truth table to show that these compound propo-
sitions are equivalent (similar to what we did in Example 4). Indeed, it would
not be hard to do so. However, we want to illustrate how to use logical iden-
tities that we already know to establish new logical identities, something that
is of practical importance for establishing equivalences of compound proposi-
tions with a large number of variables. So, we will establish this equivalence
by developing a series of logical equivalences, using one of the equivalences in
Table 1.15 at a time, starting with ¬(p→ q) and ending with p∧¬q.We have
the following equivalences.

¬(p→ q) ≡ ¬(¬p ∨ q) by Example 3
≡ ¬(¬p) ∧ ¬q by the section De Morgan law
≡ p ∧ ¬q by the double negation law

�
EXAMPLE. 7

Show that ¬(p ∨ (¬p ∧ q)) and ¬p ∧ ¬q are logically equivalent by developing
a series of logical equivalences.�� ��Solution: We will use one of the equivalences in Table 1.15 at a time,
starting with ¬(p ∨ (¬p ∧ q)) and ending with ¬p ∧ ¬q. (Note: we could also
easily establish this equivalence using a truth table.)We have the following
equivalences.

¬(p ∨ (¬p ∧ q)) ≡ ¬p ∧ ¬(¬p ∧ q) by the second De Morgan law
≡ ¬p ∧ [¬(¬p) ∨ ¬q] by the first De Morgan law
≡ ¬p ∧ (p ∨ ¬q) by the double negation law
≡ (¬p ∧ p) ∨ (¬p ∧ ¬q) by the second distributive law
≡ F ∨ (¬p ∧ ¬q) because ¬p ∧ p ≡ F
≡ (¬p ∧ ¬q) ∨ F by the commutative law for

disjunction
≡ ¬p ∧ ¬q by the identity law forF

Consequently ¬(p ∨ (¬p ∧ q)) and ¬p ∧ ¬q are logically equivalent.

1.3.5 Propositional Satisfiability 43

�
EXAMPLE. 8

Show that (p ∧ q)→ (p ∨ q) is a tautology.�� ��Solution: To show that this statement is a tautology, we will use logical
equivalences to demonstrate that it is logically equivalent to T.

(p ∧ q)→ (p ∨ q) ≡ ¬(p ∧ q) ∨ (p ∨ q) by Example 3
≡ (¬p ∨ ¬q) ∨ (p ∨ q) by the first De Morgan law
≡ (¬p ∨ p) ∨ (¬q ∨ q) by the associative and commutative

laws for disjunction
≡ T ∨T by Example 1 and the commutative

law for disjunction
≡ T by the domination law

1.3.5 Propositional Satisfiability

Acompound proposition is satisfiable if there is an assignment of
truth values to its variables that makes it true. When no such assign-
ments exists, that is, when the compound proposition is false for all
assignments of truth values to its variables, the compound proposition
is unsatisfiable. Note that a compound proposition is unsatisfiable if
and only if its negation is true for all assignments of truth values to the
variables, that is, if and only if its negation is a tautology.

When we find a particular assignment of truth values that makes a
compound proposition true, we have shown that it is satisfiable; such an
assignment is called a solution of this particular satisfiability problem.
However, to show that a compound proposition is unsatisfiable, we need
to show that every assignment of truth values to its variables makes it
false. Although we can always use a truth table to determine whether
a compound proposition is satisfiable, it is often more efficient not to,
as Example 9 demonstrates.

�
EXAMPLE. 9

44 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

Determine whether each of the compound propositions (p ∨ ¬q) ∧ (q ∨ ¬r) ∧
(r ∨¬p), (p∨ q ∨ r)∧ (¬p∨¬q ∨¬r), and (p∨¬q)∧ (q ∨¬r)∧ (r ∨¬p)∧ (p∨
q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r) is satisfiable.�� ��Solution: Instead of using truth table to solve this problem, we will reason
about truth values. Note that (p ∨ ¬q) ∧ (q ∨ ¬r) ∧ (r ∨ ¬p) is true when the
three variable p, q, and r have the same truth value. Hence, it is satisfiable as
there is at least one assignment of truth values for p, q, and r that makes it
true. Similarly, note that (p∨ q∨ r)∧ (¬p∨¬q∨¬r) is true when at least one
of p, q, and r is true and at least one is false. Hence, (p∨q∨r)∧(¬p∨¬q∨¬r)
is satisfiable, as there is at least one assignment of truth values for p, q, and
r that makes it true.

Finally, note that for (p∨¬q)∧(q∨¬r)∧(r∨¬p)∧(p∨q∨r)∧(¬p∨¬q∨¬r)
to be true, (p∨¬q)∧(q∨¬r)∧(r∨¬p) and (p∨q∨r)∧(¬p∨¬q∨¬r) must both
be true. For the first to be true, the three variables must have the same truth
values, and for the second to be true, at least one of three variables must be
true and at least one must be false. However, these conditions are contradic-
tory. From these observations we conclude that no assignment of truth values
to p, q, and r makes (p∨¬q)∧ (q∨¬r)∧ (r∨¬p)∧ (p∨ q∨ r)∧ (¬p∨¬q∨¬r)
true. Hence, it is unsatisfiable.

1.3.6 Applications of Satisfiability

Many problems, in diverse areas such as robotics, software test-
ing, computer-aided design, machine vision, integrated circuit design,
computer networking, and genetics, can be modeled in terms of proposi-
tional satisfiability. Although most of these applications are beyond the
scope of this book, we will study one application here. In particular,
we will show how to use propositional satisfiability to model Sudoku
puzzles.

SUDOKU
A Sudoku puzzle is represented by a 9 × 9 grid made up of nine

3× 3 subgrids, known as blocks, as shown in Figure 1.3. For each puz-
zle, some of the 81 cells, called givens, are assigned one of the numbers
1, 2, . . . , 9, and the other cells are blank. The puzzle is solved by as-
signing a number to each blank cell so that every row, every column,
and every one of the nine 3×3 blocks contains each of the nine possible
numbers. Note that instead of using a 9 × 9 grid, Sudoku puzzles can

1.3.6 Applications of Satisfiability 4532 1 / The Foundations: Logic and Proofs

2 9 4
5 1

4
4 2

6 7
5
7 3 5

1 9
6

FIGURE 1 A 9 × 9 Sudoku puzzle.

Applications of Satisfiability

Many problems, in diverse areas such as robotics, software testing, computer-aided design,
machine vision, integrated circuit design, computer networking, and genetics, can be modeled
in terms of propositional satisfiability. Although most of these applications are beyond the
scope of this book, we will study one application here. In particular, we will show how to use
propositional satisfiability to model Sudoku puzzles.

SUDOKU A Sudoku puzzle is represented by a 9× 9 grid made up of nine 3× 3 subgrids,
known as blocks, as shown in Figure 1. For each puzzle, some of the 81 cells, called givens,
are assigned one of the numbers 1, 2, . . . , 9, and the other cells are blank. The puzzle is solved
by assigning a number to each blank cell so that every row, every column, and every one of the
nine 3× 3 blocks contains each of the nine possible numbers. Note that instead of using a 9× 9
grid, Sudoku puzzles can be based on n2 × n2 grids, for any positive integer n, with the n2 × n2

grid made up of n2 n× n subgrids.
The popularity of Sudoku dates back to the 1980s when it was introduced in Japan. It

took 20 years for Sudoku to spread to rest of the world, but by 2005, Sudoku puzzles were a
worldwide craze. The name Sudoku is short for the Japanese suuji wa dokushin ni kagiru, which
means “the digits must remain single.” The modern game of Sudoku was apparently designed
in the late 1970s by an American puzzle designer. The basic ideas of Sudoku date back even
further; puzzles printed in French newspapers in the 1890s were quite similar, but not identical,
to modern Sudoku.

Sudoku puzzles designed for entertainment have two additional important properties. First,
they have exactly one solution. Second, they can be solved using reasoning alone, that is, without
resorting to searching all possible assignments of numbers to the cells. As a Sudoku puzzle is
solved, entries in blank cells are successively determined by already known values. For instance,
in the grid in Figure 1, the number 4 must appear in exactly one cell in the second row. How
can we determine which of the seven blank cells it must appear? First, we observe that 4 cannot
appear in one of the first three cells or in one of the last three cells of this row, because it already
appears in another cell in the block each of these cells is in. We can also see that 4 cannot appear
in the fifth cell in this row, as it already appears in the fifth column in the fourth row. This means
that 4 must appear in the sixth cell of the second row.

Many strategies based on logic and mathematics have been devised for solving Sudoku
puzzles (see [Da10], for example). Here, we discuss one of the ways that have been developed
for solving Sudoku puzzles with the aid of a computer, which depends on modeling the puzzle as
a propositional satisfiability problem. Using the model we describe, particular Sudoku puzzles
can be solved using software developed to solve satisfiability problems. Currently, Sudoku
puzzles can be solved in less than 10 milliseconds this way. It should be noted that there are
many other approaches for solving Sudoku puzzles via computers using other techniques.

Figure 1.3: A 9× 9 Sudoku puzzle.

be based on n2 × n2 grids, for any positive integer n, with the n2 × n2

grid made up of n2 n× n subgrids.
The popularity of Sudoku dates back to the 1980s when it was

introduced in Japan. It took 20 years for Sudoku to spread to rest of the
world, but by 2005, Sudoku puzzles were a worldwide craze. The name
Sudoku is short for the Japanese suuji wa dokushin ni kagiru, which
means “the digits must remain single”. The modern game of Sudoku was
apparently designed in the late 1970s by an American puzzle designer.
The basic ideas of Sudoku date back even further; puzzles printed in
French newspapers in the 1890s were quite similar, but not identical,
to modern Sudoku.

Sudoku puzzles designed for entertainment have two additional im-
portant properties. First, they have exactly one solution. Second, they
can be solved using reasoning alone, that is, without resorting to search-
ing all possible assignments of numbers to the cells. As a Sudoku puzzle
is solved, entries in blank cells are successively determined by already
known values. For instance, in the grid in Figure 1.3, the number 4
must appear in exactly one cell in the second row. How can we deter-
mine which of the seven blank cells it must appear? First, we observe
that 4 cannot appear in one of the first three cells or in one of the last
three cells of this row, because it already appears in another cell in the
block each of these cells is in.We can also see that 4 cannot appear in
the fifth cell in this row, as it already appears in the fifth column in
the fourth row. This means that 4 must appear in the sixth cell of the

46 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

second row.
Many strategies based on logic and mathematics have been devised

for solving Sudoku puzzles. Here, we discuss one of the ways that have
been developed for solving Sudoku puzzles with the aid of a computer,
which depends on modeling the puzzle as a propositional satisfiabil-
ity problem. Using the model we describe, particular Sudoku puzzles
can be solved using software developed to solve satisfiability problems.
Currently, Sudoku puzzles can be solved in less than 10 milliseconds
this way. It should be noted that there are many other approaches for
solving Sudoku puzzles via computers using other techniques.

To encode a Sudoku puzzle, let p(i, j, n) denote the proposition
that is true when the number n is in the cell in the ith row and j th
column. There are 9 × 9 × 9 = 729 such propositions, as i, j , and n
all range from 1 to 9. For example, for the puzzle in Figure 1.3, the
number 6 is given as the value in the fifth row and first column. Hence,
we see that p(5, 1, 6) is true, but p(5, j, 6) is false for j = 2, 3, . . . , 9.

Given a particular Sudoku puzzle, we begin by encoding each of the
given values. Then, we construct compound propositions that assert
that every row contains every number, every column contains every
number, every 3×3 block contains every number, and each cell contains
no more than one number. It follows, as the reader should verify, that
the Sudoku puzzle is solved by finding an assignment of truth values
to the 729 propositions p(i, j, n) with i, j, and n each ranging from
1 to 9 that makes the conjunction of all these compound propositions
true. After listing these assertions, we will explain how to construct
the assertion that every row contains every integer from 1 to 9.We will
leave the construction of the other assertions that every column contains
every number and each of the nine 3× 3 blocks contains every number
to the exercises.

For each cell with a given value, we assert p(i, j, n) when the cell
in row i and column j has the given value n.

We assert that every row contains every number:

9∧
i=1

9∧
n=1

9∨
j=1

p(i, j, n)

1.3.7 Solving Satisfiability Problems 47

We assert that every column contains every number:

9∧
j=1

9∧
n=1

9∨
i=1

p(i, j, n)

We assert that each of the nine 3×3 blocks contains every number:

2∧
r=0

2∧
s=0

9∧
n=1

3∨
i=1

3∨
j=1

p(3r + i, 3s+ j, n)

To assert that no cell contains more than one number, we take the
conjunction over all values of n, n′, i, and j where each variable
ranges from 1 to 9 and n ̸= n′ of p(i, j, n)→ ¬p(i, j, n′)

We now explain how to construct the assertion that every row con-
tains every number. First, to assert that row i contains the number n,
we form

∨9
j=1 p(i, j, n). To assert that row i contains all n numbers,

we form the conjunction of these disjunctions over all nine possible val-
ues of n, giving us

∧9
n=1

∨9
j=1 p(i, j, n) Finally, to assert that every row

contains every number, we take the conjunction of
∧9

n=1

∨9
j=1 p(i, j, n)

over all nine rows. This gives us
∧9

i=1

∧9
n=1

∨9
j=1 p(i, j, n).

Given a particular Sudoku puzzle, to solve this puzzle we can find a
solution to the satisfiability problems that asks for a set of truth values
for the 729 variables p(i, j, n) that makes the conjunction of all the
listed assertions true.

1.3.7 Solving Satisfiability Problems

truth table can be used to determine whether a compound propo-
sition is satisfiable, or equivalently, whether its negation is a tautology.
This can be done by hand for a compound proposition with a small
number of variables, but when the number of variables grows, this be-
comes impractical. For instance, there are 220 = 1, 048, 576 rows in
the truth table for a compound proposition with 20 variables. Clearly,
you need a computer to help you determine, in this way, whether a
compound proposition in 20 variables is satisfiable.

48 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

When many applications are modeled, questions concerning the sat-
isfiability of compound propositions with hundreds, thousands, or mil-
lions of variables arise. Note, for example, that when there are 1000
variables, checking every one of the 21000 (a number with more than 300
decimal digits) possible combinations of truth values of the variables in
a compound proposition cannot be done by a computer in even trillions
of years. No procedure is known that a computer can follow to deter-
mine in a reasonable amount of time whether an arbitrary compound
proposition in such a large number of variables is satisfiable. However,
progress has been made developing methods for solving the satisfiability
problem for the particular types of compound propositions that arise
in practical applications, such as for the solution of Sudoku puzzles.
Many computer programs have been developed for solving satisfiability
problems which have practical use. In our discussion of the subject of
algorithms, we will discuss this question further. In particular, we will
explain the important role the propositional satisfiability problem plays
in the study of the complexity of algorithms.

1.4 Predicates and Quantifiers

1.4.1 Introduction

Propositional logic, studied in previous sections, cannot adequately
express the meaning of all statements in mathematics and in natural
language. For example, suppose that we know that

“Every computer connected to the university network is functioning
properly.”

No rules of propositional logic allow us to conclude the truth of the
statement

“MATH3 is functioning properly,”
whereMATH3 is one of the computers connected to the university

network. Likewise, we cannot use the rules of propositional logic to
conclude from the statement

“CS2 is under attack by an intruder,”
where CS2 is a computer on the university network, to conclude the

truth of

1.4.2 Predicates 49

“There is a computer on the university network that is under attack
by an intruder.”

In this section we will introduce a more powerful type of logic called
predicate logic. We will see how predicate logic can be used to express
the meaning of a wide range of statements in mathematics and com-
puter science in ways that permit us to reason and explore relation-
ships between objects. To understand predicate logic, we first need to
introduce the concept of a predicate. Afterward, we will introduce the
notion of quantifiers, which enable us to reason with statements that
assert that a certain property holds for all objects of a certain type and
with statements that assert the existence of an object with a particular
property.

1.4.2 Predicates

Statements involving variables, such as

“x > 3′′, “x = y + 3′′, “x+ y = z′′,

and
“computer x is under attack by an intruder,”
and
“computer x is functioning properly,”
are often found in mathematical assertions, in computer programs,

and in system specifications. These statements are neither true nor
false when the values of the variables are not specified. In this section,
we will discuss the ways that propositions can be produced from such
statements.

The statement “x is greater than 3” has two parts. The first part,
the variable x, is the subject of the statement. The second part — the
predicate, “is greater than 3” —refers to a property that the subject
of the statement can have.We can denote the statement “x is greater
than 3” by P(x), where P denotes the predicate “is greater than 3” and
x is the variable. The statement P(x) is also said to be the value of
the propositional function P at x. Once a value has been assigned
to the variable x, the statement P(x) becomes a proposition and has a
truth value. Consider Examples 1 and 2.

50 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

�
EXAMPLE. 1

Let P(x) denote the statement “x > 3”. What are the truth values of P(4)
and P(2)?�� ��Solution: We obtain the statement P(4) by setting x = 4 in the statement
“x > 3”. Hence, P(4), which is the statement “4 > 3”, is true. However, P(2),
which is the statement “2 > 3”, is false.

�
EXAMPLE. 2

Let A(x) denote the statement “Computer x is under attack by an intruder”.
Suppose that of the computers on campus, only CS2 and MATH1 are currently
under attack by intruders. What are truth values of A(CS1), A(CS2), and
A(MATH1)?�� ��Solution: We obtain the statement A(CS1) by setting x = CS1 in the
statement “Computer x is under attack by an intruder”. Because CS1 is not
on the list of computers currently under attack, we conclude that A(CS1) is
false. Similarly, because CS2 and MATH1 are on the list of computers under
attack, we know that A(CS2) and A(MATH1) are true.

We can also have statements that involve more than one variable.
For instance, consider the statement “x = y + 3”. We can denote
this statement by Q(x, y), where x and y are variables and Q is the
predicate. When values are assigned to the variables x and y, the
statement Q(x, y) has a truth value.

�
EXAMPLE. 3

Let Q(x, y) denote the statement “x = y + 3”. What are the truth values of
the propositions Q(1, 2) and Q(3, 0)?�� ��Solution: To obtain Q(1, 2), set x = 1 and y = 2 in the statement Q(x,
y). Hence, Q(1, 2) is the statement “1 = 2+3”, which is false. The statement
Q(3, 0) is the proposition “3 = 0 + 3”, which is true.

1.4.2 Predicates 51

�
EXAMPLE. 4

Let A(c, n) denote the statement “Computer c is connected to network n”,
where c is a variable representing a computer and n is a variable representing a
network. Suppose that the computer MATH1 is connected to network CAM-
PUS2, but not to network CAMPUS1. What are the values of A(MATH1,
CAMPUS1) and A(MATH1, CAMPUS2)?�� ��Solution: Because MATH1 is not connected to the CAMPUS1 network,
we see that A(MATH1, CAMPUS1) is false. However, because MATH1 is
connected to the CAMPUS2 network, we see that A(MATH1, CAMPUS2) is
true.

Similarly, we can let R(x, y, z) denote the statement“x + y = z”.
When values are assigned to the variables x, y, and z, this statement
has a truth value.

�
EXAMPLE. 5

What are the truth values of the propositions R(1, 2, 3) and R(0, 0, 1)?�� ��Solution: The proposition R(1, 2, 3) is obtained by setting x = 1, y = 2,
and z = 3 in the statement R(x, y, z). We see that R(1, 2, 3) is the statement
“1 + 2 = 3”, which is true. Also note that R(0, 0, 1), which is the statement
”0 + 0 = 1”, is false.

In general, a statement involving the n variables x1, x2, . . . , xn can
be denoted by

P (x1, x2, . . . , xn)

. A statement of the form P (x1, x2, . . . , xn) is the value of the proposi-
tional function P at the n-tuple (x1, x2, . . . , xn), and P is also called
an n-place predicate or a n-ary predicate.

Propositional functions occur in computer programs, as Example 6
demonstrates.

�
EXAMPLE. 6

Consider the statement

52 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

if x > 0 then x := x+ 1.
When this statement is encountered in a program, the value of the vari-

able x at that point in the execution of the program is inserted into P(x),
which is ”x > 0”. If P(x) is true for this value of x, the assignment statement
x := x+ 1 is executed, so the value of x is increased by 1. If P(x) is false for
this value of x, the assignment statement is not executed, so the value of x is
not changed.

1.4.3 Quantifiers

When the variables in a propositional function are assigned val-
ues, the resulting statement becomes a proposition with a certain truth
value. However, there is another importantway, called quantification,
to create a proposition from a propositional function. Quantification
expresses the extent to which a predicate is true over a range of ele-
ments. In English, the words all, some, many, none, and few are used
in quantifications. We will focus on two types of quantification here:
universal quantification, which tells us that a predicate is true for ev-
ery element under consideration, and existential quantification, which
tells us that there is one or more element under consideration for which
the predicate is true. The area of logic that deals with predicates and
quantifiers is called the predicate calculus.

THE UNIVERSAL QUANTIFIER
Many mathematical statements assert that a property is true for

all values of a variable in a particular domain, called the domain of
discourse (or the universe of discourse), often just referred to as
the domain. Such a statement is expressed using universal quantifica-
tion. The universal quantification of P(x) for a particular domain is the
proposition that asserts that P(x) is true for all values of x in this do-
main. Note that the domain specifies the possible values of the variable
x. The meaning of the universal quantification of P(x) changes when
we change the domain. The domain must always be specified when a
universal quantifier is used; without it, the universal quantification of
a statement is not defined.

1.4.3 Quantifiers 53

Table 1.18: Quantifiers.
Statement When True? When False?

∀xP (x) P(x) is true for every x. There is an x for which
P(x) is false.

∃xP (x) There is an x for which P(x) is false for every x.
P(x) is true.

Definition 1.4.1 The universal quantification of P(x) is the
statement

“P(x) for all values of x in the domain.”
The notation ∀xP (x) denotes the universal quantification of P (x).

Here ∀ is called the universal quantifier. We read ∀xP (x) as “for
all xP (x)” or “for every xP (x).” An element for which P (x) is false is
called a counterexample of ∀xP (x).

The meaning of the universal quantifier is summarized in the first
row of Table 1.18. We illustrate the use of the universal quantifier in
Examples 7–12.

�
EXAMPLE. 7

Let P(x) be the statement “x + 1 > x”. What is the truth value of the
quantification ∀xP (x), where the domain consists of all real numbers?�� ��Solution: Because P(x) is true for all real numbers x, the quantification

∀xP (x)

is true.

Remark! Generally, an implicit assumption is made that all
domains of discourse for quantifiers are nonempty. Note that if
the domain is empty, then ∀xP (x) is true for any propositional
function P(x) because there are no elements x in the domain for
which P(x) is false.

54 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

Besides “for all” and “for every,” universal quantification can be ex-
pressed in many other ways, including “all of”, “for each”, “given any”,
“for arbitrary”, “for each”, and “for any”.

Remark! It is best to avoid using “for any x” because it is often
ambiguous as to whether “any” means “every” or “some”. In some
cases, “any” is unambiguous, such as when it is used in negatives,
for example, “there is not any reason to avoid studying”.

A statement ∀xP (x) is false, where P(x) is a propositional function,
if and only if P(x) is not always true when x is in the domain. One
way to show that P(x) is not always true when x is in the domain
is to find a counterexample to the statement ∀xP (x). Note that a
single counterexample is all we need to establish that ∀xP (x) is false.
Example 8 illustrates how counterexamples are used.

�
EXAMPLE. 8

Let Q(x) be the statement “x < 2”. What is the truth value of the quantifi-
cation ∀xQ(x), where the domain consists of all real numbers?�� ��Solution: Q(x) is not true for every real number x, because, for instance,
Q(3) is false. That is, x = 3 is a counterexample for the statement ∀xQ(x).
Thus ∀xQ(x) is false.

�
EXAMPLE. 9

Suppose that P(x) is “x2 > 0”. To show that the statement ∀xP (x) is false
where the universe of discourse consists of all integers, we give a counterex-
ample. We see that x = 0 is a counterexample because x2 = 0 when x = 0,
so that x2 is not greater than 0 when x = 0.

Looking for counterexamples to universally quantified statements is
an important activity in the study of mathematics, as we will see in
subsequent sections of this book.

When all the elements in the domain can be listed—say, x1, x2, . . . , xn
— it follows that the universal quantification ∀xP (x) is the same as the

1.4.3 Quantifiers 55

conjunction
P (x1) ∧ P (x2) ∧ . . . ∧ P (xn),

because this conjunction is true if and only if P (x1), P (x2), . . . , P (xn)
are all true.

�
EXAMPLE. 10

What is the truth value of ∀xP (x), where P(x) is the statement “x2 < 10”
and the domain consists of the positive integers not exceeding 4?�� ��Solution: The statement ∀xP (x) is the same as the conjunction P (1) ∧
P (2) ∧ P (3) ∧ P (4), because the domain consists of the integers 1, 2, 3, and
4. Because P(4), which is the statement “42 < 10,” is false, it follows that
∀xP (x) is false.

�
EXAMPLE. 11

What does the statement ∀xN(x) mean if N(x) is “Computer x is connected
to the network” and the domain consists of all computers on campus?�� ��Solution: The statement ∀xN(x) means that for every computer x on
campus, that computer x is connected to the network. This statement can
be expressed in English as “Every computer on campus is connected to the
network”.

As we have pointed out, specifying the domain is mandatory when
quantifiers are used. The truth value of a quantified statement often
depends on which elements are in this domain, as Example 12 shows.

�
EXAMPLE. 12

What is the truth value of ∀x(x2 ≥ x) if the domain consists of all real
numbers? What is the truth value of this statement if the domain consists of
all integers?�� ��Solution: The universal quantification ∀x(x2 ≥ x), where the domain con-
sists of all real numbers, is false. For example, (12)

2 ≥ 1
2 . Note that x2 ≥ x

if and only if x2 − x = x(x − 1) ≥ 0. Consequently, x2 ≥ x if and only if

56 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

x ≤ 0 or x ≥ 1. It follows that ∀x(x2 ≥ x) is false if the domain consists of
all real numbers (because the inequality is false for all real numbers x with
0 < x < 1). However, if the domain consists of the integers, ∀x(x2 ≥ x) is
true, because there are no integers x with 0 < x < 1.

THE EXISTENTIAL QUANTIFIER
Many mathematical statements assert that there is an element with

a certain property. Such statements are expressed using existential
quantification. With existential quantification, we form a proposition
that is true if and only if P(x) is true for at least one value of x in the
domain.

Definition 1.4.2 The existential quantification of P (x) is the
proposition

“There exists an element x in the domain such that P (x).”
We use the notation ∃xP (x) for the existential quantification of

P (x). Here ∃ is called the existential quantifier.

A domain must always be specified when a statement ∃xP (x) is
used. Furthermore, the meaning of ∃xP (x) changes when the domain
changes. Without specifying the domain, the statement ∃xP (x) has no
meaning.

Besides the phrase “there exists”, we can also express existential
quantification in many other ways, such as by using the words “for
some”, “for at least one”, or “there is”. The existential quantification
∃xP (x) is read as

“There is an x such that P(x)”,
“There is at least one x such that P(x)”,
or
“For some xP(x)”.
The meaning of the existential quantifier is summarized in the sec-

ond row of Table 1.18. We illustrate the use of the existential quantifier
in Examples 13–15.

�
EXAMPLE. 13

1.4.3 Quantifiers 57

Let P(x) denote the statement “x > 3”. What is the truth value of the
quantification ∃xP (x), where the domain consists of all real numbers?�� ��Solution: Because “x > 3” is sometimes true—for instance, when x = 4 —
the existential quantification of P(x), which is ∃xP (x), is true.

Observe that the statement ∃xP (x) is false if and only if there is
no element x in the domain for which P(x) is true. That is, ∃xP (x)
is false if and only if P(x) is false for every element of the domain.We
illustrate this observation in Example 14.

�
EXAMPLE. 14

Let Q(x) denote the statement “x = x + 1”. What is the truth value of the
quantification ∃xQ(x), where the domain consists of all real numbers?�� ��Solution: Because Q(x) is false for every real number x, the existential
quantification of Q(x), which is ∃xQ(x), is false.

Remark! Generally, an implicit assumption is made that all do-
mains of discourse for quantifiers are nonempty. If the domain is
empty, then ∃xQ(x) is false whenever Q(x) is a propositional func-
tion because when the domain is empty, there can be no element
x in the domain for which Q(x) is true.

When all elements in the domain can be listed—say, x1, x2, . . . , xn
— the existential quantification ∃xP (x) is the same as the disjunction

P (x1) ∨ P (x2) ∨ . . . ∨ P (xn),

because this disjunction is true if and only if at least one of P (x1),
P (x2), . . ., P (xn) is true.

�
EXAMPLE. 15

What is the truth value of ∃xP (x), where P(x) is the statement “x2 > 10”
and the universe of discourse consists of the positive integers not exceeding
4?

58 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC
�� ��Solution: Because the domain is 1, 2, 3, 4, the proposition ∃xP (x) is the

same as the disjunction

P (1) ∨ P (2) ∨ P (3) ∨ P (4).

Because P(4), which is the statement “42 > 10”, is true, it follows that ∃xP (x)

is true.

It is sometimes helpful to think in terms of looping and searching
when determining the truth value of a quantification. Suppose that
there are n objects in the domain for the variable x. To determine
whether ∀xP (x) is true, we can loop through all n values of x to see
whether P(x) is always true. If we encounter a value x for which P(x)
is false, then we have shown that ∀xP (x) is false. Otherwise, ∀xP (x)
is true. To see whether ∃xP (x) is true, we loop through the n values
of x searching for a value for which P(x) is true. If we find one, then
∃xP (x) is true. If we never find such an x, then we have determined
that ∃xP (x) is false. (Note that this searching procedure does not apply
if there are infinitely many values in the domain. However, it is still a
useful way of thinking about the truth values of quantifications.)

THE UNIQUENESS QUANTIFIER
We have now introduced universal and existential quantifiers. These

are the most important quantifiers in mathematics and computer sci-
ence. However, there is no limitation on the number of different quan-
tifiers we can define, such as “there are exactly two”, “there are no more
than three”, “there are at least 100”, and so on. Of these other quan-
tifiers, the one that is most often seen is the uniqueness quantifier,
denoted by ∃! or ∃1. The notation ∃!xP (x) [or ∃1xP (x)] states “There
exists a unique x such that P(x) is true”. (Other phrases for uniqueness
quantification include “there is exactly one” and “there is one and only
one.”) For instance, ∃!x(x − 1 = 0), where the domain is the set of
real numbers, states that there is a unique real number x such that
x− 1 = 0. This is a true statement, as x = 1 is the unique real number
such that x − 1 = 0. Observe that we can use quantifiers and propo-
sitional logic to express uniqueness, so the uniqueness quantifier can
be avoided. Generally, it is best to stick with existential and universal
quantifiers so that rules of inference for these quantifiers can be used.

1.4.4 Quantifiers over finite domains 59

1.4.4 Quantifiers over finite domains

When the domain of a quantifier is finite, that is, when all its
elements can be listed, quantified statements can be expressed using
propositional logic. In particular, when the elements of the domain are
x1, x2, . . . , xn, where n is a positive integer, the universal quantification
∀xP (x) is the same as the conjunction

P (x1) ∧ P (x2) ∧ . . . ∧ P (xn),

because this conjunction is true if and only if P (x1), P (x2), . . . , P (xn)
are all true.

�
EXAMPLE. 15

What is the truth value of ∀xP (x), where P (x) is the statement “x2 < 10”
and the domain consists of the positive integers not exceeding 4?�� ��Solution: The statement ∀xP (x) is the same as the conjunction

P (1) ∧ P (2) ∧ P (3) ∧ P (4),

because the domain consists of the integers 1, 2, 3, and 4. Because P (4),
which is the statement “42 < 10,” is false, it follows that ∀xP (x) is false.
Similarly, when the elements of the domain are x1, x2, . . . , xn, where n
is a positive integer, the existential quantification ∃xP (x) is the same
as the disjunction

P (x1) ∨ P (x2) ∨ . . . ∨ P (xn),

because this disjunction is true if and only if at least one of P (x1),
P (x2), . . . , P (xn) is true.

�
EXAMPLE. 16

What is the truth value of ∃xP (x), where P (x) is the statement “x2 > 10”
and the universe of discourse consists of the positive integers not exceeding
4? �� ��Solution: Because the domain is {1, 2, 3, 4}, the proposition ∃xP (x) is
the same as the disjunction

P (1) ∨ P (2) ∨ P (3) ∨ P (4).

60 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

Because P (4), which is the statement “42 > 10,” is true, it follows that ∃xP (x)

is true.

CONNECTIONS BETWEEN QUANTIFICATION AND
LOOPING

It is sometimes helpful to think in terms of looping and searching
when determining the truth value of a quantification. Suppose that
there are n objects in the domain for the variable x. To determine
whether ∀xP (x) is true, we can loop through all n values of x to see
whether P (x) is always true. If we encounter a value x for which P (x)
is false, then we have shown that ∀xP (x) is false. Otherwise, ∀xP (x)
is true. To see whether ∃xP (x) is true, we loop through the n values
of x searching for a value for which P (x) is true. If we find one, then
∃xP (x) is true. If we never find such an x, then we have determined
that ∃xP (x) is false.

1.4.5 Quantifiers with Restricted Domains

An abbreviated notation is often used to restrict the domain of
a quantifier. In this notation, a condition a variable must satisfy is
included after the quantifier. This is illustrated in Example 17.

�
EXAMPLE. 17

What do the statements ∀x < 0(x2 > 0),∀y ̸= 0(y3 ̸= 0), and ∃z > 0(z2 = 2)
mean, where the domain in each case consists of the real numbers?�� ��Solution: The statement ∀x < 0(x2 > 0) states that for every real number
x with x < 0, x2 > 0. That is, it states “The square of a negative real number
is positive”. This statement is the same as ∀x(x < 0→ x2 > 0).

The statement ∀y = 0(y3 = 0) states that for every real number y with
y = 0, we have y3 = 0. That is, it states “The cube of every nonzero real
number is nonzero”. Note that this statement is equivalent to ∀y(y = 0 →
y3 = 0).

Finally, the statement ∃z > 0(z2 = 2) states that there exists a real
number z with z > 0 such that z2 = 2. That is, it states “There is a posi-
tive square root of 2.” This statement is equivalent to ∃z(z > 0∧z2 = 2).

1.4.6 Precedence of Quantifiers 61

Note that the restriction of a universal quantification is the same as
the universal quantification of a conditional statement. For instance,
∀x < 0(x2 > 0) is another way of expressing ∀x(x < 0 → x2 > 0).
On the other hand, the restriction of an existential quantification is the
same as the existential quantification of a conjunction. For instance,
∃z > 0(z2 = 2) is another way of expressing ∃z(z > 0 ∧ z2 = 2).

1.4.6 Precedence of Quantifiers

The quantifiers ∀ and ∃ have higher precedence than all logical
operators from propositional calculus. For example, ∀xP (x) ∨ Q(x)
is the disjunction of ∀xP (x) and Q(x). In other words, it means
(∀xP (x)) ∨Q(x) rather than ∀x(P (x) ∨Q(x)).

1.4.7 Binding Variables

When a quantifier is used on the variable x, we say that this oc-
currence of the variable is bound. An occurrence of a variable that is
not bound by a quantifier or set equal to a particular value is said to
be free. All the variables that occur in a propositional function must
be bound or set equal to a particular value to turn it into a proposi-
tion. This can be done using a combination of universal quantifiers,
existential quantifiers, and value assignments.

The part of a logical expression to which a quantifier is applied is
called the scope of this quantifier. Consequently, a variable is free if
it is outside the scope of all quantifiers in the formula that specify this
variable.

�
EXAMPLE. 18

In the statement ∃x(x + y = 1), the variable x is bound by the existential
quantification ∃x, but the variable y is free because it is not bound by a
quantifier and no value is assigned to this variable. This illustrates that in
the statement ∃x(x+ y = 1), x is bound, but y is free.

In the statement ∃x(P (x)∧Q(x))∨∀xR(x), all variables are bound. The
scope of the first quantifier, ∃x, is the expression P (x)∧Q(x) because ∃x is ap-
plied only to P (x)∧Q(x), and not to the rest of the statement. Similarly, the

62 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

scope of the second quantifier, ∀x, is the expression R(x). That is, the existen-
tial quantifier binds the variable x in P (x)∧Q(x) and the universal quantifier
∀x binds the variable x in R(x). Observe that we could have written our
statement using two different variables x and y, as ∀x(P (x)∧Q(x))∨∀yR(y),
because the scopes of the two quantifiers do not overlap. The reader should
be aware that in common usage, the same letter is often used to represent
variables bound by different quantifiers with scopes that do not overlap.

1.4.8 Logical Equivalences Involving Quantifiers

In previous section we introduced the notion of logical equivalences
of compound propositions. We can extend this notion to expressions
involving predicates and quantifiers.

Definition 1.4.3 Statements involving predicates and quantifiers
are logically equivalent if and only if they have the same truth value
no matter which predicates are substituted into these statements and
which domain of discourse is used for the variables in these propositional
functions. We use the notation S ≡ T to indicate that two statements
S and T involving predicates and quantifiers are logically equivalent.

Example 19 illustrates how to show that two statements involving
predicates and quantifiers are logically equivalent.

�
EXAMPLE. 19

Show that ∀x(P (x) ∧ Q(x)) and ∀xP (x) ∧ ∀xQ(x) are logically equivalent
(where the same domain is used throughout). This logical equivalence shows
that we can distribute a universal quantifier over a conjunction. Furthermore,
we can also distribute an existential quantifier over a disjunction. However,
we cannot distribute a universal quantifier over a disjunction, nor can we
distribute an existential quantifier over a conjunction.�� ��Solution: To show that these statements are logically equivalent, we must
show that they always take the same truth value, no matter what the pred-
icates P and Q are, and no matter which domain of discourse is used. Sup-
pose we have particular predicates P and Q, with a common domain. We
can show that ∀x(P (x)∧Q(x)) and ∀xP (x)∧∀xQ(x) are logically equivalent

1.4.9 Negating Quantified Expressions 63

by doing two things. First, we show that if ∀x(P (x) ∧ Q(x)) is true, then
∀xP (x) ∧ ∀xQ(x) is true. Second, we show that if ∀xP (x) ∧ ∀xQ(x) is true,
then ∀x(P (x) ∧Q(x)) is true.

So, suppose that ∀x(P (x) ∧ Q(x)) is true. This means that if a is in
the domain, then P (a) ∧ Q(a) is true. Hence, P(a) is true and Q(a) is true.
Because P(a) is true and Q(a) is true for every element in the domain, we can
conclude that ∀xP (x) and ∀xQ(x) are both true. This means that ∀xP (x) ∧
∀xQ(x) is true.

Next, suppose that ∀xP (x) ∧ ∀xQ(x) is true. It follows that ∀xP (x) is
true and ∀xQ(x) is true. Hence, if a is in the domain, then P(a) is true and
Q(a) is true [because P(x) and Q(x) are both true for all elements in the
domain, there is no conflict using the same value of a here]. It follows that
for all a, P (a)∧Q(a) is true. It follows that ∀x(P (x)∧Q(x)) is true. We can
now conclude that

∀x(P (x) ∧Q(x)) ≡ ∀xP (x) ∧ ∀xQ(x).

1.4.9 Negating Quantified Expressions

We will often want to consider the negation of a quantified expres-
sion. For instance, consider the negation of the statement

“Every student in your class has taken a course in calculus”.
This statement is a universal quantification, namely,

∀xP (x),

where P(x) is the statement “x has taken a course in calculus” and
the domain consists of the students in your class. The negation of this
statement is “It is not the case that every student in your class has taken
a course in calculus”. This is equivalent to “There is a student in your
class who has not taken a course in calculus”. And this is simply the
existential quantification of the negation of the original propositional
function, namely,

∃x¬P (x).

This example illustrates the following logical equivalence:

¬∀xP (x) ≡ ∃x¬P (x).

64 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

To show that ¬∀xP (x) and ∃xP (x) are logically equivalent no matter
what the propositional function P(x) is and what the domain is, first
note that ¬∀xP (x) is true if and only if ∀xP (x) is false. Next, note
that ∀xP (x) is false if and only if there is an element x in the domain
for which P(x) is false. This holds if and only if there is an element x
in the domain for which ¬P (x) is true. Finally, note that there is an
element x in the domain for which ¬P (x) is true if and only if ∃x¬P (x)
is true. Putting these steps together, we can conclude that ¬∀xP (x)
is true if and only if ∃x¬P (x) is true. It follows that ¬∀xP (x) and
∃x¬P (x) are logically equivalent.

Suppose we wish to negate an existential quantification. For in-
stance, consider the proposition “There is a student in this class who
has taken a course in calculus”. This is the existential quantification

∃xQ(x)

, where Q(x) is the statement “x has taken a course in calculus”. The
negation of this statement is the proposition “It is not the case that
there is a student in this class who has taken a course in calculus”.
This is equivalent to “Every student in this class has not taken calculus”,
which is just the universal quantification of the negation of the original
propositional function, or, phrased in the language of quantifiers,

∀x¬Q(x).

This example illustrates the equivalence

¬∃xQ(x) ≡ ∀x¬Q(x).

To show that ¬∃xQ(x) and ∀x¬Q(x) are logically equivalent no matter
what Q(x) is and what the domain is, first note that ¬∃xQ(x) is true
if and only if ∃xQ(x) is false. This is true if and only if no x exists in
the domain for which Q(x) is true. Next, note that no x exists in the
domain for which Q(x) is true if and only if Q(x) is false for every x in
the domain. Finally, note that Q(x) is false for every x in the domain if
and only if ¬Q(x) is true for all x in the domain, which holds if and only
if ∀x¬Q(x) is true. Putting these steps together, we see that ¬∃xQ(x)
is true if and only if ∀x¬Q(x) is true. We conclude that ¬∃xQ(x) and
∀x¬Q(x) are logically equivalent.

1.4.9 Negating Quantified Expressions 65

Table 1.19: De Morgan’s Laws for Quantifiers.
Negation Equivalent When Is Negation When False?

Statement True?

¬∃P (x) ∀x¬P (x) For every x, P(x) There is an x for
is false. which P(x) is true.

¬∀P (x) ∃x¬P (x) There is an x for P(x) is true
which P(x) is false. for every x.

The rules for negations for quantifiers are called De Morgan’s laws
for quantifiers. These rules are summarized in Table 1.19.

Remark! When the domain of a predicate P(x) consists of
n elements, where n is a positive integer greater than one, the
rules for negating quantified statements are exactly the same as
De Morgan’s laws discussed in previous section. This is why these
rules are called De Morgan’s laws for quantifiers. When the domain
has n elements x1, x2, . . . , xn, it follows that ¬∀xP (x) is the same
as ¬(P (x1)∧P (x2)∧ . . .∧P (xn)), which is equivalent to ¬P (x1)∨
¬P (x2) ∨ . . . ∨ ¬P (xn) by De Morgan’s laws, and this is the same
as ∃x¬P (x). Similarly, ¬∃xP (x) is the same as ¬(P (x1)∨P (x2)∨
. . .∨P (xn)), which by De Morgan’s laws is equivalent to ¬P (x1)∧
¬P (x2) ∧ . . . ∧ ¬P (xn), and this is the same as ∀x¬P (x).

We illustrate the negation of quantified statements in Examples 20
and 21.

�
EXAMPLE. 20

What are the negations of the statements “There is an honest politician” and
“All Americans eat cheeseburgers?”�� ��Solution: Let H(x) denote “x is honest”. Then the statement “There is an
honest politician” is represented by ∃xH(x), where the domain consists of all
politicians. The negation of this statement is ¬∃xH(x), which is equivalent to
∀x¬H(x). This negation can be expressed as “Every politician is dishonest”.
(Note: In English, the statement “All politicians are not honest” is ambiguous.

66 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

In common usage, this statement often means “Not all politicians are honest”.
Consequently, we do not use this statement to express this negation.)

Let C(x) denote “x eats cheeseburgers”. Then the statement “All Ameri-
cans eat cheeseburgers” is represented by ∀xC(x), where the domain consists
of all Americans. The negation of this statement is ¬∀xC(x), which is equiv-
alent to ∃x¬C(x). This negation can be expressed in several different ways,
including “Some American does not eat cheeseburgers” and “There is an Amer-
ican who does not eat cheeseburgers”.

�
EXAMPLE. 21

What are the negations of the statements ∀x(x2 > x) and ∃x(x2 = 2)?�� ��Solution: The negation of ∀x(x2 > x) is the statement ¬∀x(x2 > x),
which is equivalent to ∃x¬(x2 > x). This can be rewritten as ∃x(x2 ≤ x).
The negation of ∃x(x2 = 2) is the statement ¬∃x(x2 = 2), which is equivalent
to ∀x¬(x2 = 2). This can be rewritten as truth values of these statements
depend on the domain.

We use De Morgan’s laws for quantifiers in Example 21.

�
EXAMPLE. 22

Show that ¬∀x(P (x)→ Q(x)) and ∃x(P (x)∧¬Q(x)) are logically equivalent.�� ��Solution: By De Morgan’s law for universal quantifiers, we know that
¬∀x(P (x) → Q(x)) and ∃x(¬(P (x) → Q(x))) are logically equivalent. By
the fifth logical equivalence in Table 1.16 in previous section, we know that
¬(P (x) → Q(x)) and P (x ∧ ¬Q(x) are logically equivalent for every x. Be-
cause we can substitute one logically equivalent expression for another in a
logical equivalence, it follows that ¬∀x(P (x)→ Q(x)) and ∃x(P (x)∧¬Q(x))

are logically equivalent.

1.4.10 Translating from English into Logical Expressions

Translating sentences in English (or other natural languages) into
logical expressions is a crucial task in mathematics, logic programming,

1.4.10 Translating from English into Logical Expressions 67

artificial intelligence, software engineering, and many other disciplines.
We began studying this topic first section, where we used propositions
to express sentences in logical expressions. In that discussion, we pur-
posely avoided sentences whose translations required predicates and
quantifiers. Translating from English to logical expressions becomes
even more complex when quantifiers are needed. Furthermore, there
can be many ways to translate a particular sentence. (As a consequence,
there is no “cookbook” approach that can be followed step by step.) We
will use some examples to illustrate how to translate sentences from En-
glish into logical expressions. The goal in this translation is to produce
simple and useful logical expressions. In this section, we restrict our-
selves to sentences that can be translated into logical expressions using
a single quantifier; in the next section, we will look at more complicated
sentences that require multiple quantifiers.

�
EXAMPLE. 23

Express the statement “Every student in this class has studied calculus” using
predicates and quantifiers.�� ��Solution: First, we rewrite the statement so that we can clearly identify
the appropriate quantifiers to use. Doing so, we obtain:

“For every student in this class, that student has studied calculus.”
Next, we introduce a variable x so that our statement becomes
“For every student x in this class, x has studied calculus.”
Continuing, we introduce C(x), which is the statement “x has studied

calculus”. Consequently, if the domain for x consists of the students in the
class, we can translate our statement as ∀xC(x).

However, there are other correct approaches; different domains of dis-
course and other predicates can be used. The approach we select depends on
the subsequent reasoning we want to carry out. For example, we may be in-
terested in a wider group of people than only those in this class. If we change
the domain to consist of all people, we will need to express our statement as

“For every person x, if person x is a student in this class then x has studied
calculus.”

If S(x) represents the statement that person x is in this class, we see that
our statement can be expressed as ∀x(S(x)→ C(x)).

[Caution! Our statement cannot be expressed as ∀x(S(x)∧C(x)) because
this statement says that all people are students in this class and have studied
calculus!]

68 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

Finally, when we are interested in the background of people in subjects
besides calculus, we may prefer to use the two-variable quantifier Q(x, y)
for the statement “student x has studied subject y”. Then we would replace
C(x) by Q(x, calculus) in both approaches to obtain ∀xQ(x, calculus) or
∀x(S(x)→ Q(x, calculus)).

In Example 23 we displayed different approaches for expressing the
same statement using predicates and quantifiers. However, we should
always adopt the simplest approach that is adequate for use in subse-
quent reasoning.

�
EXAMPLE. 24

Express the statements “Some student in this class has visited Mexico” and
“Every student in this class has visited either Canada or Mexico” using pred-
icates and quantifiers.�� ��Solution: The statement “Some student in this class has visited Mexico”
means that

“There is a student in this class with the property that the student has
visited Mexico.”

We can introduce a variable x, so that our statement becomes
“There is a student x in this class having the property that x has visited

Mexico.”
We introduce M(x), which is the statement “x has visited Mexico.” If the

domain for x consists of the students in this class, we can translate this first
statement as ∃xM(x).

However, if we are interested in people other than those in this class, we
look at the statement a little differently. Our statement can be expressed as

“There is a person x having the properties that x is a student in this class
and x has visited Mexico.”

In this case, the domain for the variable x consists of all people. We
introduce S(x) to represent “x is a student in this class”. Our solution becomes
∃x(S(x) ∧M(x)) because the statement is that there is a person x who is a
student in this class and who has visited Mexico.

[Caution! Our statement cannot be expressed as ∃x(S(x) → M(x)),
which is true when there is someone not in the class because, in that case,
for such a person x, S(x)→M(x) becomes either F → T or F → F , both of
which are true.]

1.4.11 Using Quantifiers in System Specifications 69

Similarly, the second statement can be expressed as “For every x in this
class, x has the property that x has visited Mexico or x has visited Canada.”

(Note that we are assuming the inclusive, rather than the exclusive, or
here.) We let C(x) be “x has visited Canada”. Following our earlier reasoning,
we see that if the domain for x consists of the students in this class, this second
statement can be expressed as ∀x(C(x) ∨M(x)). However, if the domain for
x consists of all people, our statement can be expressed as

“For every person x, if x is a student in this class, then x has visited
Mexico or x has visited Canada.”

In this case, the statement can be expressed as ∀x(S(x)→ (C(x)∨M(x))).
Instead of using M(x) and C(x) to represent that x has visited Mexico and

x has visited Canada, respectively, we could use a two-place predicate V (x,
y) to represent “x has visited country y”. In this case, V (x, Mexico) and V
(x, Canada)would have the same meaning as M(x) and C(x) and could replace
them in our answers. If we are working with many statements that involve
people visiting different countries, we might prefer to use this two-variable
approach. Otherwise, for simplicity, we would stick with the one-variable
predicates M(x) and C(x).

1.4.11 Using Quantifiers in System Specifications

Many system specifications involve predicates and quantifications.
This is illustrated in Example 25.

�
EXAMPLE. 25

Use predicates and quantifiers to express the system specifications “Every mail
message larger than one megabyte will be compressed” and “If a user is active,
at least one network link will be available.”�� ��Solution: Let S(m, y) be “Mail message m is larger than y megabytes”,
where the variable x has the domain of all mail messages and the variable
y is a positive real number, and let C(m) denote “Mail message m will be
compressed.” Then the specification “Every mail message larger than one
megabyte will be compressed” can be represented as ∀m(S(m, 1)→ C(m)).

Let A(u) represent “User u is active,” where the variable u has the domain
of all users, let S(n, x) denote “Network link n is in state x,” where n has the
domain of all network links and x has the domain of all possible states for a

70 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

network link. Then the specification “If a user is active, at least one network
link will be available” can be represented by ∃uA(u)→ ∃nS(n, available).

1.4.12 Examples from Lewis Carroll

Lewis Carroll (really C. L. Dodgson writing under a pseudonym),
the author of Alice in Wonderland, is also the author of several works
on symbolic logic. His books contain many examples of reasoning using
quantifiers. Examples 26 and 27 come from his book Symbolic Logic;
other examples from that book are given in the exercises at the end
of this section. These examples illustrate how quantifiers are used to
express various types of statements.

�
EXAMPLE. 26

Consider these statements. The first two are called premises and the third is
called the conclusion. The entire set is called an argument.

“All lions are fierce.”
“Some lions do not drink coffee.”
“Some fierce creatures do not drink coffee.”

Let P(x), Q(x), and R(x) be the statements “x is a lion”, “x is fierce”, and “x
drinks coffee”, respectively.Assuming that the domain consists of all creatures,
express the statements in the argument using quantifiers and P(x), Q(x), and
R(x).�� ��Solution: We can express these statements as:

∀x(P (x)→ Q(x)).
∃x(P (x) ∧ negR(x)).
∃x(Q(x) ∧ negR(x)).

Notice that the second statement cannot be written as ∃x(P (x) → ¬R(x)).
The reason is that P (x) → ¬R(x) is true whenever x is not a lion, so that
∃x(P (x)→ ¬R(x)) is true as long as there is at least one creature that is not
a lion, even if every lion drinks coffee. Similarly, the third statement cannot
be written as

∃x(Q(x)→ ¬R(x)).

1.5. NESTED QUANTIFIERS 71

�
EXAMPLE. 27

Consider these statements, of which the first three are premises and the fourth
is a valid conclusion.

“All hummingbirds are richly colored.”
“No large birds live on honey”
“Birds that do not live on honey are dull in color.”
“Hummingbirds are small.”

Let P(x), Q(x), R(x), and S(x) be the statements “x is a hummingbird”, “x
is large”, “x lives on honey”, and “x is richly colored”, respectively. Assuming
that the domain consists of all birds, express the statements in the argument
using quantifiers and P(x), Q(x), R(x), and S(x).�� ��Solution: We can express the statements in the argument as

∀x(P (x)→ S(x)).
¬∃x(Q(x) ∧R(x)).
∀x(¬R(x)→ ¬S(x)).
∀x(P (x)→ ¬Q(x)).

(Note we have assumed that “small” is the same as “not large” and that “dull
in color” is the same as “not richly colored”. To show that the fourth state-
ment is a valid conclusion of the first three, we need to use rules of inference
that will be discussed in next section.

1.5 Nested Quantifiers

1.5.1 Introduction

In Section 1.4 we defined the existential and universal quantifiers
and showed how they can be used to represent mathematical state-
ments. We also explained how they can be used to translate English
sentences into logical expressions. However, in Section 1.4 we avoided
nested quantifiers, where one quantifier is within the scope of an-
other, such as

∀x∃y(x+ y = 0).

72 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

Note that everything within the scope of a quantifier can be thought of
as a propositional function.

For example,
∀x∃y(x+ y = 0)

is the same thing as ∀xQ(x), where Q(x) is ∃yP (x, y), where P (x, y) is
x+ y = 0.

Nested quantifiers commonly occur in mathematics and computer
science. Although nested quantifiers can sometimes be difficult to un-
derstand, the rules we have already studied in Section 1.4 can help us
use them. In this section we will gain experience working with nested
quantifiers.We will see how to use nested quantifiers to express mathe-
matical statements such as “The sum of two positive integers is always
positive”. We will show how nested quantifiers can be used to translate
English sentences such as “Everyone has exactly one best friend” into
logical statements. Moreover, we will gain experience working with the
negations of statements involving nested quantifiers.

1.5.2 Understanding Statements Involving Nested Quan-
tifiers

To understand statements involving nested quantifiers, we need to
unravel what the quantifiers and predicates that appear mean. This is
illustrated in Examples 1 and 2.

�
EXAMPLE. 1

Assume that the domain for the variables x and y consists of all real numbers.
The statement

∀x∀y(x+ y = y + x)

says that x+ y = y+x for all real numbers x and y. This is the commutative
law for addition of real numbers. Likewise, the statement

∀x∃y(x+ y = 0)

says that for every real number x there is a real number y such that x+y = 0.
This states that every real number has an additive inverse. Similarly, the
statement

∀x∀y∀z(x+ (y + z) = (x+ y) + z)

1.5.2 Understanding Statements Involving Nested Quantifiers 73

is the associative law for addition of real numbers.

�
EXAMPLE. 2

Translate into English the statement

∀x∀y((x > 0) ∧ (y < 0)→ (xy < 0)),

where the domain for both variables consists of all real numbers.�� ��Solution: This statement says that for every real number x and for every
real number y, if x > 0 and y < 0, then xy < 0. That is, this statement says
that for real numbers x and y, if x is positive and y is negative, then xy is
negative. This can be stated more succinctly as “The product of a positive
real number and a negative real number is always a negative real number”.

THINKING OF QUANTIFICATION AS LOOPS
In working with quantifications of more than one variable, it is some-

times helpful to think in terms of nested loops. (Of course, if there are
infinitely many elements in the domain of some variable, we cannot
actually loop through all values. Nevertheless, this way of thinking
is helpful in understanding nested quantifiers.) For example, to see
whether ∀x∀yP (x, y) is true, we loop through the values for x, and for
each x we loop through the values for y. If we find that P (x, y) is true
for all values for x and y, we have determined that ∀x∀yP (x, y) is true.
If we ever hit a value x for which we hit a value y for which P (x, y) is
false, we have shown that ∀x∀yP (x, y) is false.

Similarly, to determine whether ∀x∃yP (x, y) is true, we loop through
the values for x. For each x we loop through the values for y un-
til we find a y for which P (x, y) is true. If for every x we hit such
a y, then ∀x∃yP (x, y) is true; if for some x we never hit such a y,
then ∀x∃yP (x, y) is false. To see whether ∃x∀yP (x, y) is true, we loop
through the values for x until we find an x for which P (x, y) is always
true when we loop through all values for y. Once we find such an x,
we knowthat ∃x∀yP (x, y) is true. If we never hit such an x, then we
knowthat ∃x∀yP (x, y) is false.

Finally, to see whether ∃x∃yP (x, y) is true, we loop through the
values for x, where for each x we loop through the values for y until we

74 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

hit an x for which we hit a y for which P (x, y) is true. The statement
∃x∃yP (x, y) is false only if we never hit an x for which we hit a y such
that P (x, y) is true.

1.5.3 The Order of Quantifiers

Many mathematical statements involve multiple quantifications of
propositional functions involving more than one variable. It is impor-
tant to note that the order of the quantifiers is important, unless all
the quantifiers are universal quantifiers or all are existential quantifiers.
These remarks are illustrated by Examples 3–5.

�
EXAMPLE. 3

Let P(x, y) be the statement “x + y = y + x”. What are the truth values
of the quantifications ∀x∀yP (x, y) and ∀y∀xP (x, y) where the domain for all
variables consists of all real numbers?�� ��Solution: The quantification

∀x∀yP (x, y)

denotes the proposition
“For all real numbers x, for all real numbers y, x+ y = y + x”.
Because P(x, y) is true for all real numbers x and y (it is the commutative

law for addition, which is an axiom for the real numbers—see Appendix 1),
the proposition ∀x∀yP (x, y) is true. Note that the statement ∀y∀xP (x, y)

says “For all real numbers y, for all real numbers x, x + y = y + x”. This
has the same meaning as the statement “For all real numbers x, for all real
numbers y, x + y = y + x”. That is, ∀x∀yP (x, y) and ∀y∀xP (x, y) have the
same meaning, and both are true. This illustrates the principle that the order
of nested universal quantifiers in a statement without other quantifiers can be
changed without changing the meaning of the quantified statement.

�
EXAMPLE. 4

Let Q(x, y) denote “x + y = 0.” What are the truth values of the quan-
tifications ∃y∀xQ(x, y) and ∀x∃yQ(x, y), where the domain for all variables
consists of all real numbers?

1.5.3 The Order of Quantifiers 75
�� ��Solution: The quantification

∃y∀xQ(x, y)

denotes the proposition
“There is a real number y such that for every real number x, Q(x, y).”
No matter what value of y is chosen, there is only one value of x for which

x+ y = 0. Because there is no real number y such that x+ y = 0 for all real
numbers x, the statement ∃y∀xQ(x, y) is false.

The quantification
∀x∃yQ(x, y)

denotes the proposition
“For every real number x there is a real number y such that Q(x, y).”
Given a real number x, there is a real number y such that x + y = 0;

namely, y = −x. Hence, the statement ∀x∃yQ(x, y) is true.

Example 4 illustrates that the order in which quantifiers appear
makes a difference. The statements ∃y∀xP (x, y) and ∀x∃yP (x, y) are
not logically equivalent. The statement ∃y∀xP (x, y) is true if and only
if there is a y that makes P(x, y) true for every x. So, for this statement
to be true, there must be a particular value of y for which P(x, y) is
true regardless of the choice of x. On the other hand, ∀x∃yP (x, y) is
true if and only if for every value of x there is a value of y for which
P(x, y) is true. So, for this statement to be true, no matter which x you
choose, there must be a value of y (possibly depending on the x you
choose) for which P(x, y) is true. In other words, in the second case, y
can depend on x, whereas in the first case, y is a constant independent
of x.

From these observations, it follows that if ∃y∀xP (x, y) is true, then
∀x∃yP (x, y) must also be true. However, if ∀x∃yP (x, y) is true, it is
not necessary for ∃y∀xP (x, y) to be true.

Table 1.20 summarizes the meanings of the different possible quan-
tifications involving two variables.

Quantifications of more than two variables are also common, as
Example 5 illustrates.

�
EXAMPLE. 5

76 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

Table 1.20: Quantifications of Two Variables.
Statement When True? When False?

∀x∀yP (x, y) P(x, y) is true for There is a pair x, y for
∀y∀xP (x, y) every pair x, y. which P(x, y) is false.

∃x∀yP (x, y) For every x there is a y for There is an x such that
which P(x, y) is true. P(x, y) is false for every y.

∃x∀yP (x, y) There is an x for which For every x there is a y for
P(x, y) is true for every y. which P(x, y) is false.

∃x∃yP (x, y) There is a pair x, y for P(x, y) is false for every
∃y∃xP (x, y) which P(x, y) is true. pair x, y.

Let Q(x, y, z) be the statement “x+ y = z.” What are the truth values of the
statements ∀x∀y∃zQ(x, y, z) and ∃z ∀x∀yQ(x, y, z), where the domain of all
variables consists of all real numbers?�� ��Solution: Suppose that x and y are assigned values. Then, there exists a
real number z such that x+ y = z. Consequently, the quantification

∀x∀y∃zQ(x, y, z),

which is the statement
“For all real numbers x and for all real numbers y there is a real number

z such that x+ y = z,”
is true. The order of the quantification here is important, because the

quantification

∃z ∀x∀yQ(x, y, z),

which is the statement
“There is a real number z such that for all real numbers x and for all real

numbers y it is true that x+ y = z,”

is false, because there is no value of z that satisfies the equation x+y = z

for all values of x and y.

1.5.4 Translating Mathematical Statements into Statements Involving
Nested Quantifiers 77
1.5.4 Translating Mathematical Statements into State-

ments Involving Nested Quantifiers

Mathematical statements expressed in English can be translated
into logical expressions, as Examples 6–8 show.

�
EXAMPLE. 6

Translate the statement “The sum of two positive integers is always positive”
into a logical expression.�� ��Solution: To translate this statement into a logical expression, we first
rewrite it so that the implied quantifiers and a domain are shown: “For every
two integers, if these integers are both positive, then the sum of these integers
is positive”. Next, we introduce the variables x and y to obtain “For all
positive integers x and y, x+y is positive”. Consequently, we can express this
statement as

∀x∀y((x > 0) ∧ (y > 0)→ (x+ y > 0)),

where the domain for both variables consists of all integers. Note that we
could also translate this using the positive integers as the domain. Then the
statement “The sum of two positive integers is always positive” becomes “For
every two positive integers, the sum of these integers is positive”. We can
express this as

∀x∀y(x+ y > 0),

where the domain for both variables consists of all positive integers.

�
EXAMPLE. 7

Translate the statement “Every real number except zero has a multiplicative
inverse.” (A multiplicative inverse of a real number x is a real number y
such that xy = 1.)�� ��Solution: We first rewrite this as “For every real number x except zero, x
has a multiplicative inverse”. We can rewrite this as “For every real number
x, if x = 0, then there exists a real number y such that xy = 1”. This can be
rewritten as

∀x((x = 0)→ ∃y(xy = 1)).

78 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

One example that you may be familiar with is the concept of limit,
which is important in calculus.

�
EXAMPLE. 8

(Requires calculus) Use quantifiers to express the definition of the limit of
a real-valued function f(x) of a real variable x at a point a in its domain.�� ��Solution: Recall that the definition of the statement

limx→af(x) = L

is: For every real number ϵ > 0 there exists a real number δ > 0 such that
|f(x) − L| < ϵ whenever 0 < |x − a| < δ. This definition of a limit can be
phrased in terms of quantifiers by

∀ϵ∃δ∀x(0 < |x− a| < δ → |f(x)− L| < ϵ),

where the domain for the variables δ and ϵ consists of all positive real numbers
and for x consists of all real numbers.

This definition can also be expressed as

∀ϵ > 0∃δ > 0∀x(0 < |x− a| < δ → |f(x)− L| < ϵ),

when the domain for the variables ϵ and δ consists of all real numbers, rather
than just the positive real numbers. [Here, restricted quantifiers have been
used. Recall that ∀x > 0 P(x) means that for all x with x > 0, P (x) is true.]

1.5.5 Translating from Nested Quantifiers into English

Expressions with nested quantifiers expressing statements in En-
glish can be quite complicated. The first step in translating such an
expression is to write out what the quantifiers and predicates in the
expression mean. The next step is to express this meaning in a simpler
sentence. This process is illustrated in Examples 9 and 10.

�
EXAMPLE. 9

1.5.6 Translating English Sentences into Logical Expressions 79

Translate the statement

∀x(C(x) ∨ ∃y(C(y) ∧ F (x, y)))

into English, where C(x) is “x has a computer”, F(x, y) is “x and y are friends”,
and the domain for both x and y consists of all students in your school.�� ��Solution: The statement says that for every student x in your school, x
has a computer or there is a student y such that y has a computer and x and
y are friends. In other words, every student in your school has a computer or
has a friend who has a computer.

�
EXAMPLE. 10

Translate the statement

∃x∀y∀z((F (x, y) ∧ F (x, z) ∧ (y ̸= z))→ ¬F (y, z))

into English, where F(a,b) means a and b are friends and the domain for x,
y, and z consists of all students in your school.�� ��Solution: We first examine the expression (F (x, y)∧F (x, z)∧ (y ̸= z))→
¬F (y, z). This expression says that if students x and y are friends, and stu-
dents x and z are friends, and furthermore, if y and z are not the same student,
then y and z are not friends. It follows that the original statement, which is
triply quantified, says that there is a student x such that for all students y
and all students z other than y, if x and y are friends and x and z are friends,
then y and z are not friends. In other words, there is a student none of whose
friends are also friends with each other.

1.5.6 Translating English Sentences into Logical Expres-
sions

In Section 1.4 we showed how quantifiers can be used to translate
sentences into logical expressions. However, we avoided sentences whose
translation into logical expressions required the use of nested quanti-
fiers.We now address the translation of such sentences.�

EXAMPLE. 11

80 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

Express the statement “If a person is female and is a parent, then this person
is someone’s mother” as a logical expression involving predicates, quantifiers
with a domain consisting of all people, and logical connectives.�� ��Solution: The statement “If a person is female and is a parent, then this
person is someone’s mother” can be expressed as “For every person x, if person
x is female and person x is a parent, then there exists a person y such that
person x is the mother of person y.” We introduce the propositional functions
F(x) to represent “x is female,” P(x) to represent “x is a parent,” and M(x, y)
to represent “x is the mother of y.” The original statement can be represented
as

∀x((F (x) ∧ P (x))→ ∃yM(x, y)).

Using the null quantification rule, we can move ∃y to the left so that it
appears just after ∀x, because y does not appear in F (x) ∧ P (x). We obtain
the logically equivalent expression

∀x∃y((F (x) ∧ P (x)→M(x, y)).

�
EXAMPLE. 12

Express the statement “Everyone has exactly one best friend” as a logical
expression involving predicates, quantifiers with a domain consisting of all
people, and logical connectives.�� ��Solution: The statement “Everyone has exactly one best friend” can be
expressed as “For every person x, person x has exactly one best friend.” In-
troducing the universal quantifier, we see that this statement is the same as
“∀x(person x has exactly one best friend),” where the domain consists of all
people.

To say that x has exactly one best friend means that there is a person y
who is the best friend of x, and furthermore, that for every person z, if person
z is not person y, then z is not the best friend of x. When we introduce the
predicate B(x, y) to be the statement “y is the best friend of x,” the statement
that x has exactly one best friend can be represented as

∃y(B(x, y) ∧ ∀z((z = y)→ ¬B(x, z))).

Consequently, our original statement can be expressed as

∀x∃y(B(x, y) ∧ ∀z((z = y)→ ¬B(x, z))) .

1.5.7 Negating Nested Quantifiers 81

�
EXAMPLE. 13

Use quantifiers to express the statement “There is a woman who has taken a
flight on every airline in the world.”�� ��Solution: Let P(w, f) be “w has taken f ” and Q(f, a) be “f is a flight
on a. “We can express the statement as

∃w∀a∃f(P (w, f) ∧Q(f, a)),

where the domains of discourse for w, f, and a consist of all thewomen in
theworld, all airplane flights, and all airlines, respectively.

The statement could also be expressed as

∃w∀a∃fR(w, f, a),

where R(w, f, a) is “w has taken f on a.” Although this is more compact, it
somewhat obscures the relationships among the variables. Consequently, the
first solution is usually preferable.

1.5.7 Negating Nested Quantifiers

Statements involving nested quantifiers can be negated by succes-
sively applying the rules for negating statements involving a single
quantifier. This is illustrated in Examples 14–16.

�
EXAMPLE. 14

Express the negation of the statement ∀x∃y(xy = 1) so that no negation
precedes a quantifier.�� ��Solution: By successively applying De Morgan’s laws for quantifiers in Ta-
ble 1.19 of Section 1.4, we can move the negation in ¬∀x∃y(xy = 1) inside all
the quantifiers. We find that ¬∀x∃y(xy = 1) is equivalent to ∃x¬∃y(xy = 1),
which is equivalent to ∃x∀y¬(xy = 1). Because ¬(xy = 1) can be expressed
more simply as xy = 1, we conclude that our negated statement can be ex-
pressed as ∃x∀y(xy ̸= 1).

82 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

�
EXAMPLE. 15

Use quantifiers to express the statement that “There does not exist a woman
who has taken a flight on every airline in the world.”�� ��Solution: This statement is the negation of the statement “There is a
woman who has taken a flight on every airline in the world” from Example
13. By Example 13, our statement can be expressed as ¬∃w∀a∃f(P (w, f) ∧
Q(f, a)), where P (w, f) is “w has taken f ” and Q(f, a) is “f is a flight on a”.
By successively applying De Morgan’s laws for quantifiers in Table 1.19

of Section 1.4 to move the negation inside successive quantifiers and by
applying De Morgan’s law for negating a conjunction in the last step, we find
that our statement is equivalent to each of this sequence of statements:

∀w¬∀a∃f(P (w, f) ∧Q(f, a)) ≡ ∀w∃a¬∃f(P (w, f) ∧Q(f, a))
≡ ∀w∃a∀f¬(P (w, f) ∧Q(f, a))
≡ ∀w∃a∀f(¬P (w, f) ∨ ¬Q(f, a))

This last statement states “For every woman there is an airline such that for
all flights, this woman has not taken that flight or that flight is not on this
airline.”

�
EXAMPLE. 16

(Requires calculus) Use quantifiers and predicates to express the fact that
limx→af(x) does not exist where f (x) is a real-valued function of a real
variable x and a belongs to the domain of f.�� ��Solution: To say that limx→a f(x) does not exist means that for all real
numbers L, limx→a f(x) ̸= L. By using Example 8, the statement limx→a f(x) ̸=
L can be expressed as

¬∀ϵ > 0∃δ > 0∀x(0 < |x− a| < δ → |f(x)− L| < ϵ).

Successively applying the rules for negating quantified expressions, we con-
struct this sequence of equivalent statements

¬∀ϵ > 0 ∃δ > 0∀x(0 < |x− a| < δ → |f(x)− L| < ϵ)
≡ ∃ϵ > 0¬∃δ > 0∀x(0 < |x− a| < δ → |f(x)− L| < ϵ)
≡ ∃ϵ > 0∀δ > 0¬∀x(0 < |x− a| < δ → |f(x)− L| < ϵ)
≡ ∃ϵ > 0∀δ > 0∃x¬(0 < |x− a| < δ → |f(x)− L| < ϵ)
≡ ∃ϵ > 0∀δ > 0∃x(0 < |x− a| < δ ∧ |f(x)− L| ≥ ϵ).

1.6. RULES OF INFERENCE 83

In the last step we used the equivalence ¬(p → q) ≡ p ∧ ¬q, which follows
from the fifth equivalence in Table 1.16 of Section 1.3.

Because the statement “limx→a f(x) does not exist” means for all real
numbers L, limx→a f(x) ̸= L, this can be expressed as

∀L∃ϵ > 0∀δ > 0∃x(0 < |x− a| < δ ∧ |f(x)− L| ≥ ϵ).

This last statement says that for every real number L there is a real number
ϵ > 0 such that for every real number δ > 0, there exists a real number x such
that 0 < |x− a| < δ and |f(x)− L| ≥ ϵ

1.6 Rules of Inference

1.6.1 Introduction

Later in this chapter we will study proofs. Proofs in mathematics are
valid arguments that establish the truth of mathematical statements.
By an argument, we mean a sequence of statements that end with a
conclusion. By valid, we mean that the conclusion, or final statement of
the argument, must follow from the truth of the preceding statements,
or premises, of the argument. That is, an argument is valid if and only
if it is impossible for all the premises to be true and the conclusion to
be false. To deduce new statements from statements we already have,
we use rules of inference which are templates for constructing valid
arguments. Rules of inference are our basic tools for establishing the
truth of statements.

Before we study mathematical proofs, we will look at arguments
that involve only compound propositions.We will define what it means
for an argument involving compound propositions to be valid. Then we
will introduce a collection of rules of inference in propositional logic.
These rules of inference are among the most important ingredients in
producing valid arguments. After we illustrate how rules of inference are
used to produce valid arguments, we will describe some common forms
of incorrect reasoning, called fallacies, which lead to invalid arguments.

After studying rules of inference in propositional logic, we will in-
troduce rules of inference for quantified statements.We will describe
how these rules of inference can be used to produce valid arguments.

84 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

These rules of inference for statements involving existential and uni-
versal quantifiers play an important role in proofs in computer science
and mathematics, although they are often used without being explicitly
mentioned.

Finally, we will show how rules of inference for propositions and for
quantified statements can be combined. These combinations of rule of
inference are often used together in complicated arguments.

1.6.2 Valid Arguments in Propositional Logic

Consider the following argument involving propositions (which, by
definition, is a sequence of propositions):

“If you have a current password, then you can log onto the network.”
“You have a current password.”
Therefore,
“You can log onto the network.
We would like to determine whether this is a valid argument. That

is, we would like to determine whether the conclusion “You can log onto
the network” must be true when the premises “If you have a current
password, then you can log onto the network” and “You have a current
password” are both true.

Before we discuss the validity of this particular argument, we will
look at its form. Use p to represent “You have a current password” and
q to represent “You can log onto the network.” Then, the argument has
the form

p→ q
p

∴ q
where ∴ is the symbol that denotes “therefore”.
We know that when p and q are propositional variables, the state-

ment ((p→ q) ∧ p)→ q is a tautology. In particular, when both p→ q
and p are true, we know that q must also be true. We say this form
of argument is valid because whenever all its premises (all statements
in the argument other than the final one, the conclusion) are true, the
conclusion must also be true. Now suppose that both “If you have a
current password, then you can log onto the network” and “You have

1.6.2 Valid Arguments in Propositional Logic 85

a current password” are true statements. When we replace p by “You
have a current password” and q by “You can log onto the network,” it
necessarily follows that the conclusion “You can log onto the network”
is true. This argument is valid because its form is valid. Note that
whenever we replace p and q by propositions where p → q and p are
both true, then q must also be true.

What happens when we replace p and q in this argument form by
propositions where not both p and p → q are true? For example, sup-
pose that p represents “You have access to the network” and q represents
“You can change your grade” and that p is true, but p→ q is false. The
argument we obtain by substituting these values of p and q into the
argument form is

“If you have access to the network, then you can change your grade.”
“You have access to the network.”

∴ “You can change your grade.”

The argument we obtained is a valid argument, but because one of
the premises, namely the first premise, is false, we cannot conclude that
the conclusion is true. (Most likely, this conclusion is false.)

In our discussion, to analyze an argument, we replaced propositions
by propositional variables. This changed an argument to an argument
form. We saw that the validity of an argument follows from the validity
of the form of the argument. We summarize the terminology used to
discuss the validity of arguments with our definition of the key notions.

Definition 1.6.1 An argument in propositional logic is a sequence
of propositions. All but the final proposition in the argument are called
premises and the final proposition is called the conclusion. An argu-
ment is valid if the truth of all its premises implies that the conclusion
is true.

An argument form in propositional logic is a sequence of compound
propositions involving propositional variables. An argument form is
valid no matter which particular propositions are substituted for the
propositional variables in its premises, the conclusion is true if the
premises are all true.

86 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

From the definition of a valid argument form we see that the argu-
ment form with premises p1, p2, . . . , pn and conclusion q is valid, when
(p1 ∧ p2 ∧ . . . ∧ pn)→ q is a tautology.

The key to showing that an argument in propositional logic is valid
is to show that its argument form is valid. Consequently, we would like
techniques to show that argument forms are valid.We will now develop
methods for accomplishing this task.

1.6.3 Rules of Inference for Propositional Logic

We can always use a truth table to show that an argument form is
valid. We do this by showing that whenever the premises are true, the
conclusion must also be true. However, this can be a tedious approach.
For example, when an argument form involves 10 different propositional
variables, to use a truth table to show this argument form is valid
requires 210 = 1024 different rows. Fortunately, we do not have to
resort to truth tables. Instead, we can first establish the validity of some
relatively simple argument forms, called rules of inference. These
rules of inference can be used as building blocks to construct more
complicated valid argument forms. We will now introduce the most
important rules of inference in propositional logic.

The tautology (p∧ (p→ q))→ q is the basis of the rule of inference
called modus ponens, or the law of detachment. (Modus ponens is Latin
for mode that affirms.) This tautology leads to the following valid
argument form, which we have already seen in our initial discussion
about arguments:

p
p→ q

∴ q

Using this notation, the hypotheses are written in a column, followed
by a horizontal bar, followed by a line that begins with the therefore
symbol and ends with the conclusion. In particular, modus ponens
tells us that if a conditional statement and the hypothesis of this condi-
tional statement are both true, then the conclusion must also be true.
Example 1 illustrates the use of modus ponens.

1.6.3 Rules of Inference for Propositional Logic 87

�
EXAMPLE. 1

Suppose that the conditional statement “If it snows today, then we will go
skiing” and its hypothesis, “It is snowing today,” are true. Then, by modus
ponens, it follows that the conclusion of the conditional statement, “We will
go skiing,” is true.
As we mentioned earlier, a valid argument can lead to an incorrect
conclusion if one or more of its premises is false. We illustrate this
again in Example 2.

�
EXAMPLE. 2

Determine whether the argument given here is valid and determine whether
its conclusion must be true because of the validity of the argument.

“If
√
2 > 3

2 , then (
√
2)2 > (32)

2. We know that
√
2 > 3

2 . Consequently,
(
√
2)2 = 2 > (32)

2 = 9
4 .”�� ��Solution: Let p be the proposition “

√
2 > 3

2 ” and q the proposition
2 > (32)

2. The premises of the argument are p → q and p, and q is its
conclusion. This argument is valid because it is constructed by using modus
ponens, a valid argument form. However, one of its premises,

√
2 > 3

2 , is false.
Consequently, we cannot conclude that the conclusion is true. Furthermore,
note that the conclusion of this argument is false, because 2 < 9

4 .

There are many useful rules of inference for propositional logic. We
now give examples of arguments that use these rules of inference. In
each argument, we first use propositional variables to express the propo-
sitions in the argument. We then show that the resulting argument form
is a rule of inference from Table 1.21.

�
EXAMPLE. 3

State which rule of inference is the basis of the following argument: “It is
below freezing now. Therefore, it is either below freezing or raining now.”�� ��Solution: Let p be the proposition “It is below freezing now” and q the
proposition “It is raining now.” Then this argument is of the form

88 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

Table 1.21: Rules of Inference.
Rule of Tautology Name
Inference

p
p→ q

∴ q

(p ∧ (p→ q))→ q Modus ponens

¬q
p→ q

∴ ¬p

(¬q ∧ (p→ q))→ ¬p Modus tollens

p→ q
q → r

∴ p→ r

((p→ q) ∧ (q → r))→ (p→ r) Hypothetical syllogism

p ∨ q
¬p

∴ q

((p ∨ q) ∧ ¬p)→ q Disjunctive syllogism

p

∴ p ∨ q
p→ (p ∨ q) Addition

p ∧ q

∴ p
(p ∧ q)→ p Simplification

p
q

∴ p ∧ q

((p) ∧ (q))→ (p ∧ q) Conjunction

p ∨ q
¬p ∨ r

∴ q ∨ r

((p ∨ q) ∧ (¬p ∨ r))→ (q ∨ r) Resolution

1.6.4 Using Rules of Inference to Build Arguments 89

p
∴ p ∨ q

This is an argument that uses the addition rule.

�
EXAMPLE. 4

State which rule of inference is the basis of the following argument: “It is
below freezing and raining now. Therefore, it is below freezing now.”�� ��Solution: Let p be the proposition “It is below freezing now,” and let q be
the proposition “It is raining now.” This argument is of the form

p ∧ q
∴ p

This argument uses the simplification rule.

�
EXAMPLE. 5

State which rule of inference is used in the argument:
If it rains today, then we will not have a barbecue today. If we do not

have a barbecue today, then we will have a barbecue tomorrow. Therefore, if
it rains today, then we will have a barbecue tomorrow.�� ��Solution: Let p be the proposition “It is raining today,” let q be the propo-
sition “We will not have a barbecue today,” and let r be the proposition “We
will have a barbecue tomorrow.” Then this argument is of the form

p→ q
q → r

∴ p→ r
Hence, this argument is a hypothetical syllogism.

1.6.4 Using Rules of Inference to Build Arguments

When there are many premises, several rules of inference are often
needed to show that an argument is valid. This is illustrated by Exam-
ples 6 and 7, where the steps of arguments are displayed on separate

90 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

lines, with the reason for each step explicitly stated. These examples
also show how arguments in English can be analyzed using rules of
inference.

�
EXAMPLE. 6

Show that the premises “It is not sunny this afternoon and it is colder than
yesterday”, “We will go swimming only if it is sunny”, “If we do not go swim-
ming, then we will take a canoe trip”, and “If we take a canoe trip, then we
will be home by sunset” lead to the conclusion “We will be home by sunset”.�� ��Solution: Let p be the proposition “It is sunny this afternoon”, q the
proposition “It is colder than yesterday”, r the proposition “We will go swim-
ming”, s the proposition “We will take a canoe trip”, and t the proposition “We
will be home by sunset”. Then the premises become ¬p ∧ q, r → p, ¬r → s,
and s → t . The conclusion is simply t. We need to give a valid argument
with premises ¬p ∧ q, r → p, ¬r → s, and s→ t and conclusion t.

We construct an argument to show that our premises lead to the desired
conclusion as follows.

Step Reason
1. ¬p ∧ q Premise
2. ¬p Simplification using (1)
3. r → p Premise
4. ¬r Modus tollens using (2) and (3)
5. ¬r → s Premise
6. s Modus ponens using (4) and (5)
7. s→ t Premise
8. t Modus ponens using (6) and (7)

Note that we could have used a truth table to show that whenever each of
the four hypotheses is true, the conclusion is also true. However, because we
are working with five propositional variables, p, q, r, s, and t , such a truth
table would have 32 rows.

�
EXAMPLE. 7

Show that the premises “If you send me an e-mail message, then I will finish
writing the program”, “If you do not send me an e-mail message, then I will go
to sleep early”, and “If I go to sleep early, then I will wake up feeling refreshed”
lead to the conclusion “If I do not finish writing the program, then I will wake

1.6.5 Resolution 91

up feeling refreshed.”�� ��Solution: Let p be the proposition “You send me an e-mail message”, q
the proposition “I will finish writing the program”, r the proposition “I will go
to sleep early”, and s the proposition “I willwake up feeling refreshed”. Then
the premises are p→ q, ¬p→ r, and r → s. The desired conclusion is ¬q → s.
We need to give a valid argument with premises p → q, ¬p → r, and r → s
and conclusion ¬q → s.

This argument form shows that the premises lead to the desired conclu-
sion.

Step Reason
1. p→ q Premise
2. ¬q → ¬p Contrapositive of (1)
3. ¬p→ r Premise
4. ¬q → r Hypothetical syllogism using (2) and (3)
5. r → s Premise
6. ¬q → s Hypothetical syllogism using (4) and (5)

1.6.5 Resolution

Computer programs have been developed to automate the task of
reasoning and proving theorems. Many of these programs make use of
a rule of inference known as resolution. This rule of inference is based
on the tautology

((p ∨ q) ∧ (¬p ∨ r))→ (q ∨ r).

The final disjunction in the resolution rule, q∨r, is called the resolvent.
When we let q = r in this tautology, we obtain (p ∨ q) ∧ (¬p ∨ q)→ q.
Furthermore, when we let r = F, we obtain (p∨ q)∧ (¬p)→ q (because
q ∨ F ≡ q), which is the tautology on which the rule of disjunctive
syllogism is based.

�
EXAMPLE. 8

Use resolution to show that the hypotheses “Jasmine is skiing or it is not
snowing” and “It is snowing or Bart is playing hockey” imply that “Jasmine
is skiing or Bart is playing hockey.”�� ��Solution: Let p be the proposition “It is snowing”, q the proposition “Jas-
mine is skiing”, and r the proposition “Bart is playing hockey”. We can rep-
resent the hypotheses as ¬p ∨ q and p ∨ r, respectively. Using resolution, the

92 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

proposition q ∨ r, “Jasmine is skiing or Bart is playing hockey”, follows.

Resolution plays an important role in programming languages based
on the rules of logic, such as Prolog (where resolution rules for quantified
statements are applied). Furthermore, it can be used to build automatic
theorem proving systems. To construct proofs in propositional logic
using resolution as the only rule of inference, the hypotheses and the
conclusion must be expressed as clauses, where a clause is a disjunction
of variables or negations of these variables. We can replace a statement
in propositional logic that is not a clause by one or more equivalent
statements that are clauses. For example, suppose we have a statement
of the form p ∨ (q ∧ r). Because p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r), we can
replace the single statement p ∨ (q ∧ r) by two statements p ∨ q and
p∨ r, each of which is a clause. We can replace a statement of the form
¬(p ∨ q) by the two statements ¬p and ¬q because De Morgan’s law
tells us that ¬(p ∨ q) ≡ ¬p ∧ ¬q. We can also replace a conditional
statement p→ q with the equivalent disjunction ¬p ∨ q.

�
EXAMPLE. 9

Show that the premises (p ∧ q) ∨ r and r → s imply the conclusion p ∨ s.�� ��Solution: We can rewrite the premises (p∧ q)∨ r as two clauses, p∨ r and
q ∨ r. We can also replace r → s by the equivalent clause ¬r ∨ s. Using the
two clauses p ∨ r and ¬r ∨ s, we can use resolution to conclude p ∨ s.

1.6.6 Fallacies

Several common fallacies arise in incorrect arguments. These falla-
cies resemble rules of inference, but are based on contingencies rather
than tautologies. These are discussed here to show the distinction be-
tween correct and incorrect reasoning.

The proposition ((p→ q) ∧ q)→ p is not a tautology, because it is
false when p is false and q is true. However, there are many incorrect
arguments that treat this as a tautology. In other words, they treat
the argument with premises p → q and q and conclusion p as a valid

1.6.6 Fallacies 93

argument form, which it is not. This type of incorrect reasoning is
called the fallacy of affirming the conclusion.

�
EXAMPLE. 10

Is the following argument valid?

If you do every problem in this book, then you will learn discrete mathe-
matics.You learned discrete mathematics.

Therefore, you did every problem in this book.�� ��Solution: Let p be the proposition “You did every problem in this book.”
Let q be the proposition “You learned discrete mathematics”. Then this ar-
gument is of the form: if p → q and q, then p. This is an example of an
incorrect argument using the fallacy of affirming the conclusion. Indeed, it
is possible for you to learn discrete mathematics in someway other than by
doing every problem in this book. (You may learn discrete mathematics by
reading, listening to lectures, doing some, but not all, the problems in this
book, and so on.)

The proposition ((p → q) ∧ ¬p) → ¬q is not a tautology, because
it is false when p is false and q is true. Many incorrect arguments use
this incorrectly as a rule of inference. This type of incorrect reasoning
is called the fallacy of denying the hypothesis.

�
EXAMPLE. 11

Let p and q be as in Example 10. If the conditional statement p→ q is true,
and ¬p is true, is it correct to conclude that ¬q is true? In other words, is it
correct to assume that you did not learn discrete mathematics if you did not
do every problem in the book, assuming that if you do every problem in this
book, then you will learn discrete mathematics?�� ��Solution: It is possible that you learned discrete mathematics even if you
did not do every problem in this book. This incorrect argument is of the form
p → q and ¬p imply ¬q, which is an example of the fallacy of denying the
hypothesis.

94 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

1.6.7 Rules of Inference for Quantified Statements

We have discussed rules of inference for propositions.We will nowde-
scribe some important rules of inference for statements involving quan-
tifiers. These rules of inference are used extensively in mathematical
arguments, often without being explicitly mentioned.

Universal instantiation is the rule of inference used to conclude
that P(c) is true, where c is a particular member of the domain, given
the premise ∀xP (x). Universal instantiation is used when we conclude
from the statement “All women are wise” that “Lisa is wise”, where Lisa
is a member of the domain of all women.

Universal generalization is the rule of inference that states that
∀xP (x) is true, given the premise that P(c) is true for all elements c
in the domain. Universal generalization is used when we show that
∀xP (x) is true by taking an arbitrary element c from the domain and
showing that P(c) is true. The element c that we select must be an
arbitrary, and not a specific, element of the domain. That is, when we
assert from ∀xP (x) the existence of an element c in the domain, we
have no control over c and cannot make any other assumptions about
c other than it comes from the domain. Universal generalization is
used implicitly in many proofs in mathematics and is seldom mentioned
explicitly. However, the error of adding unwarranted assumptions about
the arbitrary element c when universal generalization is used is all too
common in incorrect reasoning.

Existential instantiation is the rule that allows us to conclude
that there is an element c in the domain for which P(c) is true if we
know that ∃xP (x) is true. We cannot select an arbitrary value of c
here, but rather it must be a c for which P(c) is true. Usually we have
no knowledge of what c is, only that it exists. Because it exists, we
may give it a name (c) and continue our argument.

Existential generalization is the rule of inference that is used to
conclude that ∃xP (x) is true when a particular element c with P(c)
true is known. That is, if we know one element c in the domain for
which P(c) is true, then we know that ∃xP (x) is true.

We summarize these rules of inference in Table 1.22. We will illus-
trate how some of these rules of inference for quantified statements are
used in Examples 12 and 13.

1.6.7 Rules of Inference for Quantified Statements 95

Table 1.22: Rules of Inference for Quantified Statements.
Rule of Inference Name

∀xP (x)

∴ P (c)
Universal instantiation

P (c) for an arbitary c

∴ ∀xP (x)
Universal generalization

∃xP (x)

∴ P (c) for some element c
Existential instantiation

P (c) for some element c

∴ ∃xP (x)
Existential generalization

�
EXAMPLE. 12

Show that the premises “Everyone in this discrete mathematics class has taken
a course in computer science” and “Marla is a student in this class” imply the
conclusion “Marla has taken a course in computer science.”�� ��Solution: Let D(x) denote “x is in this discrete mathematics class”, and
let C(x) denote “x has taken a course in computer science”. Then the premises
are ∀x(D(x)→ C(x)) and D(Marla). The conclusion is C (Marla).

The following steps can be used to establish the conclusion from the
premises.

Step Reason
1. ∀x(D(x)→ C(x)) Premise
2. D(Marla)→ C(Marla) Universal instantiation from (1)
3. D(Marla) Premise
4. C(Marla) Modus ponens from (2) and (3)

�
EXAMPLE. 13

96 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

Show that the premises “A student in this class has not read the book”, and
“Everyone in this class passed the first exam” imply the conclusion “Someone
who passed the first exam has not read the book”.�� ��Solution: Let C(x) be “x is in this class”, B(x) be “x has read the book”,
and P(x) be “x passed the first exam”. The premises are ∃x(C(x) ∧ ¬B(x))
and ∀x(C(x)→ P (x)). The conclusion is ∃x(P (x)∧¬B(x)). These steps can
be used to establish the conclusion from the premises.

Step Reason
1. ∃x(C(x) ∧ ¬B(x)) Premise
2. C(a) ∧ ¬B(a) Existential instantiation from (1)
3. C(a) Simplification from (2)
4. ∀x(C(x)→ P (x)) Premise
5. C(a)→ P (a) Universal instantiation from (4)
6. P (a) Modus ponens from (3) and (5)
7. ¬B(a) Simplification from (2)
8. P (a) ∧ ¬B(a) Conjunction from (6) and (7)
9. ∃x(P (x) ∧ ¬B(x)) Existential generalization from (8)

1.6.8 Combining Rules of Inference for Propositions and
Quantified Statements

We have developed rules of inference both for propositions and for
quantified statements. Note that in our arguments in Examples 12 and
13 we used both universal instantiation, a rule of inference for quanti-
fied statements, and modus ponens, a rule of inference for propositional
logic. We will often need to use this combination of rules of inference.
Because universal instantiation and modus ponens are used so often to-
gether, this combination of rules is sometimes called universal modus
ponens. This rule tells us that if ∀x(P (x)→ Q(x)) is true, and if P (a)
is true for a particular element a in the domain of the universal quan-
tifier, then Q(a) must also be true. To see this, note that by universal
instantiation, P (a)→ Q(a) is true. Then, by modus ponens, Q(a) must
also be true.We can describe universal modus ponens as follows:

∀x(P (x)→ Q(x))
P (a) where a is a particular element in the domain

∴ Q(a)

1.7. INTRODUCTION TO PROOFS 97

Universal modus ponens is commonly used in mathematical argu-
ments. This is illustrated in Example 14.

�
EXAMPLE. 14

Assume that “For all positive integers n, if n is greater than 4, then n2 is less
than 2n” is true. Use universal modus ponens to show that 1002 < 2100.�� ��Solution: Let P(n) denote “n > 4” and Q(n) denote “n2 < 2n”. The
statement “For all positive integers n, if n is greater than 4, then n2 is less
than 2n” can be represented by ∀n(P (n)→ Q(n)), where the domain consists
of all positive integers. We are assuming that ∀n(P (n)→ Q(n)) is true. Note
that P (100) is true because 100 > 4. It follows by universal modus ponens
that Q(100) is true, namely that 1002 < 2100.

Another useful combination of a rule of inference from propositional
logic and a rule of inference for quantified statements is universal
modus tollens. Universal modus tollens combines universal instanti-
ation and modus tollens and can be expressed in the following way:

∀x(P (x)→ Q(x))
¬Q(a) where a is a particular element in the domain

∴ ¬P (a)

1.7 Introduction to Proofs

1.7.1 Introduction

In this section we introduce the notion of a proof and describe meth-
ods for constructing proofs. A proof is a valid argument that establishes
the truth of a mathematical statement. A proof can use the hypotheses
of the theorem, if any, axioms assumed to be true, and previously proven
theorems. Using these ingredients and rules of inference, the final step
of the proof establishes the truth of the statement being proved.

In our discussion we move from formal proofs of theorems toward
more informal proofs. The arguments we introduced in Section 1.6 to
show that statements involving propositions and quantified statements

98 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

are true were formal proofs, where all steps were supplied, and the rules
for each step in the argument were given. However, formal proofs of
useful theorems can be extremely long and hard to follow. In practice,
the proofs of theorems designed for human consumption are almost al-
ways informal proofs, where more than one rule of inference may be
used in each step, where steps may be skipped, where the axioms be-
ing assumed and the rules of inference used are not explicitly stated.
Informal proofs can often explain to humans why theorems are true,
while computers are perfectly happy producing formal proofs using au-
tomated reasoning systems.

The methods of proof discussed in this chapter are important not
only because they are used to prove mathematical theorems, but also
for their many applications to computer science. These applications
include verifying that computer programs are correct, establishing that
operating systems are secure, making inferences in artificial intelligence,
showing that system specifications are consistent, and so on. Conse-
quently, understanding the techniques used in proofs is essential both
in mathematics and in computer science.

1.7.2 Some Terminology

Formally, a theorem is a statement that can be shown to be true.
In mathematical writing, the term theorem is usually reserved for a
statement that is considered at least somewhat important. Less impor-
tant theorems sometimes are called propositions. (Theorems can also
be referred to as facts or results.) A theorem may be the universal
quantification of a conditional statement with one or more premises and
a conclusion. However, it may be some other type of logical statement,
as the examples later in this chapter will show.We demonstrate that
a theorem is true with a proof. A proof is a valid argument that es-
tablishes the truth of a theorem. The statements used in a proof can
include axioms (or postulates), which are statements we assume to
be true (for example, the axioms for the real numbers, given in Ap-
pendix 1, and the axioms of plane geometry), the premises, if any, of
the theorem, and previously proven theorems. Axioms may be stated
using primitive terms that do not require definition, but all other terms
used in theorems and their proofs must be defined. Rules of inference,

1.7.3 Understanding How Theorems Are Stated 99

together with definitions of terms, are used to draw conclusions from
other assertions, tying together the steps of a proof. In practice, the
final step of a proof is usually just the conclusion of the theorem. How-
ever, for clarity, we will often recap the statement of the theorem as the
final step of a proof.

A less important theorem that is helpful in the proof of other results
is called a lemma (plural lemmas or lemmata). Complicated proofs
are usually easier to understand when they are proved using a series
of lemmas, where each lemma is proved individually. A corollary is a
theorem that can be established directly from a theorem that has been
proved. A conjecture is a statement that is being proposed to be a
true statement, usually on the basis of some partial evidence, a heuristic
argument, or the intuition of an expert. When a proof of a conjecture
is found, the conjecture becomes a theorem. Many times conjectures
are shown to be false, so they are not theorems.

1.7.3 Understanding How Theorems Are Stated

Before we introduce methods for proving theorems, we need to un-
derstand how many mathematical theorems are stated. Many theorems
assert that a property holds for all elements in a domain, such as the
integers or the real numbers. Although the precise statement of such
theorems needs to include a universal quantifier, the standard conven-
tion in mathematics is to omit it. For example, the statement

“If x > y, where x and y are positive real numbers, then x2 > y2”.
really means
“For all positive real numbers x and y, if x > y, then x2 > y2”.
Furthermore, when theorems of this type are proved, the first step

of the proof usually involves selecting a general element of the domain.
Subsequent steps show that this element has the property in question.
Finally, universal generalization implies that the theorem holds for all
members of the domain.

1.7.4 Methods of Proving Theorems

Proving mathematical theorems can be difficult. To construct proofs
we need all available ammunition, including a powerful battery of dif-

100 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

ferent proof methods. These methods provide the overall approach and
strategy of proofs. Understanding these methods is a key component of
learning how to read and construct mathematical proofs. One we have
chosen a proof method, we use axioms, definitions of terms, previously
proved results, and rules of inference to complete the proof. Note that
in this book we will always assume the axioms for real numbers found in
Appendix 1.We will also assume the usual axioms whenever we prove a
result about geometry. When you construct your own proofs, be care-
ful not to use anything but these axioms, definitions, and previously
proved results as facts!

To prove a theorem of the form ∀x(P (x) → Q(x)), our goal is to
show that P (c) → Q(c) is true, where c is an arbitrary element of
the domain, and then apply universal generalization. In this proof, we
need to show that a conditional statement is true. Because of this, we
now focus on methods that show that conditional statements are true.
Recall that p → q is true unless p is true but q is false. Note that to
prove the statement p → q, we need only show that q is true if p is
true. The following discussion will give the most common techniques
for proving conditional statements. Later we will discuss methods for
proving other types of statements. In this section we will develop a large
arsenal of proof techniques that can be used to prove a wide variety of
theorems.

When you read proofs, you will often find the words “obviously”
or “clearly”. These words indicate that steps have been omitted that
the author expects the reader to be able to fill in. Unfortunately, this
assumption is often not warranted and readers are not at all sure how
to fill in the gaps. We will assiduously try to avoid using these words
and try not to omit too many steps. However, if we included all steps
in proofs, our proofs would often be excruciatingly long.

1.7.5 Direct Proofs

A direct proof of a conditional statement p → q is constructed
when the first step is the assumption that p is true; subsequent steps
are constructed using rules of inference, with the final step showing that
q must also be true. A direct proof shows that a conditional statement
p→ q is true by showing that if p is true, then q must also be true, so

1.7.5 Direct Proofs 101

that the combination p true and q false never occurs. In a direct proof,
we assume that p is true and use axioms, definitions, and previously
proven theorems, together with rules of inference, to show that q must
also be true. You will find that direct proofs of many results are quite
straightforward, with a fairly obvious sequence of steps leading from the
hypothesis to the conclusion. However, direct proofs sometimes require
particular insights and can be quite tricky. The first direct proofs we
present here are quite straightforward; later in the text you will see
some that are less obvious.

We will provide examples of several different direct proofs. Before
we give the first example, we need to define some terminology

Definition 1.7.1 The integer n is even if there exists an integer
k such that n = 2k, and n is odd if there exists an integer k such that
n = 2k+1. (Note that every integer is either even or odd, and no integer
is both even and odd.) Two integers have the same parity when both
are even or both are odd; they have opposite parity when one is even
and the other is odd.

�
EXAMPLE. 1

Give a direct proof of the theorem “If n is an odd integer, then n2 is odd”.�� ��Solution: Note that this theorem states ∀nP ((n)→ Q(n)), where P(n) is
“n is an odd integer” and Q(n) is “n2 is odd”. As we have said, we will follow
the usual convention in mathematical proofs by showing that P(n) implies
Q(n), and not explicitly using universal instantiation. To begin a direct proof
of this theorem, we assume that the hypothesis of this conditional statement
is true, namely, we assume that n is odd. By the definition of an odd inte-
ger, it follows that n = 2k + 1, where k is some integer. We want to show
that n2 is also odd. We can square both sides of the equation n = 2k + 1

to obtain a new equation that expresses n2. When we do this, we find that
n2 = (2k+ 1)2 = 4k2 + 4k+ 1 = 2(2k2 + 2k) + 1. By the definition of an odd
integer, we can conclude that n2 is an odd integer (it is one more than twice
an integer). Consequently, we have proved that if n is an odd integer, then
n2 is an odd integer.

102 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

�
EXAMPLE. 2

Give a direct proof that if m and n are both perfect squares, then nm is also
a perfect square. (An integer a is a perfect square if there is an integer b
such that a = b2.)�� ��Solution: To produce a direct proof of this theorem, we assume that the
hypothesis of this conditional statement is true, namely, we assume that m
and n are both perfect squares. By the definition of a perfect square, it fol-
lows that there are integers s and t such that m = s2 and n = t2. The
goal of the proof is to show that mn must also be a perfect square when
m and n are; looking ahead we see how we can show this by substitut-
ing s2 for m and t2 for n into mn. This tells us that mn = s2t2. Hence,
mn = s2t2 = (ss)(tt) = (st)(st) = (st)2, using commutativity and associativ-
ity of multiplication. By the definition of perfect square, it follows that mn
is also a perfect square, because it is the square of st, which is an integer.
We have proved that if m and n are both perfect squares, then mn is also a
perfect square.

1.7.6 Proof by Contraposition

Direct proofs lead from the premises of a theorem to the conclusion.
They begin with the premises, continue with a sequence of deductions,
and end with the conclusion. However, we will see that attempts at
direct proofs often reach dead ends.We need other methods of proving
theorems of the form ∀x(P (x)→ Q(x)). Proofs of theorems of this type
that are not direct proofs, that is, that do not start with the premises
and end with the conclusion, are called indirect proofs.

An extremely useful type of indirect proof is known as proof by
contraposition. Proofs by contraposition make use of the fact that
the conditional statement p → q is equivalent to its contrapositive,
¬q → ¬p. This means that the conditional statement p → q can be
proved by showing that its contrapositive, ¬q → ¬p, is true. In a
proof by contraposition of p → q, we take ¬q as a premise, and using
axioms, definitions, and previously proven theorems, together with rules
of inference, we show that ¬p must follow. We will illustrate proof by

1.7.6 Proof by Contraposition 103

contraposition with two examples. These examples show that proof by
contraposition can succeed when we cannot easily find a direct proof.

�
EXAMPLE. 3

Prove that if n is an integer and 3n+ 2 is odd, then n is odd.�� ��Solution: We first attempt a direct proof. To construct a direct proof, we
first assume that 3n+ 2 is an odd integer. This means that 3n+ 2 = 2k + 1
for some integer k. Can we use this fact to show that n is odd? We see that
3n+1 = 2k, but there does not seem to be any direct way to conclude that n
is odd. Because our attempt at a direct proof failed, we next try a proof by
contraposition.

The first step in a proof by contraposition is to assume that the con-
clusion of the conditional statement “If 3n + 2 is odd, then n is odd” is
false; namely, assume that n is even. Then, by the definition of an even
integer, n = 2k for some integer k. Substituting 2k for n, we find that
3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1). This tells us that 3n + 2 is
even (because it is a multiple of 2), and therefore not odd. This is the nega-
tion of the premise of the theorem. Because the negation of the conclusion
of the conditional statement implies that the hypothesis is false, the original
conditional statement is true. Our proof by contraposition succeeded; we have
proved the theorem “If 3n+ 2 is odd, then n is odd”.

�
EXAMPLE. 4

Prove that if = ab, where a and b are positive integers, then a ≤
√
n or

b ≤
√
n.�� ��Solution: Because there is no obvious way of showing that a ≤

√
n or

b ≤
√
n directly from the equation n = ab, where a and b are positive integers,

we attempt a proof by contraposition.
The first step in a proof by contraposition is to assume that the conclusion

of the conditional statement “If n = ab, where a and b are positive integers,
then a ≤

√
n or b ≤

√
n” is false. That is, we assume that the statement

(a ≤
√
n)∨ (b ≤

√
n) is false. Using the meaning of disjunction together with

De Morgan’s law, we see that this implies that both a ≤
√
n and b ≤

√
n

are false. This implies that a >
√
n and b >

√
n. We can multiply these

inequalities together (using the fact that if 0 < s < t and 0 < u < v, then

104 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

su < tv) to obtain ab >
√
n ·
√
n = n. This shows that ab ̸= n, which

contradicts the statement n = ab.
Because the negation of the conclusion of the conditional statement im-

plies that the hypothesis is false, the original conditional statement is true.
Our proof by contraposition succeeded; we have proved that if n = ab, where
a and b are positive integers, then a ≤

√
n or b ≤

√
n.

VACUOUS AND TRIVIAL PROOFS
We can quickly prove that a conditional statement p → q is true

when we know that p is false, because p → q must be true when p is
false. Consequently, if we can show that p is false, then we have a proof,
called a vacuous proof, of the conditional statement p → q. Vacuous
proofs are often used to establish special cases of theorems that state
that a conditional statement is true for all positive integers.

�
EXAMPLE. 5

Show that the proposition P(0) is true, where P(n) is “If n > 1, then n2 > n”
and the domain consists of all integers.�� ��Solution: Note that P(0) is “If 0 > 1, then 02 > 0”. We can show P(0)
using a vacuous proof. Indeed, the hypothesis 0 > 1 is false. This tells us
that P(0) is automatically true.

Remark! The fact that the conclusion of this conditional state-
ment, 02 > 0, is false is irrelevant to the truth value of the con-
ditional statement, because a conditional statement with a false
hypothesis is guaranteed to be true.

We can also quickly prove a conditional statement p→ q if we know
that the conclusion q is true. By showing that q is true, it follows that
p→ q must also be true. A proof of p→ q that uses the fact that q is
true is called a trivial proof. Trivial proofs are often important when
special cases of theorems are proved and in mathematical induction,
which is a proof technique discussed in Section 5.1.

�
EXAMPLE. 6

1.7.6 Proof by Contraposition 105

Let P(n) be “If a and b are positive integers with a ≥ b, then an ≥ bn”, where
the domain consists of all nonnegative integers. Show that P(0) is true.�� ��Solution: The proposition P(0) is “If a ≥ b, then a0 ≥ b0”. Because
a0 = b0 = 1, the conclusion of the conditional statement “If a ≥ b, then
a0 ≥ b0” is true. Hence, this conditional statement, which is P(0), is true.
This is an example of a trivial proof. Note that the hypothesis, which is the
statement “a ≥ b”, was not needed in this proof.

A LITTLE PROOF STRATEGY
We have described two important approaches for proving theorems

of the form ∀x(P (x)→ Q(x)): direct proof and proof by contraposition.
We have also given examples that show how each is used. However,
when you are presented with a theorem of the form ∀x(P (x)→ Q(x)),
which method should you use to attempt to prove it? We will provide
a fewrules of thumb here; in Section 1.8 we will discuss proof strategy
at greater length. When you want to prove a statement of the form
∀x(P (x)→ Q(x)), first evaluate whether a direct proof looks promising.
Begin by expanding the definitions in the hypotheses. Start to reason
using these hypotheses, together with axioms and available theorems.
If a direct proof does not seem to go anywhere, try the same thing with
a proof by contraposition. Recall that in a proof by contraposition you
assume that the conclusion of the conditional statement is false and use
a direct proof to show this implies that the hypothesis must be false.
We illustrate this strategy in Examples 7 and 8. Before we present our
next example, we need a definition.

Definition 1.7.2 The real number r is rational if there exist in-
tegers p and q with q ̸= 0 such that r = p/q. A real number that is not
rational is called irrational.

�
EXAMPLE. 7

Prove that the sum of two rational numbers is rational. (Note that if we
include the implicit quantifiers here, the theorem we want to prove is “For
every real number r and every real number s, if r and s are rational numbers,
then r + s is rational”.)

106 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC
�� ��Solution: We first attempt a direct proof.To begin, suppose that r and

s are rational numbers. From the definition of a rational number, it follows
that there are integers p and q, with q ̸= 0, such that r = p/q, and integers t
and u, with u ̸= 0, such that s = t/u. Can we use this information to show
that r + s is rational? The obvious next step is to add r = p/q and s = t/u,
to obtain

r + s =
p

q
+

t

u
=

pu+ qt

qu
.

Because q ̸= 0 and u ̸= 0, it follows that qu ̸= 0. Consequently, we have
expressed r + s as the ratio of two integers, pu + qt and qu, where qu ̸= 0.
This means that r+s is rational.We have proved that the sum of two rational
numbers is rational; our attempt to find a direct proof succeeded.

�
EXAMPLE. 8

Prove that if n is an integer and n2 is odd, then n is odd.�� ��Solution: We first attempt a direct proof. Suppose that n is an integer
and n2 is odd. Then, there exists an integer k such that n2 = 2k + 1. Can
we use this information to show that n is odd? There seems to be no obvious
approach to show that n is odd because solving for n produces the equation
n = ±

√
2k + 1, which is not terribly useful.

Because this attempt to use a direct proof did not bear fruit, we next
attempt a proof by contraposition. We take as our hypothesis the statement
that n is not odd. Because every integer is odd or even, this means that n
is even. This implies that there exists an integer k such that n = 2k. To
prove the theorem, we need to show that this hypothesis implies the conclu-
sion that n2 is not odd, that is, that n2 is even. Can we use the equation
n = 2k to achieve this? By squaring both sides of this equation, we obtain
n2 = 4k2 = 2(2k2), which implies that n2 is also even because n2 = 2t , where
t = 2k2. We have proved that if n is an integer and n2 is odd, then n is odd.
Our attempt to find a proof by contraposition succeeded.

1.7.7 Proofs by Contradiction

Suppose we want to prove that a statement p is true. Furthermore,
suppose that we can find a contradiction q such that ¬p → q is true.

1.7.7 Proofs by Contradiction 107

Because q is false, but ¬p→ q is true, we can conclude that ¬p is false,
which means that p is true. How can we find a contradiction q that
might help us prove that p is true in this way?

Because the statement r∧¬r is a contradiction whenever r is a
proposition, we can prove that p is true if we can show that ¬p →
(r ∧ ¬r) is true for some proposition r. Proofs of this type are called
proofs by contradiction. Because a proof by contradiction does not
prove a result directly, it is another type of indirect proof. We provide
three examples of proof by contradiction.

�
EXAMPLE. 9

Show that at least four of any 22 days must fall on the same day of the week.�� ��Solution: Let p be the proposition “At least four of 22 chosen days fall on
the same day of the week”. Suppose that ¬p is true. This means that at most
three of the 22 days fall on the same day of the week. Because there are seven
days of the week, this implies that at most 21 days could have been chosen,
as for each of the days of the week, at most three of the chosen days could
fall on that day. This contradicts the premise that we have 22 days under
consideration. That is, if r is the statement that 22 days are chosen, then we
have shown that ¬p → (r ∧ ¬r). Consequently, we know that p is true. We
have proved that at least four of 22 chosen days fall on the same day of the
week.

�
EXAMPLE. 10

Prove that
√
2 is irrational by giving a proof by contradiction.�� ��Solution: Let p be the proposition “

√
2 is irrational”. To start a proof by

contradiction, we suppose that ¬p is true. Note that ¬p is the statement “It
is not the case that

√
2 is irrational”, which says that

√
2 is rational. We will

show that assuming that ¬p is true leads to a contradiction.
If
√
2 is rational, there exist integers a and b with

√
2 = a/b, where

b ̸= 0 and a and b have no common factors (so that the fraction a/b is in
lowest terms.) (Here, we are using the fact that every rational number can be
written in lowest terms.) Because

√
2 = a/b, when both sides of this equation

108 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

are squared, it follows that

2 =
a2

b2
.

Hence
2b2 = a2.

By the definition of an even integer it follows that a2 is even. We next use
the fact that if a2 is even, a must also be even. Furthermore, because a is
even, by the definition of an even integer, a = 2c for some integer c. Thus,

2b2 = 4c2.

Dividing both sides of this equation by 2 gives

b2 = 2c2.

By the definition of even, this means that b2 is even. Again using the fact
that if the square of an integer is even, then the integer itself must be even,
we conclude that b must be even as well.

We have now shown that the assumption of ¬p leads to the equation√
2 = a/b, where a and b have no common factors, but both a and b are

even, that is, 2 divides both a and b. Note that the statement that
√
2 = a/b,

where a and b have no common factors, means, in particular, that 2 does not
divide both a and b. Because our assumption of ¬p leads to the contradiction
that 2 divides both a and b and 2 does not divide both a and b, ¬p must be
false. That is, the statement p, “

√
2 is irrational”, is true. We have proved

that
√
2 is irrational.

Proof by contradiction can be used to prove conditional statements.
In such proofs, we first assume the negation of the conclusion. We then
use the premises of the theorem and the negation of the conclusion to
arrive at a contradiction. (The reason that such proofs are valid rests
on the logical equivalence of p→ q and (p∧¬q)→ F. To see that these
statements are equivalent, simply note that each is false in exactly one
case, namely when p is true and q is false.)

Note that we can rewrite a proof by contraposition of a conditional
statement as a proof by contradiction. In a proof of p → q by contra-
position, we assume that ¬q is true. We then show that ¬p must also
be true. To rewrite a proof by contraposition of p → q as a proof by
contradiction, we suppose that both p and ¬q are true. Then, we use

1.7.7 Proofs by Contradiction 109

the steps from the proof of ¬q → ¬p to show that ¬p is true. This
leads to the contradiction p ∧ ¬p, completing the proof. Example 11
illustrates how a proof by contraposition of a conditional statement can
be rewritten as a proof by contradiction.

�
EXAMPLE. 11

Give a proof by contradiction of the theorem “If 3n+2 is odd, then n is odd”.�� ��Solution: Let p be “3n + 2 is odd” and q be “n is odd”. To construct a
proof by contradiction, assume that both p and ¬q are true. That is, assume
that 3n+2 is odd and that n is not odd. Because n is not odd, we know that
it is even. Because n is even, there is an integer k such that n = 2k. This
implies that 3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1). Because 3n + 2 is 2t

, where t = 3k + 1, 3n+ 2 is even. Note that the statement “3n+ 2 is even”
is equivalent to the statement ¬p, because an integer is even if and only if it
is not odd. Because both p and ¬p are true, we have a contradiction. This
completes the proof by contradiction, proving that if 3n+ 2 is odd, then n is
odd.

PROOFS OF EQUIVALENCE
To prove a theorem that is a biconditional statement, that is, a

statement of the form p↔ q, we show that p→ q and q → p are both
true. The validity of this approach is based on the tautology

(p↔ q)↔ (p→ q) ∧ (q → p).

�
EXAMPLE. 12

Prove the theorem “If n is an integer, then n is odd if and only if n2 is odd”.�� ��Solution: This theorem has the form “p if and only if q”, where p is “n
is odd” and q is “n2 is odd”. (As usual, we do not explicitly deal with the
universal quantification.) To prove this theorem, we need to show that p→ q
and q → p are true.

We have already shown (in Example 1) that p→ q is true and (in Example
8) that q → p is true.

110 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

Because we have shown that both p → q and q → p are true, we have
shown that the theorem is true.

Sometimes a theorem states that several propositions are equivalent.
Such a theorem states that propositions p1, p2, p3, . . . , pn are equivalent.
This can be written as

p1 ↔ p2 ↔ . . .↔ pn,

which states that all n propositions have the same truth values, and
consequently, that for all i and j with 1 ≤ i ≤ n and 1 ≤ j ≤ n, pi and
pj are equivalent. One way to prove these mutually equivalent is to use
the tautology

p1 ↔ p2 ↔ . . .↔ pn ↔ (p1 → p2) ∧ (p2 → p3) ∧ . . . ∧ (pn → p1).

This shows that if the n conditional statements p1 → p2, p2 →
p3, . . . , pn → p1 can be shown to be true, then the propositions p1, p2, . . . , pn
are all equivalent.

This is much more efficient than proving that pi → pj for all i ̸= j
with 1 ≤ i ≤ n and 1 ≤ j ≤ n. (Note that there are n2 − n such
conditional statements.)

When we prove that a group of statements are equivalent, we can
establish any chain of conditional statements we choose as long as it is
possible to work through the chain to go from any one of these state-
ments to any other statement. For example, we can show that p1, p2,
and p3 are equivalent by showing that p1 → p3, p3 → p2, and p2 → p1.

�
EXAMPLE. 13

Show that these statements about the integer n are equivalent:

p1 : n is even.
p2 : n− 1 is odd.
p3 : n2 is even.�� ��Solution: We will showthat these three statements are equivalent by show-

ing that the conditional statements p1 → p2, p2 → p3, and p3 → p1 are true.

1.7.7 Proofs by Contradiction 111

We use a direct proof to show that p1 → p2. Suppose that n is even.
Then n = 2k for some integer k. Consequently, n− 1 = 2k− 1 = 2(k− 1)+ 1.
This means that n− 1 is odd because it is of the form 2m+1, where m is the
integer k − 1.

We also use a direct proof to show that p2 → p3. Now suppose n − 1 is
odd. Then n − 1 = 2k + 1 for some integer k. Hence, n = 2k + 2 so that
n2 = (2k+2)2 = 4k2 +8k+4 = 2(2k2 +4k+2). This means that n2 is twice
the integer 2k2 + 4k + 2, and hence is even.

To prove p3 → p1, we use a proof by contraposition. That is, we prove
that if n is not even, then n2 is not even. This is the same as proving that
if n is odd, then n2 is odd, which we have already done in Example 1. This
completes the proof.

COUNTEREXAMPLES

In Section 1.4 we stated that to show that a statement of the form
∀xP (x) is false, we need only find a counterexample, that is, an example
x for which P (x) is false. When presented with a statement of the
form ∀xP (x), which we believe to be false or which has resisted all
proof attempts, we look for a counterexample. We illustrate the use of
counterexamples in Example 14.

�
EXAMPLE. 14

Show that the statement “Every positive integer is the sum of the squares of
two integers” is false.�� ��Solution: To show that this statement is false, we look for a counterex-
ample, which is a particular integer that is not the sum of the squares of two
integers. It does not take long to find a counterexample, because 3 cannot be
written as the sum of the squares of two integers. To show this is the case,
note that the only perfect squares not exceeding 3 are 02 = 0 and 12 = 1.
Furthermore, there is no way to get 3 as the sum of two terms each of which
is 0 or 1. Consequently, we have shown that “Every positive integer is the
sum of the squares of two integers” is false.

112 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

1.7.8 Mistakes in Proofs

There are many common errors made in constructing mathematical
proofs. We will briefly describe some of these here.Among the most
common errors are mistakes in arithmetic and basic algebra. Even
professional mathematicians make such errors, especially when working
with complicated formulae.Whenever you use such computations you
should check them as carefully as possible.

Each step of a mathematical proof needs to be correct and the
conclusion needs to follow logically from the steps that precede it. Many
mistakes result from the introduction of steps that do not logically
follow from those that precede it. This is illustrated in Examples 15–17.

�
EXAMPLE. 15

What is wrong with this famous supposed “proof” that 1 = 2?
Proof: We use these steps, where a and b are two equal positive integers.
Step Reason
1. a = b Given
2. a2 = ab Multiply both sides of (1) by a
3. a2 − b2 = ab− b2 Subtract b2 from both sides of (2)
4. (a− b)(a+ b) = b(a− b) Factor both sides of (3)
5. a+ b = b Divide both sides of (4) by a− b
6. 2b = b Replace a by b in (5) because a = b

and simplify
7. 2 = 1 Divide both sides of (6) by b�� ��Solution: Every step is valid except for one, step 5 where we divided both

sides by a− b. The error is that a− b equals zero; division of both sides of an
equation by the same quantity is valid as long as this quantity is not zero.

�
EXAMPLE. 16

What is wrong with this “proof?”
“Theorem:” If n2 is positive, then n is positive.
Proof: Suppose that n2 is positive. Because the conditional statement “If

n is positive, then n2 is positive” is true, we can conclude that n is positive.

1.7.8 Mistakes in Proofs 113
�� ��Solution: Let P(n) be “n is positive” and Q(n) be “n2 is positive.” Then

our hypothesis is Q(n). The statement “If n is positive, then n2 is positive”
is the statement ∀n(P (n)→ Q(n)). From the hypothesis Q(n) and the state-
ment ∀n(P (n)→ Q(n)) we cannot conclude P(n), because we are not using a
valid rule of inference. Instead, this is an example of the fallacy of affirming
the conclusion. A counterexample is supplied by n = −1 for which n2 = 1 is
positive, but n is negative.

�
EXAMPLE. 17

What is wrong with this “proof?”
“Theorem:” If n is not positive, then n2 is not positive. (This is the

contrapositive of the “theorem” in Example 16.)
Proof: Suppose that n is not positive. Because the conditional statement

“If n is positive, then n2 is positive” is true, we can conclude that n2 is not
positive.�� ��Solution: Let P(n) and Q(n) be as in the solution of Example 16. Then
our hypothesis is ¬P (n) and the statement “If n is positive, then n2 is pos-
itive” is the statement ∀n(P (n) → Q(n)). From the hypothesis ¬P (n) and
the statement ∀n(P (n) → Q(n)) we cannot conclude ¬Q(n), because we are
not using a valid rule of inference. Instead, this is an example of the fallacy
of denying the hypothesis. A counterexample is supplied by n = −1, as in
Example 16.

Finally, we briefly discuss a particularly nasty type of error. Many
incorrect arguments are based on a fallacy called begging the ques-
tion. This fallacy occurs when one or more steps of a proof are based
on the truth of the statement being proved. In other words, this fallacy
arises when a statement is proved using itself, or a statement equivalent
to it. That is why this fallacy is also called circular reasoning.

�
EXAMPLE. 18

Is the following argument correct? It supposedly shows that n is an even
integer whenever n2 is an even integer.

Suppose that n2 is even. Then n2 = 2k for some integer k. Let n = 2l for

114 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

some integer l. This shows that n is even.�� ��Solution: This argument is incorrect. The statement “let n = 2l for some
integer l ” occurs in the proof. No argument has been given to show that n
can be written as 2l for some integer l. This is circular reasoning because this
statement is equivalent to the statement being proved, namely, “n is even”.
Of course, the result itself is correct; only the method of proof is wrong.

Making mistakes in proofs is part of the learning process. When you
make a mistake that someone else finds, you should carefully analyze
where you went wrong and make sure that you do not make the same
mistake again. Even professional mathematicians make mistakes in
proofs. More than a few incorrect proofs of important results have
fooled people for many years before subtle errors in them were found.

1.7.9 Just a Beginning

We have now developed a basic arsenal of proof methods. In the
next section we will introduce other important proof methods.

In this section we introduced several methods for proving theorems
of the form ∀x(P (x) → Q(x)), including direct proofs and proofs by
contraposition. There are many theorems of this type whose proofs
are easy to construct by directly working through the hypotheses and
definitions of the terms of the theorem. However, it is often difficult to
prove a theorem without resorting to a clever use of a proof by contra-
position or a proof by contradiction, or some other proof technique. We
will describe various approaches that can be used to find proofs when
straightforward approaches do not work. Constructing proofs is an art
that can be learned only through experience, including writing proofs,
having your proofs critiqued, and reading and analyzing other proofs.

1.8 Proof Methods and Strategy

1.8.1 Introduction

In Section 1.7 we introduced many methods of proof and illustrated
how each method can be used. In this section we continue this effort.We
will introduce several other commonly used proof methods, including

1.8.2 Exhaustive Proof and Proof by Cases 115

the method of proving a theorem by considering different cases sep-
arately. We will also discuss proofs where we prove the existence of
objects with desired properties.

In Section 1.7 we briefly discussed the strategy behind constructing
proofs. This strategy includes selecting a proof method and then suc-
cessfully constructing an argument step by step, based on this method.
In this section, after we have developed a versatile arsenal of proof
methods, we will study some aspects of the art and science of proofs.
We will provide advice on how to find a proof of a theorem. We will
describe some tricks of the trade, including how proofs can be found by
working backward and by adapting existing proofs.

When mathematicians work, they formulate conjectures and at-
tempt to prove or disprove them. We will briefly describe this pro-
cess here by proving results about tiling checkerboards with dominoes
and other types of pieces. Looking at tilings of this kind, we will be
able to quickly formulate conjectures and prove theorems without first
developing a theory.

We will conclude the section by discussing the role of open questions.
In particular, we will discuss some interesting problems either that have
been solved after remaining open for hundreds of years or that still
remain open

1.8.2 Exhaustive Proof and Proof by Cases

Sometimes we cannot prove a theorem using a single argument that
holds for all possible cases. We now introduce a method that can be
used to prove a theorem, by considering different cases separately. This
method is based on a rule of inference that we will now introduce. To
prove a conditional statement of the form

(p1 ∨ p2 ∨ . . . ∨ pn)→ q

the tautology

[(p1 ∨ p2 ∨ . . . ∨ pn)→ q]↔ [(p1 → q) ∧ (p2 → q) ∧ . . . ∧ (pn → q)]

can be used as a rule of inference. This shows that the original con-
ditional statement with a hypothesis made up of a disjunction of the

116 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

propositions p1, p2, . . . , pn can be proved by proving each of the n con-
ditional statements pi → q, i = 1, 2, . . . , n, individually. Such an ar-
gument is called a proof by cases. Sometimes to prove that a condi-
tional statement p → q is true, it is convenient to use a disjunction
p1∨ p2∨ . . .∨ pn instead of p as the hypothesis of the conditional state-
ment, where p and p1 ∨ p2 ∨ . . . ∨ pn are equivalent.

EXHAUSTIVEPROOF
Some theorems can be proved by examining a relatively small num-

ber of examples. Such proofs are called exhaustive proofs, or proofs
by exhaustion because these proofs proceed by exhausting all possi-
bilities. An exhaustive proof is a special type of proof by cases where
each case involves checking a single example.We now provide some il-
lustrations of exhaustive proofs.

�
EXAMPLE. 1

Prove that (n+ 1)3 ≥ 3n if n is a positive integer with n ≤ 4.�� ��Solution: We use a proof by exhaustion. We only need verify the inequal-
ity (n+1)3 ≥ 3n when n = 1, 2, 3, and 4. For n = 1, we have (n+1)3 = 23 = 8

and 3n = 31 = 3; for n = 2, we have (n + 1)3 = 33 = 27 and 3n = 32 = 9;
for n = 3, we have (n + 1)3 = 43 = 64 and 3n = 33 = 27; and for n = 4, we
have (n + 1)3 = 53 = 125 and 3n = 34 = 81. In each of these four cases, we
see that (n+1)3 ≥ 3n. We have used the method of exhaustion to prove that
(n+ 1)3 ≥ 3n if n is a positive integer with n ≤ 4.

�
EXAMPLE. 2

Prove that the only consecutive positive integers not exceeding 100 that are
perfect powers are 8 and 9. (An integer is a perfect power if it equals na,
where a is an integer greater than 1.)�� ��Solution: We use a proof by exhaustion. In particular, we can prove
this fact by examining positive integers n not exceeding 100, first checking
whether n is a perfect power, and if it is, checking whether n + 1 is also a
perfect power.A quicker way to do this is simply to look at all perfect pow-
ers not exceeding 100 and checking whether the next largest integer is also a

1.8.2 Exhaustive Proof and Proof by Cases 117

perfect power. The squares of positive integers not exceeding 100 are 1, 4, 9,
16, 25, 36, 49, 64, 81, and 100. The cubes of positive integers not exceeding
100 are 1, 8, 27, and 64. The fourth powers of positive integers not exceeding
100 are 1, 16, and 81. The fifth powers of positive integers not exceeding 100
are 1 and 32. The sixth powers of positive integers not exceeding 100 are 1
and 64. There are no powers of positive integers higher than the sixth power
not exceeding 100, other than 1. Looking at this list of perfect powers not
exceeding 100, we see that n = 8 is the only perfect power n for which n+1 is
also a perfect power. That is, 23 = 8 and 32 = 9 are the only two consecutive
perfect powers not exceeding 100.

People can carry out exhaustive proofs when it is necessary to check
only a relatively small number of instances of a statement. Computers
do not complain when they are asked to check a much larger number of
instances of a statement, but they still have limitations. Note that not
even a computer can check all instances when it is impossible to list all
instances to check.

PROOF BY CASES
A proof by cases must cover all possible cases that arise in a theorem.

We illustrate proof by cases with a couple of examples. In each example,
you should check that all possible cases are covered.

�
EXAMPLE. 3

Prove that if n is an integer, then n2 ≥ n.�� ��Solution: We can prove that n2 ≥ n for every integer by considering three
cases, when n = 0, when n ≥ 1, and when n ≤ −1. We split the proof into
three cases because it is straightforward to prove the result by considering
zero, positive integers, and negative integers separately.

Case (i): When n = 0, because 02 = 0, we see that 02 ≥ 0. It follows
that n2 ≥ n is true in this case.

Case (ii): When n ≥ 1, when we multiply both sides of the inequality
n ≥ 1 by the positive integer n, we obtain n · n ≥ n · 1. This implies that
n2 ≥ n for n ≥ 1.

Case (iii): In this case n ≤ −1. However, n2 ≥ 0. It follows that n2 ≥ n.
Because the inequality n2 ≥ n holds in all three cases, we can conclude

that if n is an integer, then n2 ≥ n.

118 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

�
EXAMPLE. 4

Use a proof by cases to show that |xy| = |x||y|, where x and y are real
numbers. (Recall that |a|, the absolute value of a, equals a when a ≥ 0 and
equals −a when a ≤ 0.)�� ��Solution: In our proof of this theorem, we remove absolute values using
the fact that |a| = a when a ≥ 0 and |a| = −a when a < 0. Because
both |x| and |y| occur in our formula, we will need four cases: (i) x and y
both nonnegative, (ii) x nonnegative and y is negative, (iii) x negative and
y nonnegative, and (iv) x negative and y negative. We denote by p1, p2, p3,
and p4, the proposition stating the assumption for each of these four cases,
respectively.

(Note that we can remove the absolute value signs by making the appro-
priate choice of signs within each case.)

Case (i): We see that p1 → q because xy ≥ 0 when x ≥ 0 and y ≥ 0, so
that |xy| = xy = |x||y|.

Case (ii): To see that p2 → q, note that if x ≥ 0 and y < 0, then
xy ≤ 0, so that |xy| = −xy = x(−y) = |x||y|. (Here, because y < 0, we have
|y| = −y.)

Case (iii): To see that p3 → q, we follow the same reasoning as the
previous case with the roles of x and y reversed.

Case (iv): To see that p4 → q, note that when x < 0 and y < 0, it follows
that xy > 0. Hence, |xy| = xy = (−x)(−y) = |x||y|.

Because |xy| = |x||y| holds in each of the four cases and these cases ex-
haust all possibilities, we can conclude that |xy| = |x||y|, whenever x and y
are real numbers.

LEVERAGING PROOF BY CASES
The examples we have presented illustrating proof by cases provide

some insight into when to use this method of proof. In particular, when
it is not possible to consider all cases of a proof at the same time, a
proof by cases should be considered. When should you use such a proof?
Generally, look for a proof by cases when there is no obvious way to
begin a proof, but when extra information in each case helps move the
proof forward. Example 5 illustrates how the method of proof by cases
can be used effectively.

1.8.2 Exhaustive Proof and Proof by Cases 119

�
EXAMPLE. 5

Formulate a conjecture about the final decimal digit of the square of an integer
and prove your result.�� ��Solution: The smallest perfect squares are 1, 4, 9, 16, 25, 36, 49, 64, 81,
100, 121, 144, 169, 196, 225, and so on. We notice that the digits that occur
as the final digit of a square are 0, 1, 4, 5, 6, and 9, with 2, 3, 7, and 8 never
appearing as the final digit of a square.We conjecture this theorem: The final
decimal digit of a perfect square is 0, 1, 4, 5, 6 or 9. How can we prove this
theorem?

We first note that we can express an integer n as 10a+ b, where a and b
are positive integers and b is 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. Here a is the integer
obtained by subtracting the final decimal digit of n from n and dividing by
10. Next, note that (10a + b)2 = 100a2 + 20ab + b2 = 10(10a2 + 2b) + b2, so
that the final decimal digit of n2 is the same as the final decimal digit of b2.
Furthermore, note that the final decimal digit of b2 is the same as the final
decimal digit of (10− b)2 = 100− 20b+ b2. Consequently, we can reduce our
proof to the consideration of six cases.

Case (i): The final digit of n is 1 or 9. Then the final decimal digit of n2

is the final decimal digit of 12 = 1 or 92 = 81, namely 1.
Case (ii): The final digit of n is 2 or 8. Then the final decimal digit of

n2 is the final decimal digit of 22 = 4 or 82 = 64, namely 4.
Case (iii): The final digit of n is 3 or 7. Then the final decimal digit of

n2 is the final decimal digit of 32 = 9 or 72 = 49, namely 9.
Case (iv): The final digit of n is 4 or 6. Then the final decimal digit of

n2 is the final decimal digit of 42 = 16 or 62 = 36, namely 6.
Case (v): The final decimal digit of n is 5. Then the final decimal digit

of n2 is the final decimal digit of 52 = 25, namely 5.
Case (vi): The final decimal digit of n is 0. Then the final decimal digit

of n2 is the final decimal digit of 02 = 0, namely 0.
Because we have considered all six cases, we can conclude that the final

decimal digit of n2, where n is an integer is either 0, 1, 2, 4, 5, 6, or 9.

Sometimes we can eliminate all but a few examples in a proof by
cases, as Example 6 illustrates.

�
EXAMPLE. 6

120 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

Show that there are no solutions in integers x and y of x2 + 3y2 = 8.�� ��Solution: We can quickly reduce a proof to checking just a few simple
cases because x2 > 8 when |x| ≥ 3 and 3y2 > 8 when |y| ≥ 2. This leaves
the cases when x equals −2,−1, 0, 1, or 2 and y equals −1, 0, or 1. We can
finish using an exhaustive proof. To dispense with the remaining cases, we
note that possible values for x2 are 0, 1, and 4, and possible values for 3y2

are 0 and 3, and the largest sum of possible values for x2 and 3y2 is 7. Conse-
quently, it is impossible for x2+3y2 = 8 to hold when x and y are integers.

WITHOUT LOSS OF GENERALITY
In the proof in Example 4, we dismissed case (iii), where x < 0 and

y ≥ 0, because it is the same as case (ii), where x ≥ 0 and y < 0,
with the roles of x and y reversed. To shorten the proof, we could
have proved cases (ii) and (iii) together by assuming, without loss of
generality, that x ≥ 0 and y < 0. Implicit in this statement is that we
can complete the case with x < 0 and y ≥ 0 using the same argument
as we used for the case with x ≥ 0 and y < 0, but with the obvious
changes.

In general, when the phrase “without loss of generality” is used in
a proof (often abbreviated as WLOG), we assert that by proving one
case of a theorem, no additional argument is required to prove other
specified cases. That is, other cases follow by making straightforward
changes to the argument, or by filling in some straightforward initial
step. Proofs by cases can often be made much more efficient when the
notion of without loss of generality is employed. Of course, incorrect use
of this principle can lead to unfortunate errors. Sometimes assumptions
are made that lead to a loss in generality. Such assumptions can be
made that do not take into account that one case may be substantially
different from others. This can lead to an incomplete, and possibly
unsalvageable, proof. In fact, many incorrect proofs of famous theorems
turned out to rely on arguments that used the idea of “without loss of
generality” to establish cases that could not be quickly proved from
simpler cases.

We now illustrate a proof where without loss of generality is used
effectively together with other proof techniques.

1.8.2 Exhaustive Proof and Proof by Cases 121

�
EXAMPLE. 7

Show that if x and y are integers and both xy and x+ y are even, then both
x and y are even.�� ��Solution: We will use proof by contraposition, the notion of without loss
of generality, and proof by cases. First, suppose that x and y are not both
even. That is, assume that x is odd or that y is odd (or both). Without loss
of generality, we assume that x is odd, so that x = 2m+1 for some integer k.

To complete the proof, we need to show that xy is odd or x+y is odd. Con-
sider two cases: (i) y even, and (ii) y odd. In (i), y = 2n for some integer n, so
that x+y = (2m+1)+2n = 2(m+n)+1 is odd. In (ii), y = 2n+1 for some in-
teger n, so that xy = (2m+1)(2n+1) = 4mn+2m+2n+1 = 2(2mn+m+n)+1

is odd. This completes the proof by contraposition. (Note that our use of
without loss of generality within the proof is justified because the proof when
y is odd can be obtained by simply interchanging the roles of x and y in the
proof we have given.)

COMMON ERRORS WITH EXHAUSTIVE PROOF AND
PROOF BY CASES

A common error of reasoning is to drawincorrect conclusions from
examples. No matter howmany separate examples are considered, a
theorem is not proved by considering examples unless every possible
case is covered. The problem of proving a theorem is analogous to
showing that a computer program always produces the output desired.
No matter howmany input values are tested, unless all input values
are tested, we cannot conclude that the program always produces the
correct output.

�
EXAMPLE. 8

Is it true that every positive integer is the sum of 18 fourth powers of integers?�� ��Solution: To determine whether a positive integer n can be written as the
sum of 18 fourth powers of integers, we might begin by examining whether n
is the sum of 18 fourth powers of integers for the smallest positive integers.
Because the fourth powers of integers are 0, 1, 16, 81, . . . , if we can select 18
terms from these numbers that add up to n, then n is the sum of 18 fourth

122 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

powers. We can show that all positive integers up to 78 can be written as the
sum of 18 fourth powers. (The details are left to the reader.) However, if we
decided this was enough checking, we would come to the wrong conclusion. It
is not true that every positive integer is the sum of 18 fourth powers because
79 is not the sum of 18 fourth powers (as the reader can verify).

Another common error involves making unwarranted assumptions
that lead to incorrect proofs by cases where not all cases are considered.
This is illustrated in Example 9.

�
EXAMPLE. 9

What is wrong with this “proof?”
“Theorem:” If x is a real number, then x2 is a positive real number.
Proof: Let p1 be “x is positive”, let p2 be “x is negative”, and let q be

“x2 is positive”. To show that p1 → q is true, note that when x is positive,
x2 is positive because it is the product of two positive numbers, x and x. To
show that p2 → q, note that when x is negative, x2 is positive because it is
the product of two negative numbers, x and x. This completes the proof.�� ��Solution: The problem with this “proof” is that we missed the case of
x = 0. When x = 0, x2 = 0 is not positive, so the supposed theorem is
false. If p is “x is a real number”, then we can prove results where p is the
hypothesis with three cases, p1, p2, and p3, where p1 is “x is positive”, p2 is “x
is negative”, and p3 is “x = 0” because of the equivalence p↔ p1∨p2∨p3.

1.8.3 Existence Proofs

Many theorems are assertions that objects of a particular type exist.
A theorem of this type is a proposition of the form ∃xP (x), where P is
a predicate. A proof of a proposition of the form ∃xP (x) is called an
existence proof. There are several ways to prove a theorem of this
type. Sometimes an existence proof of ∃xP (x) can be given by finding
an element a, called a witness, such that P(a) is true. This type of
existence proof is called constructive. It is also possible to give an
existence proof that is nonconstructive; that is, we do not find an el-
ement a such that P (a) is true, but rather prove that ∃xP (x) is true in

1.8.3 Existence Proofs 123

some other way. One common method of giving a nonconstructive exis-
tence proof is to use proof by contradiction and show that the negation
of the existential quantification implies a contradiction. The concept
of a constructive existence proof is illustrated by Example 10 and the
concept of a nonconstructive existence proof is illustrated by Example
11.

�
EXAMPLE. 10

A Constructive Existence Proof Show that there is a positive integer
that can be written as the sum of cubes of positive integers in two different
ways.�� ��Solution: After considerable computation (such as a computer search) we
find that

1729 = 103 + 93 = 123 + 13.

Because we have displayed a positive integer that can be written as the sum
of cubes in two different ways, we are done.

There is an interesting story pertaining to this example. The English
mathematician G. H. Hardy, when visiting the ailing Indian prodigy Ramanu-
jan in the hospital, remarked that 1729, the number of the cab he took, was
rather dull. Ramanujan replied “No, it is a very interesting number; it is the
smallest number expressible as the sum of cubes in two different ways”.

�
EXAMPLE. 11

A Nonconstructive Existence Proof Show that there exist irrational
numbers x and y such that xy is rational.�� ��Solution: We know that

√
2 is irrational. Consider the number

√
2
√
2
. If it

is rational, we have two irrational numbers x and y with xy rational, namely,

x =
√
2 and y =

√
2. On the other hand if

√
2
√
2

is irrational, then we can let

x =
√
2
√
2

and y =
√
2 so that xy = (

√
2
√
2
)
√
2 =
√
2
(
√
2·
√
2)

=
√
2
2
= 2.

This proof is an example of a nonconstructive existence proof because we
have not found irrational numbers x and y such that xy is rational. Rather,

we have shown that either the pair x =
√
2, y =

√
2 or the pair x =

√
2
√
2
,

124 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC1.8 Proof Methods and Strategy 99

(a) (b)

FIGURE 1 (a) Chomp (Top Left Cookie Poisoned). (b) Three Possible Moves.

move of a winning strategy (and then continued to follow that winning strategy). This would
guarantee a win for the first player.

Note that we showed that a winning strategy exists, but we did not specify an actual winning
strategy. Consequently, the proof is a nonconstructive existence proof. In fact, no one has been
able to describe a winning strategy for that Chomp that applies for all rectangular grids by
describing the moves that the first player should follow. However, winning strategies can be
described for certain special cases, such as when the grid is square and when the grid only has
two rows of cookies (see Exercises 15 and 16 in Section 5.2). ▲

Uniqueness Proofs

Some theorems assert the existence of a unique element with a particular property. In other
words, these theorems assert that there is exactly one element with this property. To prove a
statement of this type we need to show that an element with this property exists and that no
other element has this property. The two parts of a uniqueness proof are:

Existence: We show that an element x with the desired property exists.
Uniqueness: We show that if y �= x, then y does not have the desired property.

Equivalently, we can show that if x and y both have the desired property, then x = y.

Remark: Showing that there is a unique element x such that P(x) is the same as proving the
statement ∃x(P (x) ∧ ∀y(y �= x → ¬P(y))).

We illustrate the elements of a uniqueness proof in Example 13.

EXAMPLE 13 Show that if a and b are real numbers and a �= 0, then there is a unique real number r such that
ar + b = 0.

Solution: First, note that the real number r = −b/a is a solution of ar + b = 0 because
a(−b/a)+ b = −b + b = 0. Consequently, a real number r exists for which ar + b = 0. This
is the existence part of the proof.

Second, suppose that s is a real number such that as + b = 0. Then ar + b = as + b, where
r = −b/a. Subtracting b from both sides, we find that ar = as. Dividing both sides of this last
equation by a, which is nonzero, we see that r = s. This means that if s �= r , then as + b �= 0.
This establishes the uniqueness part of the proof. ▲

a)

1.8 Proof Methods and Strategy 99

(a) (b)

FIGURE 1 (a) Chomp (Top Left Cookie Poisoned). (b) Three Possible Moves.

move of a winning strategy (and then continued to follow that winning strategy). This would
guarantee a win for the first player.

Note that we showed that a winning strategy exists, but we did not specify an actual winning
strategy. Consequently, the proof is a nonconstructive existence proof. In fact, no one has been
able to describe a winning strategy for that Chomp that applies for all rectangular grids by
describing the moves that the first player should follow. However, winning strategies can be
described for certain special cases, such as when the grid is square and when the grid only has
two rows of cookies (see Exercises 15 and 16 in Section 5.2). ▲

Uniqueness Proofs

Some theorems assert the existence of a unique element with a particular property. In other
words, these theorems assert that there is exactly one element with this property. To prove a
statement of this type we need to show that an element with this property exists and that no
other element has this property. The two parts of a uniqueness proof are:

Existence: We show that an element x with the desired property exists.
Uniqueness: We show that if y �= x, then y does not have the desired property.

Equivalently, we can show that if x and y both have the desired property, then x = y.

Remark: Showing that there is a unique element x such that P(x) is the same as proving the
statement ∃x(P (x) ∧ ∀y(y �= x → ¬P(y))).

We illustrate the elements of a uniqueness proof in Example 13.

EXAMPLE 13 Show that if a and b are real numbers and a �= 0, then there is a unique real number r such that
ar + b = 0.

Solution: First, note that the real number r = −b/a is a solution of ar + b = 0 because
a(−b/a)+ b = −b + b = 0. Consequently, a real number r exists for which ar + b = 0. This
is the existence part of the proof.

Second, suppose that s is a real number such that as + b = 0. Then ar + b = as + b, where
r = −b/a. Subtracting b from both sides, we find that ar = as. Dividing both sides of this last
equation by a, which is nonzero, we see that r = s. This means that if s �= r , then as + b �= 0.
This establishes the uniqueness part of the proof. ▲

b)

Figure 1.4: (a) Chomp (Top Left Cookie Poisoned). (b) Three Possible
Moves.

y =
√
2 have the desired property, but we do not know which of these two

pairs works!

�
EXAMPLE. 12

Chomp is a game played by two players. In this game, cookies are laid out on
a rectangular grid. The cookie in the top left position is poisoned, as shown
in Figure 1.4(a). The two players take turns making moves; at each move, a
player is required to eat a remaining cookie, together with all cookies to the
right and/or below it (see Figure 1.4(b), for example). The loser is the player
who has no choice but to eat the poisoned cookie.We ask whether one of the
two players has a winning strategy. That is, can one of the players always
make moves that are guaranteed to lead to a win?�� ��Solution: We will give a nonconstructive existence proof of a winning
strategy for the first player. That is, we will show that the first player always
has a winning strategy without explicitly describing the moves this player
must follow.

First, note that the game ends and cannot finish in a draw because with
each move at least one cookie is eaten, so after no more than m × n moves
the game ends, where the initial grid is m × n. Now, suppose that the first
player begins the game by eating just the cookie in the bottom right corner.
There are two possibilities, this is the first move of a winning strategy for the
first player, or the second player can make a move that is the first move of a
winning strategy for the second player. In this second case, instead of eating
just the cookie in the bottom right corner, the first player could have made

1.8.4 Uniqueness Proofs 125

the same move that the second player made as the first move of a winning
strategy (and then continued to follow that winning strategy). This would
guarantee a win for the first player.

Note that we showed that a winning strategy exists, but we did not spec-
ify an actual winning strategy. Consequently, the proof is a nonconstructive
existence proof. In fact, no one has been able to describe a winning strat-
egy for that Chomp that applies for all rectangular grids by describing the
moves that the first player should follow. However, winning strategies can be
described for certain special cases, such as when the grid is square and when
the grid only has two rows of cookies.

1.8.4 Uniqueness Proofs

Some theorems assert the existence of a unique element with a par-
ticular property. In other words, these theorems assert that there is
exactly one element with this property. To prove a statement of this
type we need to show that an element with this property exists and
that no other element has this property. The two parts of a unique-
ness proof are:

Existence: We show that an element x with the desired property
exists.

Uniqueness: We show that if y ̸= x, then y does not have the
desired property.

Equivalently, we can show that if x and y both have the desired
property, then x = y.

Remark! Showing that there is a unique element x such that
P (x) is the same as proving the statement ∃x(P (x) ∧ ∀y(y ̸= x→
¬P (y))).

We illustrate the elements of a uniqueness proof in Example 13.

�
EXAMPLE. 13

Show that if a and b are real numbers and a ̸= 0, then there is a unique real
number r such that ar + b = 0.

126 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC
�� ��Solution: First, note that the real number r = −b/a is a solution of

ar + b = 0 because a(−b/a) + b = −b+ b = 0. Consequently, a real number r
exists for which ar + b = 0. This is the existence part of the proof.

Second, suppose that s is a real number such that as + b = 0. Then
ar+ b = as+ b, where r = −b/a. Subtracting b from both sides, we find that
ar = as. Dividing both sides of this last equation by a, which is nonzero, we
see that r = s. This means that if s = r, then as + b = 0. This establishes
the uniqueness part of the proof.

1.8.5 Proof Strategies

Finding proofs can be a challenging business. When you are con-
fronted with a statement to prove, you should first replace terms by their
definitions and then carefully analyze what the hypotheses and the con-
clusion mean. After doing so, you can attempt to prove the result using
one of the available methods of proof. Generally, if the statement is a
conditional statement, you should first try a direct proof; if this fails,
you can try an indirect proof. If neither of these approaches works, you
might try a proof by contradiction.

FORWARD AND BACKWARD REASONING
Whichever method you choose, you need a starting point for your

proof. To begin a direct proof of a conditional statement, you start with
the premises. Using these premises, together with axioms and known
theorems, you can construct a proof using a sequence of steps that leads
to the conclusion. This type of reasoning, called forward reasoning,
is the most common type of reasoning used to prove relatively sim-
ple results. Similarly, with indirect reasoning you can start with the
negation of the conclusion and, using a sequence of steps, obtain the
negation of the premises.

Unfortunately, forward reasoning is often difficult to use to prove
more complicated results, because the reasoning needed to reach the
desired conclusion may be far from obvious. In such cases it may be
helpful to use backward reasoning. To reason backward to prove a
statement q, we find a statement p that we can prove with the property
that p → q. (Note that it is not helpful to find a statement r that

1.8.5 Proof Strategies 127

you can prove such that q → r, because it is the fallacy of begging
the question to conclude from q → r and r that q is true.) Backward
reasoning is illustrated in Examples 14 and 15.

�
EXAMPLE. 14

Given two positive real numbers x and y, their arithmetic mean is (x+y)/2
and their geometric mean is √xy. When we compare the arithmetic and
geometric means of pairs of distinct positive real numbers, we find that the
arithmetic mean is always greater than the geometric mean. [For example,
when x = 4 and y = 6, we have 5 = (4 + 6)/2 >

√
4 · 6 =

√
24.] Can we prove

that this inequality is always true?�� ��Solution: To prove that (x + y)/2 >
√
xy when x and y are distinct

positive real numbers, we can work backward. We construct a sequence of
equivalent inequalities. The equivalent inequalities are

(x+ y)/2 >
√
xy,

(x+ y)2/4 > xy,
(x+ y)2 > 4xy,
x2 + 2xy + y2 > 4xy,
x2 − 2xy + y2 > 0,
(x− y)2 > 0

Because (x− y)2 > 0 when x ̸= y, it follows that the final inequality is true.
Because all these inequalities are equivalent, it follows that (x+ y)/2 >

√
xy

when x ̸= y. Once we have carried out this backward reasoning, we can easily
reverse the steps to construct a proof using forward reasoning. We now give
this proof.

Suppose that x and y are distinct positive real numbers. Then (x−y)2 > 0

because the square of a nonzero real number is positive. Because (x− y)2 =

x2− 2xy+ y2, this implies that x2− 2xy+ y2 > 0. Adding 4xy to both sides,
we obtain x2 +2xy+ y2 > 4xy. Because x2 +2xy+ y2 = (x+ y)2, this means
that (x + y)2 ≥ 4xy. Dividing both sides of this equation by 4, we see that
(x + y)2/4 > xy. Finally, taking square roots of both sides (which preserves
the inequality because both sides are positive) yields (x + y)/2 >

√
xy. We

conclude that if x and y are distinct positive real numbers, then their arith-
metic mean (x+ y)/2 is greater than their geometric mean √xy.

128 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

�
EXAMPLE. 15

Suppose that two people play a game taking turns removing one, two, or
three stones at a time from a pile that begins with 15 stones. The person who
removes the last stone wins the game. Show that the first player can win the
game no matter what the second player does.�� ��Solution: To prove that the first player can always win the game, we work
backward. At the last step, the first player can win if this player is left with a
pile containing one, two, or three stones. The second player will be forced to
leave one, two, or three stones if this player has to remove stones from a pile
containing four stones. Consequently, one way for the first person to win is
to leave four stones for the second player on the next-to-last move. The first
person can leave four stones when there are five, six, or seven stones left at
the beginning of this player’s move, which happens when the second player
has to remove stones from a pile with eight stones. Consequently, to force
the second player to leave five, six, or seven stones, the first player should
leave eight stones for the second player at the second-to-last move for the
first player. This means that there are nine, ten, or eleven stones when the
first player makes this move. Similarly, the first player should leave twelve
stones when this player makes the first move. We can reverse this argument
to show that the first player can always make moves so that this player wins
the game no matter what the second player does. These moves successively
leave twelve, eight, and four stones for the second player.

ADAPTING EXISTING PROOFS
An excellent way to look for possible approaches that can be used

to prove a statement is to take advantage of existing proofs of similar
results. Often an existing proof can be adapted to prove other facts.
Even when this is not the case, some of the ideas used in existing
proofs may be helpful. Because existing proofs provide clues for new
proofs, you should read and understand the proofs you encounter in
your studies. This process is illustrated in Example 16.

�
EXAMPLE. 16

We proved that
√
2 is irrational. We now conjecture that

√
3 is irrational.

1.8.6 Looking for Counterexamples 129

Can we adapt the proof in Example 10 in Section 1.7 to show that
√
3 is

irrational?�� ��Solution: To adapt the proof, we begin by mimicking the steps in that
proof, but with

√
2 replaced with

√
3. First, we suppose that

√
3 = d/c where

the fraction c/d is in lowest terms. Squaring both sides tells us that 3 = c2/d2,
so that 3d2 = c2. Can we use this equation to show that 3 must be a factor of
both c and d, similar to how we used the equation 2b2 = a2 in Example 10 in
Section 1.7 to show that 2 must be a factor of both a and b? In turns out that
we can, but we need some ammunition from number theory. Because 3 is a
factor of c2, it must also be a factor of c. Furthermore, because 3 is a factor
of c, 9 is a factor of c2, which means that 9 is a factor of 3d2. This implies
that 3 is a factor of d2, which means that 3 is a factor of that d. This makes
3 a factor of both c and d, which contradicts the assumption that c/d is in
lowest terms. After we have filled in the justification for these steps, we will
have shown that

√
3 is irrational by adapting the proof that

√
2 is irrational.

Note that this proof can be extended to show that
√
n is irrational whenever

n is a positive integer that is not a perfect square.

A good tip is to look for existing proofs that you might adapt when
you are confronted with proving a new theorem, particularly when the
new theorem seems similar to one you have already proved.

1.8.6 Looking for Counterexamples

When confronted with a conjecture, you might first try to prove this
conjecture, and if your attempts are unsuccessful, you might try to find
a counterexample, first by looking at the simplest, smallest examples.
If you cannot find a counterexample, you might again try to prove the
statement. In any case, looking for counterexamples is an extremely
important pursuit, which often provides insights into problems. We
will illustrate the role of counterexamples in Example 17.

�
EXAMPLE. 17

In Example 14 in Section 1.7 we showed that the statement “Every positive
integer is the sum oftwo squares of integers” is false by finding a counterexam-
ple. That is, there are positive integers that cannot be written as the sum of

130 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

the squares of two integers. Although we cannot write every positive integer
as the sum of the squares of two integers, maybe we can write every positive
integer as the sum of the squares of three integers. That is, is the statement
“Every positive integer is the sum of the squares of three integers” true or
false?�� ��Solution: Because we know that not every positive integer can be written
as the sum of two squares of integers, we might initially be skeptical that every
positive integer can be written as the sum of three squares of integers. So,
we first look for a counterexample. That is, we can show that the statement
“Every positive integer is the sum of three squares of integers” is false if we can
find a particular integer that is not the sum of the squares of three integers.
To look for a counterexample, we try to write successive positive integers as
a sum of three squares. We find that 1 = 02 + 02 + 12, 2 = 02 + 12 + 12,
3 = 12 + 12 + 12, 4 = 02 + 02 + 22, 5 = 02 + 12 + 22, 6 = 12 + 12 + 22, but
we cannot find a way to write 7 as the sum of three squares. To show that
there are not three squares that add up to 7, we note that the only possible
squares we can use are those not exceeding 7, namely, 0, 1, and 4. Because
no three terms where each term is 0, 1, or 4 add up to 7, it follows that 7 is
a counterexample. We conclude that the statement “Every positive integer is
the sum of the squares of three integers” is false.

We have shown that not every positive integer is the sum of the squares
of three integers. The next question to ask is whether every positive integer
is the sum of the squares of four positive integers. Some experimentation
provides evidence that the answer is yes. For example, 7 = 12 + 12 + 12 + 22,
25 = 42+22+22+12, and 87 = 92+22+12+12. It turns out the conjecture
“Every positive integer is the sum of the squares of four integers” is true.

1.8.7 Proof Strategy in Action

Mathematics is generally taught as if mathematical facts were carved
in stone. Mathematics texts (including the bulk of this book) formally
present theorems and their proofs. Such presentations do not convey the
discovery process in mathematics. This process begins with exploring
concepts and examples, asking questions, formulating conjectures, and
attempting to settle these conjectures either by proof or by counterex-
ample. These are the day-to-day activities of mathematicians. Believe
it or not, the material taught in textbooks was originally developed in
this way.

1.8.8 Tilings 131

People formulate conjectures on the basis of many types of possible
evidence. The examination of special cases can lead to a conjecture, as
can the identification of possible patterns. Altering the hypotheses and
conclusions of known theorems also can lead to plausible conjectures.
At other times, conjectures are made based on intuition or a belief that
a result holds. No matter how a conjecture was made, once it has been
formulated, the goal is to prove or disprove it. When mathematicians
believe that a conjecture may be true, they try to find a proof. If they
cannot find a proof, they may look for a counterexample. When they
cannot find a counterexample, they may switch gears and once again
try to prove the conjecture. Although many conjectures are quickly
settled, a few conjectures resist attack for hundreds of years and lead
to the development of new parts of mathematics. We will mention a
few famous conjectures later in this section.

1.8 Proof Methods and Strategy 103

FIGURE 2 The Standard Checkerboard.
FIGURE 3
Two Dominoes.

the development of new parts of mathematics. We will mention a few famous conjectures later
in this section.

Tilings

We can illustrate aspects of proof strategy through a brief study of tilings of checkerboards.
Looking at tilings of checkerboards is a fruitful way to quickly discover many different results
and construct their proofs using a variety of proof methods. There are almost an endless number
of conjectures that can be made and studied in this area too. To begin, we need to define some
terms. A checkerboard is a rectangle divided into squares of the same size by horizontal and
vertical lines. The game of checkers is played on a board with 8 rows and 8 columns; this
board is called the standard checkerboard and is shown in Figure 2. In this section we use the
term board to refer to a checkerboard of any rectangular size as well as parts of checkerboards
obtained by removing one or more squares. A domino is a rectangular piece that is one square
by two squares, as shown in Figure 3. We say that a board is tiled by dominoes when all its
squares are covered with no overlapping dominoes and no dominoes overhanging the board. We
now develop some results about tiling boards using dominoes.

EXAMPLE 18 Can we tile the standard checkerboard using dominoes?

Solution: We can find many ways to tile the standard checkerboard using dominoes. For example,
we can tile it by placing 32 dominoes horizontally, as shown in Figure 4. The existence of one
such tiling completes a constructive existence proof. Of course, there are a large number of other
ways to do this tiling. We can place 32 dominoes vertically on the board or we can place some
tiles vertically and some horizontally. But for a constructive existence proof we needed to find
just one such tiling. ▲

EXAMPLE 19 Can we tile a board obtained by removing one of the four corner squares of a standard checker-
board?

Solution: To answer this question, note that a standard checkerboard has 64 squares, so removing
a square produces a board with 63 squares. Now suppose that we could tile a board obtained
from the standard checkerboard by removing a corner square. The board has an even number of

Figure 1.5: The Standard
Checkerboard.

1.8 Proof Methods and Strategy 103

FIGURE 2 The Standard Checkerboard.
FIGURE 3
Two Dominoes.

the development of new parts of mathematics. We will mention a few famous conjectures later
in this section.

Tilings

We can illustrate aspects of proof strategy through a brief study of tilings of checkerboards.
Looking at tilings of checkerboards is a fruitful way to quickly discover many different results
and construct their proofs using a variety of proof methods. There are almost an endless number
of conjectures that can be made and studied in this area too. To begin, we need to define some
terms. A checkerboard is a rectangle divided into squares of the same size by horizontal and
vertical lines. The game of checkers is played on a board with 8 rows and 8 columns; this
board is called the standard checkerboard and is shown in Figure 2. In this section we use the
term board to refer to a checkerboard of any rectangular size as well as parts of checkerboards
obtained by removing one or more squares. A domino is a rectangular piece that is one square
by two squares, as shown in Figure 3. We say that a board is tiled by dominoes when all its
squares are covered with no overlapping dominoes and no dominoes overhanging the board. We
now develop some results about tiling boards using dominoes.

EXAMPLE 18 Can we tile the standard checkerboard using dominoes?

Solution: We can find many ways to tile the standard checkerboard using dominoes. For example,
we can tile it by placing 32 dominoes horizontally, as shown in Figure 4. The existence of one
such tiling completes a constructive existence proof. Of course, there are a large number of other
ways to do this tiling. We can place 32 dominoes vertically on the board or we can place some
tiles vertically and some horizontally. But for a constructive existence proof we needed to find
just one such tiling. ▲

EXAMPLE 19 Can we tile a board obtained by removing one of the four corner squares of a standard checker-
board?

Solution: To answer this question, note that a standard checkerboard has 64 squares, so removing
a square produces a board with 63 squares. Now suppose that we could tile a board obtained
from the standard checkerboard by removing a corner square. The board has an even number of

Figure 1.6: Two Dominoes

1.8.8 Tilings

We can illustrate aspects of proof strategy through a brief study of
tilings of checkerboards. Looking at tilings of checkerboards is a fruitful
way to quickly discover many different results and construct their proofs
using a variety of proof methods. There are almost an endless number
of conjectures that can be made and studied in this area too. To begin,
we need to define some terms. A checkerboard is a rectangle divided
into squares of the same size by horizontal and vertical lines. The game

132 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

of checkers is played on a board with 8 rows and 8 columns; this board
is called the standard checkerboard and is shown in Figure 1.5. In
this section we use the term board to refer to a checkerboard of any
rectangular size as well as parts of checkerboards obtained by removing
one or more squares. A domino is a rectangular piece that is one
square by two squares, as shown in Figure 1.6. We say that a board is
tiled by dominoes when all its squares are covered with no overlapping
dominoes and no dominoes overhanging the board. We now develop
some results about tiling boards using dominoes.

104 1 / The Foundations: Logic and Proofs

FIGURE 4 Tiling the Standard Checkerboard. FIGURE 5 The Standard Checkerboard
with the Upper Left and Lower Right
Squares Removed.

squares because each domino covers two squares and no two dominoes overlap and no dominoes
overhang the board. Consequently, we can prove by contradiction that a standard checkerboard
with one square removed cannot be tiled using dominoes because such a board has an odd
number of squares. ▲

We now consider a trickier situation.

EXAMPLE 20 Can we tile the board obtained by deleting the upper left and lower right corner squares of a
standard checkerboard, shown in Figure 5?

Solution: A board obtained by deleting two squares of a standard checkerboard contains
64− 2 = 62 squares. Because 62 is even, we cannot quickly rule out the existence of a tiling of
the standard checkerboard with its upper left and lower right squares removed, unlike Example
19, where we ruled out the existence of a tiling of the standard checkerboard with one corner
square removed. Trying to construct a tiling of this board by successively placing dominoes
might be a first approach, as the reader should attempt. However, no matter how much we try,
we cannot find such a tiling. Because our efforts do not produce a tiling, we are led to conjecture
that no tiling exists.

We might try to prove that no tiling exists by showing that we reach a dead end however
we successively place dominoes on the board. To construct such a proof, we would have to
consider all possible cases that arise as we run through all possible choices of successively
placing dominoes. For example, we have two choices for covering the square in the second
column of the first row, next to the removed top left corner. We could cover it with a horizontally
placed tile or a vertically placed tile. Each of these two choices leads to further choices, and so
on. It does not take long to see that this is not a fruitful plan of attack for a person, although a
computer could be used to complete such a proof by exhaustion. (Exercise 45 asks you to supply
such a proof to show that a 4× 4 checkerboard with opposite corners removed cannot be tiled.)

We need another approach. Perhaps there is an easier way to prove there is no tiling of a
standard checkerboard with two opposite corners removed. As with many proofs, a key obser-
vation can help. We color the squares of this checkerboard using alternating white and black
squares, as in Figure 2. Observe that a domino in a tiling of such a board covers one white square
and one black square. Next, note that this board has unequal numbers of white square and black

Figure 1.7: Tiling the Stan-
dard Checkerboard.

104 1 / The Foundations: Logic and Proofs

FIGURE 4 Tiling the Standard Checkerboard. FIGURE 5 The Standard Checkerboard
with the Upper Left and Lower Right
Squares Removed.

squares because each domino covers two squares and no two dominoes overlap and no dominoes
overhang the board. Consequently, we can prove by contradiction that a standard checkerboard
with one square removed cannot be tiled using dominoes because such a board has an odd
number of squares. ▲

We now consider a trickier situation.

EXAMPLE 20 Can we tile the board obtained by deleting the upper left and lower right corner squares of a
standard checkerboard, shown in Figure 5?

Solution: A board obtained by deleting two squares of a standard checkerboard contains
64− 2 = 62 squares. Because 62 is even, we cannot quickly rule out the existence of a tiling of
the standard checkerboard with its upper left and lower right squares removed, unlike Example
19, where we ruled out the existence of a tiling of the standard checkerboard with one corner
square removed. Trying to construct a tiling of this board by successively placing dominoes
might be a first approach, as the reader should attempt. However, no matter how much we try,
we cannot find such a tiling. Because our efforts do not produce a tiling, we are led to conjecture
that no tiling exists.

We might try to prove that no tiling exists by showing that we reach a dead end however
we successively place dominoes on the board. To construct such a proof, we would have to
consider all possible cases that arise as we run through all possible choices of successively
placing dominoes. For example, we have two choices for covering the square in the second
column of the first row, next to the removed top left corner. We could cover it with a horizontally
placed tile or a vertically placed tile. Each of these two choices leads to further choices, and so
on. It does not take long to see that this is not a fruitful plan of attack for a person, although a
computer could be used to complete such a proof by exhaustion. (Exercise 45 asks you to supply
such a proof to show that a 4× 4 checkerboard with opposite corners removed cannot be tiled.)

We need another approach. Perhaps there is an easier way to prove there is no tiling of a
standard checkerboard with two opposite corners removed. As with many proofs, a key obser-
vation can help. We color the squares of this checkerboard using alternating white and black
squares, as in Figure 2. Observe that a domino in a tiling of such a board covers one white square
and one black square. Next, note that this board has unequal numbers of white square and black

Figure 1.8: The Standard
Checkerboard with the Up-
per Left and Lower Right
Squares Removed.

�
EXAMPLE. 18

Can we tile the standard checkerboard using dominoes?�� ��Solution: We can find manyways to tile the standard checkerboard using
dominoes. For example, we can tile it by placing 32 dominoes horizontally, as
shown in Figure 1.7. The existence of one such tiling completes a constructive
existence proof. Of course, there are a large number of other ways to do this
tiling.We can place 32 dominoes vertically on the board or we can place some
tiles vertically and some horizontally. But for a constructive existence proof
we needed to find just one such tiling.

1.8.8 Tilings 133

�
EXAMPLE. 19

Can we tile a board obtained by removing one of the four corner squares of a
standard checkerboard?�� ��Solution: To answer this question, note that a standard checkerboard has
64 squares, so removing a square produces a board with 63 squares. Now
suppose that we could tile a board obtained from the standard checkerboard
by removing a corner square. The board has an even number of squares be-
cause each domino covers two squares and no two dominoes overlap and no
dominoes overhang the board. Consequently, we can prove by contradiction
that a standard checkerboard with one square removed cannot be tiled using
dominoes because such a board has an odd number of squares.

We now consider a trickier situation.

�
EXAMPLE. 20

Can we tile the board obtained by deleting the upper left and lower right
corner squares of a standard checkerboard, shown in Figure 1.8?�� ��Solution: A board obtained by deleting two squares of a standard checker-
board contains 64 − 2 = 62 squares. Because 62 is even, we cannot quickly
rule out the existence of a tiling of the standard checkerboard with its upper
left and lower right squares removed, unlike Example 19, where we ruled out
the existence of a tiling of the standard checkerboard with one corner square
removed. Trying to construct a tiling of this board by successively placing
dominoes might be a first approach, as the reader should attempt. However,
no matter how much we try, we cannot find such a tiling. Because our efforts
do not produce a tiling, we are led to conjecture that no tiling exists.

We might try to prove that no tiling exists by showing that we reach a
dead end however we successively place dominoes on the board. To construct
such a proof, we would have to consider all possible cases that arise as we run
through all possible choices of successively placing dominoes. For example,
we have two choices for covering the square in the second column of the first
row, next to the removed top left corner.We could cover it with a horizontally
placed tile or a vertically placed tile. Each of these two choices leads to further
choices, and so on. It does not take long to see that this is not a fruitful plan
of attack for a person, although a computer could be used to complete such

134 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

a proof by exhaustion.
We need another approach. Perhaps there is an easier way to prove there

is no tiling of a standard checkerboard with two opposite corners removed.
As with many proofs, a key observation can help. We color the squares of
this checkerboard using alternating white and black squares, as in Figure 1.5.
Observe that a domino in a tiling of such a board covers one white square
and one black square. Next, note that this board has unequal numbers of
white square and black squares.We can use these observations to prove by
contradiction that a standard checkerboard with opposite corners removed
cannot be tiled using dominoes.We now present such a proof.

Proof: Suppose we can use dominoes to tile a standard checkerboard with
opposite corners removed. Note that the standard checkerboard with opposite
corners removed contains 64− 2 = 62 squares. The tilingwould use 62/2 = 31

dominoes. Note that each domino in this tiling covers one white and one
black square. Consequently, the tiling covers 31 white squares and 31 black
squares. However, when we remove two opposite corner squares, either 32 of
the remaining squares are white and 30 are black or else 30 are white and
32 are black. This contradicts the assumption that we can use dominoes to
cover a standard checkerboard with opposite corners removed, completing the
proof.

We can use other types of pieces besides dominoes in tilings. Instead
of dominoes we can study tilings that use identically shaped pieces con-
structed from congruent squares that are connected along their edges.

1.8 Proof Methods and Strategy 105

squares. We can use these observations to prove by contradiction that a standard checkerboard
with opposite corners removed cannot be tiled using dominoes. We now present such a proof.

Proof: Suppose we can use dominoes to tile a standard checkerboard with opposite corners
removed. Note that the standard checkerboard with opposite corners removed contains 64− 2 =
62 squares. The tiling would use 62/2 = 31 dominoes. Note that each domino in this tiling covers
one white and one black square. Consequently, the tiling covers 31 white squares and 31 black
squares. However, when we remove two opposite corner squares, either 32 of the remaining
squares are white and 30 are black or else 30 are white and 32 are black. This contradicts the
assumption that we can use dominoes to cover a standard checkerboard with opposite corners
removed, completing the proof. ▲

FIGURE 6 A
Right Triomino
and a Straight
Triomino.

We can use other types of pieces besides dominoes in tilings. Instead of dominoes we can
study tilings that use identically shaped pieces constructed from congruent squares that are
connected along their edges. Such pieces are called polyominoes, a term coined in 1953 by the
mathematician Solomon Golomb, the author of an entertaining book about them [Go94]. We
will consider two polyominoes with the same number of squares the same if we can rotate and/or
flip one of the polyominoes to get the other one. For example, there are two types of triominoes
(see Figure 6), which are polyominoes made up of three squares connected by their sides. One
type of triomino, the straight triomino, has three horizontally connected squares; the other
type, right triominoes, resembles the letter L in shape, flipped and/or rotated, if necessary. We
will study the tilings of a checkerboard by straight triominoes here; we will study tilings by
right triominoes in Section 5.1.

EXAMPLE 21 Can you use straight triominoes to tile a standard checkerboard?

Solution: The standard checkerboard contains 64 squares and each triomino covers three
squares. Consequently, if triominoes tile a board, the number of squares of the board must be
a multiple of 3. Because 64 is not a multiple of 3, triominoes cannot be used to cover an 8× 8
checkerboard. ▲

In Example 22, we consider the problem of using straight triominoes to tile a standard
checkerboard with one corner missing.

EXAMPLE 22 Can we use straight triominoes to tile a standard checkerboard with one of its four corners
removed? An 8× 8 checkerboard with one corner removed contains 64− 1 = 63 squares. Any
tiling by straight triominoes of one of these four boards uses 63/3 = 21 triominoes. However,
when we experiment, we cannot find a tiling of one of these boards using straight triominoes.
A proof by exhaustion does not appear promising. Can we adapt our proof from Example 20 to
prove that no such tiling exists?

Solution: We will color the squares of the checkerboard in an attempt to adapt the proof by
contradiction we gave in Example 20 of the impossibility of using dominoes to tile a standard
checkerboard with opposite corners removed. Because we are using straight triominoes rather
than dominoes, we color the squares using three colors rather than two colors, as shown in
Figure 7. Note that there are 21 blue squares, 21 black squares, and 22 white squares in this
coloring. Next, we make the crucial observation that when a straight triomino covers three
squares of the checkerboard, it covers one blue square, one black square, and one white square.
Next, note that each of the three colors appears in a corner square. Thus without loss of generality,
we may assume that we have rotated the coloring so that the missing square is colored blue.
Therefore, we assume that the remaining board contains 20 blue squares, 21 black squares, and
22 white squares.

If we could tile this board using straight triominoes, then we would use 63/3 = 21 straight
triominoes. These triominoes would cover 21 blue squares, 21 black squares, and 21 white

Figure 1.9: A Right
Triomino and a
Straight Triomino.

Such pieces are called polyominoes, a term
coined in 1953 by the mathematician Solomon
Golomb, the author of an entertaining book
about them. We will consider two polyominoes
with the same number of squares the same if we
can rotate and/or flip one of the polyominoes
to get the other one. For example, there are
two types of triominoes (see Figure 1.9), which
are polyominoes made up of three squares con-
nected by their sides. One type of triomino, the
straight triomino, has three horizontally con-
nected squares; the other type, right triominoes,

resembles the letter L in shape, flipped and/or rotated, if necessary. We

1.8.8 Tilings 135

will study the tilings of a checkerboard by straight triominoes here.

�
EXAMPLE. 21

Can you use straight triominoes to tile a standard checkerboard?�� ��Solution: The standard checkerboard contains 64 squares and each tri-
omino covers three squares. Consequently, if triominoes tile a board, the
number of squares of the board must be a multiple of 3. Because 64 is not
a multiple of 3, triominoes cannot be used to cover an 8×8 checkerboard.

In Example 22, we consider the problem of using straight triominoes
to tile a standard checkerboard with one corner missing.

�
EXAMPLE. 22

Can we use straight triominoes to tile a standard checkerboard with one of
its four corners removed? An 8 × 8 checkerboard with one corner removed
contains 64 − 1 = 63 squares. Any tiling by straight triominoes of one of
these four boards uses 63/3 = 21 triominoes. However, when we experiment,
we cannot find a tiling of one of these boards using straight triominoes. A
proof by exhaustion does not appear promising. Can we adapt our proof from
Example 20 to prove that no such tiling exists?�� ��Solution: We will color the squares of the checkerboard in an attempt to
adapt the proof by contradiction we gave in Example 20 of the impossibility of
using dominoes to tile a standard checkerboard with opposite corners removed.
Because we are using straight triominoes rather than dominoes, we color the
squares using three colors rather than two colors, as shown in Figure 1.10.

Note that there are 21 blue squares, 21 black squares, and 22 white squares
in this coloring. Next, we make the crucial observation that when a straight
triomino covers three squares of the checkerboard, it covers one blue square,
one black square, and one white square. Next, note that each of the three
colors appears in a corner square. Thus without loss of generality, we may
assume that we have rotated the coloring so that the missing square is col-
ored blue. Therefore, we assume that the remaining board contains 20 blue
squares, 21 black squares, and 22 white squares. If we could tile this board
using straight triominoes, then we would use 63/3 = 21 straight triominoes.
These triominoes would cover 21 blue squares, 21 black squares, and 21 white

136 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC
106 1 / The Foundations: Logic and Proofs

FIGURE 7 Coloring the Squares of the Standard Checkerboard
with Three Colors.

squares. This contradicts the fact that this board contains 20 blue squares, 21 black squares, and
22 white squares. Therefore we cannot tile this board using straight triominoes. ▲

The Role of Open Problems

Many advances in mathematics have been made by people trying to solve famous unsolved
problems. In the past 20 years, many unsolved problems have finally been resolved, such as the
proof of a conjecture in number theory made more than 300 years ago. This conjecture asserts
the truth of the statement known as Fermat’s last theorem.

THEOREM 1 FERMAT’S LAST THEOREM The equation

xn + yn = zn

has no solutions in integers x, y, and z with xyz �= 0 whenever n is an integer with n > 2.

Remark: The equation x2 + y2 = z2 has infinitely many solutions in integers x, y, and z; these
solutions are called Pythagorean triples and correspond to the lengths of the sides of right
triangles with integer lengths. See Exercise 32.

This problem has a fascinating history. In the seventeenth century, Fermat jotted in the
margin of his copy of the works of Diophantus that he had a “wondrous proof” that there are no
integer solutions of xn + yn = zn when n is an integer greater than 2 with xyz �= 0. However,
he never published a proof (Fermat published almost nothing), and no proof could be found in
the papers he left when he died. Mathematicians looked for a proof for three centuries without
success, although many people were convinced that a relatively simple proof could be found.
(Proofs of special cases were found, such as the proof of the case when n = 3 by Euler and the
proof of the n = 4 case by Fermat himself.) Over the years, several established mathematicians
thought that they had proved this theorem. In the nineteenth century, one of these failed attempts
led to the development of the part of number theory called algebraic number theory. A correct

Figure 1.10: Coloring the Squares of the Standard
Checkerboard with Three Colors.

squares. This contradicts the fact that this board contains 20 blue squares,
21 black squares, and 22 white squares. Therefore we cannot tile this board
using straight triominoes.

1.8.9 The Role of Open Problems

Many advances in mathematics have been made by people trying to
solve famous unsolved problems. In the past 20 years, many unsolved
problems have finally been resolved, such as the proof of a conjecture in
number theory made more than 300 years ago. This conjecture asserts
the truth of the statement known as Fermat’s last theorem.

THEOREM 1.8.1: FERMAT’S LAST THEOREM

The equation

xn + yn = zn

has no solutions in integers x,y, and z with xyz = 0 whenever n is
an integer with n > 2.

1.8.9 The Role of Open Problems 137

Remark! The equation x2 + y2 = z2 has infinitely many solu-
tions in integers x, y, and z ; these solutions are called Pythagorean
triples and correspond to the lengths of the sides of right triangles
with integer lengths.

This problem has a fascinating history. In the seventeenth century,
Fermat jotted in the margin of his copy of the works of Diophantus
that he had a “wondrous proof” that there are no integer solutions of
xn+yn = zn when n is an integer greater than 2 with xyz ̸= 0. However,
he never published a proof (Fermat published almost nothing), and no
proof could be found in the papers he left when he died. Mathemati-
cians looked for a proof for three centuries without success, although
many people were convinced that a relatively simple proof could be
found. (Proofs of special cases were found, such as the proof of the case
when n = 3 by Euler and the proof of the n = 4 case by Fermat him-
self.) Over the years, several established mathematicians thought that
they had proved this theorem. In the nineteenth century, one of these
failed attempts led to the development of the part of number theory
called algebraic number theory. A correct proof, requiring hundreds of
pages of advanced mathematics, was not found until the 1990s, when
AndrewWiles used recently developed ideas from a sophisticated area
of number theory called the theory of elliptic curves to prove Fermat’s
last theorem. Wiles’s quest to find a proof of Fermat’s last theorem
using this powerful theory, described in a program in the Nova series
on public television, took close to ten years! Moreover, his proof was
based on major contributions of many mathematicians.

We now state an open problem that is simple to describe, but that
seems quite difficult to resolve.

�
EXAMPLE. 23

The 3x + 1 Conjecture Let T be the transformation that sends an even
integer x to x/2 and an odd integer x to 3x + 1. A famous conjecture,
sometimes known as the 3x+1 conjecture, states that for all positive integers
x, when we repeatedly apply the transformation T, we will eventually reach the
integer 1. For example, starting with x = 13, we find T (13) = 3 · 13+ 1 = 40,
T (40) = 40/2 = 20, T (20) = 20/2 = 10, T (10) = 10/2 = 5, T (5) = 3 · 5 + 1 =

138 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

16, T (16) = 8, T (8) = 4, T (4) = 2, and T (2) = 1. The 3x+ 1 conjecture has
been verified using computers for all integers x up to 5.6 · 1013.

The 3x + 1 conjecture has an interesting history and has attracted the
attention of mathematicians since the 1950s. The conjecture has been raised
many times and goes by many other names, including the Collatz problem,
Hasse’s algorithm, Ulam’s problem, the Syracuse problem, and Kakutani’s
problem. Many mathematicians have been diverted from theirwork to spend
time attacking this conjecture. This led to the joke that this problem was
part of a conspiracy to slow down American mathematical research.

Chapter 2

BASIC STRUCTURES:
SETS, FUNCTIONS,
SEQUENCES, SUMS

Much of discrete mathematics is devoted to the study of discrete
structures, used to represent discrete objects. Many important discrete
structures are built using sets, which are collections of objects.Among
the discrete structures built from sets are combinations, unordered col-
lections of objects used extensively in counting; relations, sets of ordered
pairs that represent relationships between objects; graphs, sets of ver-
tices and edges that connect vertices; and finite state machines, used to
model computing machines. These are some of the topics we will study
in later chapters.

The concept of a function is extremely important in discrete math-
ematics.Afunction assigns to each element of a first set exactly one
element of a second set, where the two sets are not necessarily distinct.
Functions play important roles throughout discrete mathematics. They
are used to represent the computational complexity of algorithms, to
study the size of sets, to count objects, and in a myriad of other ways.
Useful structures such as sequences and strings are special types of
functions. In this chapter, we will introduce the notion of a sequence,
which represents ordered lists of elements. Furthermore, we will in-
troduce some important types of sequences and we will show how to

139

140 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

define the terms of a sequence using earlier terms.We will also address
the problem of identifying a sequence from its first few terms.

In our study of discrete mathematics, we will often add consecutive
terms of a sequence of numbers. Because adding terms from a sequence,
as well as other indexed sets of numbers, is such a common occurrence, a
special notation has been developed for adding such terms. In this chap-
ter, we will introduce the notation used to express summations.We will
develop formulae for certain types of summations that appear through-
out the study of discrete mathematics. For instance, we will encounter
such summations in the analysis of the number of steps used by an
algorithm to sort a list of numbers so that its terms are in increasing
order.

The relative sizes of infinite sets can be studied by introducing the
notion of the size, or cardinality, of a set. We say that a set is countable
when it is finite or has the same size as the set of positive integers. In
this chapter we will establish the surprising result that the set of rational
numbers is countable, while the set of real numbers is not.We will also
show how the concepts we discuss can be used to show that there are
functions that cannot be computed using a computer program in any
programming language.

2.1 Sets

2.1.1 Introduction

In this section, we study the fundamental discrete structure on
which all other discrete structures are built, namely, the set. Sets are
used to group objects together. Often, but not always, the objects in
a set have similar properties. For instance, all the students who are
currently enrolled in your school make up a set. Likewise, all the stu-
dents currently taking a course in discrete mathematics at any school
make up a set. In addition, those students enrolled in your school who
are taking a course in discrete mathematics form a set that can be ob-
tained by taking the elements common to the first two collections. The
language of sets is a means to study such collections in an organized
fashion. We now provide a definition of a set. This definition is an

2.1.1 Introduction 141

intuitive definition, which is not part of a formal theory of sets.

Definition 2.1.1 A set is an unordered collection of objects, called
elements or members of the set. A set is said to contain its elements.
We write a ∈ A to denote that a is an element of the set A. The notation
a /∈ A denotes that a is not an element of the set A.

It is common for sets to be denoted using uppercase letters. Low-
ercase letters are usually used to denote elements of sets.

There are several ways to describe a set. One way is to list all the
members of a set, when this is possible. We use a notation where all
members of the set are listed between braces. For example, the notation
a, b, c, d represents the set with the four elements a, b, c, and d. This
way of describing a set is known as the roster method.

�
EXAMPLE. 1

The set V of all vowels in the English alphabet can be written as V =

{a, e, i, o, u}.

�
EXAMPLE. 2

The set O of odd positive integers less than 10 can be expressed by O =

{1, 3, 5, 7, 9}.

�
EXAMPLE. 3

Although sets are usually used to group together elements with common prop-
erties, there is nothing that prevents a set from having seemingly unrelated
elements. For instance, a, 2, F red,NewJersey is the set containing the four
elements a, 2, Fred, and New Jersey.

142 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

Sometimes the roster method is used to describe a set without listing
all its members. Some members of the set are listed, and then ellipses
(. . .) are used when the general pattern of the elements is obvious.

�
EXAMPLE. 4

The set of positive integers less than 100 can be denoted by {1, 2, 3, . . . , 99}.

Another way to describe a set is to use set builder notation. We
characterize all those elements in the set by stating the property or
properties they must have to be members. For instance, the set O of
all odd positive integers less than 10 can be written as

O = {x|x is an odd positive integer less than 10},

or, specifying the universe as the set of positive integers, as

O = {x ∈ Z+|x is odd and x < 10}.

We often use this type of notation to describe sets when it is im-
possible to list all the elements of the set. For instance, the set Q+ of
all positive rational numbers can be written as

Q+ = {x ∈ R|x =
p

q
, for some positive integersp and q}.

These sets, each denoted using a boldface letter, play an important
role in discrete mathematics:

N = {0, 1, 2, 3, . . .}, the set of natural numbers

Z = {. . . ,−2,−1, 0, 1, 2, . . .}, the set of integers

Z+ = {1, 2, 3, . . .}, the set of positive integers

Q = {p/q|p ∈ Z, q ∈ Z, andq ̸= 0}, the set of rational numbers

2.1.1 Introduction 143

R, the set of real numbers

R+, the set of positive real numbers

C, the set of complex numbers.

(Note that some people do not consider 0 a natural number, so be
careful to check how the term natural numbers is used when you read
other books.)

Recall the notation for intervals of real numbers. When a and b
are real numbers with a < b, we write

[a, b] = {x|a ≤ x ≤ b}
[a, b) = {x|a ≤ x < b}
(a, b] = {x|a < x ≤ b}
(a, b) = {x|a < x < b}

Note that [a, b] is called the closed interval from a to b and (a, b)
is called the open interval from a to b.

Sets can have other sets as members, as Example 5 illustrates.

�
EXAMPLE. 5

The set N, Z,Q,R is a set containing four elements, each of which is a set.
The four elements of this set are N, the set of natural numbers; Z, the set
of integers; Q, the set of rational numbers; and R, the set of real numbers.

Remark! Note that the concept of a datatype, or type, in com-
puter science is built upon the concept of a set. In particular, a
datatype or type is the name of a set, together with a set of
operations that can be performed on objects from that set. For
example, boolean is the name of the set {0, 1} together with oper-
ators on one or more elements of this set, such as AND, OR, and
NOT.

144 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

Because many mathematical statements assert that two differently
specified collections of objects are really the same set, we need to un-
derstand what it means for two sets to be equal.

Definition 2.1.2 Two sets are equal if and only if they have the
same elements. Therefore, if A and B are sets, then A and B are equal
if and only if ∀x(x ∈ A ↔ x ∈ B).We write A = B if A and B are
equal sets.

�
EXAMPLE. 6

The sets {1, 3, 5} and {3, 5, 1} are equal, because they have the same elements.
Note that the order in which the elements of a set are listed does not matter.
Note also that it does not matter if an element of a set is listed more than
once, so {1, 3, 3, 3, 5, 5, 5, 5} is the same as the set {1, 3, 5} because they have
the same elements.

THE EMPTY SET
There is a special set that has no elements. This set is called the

empty set, or null set, and is denoted by ∅. The empty set can also be
denoted by {} (that is, we represent the empty set with a pair of braces
that encloses all the elements in this set). Often, a set of elements with
certain properties turns out to be the null set. For instance, the set of
all positive integers that are greater than their squares is the null set.

A set with one element is called a singleton set. A common error is
to confuse the empty set ∅ with the set {∅}, which is a singleton set.
The single element of the set {∅} is the empty set itself!A useful analogy
for remembering this difference is to think of folders in a computer file
system. The empty set can be thought of as an empty folder and the
set consisting of just the empty set can be thought of as a folder with
exactly one folder inside, namely, the empty folder.

NAIVE SET THEORY
Note that the term object has been used in the definition of a set,

Definition 1, without specifying what an object is. This description

2.1.2 Venn Diagrams 145

of a set as a collection of objects, based on the intuitive notion of an
object, was first stated in 1895 by the German mathematician Georg
Cantor. The theory that results from this intuitive definition of a set,
and the use of the intuitive notion that for any property whatever, there
is a set consisting of exactly the objects with this property, leads to
paradoxes, or logical inconsistencies. This was shown by the English
philosopher Bertrand Russell in 1902. These logical inconsistencies can
be avoided by building set theory beginning with axioms. However,
we will use Cantor’s original version of set theory, known as naive set
theory, in this book because all sets considered in this book can be
treated consistently using Cantor’s original theory. Students will find
familiarity with naive set theory helpful if they go on to learn about
axiomatic set theory. They will also find the development of axiomatic
set theory much more abstract than the material in this text.

2.1.2 Venn Diagrams

Sets can be represented graphically using Venn diagrams, named af-
ter the English mathematician JohnVenn, who introduced their use in
1881. In Venn diagrams the universal set U, which contains all the ob-
jects under consideration, is represented by a rectangle. (Note that the
universal set varies depending on which objects are of interest.) Inside
this rectangle, circles or other geometrical figures are used to represent
sets. Sometimes points are used to represent the particular elements
of the set.Venn diagrams are often used to indicate the relationships
between sets.We show how a Venn diagram can be used in Example 7.

�
EXAMPLE. 7

Draw a Venn diagram that represents V, the set of vowels in the English
alphabet.�� ��Solution: We draw a rectangle to indicate the universal set U, which is
the set of the 26 letters of the English alphabet. Inside this rectangle we draw
a circle to represent V. Inside this circle we indicate the elements of V with
points (see Figure 2.1).

146 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

118 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

THE EMPTY SET There is a special set that has no elements. This set is called the empty set,
or null set, and is denoted by ∅. The empty set can also be denoted by { } (that is, we represent
the empty set with a pair of braces that encloses all the elements in this set). Often, a set of
elements with certain properties turns out to be the null set. For instance, the set of all positive
integers that are greater than their squares is the null set.

A set with one element is called a singleton set. A common error is to confuse the empty{∅} has one more
element than ∅. set ∅ with the set {∅}, which is a singleton set. The single element of the set {∅} is the empty set

itself! A useful analogy for remembering this difference is to think of folders in a computer file
system. The empty set can be thought of as an empty folder and the set consisting of just the
empty set can be thought of as a folder with exactly one folder inside, namely, the empty folder.

NAIVE SET THEORY Note that the term object has been used in the definition of a set,
Definition 1, without specifying what an object is. This description of a set as a collection
of objects, based on the intuitive notion of an object, was first stated in 1895 by the German
mathematician Georg Cantor. The theory that results from this intuitive definition of a set, and
the use of the intuitive notion that for any property whatever, there is a set consisting of exactly
the objects with this property, leads to paradoxes, or logical inconsistencies. This was shown
by the English philosopher Bertrand Russell in 1902 (see Exercise 46 for a description of one of
these paradoxes). These logical inconsistencies can be avoided by building set theory beginning
with axioms. However, we will use Cantor’s original version of set theory, known as naive set
theory, in this book because all sets considered in this book can be treated consistently using
Cantor’s original theory. Students will find familiarity with naive set theory helpful if they go on
to learn about axiomatic set theory. They will also find the development of axiomatic set theory
much more abstract than the material in this text. We refer the interested reader to [Su72] to
learn more about axiomatic set theory.

Venn Diagrams

Sets can be represented graphically using Venn diagrams, named after the English mathemati-
cian John Venn, who introduced their use in 1881. In Venn diagrams the universal set U, which
contains all the objects under consideration, is represented by a rectangle. (Note that the uni-
versal set varies depending on which objects are of interest.) Inside this rectangle, circles or
other geometrical figures are used to represent sets. Sometimes points are used to represent the
particular elements of the set. Venn diagrams are often used to indicate the relationships between
sets. We show how a Venn diagram can be used in Example 7.

EXAMPLE 7 Draw a Venn diagram that represents V, the set of vowels in the English alphabet.

Solution: We draw a rectangle to indicate the universal set U , which is the set of the 26 letters
of the English alphabet. Inside this rectangle we draw a circle to represent V . Inside this circle
we indicate the elements of V with points (see Figure 1). ▲

U

V

a

eu

o i

FIGURE 1 Venn Diagram for the Set of Vowels.Figure 2.1: Venn Diagram for the Set of Vowels.

2.1.3 Subsets

It is common to encounter situations where the elements of one
set are also the elements of a second set. We now introduce some
terminology and notation to express such relationships between sets.

Definition 2.1.3 The set A is a subset of B if and only if every
element of A is also an element of B.We use the notation A ⊆ B to
indicate that A is a subset of the set B.

We see that A ⊆ B if and only if the quantification

∀x(x ∈ A→ x ∈ B)

is true. Note that to show that A is not a subset of B we need only
find one element x ∈ A with x /∈ B. Such an x is a counterexample to
the claim that x ∈ A implies x ∈ B.

We have these useful rules for determining whether one set is a
subset of another:

Showing that A is a Subset of B To show that A ⊆ B, show
that if x belongs to A then x also belongs to B.

Showing that A is Not a Subset of B To show that A ⊈ B,
find a single x ∈ A such that x ⊈ B.

2.1.3 Subsets 147

�
EXAMPLE. 8

The set of all odd positive integers less than 10 is a subset of the set of all pos-
itive integers less than 10, the set of rational numbers is a subset of the set of
real numbers, the set of all computer science majors at your school is a subset
of the set of all students at your school, and the set of all people in China is a
subset of the set of all people in China (that is, it is a subset of itself). Each
of these facts follows immediately by noting that an element that belongs to
the first set in each pair of sets also belongs to the second set in that pair.

�
EXAMPLE. 9

The set of integers with squares less than 100 is not a subset of the set of
nonnegative integers because −1 is in the former set [as (−1)2 < 100], but not
the later set. The set of people who have taken discrete mathematics at your
school is not a subset of the set of all computer science majors at your school
if there is at least one student who has taken discrete mathematics who is not
a computer science major.

Theorem 2.1.1 shows that every nonempty set S is guaranteed to
have at least two subsets, the empty set and the set S itself, that is,
∅ ⊆ S and S ⊆ S.

THEOREM 2.1.1

For every set S, (i) ∅ ⊆ S and (ii) S ⊆ S.

Proof: We will prove (i) and leave the proof of (ii) as an exercise.
Let S be a set. To show that ∅ ⊆ S, we must show that ∀x(x ∈ ∅ →

x ∈ S) is true. Because the empty set contains no elements, it follows
that x ∈ ∅ is always false. It follows that the conditional statement
x ∈ ∅ → x ∈ S is always true, because its hypothesis is always false
and a conditional statement with a false hypothesis is true. Therefore,

148 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .120 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

U

A B

FIGURE 2 Venn Diagram Showing that A Is a Subset of B.

Theorem 1 shows that every nonempty set S is guaranteed to have at least two subsets, the
empty set and the set S itself, that is, ∅ ⊆ S and S ⊆ S.

THEOREM 1 For every set S, (i) ∅ ⊆ S and (ii) S ⊆ S.

Proof: We will prove (i) and leave the proof of (ii) as an exercise.
Let S be a set. To show that ∅ ⊆ S, we must show that ∀x(x ∈ ∅ → x ∈ S) is true. Because

the empty set contains no elements, it follows that x ∈ ∅ is always false. It follows that the
conditional statement x ∈ ∅ → x ∈ S is always true, because its hypothesis is always false and
a conditional statement with a false hypothesis is true. Therefore, ∀x(x ∈ ∅ → x ∈ S) is true.
This completes the proof of (i). Note that this is an example of a vacuous proof.

When we wish to emphasize that a set A is a subset of a set B but that A �= B, we write
A ⊂ B and say that A is a proper subset of B. For A ⊂ B to be true, it must be the case that
A ⊆ B and there must exist an element x of B that is not an element of A. That is, A is a proper
subset of B if and only if

∀x(x ∈ A→ x ∈ B) ∧ ∃x(x ∈ B ∧ x �∈ A)

is true. Venn diagrams can be used to illustrate that a set A is a subset of a set B. We draw the
universal set U as a rectangle. Within this rectangle we draw a circle for B. Because A is a subset
of B, we draw the circle for A within the circle for B. This relationship is shown in Figure 2.

A useful way to show that two sets have the same elements is to show that each set is a
subset of the other. In other words, we can show that if A and B are sets with A ⊆ B and B ⊆ A,
then A = B. That is, A = B if and only if ∀x(x ∈ A→ x ∈ B) and ∀x(x ∈ B → x ∈ A) or
equivalently if and only if ∀x(x ∈ A↔ x ∈ B), which is what it means for the A and B to be
equal. Because this method of showing two sets are equal is so useful, we highlight it here.

JOHN VENN (1834–1923) John Venn was born into a London suburban family noted for its philanthropy.
He attended London schools and got his mathematics degree from Caius College, Cambridge, in 1857. He was
elected a fellow of this college and held his fellowship there until his death. He took holy orders in 1859 and,
after a brief stint of religious work, returned to Cambridge, where he developed programs in the moral sciences.
Besides his mathematical work, Venn had an interest in history and wrote extensively about his college and
family.

Venn’s book Symbolic Logic clarifies ideas originally presented by Boole. In this book, Venn presents a
systematic development of a method that uses geometric figures, known now as Venn diagrams. Today these
diagrams are primarily used to analyze logical arguments and to illustrate relationships between sets. In addition

to his work on symbolic logic, Venn made contributions to probability theory described in his widely used textbook on that subject.

Figure 2.2: Venn Diagram Showing that A Is a Subset of B.

∀x(x ∈ ∅ → x ∈ S) is true. This completes the proof of (i). Note that
this is an example of a vacuous proof.

When we wish to emphasize that a set A is a subset of a set B but
that A ̸= B, we write A ⊂ B and say that A is a proper subset of
B. For A ⊂ B to be true, it must be the case that A ⊆ B and there
must exist an element x of B that is not an element of A. That is, A is
a proper subset of B if and only if

∀x(x ∈ A→ x ∈ B) ∧ ∃x(x ∈ B ∧ x /∈ A)

is true. Venn diagrams can be used to illustrate that a set A is a subset
of a set B. We draw the universal set U as a rectangle.Within this
rectangle we draw a circle for B. Because A is a subset of B, we draw
the circle for A within the circle for B. This relationship is shown in
Figure 2.2.

A useful way to show that two sets have the same elements is to
show that each set is a subset of the other. In other words, we can show
that if A and B are sets with A ⊆ B and B ⊆ A, then A = B. That is,
A = B if and only if ∀x(x ∈ A → x ∈ B) and ∀x(x ∈ B → x ∈ A) or
equivalently if and only if ∀x(x ∈ A↔ x ∈ B), which is what it means
for the A and B to be equal. Because this method of showing two sets
are equal is so useful, we highlight it here.

Showing Two Sets are Equal To show that two sets A and
B are equal, show that A ⊆ B and B ⊆ A.

2.1.4 The Size of a Set 149

Sets may have other sets as members. For instance, we have the
sets

A = {∅, {a}, {b}, {a, b}} and B = {x|x is a subset of the set {a,b}}

Note that these two sets are equal, that is, A = B. Also note that
{a} ∈ A, but a /∈ A.

2.1.4 The Size of a Set

Sets are used extensively in counting problems, and for such appli-
cations we need to discuss the sizes of sets.

Definition 2.1.4 Let S be a set. If there are exactly n distinct
elements in S where n is a nonnegative integer, we say that S is a
finite set and that n is the cardinality of S. The cardinality of S is
denoted by |S|.

Remark! The term cardinality comes from the common usage of
the term cardinal number as the size of a finite set.

�
EXAMPLE. 10

Let A be the set of odd positive integers less than 10. Then |A| = 5.

�
EXAMPLE. 11

Let S be the set of letters in the English alphabet. Then |S| = 26.

�
EXAMPLE. 12

Because the null set has no elements, it follows that |∅| = 0.

150 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

We will also be interested in sets that are not finite.

Definition 2.1.5 A set is said to be infinite if it is not finite.

�
EXAMPLE. 13

The set of positive integers is infinite.

2.1.5 Power Sets

Many problems involve testing all combinations of elements of a set
to see if they satisfy some property. To consider all such combinations
of elements of a set S, we build a new set that has as its members all
the subsets of S.

Definition 2.1.6 Given a set S, the power set of S is the set of all
subsets of the set S. The power set of S is denoted by P(S).

�
EXAMPLE. 14

What is the power set of the set {0, 1, 2}?�� ��Solution: The power set P({0, 1, 2}) is the set of all subsets of {0, 1, 2}.
Hence,

P({0, 1, 2}) = {∅, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}.

The empty set and the set itself are members of this set of subsets.

�
EXAMPLE. 15

What is the power set of the empty set? What is the power set of the set {∅}?�� ��Solution: The empty set has exactly one subset, namely, itself. Conse-
quently,

P(∅) = {∅}.

2.1.6 Cartesian Products 151

The set {∅} has exactly two subsets, namely, ∅ and the set {∅} itself. There-
fore,

P({∅}) = {∅, {∅}}.

If a set has n elements, then its power set has 2n elements. We will
demonstrate this fact in several ways in subsequent sections of the text.

2.1.6 Cartesian Products

The order of elements in a collection is often important. Because
sets are unordered, a different structure is needed to represent ordered
collections. This is provided by ordered n-tuples.

Definition 2.1.7 The ordered n-tuple (a1, a2, . . . , an) is the or-
dered collection that has a1 as its first element, a2 as its second element,
... , and an as its nth element.

We say that two ordered n-tuples are equal if and only if each corre-
sponding pair of their elements is equal. In other words, (a1, a2, . . . , an) =
(b1, b2, . . . , bn) if and only if ai = bi, for i = 1, 2, . . . , n. In particular,
ordered 2-tuples are called ordered pairs. The ordered pairs (a, b)
and (c, d) are equal if and only if a = c and b = d. Note that (a, b) and
(b, a) are not equal unless a = b.

Definition 2.1.8 Let A and B be sets. The Cartesian product
of A and B, denoted by A × B, is the set of all ordered pairs (a, b),
where a ∈ A and b ∈ B. Hence,

A×B = {(a, b)|a ∈ A ∧ b ∈ B}.

�
EXAMPLE. 16

Let A represent the set of all students at a university, and let B represent
the set of all courses offered at the university. What is the Cartesian product
A×B and how can it be used?

152 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .
�� ��Solution: The Cartesian product A×B consists of all the ordered pairs of

the form (a, b), where a is a student at the university and b is a course offered
at the university. One way to use the set A × B is to represent all possible
enrollments of students in courses at the university.

�
EXAMPLE. 17

What is the Cartesian product of A = {1, 2} and B = {a, b, c}?�� ��Solution: The Cartesian product A×B is

A×B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}.

Note that the Cartesian products A×B and B × A are not equal,
unless A = ∅ or B = ∅ (so that A×B = ∅) or A = B. This is illustrated
in Example 18.

�
EXAMPLE. 18

Show that the Cartesian product B×A is not equal to the Cartesian product
A×B, where A and B are as in Example 17.�� ��Solution: The Cartesian product B ×A is

B ×A = {(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)}.

This is not equal to A×B, which was found in Example 17.

The Cartesian product of more than two sets can also be defined.

Definition 2.1.9 The Cartesian product of the sets A1, A2, . . . , An,
denoted by A1×A2×. . .×An, is the set of ordered n-tuples (a1, a2, . . . , an),
where ai belongs to Ai for i = 1, 2, . . . , n. In other words,

A1 ×A2 × . . .×An = {(a1, a2, . . . , an)|ai ∈ Ai fori = 1, 2, . . . , n}.

�
EXAMPLE. 19

2.1.6 Cartesian Products 153

What is the Cartesian product A×B×C, where A = {0, 1}, B = {1, 2}, and
C = {0, 1, 2}?�� ��Solution: The Cartesian product A×B×C consists of all ordered triples
(a, b, c), where a ∈ A, b ∈ B, and c ∈ C. Hence,

A×B × C = {(0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0), (0, 2, 1), (0, 2, 2),
(1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2)} .

Remark! Note that when A,B, and C are sets, (A× B)× C is
not the same as A×B × C.

We use the notation A2 to denote A×A, the Cartesian product of
the set A with itself. Similarly, A3 = A×A×A, A4 = A×A×A×A,
and so on. More generally,

An = {(a1, a2, . . . , an)|ai ∈ A fori = 1, 2, . . . , n}.

�
EXAMPLE. 20

Suppose that A = {1, 2}. It follows that A2 = {(1, 1), (1, 2), (2, 1), (2, 2)} and
A3 = {(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)}.

A subset R of the Cartesian product A × B is called a relation
from the set A to the set B. The elements of R are ordered pairs,
where the first element belongs to A and the second to B. For example,
R = {(a, 0), (a, 1), (a, 3), (b, 1), (b, 2), (c, 0), (c, 3)} is a relation from the
set {a, b, c} to the set {0, 1, 2, 3}. A relation from a set A to itself is
called a relation on A.

�
EXAMPLE. 21

What are the ordered pairs in the less than or equal to relation, which contains
(a, b) if a ≤ b, on the set {0, 1, 2, 3}?

154 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .
�� ��Solution: The ordered pair (a, b) belongs to R if and only if both a and

b belong to {0, 1, 2, 3} and a ≤ b. Consequently, the ordered pairs in R are
(0, 0), (0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), and (3, 3).

2.1.7 Using Set Notation with Quantifiers

Sometimes we restrict the domain of a quantified statement explic-
itly by making use of a particular notation. For example, ∀x ∈ S(P (x))
denotes the universal quantification of P (x) over all elements in the set
S. In other words, ∀x ∈ S(P (x)) is shorthand for ∀x(x ∈ S → P (x)).
Similarly, ∃x ∈ S(P (x)) denotes the existential quantification of P (x)
over all elements in S. That is, ∃x ∈ S(P (x)) is shorthand for ∃x(x ∈
S ∧ P (x)).

�
EXAMPLE. 22

What do the statements ∀x ∈ R(x2 ≥ 0) and ∃x ∈ Z(x2 = 1) mean?�� ��Solution: The statement ∀x ∈ R(x2 ≥ 0) states that for every real number
x, x2 ≥ 0. This statement can be expressed as “The square of every real
number is nonnegative”. This is a true statement.

The statement ∃x ∈ Z(x2 = 1) states that there exists an integer x such
that x2 = 1. This statement can be expressed as “There is an integer whose
square is 1”. This is also a true statement because x = 1 is such an integer
(as is −1).

2.1.8 Truth Sets and Quantifiers

We will now tie together concepts from set theory and from predi-
cate logic. Given a predicate P, and a domain D, we define the truth
set of P to be the set of elements x in D for which P (x) is true. The
truth set of P (x) is denoted by {x ∈ D|P (x)}.

�
EXAMPLE. 23

What are the truth sets of the predicates P (x), Q(x), and R(x), where the

2.2. SET OPERATIONS 155

domain is the set of integers and P (x) is “ |x| = 1,” Q(x) is “x2 = 2,” and R(x)
is “ |x| = x.”�� ��Solution: The truth set of P, {x ∈ Z||x| = 1}, is the set of integers for
which |x| = 1. Because |x| = 1 when x = 1 or x = −1, and for no other
integers x, we see that the truth set of P is the set {−1, 1}.

The truth set of Q, {x ∈ Z|x2 = 2}, is the set of integers for which x2 = 2.
This is the empty set because there are no integers x for which x2 = 2.

The truth set of R, {x ∈ Z||x| = x}, is the set of integers for which
|x| = x. Because |x| = x if and only if x ≥ 0, it follows that the truth set of
R is N , the set of nonnegative integers.

Note that ∀xP (x) is true over the domain U if and only if the truth
set of P is the set U . Likewise, ∃xP (x) is true over the domain U if
and only if the truth set of P is nonempty.

2.2 Set Operations

2.2.1 Introduction

Two, or more, sets can be combined in many different ways. For
instance, starting with the set of mathematics majors at your school
and the set of computer science majors at your school, we can form
the set of students who are mathematics majors or computer science
majors, the set of students who are joint majors in mathematics and
computer science, the set of all students not majoring in mathematics,
and so on.

Definition 2.2.1 Let A and B be sets. The union of the sets A
and B, denoted by A ∪ B, is the set that contains those elements that
are either in A or in B, or in both.

An element x belongs to the union of the sets A and B if and only
if x belongs to A or x belongs to B. This tells us that

A ∪B = {x|x ∈ A ∨ x ∈ B}.

The Venn diagram shown in Figure 2.3 represents the union of two sets
A and B. The area that represents A ∪ B is the shaded area within
either the circle representing A or the circle representing B.

156 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

We will give some examples of the union of sets.

�
EXAMPLE. 1

The union of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 2, 3, 5}; that is,
{1, 3, 5} ∪ {1, 2, 3} = {1, 2, 3, 5}.

�
EXAMPLE. 2

The union of the set of all computer science majors at your school and the set
of all mathematics majors at your school is the set of students at your school
who are majoring either in mathematics or in computer science.

Definition 2.2.2 Let A and B be sets. The intersection of the sets
A and B, denoted by A∩B, is the set containing those elements in both
A and B.

An element x belongs to the intersection of the sets A and B if and
only if x belongs to A and x belongs to B. This tells us that

A ∩B = {x|x ∈ A ∧ x ∈ B}.

2.2 Set Operations 127

2.2 Set Operations

Introduction

Two, or more, sets can be combined in many different ways. For instance, starting with the set
of mathematics majors at your school and the set of computer science majors at your school, we
can form the set of students who are mathematics majors or computer science majors, the set of
students who are joint majors in mathematics and computer science, the set of all students not
majoring in mathematics, and so on.

DEFINITION 1 Let A and B be sets. The union of the sets A and B, denoted by A ∪ B, is the set that contains
those elements that are either in A or in B, or in both.

An element x belongs to the union of the sets A and B if and only if x belongs to A or x belongs
to B. This tells us that

A ∪ B = {x | x ∈ A ∨ x ∈ B}.
The Venn diagram shown in Figure 1 represents the union of two sets A and B. The area
that represents A ∪ B is the shaded area within either the circle representing A or the circle
representing B.

We will give some examples of the union of sets.

EXAMPLE 1 The union of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 2, 3, 5}; that is,
{1, 3, 5} ∪ {1, 2, 3} = {1, 2, 3, 5}. ▲

EXAMPLE 2 The union of the set of all computer science majors at your school and the set of all mathe-
matics majors at your school is the set of students at your school who are majoring either in
mathematics or in computer science (or in both). ▲

DEFINITION 2 Let A and B be sets. The intersection of the sets A and B, denoted by A ∩ B, is the set
containing those elements in both A and B.

An element x belongs to the intersection of the sets A and B if and only if x belongs to A and
x belongs to B. This tells us that

A ∩ B = {x | x ∈ A ∧ x ∈ B}.

U

BA

A � B is shaded.

FIGURE 1 Venn Diagram of the
Union of A and B.

U

BA

A � B is shaded.

FIGURE 2 Venn Diagram of the
Intersection of A and B.

A ∪B is shaded

Figure 2.3: Venn Diagram of the
Union of A and B.

2.2 Set Operations 127

2.2 Set Operations

Introduction

Two, or more, sets can be combined in many different ways. For instance, starting with the set
of mathematics majors at your school and the set of computer science majors at your school, we
can form the set of students who are mathematics majors or computer science majors, the set of
students who are joint majors in mathematics and computer science, the set of all students not
majoring in mathematics, and so on.

DEFINITION 1 Let A and B be sets. The union of the sets A and B, denoted by A ∪ B, is the set that contains
those elements that are either in A or in B, or in both.

An element x belongs to the union of the sets A and B if and only if x belongs to A or x belongs
to B. This tells us that

A ∪ B = {x | x ∈ A ∨ x ∈ B}.
The Venn diagram shown in Figure 1 represents the union of two sets A and B. The area
that represents A ∪ B is the shaded area within either the circle representing A or the circle
representing B.

We will give some examples of the union of sets.

EXAMPLE 1 The union of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 2, 3, 5}; that is,
{1, 3, 5} ∪ {1, 2, 3} = {1, 2, 3, 5}. ▲

EXAMPLE 2 The union of the set of all computer science majors at your school and the set of all mathe-
matics majors at your school is the set of students at your school who are majoring either in
mathematics or in computer science (or in both). ▲

DEFINITION 2 Let A and B be sets. The intersection of the sets A and B, denoted by A ∩ B, is the set
containing those elements in both A and B.

An element x belongs to the intersection of the sets A and B if and only if x belongs to A and
x belongs to B. This tells us that

A ∩ B = {x | x ∈ A ∧ x ∈ B}.

U

BA

A � B is shaded.

FIGURE 1 Venn Diagram of the
Union of A and B.

U

BA

A � B is shaded.

FIGURE 2 Venn Diagram of the
Intersection of A and B.

A ∩B is shaded

Figure 2.4: Venn Diagram of the
Intersection of A and B.

TheVenn diagram shown in Figure 2.4 represents the intersection
of two sets A and B. The shaded area that is within both the circles

2.2.1 Introduction 157

representing the sets A and B is the area that represents the intersection
of A and B.

We give some examples of the intersection of sets.

�
EXAMPLE. 3

The intersection of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 3}; that is,
{1, 3, 5} ∩ {1, 2, 3} = {1, 3}.

�
EXAMPLE. 4

The intersection of the set of all computer science majors at your school and
the set of all mathematics majors is the set of all students who are joint ma-
jors in mathematics and computer science.

Definition 2.2.3 Two sets are called disjoint if their intersection
is the empty set.

�
EXAMPLE. 5

Let A = {1, 3, 5, 7, 9} and B = {2, 4, 6, 8, 10}. Because A ∩ B = ∅, A and B
are disjoint.

We are often interested in finding the cardinality of a union of two
finite sets A and B. Note that |A|+ |B| counts each element that is in A
but not in B or in B but not in A exactly once, and each element that
is in both A and B exactly twice. Thus, if the number of elements that
are in both A and B is subtracted from |A| + |B|, elements in A ∩ B
will be counted only once.

Hence,

|A ∪B| = |A|+ |B| − |A ∩B|.

158 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

The generalization of this result to unions of an arbitrary number of
sets is called the principle of inclusion–exclusion. The principle of
inclusion–exclusion is an important technique used in enumeration.

There are other important ways to combine sets.

Definition 2.2.4 Let A and B be sets. The difference of A and
B, denoted by A−B, is the set containing those elements that are in A
but not in B. The difference of A and B is also called the complement
of B with respect to A.

Remark! The difference of sets A and B is sometimes denoted
by A\B.

An element x belongs to the difference of A and B if and only if
x ∈ A and x /∈ B. This tells us that

A−B = {x|x ∈ A ∧ x /∈ B}.

The Venn diagram shown in Figure 2.5 represents the difference of the
sets A and B. The shaded area inside the circle that represents A and
outside the circle that represents B is the area that represents A−B.

We give some examples of differences of sets.
2.2 Set Operations 129

U

BA

A – B is shaded.

FIGURE 3 Venn Diagram for
the Difference of A and B.

U

A

A is shaded.

FIGURE 4 Venn Diagram for
the Complement of the Set A.

Once the universal set U has been specified, the complement of a set can be defined.

DEFINITION 5 Let U be the universal set. The complement of the set A, denoted by A, is the complement
of A with respect to U . Therefore, the complement of the set A is U − A.

An element belongs to A if and only if x /∈ A. This tells us that

A = {x ∈ U | x /∈ A}.

In Figure 4 the shaded area outside the circle representing A is the area representing A.
We give some examples of the complement of a set.

EXAMPLE 8 Let A = {a, e, i, o, u} (where the universal set is the set of letters of the English alphabet). Then
A = {b, c, d, f, g, h, j, k, l, m, n, p, q, r, s, t, v, w, x, y, z}. ▲

EXAMPLE 9 Let A be the set of positive integers greater than 10 (with universal set the set of all positive
integers). Then A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. ▲

It is left to the reader (Exercise 19) to show that we can express the difference of A and B

as the intersection of A and the complement of B. That is,

A− B = A ∩ B.

Set Identities

Table 1 lists the most important set identities. We will prove several of these identities here,
using three different methods. These methods are presented to illustrate that there are often many
different approaches to the solution of a problem. The proofs of the remaining identities will

Set identities and
propositional
equivalences are just
special cases of identities
for Boolean algebra.

be left as exercises. The reader should note the similarity between these set identities and the
logical equivalences discussed in Section 1.3. (Compare Table 6 of Section 1.6 and Table 1.) In
fact, the set identities given can be proved directly from the corresponding logical equivalences.
Furthermore, both are special cases of identities that hold for Boolean algebra (discussed in
Chapter 12).

One way to show that two sets are equal is to show that each is a subset of the other. Recall
that to show that one set is a subset of a second set, we can show that if an element belongs to
the first set, then it must also belong to the second set. We generally use a direct proof to do this.
We illustrate this type of proof by establishing the first of De Morgan’s laws.

A−B is shaded

Figure 2.5: Venn Diagram for the
Difference of A and B.

2.2 Set Operations 129

U

BA

A – B is shaded.

FIGURE 3 Venn Diagram for
the Difference of A and B.

U

A

A is shaded.

FIGURE 4 Venn Diagram for
the Complement of the Set A.

Once the universal set U has been specified, the complement of a set can be defined.

DEFINITION 5 Let U be the universal set. The complement of the set A, denoted by A, is the complement
of A with respect to U . Therefore, the complement of the set A is U − A.

An element belongs to A if and only if x /∈ A. This tells us that

A = {x ∈ U | x /∈ A}.

In Figure 4 the shaded area outside the circle representing A is the area representing A.
We give some examples of the complement of a set.

EXAMPLE 8 Let A = {a, e, i, o, u} (where the universal set is the set of letters of the English alphabet). Then
A = {b, c, d, f, g, h, j, k, l, m, n, p, q, r, s, t, v, w, x, y, z}. ▲

EXAMPLE 9 Let A be the set of positive integers greater than 10 (with universal set the set of all positive
integers). Then A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. ▲

It is left to the reader (Exercise 19) to show that we can express the difference of A and B

as the intersection of A and the complement of B. That is,

A− B = A ∩ B.

Set Identities

Table 1 lists the most important set identities. We will prove several of these identities here,
using three different methods. These methods are presented to illustrate that there are often many
different approaches to the solution of a problem. The proofs of the remaining identities will

Set identities and
propositional
equivalences are just
special cases of identities
for Boolean algebra.

be left as exercises. The reader should note the similarity between these set identities and the
logical equivalences discussed in Section 1.3. (Compare Table 6 of Section 1.6 and Table 1.) In
fact, the set identities given can be proved directly from the corresponding logical equivalences.
Furthermore, both are special cases of identities that hold for Boolean algebra (discussed in
Chapter 12).

One way to show that two sets are equal is to show that each is a subset of the other. Recall
that to show that one set is a subset of a second set, we can show that if an element belongs to
the first set, then it must also belong to the second set. We generally use a direct proof to do this.
We illustrate this type of proof by establishing the first of De Morgan’s laws.

Ā is shaded

Figure 2.6: Venn Diagram for the
Complement of the Set A.

�
EXAMPLE. 6

2.2.1 Introduction 159

The difference of {1, 3, 5} and {1, 2, 3} is the set {5}; that is, {1, 3, 5} −
{1, 2, 3} = {5}. This is different from the difference of {1, 2, 3} and {1, 3, 5},
which is the set {2}.

�
EXAMPLE. 7

The difference of the set of computer science majors at your school and the
set of mathematics majors at your school is the set of all computer science
majors at your school who are not also mathematics majors.

Once the universal set U has been specified, the complement of a
set can be defined.

Definition 2.2.5 Let U be the universal set. The complement
of the set A, denoted by Ā, is the complement of A with respect to U.
Therefore, the complement of the set A is U −A.

An element belongs to A if and only if x /∈ A. This tells us that

A = {x ∈ U |x /∈ A}.

In Figure 2.6 the shaded area outside the circle representing A is the
area representing A.

We give some examples of the complement of a set.

�
EXAMPLE. 8

Let A = {a, e, i, o, u} (where the universal set is the set of letters of the English
alphabet). Then Ā = {b, c, d, f, g, h, j, k, l,m, n, p, q, r, s, t, v, w, x, y, z}.

�
EXAMPLE. 9

Let A be the set of positive integers greater than 10 (with universal set the
set of all positive integers). Then Ā = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

160 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

It is left to show that we can express the difference of A and B as
the intersection of A and the complement of B. That is,

A−B = A ∩ B̄.

2.2.2 Set Identities

Table 2.1 lists the most important set identities. We will prove
several of these identities here, using three different methods. These
methods are presented to illustrate that there are often many different
approaches to the solution of a problem. The proofs of the remaining
identities will be left as exercises. In fact, the set identities given can be
proved directly from the corresponding logical equivalences. Further-
more, both are special cases of identities that hold for Boolean algebra.

One way to show that two sets are equal is to show that each is a
subset of the other. Recall that to show that one set is a subset of a
second set, we can show that if an element belongs to the first set, then
it must also belong to the second set.We generally use a direct proof to
do this. We illustrate this type of proof by establishing the first of De
Morgan’s laws.

�
EXAMPLE. 10

Prove that A ∩B = Ā ∪ B̄.�� ��Solution: We will prove that the two sets A ∩B and Ā ∪ B̄ are equal by
showing that each set is a subset of the other.

First, we will show that A ∩B ⊆ Ā ∪ B̄. We do this by showing that if x
is in A ∩B, then it must also be in Ā ∪ B̄. Now suppose that x ∈ A ∩B. By
the definition of complement, x /∈ A∩B. Using the definition of intersection,
we see that the proposition ¬((x ∈ A) ∧ (x ∈ B)) is true.

By applying De Morgan’s law for propositions, we see that ¬(x ∈ A) or
¬(x ∈ B). Using the definition of negation of propositions, we have x /∈ A
or x /∈ B. Using the definition of the complement of a set, we see that this
implies that x ∈ Ā or x ∈ B̄. Consequently, by the definition of union, we see
that x ∈ Ā ∪ B̄. We have now shown that A ∩B ⊆ Ā ∪ B̄.

Next, we will show that Ā ∪ B̄ ⊆ A ∩B. We do this by showing that if x
is in Ā ∪ B̄, then it must also be in A ∩B. Now suppose that x ∈ Ā ∪ B̄. By
the definition of union, we know that x ∈ Ā or x ∈ B̄. Using the definition

2.2.2 Set Identities 161

Table 2.1: Set Identities
Identity Name

A ∩ U = a Identity laws
A ∪ ∅ = A

A ∪ U = U Domination laws
A ∩ ∅ = ∅

A ∪A = A Idempotent laws
A ∩A = A

(Ā) = A Complementation law

A ∪B = B ∪A Commutative laws
A ∩B = B ∩A

A ∪ (B ∪ C) = (A ∪B) ∪ C Associative laws
A ∩ (B ∩ C) = (A ∩B) ∩ C

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) Distributive laws
A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

¯A ∩B = Ā ∪ B̄ De Morgan’s laws
¯A ∪B = Ā ∩ B̄

A ∪ (A ∩B) = A Absorption laws
A ∩ (A ∪B) = A

A ∪ Ā = U Complement laws
A ∩ Ā = ∅

162 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

of complement, we see that x /∈ A or x /∈ B. Consequently, the proposition
¬(x ∈ A) ∨ ¬(x ∈ B) is true.

By De Morgan’s law for propositions, we conclude that ¬((x ∈ A) ∧ (x ∈
B)) is true. By the definition of intersection, it follows that ¬(x ∈ A ∩ B).
We now use the definition of complement to conclude that x ∈ A ∩B. This
shows that Ā ∪ B̄ ⊆ A ∩B. Because we have shown that each set is a subset
of the other, the two sets are equal, and the identity is proved.

We can more succinctly express the reasoning used in Example 10
using set builder notation, as Example 11 illustrates.

�
EXAMPLE. 11

Use set builder notation and logical equivalences to establish the first De
Morgan law A ∩B = Ā ∪ B̄.�� ��Solution: We can prove this identity with the following steps.

A ∩B = {x|x /∈ A ∩B} by definition of complement
= {x|¬(x ∈ (A ∩B))} by definition of does not belong symbol
= {x|¬(x ∈ A ∧ x ∈ B)} by definition of intersection
= {x|¬(x ∈ A) ∨ ¬(x ∈ B)} by the first De Morgan law for logical

equivalences
= {x|x /∈ A ∨ x /∈ B} by definition of does not belong symbol
= {x|x ∈ Ā ∨ x ∈ B̄} by definition of complement
= {x|x ∈ Ā ∪ B̄} by definition of union
= Ā ∪ B̄ by meaning of set builder notation

Note that besides the definitions of complement, union, set membership, and
set builder notation, this proof uses the second De Morgan law for logical
equivalences.

Proving a set identity involving more than two sets by showing each
side of the identity is a subset of the other often requires that we keep
track of different cases, as illustrated by the proof in Example 12 of one
of the distributive laws for sets.

�
EXAMPLE. 12

2.2.2 Set Identities 163

Prove the second distributive law from Table 2.1, which states that A ∩ (B ∪
C) = (A ∩B) ∪ (A ∩ C) for all sets A, B, and C.�� ��Solution: We will prove this identity by showing that each side is a subset
of the other side.

Suppose that x ∈ A∩(B∪C). Then x ∈ A and x ∈ B∪C. By the definition
of union, it follows that x ∈ A, and x ∈ B or x ∈ C (or both). In other words,
we know that the compound proposition (x ∈ A) ∧ ((x ∈ B) ∨ (x ∈ C)) is
true. By the distributive law for conjunction over disjunction, it follows that
((x ∈ A) ∧ (x ∈ B)) ∨ ((x ∈ A) ∧ (x ∈ C)). We conclude that either x ∈ A
and x ∈ B, or x ∈ A and x ∈ C. By the definition of intersection, it follows
that x ∈ A∩B or x ∈ A∩C. Using the definition of union, we conclude that
x ∈ (A ∩B) ∪ (A ∩ C). We conclude that A ∩ (B ∪ C) ⊆ (A ∩B) ∪ (A ∩ C).

Now suppose that x ∈ (A∩B)∪(A∩C). Then, by the definition of union,
x ∈ A ∩ B or x ∈ A ∩ C. By the definition of intersection, it follows that
x ∈ A and x ∈ B or that x ∈ A and x ∈ C. From this we see that x ∈ A, and
x ∈ B or x ∈ C. Consequently, by the definition of union we see that x ∈ A

and x ∈ B ∪C. Furthermore, by the definition of intersection, it follows that
x ∈ A ∩ (B ∪ C). We conclude that (A ∩ B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C). This
completes the proof of the identity.

Set identities can also be proved using membership tables. We
consider each combination of sets that an element can belong to and
verify that elements in the same combinations of sets belong to both
the sets in the identity. To indicate that an element is in a set, a 1 is
used; to indicate that an element is not in a set, a 0 is used.

�
EXAMPLE. 13

Use a membership table to show that A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).�� ��Solution: The membership table for these combinations of sets is shown
in Table 2.2. This table has eight rows. Because the columns for A∩ (B ∪C)

and (A ∩B) ∪ (A ∩ C) are the same, the identity is valid.

Additional set identities can be established using those thatwehave
already proved. Consider Example 14.

164 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

Table 2.2: A Membership Table for the Distributive Property.

A B C B ∪ C A ∩ (B ∪ C) A ∩B A ∩ C (A ∩B) ∪ (A ∩ C)

1 1 1 1 1 1 1 1
1 1 0 1 1 1 0 1
1 0 1 1 1 0 1 1
1 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0

�
EXAMPLE. 14

Let A, B, and C be sets. Show that A ∪ (B ∩ C) = (C̄ ∪ B̄) ∩ Ā.�� ��Solution: We have

A ∪ (B ∩ C) = Ā ∩ (B ∩ C) by the first De Morgan law
= Ā ∩ (B̄ ∪ C̄) by the second De Morgan law
= (B̄ ∪ C̄) ∩ Ā by the commutative law for intersections
= (C̄ ∪ B̄) ∩ Ā by the commutative law for unions.

2.2.3 Generalized Unions and Intersections

Because unions and intersections of sets satisfy associative laws, the
sets A∪B ∪C and A∩B ∩C are well defined; that is, the meaning of
this notation is unambiguous when A, B, and C are sets. That is, we
do not have to use parentheses to indicate which operation comes first
because A ∪ (B ∪ C) = (A ∪ B) ∪ C and A ∩ (B ∩ C) = (A ∩ B) ∩ C.
Note that A∪B ∪C contains those elements that are in at least one of
the sets A, B, and C, and that A∩B ∩C contains those elements that
are in all of A, B, and C. These combinations of the three sets, A, B,
and C, are shown in Figure 2.7.

2.2.3 Generalized Unions and Intersections 165

132 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

TABLE 2 A Membership Table for the Distributive Property.

A B C B ∪ C A ∩ (B ∪ C) A ∩ B A ∩ C (A ∩ B) ∪ (A ∩ C)

1 1 1 1 1 1 1 1

1 1 0 1 1 1 0 1

1 0 1 1 1 0 1 1

1 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0

0 1 0 1 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0

EXAMPLE 14 Let A, B, and C be sets. Show that

A ∪ (B ∩ C) = (C ∪ B) ∩ A.

Solution: We have

A ∪ (B ∩ C) = A ∩ (B ∩ C) by the first De Morgan law

= A ∩ (B ∪ C) by the second De Morgan law

= (B ∪ C) ∩ A by the commutative law for intersections

= (C ∪ B) ∩ A by the commutative law for unions.

▲

Generalized Unions and Intersections

Because unions and intersections of sets satisfy associative laws, the sets A ∪ B ∪ C and
A ∩ B ∩ C are well defined; that is, the meaning of this notation is unambiguous when A,
B, and C are sets. That is, we do not have to use parentheses to indicate which operation
comes first because A ∪ (B ∪ C) = (A ∪ B) ∪ C and A ∩ (B ∩ C) = (A ∩ B) ∩ C. Note that
A ∪ B ∪ C contains those elements that are in at least one of the sets A, B, and C, and that
A ∩ B ∩ C contains those elements that are in all of A, B, and C. These combinations of the
three sets, A, B, and C, are shown in Figure 5.

U

A B

C

U

A

C

(a) A U B U C is shaded. (b) A B C is shaded.
U U

B

FIGURE 5 The Union and Intersection of A, B, and C.

a)A ∪B ∪ C is shaded

132 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

TABLE 2 A Membership Table for the Distributive Property.

A B C B ∪ C A ∩ (B ∪ C) A ∩ B A ∩ C (A ∩ B) ∪ (A ∩ C)

1 1 1 1 1 1 1 1

1 1 0 1 1 1 0 1

1 0 1 1 1 0 1 1

1 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0

0 1 0 1 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0

EXAMPLE 14 Let A, B, and C be sets. Show that

A ∪ (B ∩ C) = (C ∪ B) ∩ A.

Solution: We have

A ∪ (B ∩ C) = A ∩ (B ∩ C) by the first De Morgan law

= A ∩ (B ∪ C) by the second De Morgan law

= (B ∪ C) ∩ A by the commutative law for intersections

= (C ∪ B) ∩ A by the commutative law for unions.

▲

Generalized Unions and Intersections

Because unions and intersections of sets satisfy associative laws, the sets A ∪ B ∪ C and
A ∩ B ∩ C are well defined; that is, the meaning of this notation is unambiguous when A,
B, and C are sets. That is, we do not have to use parentheses to indicate which operation
comes first because A ∪ (B ∪ C) = (A ∪ B) ∪ C and A ∩ (B ∩ C) = (A ∩ B) ∩ C. Note that
A ∪ B ∪ C contains those elements that are in at least one of the sets A, B, and C, and that
A ∩ B ∩ C contains those elements that are in all of A, B, and C. These combinations of the
three sets, A, B, and C, are shown in Figure 5.

U

A B

C

U

A

C

(a) A U B U C is shaded. (b) A B C is shaded.
U U

B

FIGURE 5 The Union and Intersection of A, B, and C.

b)A ∩B ∩ C is shaded

Figure 2.7: The Union and Intersection of A, B, and C .

�
EXAMPLE. 15

Let A = {0, 2, 4, 6, 8}, B = {0, 1, 2, 3, 4}, and C = {0, 3, 6, 9}. What are
A ∪B ∪ C and A ∩B ∩ C?�� ��Solution: The set A∪B ∪C contains those elements in at least one of A,
B, and C. Hence,

A ∪B ∪ C = {0, 1, 2, 3, 4, 6, 8, 9}.

The set A∩B ∩C contains those elements in all three of A, B, and C. Thus,

A ∩B ∩ C = {0}.

We can also consider unions and intersections of an arbitrary num-
ber of sets.We introduce these definitions.

Definition 2.2.6 The union of a collection of sets is the set that
contains those elements that are members of at least one set in the
collection.

We use the notation

A1 ∪A2 ∪ . . . ∪An =

n⋃
i=1

Ai

to denote the union of the sets A1, A2, . . . , An.

166 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

Definition 2.2.7 The intersection of a collection of sets is the
set that contains those elements that are members of all the sets in the
collection.

We use the notation

A1 ∩A2 ∩ . . . ∩An =
n⋂

i=1

Ai

to denote the union of the sets A1, A2, . . . , An. We illustrate gener-
alized unions and intersections with Example 16.

�
EXAMPLE. 16

For i = 1, 2, . . . , let Ai = {i, i+ 1, i+ 2, . . .}. Then

n⋃
i=1

Ai =

n⋃
i=1

{i, i+ 1, i+ 2, . . .} = {1, 2, 3, . . .},

and
n⋂

i=1

Ai =

n⋂
i=1

{i, i+ 1, i+ 2, . . .} = {n, n+ 1, n+ 2, . . .} = An

We can extend the notation we have introduced for unions and
intersections to other families of sets. In particular, we use the notation

A1 ∪A2 ∪ . . . ∪An ∪ . . . =
∞⋃
i=1

Ai

to denote the union of the sets A1, A2, . . . , An, Similarly, the inter-
section of these sets is denoted by

A1 ∩A2 ∩ . . . ∩An ∩ . . . =

∞⋂
i=1

Ai

More generally, when I is a set, the notations
⋂

i∈I Ai and
⋃

i∈I Ai

are used to denote the intersection and union of the sets Ai for i ∈ I,

2.2.4 Computer Representation of Sets 167

respectively. Note that we have
⋂

i∈I Ai = {x|∀i ∈ I(x ∈ Ai)} and⋃
i∈I Ai = {x|∃i ∈ I(x ∈ Ai)}.

�
EXAMPLE. 17

Suppose that Ai = {1, 2, 3, . . . , i} for i = 1, 2, 3, Then,
∞⋃
i=1

Ai =

∞⋃
i=1

{1, 2, 3, . . . , i} = Z+

and
∞⋂
i=1

Ai =

∞⋂
i=1

{1, 2, 3, . . . , i} = {1}

To see that the union of these sets is the set of positive integers, note that
every positive integer n is in at least one of the sets, because it belongs to
An = {1, 2, . . . , n}, and every element of the sets in the union is a positive
integer. To see that the intersection of these sets is the set {1}, note that the
only element that belongs to all the sets A1, A2, . . . is 1. To see this note that
A1 = {1} and 1 ∈ Ai for i = 1, 2,

2.2.4 Computer Representation of Sets

There are various ways to represent sets using a computer. One
method is to store the elements of the set in an unordered fashion.
However, if this is done, the operations of computing the union, in-
tersection, or difference of two sets would be time-consuming, because
each of these operations would require a large amount of searching for
elements. We will present a method for storing elements using an ar-
bitrary ordering of the elements of the universal set. This method of
representing sets makes computing combinations of sets easy.

Assume that the universal set U is finite (and of reasonable size so
that the number of elements of U is not larger than the memory size
of the computer being used). First, specify an arbitrary ordering of the
elements of U, for instance a1, a2, . . . , an. Represent a subset A of U
with the bit string of length n, where the ith bit in this string is 1 if ai
belongs to A and is 0 if ai does not belong to A. Example 18 illustrates
this technique.

168 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

�
EXAMPLE. 18

Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and the ordering of elements of U has the
elements in increasing order; that is, ai = i. What bit strings represent the
subset of all odd integers in U , the subset of all even integers in U , and the
subset of integers not exceeding 5 in U?�� ��Solution: The bit string that represents the set of odd integers in U,
namely, {1, 3, 5, 7, 9}, has a one bit in the first, third, fifth, seventh, and
ninth positions, and a zero elsewhere. It is

10 1010 1010.

(We have split this bit string of length ten into blocks of length four for
easy reading.) Similarly, we represent the subset of all even integers in U,
namely, {2, 4, 6, 8, 10}, by the string

01 0101 0101.

The set of all integers in U that do not exceed 5, namely, {1, 2, 3, 4, 5}, is
represented by the string

11 1110 0000.

Using bit strings to represent sets, it is easy to find complements of
sets and unions, intersections, and differences of sets. To find the bit
string for the complement of a set from the bit string for that set, we
simply change each 1 to a 0 and each 0 to 1, because x ∈ A if and only
if x /∈ A. Note that this operation corresponds to taking the negation of
each bit when we associate a bit with a truth value—with 1 representing
true and 0 representing false.

�
EXAMPLE. 19

We have seen that the bit string for the set {1, 3, 5, 7, 9} (with universal set
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}) is

10 1010 1010.

2.2.4 Computer Representation of Sets 169

What is the bit string for the complement of this set?�� ��Solution: The bit string for the complement of this set is obtained by
replacing 0s with 1s and vice versa. This yields the string

01 0101 0101,

which corresponds to the set {2, 4, 6, 8, 10}.

To obtain the bit string for the union and intersection of two sets
we perform bitwise Boolean operations on the bit strings representing
the two sets. The bit in the ith position of the bit string of the union
is 1 if either of the bits in the ith position in the two strings is 1 (or
both are 1), and is 0 when both bits are 0. Hence, the bit string for the
union is the bitwise OR of the bit strings for the two sets. The bit in
the ith position of the bit string of the intersection is 1 when the bits in
the corresponding position in the two strings are both 1, and is 0 when
either of the two bits is 0 (or both are). Hence, the bit string for the
intersection is the bitwise AND of the bit strings for the two sets.

�
EXAMPLE. 20

The bit strings for the sets {1, 2, 3, 4, 5} and {1, 3, 5, 7, 9} are 11 1110 0000 and
10 1010 1010, respectively. Use bit strings to find the union and intersection
of these sets.�� ��Solution: The bit string for the union of these sets is

11 1110 0000 ∨ 10 1010 1010 = 11 1110 1010,

which corresponds to the set {1, 2, 3, 4, 5, 7, 9}. The bit string for the inter-
section of these sets is

11 1110 0000 ∧ 10 1010 1010 = 10 1010 0000,

which corresponds to the set {1, 3, 5}.

170 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

2.3 Functions

Introduction

In many instances we assign to each element of a set a particular
element of a second set (which may be the same as the first). For
example, suppose that each student in a discrete mathematics class
is assigned a letter grade from the set {A,B,C,D, F}. And suppose
that the grades are A for Adams, C for Chou, B for Goodfriend, A for
Rodriguez, and F for Stevens. This assignment of grades is illustrated
in Figure 2.8.

This assignment is an example of a function. The concept of a func-
tion is extremely important in mathematics and computer science. For
example, in discrete mathematics functions are used in the definition
of such discrete structures as sequences and strings. Functions are also
used to represent how long it takes a computer to solve problems of a
given size. Many computer programs and subroutines are designed to
calculate values of functions. Recursive functions, which are functions
defined in terms of themselves, are used throughout computer science.
This section reviews the basic concepts involving functions needed in
discrete mathematics.

Definition 2.3.1 Let A and B be nonempty sets. A function f
from A to B is an assignment of exactly one element of B to each
element of A. We write f(a) = b if b is the unique element of B assigned
by the function f to the element a of A. If f is a function from A to B,
we write f : A→ B.

Remark! Functions are sometimes also called mappings or
transformations.

Functions are specified in many different ways. Sometimes we ex-
plicitly state the assignments, as in Figure 2.8. Often we give a formula,
such as f(x) = x+ 1, to define a function. Other times we use a com-
puter program to specify a function.

A function f : A → B can also be defined in terms of a relation
from A to B. Recall from Section 2.1 that a relation from A to B is

2.3. FUNCTIONS 171 2.3 Functions 139

Adams

Chou

Goodfriend

Rodriguez

Stevens

A

B

C

D

F

FIGURE 1 Assignment of Grades in a Discrete Mathematics Class.

which are functions defined in terms of themselves, are used throughout computer science; they
will be studied in Chapter 5. This section reviews the basic concepts involving functions needed
in discrete mathematics.

DEFINITION 1 Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one
element of B to each element of A. We write f (a) = b if b is the unique element of B

assigned by the function f to the element a of A. If f is a function from A to B, we write
f : A→ B.

Remark: Functions are sometimes also called mappings or transformations.

Functions are specified in many different ways. Sometimes we explicitly state the assign-
ments, as in Figure 1. Often we give a formula, such as f (x) = x + 1, to define a function.
Other times we use a computer program to specify a function.

A function f : A→ B can also be defined in terms of a relation from A to B. Recall from
Section 2.1 that a relation from A to B is just a subset of A× B. A relation from A to B that
contains one, and only one, ordered pair (a, b) for every element a ∈ A, defines a function f

from A to B. This function is defined by the assignment f (a) = b, where (a, b) is the unique
ordered pair in the relation that has a as its first element.

DEFINITION 2 If f is a function from A to B, we say that A is the domain of f and B is the codomain of f.

If f (a) = b, we say that b is the image of a and a is a preimage of b. The range, or image,
of f is the set of all images of elements of A. Also, if f is a function from A to B, we say
that f maps A to B.

Figure 2 represents a function f from A to B.
When we define a function we specify its domain, its codomain, and the mapping of elements

of the domain to elements in the codomain. Two functions are equal when they have the same
domain, have the same codomain, and map each element of their common domain to the same
element in their common codomain. Note that if we change either the domain or the codomain

A B

a b = f (a)

f

f

FIGURE 2 The Function f Maps A to B.

Figure 2.8: Assignment of Grades in a Discrete Mathematics Class.

2.3 Functions 139

Adams

Chou

Goodfriend

Rodriguez

Stevens

A

B

C

D

F

FIGURE 1 Assignment of Grades in a Discrete Mathematics Class.

which are functions defined in terms of themselves, are used throughout computer science; they
will be studied in Chapter 5. This section reviews the basic concepts involving functions needed
in discrete mathematics.

DEFINITION 1 Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one
element of B to each element of A. We write f (a) = b if b is the unique element of B

assigned by the function f to the element a of A. If f is a function from A to B, we write
f : A→ B.

Remark: Functions are sometimes also called mappings or transformations.

Functions are specified in many different ways. Sometimes we explicitly state the assign-
ments, as in Figure 1. Often we give a formula, such as f (x) = x + 1, to define a function.
Other times we use a computer program to specify a function.

A function f : A→ B can also be defined in terms of a relation from A to B. Recall from
Section 2.1 that a relation from A to B is just a subset of A× B. A relation from A to B that
contains one, and only one, ordered pair (a, b) for every element a ∈ A, defines a function f

from A to B. This function is defined by the assignment f (a) = b, where (a, b) is the unique
ordered pair in the relation that has a as its first element.

DEFINITION 2 If f is a function from A to B, we say that A is the domain of f and B is the codomain of f.

If f (a) = b, we say that b is the image of a and a is a preimage of b. The range, or image,
of f is the set of all images of elements of A. Also, if f is a function from A to B, we say
that f maps A to B.

Figure 2 represents a function f from A to B.
When we define a function we specify its domain, its codomain, and the mapping of elements

of the domain to elements in the codomain. Two functions are equal when they have the same
domain, have the same codomain, and map each element of their common domain to the same
element in their common codomain. Note that if we change either the domain or the codomain

A B

a b = f (a)

f

f

FIGURE 2 The Function f Maps A to B.Figure 2.9: The Function f Maps A to B.

just a subset of A×B. A relation from A to B that contains one, and
only one, ordered pair (a, b) for every element a ∈ A, defines a function
f from A to B. This function is defined by the assignment f(a) = b,
where (a, b) is the unique ordered pair in the relation that has a as its
first element.

Definition 2.3.2 If f is a function from A to B, we say that A is
the domain of f and B is the codomain of f. If f (a) = b, we say that
b is the image of a and a is a preimage of b. The range, or image,
of f is the set of all images of elements of A. Also, if f is a function
from A to B, we say that f maps A to B.

Figure 2.9 represents a function f from A to B.
When we define a function we specify its domain, its codomain, and

the mapping of elements of the domain to elements in the codomain.
Two functions are equal when they have the same domain, have the
same codomain, and map each element of their common domain to the

172 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

same element in their common codomain. Note that if we change either
the domain or the codomain of a function, then we obtain a different
function. If we change the mapping of elements, then we also obtain a
different function.

Examples 1–5 provide examples of functions. In each case, we de-
scribe the domain, the codomain, the range, and the assignment of
values to elements of the domain.

�
EXAMPLE. 1

What are the domain, codomain, and range of the function that assigns grades
to students described in the first paragraph of the introduction of this section?�� ��Solution: Let G be the function that assigns a grade to a student in our
discrete mathematics class. Note that G(Adams)= A, for instance. The do-
main of G is the set {Adams, Chou, Goodfriend, Rodriguez, Stevens},
and the codomain is the set {A,B,C,D, F}. The range of G is the set
{A,B,C, F}, because each grade except D is assigned to some student.

�
EXAMPLE. 2

Let R be the relation with ordered pairs (Abdul, 22), (Brenda, 24), (Carla,
21), (Desire, 22), (Eddie, 24), and (Felicia, 22). Here each pair consists of a
graduate student and this student’s age. Specify a function determined by
this relation.�� ��Solution: If f is a function specified by R, then f(Abdul) = 22, f(Brenda) =

24, f(Carla) = 21, f(Desire) = 22, f(Eddie) = 24, and f(Felicia) = 22.
(Here, f(x) is the age of x, where x is a student.) For the domain, we take
the set {Abdul, Brenda, Carla, Desire, Eddie, Felicia}. We also need
to specify a codomain, which needs to contain all possible ages of students.
Because it is highly likely that all students are less than 100 years old, we can
take the set of positive integers less than 100 as the codomain. (Note that
we could choose a different codomain, such as the set of all positive integers
or the set of positive integers between 10 and 90, but that would change the
function. Using this codomain will also allow us to extend the function by
adding the names and ages of more students later.) The range of the function
we have specified is the set of different ages of these students, which is the set

2.3. FUNCTIONS 173

{21, 22, 24}.

�
EXAMPLE. 3

Let f be the function that assigns the last two bits of a bit string of length 2
or greater to that string. For example, f(11010) = 10. Then, the domain of f
is the set of all bit strings of length 2 or greater, and both the codomain and
range are the set {00, 01, 10, 11}.

�
EXAMPLE. 4

Let f : Z→ Z assign the square of an integer to this integer. Then, f(x) = x2,
where the domain of f is the set of all integers, the codomain of f is the set
of all integers, and the range of f is the set of all integers that are perfect
squares, namely, {0, 1, 4, 9, . . .}.

�
EXAMPLE. 5

The domain and codomain of functions are often specified in programming
languages. For instance, the Java statement

int floor(float real){. . .}
and the C++ function statement

int function(float x){. . .}

both tell us that the domain of the floor function is the set of real numbers
(represented by floating point numbers) and its codomain is the set of inte-
gers.

A function is called real-valued if its codomain is the set of real
numbers, and it is called integer-valued if its codomain is the set of
integers. Two real-valued functions or two integervalued functions with
the same domain can be added, as well as multiplied.

174 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

Definition 2.3.3 Let f1 and f2 be functions from A to R. Then
f1 + f2 and f1 · f2 are also functions from A to R defined for all x ∈ A
by

(f1 + f2)(x) = f1(x) + f2(x),

(f1 · f2)(x) = f1(x) · f2(x).

Note that the functions f1 + f2 and f1 · f2 have been defined by
specifying their values at x in terms of the values of f1 and f2 at x.

�
EXAMPLE. 6

Let f1 and f2 be functions from R to R such that f1(x) = x2 and f2(x) =
x− x2. What are the functions f1 + f2 and f1 · f2 ?�� ��Solution: From the definition of the sum and product of functions, it
follows that

(f1 + f2)(x) = f1(x) + f2(x) = x2 + (x− x2) = x

and
(f1 · f2)(x) = x2(x− x2) = x3 − x4.

When f is a function from A to B, the image of a subset of A can
also be defined.

Definition 2.3.4 Let f be a function from A to B and let S be a
subset of A. The image of S under the function f is the subset of B that
consists of the images of the elements of S.We denote the image of S by
f(S), so

f(S) = {t|∃s ∈ S(t = f(s))}.

We also use the shorthand {f(s)|s ∈ S} to denote this set.

Remark! The notation f(S) for the image of the set S under
the function f is potentially ambiguous. Here, f(S) denotes a set,
and not the value of the function f for the set S.

2.3.1 One-to-One and Onto Functions 175142 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

a

b

c

d

1

2

3

4

5

FIGURE 3 A One-to-One Function.

Note that a function f is one-to-one if and only if f (a) �= f (b) whenever a �= b. This way
of expressing that f is one-to-one is obtained by taking the contrapositive of the implication in
the definition.

Remark: We can express thatf is one-to-one using quantifiers as∀a∀b(f (a) = f (b)→ a = b)

or equivalently ∀a∀b(a �= b→ f (a) �= f (b)), where the universe of discourse is the domain
of the function.

We illustrate this concept by giving examples of functions that are one-to-one and other
functions that are not one-to-one.

EXAMPLE 8 Determine whether the function f from {a, b, c, d} to {1, 2, 3, 4, 5} with f (a) = 4, f (b) = 5,
f (c) = 1, and f (d) = 3 is one-to-one.

Solution: The function f is one-to-one because f takes on different values at the four elements
of its domain. This is illustrated in Figure 3. ▲

EXAMPLE 9 Determine whether the function f (x) = x2 from the set of integers to the set of integers is
one-to-one.

Solution: The function f (x) = x2 is not one-to-one because, for instance, f (1) = f (−1) = 1,
but 1 �= −1.

Note that the function f (x) = x2 with its domain restricted to Z+ is one-to-one. (Techni-
cally, when we restrict the domain of a function, we obtain a new function whose values agree
with those of the original function for the elements of the restricted domain. The restricted
function is not defined for elements of the original domain outside of the restricted domain.) ▲

EXAMPLE 10 Determine whether the function f (x) = x + 1 from the set of real numbers to itself is one-to-
one.

Solution: The function f (x) = x + 1 is a one-to-one function. To demonstrate this, note that
x + 1 �= y + 1 when x �= y. ▲

EXAMPLE 11 Suppose that each worker in a group of employees is assigned a job from a set of possible
jobs, each to be done by a single worker. In this situation, the function f that assigns a job
to each worker is one-to-one. To see this, note that if x and y are two different workers, then
f (x) �= f (y) because the two workers x and y must be assigned different jobs. ▲

We now give some conditions that guarantee that a function is one-to-one.

Figure 2.10: A One-to-One Function.

�
EXAMPLE. 7

Let A = {a, b, c, d, e} and B = {1, 2, 3, 4} with f(a) = 2, f(b) = 1, f(c) =

4, f(d) = 1, and f(e) = 1. The image of the subset S = {b, c, d} is the set
f(S) = {1, 4}.

2.3.1 One-to-One and Onto Functions

Some functions never assign the same value to two different domain
elements. These functions are said to be one-to-one.

Definition 2.3.5 Afunction f is said to be one-to-one, or an
injunction, if and only if f(a) = f(b) implies that a = b for all a and b
in the domain of f . A function is said to be injective if it is one-to-one.

Note that a function f is one-to-one if and only if f(a) ̸= f(b)
whenever a ̸= b. This way of expressing that f is one-to-one is obtained
by taking the contrapositive of the implication in the definition.

Remark! We can express that f is one-to-one using quantifiers as
∀a∀b(f(a) = f(b) → a = b) or equivalently ∀a∀b(a ̸= b → f(a) ̸=
f(b)), where the universe of discourse is the domain of the function.

We illustrate this concept by giving examples of functions that are
one-to-one and other functions that are not one-to-one.

176 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

�
EXAMPLE. 8

Determine whether the function f from {a, b, c, d} to {1, 2, 3, 4, 5} with f(a) =
4, f(b) = 5, f(c) = 1, and f(d) = 3 is one-to-one.�� ��Solution: The function f is one-to-one because f takes on different values
at the four elements of its domain. This is illustrated in Figure 2.10.

�
EXAMPLE. 9

Determine whether the function f(x) = x2 from the set of integers to the set
of integers is one-to-one.�� ��Solution: The function f(x) = x2 is not one-to-one because, for instance,
f(1) = f(−1) = 1, but 1 ̸= −1.

Note that the function f(x) = x2 with its domain restricted to Z+ is
one-to-one. (Technically, when we restrict the domain of a function, we ob-
tain a new function whose values agree with those of the original function
for the elements of the restricted domain. The restricted function is not de-
fined for elements of the original domain outside of the restricted domain.)

�
EXAMPLE. 10

Determine whether the function f(x) = x+1 from the set of real numbers to
itself is one-to-one.�� ��Solution: The function f(x) = x+ 1 is a one-to-one function. To demon-
strate this, note that x+ 1 ̸= y + 1 when x ̸= y.

�
EXAMPLE. 11

Suppose that each worker in a group of employees is assigned a job from a
set of possible jobs, each to be done by a single worker. In this situation, the
function f that assigns a job to each worker is one-to-one. To see this, note
that if x and y are two different workers, then f(x) ̸= f(y) because the two

2.3.1 One-to-One and Onto Functions 177

workers x and y must be assigned different jobs.

We now give some conditions that guarantee that a function is one-
to-one.

Definition 2.3.6 A function f whose domain and codomain are
subsets of the set of real numbers is called increasing if f(x) ≤ f(y),
and strictly increasing if f(x) < f(y), whenever x < y and x and y are
in the domain of f . Similarly, f is called decreasing if f(x) ≥ f(y),
and strictly decreasing if f(x) > f(y), whenever x < y and x and y
are in the domain of f. (The word strictly in this definition indicates
a strict inequality.)

Remark! A function f is increasing if ∀x∀y(x < y → f(x) ≤
f(y)), strictly increasing if ∀x∀y(x < y → f(x) < f(y)), decreasing
if ∀x∀y(x < y → f(x) ≥ f(y)), and strictly decreasing if ∀x∀y(x <
y → f(x) > f(y)), where the universe of discourse is the domain
of f.

From these definitions, it can be shown that a function that is either
strictly increasing or strictly decreasing must be one-to-one. However,
a function that is increasing, but not strictly increasing, or decreasing,
but not strictly decreasing, is not one-to-one.

For some functions the range and the codomain are equal. That
is, every member of the codomain is the image of some element of the
domain. Functions with this property are called onto functions.

Definition 2.3.7 A function f from A to B is called onto, or a
surjection, if and only if for every element b ∈ B there is an element
a ∈ A with f(a) = b. A function f is called surjective if it is onto.

Remark! A function f is onto if ∀y∃x(f(x) = y), where the
domain for x is the domain of the function and the domain for y
is the codomain of the function.

178 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . . 2.3 Functions 143

a

b

c

d

1

2

3

FIGURE 4 An Onto Function.

DEFINITION 6 A function f whose domain and codomain are subsets of the set of real numbers is called
increasing if f (x) ≤ f (y), and strictly increasing if f (x) < f (y), whenever x < y and x

and y are in the domain of f. Similarly, f is called decreasing if f (x) ≥ f (y), and strictly
decreasing if f (x) > f (y), whenever x < y and x and y are in the domain of f. (The word
strictly in this definition indicates a strict inequality.)

Remark: A function f is increasing if ∀x∀y(x < y → f (x) ≤ f (y)), strictly increasing if
∀x∀y(x < y → f (x) < f (y)), decreasing if ∀x∀y(x < y → f (x) ≥ f (y)), and strictly de-
creasing if ∀x∀y(x < y → f (x) > f (y)), where the universe of discourse is the domain of f.

From these definitions, it can be shown (see Exercises 26 and 27) that a function that is
either strictly increasing or strictly decreasing must be one-to-one. However, a function that is
increasing, but not strictly increasing, or decreasing, but not strictly decreasing, is not one-to-one.

For some functions the range and the codomain are equal. That is, every member of the
codomain is the image of some element of the domain. Functions with this property are called
onto functions.

DEFINITION 7 A function f from A to B is called onto, or a surjection, if and only if for every element
b ∈ B there is an element a ∈ A with f (a) = b. A function f is called surjective if it is onto.

Remark: A function f is onto if ∀y∃x(f (x) = y), where the domain for x is the domain of the
function and the domain for y is the codomain of the function.

We now give examples of onto functions and functions that are not onto.

EXAMPLE 12 Let f be the function from {a, b, c, d} to {1, 2, 3} defined by f (a) = 3, f (b) = 2, f (c) = 1,
and f (d) = 3. Is f an onto function?

Solution: Because all three elements of the codomain are images of elements in the domain, we
see that f is onto. This is illustrated in Figure 4. Note that if the codomain were {1, 2, 3, 4},
then f would not be onto. ▲

EXAMPLE 13 Is the function f (x) = x2 from the set of integers to the set of integers onto?

Solution: The function f is not onto because there is no integer x with x2 = −1, for instance. ▲

EXAMPLE 14 Is the function f (x) = x + 1 from the set of integers to the set of integers onto?

Figure 2.11: An Onto Function.

We now give examples of onto functions and functions that are not
onto.

�
EXAMPLE. 12

Let f be the function from {a, b, c, d} to {1, 2, 3} defined by f (a) = 3, f (b) =
2, f (c) = 1, and f(d) = 3. Is f an onto function?�� ��Solution: Because all three elements of the codomain are images of ele-
ments in the domain, we see that f is onto. This is illustrated in Figure 2.11.
Note that if the codomain were {1, 2, 3, 4}, then f would not be onto.

�
EXAMPLE. 13

Is the function f(x) = x2 from the set of integers to the set of integers onto?�� ��Solution: The function f is not onto because there is no integer x with
x2 = −1, for instance.

�
EXAMPLE. 14

Is the function f(x) = x + 1 from the set of integers to the set of integers
onto?�� ��Solution: This function is onto, because for every integer y there is an
integer x such that f(x) = y. To see this, note that f(x) = y if and only if
x+ 1 = y, which holds if and only if x = y − 1.

2.3.1 One-to-One and Onto Functions 179

Consider the function f in Example 11 that assigns jobs to workers.
The function f is onto if for every job there is a worker assigned this
job. The function f is not onto when there is at least one job that has
no worker assigned it.

Definition 2.3.8 The function f is a one-to-one correspondence,
or a bijection, if it is both one-to-one and onto.We also say that such
a function is bijective.

Examples 16 and 17 illustrate the concept of a bijection.
144 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

a

b

c

1

2

3

4

a

b

c

d

1

2

3

a

b

c

d

1

2

3

4

a

b

c

d

1

2

3

4

a

b

c

1

2

3

4

One-to-one,
not onto

Onto,
not one-to-one

 One-to-one,
and onto

Neither one-to-one
nor onto

Not a function(a) (b) (c) (d) (e)

FIGURE 5 Examples of Different Types of Correspondences.

Solution: This function is onto, because for every integer y there is an integer x such that
f (x) = y. To see this, note that f (x) = y if and only if x + 1 = y, which holds if and only if
x = y − 1. ▲

EXAMPLE 15 Consider the function f in Example 11 that assigns jobs to workers. The function f is onto if
for every job there is a worker assigned this job. The function f is not onto when there is at
least one job that has no worker assigned it. ▲

DEFINITION 8 The function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and
onto. We also say that such a function is bijective.

Examples 16 and 17 illustrate the concept of a bijection.

EXAMPLE 16 Let f be the function from {a, b, c, d} to {1, 2, 3, 4} with f (a) = 4, f (b) = 2, f (c) = 1, and
f (d) = 3. Is f a bijection?

Solution: The function f is one-to-one and onto. It is one-to-one because no two values in
the domain are assigned the same function value. It is onto because all four elements of the
codomain are images of elements in the domain. Hence, f is a bijection. ▲

Figure 5 displays four functions where the first is one-to-one but not onto, the second is onto
but not one-to-one, the third is both one-to-one and onto, and the fourth is neither one-to-one
nor onto. The fifth correspondence in Figure 5 is not a function, because it sends an element to
two different elements.

Suppose that f is a function from a set A to itself. If A is finite, then f is one-to-one if and
only if it is onto. (This follows from the result in Exercise 72.) This is not necessarily the case
if A is infinite (as will be shown in Section 2.5).

EXAMPLE 17 Let A be a set. The identity function on A is the function ιA : A→ A, where

ιA(x) = x

for all x ∈ A. In other words, the identity function ιA is the function that assigns each element
to itself. The function ιA is one-to-one and onto, so it is a bijection. (Note that ι is the Greek
letter iota.) ▲

For future reference, we summarize what needs be to shown to establish whether a function
is one-to-one and whether it is onto. It is instructive to review Examples 8–17 in light of this
summary.

a)
One-to-one
not onto

144 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

a

b

c

1

2

3

4

a

b

c

d

1

2

3

a

b

c

d

1

2

3

4

a

b

c

d

1

2

3

4

a

b

c

1

2

3

4

One-to-one,
not onto

Onto,
not one-to-one

 One-to-one,
and onto

Neither one-to-one
nor onto

Not a function(a) (b) (c) (d) (e)

FIGURE 5 Examples of Different Types of Correspondences.

Solution: This function is onto, because for every integer y there is an integer x such that
f (x) = y. To see this, note that f (x) = y if and only if x + 1 = y, which holds if and only if
x = y − 1. ▲

EXAMPLE 15 Consider the function f in Example 11 that assigns jobs to workers. The function f is onto if
for every job there is a worker assigned this job. The function f is not onto when there is at
least one job that has no worker assigned it. ▲

DEFINITION 8 The function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and
onto. We also say that such a function is bijective.

Examples 16 and 17 illustrate the concept of a bijection.

EXAMPLE 16 Let f be the function from {a, b, c, d} to {1, 2, 3, 4} with f (a) = 4, f (b) = 2, f (c) = 1, and
f (d) = 3. Is f a bijection?

Solution: The function f is one-to-one and onto. It is one-to-one because no two values in
the domain are assigned the same function value. It is onto because all four elements of the
codomain are images of elements in the domain. Hence, f is a bijection. ▲

Figure 5 displays four functions where the first is one-to-one but not onto, the second is onto
but not one-to-one, the third is both one-to-one and onto, and the fourth is neither one-to-one
nor onto. The fifth correspondence in Figure 5 is not a function, because it sends an element to
two different elements.

Suppose that f is a function from a set A to itself. If A is finite, then f is one-to-one if and
only if it is onto. (This follows from the result in Exercise 72.) This is not necessarily the case
if A is infinite (as will be shown in Section 2.5).

EXAMPLE 17 Let A be a set. The identity function on A is the function ιA : A→ A, where

ιA(x) = x

for all x ∈ A. In other words, the identity function ιA is the function that assigns each element
to itself. The function ιA is one-to-one and onto, so it is a bijection. (Note that ι is the Greek
letter iota.) ▲

For future reference, we summarize what needs be to shown to establish whether a function
is one-to-one and whether it is onto. It is instructive to review Examples 8–17 in light of this
summary.

b) Onto,
not

one-to-one

144 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

a

b

c

1

2

3

4

a

b

c

d

1

2

3

a

b

c

d

1

2

3

4

a

b

c

d

1

2

3

4

a

b

c

1

2

3

4

One-to-one,
not onto

Onto,
not one-to-one

 One-to-one,
and onto

Neither one-to-one
nor onto

Not a function(a) (b) (c) (d) (e)

FIGURE 5 Examples of Different Types of Correspondences.

Solution: This function is onto, because for every integer y there is an integer x such that
f (x) = y. To see this, note that f (x) = y if and only if x + 1 = y, which holds if and only if
x = y − 1. ▲

EXAMPLE 15 Consider the function f in Example 11 that assigns jobs to workers. The function f is onto if
for every job there is a worker assigned this job. The function f is not onto when there is at
least one job that has no worker assigned it. ▲

DEFINITION 8 The function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and
onto. We also say that such a function is bijective.

Examples 16 and 17 illustrate the concept of a bijection.

EXAMPLE 16 Let f be the function from {a, b, c, d} to {1, 2, 3, 4} with f (a) = 4, f (b) = 2, f (c) = 1, and
f (d) = 3. Is f a bijection?

Solution: The function f is one-to-one and onto. It is one-to-one because no two values in
the domain are assigned the same function value. It is onto because all four elements of the
codomain are images of elements in the domain. Hence, f is a bijection. ▲

Figure 5 displays four functions where the first is one-to-one but not onto, the second is onto
but not one-to-one, the third is both one-to-one and onto, and the fourth is neither one-to-one
nor onto. The fifth correspondence in Figure 5 is not a function, because it sends an element to
two different elements.

Suppose that f is a function from a set A to itself. If A is finite, then f is one-to-one if and
only if it is onto. (This follows from the result in Exercise 72.) This is not necessarily the case
if A is infinite (as will be shown in Section 2.5).

EXAMPLE 17 Let A be a set. The identity function on A is the function ιA : A→ A, where

ιA(x) = x

for all x ∈ A. In other words, the identity function ιA is the function that assigns each element
to itself. The function ιA is one-to-one and onto, so it is a bijection. (Note that ι is the Greek
letter iota.) ▲

For future reference, we summarize what needs be to shown to establish whether a function
is one-to-one and whether it is onto. It is instructive to review Examples 8–17 in light of this
summary.

c)
One-to-one,
and onto

144 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

a

b

c

1

2

3

4

a

b

c

d

1

2

3

a

b

c

d

1

2

3

4

a

b

c

d

1

2

3

4

a

b

c

1

2

3

4

One-to-one,
not onto

Onto,
not one-to-one

 One-to-one,
and onto

Neither one-to-one
nor onto

Not a function(a) (b) (c) (d) (e)

FIGURE 5 Examples of Different Types of Correspondences.

Solution: This function is onto, because for every integer y there is an integer x such that
f (x) = y. To see this, note that f (x) = y if and only if x + 1 = y, which holds if and only if
x = y − 1. ▲

EXAMPLE 15 Consider the function f in Example 11 that assigns jobs to workers. The function f is onto if
for every job there is a worker assigned this job. The function f is not onto when there is at
least one job that has no worker assigned it. ▲

DEFINITION 8 The function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and
onto. We also say that such a function is bijective.

Examples 16 and 17 illustrate the concept of a bijection.

EXAMPLE 16 Let f be the function from {a, b, c, d} to {1, 2, 3, 4} with f (a) = 4, f (b) = 2, f (c) = 1, and
f (d) = 3. Is f a bijection?

Solution: The function f is one-to-one and onto. It is one-to-one because no two values in
the domain are assigned the same function value. It is onto because all four elements of the
codomain are images of elements in the domain. Hence, f is a bijection. ▲

Figure 5 displays four functions where the first is one-to-one but not onto, the second is onto
but not one-to-one, the third is both one-to-one and onto, and the fourth is neither one-to-one
nor onto. The fifth correspondence in Figure 5 is not a function, because it sends an element to
two different elements.

Suppose that f is a function from a set A to itself. If A is finite, then f is one-to-one if and
only if it is onto. (This follows from the result in Exercise 72.) This is not necessarily the case
if A is infinite (as will be shown in Section 2.5).

EXAMPLE 17 Let A be a set. The identity function on A is the function ιA : A→ A, where

ιA(x) = x

for all x ∈ A. In other words, the identity function ιA is the function that assigns each element
to itself. The function ιA is one-to-one and onto, so it is a bijection. (Note that ι is the Greek
letter iota.) ▲

For future reference, we summarize what needs be to shown to establish whether a function
is one-to-one and whether it is onto. It is instructive to review Examples 8–17 in light of this
summary.

d) Neither
one-to-one
nor onto

144 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

a

b

c

1

2

3

4

a

b

c

d

1

2

3

a

b

c

d

1

2

3

4

a

b

c

d

1

2

3

4

a

b

c

1

2

3

4

One-to-one,
not onto

Onto,
not one-to-one

 One-to-one,
and onto

Neither one-to-one
nor onto

Not a function(a) (b) (c) (d) (e)

FIGURE 5 Examples of Different Types of Correspondences.

Solution: This function is onto, because for every integer y there is an integer x such that
f (x) = y. To see this, note that f (x) = y if and only if x + 1 = y, which holds if and only if
x = y − 1. ▲

EXAMPLE 15 Consider the function f in Example 11 that assigns jobs to workers. The function f is onto if
for every job there is a worker assigned this job. The function f is not onto when there is at
least one job that has no worker assigned it. ▲

DEFINITION 8 The function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and
onto. We also say that such a function is bijective.

Examples 16 and 17 illustrate the concept of a bijection.

EXAMPLE 16 Let f be the function from {a, b, c, d} to {1, 2, 3, 4} with f (a) = 4, f (b) = 2, f (c) = 1, and
f (d) = 3. Is f a bijection?

Solution: The function f is one-to-one and onto. It is one-to-one because no two values in
the domain are assigned the same function value. It is onto because all four elements of the
codomain are images of elements in the domain. Hence, f is a bijection. ▲

Figure 5 displays four functions where the first is one-to-one but not onto, the second is onto
but not one-to-one, the third is both one-to-one and onto, and the fourth is neither one-to-one
nor onto. The fifth correspondence in Figure 5 is not a function, because it sends an element to
two different elements.

Suppose that f is a function from a set A to itself. If A is finite, then f is one-to-one if and
only if it is onto. (This follows from the result in Exercise 72.) This is not necessarily the case
if A is infinite (as will be shown in Section 2.5).

EXAMPLE 17 Let A be a set. The identity function on A is the function ιA : A→ A, where

ιA(x) = x

for all x ∈ A. In other words, the identity function ιA is the function that assigns each element
to itself. The function ιA is one-to-one and onto, so it is a bijection. (Note that ι is the Greek
letter iota.) ▲

For future reference, we summarize what needs be to shown to establish whether a function
is one-to-one and whether it is onto. It is instructive to review Examples 8–17 in light of this
summary.

e) Not a
function

Figure 2.12: Examples of Different Types of Correspondences.

�
EXAMPLE. 16

Let f be the function from {a, b, c, d} to {1, 2, 3, 4} with f(a) = 4, f(b) =
2, f(c) = 1, and f(d) = 3. Is f a bijection?�� ��Solution: The function f is one-to-one and onto. It is one-to-one because
no two values in the domain are assigned the same function value. It is onto
because all four elements of the codomain are images of elements in the do-
main. Hence, f is a bijection.

Figure 2.12 displays four functions where the first is one-to-one but
not onto, the second is onto but not one-to-one, the third is both one-
to-one and onto, and the fourth is neither one-to-one nor onto. The
fifth correspondence in Figure 2.12 is not a function, because it sends
an element to two different elements.

Suppose that f is a function from a set A to itself. If A is finite,
then f is one-to-one if and only if it is onto. This is not necessarily the
case if A is infinite.

180 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

�
EXAMPLE. 17

Let A be a set. The identity function on A is the function ιA : A → A,
where ιA(x) = x for all x ∈ A. In other words, the identity function ιA is
the function that assigns each element to itself. The function ιA is one-to-one
and onto, so it is a bijection. (Note that ι is the Greek letter iota.)

For future reference, we summarize what needs be to shown to es-
tablish whether a function is one-to-one and whether it is onto. It is
instructive to review Examples 8–17 in light of this summary.

Suppose that f : A→ B.
To show that f is injective Show that if f(x) = f(y) for

arbitrary x, y ∈ A with x ̸= y, then x = y.
To show that f is not injective Find particular elements

x, y ∈ A such that x ̸= y and f(x) = f(y).
To show that f is surjective Consider an arbitrary element

y ∈ B and find an element x ∈ A such that f(x) = y.
To show that f is not surjective Find a particular y ∈ B

such that f(x) ̸= y for all x ∈ A.

2.3.2 Inverse Functions and Compositions of Functions

Now consider a one-to-one correspondence f from the set A to the
set B. Because f is an onto function, every element of B is the image
of some element in A. Furthermore, because f is also a one-to-one
function, every element of B is the image of a unique element of A.
Consequently, we can define a new function from B to A that reverses
the correspondence given by f .

Definition 2.3.9 Let f be a one-to-one correspondence from the
set A to the set B. The inverse function of f is the function that
assigns to an element b belonging to B the unique element a in A such
that f(a) = b. The inverse function of f is denoted by f−1. Hence,
f−1(b) = a when f(a) = b.

2.3.2 Inverse Functions and Compositions of Functions 181

Remark! Be sure not to confuse the function f−1 with the
function 1/f , which is the function that assigns to each x in the
domain the value 1/f(x). Notice that the latter makes sense only
when f(x) is a non-zero real number.

Figure 2.13 illustrates the concept of an inverse function.

2.3 Functions 145

Suppose that f : A→ B.

To show that f is injective Show that if f (x) = f (y) for arbitrary x, y ∈ A with x �= y,
then x = y.

To show that f is not injective Find particular elements x, y ∈ A such that x �= y and
f (x) = f (y).

To show that f is surjective Consider an arbitrary element y ∈ B and find an element x ∈ A

such that f (x) = y.

To show that f is not surjective Find a particular y ∈ B such that f (x) �= y for all x ∈ A.

Inverse Functions and Compositions of Functions

Now consider a one-to-one correspondence f from the set A to the set B. Because f is an onto
function, every element of B is the image of some element in A. Furthermore, because f is also
a one-to-one function, every element of B is the image of a unique element of A. Consequently,
we can define a new function from B to A that reverses the correspondence given by f . This
leads to Definition 9.

DEFINITION 9 Let f be a one-to-one correspondence from the set A to the set B. The inverse function of
f is the function that assigns to an element b belonging to B the unique element a in A

such that f (a) = b. The inverse function of f is denoted by f−1. Hence, f−1(b) = a when
f (a) = b.

Remark: Be sure not to confuse the function f−1 with the function 1/f , which is the function
that assigns to each x in the domain the value 1/f (x). Notice that the latter makes sense only
when f (x) is a non-zero real number.

Figure 6 illustrates the concept of an inverse function.
If a function f is not a one-to-one correspondence, we cannot define an inverse function of

f . When f is not a one-to-one correspondence, either it is not one-to-one or it is not onto. If
f is not one-to-one, some element b in the codomain is the image of more than one element in
the domain. If f is not onto, for some element b in the codomain, no element a in the domain
exists for which f (a) = b. Consequently, if f is not a one-to-one correspondence, we cannot
assign to each element b in the codomain a unique element a in the domain such that f (a) = b

(because for some b there is either more than one such a or no such a).
A one-to-one correspondence is called invertible because we can define an inverse of this

function. A function is not invertible if it is not a one-to-one correspondence, because the
inverse of such a function does not exist.

f

A B

a = f –1(b) b = f (a)f (a)

f –1(b)

f –1

FIGURE 6 The Function f −1 Is the Inverse of Function f .
Figure 2.13: The Function f−1 Is the Inverse of Function f

When f is not a one-to-one correspondence, either it is not one-
to-one or it is not onto. If f is not one-to-one, some element b in the
codomain is the image of more than one element in the domain. If f
is not onto, for some element b in the codomain, no element a in the
domain exists for which f(a) = b. Consequently, if f is not a one-to-one
correspondence, we cannot assign to each element b in the codomain a
unique element a in the domain such that f(a) = b (because for some
b there is either more than one such a or no such a).

A one-to-one correspondence is called invertible because we can
define an inverse of this function. A function is not invertible if it is
not a one-to-one correspondence, because the inverse of such a function
does not exist.

�
EXAMPLE. 18

Let f be the function from {a, b, c} to {1, 2, 3} such that f(a) = 2, f(b) = 3,
and f(c) = 1. Is f invertible, and if it is, what is its inverse?�� ��Solution: The function f is invertible because it is a one-to-one corre-
spondence. The inverse function f−1 reverses the correspondence given by f

182 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

, so f−1(1) = c, f−1(2) = a, and f−1(3) = b.

�
EXAMPLE. 19

Let f : Z→ Z be such that f(x) = x+ 1. Is f invertible, and if it is, what is
its inverse?�� ��Solution: The function f has an inverse because it is a one-to-one corre-
spondence, as follows from Examples 10 and 14. To reverse the correspon-
dence, suppose that y is the image of x, so that y = x + 1. Then x = y − 1.
This means that y − 1 is the unique element of Z that is sent to y by f .
Consequently, f−1(y) = y − 1.

�
EXAMPLE. 20

Let f be the function from R to R with f(x) = x2. Is f invertible?�� ��Solution: Because f(−2) = f(2) = 4, f is not one-to-one. If an inverse
function were defined, it would have to assign two elements to 4. Hence, f is
not invertible. (Note we can also show that f is not invertible because it is
not onto.)

Sometimes we can restrict the domain or the codomain of a function,
or both, to obtain an invertible function, as Example 21 illustrates.

�
EXAMPLE. 21

Show that if we restrict the function f(x) = x2 in Example 20 to a function
from the set of all nonnegative real numbers to the set of all nonnegative real
numbers, then f is invertible.�� ��Solution: The function f(x) = x2 from the set of nonnegative real num-
bers to the set of nonnegative real numbers is one-to-one. To see this, note
that if f(x) = f(y), then x2 = y2, so x2 − y2 = (x + y)(x − y) = 0. This
means that x + y = 0 or x − y = 0, so x = −y or x = y. Because both x

and y are nonnegative, we must have x = y. So, this function is one-to-one.
Furthermore, f(x) = x2 is onto when the codomain is the set of all nonnega-

2.3.2 Inverse Functions and Compositions of Functions 183

tive real numbers, because each nonnegative real number has a square root.
That is, if y is a nonnegative real number, there exists a nonnegative real
number x such that x =

√
y, which means that x2 = y. Because the function

f(x) = x2 from the set of nonnegative real numbers to the set of nonnegative
real numbers is one-to-one and onto, it is invertible. Its inverse is given by
the rule f−1(y) =

√
y.

Definition 2.3.10 Let g be a function from the set A to the set B
and let f be a function from the set B to the set C. The composition
of the functions f and g, denoted for all a ∈ A by f ◦ g, is defined by

(f ◦ g)(a) = f(g(a)).

In other words, f ◦ g is the function that assigns to the element a
of A the element assigned by f to g(a). That is, to find (f ◦ g)(a) we
first apply the function g to a to obtain g(a) and then we apply the
function f to the result g(a) to obtain (f ◦ g)(a) = f(g(a)). Note that
the composition f ◦g cannot be defined unless the range of g is a subset
of the domain of f . In Figure 2.14 the composition of functions is
shown. 2.3 Functions 147

A B

a g(a)

g(a)

C

f (g(a))

f (g(a))

g f

(f g)(a)

f g

FIGURE 7 The Composition of the Functions f and g.

EXAMPLE 22 Let g be the function from the set {a, b, c} to itself such that g(a) = b, g(b) = c, and g(c) = a.
Let f be the function from the set {a, b, c} to the set {1, 2, 3} such that f (a) = 3, f (b) = 2, and
f (c) = 1. What is the composition of f and g, and what is the composition of g and f ?

Solution: The composition f ◦ g is defined by (f ◦ g)(a) = f (g(a)) = f (b) = 2,
(f ◦ g) (b) = f (g(b)) = f (c) = 1, and (f ◦ g)(c) = f (g(c)) = f (a) = 3.

Note that g ◦ f is not defined, because the range of f is not a subset of the domain of g. ▲

EXAMPLE 23 Let f and g be the functions from the set of integers to the set of integers defined by
f (x) = 2x + 3 and g(x) = 3x + 2. What is the composition of f and g? What is the com-
position of g and f ?

Solution: Both the compositions f ◦ g and g ◦ f are defined. Moreover,

(f ◦ g)(x) = f (g(x)) = f (3x + 2) = 2(3x + 2)+ 3 = 6x + 7

and

(g ◦ f)(x) = g(f (x)) = g(2x + 3) = 3(2x + 3)+ 2 = 6x + 11. ▲

Remark: Note that even though f ◦ g and g ◦ f are defined for the functions f and g in
Example 23, f ◦ g and g ◦ f are not equal. In other words, the commutative law does not hold
for the composition of functions.

When the composition of a function and its inverse is formed, in either order, an identity
function is obtained. To see this, suppose that f is a one-to-one correspondence from the set A

to the set B. Then the inverse function f−1 exists and is a one-to-one correspondence from B

to A. The inverse function reverses the correspondence of the original function, so f−1(b) = a

when f (a) = b, and f (a) = b when f−1(b) = a. Hence,

(f−1 ◦ f)(a) = f−1(f (a)) = f−1(b) = a,

and

(f ◦ f−1)(b) = f (f−1(b)) = f (a) = b.

Consequently f−1 ◦ f = ιA and f ◦ f−1 = ιB , where ιA and ιB are the identity functions on
the sets A and B, respectively. That is, (f−1)−1 = f .

Figure 2.14: The Composition of the Functions f and g.

�
EXAMPLE. 22

Let g be the function from the set {a, b, c} to itself such that g(a) = b, g(b) = c,
and g(c) = a. Let f be the function from the set {a, b, c} to the set {1, 2, 3}

184 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

such that f(a) = 3, f(b) = 2, and f(c) = 1. What is the composition of f
and g, and what is the composition of g and f ?�� ��Solution: The composition f◦g is defined by (f◦g)(a) = f(g(a)) = f(b) =
2, (f ◦ g)(b) = f(g(b)) = f(c) = 1, and (f ◦ g)(c) = f(g(c)) = f(a) = 3.

Note that g ◦ f is not defined, because the range of f is not a subset of
the domain of g.

�
EXAMPLE. 23

Let f and g be the functions from the set of integers to the set of integers
defined by f(x) = 2x + 3 and g(x) = 3x + 2. What is the composition of f
and g? What is the composition of g and f ?�� ��Solution: Both the compositions f ◦ g and g ◦ f are defined. Moreover,

(f ◦ g)(x) = f(g(x)) = f(3x+ 2) = 2(3x+ 2) + 3 = 6x+ 7

and

(g ◦ f)(x) = g(f(x)) = g(2x+ 3) = 3(2x+ 3) + 2 = 6x+ 11.

Remark! Note that even though f ◦ g and g ◦ f are defined
for the functions f and g in Example 23, f ◦ g and g ◦ f are not
equal. In other words, the commutative law does not hold for the
composition of functions.

When the composition of a function and its inverse is formed, in
either order, an identity function is obtained. To see this, suppose that
f is a one-to-one correspondence from the set A to the set B. Then the
inverse function f−1 exists and is a one-to-one correspondence from B
to A. The inverse function reverses the correspondence of the original
function, so f−1(b) = a when f(a) = b, and f(a) = b when f−1(b) = a.
Hence,

(f−1 ◦ f)(a) = f−1(f(a)) = f−1(b) = a,

and
(f ◦ f−1)(b) = f(f−1(b)) = f(a) = b.

2.3.3 The Graphs of Functions 185

Consequently (f−1 ◦ f = ιA and f ◦ f−1 = ιB, where ιA and ιB are the
identity functions on the sets A and B, respectively. That is, (f−1)−1 =
f.

2.3.3 The Graphs of Functions

We can associate a set of pairs in A × B to each function from
A to B. This set of pairs is called the graph of the function and is
often displayed pictorially to aid in understanding the behavior of the
function.

Definition 2.3.11 Let f be a function from the set A to the set
B. The graph of the function f is the set of ordered pairs {(a, b)|a ∈
A andf(a) = b}.

From the definition, the graph of a function f from A to B is the
subset of A × B containing the ordered pairs with the second entry
equal to the element of B assigned by f to the first entry. Also, note
that the graph of a function f from A to B is the same as the relation
from A to B determined by the function f .

�
EXAMPLE. 24

Display the graph of the function f(n) = 2n + 1 from the set of integers to
the set of integers.�� ��Solution: The graph of f is the set of ordered pairs of the form (n, 2n+1),
where n is an integer. This graph is displayed in Figure 2.15.

�
EXAMPLE. 25

Display the graph of the function f(x) = x2 from the set of integers to the
set of integers.�� ��Solution: The graph of f is the set of ordered pairs of the form (x, f(x)) =

(x, x2), where x is an integer. This graph is displayed in Figure 2.16.

186 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

148 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

The Graphs of Functions

We can associate a set of pairs in A× B to each function from A to B. This set of pairs is called
the graph of the function and is often displayed pictorially to aid in understanding the behavior
of the function.

DEFINITION 11 Let f be a function from the set A to the set B. The graph of the function f is the set of
ordered pairs {(a, b) | a ∈ A and f (a) = b}.

From the definition, the graph of a function f from A to B is the subset of A× B containing the
ordered pairs with the second entry equal to the element of B assigned by f to the first entry.
Also, note that the graph of a function f from A to B is the same as the relation from A to B

determined by the function f , as described on page 139.

EXAMPLE 24 Display the graph of the function f (n) = 2n+ 1 from the set of integers to the set of integers.

Solution: The graph of f is the set of ordered pairs of the form (n, 2n+ 1), where n is an integer.
This graph is displayed in Figure 8. ▲

EXAMPLE 25 Display the graph of the function f (x) = x2 from the set of integers to the set of integers.

Solution: The graph of f is the set of ordered pairs of the form (x, f (x)) = (x, x2), where x is
an integer. This graph is displayed in Figure 9. ▲

Some Important Functions

Next, we introduce two important functions in discrete mathematics, namely, the floor and ceiling
functions. Let x be a real number. The floor function rounds x down to the closest integer less
than or equal to x, and the ceiling function rounds x up to the closest integer greater than or
equal to x. These functions are often used when objects are counted. They play an important
role in the analysis of the number of steps used by procedures to solve problems of a particular
size.

FIGURE 8 The Graph of
f (n) = 2n + 1 from Z to Z.

(3,9)(–3,9)

(2,4)

(1,1)(–1,1)

(0,0)

(–2,4)

FIGURE 9 The Graph of
f (x) = x2 from Z to Z.

Figure 2.15: The Graph of
f(n) = 2n+ 1 from Z to Z.

148 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

The Graphs of Functions

We can associate a set of pairs in A× B to each function from A to B. This set of pairs is called
the graph of the function and is often displayed pictorially to aid in understanding the behavior
of the function.

DEFINITION 11 Let f be a function from the set A to the set B. The graph of the function f is the set of
ordered pairs {(a, b) | a ∈ A and f (a) = b}.

From the definition, the graph of a function f from A to B is the subset of A× B containing the
ordered pairs with the second entry equal to the element of B assigned by f to the first entry.
Also, note that the graph of a function f from A to B is the same as the relation from A to B

determined by the function f , as described on page 139.

EXAMPLE 24 Display the graph of the function f (n) = 2n+ 1 from the set of integers to the set of integers.

Solution: The graph of f is the set of ordered pairs of the form (n, 2n+ 1), where n is an integer.
This graph is displayed in Figure 8. ▲

EXAMPLE 25 Display the graph of the function f (x) = x2 from the set of integers to the set of integers.

Solution: The graph of f is the set of ordered pairs of the form (x, f (x)) = (x, x2), where x is
an integer. This graph is displayed in Figure 9. ▲

Some Important Functions

Next, we introduce two important functions in discrete mathematics, namely, the floor and ceiling
functions. Let x be a real number. The floor function rounds x down to the closest integer less
than or equal to x, and the ceiling function rounds x up to the closest integer greater than or
equal to x. These functions are often used when objects are counted. They play an important
role in the analysis of the number of steps used by procedures to solve problems of a particular
size.

FIGURE 8 The Graph of
f (n) = 2n + 1 from Z to Z.

(3,9)(–3,9)

(2,4)

(1,1)(–1,1)

(0,0)

(–2,4)

FIGURE 9 The Graph of
f (x) = x2 from Z to Z.Figure 2.16: The Graph of

f(x) = x2 from Z to Z.

2.3.4 Some Important Functions

Next, weintroduce two important functions in discrete mathematics,
namely, the floor and ceiling functions. Let x be a real number. The
floor function rounds x down to the closest integer less than or equal
to x, and the ceiling function rounds x up to the closest integer greater
than or equal to x. These functions are often used when objects are
counted. They play an important role in the analysis of the number of
steps used by procedures to solve problems of a particular size.

Definition 2.3.12 The floor function assigns to the real number
x the largest integer that is less than or equal to x. The value of the
floor function at x is denoted by ⌊x⌋. The ceiling function assigns to
the real number x the smallest integer that is greater than or equal to
x. The value of the ceiling function at x is denoted by ⌈x⌉.

Remark! The floor function is often also called the greatest
integer function. It is often denoted by [x].

�
EXAMPLE. 26

These are some values of the floor and ceiling functions:

2.3.4 Some Important Functions 187

⌊1
2
⌋ = 1, ⌈1

2
⌉ = 1, ⌊−1

2
⌋ = −1, ⌈−1

2
⌉ = 0,

⌊3.1⌋ = 3, ⌈3.1⌉ = 4, ⌊7⌋ = 7, ⌈7⌉ = 7.

We display the graphs of the floor and ceiling functions in
Figure 2.17. In Figure 2.17a we display the graph of the floor function
⌊x⌋. Note that this function has the same value throughout the interval
[n, n + 1), namely n, and then it jumps up to n + 1 when x = n + 1.
In Figure 2.17b we display the graph of the ceiling function ⌈x⌉. Note
that this function has the same value throughout the interval (n, n+1],
namely n + 1, and then jumps to n + 2 when x is a little larger than
n+ 1.

The floor and ceiling functions are useful in a wide variety of appli-
cations, including those involving data storage and data transmission.
Consider Examples 27 and 28, typical of basic calculations done when
database and data communications problems are studied.

�
EXAMPLE. 27

Data stored on a computer disk or transmitted over a data network are usually
represented as a string of bytes. Each byte is made up of 8 bits. How many
bytes are required to encode 100 bits of data?�� ��Solution: To determine the number of bytes needed, we determine the
smallest integer that is at least as large as the quotient when 100 is divided
by 8, the number of bits in a byte. Consequently, ⌈100/8⌉ = ⌈12.5⌉ = 13

bytes are required.

�
EXAMPLE. 28

In asynchronous transfer mode (ATM) (a communications protocol used on
backbone networks), data are organized into cells of 53 bytes. How many
ATM cells can be transmitted in 1 minute over a connection that transmits
data at the rate of 500 kilobits per second?

188 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

148 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

The Graphs of Functions

We can associate a set of pairs in A× B to each function from A to B. This set of pairs is called
the graph of the function and is often displayed pictorially to aid in understanding the behavior
of the function.

DEFINITION 11 Let f be a function from the set A to the set B. The graph of the function f is the set of
ordered pairs {(a, b) | a ∈ A and f (a) = b}.

From the definition, the graph of a function f from A to B is the subset of A× B containing the
ordered pairs with the second entry equal to the element of B assigned by f to the first entry.
Also, note that the graph of a function f from A to B is the same as the relation from A to B

determined by the function f , as described on page 139.

EXAMPLE 24 Display the graph of the function f (n) = 2n+ 1 from the set of integers to the set of integers.

Solution: The graph of f is the set of ordered pairs of the form (n, 2n+ 1), where n is an integer.
This graph is displayed in Figure 8. ▲

EXAMPLE 25 Display the graph of the function f (x) = x2 from the set of integers to the set of integers.

Solution: The graph of f is the set of ordered pairs of the form (x, f (x)) = (x, x2), where x is
an integer. This graph is displayed in Figure 9. ▲

Some Important Functions

Next, we introduce two important functions in discrete mathematics, namely, the floor and ceiling
functions. Let x be a real number. The floor function rounds x down to the closest integer less
than or equal to x, and the ceiling function rounds x up to the closest integer greater than or
equal to x. These functions are often used when objects are counted. They play an important
role in the analysis of the number of steps used by procedures to solve problems of a particular
size.

FIGURE 8 The Graph of
f (n) = 2n + 1 from Z to Z.

(3,9)(–3,9)

(2,4)

(1,1)(–1,1)

(0,0)

(–2,4)

FIGURE 9 The Graph of
f (x) = x2 from Z to Z.

a) y = [x]

148 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

The Graphs of Functions

We can associate a set of pairs in A× B to each function from A to B. This set of pairs is called
the graph of the function and is often displayed pictorially to aid in understanding the behavior
of the function.

DEFINITION 11 Let f be a function from the set A to the set B. The graph of the function f is the set of
ordered pairs {(a, b) | a ∈ A and f (a) = b}.

From the definition, the graph of a function f from A to B is the subset of A× B containing the
ordered pairs with the second entry equal to the element of B assigned by f to the first entry.
Also, note that the graph of a function f from A to B is the same as the relation from A to B

determined by the function f , as described on page 139.

EXAMPLE 24 Display the graph of the function f (n) = 2n+ 1 from the set of integers to the set of integers.

Solution: The graph of f is the set of ordered pairs of the form (n, 2n+ 1), where n is an integer.
This graph is displayed in Figure 8. ▲

EXAMPLE 25 Display the graph of the function f (x) = x2 from the set of integers to the set of integers.

Solution: The graph of f is the set of ordered pairs of the form (x, f (x)) = (x, x2), where x is
an integer. This graph is displayed in Figure 9. ▲

Some Important Functions

Next, we introduce two important functions in discrete mathematics, namely, the floor and ceiling
functions. Let x be a real number. The floor function rounds x down to the closest integer less
than or equal to x, and the ceiling function rounds x up to the closest integer greater than or
equal to x. These functions are often used when objects are counted. They play an important
role in the analysis of the number of steps used by procedures to solve problems of a particular
size.

FIGURE 8 The Graph of
f (n) = 2n + 1 from Z to Z.

(3,9)(–3,9)

(2,4)

(1,1)(–1,1)

(0,0)

(–2,4)

FIGURE 9 The Graph of
f (x) = x2 from Z to Z.

b) y = [x]

Figure 2.17: Graphs of the (a) Floor and (b) Ceiling Functions.

�� ��Solution: In 1 minute, this connection can transmit 500, 000·60 = 30, 000, 000

bits. EachATM cell is 53 bytes long, which means that it is 53 · 8 = 424 bits
long. To determine the number of cells that can be transmitted in 1 minute,
we determine the largest integer not exceeding the quotient when 30,000,000
is divided by 424. Consequently, ⌊30, 000, 000/424⌋ = 70, 754 ATM cells can
be transmitted in 1 minute over a 500 kilobit per second connection.

Table 2.3, with x denoting a real number, displays some simple but
important properties of the floor and ceiling functions. Because these
functions appear so frequently in discrete mathematics, it is useful to
look over these identities. Each property in this table can be established
using the definitions of the floor and ceiling functions. Properties (1a),
(1b), (1c), and (1d) follow directly from these definitions. For example,
(1a) states that ⌊x⌋ = n if and only if the integer n is less than or equal
to x and n + 1 is larger than x. This is precisely what it means for
n to be the greatest integer not exceeding x, which is the definition of
⌊x⌋ = n. Properties (1b), (1c), and (1d) can be established similarly.We
will prove property (4a) using a direct proof.

Proof: Suppose that ⌊x⌋ = m, where m is a positive integer. By
property (1a), it follows that m ≤ x < m + 1. Adding n to all three
quantities in this chain of two inequalities shows that m+n ≤ x+n <
m+ n+ 1. Using property (1a) again, we see that ⌊x+ n⌋ = m+ n =
⌊x⌋ + n. This completes the proof. Proofs of the other properties are
left as exercises.

2.3.4 Some Important Functions 189

Table 2.3: Useful Properties of the Floor and Ceiling Functions.
(n is an integer, x is a real number)

(1a) ⌊x⌋ = n if and only if n ≤ x < n+ 1
(1b) ⌈x⌉ = n if and only if n− 1 < x ≤ n
(1c) ⌊x⌋ = n if and only if x− 1 < n ≤ x
(1d) ⌈x⌉ = n if and only if x ≤ n < x+ 1

(2) x− 1 < ⌊x⌋ ≤ x ≤ ⌈x⌉ < x+ 1

(3a) ⌊−x⌋ = −⌈x⌉
(3b) ⌈−x⌉ = −⌊x⌋

(4a) ⌊x+ n⌋ = ⌊x⌋+ n
(4b) ⌈x+ n⌉ = ⌈x⌉+ n

The floor and ceiling functions enjoy many other useful properties
besides those displayed in Table 2.3. There are also many statements
about these functions that may appear to be correct, but actually are
not.We will consider statements about the floor and ceiling functions
in Examples 29 and 30.

A useful approach for considering statements about the floor func-
tion is to let x = n+ϵ, where n = ⌊x⌋ is an integer, and ϵ, the fractional
part of x, satisfies the inequality 0 ≤ ϵ < 1. Similarly, when considering
statements about the ceiling function, it is useful to write x = n − ϵ,
where n = ⌈x⌉ is an integer and 0 ≤ ϵ < 1.

�
EXAMPLE. 29

Prove that if x is a real number, then ⌊2x⌋ = ⌊x⌋+ ⌊x+ 1
2⌋.�� ��Solution: To prove this statement we let x = n+ ϵ, where n is an integer

and 0 ≤ ϵ < 1. There are two cases to consider, depending on whether ϵ is
less than, or greater than or equal to 1

2 . (The reason we choose these two
cases will be made clear in the proof.)

We first consider the case when 0 ≤ ϵ < 1
2 . In this case, 2x = 2n+2ϵ and

⌊2x⌋ = 2n because 0 ≤ 2ϵ < 1. Similarly, x+ 1
2 = n+(12 + ϵ), so ⌊x+ 1

2⌋ = n,
because 0 < 1

2 + ϵ < 1. Consequently, ⌊2x⌋ = 2n and ⌊x⌋+ ⌊x+ 1
2⌋ = n+n =

2n.

190 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

Next, we consider the case when 1
2 ≤ ϵ < 1. In this case, 2x = 2n+ 2ϵ =

(2n + 1) + (2ϵ − 1). Because 0 ≤ 2ϵ − 1 < 1, it follows that ⌊2x⌋ = 2n + 1.
Because ⌊x + 1

2⌋ = ⌊n + (12 + ϵ)⌋ = ⌊n + 1 + (ϵ − 1
2)⌋ and 0 ≤ ϵ − 1

2 < 1, it
follows that ⌊x+ 1

2⌋ = n+1. Consequently, ⌊2x⌋ = 2n+1 and ⌊x⌋+⌊x+ 1
2⌋ =

n+ (n+ 1) = 2n+ 1. This concludes the proof.

�
EXAMPLE. 30

Prove or disprove that ⌈x+ y⌉ = ⌈x⌉+ ⌈y⌉ for all real numbers x and y.�� ��Solution: Although this statement may appear reasonable, it is false. A
counterexample is supplied by x = 1

2 and y = 1
2 . With these values we find

that⌈x+ y⌉ = ⌈ 12 +
1
2⌉ = ⌈1⌉ = 1, but ⌈x⌉+ ⌈y⌉ = ⌈ 12⌉+ ⌈

1
2⌉ = 1+1 = 2 .

There are certain types of functions that will be used throughout the
text. These include polynomial, logarithmic, and exponential functions.
In this book the notation log x will be used to denote the logarithm
to the base 2 of x, because 2 is the base that we will usually use for
logarithms. We will denote logarithms to the base b, where b is any real
number greater than 1, by logbx, and the natural logarithm by lnx.

Another function we will use throughout this text is the factorial
function f : N → Z+, denoted by f(n) = n!. The value of f(n) = n!
is the product of the first n positive integers, so f(n) = 1 · 2 . . . (n− 1) ·
n[andf(0) = 0! = 1].

�
EXAMPLE. 31

We have f(1) = 1! = 1, f(2) = 2! = 1 ·2 = 2, f(6) = 6! = 1 ·2 ·3 ·4 ·5 ·6 = 720,
and f(20) = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 · 11 · 12 · 13 · 14 · 15 · 16 · 17 · 18 · 19 · 20 =

2, 432, 902, 008, 176, 640, 000.

Example 31 illustrates that the factorial function grows extremely
rapidly as n grows. The rapid growth of the factorial function is made
clearer by Stirling’s formula, a result from higher mathematics that tell
us that n! ∼

√
2πn(n/e)n. Here, we have used the notation f(n) ∼

2.3.5 Partial Functions 191

g(n), which means that the ratio f(n)/g(n) approaches 1 as n grows
without bound (that is, limn→∞f(n)/g(n) = 1). The symbol ∼ is read
“is asymptotic to”. Stirling’s formula is named after James Stirling, a
Scottish mathematician of the eighteenth century.

2.3.5 Partial Functions

A program designed to evaluate a function may not produce the
correct value of the function for all elements in the domain of this func-
tion. For example, a program may not produce a correct value because
evaluating the function may lead to an infinite loop or an overflow.
Similarly, in abstract mathematics, we often want to discuss functions
that are defined only for a subset of the real numbers, such as 1/x,

√
x,

and arcsin(x). Also, we may want to use such notions as the “youngest
child” function, which is undefined for a couple having no children, or
the “time of sunrise”, which is undefined for some days above the Arc-
tic Circle. To study such situations, we use the concept of a partial
function.

Definition 2.3.13 A partial function f from a set A to a set B
is an assignment to each element a in a subset of A, called the domain
of definition of f , of a unique element b in B. The sets A and B are
called the domain and codomain of f , respectively. We say that f is
undefined for elements in A that are not in the domain of definition
of f . When the domain of definition of f equals A, we say that f is a
total function.

Remark! We write f : A → B to denote that f is a partial
function from A to B. Note that this is the same notation as
is used for functions. The context in which the notation is used
determines whether f is a partial function or a total function.

�
EXAMPLE. 32

The function f : Z→ R where f(n) =
√
n is a partial function from Z to R

192 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

where the domain of definition is the set of nonnegative integers. Note that
f is undefined for negative integers.

2.4 Sequences and Summations

2.4.1 Introduction

Sequences are ordered lists of elements, used in discrete mathematics
in many ways. We will often need to work with sums of terms of
sequences in our study of discrete mathematics. This section reviews
the use of summation notation, basic properties of summations, and
formulas for the sums of terms of some particular types of sequences.

The terms of a sequence can be specified by providing a formula
for each term of the sequence. In this section we describe another
way to specify the terms of a sequence using a recurrence relation,
which expresses each term as a combination of the previous terms. We
will introduce one method, known as iteration, for finding a closed
formula for the terms of a sequence specified via a recurrence relation.
Identifying a sequence when the first few terms are provided is a useful
skill when solving problems in discrete mathematics. We will provide
some tips, including a useful tool on theWeb, for doing so.

2.4.2 Sequences

A sequence is a discrete structure used to represent an ordered
list. For example, 1, 2, 3, 5, 8 is a sequence with five terms and
1, 3, 9, 27, 81, . . . , 3n, . . . is an infinite sequence.

Definition 2.4.1 A sequence is a function from a subset of the
set of integers (usually either the set {0, 1, 2, . . .} or the set {1, 2, 3, . . .})
to a set S. We use the notation an to denote the image of the integer
n. We call an a term of the sequence.

We use the notation {an} to describe the sequence. (Note that an
represents an individual term of the sequence {an}. Be aware that
the notation {an} for a sequence conflicts with the notation for a set.

2.4.2 Sequences 193

However, the context in which we use this notation will always make
it clear when we are dealing with sets and when we are dealing with
sequences. Moreover, although we have used the letter a in the notation
for a sequence, other letters or expressions may be used depending on
the sequence under consideration. That is, the choice of the letter a is
arbitrary.)

We describe sequences by listing the terms of the sequence in order
of increasing subscripts.

�
EXAMPLE. 1

Consider the sequence {an}, where

an =
1

n
.

The list of the terms of this sequence, beginning with a1, namely,

a1, a2, a3, a4, . . . ,

starts with
1,

1

2
,
1

3
,
1

4
,

Definition 2.4.2 A geometric progression is a sequence of the form

a, ar, ar2, . . . , arn, . . .

where the initial term a and the common ratio r are real numbers.

Remark! A geometric progression is a discrete analogue of the
exponential function f(x) = arx.

�
EXAMPLE. 2

The sequences {bn} with bn = (−1)n, {cn} with cn = 2 · 5n, and {dn} with
dn = 6 · (1/3)n are geometric progressions with initial term and common ratio

194 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

equal to 1 and -1; 2 and 5; and 6 and 1/3, respectively, if we start at n = 0.
The list of terms b0, b1, b2, b3, b4, . . . begins with

1,−1, 1,−1, 1, . . . ;

the list of terms c0, c1, c2, c3, c4, . . . begins with

2, 10, 50, 250, 1250, . . . ;

and the list of terms d0, d1, d2, d3, d4, . . . begins with

6, 2,
2

3
,
2

9
,

2

27
,

Definition 2.4.3 An arithmetic progression is a sequence of the
form

a, a+ d, a+ 2d, . . . , a = nd, . . .

where the initial term a and the common difference d are real num-
bers.

Remark! An arithmetic progression is a discrete analogue of the
linear function f(x) = dx+ a.

�
EXAMPLE. 3

The sequences {sn} with sn = −1 + 4n and {tn} with tn = 7 − 3n are both
arithmetic progressions with initial terms and common differences equal to
-1 and 4, and 7 and -3, respectively, if we start at n = 0. The list of terms
s0, s1, s2, s3, . . . begins with

−1, 3, 7, 11, . . . ,

and the list of terms t0, t1, t2, t3, . . . begins with

7, 4, 1,−2, . . .

2.4.3 Recurrence Relations 195

Sequences of the form a1, a2, . . . , an are often used in computer sci-
ence. These finite sequences are also called strings. This string is also
denoted by a1a2 . . . an. The length of a string is the number of terms
in this string. The empty string, denoted by λ, is the string that has
no terms. The empty string has length zero.

�
EXAMPLE. 4

The string abcd is a string of length four.

2.4.3 Recurrence Relations

In Examples 1–3 we specified sequences by providing explicit formu-
las for their terms. There are many other ways to specify a sequence.
For example, another way to specify a sequence is to provide one or more
initial terms together with a rule for determining subsequent terms from
those that precede them.

Definition 2.4.4 A recurrence relation for the sequence {an} is
an equation that expresses an in terms of one or more of the previous
terms of the sequence, namely, a0, a1, . . . , an−1, for all integers n
with n ≥ n0, where n0 is a nonnegative integer. A sequence is called
a solution of a recurrence relation if its terms satisfy the recurrence
relation.

�
EXAMPLE. 5

Let {an} be a sequence that satisfies the recurrence relation an = an−1 + 3
for n = 1, 2, 3, . . . , and suppose that a0 = 2. What are a1, a2 and a3?�� ��Solution: We see from the recurrence relation that a1 = a0+3 = 2+3 = 5.
It then follows that a2 = 5 + 3 = 8 and a3 = 8 + 3 = 11.

�
EXAMPLE. 6

196 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

Let {an} be a sequence that satisfies the recurrence relation an = an−1−an−2

for n = 2, 3, 4, . . ., and suppose that a0 = 3 and a1 = 5. What are a2 and a3?�� ��Solution: We see from the recurrence relation that a2 = a1−a0 = 5−3 = 2

and a3 = a2− a1 = 2− 5 = −3. We can find a4, a5, and each successive term
in a similar way.

The initial conditions for a recursively defined sequence specify
the terms that precede the first term where the recurrence relation takes
effect. For instance, the initial condition in Example 5 is a0 = 2, and
the initial conditions in Example 6 are a0 = 3 and a1 = 5. Using
mathematical induction, it can be shown that a recurrence relation
together with its initial conditions determines a unique solution.

Next, we define a particularly useful sequence defined by a recur-
rence relation, known as the Fibonacci sequence, after the Italian
mathematician Fibonacci who was born in the 12th century.

Definition 2.4.5 The Fibonacci sequence, f0, f1, f2, . . ., is
defined by the initial conditions f0 = 0, f1 = 1, and the recurrence
relation

fn = fn−1 + fn−2

for n = 2, 3, 4,

�
EXAMPLE. 7

Find the Fibonacci numbers f2, f3, f4, f5, and f6.�� ��Solution: The recurrence relation for the Fibonacci sequence tells us that
we find successive terms by adding the previous two terms. Because the initial
conditions tell us that f0 = 0 and f1 = 1, using the recurrence relation in the
definition we find that

f2 = f1 + f0 = 1 + 0 = 1,
f3 = f2 + f1 = 1 + 1 = 2,
f4 = f3 + f2 = 2 + 1 = 3,
f5 = f4 + f3 = 3 + 2 = 5,
f6 = f5 + f4 = 5 + 3 = 8.

2.4.3 Recurrence Relations 197

�
EXAMPLE. 8

Suppose that {an} is the sequence of integers defined by an = n!, the value
of the factorial function at the integer n, where n = 1, 2, 3, Because
n! = n((n− 1)(n− 2) . . . 2 · 1) = n(n− 1)! = nan−1, we see that the sequence
of factorials satisfies the recurrence relation an = nan−1, together with the
initial condition a1 = 1.

We say that we have solved the recurrence relation together with
the initial conditions when we find an explicit formula, called a closed
formula, for the terms of the sequence.

�
EXAMPLE. 9

Determine whether the sequence {an}, where an = 3n for every nonnegative
integer n, is a solution of the recurrence relation an = 2an−1 − an−2 for
n = 2, 3, 4, Answer the same question where an = 2n and where
an = 5.�� ��Solution: Suppose that an = 3n for every nonnegative integer n. Then,
for n ≥ 2, we see that 2an−1 − an−2 = 2(3(n − 1)) − 3(n − 2) = 3n = an.
Therefore, {an}, where an = 3n, is a solution of the recurrence relation.

Suppose that an = 2n for every nonnegative integer n. Note that a0 =
1, a1 = 2, and a2 = 4. Because 2a1 − a0 = 2 · 2 − 1 = 3 ̸= a2, we see that
{an}, where an = 2n, is not a solution of the recurrence relation.

Suppose that an = 5 for every nonnegative integer n. Then for n ≥ 2, we
see that an = 2an−1 − an−2 = 2 · 5 − 5 = 5 = an. Therefore, {an}, where
an = 5, is a solution of the recurrence relation.

Many methods have been developed for solving recurrence relations.
Here, we will introduce a straightforward method known as iteration
via several examples.

�
EXAMPLE. 10

Solve the recurrence relation and initial condition in Example 5.�� ��Solution: We can successively apply the recurrence relation in Example

198 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

5, starting with the initial condition a1 = 2, and working upward until we
reach an to deduce a closed formula for the sequence. We see that

a2 = 2 + 3
a3 = (2 + 3) + 3 = 2 + 3 · 2
a4 = (2 + 2 · 3) + 3 = 2 + 3 · 3

...
an = an−1 + 3 = (2 + 3 · (n− 2)) + 3 = 2 + 3(n− 1).

We can also successively apply the recurrence relation in Example 5, start-
ing with the term an and working downward until we reach the initial condi-
tion a1 = 2 to deduce this same formula. The steps are

an = an−1 + 3
= (an−2 + 3) + 3 = an−2 + 3 · 2
= (an−3 + 3) + 3 · 2 = an−3 + 3 · 3
...
= a2 + 3(n− 2) = (a1 + 3) + 3(n− 2) = 2 + 3(n− 1).

At each iteration of the recurrence relation, we obtain the next term in the
sequence by adding 3 to the previous term. We obtain the nth term after
n − 1 iterations of the recurrence relation. Hence, we have added 3(n − 1)

to the initial term a0 = 2 to obtain an. This gives us the closed formula
an = 2 + 3(n− 1). Note that this sequence is an arithmetic progression.

The technique used in Example 10 is called iteration. We have
iterated, or repeatedly used, the recurrence relation. The first approach
is called forward substitution – we found successive terms beginning
with the initial condition and ending with an. The second approach is
called backward substitution, because we began with an and iterated
to express it in terms of falling terms of the sequence until we found it
in terms of a1. Note that when we use iteration, we essential guess a
formula for the terms of the sequence.

�
EXAMPLE. 11

Compound Interest Suppose that a person deposits $10,000 in a savings ac-
count at a bank yielding 11% per year with interest compounded annually.
How much will be in the account after 30 years?

2.4.4 Special Integer Sequences 199
�� ��Solution: To solve this problem, let Pn denote the amount in the account

after n years. Because the amount in the account after n years equals the
amount in the account after n− 1 years plus interest for the nth year, we see
that the sequence {Pn} satisfies the recurrence relation

Pn = Pn−1 + 0.11Pn−1 = (1.11)Pn−1.

The initial condition is P0 = 10, 000.
We can use an iterative approach to find a formula for Pn. Note that

P1 = (1.11)P0

P2 = (1.11)P1 = (1.11)2P0

P3 = (1.11)P2 = (1.11)3P0

...
Pn = (1.11)Pn−1 = (1.11)nP0.

When we insert the initial condition P0 = 10, 000, the formula Pn =
(1.11)n10, 000 is obtained. Inserting n = 30 into the formula Pn = (1.11)n10, 000
shows that after 30 years the account contains

P30 = (1.11)3010, 000 = $228, 922.97.

2.4.4 Special Integer Sequences

A common problem in discrete mathematics is finding a closed for-
mula, a recurrence relation, or some other type of general rule for con-
structing the terms of a sequence. Sometimes only a few terms of a
sequence solving a problem are known; the goal is to identify the se-
quence. Even though the initial terms of a sequence do not determine
the entire sequence (after all, there are infinitely many different se-
quences that start with any finite set of initial terms), knowing the first
few terms may help you make an educated conjecture about the iden-
tity of your sequence. Once you have made this conjecture, you can try
to verify that you have the correct sequence.

When trying to deduce a possible formula, recurrence relation, or
some other type of rule for the terms of a sequence when given the
initial terms, try to find a pattern in these terms.You might also see

200 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

whether you can determine how a term might have been produced from
those preceding it. There are many questions you could ask, but some
of the more useful are:

• Are there runs of the same value? That is, does the same value
occur many times in a row?
• Are terms obtained from previous terms by adding the same

amount or an amount that depends on the position in the se-
quence?
• Are terms obtained from previous terms by multiplying by a par-

ticular amount?
• Are terms obtained by combining previous terms in a certain way?
• Are there cycles among the terms?

�
EXAMPLE. 12

Find formulae for the sequences with the following first five terms: (a) 1, 1/2,
1/4, 1/8, 1/16; (b) 1, 3, 5, 7, 9; (c) 1, -1, 1, -1, 1.�� ��Solution: (a) We recognize that the denominators are powers of 2. The
sequence with an = 1/2n, n = 0, 1, 2, . . . is a possible match. This proposed
sequence is a geometric progression with a = 1 and r = 1/2.

(b) We note that each term is obtained by adding 2 to the previous term.
The sequence with an = 2n + 1, n = 0, 1, 2, . . . is a possible match. This
proposed sequence is an arithmetic progression with a = 1 and d = 2.

(c) The terms alternate between 1 and -1. The sequence with an =

(−1)n, n = 0, 1, 2 . . . is a possible match. This proposed sequence is a
geometric progression with a = 1 and r = −1.

Examples 13–15 illustrate how we can analyze sequences to find how
the terms are constructed.

�
EXAMPLE. 13

How can we produce the terms of a sequence if the first 10 terms are 1, 2, 2,
3, 3, 3, 4, 4, 4, 4?�� ��Solution: In this sequence, the integer 1 appears once, the integer 2 ap-
pears twice, the integer 3 appears three times, and the integer 4 appears four

2.4.4 Special Integer Sequences 201

times. A reasonable rule for generating this sequence is that the integer n

appears exactly n times, so the next five terms of the sequence would all be
5, the following six terms would all be 6, and so on. The sequence generated
this way is a possible match.

�
EXAMPLE. 14

How can we produce the terms of a sequence if the first 10 terms are 5, 11,
17, 23, 29, 35, 41, 47, 53, 59?�� ��Solution: Note that each of the first 10 terms of this sequence after the
first is obtained by adding 6 to the previous term. (We could see this by
noticing that the difference between consecutive terms is 6.) Consequently,
the nth term could be produced by starting with 5 and adding 6 a total of n−1
times; that is, a reasonable guess is that the nth term is 5+6(n−1) = 6n−1.
(This is an arithmetic progression with a = 5 and d = 6.)

�
EXAMPLE. 15

How can we produce the terms of a sequence if the first 10 terms are 1, 3, 4,
7, 11, 18, 29, 47, 76, 123?�� ��Solution: Observe that each successive term of this sequence, starting
with the third term, is the sum of the two previous terms. That is, 4 =

3 + 1, 7 = 4 + 3, 11 = 7 + 4, and so on. Consequently, if Ln is the nth term
of this sequence, we guess that the sequence is determined by the recurrence
relation Ln = Ln−1 + Ln−2 with initial conditions L1 = 1 and L2 = 3 (the
same recurrence relation as the Fibonacci sequence, but with different initial
conditions). This sequence is known as the Lucas sequence, after the French
mathematician Francois Edouard Lucas. Lucas studied this sequence and the
Fibonacci sequence in the nineteenth century.

Another useful technique for finding a rule for generating the terms
of a sequence is to compare the terms of a sequence of interest with the
terms of a well-known integer sequence, such as terms of an arithmetic
progression, terms of a geometric progression, perfect squares, perfect

202 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

Table 2.4: Some Useful Sequences.
nth Term First 10 Terms

n2 1,4,9,16,25,36,49,64,81,100, . . .
n3 1,8,27,64,125,216,343,512,729,1000, . . .
n4 1,16,81,256,625,1296,2401,4096,6561,10000, . . .
2n 2,4,8,16,32,64,128,256,512,1024, . . .
3n 3,9,27,81,243,729,2187,6561,19683,59049, . . .
n! 1,2,6,24,120,720,5040,40320,362880,3628800, . . .
fn 1,1,2,3,5,8,13,21,34,55,89, . . .

cubes, and so on. The first 10 terms of some sequences you may want
to keep in mind are displayed in Table 2.4.

�
EXAMPLE. 16

Conjecture a simple formula for an if the first 10 terms of the sequence {an}
are 1, 7, 25, 79, 241, 727, 2185, 6559, 19681, 59047.�� ��Solution: To attack this problem, we begin by looking at the difference
of consecutive terms, but we do not see a pattern. When we form the ratio
of consecutive terms to see whether each term is a multiple of the previous
term, we find that this ratio, although not a constant, is close to 3. So it
is reasonable to suspect that the terms of this sequence are generated by a
formula involving 3n. Comparing these terms with the corresponding terms
of the sequence {3n}, we notice that the nth term is 2 less than the corre-
sponding power of 3. We see that an = 3n − 2 for 1 ≤ n ≤ 10 and conjecture
that this formula holds for all n.

2.4.5 Summations

Next, we consider the addition of the terms of a sequence. For
this we introduce summation notation. We begin by describing the
notation used to express the sum of the terms

am, am+1, . . . , an

2.4.5 Summations 203

from the sequence {an}. We use the notation

n∑
j=m

aj , or
∑

m≤j≤n

aj

(read as the sum from j = m to j = n of aj) to represent

am + am+1 + . . .+ an.

Here, the variable j is called the index of summation, and the choice
of the letter j as the variable is arbitrary; that is, we could have used
any other letter, such as i or k. Or, in notation,

n∑
j=m

aj =
n∑

j=m

ai =
n∑

k=m

ak

Here, the index of summation runs through all integers starting with its
lower limitmand ending with its upper limit n. A large uppercase
Greek letter sigma,

∑
, is used to denote summation.

The usual laws for arithmetic apply to summations. For example,
when a and b are real numbers, we have

∑n
j=1(axj + byj) =

∑n
y=1 xj +∑n

j=1 yj) where x1, x2, . . . , xn and y1, y2, . . . , yn are real numbers. We
give some examples of summation notation.

�
EXAMPLE. 17

Use summation notation to express the sum of the first 100 terms of the
sequence {aj}, where aj = 1/j for j = 1, 2, 3,�� ��Solution: The lower limit for the index of summation is 1, and the upper
limit is 100.We write this sum as

100∑
j=1

1

j

�
EXAMPLE. 18

204 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

What is the value of
∑5

j=1 j
2?�� ��Solution: We have∑5

j=1 j
2 = 12 + 22 + 32 + 42 + 52

= 1 + 4 + 9 = 16 + 25
= 55

�
EXAMPLE. 19

What is the value of
∑8

k=4(−1)k?�� ��Solution: We have∑8
k=4(−1)k = (−1)4 + (−1)5 + (−1)6 + (−1)7 + (−1)8

= 1 + (−1) + 1 + (−1) + 1
= 1

Sometimes it is useful to shift the index of summation in a sum.
This is often done when two sums need to be added but their indices
of summation do not match. When shifting an index of summation,
it is important to make the appropriate changes in the corresponding
summand. This is illustrated by Example 20.

�
EXAMPLE. 20

Suppose we have the sum
5∑

j=1

j2

but want the index of summation to run between 0 and 4 rather than from
1 to 5. To do this, we let k = j − 1. Then the new summation index runs
from 0 (because k = 1− 0 = 0 when j = 1) to 4 (because k = 5− 1 = 4 when
j = 5), and the term j2 becomes (k + 1)2. Hence,

5∑
j=1

j2 =

4∑
k=0

(k + 1)2

2.4.5 Summations 205

It is easily checked that both sums are 1 + 4 + 9 + 16 + 25 = 55.

Sums of terms of geometric progressions commonly arise (such sums
are called geometric series). Theorem 2.4.1 gives us a formula for the
sum of terms of a geometric progression.

THEOREM 2.4.1

If a and r are real numbers and r ̸= 0, then

n∑
j=0

arj =

{
arn+1−a

r−1 if r ̸= 1

(n+ 1)a if r = 1

Proof: Let

Sn =

n∑
j=0

arj

To compute S, first multiply both sides of the equality by r and then
manipulate the resulting sum as follows:

rSn = r
∑n

j=0 ar
j substituting summation

formula forS
=

∑n
j=0 ar

j+1 by the distributive property
=

∑n+1
k=1 ar

k shifting the index of summation,
with k = j + 1

= (
∑n

k=0 ar
k) + (arn+1 − a) removing k = n+ 1 term and

adding k = 0 term
= Sn + (arn+1 − a) substituting S for summation

formula

From these equalities, we see that

rSn = Sn + (arn+1 − a).

Solving for Sn shows that if r ̸= 1, then

Sn =
arn+1 − a

r − 1

206 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

If r = 1, then the Sn =
∑n

j=0 ar
j =

∑n
j=0 a = (n+ 1)a

�
EXAMPLE. 21

Double summations arise in many contexts (as in the analysis of nested loops
in computer programs). An example of a double summation is

4∑
i=1

3∑
j=1

ij

To evaluate the double sum, first expand the inner summation and then con-
tinue by computing the outer summation:∑4

i=1

∑3
j=1 ij =

∑4
i=1(i+ 2i+ 3i)

=
∑4

i=1 6i
= 6 + 12 + 18 + 24 = 60.

We can also use summation notation to add all values of a function, or
terms of an indexed set, where the index of summation runs over all
values in a set. That is, we write∑

x∈S
f(S)

to represent the sum of the values f(s), for all members s of S.

�
EXAMPLE. 22

What is the value of
∑

x∈[0,2,4] s?�� ��Solution: Because
∑

x∈[0,2,4] s represents the sum of the values of s for all
the members of the set {0, 2, 4}, it follows that∑

x∈[0,2,4]

s = 0 + 2 + 4 = 6

Certain sums arise repeatedly throughout discrete mathematics.
Having a collection of formulae for such sums can be useful; Table
2.5 provides a small table of formulae for commonly occurring sums.

2.4.5 Summations 207

Table 2.5: Some Useful Summation Formulae.
Sum Closed Form∑n

k=0 ar
k (r ̸= 0) arn+1−a

r−1 , r ̸= 1∑n
k=1 k

n(n+1)
2∑n

k=1 k
2 n(n+1)(2n+1)

6∑n
k=1 k

3 n2(n+1)2

4∑∞
k=0 x

k, |x| < 1 1
1−x∑∞

k=1 kx
k−1, |x| < 1 1

(1−x)2

We derived the first formula in this table in Theorem 2.4.1. The
next three formulae give us the sum of the first n positive integers,
the sum of their squares, and the sum of their cubes. These three
formulae can be derived in many different ways. Also note that each of
these formulae, once known, can easily be proved using mathematical
induction. The last two formulae in the table involve infinite series and
will be discussed shortly.

Example 23 illustrates how the formulae in Table 2.5 can be useful.

�
EXAMPLE. 23

Find
∑100

k=50 k
2.�� ��Solution: First note that because

∑100
k=1 k

2 =
∑49

k=1 k
2 +

∑100
k=50 k

2, we
have

100∑
k=50

k2 =

100∑
k=1

k2 −
49∑
k=1

k2

Using the formula
∑n

k=1 k
2 = n(n+ 1)(2n+ 1)/6 from Table 2.5 we see that

100∑
k=50

k2 =
100 · 101 · 201

6
− 49 · 50 · 99

6
= 338, 350− 40, 425 = 297, 925.

SOME INFINITE SERIES

208 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

Although most of the summations in this book are finite sums, infi-
nite series are important in some parts of discrete mathematics. Infinite
series are usually studied in a course in calculus and even the definition
of these series requires the use of calculus, but sometimes they arise in
discrete mathematics, because discrete mathematics deals with infinite
collections of discrete elements.

�
EXAMPLE. 24

(Requires calculus) Let x be a real number with |x| < 1. Find
∑∞

n=0 x
n.�� ��Solution: By Theorem 1 with a = 1 and r = x we see that

∑∞
n=0 x

n =
xk+1−1
x−1 . Because |x| < 1, xk+1 approaches 0 as k approaches infinity. It

follows that

∞∑
n=0

xn = lim
k→∞

xk+1 − 1

x− 1
=

0− 1

x− 1
=

1

1− x
.

We can produce newsummation formulae by differentiating or inte-
grating existing formulae.

�
EXAMPLE. 25

(Requires calculus) Differentiating both sides of the equation

∞∑
n=0

xk =
1

1− x
,

from Example 24 we find that

∞∑
k=1

kxk−1 =
1

(1− x)2
.

(This differentiation is valid for |x| < 1 by a theorem about infinite series.)

2.5. CARDINALITY OF SETS 209

2.5 Cardinality of Sets

2.5.1 Introduction

In Definition 2.1.4 of Section 2.1 we defined the cardinality of a
finite set as the number of elements in the set. We use the cardinalities
of finite sets to tell us when they have the same size, or when one is
bigger than the other. In this section we extend this notion to infinite
sets. That is, we will define what it means for two infinite sets to have
the same cardinality, providing us with a way to measure the relative
sizes of infinite sets.

We will be particularly interested in countably infinite sets, which
are sets with the same cardinality as the set of positive integers. We
will establish the surprising result that the set of rational numbers is
countably infinite. We will also provide an example of an uncountable
set when we show that the set of real numbers is not countable.

The concepts developed in this section have important applications
to computer science. A function is called uncomputable if no computer
program can be written to find all its values, even with unlimited time
and memory.We will use the concepts in this section to explain why
uncomputable functions exist.

We now define what it means for two sets to have the same size, or
cardinality.

Definition 2.5.1 The sets A and B have the same cardinality if
and only if there is a one-to-one correspondence from A to B. When A
and B have the same cardinality, we write |A| = |B|.

For infinite sets the definition of cardinality provides a relative mea-
sure of the sizes of two sets, rather than a measure of the size of one
particular set.We can also define what it means for one set to have a
smaller cardinality than another set.

Definition 2.5.2 If there is a one-to-one function from A to B, the
cardinality of A is less than or the same as the cardinality of B and we
write |A| ≤ |B|. Moreover, when |A| ≤ |B| and A and B have different
cardinality, we say that the cardinality of A is less than the cardinality
of B and we write |A| < |B|.

210 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

2.5.2 Countable Sets

We will now split infinite sets into two groups, those with the same
cardinality as the set of natural numbers and those with a different
cardinality.

Definition 2.5.3 A set that is either finite or has the same cardi-
nality as the set of positive integers is called countable. A set that is
not countable is called uncountable. When an infinite set S is count-
able, we denote the cardinality of S by ℵ0 (where ℵ is aleph, the first
letter of the Hebrew alphabet). We write |S| = ℵ0 and say that S has
cardinality “aleph null”.

We illustrate how to show a set is countable in the next example.

�
EXAMPLE. 1

Show that the set of odd positive integers is a countable set.�� ��Solution: To show that the set of odd positive integers is countable, we will
exhibit a one-to-one correspondence between this set and the set of positive
integers. Consider the function

f(n) = 2n− 1

from Z+ to the set of odd positive integers. We show that f is a one-to-
one correspondence by showing that it is both one-to-one and onto. To see
that it is one-to-one, suppose that f(n) = f(m). Then 2n − 1 = 2m − 1,
so n = m. To see that it is onto, suppose that t is an odd positive integer.
Then t is 1 less than an even integer 2k, where k is a natural number. Hence
t = 2k−1 = f(k). We display this one-to-one correspondence in Figure 2.18.

An infinite set is countable if and only if it is possible to list the
elements of the set in a sequence (indexed by the positive integers).
The reason for this is that a one-to-one correspondence f from the set
of positive integers to a set S can be expressed in terms of a sequence
a1, a2, . . . , an, . . ., where a1 = f(1), a2 = f(2), . . . , an = f(n), . . .

HILBERT’S GRAND HOTEL

2.5.2 Countable Sets 211 2.5 Cardinality of Sets 171

1 12 ...

...1 23

2

3

3

5

4

7

5

9

6

11

7

13

8

15

9

17

10

19

11

21

FIGURE 1 A One-to-One Correspondence Between Z+ and the Set of Odd Positive
Integers.

DEFINITION 3 A set that is either finite or has the same cardinality as the set of positive integers is called
countable.A set that is not countable is called uncountable.When an infinite set S is countable,
we denote the cardinality of S byℵ0 (whereℵ is aleph, the first letter of the Hebrew alphabet).
We write |S| = ℵ0 and say that S has cardinality “aleph null.”

We illustrate how to show a set is countable in the next example.

EXAMPLE 1 Show that the set of odd positive integers is a countable set.

Solution: To show that the set of odd positive integers is countable, we will exhibit a one-to-one
correspondence between this set and the set of positive integers. Consider the function

f (n) = 2n− 1

from Z+ to the set of odd positive integers. We show that f is a one-to-one correspondence by
showing that it is both one-to-one and onto. To see that it is one-to-one, suppose that f (n) =
f (m). Then 2n− 1 = 2m− 1, so n = m. To see that it is onto, suppose that t is an odd positive
integer. Then t is 1 less than an even integer 2k, where k is a natural number. Hence t = 2k − 1 =
f (k). We display this one-to-one correspondence in Figure 1. ▲

An infinite set is countable if and only if it is possible to list the elements of the set in a
sequence (indexed by the positive integers). The reason for this is that a one-to-one correspon-
dence f from the set of positive integers to a set S can be expressed in terms of a sequence
a1, a2, . . . , an, . . . , where a1 = f (1), a2 = f (2), . . . , an = f (n),

You can always get a room
at Hilbert’s Grand Hotel!

HILBERT’S GRAND HOTEL We now describe a paradox that shows that something impos-
sible with finite sets may be possible with infinite sets. The famous mathematician David Hilbert
invented the notion of the Grand Hotel, which has a countably infinite number of rooms, each
occupied by a guest. When a new guest arrives at a hotel with a finite number of rooms, and
all rooms are occupied, this guest cannot be accommodated without evicting a current guest.
However, we can always accommodate a new guest at the Grand Hotel, even when all rooms
are already occupied, as we show in Example 2. Exercises 5 and 8 ask you to show that we can
accommodate a finite number of new guests and a countable number of new guests, respectively,
at the fully occupied Grand Hotel.

DAVID HILBERT (1862–1943) Hilbert, born in Königsberg, the city famous in mathematics for its seven
bridges, was the son of a judge. During his tenure at Göttingen University, from 1892 to 1930, he made many
fundamental contributions to a wide range of mathematical subjects. He almost always worked on one area of
mathematics at a time, making important contributions, then moving to a new mathematical subject. Some areas
in which Hilbert worked are the calculus of variations, geometry, algebra, number theory, logic, and mathematical
physics. Besides his many outstanding original contributions, Hilbert is remembered for his famous list of 23
difficult problems. He described these problems at the 1900 International Congress of Mathematicians, as a
challenge to mathematicians at the birth of the twentieth century. Since that time, they have spurred a tremendous
amount and variety of research. Although many of these problems have now been solved, several remain open,

including the Riemann hypothesis, which is part of Problem 8 on Hilbert’s list. Hilbert was also the author of several important
textbooks in number theory and geometry.

Figure 2.18: A One-to-One Correspondence Between Z+ and the Set
of Odd Positive Integers.

We now describe a paradox that shows that something impossible
with finite sets may be possible with infinite sets. The famous mathe-
matician David Hilbert invented the notion of the Grand Hotel, which
has a countably infinite number of rooms, each occupied by a guest.
When a new guest arrives at a hotel with a finite number of rooms, and
all rooms are occupied, this guest cannot be accommodated without
evicting a current guest. However, we can always accommodate a new
guest at the Grand Hotel, even when all rooms are already occupied,
as we show in Example 2.172 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

1
2

3
4

5
6

7
8

Hilbert’sGrand
Hotel

. . .

. . .
. . .

New guest

Take room 1,
everyone else

move down one room

Manager

FIGURE 2 A New Guest Arrives at Hilbert’s Grand Hotel.

EXAMPLE 2 How can we accommodate a new guest arriving at the fully occupied Grand Hotel without
removing any of the current guests?

Solution: Because the rooms of the Grand Hotel are countable, we can list them as Room 1,
Room 2, Room 3, and so on. When a new guest arrives, we move the guest in Room 1 to Room
2, the guest in Room 2 to Room 3, and in general, the guest in Room n to Room n+ 1, for all
positive integers n. This frees up Room 1, which we assign to the new guest, and all the current
guests still have rooms. We illustrate this situation in Figure 2. ▲

When there are finitely many room in a hotel, the notion that all rooms are occupied is
equivalent to the notion that no new guests can be accommodated. However, Hilbert’s paradox
of the Grand Hotel can be explained by noting that this equivalence no longer holds when there
are infinitely many room.

EXAMPLES OF COUNTABLE AND UNCOUNTABLE SETS We will now show that cer-
tain sets of numbers are countable. We begin with the set of all integers. Note that we can show
that the set of all integers is countable by listing its members.

EXAMPLE 3 Show that the set of all integers is countable.

Solution: We can list all integers in a sequence by starting with 0 and alternating between
positive and negative integers: 0, 1,−1, 2,−2, Alternatively, we could find a one-to-one
correspondence between the set of positive integers and the set of all integers. We leave it to the
reader to show that the function f (n) = n/2 when n is even and f (n) = −(n− 1)/2 when n

is odd is such a function. Consequently, the set of all integers is countable. ▲

It is not surprising that the set of odd integers and the set of all integers are both countable
sets (as shown in Examples 1 and 3). Many people are amazed to learn that the set of rational
numbers is countable, as Example 4 demonstrates.

EXAMPLE 4 Show that the set of positive rational numbers is countable.

Solution: It may seem surprising that the set of positive rational numbers is countable, but we
will show how we can list the positive rational numbers as a sequence r1, r2, . . . , rn, First,
note that every positive rational number is the quotient p/q of two positive integers. We can

Figure 2.19: A New Guest Arrives at Hilbert’s Grand Hotel.

�
EXAMPLE. 2

How can we accommodate a new guest arriving at the fully occupied Grand
Hotel without removing any of the current guests?�� ��Solution: Because the rooms of the Grand Hotel are countable, we can
list them as Room 1, Room 2, Room 3, and so on. When a new guest arrives,

212 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

we move the guest in Room 1 to Room 2, the guest in Room 2 to Room 3,
and in general, the guest in Room n to Room n+1, for all positive integers n.
This frees up Room 1, which we assign to the new guest, and all the current
guests still have rooms.We illustrate this situation in Figure 2.19.

When there are finitely many room in a hotel, the notion that all
rooms are occupied is equivalent to the notion that no new guests can
be accommodated. However, Hilbert’s paradox of the Grand Hotel can
be explained by noting that this equivalence no longer holds when there
are infinitely many room.

EXAMPLES OF COUNTABLE AND UNCOUNTABLE
SETS

We will now show that certain sets of numbers are countable.We
begin with the set of all integers. Note that we can show that the set
of all integers is countable by listing its members.

�
EXAMPLE. 3

Show that the set of all integers is countable.�� ��Solution: We can list all integers in a sequence by starting with 0 and
alternating between positive and negative integers: 0, 1,−1, 2,−2, . . . Alter-
natively, we could find a one-to-one correspondence between the set of positive
integers and the set of all integers.We leave it to the reader to show that the
function f(n) = n/2 when n is even and f(n) = −(n− 1)/2 when n is odd is
such a function. Consequently, the set of all integers is countable.

It is not surprising that the set of odd integers and the set of all
integers are both countable sets (as shown in Examples 1 and 3). Many
people are amazed to learn that the set of rational numbers is countable,
as Example 4 demonstrates.

�
EXAMPLE. 4

Show that the set of positive rational numbers is countable.�� ��Solution: It may seem surprising that the set of positive rational numbers
is countable, but we will show how we can list the positive rational numbers as

2.5.3 An Uncountable Set 2132.5 Cardinality of Sets 173

1
1

1
2

1
3

1
4

1
5

2
1

2
2

2
3

2
4

2
5

3
1

3
2

3

3

3

4

3
5

4
1

4
2

4
3

4
4

4
5

5
1

5
2

5
3

5
4

5
5

...

...

...

...

...
...............

Terms not circled
are not listed
because they
repeat previously
listed terms

FIGURE 3 The Positive Rational Numbers Are Countable.

arrange the positive rational numbers by listing those with denominator q = 1 in the first row,
those with denominator q = 2 in the second row, and so on, as displayed in Figure 3.

The key to listing the rational numbers in a sequence is to first list the positive rational
numbers p/q with p + q = 2, followed by those with p + q = 3, followed by those with
p + q = 4, and so on, following the path shown in Figure 3. Whenever we encounter a number
p/q that is already listed, we do not list it again. For example, when we come to 2/2 = 1 we
do not list it because we have already listed 1/1 = 1. The initial terms in the list of positive
rational numbers we have constructed are 1, 1/2, 2, 3, 1/3, 1/4, 2/3, 3/2, 4, 5, and so on. These
numbers are shown circled; the uncircled numbers in the list are those we leave out because
they are already listed. Because all positive rational numbers are listed once, as the reader can
verify, we have shown that the set of positive rational numbers is countable. ▲

An Uncountable Set
Not all infinite sets have
the same size! We have seen that the set of positive rational numbers is a countable set. Do we have a promising

candidate for an uncountable set? The first place we might look is the set of real numbers. In
Example 5 we use an important proof method, introduced in 1879 by Georg Cantor and known
as the Cantor diagonalization argument, to prove that the set of real numbers is not countable.
This proof method is used extensively in mathematical logic and in the theory of computation.

EXAMPLE 5 Show that the set of real numbers is an uncountable set.

Solution: To show that the set of real numbers is uncountable, we suppose that the set of real
numbers is countable and arrive at a contradiction. Then, the subset of all real numbers that
fall between 0 and 1 would also be countable (because any subset of a countable set is also
countable; see Exercise 16). Under this assumption, the real numbers between 0 and 1 can be
listed in some order, say, r1, r2, r3, Let the decimal representation of these real numbers be

r1 = 0.d11d12d13d14 . . .

r2 = 0.d21d22d23d24 . . .

r3 = 0.d31d32d33d34 . . .

r4 = 0.d41d42d43d44 . . .

...

where dij ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. (For example, if r1 = 0.23794102 . . . , we have d11 =
2, d12 = 3, d13 = 7, and so on.) Then, form a new real number with decimal expansion

Figure 2.20: The Positive Rational Numbers Are Countable.

a sequence r1, r2, . . . , rn, First, note that every positive rational number is
the quotient p/q of two positive integers. We can arrange the positive rational
numbers by listing those with denominator q = 1 in the first row, those with
denominator q = 2 in the second row, and so on, as displayed in Figure 2.20.

The key to listing the rational numbers in a sequence is to first list the
positive rational numbers p/q with p+q = 2, followed by those with p+q = 3,
followed by those with p+ q = 4, and so on, following the path shown in Fig-
ure 2.20. Whenever we encounter a number p/q that is already listed, we
do not list it again. For example, when we come to 2/2 = 1 we do not list
it because we have already listed 1/1 = 1. The initial terms in the list of
positive rational numbers we have constructed are 1, 1/2, 2, 3, 1/3, 1/4, 2/3,
3/2, 4, 5, and so on. These numbers are shown circled; the uncircled numbers
in the list are those we leave out because they are already listed. Because all
positive rational numbers are listed once, as the reader can verify, we have
shown that the set of positive rational numbers is countable.

2.5.3 An Uncountable Set

We have seen that the set of positive rational numbers is a countable
set. Do we have a promising candidate for an uncountable set? The
first place we might look is the set of real numbers. In Example 5 we
use an important proof method, introduced in 1879 by Georg Cantor

214 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

and known as the Cantor diagonalization argument, to prove that
the set of real numbers is not countable. This proof method is used
extensively in mathematical logic and in the theory of computation.

�
EXAMPLE. 5

Show that the set of real numbers is an uncountable set.�� ��Solution: To show that the set of real numbers is uncountable, we sup-
pose that the set of real numbers is countable and arrive at a contradiction.
Then, the subset of all real numbers that fall between 0 and 1 would also be
countable. Under this assumption, the real numbers between 0 and 1 can be
listed in some order, say, r1, r2, r3, Let the decimal representation of
these real numbers be

r1 = 0.d11d12d13d14 . . .
r2 = 0.d21d22d23d24 . . .
r3 = 0.d31d32d33d34 . . .
r4 = 0.d41d42d43d44 . . .

...

where dij ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. (For example, if r1 = 0.23794102 . . .,
we have d11 = 2, d12 = 3, d13 = 7, and so on.) Then, form a new real
number with decimal expansion r = 0.d1d2d3d4 . . ., where the decimal digits
are determined by the following rule:

di =

{
4 if dii ̸= 4
5 if dii ̸= 4.

(As an example, suppose that r1 = 0.23794102 . . . , r2 = 0.44590138 . . . , r3 =
0.09118764 . . . , r4 = 0.80553900 . . ., and so on. Then we have r = 0.d1d2d3d4 . . . =
0.4544 . . ., where d1 = 4 because d11 ̸= 4, d2 = 5 because d22 = 4, d3 = 4
because d33 ̸= 4, d4 = 4 because d44 ̸= 4, and so on.)

Every real number has a unique decimal expansion (when the possibility
that the expansion has a tail end that consists entirely of the digit 9 is ex-
cluded). Therefore, the real number r is not equal to any of r1, r2, . . . because
the decimal expansion of r differs from the decimal expansion of ri in the ith
place to the right of the decimal point, for each i.

Because there is a real number r between 0 and 1 that is not in the list, the
assumption that all the real numbers between 0 and 1 could be listed must be
false. Therefore, all the real numbers between 0 and 1 cannot be listed, so the

2.5.3 An Uncountable Set 215

set of real numbers between 0 and 1 is uncountable.Any set with an uncount-
able subset is uncountable. Hence, the set of real numbers is uncountable.

RESULTS ABOUT CARDINALITY We will now discuss some
results about the cardinality of sets. First, we will prove that the union
of two countable sets is also countable.

THEOREM 2.5.1

If A and B are countable sets, then A ∪B is also countable.

Proof: Suppose that A and B are both countable sets. Without loss
of generality, we can assume thatAandB are disjoint. (If they are not,
we can replace B by B−A, because A∩(B−A) = ∅ and A∪(B−A) =
A ∪ B.) Furthermore, without loss of generality, if one of the two sets
is countably infinite and other finite, we can assume that B is the one
that is finite.

There are three cases to consider: (i) A and B are both finite, (ii) A
is infinite and B is finite, and (iii) A and B are both countably infinite.

Case (i): Note that when A and B are finite, A ∪ B is also finite,
and therefore, countable.

Case (ii): Because A is countably infinite, its elements can be listed
in an infinite sequence a1, a2, a3, . . . , an, . . . and because B is fi-
nite, its terms can be listed as b1, b2, . . . , bm for some positive integer
m. We can list the elements of A ∪ B as b1, b2, . . . , bm, a1, a −
2, a3, . . . , an, This means that A ∪B is countably infinite.

Case (iii): Because both A and B are countably infinite, we can list
their elements as a1, a2, a3, . . . , an, . . . andb1, b2, . . . , bn, . . ., respec-
tively. By alternating terms of these two sequences we can list the ele-
ments of A∪B in the infinite sequence a1, b1, a2, b2, a3, b3, . . . , an, bn,
This means A ∪B must be countably infinite.

We have completed the proof, as we have shown that A ∪ B is
countable in all three cases.

216 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

THEOREM 2.5.2: SCHRÖDER-BERNSTEIN

If A and B are sets with |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|.

2.5.3 An Uncountable Set 217

In other words, if there are one-to-one functions f from A to
B and g from B to A, then there is a one-to-one correspondence
between A and B.

Because Theorem 2.5.2 seems to be quite straightforward, we might
expect that it has an easy proof. However, even though it can be
proved without using advanced mathematics, no known proof is easy
to explain. Consequently, we omit a proof here.

We illustrate the use of 2.5.2 with an example.

�
EXAMPLE. 6

Show that the |(0, 1)| = |(0, 1]|.�� ��Solution: It is not at all obvious how to find a one-to-one correspondence
between (0, 1) and (0, 1] to show that |(0, 1)| = |(0, 1]|. Fortunately, we can
use the Schröder-Bernstein theorem instead. Finding a one-to-one function
from (0, 1) to (0, 1] is simple. Because (0, 1) ⊂ (0, 1], f(x) = x is a one-to-one
function from (0, 1) to (0, 1]. Finding a one-to-one function from (0, 1] to (0, 1)

is also not difficult. The function g(x) = x/2 is clearly one-to-one and maps
(0, 1] to (0, 1/2] ⊂ (0, 1). As we have found one-to-one functions from (0, 1)

to (0, 1] and from (0, 1] to (0, 1), the Schröder-Bernstein theorem tells us that
|(0, 1)| = |(0, 1]|.

UNCOMPUTABLE FUNCTIONS
We will now describe an important application of the concepts of

this section to computer science. In particular, we will show that there
are functions whose values cannot be computed by any computer pro-
gram.

Definition 2.5.4 We say that a function is computable if there
is a computer program in some programming language that finds the
values of this function. If a function is not computable we say it is
uncomputable.

To show that there are uncomputable functions, we need to establish
two results. First, we need to show that the set of all computer programs
in any particular programming language is countable. This can be

218 CHAPTER 2. BASIC STRUCTURES: SETS, FUNCTIONS. . .

proved by noting that a computer programs in a particular language
can be thought of as a string of characters from a finite alphabet. Next,
we show that there are uncountably many different functions from a
particular countably infinite set to itself.

THE CONTINUUM HYPOTHESIS
We conclude this section with a brief discussion of a famous open

question about cardinality. It can be shown that the power set of Z+

and the set of real numbers R have the same cardinality. In other words,
we know that |P(Z+)| = |R| = c, where c denotes the cardinality of
the set of real numbers.

An important theorem of Cantor states that the cardinality of a
set is always less than the cardinality of its power set. Hence, |Z+| <
|P(Z+)|. We can rewrite this as ℵ0 < 2ℵ0 , using the notation 2|S| to
denote the cardinality of the power set of the set S. Also, note that the
relationship |P(Z+)| = |R| can be expressed as 2ℵ0 = c.

This leads us to the famous continuum hypothesis, which asserts
that there is no cardinal number X between ℵ0 and c. In other words,
the continuum hypothesis states that there is no set A such that ℵ0,
the cardinality of the set of positive integers, is less than |A| and |A| is
less than c, the cardinality of the set of real numbers. It can be shown
that the smallest infinite cardinal numbers form an infinite sequence
ℵ0 < ℵ1 < ℵ2 < If we assume that the continuum hypothesis is
true, it would follow that c = ℵ1, so that 2ℵ0 = ℵ1.

The continuum hypothesiswas stated by Cantor in 1877. He labored
unsuccessfully to prove it, becoming extremely dismayed that he could
not. By 1900, settling the continuum hypothesis was considered to be
among the most important unsolved problems in mathematics. It was
the first problem posed by David Hilbert in his famous 1900 list of open
problems in mathematics.

The continuum hypothesis is still an open question and remains
an area for active research. However, it has been shown that it can
be neither proved nor disproved under the standard set theory axioms
in modern mathematics, the Zermelo-Fraenkel axioms. The Zermelo-
Fraenkel axioms were formulated to avoid the paradoxes of naive set
theory, such as Russell’s paradox, but there is much controversy whether
they should be replaced by some other set of axioms for set theory.

Chapter 3

Algorithms

Many problems can be solved by considering them as special cases
of general problems. For instance, consider the problem of locating
the largest integer in the sequence 101, 12, 144, 212, 98. This is a
specific case of the problem of locating the largest integer in a sequence
of integers. To solve this general problem we must give an algorithm,
which specifies a sequence of steps used to solve this general problem.We
will study algorithms for solving many different types of problems in
this book. For example, in this chapter we will introduce algorithms
for two of the most important problems in computer science, searching
for an element in a list and sorting a list so its elements are in some
prescribed order, such as increasing, decreasing, or alphabetic.

We will also introduce the notion of an algorithmic paradigm, which
provides a general method for designing algorithms. We will also dis-
cuss greedy algorithms, a class of algorithms used to solve optimization
problems. Proofs are important in the study of algorithms. In this
chapter we illustrate this by proving that a particular greedy algorithm
always finds an optimal solution.

One important consideration concerning an algorithm is its compu-
tational complexity, which measures the processing time and computer
memory required by the algorithm to solve problems of a particular
size. To measure the complexity of algorithms we use big-O and big-
Theta notation, which we develop in this chapter.We will illustrate the
analysis of the complexity of algorithms in this chapter, focusing on

219

220 CHAPTER 3. ALGORITHMS

the time an algorithm takes to solve a problem. Furthermore, we will
discuss what the time complexity of an algorithm means in practical
and theoretical terms.

3.1 Algorithms

3.1.1 Introduction

There are many general classes of problems that arise in discrete
mathematics. For instance: given a sequence of integers, find the largest
one; given a set, list all its subsets; given a set of integers, put them in
increasing order; given a network, find the shortest path between two
vertices. When presented with such a problem, the first thing to do is
to construct a model that translates the problem into a mathematical
context. Discrete structures used in such models include sets, sequences,
and functions—structures discussed in Chapter 2—as well as such other
structures as permutations, relations, graphs, trees, networks, and finite
state machines— concepts that will be discussed in later chapters.

Setting up the appropriate mathematical model is only part of the
solution. To complete the solution, a method is needed that will solve
the general problem using the model. Ideally, what is required is a
procedure that follows a sequence of steps that leads to the desired
answer. Such a sequence of steps is called an algorithm.

Definition 3.1.1 An algorithm is a finite sequence of precise in-
structions for performing a computation or for solving a problem.

The term algorithm is a corruption of the name al-Khowarizmi, a
mathematician of the ninth century, whose book on Hindu numerals
is the basis of modern decimal notation. Originally, the word algorism
was used for the rules for performing arithmetic using decimal notation.
Algorism evolved into the word algorithm by the eighteenth century.
With the growing interest in computing machines, the concept of an
algorithm was given a more general meaning, to include all definite
procedures for solving problems, not just the procedures for performing
arithmetic.

3.1.1 Introduction 221

We will discuss algorithms that solve a wide variety of problems.
In this section we will use the problem of finding the largest integer in
a finite sequence of integers to illustrate the concept of an algorithm
and the properties algorithms have. Also, we will describe algorithms
for locating a particular element in a finite set. In subsequent sections,
procedures for finding the greatest common divisor of two integers, for
finding the shortest path between two points in a network, for multi-
plying matrices, and so on, will be discussed.

�
EXAMPLE. 1

Describe an algorithm for finding the maximum (largest) value in a finite
sequence of integers.

Even though the problemof finding the maximum element in a sequence is
relatively trivial, it provides a good illustration of the concept of an algorithm.
Also, there are many instances where the largest integer in a finite sequence
of integers is required. For instance, a university may need to find the highest
score on a competitive exam taken by thousands of students. Or a sports
organization may want to identify the member with the highest rating each
month. We want to develop an algorithm that can be used whenever the
problem of finding the largest element in a finite sequence of integers arises.

We can specify a procedure for solving this problem in several ways. One
method is simply to use the English language to describe the sequence of steps
used. We now provide such a solution.�� ��Solution: We perform the following steps.

1. Set the temporary maximum equal to the first integer in the sequence.
(The temporary maximum will be the largest integer examined at any stage
of the procedure.)

2. Compare the next integer in the sequence to the temporary maximum,
and if it is larger than the temporary maximum, set the temporary maximum
equal to this integer.

3. Repeat the previous step if there are more integers in the sequence.
4. Stop when there are no integers left in the sequence. The temporary

maximum at this point is the largest integer in the sequence.

An algorithm can also be described using a computer language.
However, when that is done, only those instructions permitted in the
language can be used. This often leads to a description of the algo-

222 CHAPTER 3. ALGORITHMS

rithm that is complicated and difficult to understand. Furthermore,
because many programming languages are in common use, it would
be undesirable to choose one particular language. So, instead of us-
ing a particular computer language to specify algorithms, a form of
pseudocode. (We will also describe algorithms using the English lan-
guage.) Pseudocode provides an intermediate step between an English
language description of an algorithm and an implementation of this al-
gorithm in a programming language. The steps of the algorithm are
specified using instructions resembling those used in programming lan-
guages. However, in pseudocode, the instructions used can include any
well-defined operations or statements. A computer program can be pro-
duced in any computer language using the pseudocode description as a
starting point.

ALGORITHM 1
Finding the Maximum Element in a Finite Sequence.

procedure max (a1, a2, . . . , an :integers)
max := a1

for i := 2 to n
if max < ai then max := ai

return max{ max is the largest element}

The pseudocode used in this book is designed to be easily under-
stood. It can serve as an intermediate step in the construction of pro-
grams implementing algorithms in one of a variety of different program-
ming languages. Although this pseudocode does not follow the syntax
of Java, C, C++, or any other programming language, students famil-
iar with a modern programming language will find it easy to follow. A
key difference between this pseudocode and code in a programming lan-
guage is that we can use any well-defined instruction even if it would
take many lines of code to implement this instruction. The reader
should refer to this appendix whenever the need arises.

A pseudocode description of the algorithm for finding the maximum
element in a finite sequence follows.

This algorithm first assigns the initial term of the sequence, a1, to

3.1.1 Introduction 223

the variable max. The “for” loop is used to successively examine terms
of the sequence. If a term is greater than the current value of max, it
is assigned to be the new value of max. The algorithm terminates after
all terms have been examined. The value of max on termination is the
maximum element in the sequence.

To gain insight into how an algorithm works it is useful to construct
a trace that shows its steps when given specific input. For instance, a
trace of Algorithm 1 with input 8, 4, 11, 3, 10 begins with the algorithm
setting max to 8, the value of the initial term. It then compares 4, the
second term, with 8, the current value of max. Because 4 ≤ 8, max is
unchanged. Next, the algorithm compares the third term, 11, with 8,
the current value of max. Because 8 < 11, max is set equal to 11. The
algorithm then compares 3, the fourth term, and 11, the current value
of max. Because 3 ≤ 11, max is unchanged. Finally, the algorithm
compares 10, the first term, and 11, the current value of max. As 10 ≤
11, max remains unchanged. Because there are five terms, we have
n = 5. So after examining 10, the last term, the algorithm terminates,
with max = 11. When it terminates, the algorithms reports that 11 is
the largest term in the sequence.

PROPERTIES OF ALGORITHMS
There are several properties that algorithms generally share. They

are useful to keep in mind when algorithms are described. These prop-
erties are:

◦ Input. An algorithm has input values from a specified set.
◦ Output. From each set of input values an algorithm produces

output values from a specified set. The output values are the
solution to the problem.
◦ Definiteness. The steps of an algorithm must be defined precisely.
◦ Correctness. An algorithm should produce the correct output

values for each set of input values.
◦ Finiteness. An algorithm should produce the desired output after

a finite (but perhaps large) number of steps for any input in the
set.
◦ Effectiveness. It must be possible to perform each step of an

algorithm exactly and in a finite amount of time.

224 CHAPTER 3. ALGORITHMS

◦ Generality. The procedure should be applicable for all problems
of the desired form, not just for a particular set of input values.

�
EXAMPLE. 2

Show that Algorithm 1 for finding the maximum element in a finite sequence
of integers has all the properties listed.�� ��Solution: The input to Algorithm 1 is a sequence of integers. The output
is the largest integer in the sequence. Each step of the algorithm is precisely
defined, because only assignments, a finite loop, and conditional statements
occur. To show that the algorithm is correct, we must show that when the
algorithm terminates, the value of the variable max equals the maximum of
the terms of the sequence. To see this, note that the initial value of max is the
first term of the sequence; as successive terms of the sequence are examined,
max is updated to the value of a term if the term exceeds the maximum of
the terms previously examined. This argument shows that when all the terms
have been examined, max equals the value of the largest term. The algorithm
uses a finite number of steps, because it terminates after all the integers in the
sequence have been examined. The algorithm can be carried out in a finite
amount of time because each step is either a comparison or an assignment,
there are a finite number of these steps, and each of these two operations
takes a finite amount of time. Finally, Algorithm 1 is general, because it can
be used to find the maximum of any finite sequence of integers.

3.1.2 Searching Algorithms

The problem of locating an element in an ordered list occurs in
many contexts. For instance, a program that checks the spelling of
words searches for them in a dictionary, which is just an ordered list of
words. Problems of this kind are called searching problems. We will
discuss several algorithms for searching in this section.We will study
the number of steps used by each of these algorithms in Section 3.3.

The general searching problem can be described as follows: Locate
an element x in a list of distinct elements a1, a2, . . . , an, or determine
that it is not in the list. The solution to this search problem is the

3.1.2 Searching Algorithms 225

location of the term in the list that equals x (that is, i is the solution
if x = ai) and is 0 if x is not in the list.

THE LINEAR SEARCH
The first algorithm that we will present is called the linear search

or sequential search, algorithm. The linear search algorithm begins
by comparing x and a1. When x = a1, the solution is the location of
a1, namely, 1.

ALGORITHM 2
The Linear Search Algorithm.

procedure linear search(x: integer, a1, a2, . . . , an: distinct inte-
gers)
i := 1
while (i ≤ n and x ̸= ai)

i := i+ 1
if i ≤ n then location := i
else location:= 0
return location{location is the subscript of the term that equals
x, or is 0 if x is not found}

When x ̸= a1, compare x with a2. If x = a2, the solution is the
location of a2, namely, 2. When x ̸= a2, compare x with a3. Continue
this process, comparing x successively with each term of the list until a
match is found, where the solution is the location of that term, unless
no match occurs. If the entire list has been searched without locating
x, the solution is 0. The pseudocode for the linear search algorithm is
displayed as Algorithm 2.

THE BINARY SEARCH
We will now consider another searching algorithm. This algorithm

can be used when the list has terms occurring in order of increasing size
(for instance: if the terms are numbers, they are listed from smallest to
largest; if they are words, they are listed in lexicographic, or alphabetic,
order). This second searching algorithm is called the binary search

226 CHAPTER 3. ALGORITHMS

algorithm. It proceeds by comparing the element to be located to the
middle term of the list. The list is then split into two smaller sublists
of the same size, or where one of these smaller lists has one fewer term
than the other. The search continues by restricting the search to the
appropriate sublist based on the comparison of the element to be located
and the middle term. In Section 3.3, it will be shown that the binary
search algorithm is much more efficient than the linear search algorithm.
Example 3 demonstrates how a binary search works.

�
EXAMPLE. 3

To search for 19 in the list

1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22,

first split this list, which has 16 terms, into two smaller lists with eight terms
each, namely,

1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22.

Then, compare 19 and the largest term in the first list. Because 10 < 19, the
search for 19 can be restricted to the list containing the 9th through the 16th
terms of the original list. Next, split this list, which has eight terms, into the
two smaller lists of four terms each, namely,

12 13 15 16 18 19 20 22.

Because 16 < 19 (comparing 19 with the largest term of the first list) the
search is restricted to the second of these lists, which contains the 13th through
the 16th terms of the original list. The list 18 19 20 22 is split into two lists,
namely,

18 19 20 22.

Because 19 is not greater than the largest term of the first of these two lists,
which is also 19, the search is restricted to the first list: 18 19, which con-
tains the 13th and 14th terms of the original list. Next, this list of two terms
is split into two lists of one term each: 18 and 19. Because 18 < 19, the
search is restricted to the second list: the list containing the 14th term of the
list, which is 19. Now that the search has been narrowed down to one term, a
comparison is made, and 19 is located as the 14th term in the original list.

3.1.2 Searching Algorithms 227

We now specify the steps of the binary search algorithm. To search
for the integer x in the list a1, a2, . . . , an, where a1 < a2 < . . . < an,
begin by comparing x with the middle term am of the list, where m =
⌊(n + 1)/2⌋. (Recall that ⌊x⌋ is the greatest integer not exceeding x.)
If x > am, the search for x is restricted to the second half of the list,
which is am+1, am+2, . . . , an. If x is not greater than am, the search
for x is restricted to the first half of the list, which is a1, a2, . . . , am.

ALGORITHM 3
The Binary Search Algorithm.

procedure binary search (x : integer, a1, a2, . . . , an : increasing
integers)
i := 1 {i is left endpoint of search interval}
j := n {j is right endpoint of search interval}
while i < j
m := ⌊(i+ j)/2⌋
if x > am then i := m+ 1
else j := m

if x = ai then location := i
else location:= 0
return location{location is the subscript i of the term ai equal
to x, or 0 if x is not found}

The search has now been restricted to a list with no more than ⌈n/2⌉
elements. (Recall that ⌈x⌉ is the smallest integer greater than or equal
to x.) Using the same procedure, compare x to the middle term of the
restricted list. Then restrict the search to the first or second half of the
list. Repeat this process until a list with one term is obtained. Then
determine whether this term is x. Pseudocode for the binary search
algorithm is displayed as Algorithm 3.

Algorithm 3 proceeds by successively narrowing down the part of
the sequence being searched. At any given stage only the terms from ai
to aj are under consideration. In other words, i and j are the smallest
and largest subscripts of the remaining terms, respectively. Algorithm 3
continues narrowing the part of the sequence being searched until only

228 CHAPTER 3. ALGORITHMS

one term of the sequence remains. When this is done, a comparison is
made to see whether this term equals x.

3.1.3 Sorting

Ordering the elements of a list is a problem that occurs in many
contexts. For example, to Demo produce a telephone directory it is
necessary to alphabetize the names of subscribers. Similarly, produc-
ing a directory of songs available for downloading requires that their
titles be put in alphabetic order. Putting addresses in order in an e-
mail mailing list can determine whether there are duplicated addresses.
Creating a useful dictionary requires that words be put in alphabetical
order. Similarly, generating a parts list requires that we order them
according to increasing part number.

Suppose that we have a list of elements of a set. Furthermore,
suppose that we have a way to order elements of the set. Sorting is
putting these elements into a list in which the elements are in increasing
order. For instance, sorting the list 7, 2, 1, 4, 5, 9 produces the list
1, 2, 4, 5, 7, 9. Sorting the list d, h, c, a, f (using alphabetical
order) produces the list a, c, d, f, h.

There are many reasons why sorting algorithms interest computer
scientists and mathematicians. Among these reasons are that some
algorithms are easier to implement, some algorithms are more efficient
(either in general, or when given input with certain characteristics,
such as lists slightly out of order), some algorithms take advantage of
particular computer architectures, and some algorithms are particularly
clever. In this section we will introduce two sorting algorithms, the
bubble sort and the insertion sort.

THE BUBBLE SORT
The bubble sort is one of the simplest sorting algorithms, but not

one of the most efficient. It puts a list into increasing order by succes-
sively comparing adjacent Links elements, interchanging them if they
are in the wrong order. To carry out the bubble sort, we perform the
basic operation, that is, interchanging a larger element with a smaller
one following it, starting at the beginning of the list, for a full pass. We
iterate this procedure until the sort is complete. Pseudocode for the

3.1.3 Sorting 229

bubble sort is given as Algorithm 4. We can imagine the elements in
the list placed in a column. In the bubble sort, the smaller elements
“bubble” to the top as they are interchanged with larger elements. The
larger elements “sink” to the bottom. This is illustrated in Example 4.

ALGORITHM 4
The Bubble Sort.

procedure bubblesort(a1, . . . , an : real numbers with n ≥ 2)
for i := 1 to n− 1

for j := 1 to n− i
if aj > aj+1 then interchange aj and aj+1

{a1, . . . , an is in increasing order}

�
EXAMPLE. 4

Use the bubble sort to put 3, 2, 4, 1, 5 into increasing order.�� ��Solution: The steps of this algorithm are illustrated in Figure 3.1. Begin
by comparing the first two elements, 3 and 2. Because 3 > 2, interchange 3
and 2, producing the list 2, 3, 4, 1, 5. Because 3 < 4, continue by comparing
4 and 1. Because 4 > 1, interchange 1 and 4, producing the list 2, 3, 1, 4, 5.
Because 4 < 5, the first pass is complete. The first pass guarantees that the
largest element, 5, is in the correct position.

The second pass begins by comparing 2 and 3. Because these are in the
correct order, 3 and 1 are compared. Because 3 > 1, these numbers are
interchanged, producing 2, 1, 3, 4, 5. Because 3 < 4, these numbers are in
the correct order. It is not necessary to do any more comparisons for this pass
because 5 is already in the correct position. The second pass guarantees that
the two largest elements, 4 and 5, are in their correct positions. The third
pass begins by comparing 2 and 1. These are interchanged because 2 > 1,
producing 1, 2, 3, 4, 5. Because 2 < 3, these two elements are in the correct
order. It is not necessary to do any more comparisons for this pass because 4
and 5 are already in the correct positions.

The third pass guarantees that the three largest elements, 3, 4, and 5, are
in their correct positions.

The fourth pass consists of one comparison, namely, the comparison of 1
and 2. Because 1 < 2, these elements are in the correct order.

230 CHAPTER 3. ALGORITHMS

3.1 Algorithms 207

sort and the binary insertion sort, are introduced in the exercises, and the shaker sort is in-

troduced in the Supplementary Exercises. In Section 5.4 we will discuss the merge sort and

introduce the quick sort in the exercises in that section; the tournament sort is introduced

in the exercise set in Section 11.2. We cover sorting algorithms both because sorting is an

important problem and because these algorithms can serve as examples for many important

concepts.

THE BUBBLE SORT The bubble sort is one of the simplest sorting algorithms, but not one

of the most efficient. It puts a list into increasing order by successively comparing adjacentLinks
elements, interchanging them if they are in the wrong order. To carry out the bubble sort, we

perform the basic operation, that is, interchanging a larger element with a smaller one following

it, starting at the beginning of the list, for a full pass. We iterate this procedure until the sort is

complete. Pseudocode for the bubble sort is given as Algorithm 4. We can imagine the elements

in the list placed in a column. In the bubble sort, the smaller elements “bubble” to the top

as they are interchanged with larger elements. The larger elements “sink” to the bottom. This

is illustrated in Example 4.

EXAMPLE 4 Use the bubble sort to put 3, 2, 4, 1, 5 into increasing order.

Solution: The steps of this algorithm are illustrated in Figure 1. Begin by comparing the first two

elements, 3 and 2. Because 3 > 2, interchange 3 and 2, producing the list 2, 3, 4, 1, 5. Because

3 < 4, continue by comparing 4 and 1. Because 4 > 1, interchange 1 and 4, producing the list

2, 3, 1, 4, 5. Because 4 < 5, the first pass is complete. The first pass guarantees that the largest

element, 5, is in the correct position.

The second pass begins by comparing 2 and 3. Because these are in the correct order, 3 and

1 are compared. Because 3 > 1, these numbers are interchanged, producing 2, 1, 3, 4, 5. Because

3 < 4, these numbers are in the correct order. It is not necessary to do any more comparisons

for this pass because 5 is already in the correct position. The second pass guarantees that the

two largest elements, 4 and 5, are in their correct positions.

The third pass begins by comparing 2 and 1. These are interchanged because 2 > 1, produc-

ing 1, 2, 3, 4, 5. Because 2 < 3, these two elements are in the correct order. It is not necessary

to do any more comparisons for this pass because 4 and 5 are already in the correct posi-

tions. The third pass guarantees that the three largest elements, 3, 4, and 5, are in their correct

positions.

The fourth pass consists of one comparison, namely, the comparison of 1 and 2. Because

1 < 2, these elements are in the correct order. This completes the bubble sort. ◂

3

2

4

1

5

2

3

4

1

5

2

3

4

1

5

2

3

1

4

5

First pass 2

3

1

4

5

2

1

3

4

5

2

3

1

4

5

Second pass

1

2

3

4

5

Fourth pass2

1

3

4

5

1

2

3

4

5

Third pass
: an interchange

: pair in correct order

numbers in color

guaranteed to be in correct order

FIGURE 1 The steps of a bubble sort.Figure 3.1: The steps of a bubble sort.

THE INSERTION SORT
The insertion sort is a simple sorting algorithm, but it is usually

not the most efficient. To sort a list with n elements, the insertion sort
begins with the second element. The insertion sort compares this second
element with the first element and inserts it before the first element if it
does not exceed the first element and after the first element if it exceeds
the first element. At this point, the first two elements are in the correct
order. The third element is then compared with the first element, and
if it is larger than the first element, it is compared with the second
element; it is inserted into the correct position among the first three
elements.

In general, in the j th step of the insertion sort, the j th element of
the list is inserted into the correct position in the list of the previously
sorted j − 1 elements. To insert the jth element in the list, a linear
search technique is used; the j th element is successively compared with
the already sorted j − 1 elements at the start of the list until the first
element that is not less than this element is found or until it has been
compared with all j − 1 elements; the j th element is inserted in the
correct position so that the first j elements are sorted. The algorithm
continues until the last element is placed in the correct position relative
to the already sorted list of the first n− 1 elements. The insertion sort
is described in pseudocode in Algorithm 5.

3.1.4 String Matching 231

ALGORITHM 5
The Insertion Sort.

procedure insertion sort(a1, a2, . . . , an: real numbers n ≥ 2)
for j := 2 to n

i := 1
while aj > ai
i := i+ 1

m := aj
for k := 0 to j − i− 1
aj−k := aj−k−1

ai := m
{a1, . . . , an is in increasing order}

�
EXAMPLE. 5

Use the insertion sort to put the elements of the list 3, 2, 4, 1, 5 in increasing
order.�� ��Solution: The insertion sort first compares 2 and 3. Because 3 > 2, it
places 2 in the first position, producing the list 2, 3, 4, 1, 5 (the sorted part
of the list is shown in color). At this point, 2 and 3 are in the correct order.
Next, it inserts the third element, 4, into the already sorted part of the list
by making the comparisons 4 > 2 and 4 > 3. Because 4 > 3, 4 remains in the
third position. At this point, the list is 2, 3, 4, 1, 5 and we know that the
ordering of the first three elements is correct. Next, we find the correct place
for the fourth element, 1, among the already sorted elements, 2, 3, 4. Because
1 < 2, we obtain the list 1, 2, 3, 4, 5. Finally, we insert 5 into the correct
position by successively comparing it to 1, 2, 3, and 4. Because 5 > 4, it
stays at the end of the list, producing the correct order for the entire list.

3.1.4 String Matching

Although searching and sorting are the most commonly encountered
problems in computer science, many other problems arise frequently.

232 CHAPTER 3. ALGORITHMS

One of these problems asks where a particular string of characters P ,
called the pattern, occurs, if it does, within another string T, called the
text. For instance, we can ask whether the pattern 101 can be found
within the string 11001011. By inspection we can see that the pattern
101 occurs within the text 11001011 at a shift of four characters, because
101 is the string formed by the fifth, sixth, and seventh characters of
the text. On the other hand, the pattern 111 does not occur within the
text 110110001101.

Finding where a pattern occurs in a text string is called string
matching. String matching plays an essential role in a wide variety of
applications, including text editing, spam filters, systems that look for
attacks in a computer network, search engines, plagiarism detection,
bioinformatics, and many other important applications. For example,
in text editing, the string matching problem arises whenever we need
to find all occurrences of a string so that we can replace this string with
a different string. Search engines look for matching of search keywords
with words on web pages. Many problems in bioinformatics arise in the
study of DNA molecules, which are made up of four bases: thymine
(T), adenine (A), cytosine (C), and guanine (G). The process of DNA
sequencing is the determination of the order of the four bases in DNA.
This leads to string matching problems involving strings made up from
the four letters T, A, C, and G. For instance, we can ask whether
the pattern CAG occurs in the text CATCACAGAGA. The answer is
yes, because it occurs with a shift of five characters. Solving questions
about the genome requires the use of efficient algorithms for string
matching, especially because a string representing a human genome is
about 3× 109 characters long.

We will now describe a brute force algorithm, Algorithm 6, for string
matching, called the naive string matcher. The input to this al-
gorithm is the pattern we wish to match, P = p1p2 . . . pm, and the
text, T = t1t2 . . . tn. When this pattern begins at position s + 1 in
the text T, we say that P occurs with shift s in T, that is, when
ts+1 = p1, ts+2 = p2, . . . , ts+m = pm. To find all valid shifts, the
naive string matcher runs through all possible shifts s from s = 0 to
s = n−m, checking whether s is a valid shift. In Figure 2, we display
the operation of Algorithm 6 when it is used to search for the pattern

3.1.5 Creedy Algorithms 233

P = eye in the text T = eceyeye.

ALGORITHM 6
Naive String Matcher.

procedure string match (n, m: positive integers,
m ≤ n, t1, t2, . . . , tn, p1, p2, . . . , pm: characters)

for s := 0 to n−m
j := 1
while (j ≤ m and ts+j = pj)
j := j + 1

if j > m then print “s is a valid shift”

3.1 Algorithms 209

3.1.4 String Matching
Although searching and sorting are the most commonly encountered problems in computer

science, many other problems arise frequently. One of these problems asks where a particular

string of characters P, called the pattern, occurs, if it does, within another string T , called the

text. For instance, we can ask whether the pattern 101 can be found within the string 11001011.

By inspection we can see that the pattern 101 occurs within the text 11001011 at a shift of four

characters, because 101 is the string formed by the fifth, sixth, and seventh characters of the

text. On the other hand, the pattern 111 does not occur within the text 110110001101.

Finding where a pattern occurs in a text string is called string matching. String matching

plays an essential role in a wide variety of applications, including text editing, spam filters, sys-

tems that look for attacks in a computer network, search engines, plagiarism detection, bioinfor-

matics, and many other important applications. For example, in text editing, the string matching

problem arises whenever we need to find all occurrences of a string so that we can replace this

string with a different string. Search engines look for matching of search keywords with words

on web pages. Many problems in bioinformatics arise in the study of DNA molecules, which are

made up of four bases: thymine (T), adenine (A), cytosine (C), and guanine (G). The process of

DNA sequencing is the determination of the order of the four bases in DNA. This leads to string

matching problems involving strings made up from the four letters T, A, C, and G. For instance,

we can ask whether the pattern CAG occurs in the text CATCACAGAGA. The answer is yes,

because it occurs with a shift of five characters. Solving questions about the genome requires

the use of efficient algorithms for string matching, especially because a string representing a

human genome is about 3 × 109 characters long.

We will now describe a brute force algorithm, Algorithm 6, for string matching, called

the naive string matcher. The input to this algorithm is the pattern we wish to match, P =
p1p2 … pm, and the text, T = t1t2 … tn. When this pattern begins at position s + 1 in the text T ,

we say that P occurs with shift s in T , that is, when ts+1 = p1, ts+2 = p2,… , ts+m = pm. To find all

valid shifts, the naive string matcher runs through all possible shifts s from s = 0 to s = n − m,

checking whether s is a valid shift. In Figure 2, we display the operation of Algorithm 6 when

it is used to search for the pattern P = eye in the text T = eceyeye.

ALGORITHM 6 Naive String Matcher.

procedure string match (n, m: positive integers, m ≤ n, t1, t2,… , tn, p1, p2,… , pm: characters)

for s := 0 to n − m
j := 1

while (j ≤ m and ts+j = pj)

j := j + 1

if j > m then print “s is a valid shift”

e c e

e y
s = 0

e

y e y e e c e

e y
s = 1

e

y e y e

e c e

e y
s = 3

e

y e y e

e c e

e y
s = 2

e

y e y e

e c e

e y
s = 4

e

y e y e

FIGURE 2 The steps of the naive string matcher with P = eye in T = eceyeye. Matches
are identified with a solid line and mismatches with a jagged line. The algorithm finds
two valid shifts, s = 2 and s = 4.

Figure 3.2: The steps of the naive string matcher with P = eye in T =
eceyeye. Matches are identified with a solid line and mismatches with
a jagged line. The algorithm finds two valid shifts, s = 2 and s = 4.

Many other string matching algorithms have been developed besides
the naive string matcher. These algorithms use a surprisingly wide
variety of approaches to make them more efficient than the naive string
matcher.

3.1.5 Creedy Algorithms

Many algorithms we will study in this book are designed to solve
optimization problems. The goal of such problems is to find a so-
lution to the given problem that either minimizes or maximizes the
value of some parameter. Optimization problems studied later in this

234 CHAPTER 3. ALGORITHMS

text include finding a route between two cities with least total mileage,
determining a way to encode messages using the fewest bits possible,
and finding a set of fiber links between network nodes using the least
amount of fiber.

Surprisingly, one of the simplest approaches often leads to a solution
of an optimization problem. This approach selects the best choice at
each step, instead of considering all sequences of steps that may lead
to an optimal solution. Algorithms that make what seems to be the
“best” choice at each step are called greedy algorithms. Once we
know that a greedy algorithm finds a feasible solution, we need to de-
termine whether it has found an optimal solution. To do this, we either
prove that the solution is optimal or we show that there is a counterex-
ample where the algorithm yields a nonoptimal solution. To make these
concepts more concrete, we will consider the cashier’s algorithm that
makes change using coins.

�
EXAMPLE. 6

Consider the problem of making n cents change with quarters, dimes, nick-
els, and pennies, and using the least total number of coins. We can devise a
greedy algorithm for making change for n cents by making a locally optimal
choice at each step; that is, at each step we choose the coin of the largest
denomination possible to add to the pile of change without exceeding n cents.
For example, to make change for 67 cents, we first select a quarter (leaving 42
cents).We next select a second quarter (leaving 17 cents), followed by a dime
(leaving 7 cents), followed by a nickel (leaving 2 cents), followed by a penny
(leaving 1 cent), followed by a penny.

We display the cashier’s algorithm for n cents, using any set of
denominations of coins, as Demo Algorithm 7.

We have described the cashier’s algorithm, a greedy algorithm for
making change, using any finite set of coins with denominations c1,
c2, . . ., cr. In the particular case where the four denominations are
quarters, dimes, nickels, and pennies, we have c1 = 25, c2 = 10, c3 = 5,
and c4 = 1. For this case, we will show that this algorithm leads to
an optimal solution in the sense that it uses the fewest coins possible.

3.1.5 Creedy Algorithms 235

Before we embark on our proof, we show that there are sets of coins
for which the cashier’s algorithm (Algorithm 7) does not necessarily
produce change using the fewest coins possible. For example, if we have
only quarters, dimes, and pennies (and no nickels) to use, the cashier’s
algorithm would make change for 30 cents using six coins—a quarter
and five pennies—whereas we could have used three coins, namely, three
dimes.

ALGORITHM 7
Cashier’s Algorithm.

procedure change(c1, c2, . . . , cr: values of denominations of
coins, where
c1 > c2 > . . . > cr; n : a positive integer)

for i := 1 to r
di := 0{di counts the coins of denomination ci used}
while n ≥ ci
di := di + 1{add a coin of denomination ci}
n := n− ci

{di is the number of coins of denomination ci in the change for
i = 1, 2, . . . , r}

LEMMA 3.1.1

If n is a positive integer, then n cents in change using quarters,
dimes, nickels, and pennies using the fewest coins possible has at
most two dimes, at most one nickel, at most four pennies, and
cannot have two dimes and a nickel. The amount of change in
dimes, nickels, and pennies cannot exceed 24 cents.

Proof: We use a proof by contradiction. We will show that if we had
more than the specified number of coins of each type, we could replace
them using fewer coins that have the same value. We note that if we
had three dimes we could replace them with a quarter and a nickel, if
we had two nickels we could replace them with a dime, if we had five
pennies we could replace them with a nickel, and if we had two dimes
and a nickel we could replace them with a quarter. Because we can

236 CHAPTER 3. ALGORITHMS

have at most two dimes, one nickel, and four pennies, but we cannot
have two dimes and a nickel, it follows that 24 cents is the most money
we can have in dimes, nickels, and pennies when we make change using
the fewest number of coins for n cents.

THEOREM 3.1.1

The cashier’s algorithm (Algorithm 7) always makes changes us-
ing the fewest coins possible when change is made from quarters,
dimes, nickels, and pennies.

Proof: We will use a proof by contradiction. Suppose that there
is a positive integer n such that there is a way to make change for n
cents using quarters, dimes, nickels, and pennies that uses fewer coins
than the greedy algorithm finds. We first note that q′, the number of
quarters used in this optimal way to make change for n cents, must be
the same as q, the number of quarters used by the greedy algorithm. To
show this, first note that the greedy algorithm uses the most quarters
possible, so q′ ≤ q. However, it is also the case that q′ cannot be less
than q. If it were, we would need to make up at least 25 cents from
dimes, nickels, and pennies in this optimal way to make change. But
this is impossible by Lemma 3.1.1.

Because there must be the same number of quarters in the two ways
to make change, the value of the dimes, nickels, and pennies in these
two ways must be the same, and these coins are worth no more than 24
cents. There must be the same number of dimes, because the greedy
algorithm used the most dimes possible and by Lemma 3.1.1, when
change is made using the fewest coins possible, at most one nickel and
at most four pennies are used, so that the most dimes possible are also
used in the optimal way to make change. Similarly, we have the same
number of nickels and, finally, the same number of pennies.

A greedy algorithm makes the best choice at each step according to
a specified criterion. The next example shows that it can be difficult to
determine which of many possible criteria to choose.

3.1.5 Creedy Algorithms 237

�
EXAMPLE. 7

Suppose we have a group of proposed talks with preset start and end times.
Devise a greedy algorithm to schedule as many of these talks as possible in a
lecture hall, under the assumptions that once a talk starts, it continues until
it ends, no two talks can proceed at the same time, and a talk can begin at
the same time another one ends. Assume that talk j begins at time sj (where
s stands for start) and ends at time ej (where e stands for end).�� ��Solution: To use a greedy algorithm to schedule the most talks, that is,
an optimal schedule, we need to decide how to choose which talk to add at
each step. There are many criteria we could use to select a talk at each step,
where we chose from the talks that do not overlap talks already selected. For
example, we could add talks in order of earliest start time, we could add talks
in order of shortest time, we could add talks in order of earliest finish time,
or we could use some other criterion.

We now consider these possible criteria. Suppose we add the talk that
starts earliest among the talks compatible with those already selected. We
can construct a counterexample to see that the resulting algorithm does not
always produce an optimal schedule. For instance, suppose that we have three
talks: Talk 1 starts at 8 A.M. and ends at 12 noon, Talk 2 starts at 9 A.M.
and ends at 10 A.M., and Talk 3 starts at 11 A.M. and ends at 12 noon. We
first select the Talk 1 because it starts earliest. But once we have selected
Talk 1 we cannot select either Talk 2 or Talk 3 because both overlap Talk
1. Hence, this greedy algorithm selects only one talk. This is not optimal
because we could schedule Talk 2 and Talk 3, which do not overlap.

Now suppose we add the talk that is shortest among the talks that do
not overlap any of those already selected. Again we can construct a coun-
terexample to show that this greedy algorithm does not always produce an
optimal schedule. So, suppose that we have three talks: Talk 1 starts at 8
A.M. and ends at 9:15 A.M., Talk 2 starts at 9 A.M. and ends at 10 A.M.,
and Talk 3 starts at 9:45 A.M. and ends at 11 A.M. We select Talk 2 because
it is shortest, requiring one hour. Once we select Talk 2, we cannot select
either Talk 1 or Talk 3 because neither is compatible with Talk 2. Hence, this
greedy algorithm selects only one talk. However, it is possible to select two
talks, Talk 1 and Talk 3, which are compatible.

However, it can be shown that we schedule the most talks possible if in
each step we select the talk with the earliest ending time among the talks
compatible with those already selected. We will prove this in Chapter 5 using
the method of mathematical induction. The first step we will make is to sort

238 CHAPTER 3. ALGORITHMS

the talks according to increasing finish time. After this sorting, we relabel the
talks so that e1 ≤ e2 ≤ . . . ≤ en. The resulting greedy algorithm is given as
Algorithm 8.

ALGORITHM 8
Greedy Algorithm for Scheduling Talks.

procedure schedule(s1 ≤ s2 ≤ . . . ≤ sn : start times of talks,
e1 ≤ e2 ≤ . . . ≤ en: ending times of talks)

sort talks by finish time and reorder so that e1 ≤ e2 ≤ . . . ≤ en
S := ∅
for j := 1 to n

if talk j is compatible with S then
S := S ∪ {talk j}

return S{S is the set of talks scheduled}

3.1.6 The Halting Problem

We will now describe a proof of one of the most famous theorems in
computer science. We will show that there is a problem that cannot be
solved using any procedure. That is, we will show there are unsolvable
problems. The problem we will study is the halting problem. It asks
whether there is a procedure that does this: It takes as input a computer
program and input to the program and determines whether the program
will eventually stop when run with this input. It would be convenient
to have such a procedure, if it existed. Certainly being able to test
whether a program entered into an infinite loop would be helpful when
writing and debugging programs.

Before we present a proof that the halting problem is unsolvable,
first note that we cannot simply run a program and observe what it does
to determine whether it terminates when run with the given input. If
the program halts, we have our answer, but if it is still running after
any fixed length of time has elapsed, we do not know whether it will
never halt or we just did not wait long enough for it to terminate. After
all, it is not hard to design a program that will stop only after more

3.1.6 The Halting Problem 239

than a billion years has elapsed. We will describe Turing’s proof that
the halting problem is unsolvable; it is a proof by contradiction.

Proof: Assume there is a solution to the halting problem, a pro-
cedure called H(P, I). The procedure H(P, I) takes two inputs, one a
program P and the other I, an input to the program P . H(P, I) gener-
ates the string “halt” as output if H determines that P stops when given
I as input. Otherwise, H(P, I) generates the string “loops forever” as
output. We will now derive a contradiction.

When a procedure is coded, it is expressed as a string of characters;
this string can be interpreted as a sequence of bits. This means that
a program itself can be used as data. Therefore, a program can be
thought of as input to another program, or even itself. Hence, H can
take a program P as both of its inputs, which are a program and input
to this program. H should be able to determine whether P will halt
when it is given a copy of itself as input. 3.1 Algorithms 213

Program

H(P, I)

P as program

P as input

Output

H(P, P)

If H(P, P) = “halts,”

then loop forever

If H(P, P) = “loops forever,”

then halt

Program

K(P)Input

Program P

FIGURE 3 Showing that the halting problem is unsolvable.

with the given input. If the program halts, we have our answer, but if it is still running after any

fixed length of time has elapsed, we do not know whether it will never halt or we just did not

wait long enough for it to terminate. After all, it is not hard to design a program that will stop

only after more than a billion years has elapsed.

We will describe Turing’s proof that the halting problem is unsolvable; it is a proof by

contradiction. (The reader should note that our proof is not completely rigorous, because we

have not explicitly defined what a procedure is. To remedy this, the concept of a Turing machine

is needed. This concept is introduced in Section 13.5.)

Proof: Assume there is a solution to the halting problem, a procedure called H(P, I). The pro-

cedure H(P, I) takes two inputs, one a program P and the other I, an input to the program P.

H(P,I) generates the string “halt” as output if H determines that P stops when given I as in-

put. Otherwise, H(P, I) generates the string “loops forever” as output. We will now derive a

contradiction.

When a procedure is coded, it is expressed as a string of characters; this string can be

interpreted as a sequence of bits. This means that a program itself can be used as data. Therefore,

a program can be thought of as input to another program, or even itself. Hence, H can take a

program P as both of its inputs, which are a program and input to this program. H should be

able to determine whether P will halt when it is given a copy of itself as input.

To show that no procedure H exists that solves the halting problem, we construct a simple

procedure K(P), which works as follows, making use of the output H(P, P). If the output of

H(P, P) is “loops forever,” which means that P loops forever when given a copy of itself as

input, then K(P) halts. If the output of H(P, P) is “halt,” which means that P halts when given

a copy of itself as input, then K(P) loops forever. That is, K(P) does the opposite of what the

output of H(P, P) specifies. (See Figure 3.)

Now suppose we provide K as intput to K. We note that if the output of H(K, K) is “loops

forever,” then by the definition of K, we see that K(K) halts. This means that by the definition of

H, the output of H(K, K) is “halt,” which is a contradiction. Otherwise, if the output of H(K, K)

is “halts,” then by the definition of K, we see that K(K) loops forever, which means that by

the definition of H, the output of H(K, K) is “loops forever.” This is also a contradiction. Thus,

H cannot always give the correct answers. Consequently, there is no procedure that solves the

halting problem.

Exercises

1. List all the steps used by Algorithm 1 to find the maxi-

mum of the list 1, 8, 12, 9, 11, 2, 14, 5, 10, 4.

2. Determine which characteristics of an algorithm de-

scribed in the text (after Algorithm 1) the following pro-

cedures have and which they lack.

a) procedure double(n: positive integer)

while n > 0

n := 2n

b) procedure divide(n: positive integer)

while n ≥ 0

m := 1∕n
n := n − 1

c) procedure sum(n: positive integer)

sum := 0

while i < 10

sum := sum + i
d) procedure choose(a, b: integers)

x := either a or b

Figure 3.3: Showing that the halting problem is unsolvable.

To show that no procedure H exists that solves the halting problem,
we construct a simple procedure K(P), which works as follows, making
use of the output H(P, P). If the output of H(P, P) is “loops forever,”
which means that P loops forever when given a copy of itself as input,
then K(P) halts. If the output of H(P, P) is “halt,” which means that
P halts when given a copy of itself as input, then K(P) loops forever.
That is, K(P) does the opposite of what the output of H(P, P) specifies.
(See Figure 3.3.)

Now suppose we provide K as intput to K. We note that if the
output of H(K,K) is “loops forever,” then by the definition of K, we
see that K(K) halts. This means that by the definition of H, the output
of H(K,K) is “halt,” which is a contradiction. Otherwise, if the output
of H(K,K) is “halts,” then by the definition of K, we see that K(K)

240 CHAPTER 3. ALGORITHMS

loops forever, which means that by the definition of H, the output of
H(K,K) is “loops forever.” This is also a contradiction. Thus, H cannot
always give the correct answers. Consequently, there is no procedure
that solves the halting problem.

3.2 The Growth of Functions

3.2.1 Introduction

In Section 3.1 we discussed the concept of an algorithm. We intro-
duced algorithms that solve a variety of problems, including searching
for an element in a list and sorting a list. In Section 3.3 we will study
the number of operations used by these algorithms. In particular, we
will estimate the number of comparisons used by the linear and binary
search algorithms to find an element in a sequence of n elements. We
will also estimate the number of comparisons used by the bubble sort
and by the insertion sort to sort a list of n elements. The time required
to solve a problem depends on more than only the number of operations
it uses. The time also depends on the hardware and software used to
run the program that implements the algorithm. However, when we
change the hardware and software used to implement an algorithm, we
can closely approximate the time required to solve a problem of size
n by multiplying the previous time required by a constant. For exam-
ple, on a supercomputer we might be able to solve a problem of size
n a million times faster than we can on a PC. However, this factor of
one million will not depend on n (except perhaps in some minor ways).
One of the advantages of using big-O notation, which we introduce
in this section, is that we can estimate the growth of a function with-
out worrying about constant multipliers or smaller order terms. This
means that, using big-O notation, we do not have to worry about the
hardware and software used to implement an algorithm. Furthermore,
using, we can assume that the different operations used in an algorithm
take the same time, which simplifies the analysis considerably.

Big-O notation is used extensively to estimate the number of op-
erations an algorithm uses as its input grows. With the help of this
notation, we can determine whether it is practical to use a particular

3.2.2 Big-O Notation 241

algorithm to solve a problem as the size of the input increases. Fur-
thermore, using big-O notation, we can compare two algorithms to
determine which is more efficient as the size of the input grows. For
instance, if we have two algorithms for solving a problem, one using
100n2 + 17n + 4 operations and the other using n3 operations, big-O
notation can help us see that the first algorithm uses far fewer oper-
ations when n is large, even though it uses more operations for small
values of n, such as n = 10.

This section introduces big-O notation and the related big-Omega
and big-Theta notations. We will explain how big-O, big-Omega, and
big-Theta estimates are constructed and establish estimates for some
important functions that are used in the analysis of algorithms.

3.2.2 Big-O Notation

The growth of functions is often described using a special notation.
Definition 1 describes this notation.

Definition 3.2.1 Let f and g be functions from the set of integers
or the set of real numbers to the set of real numbers. We say that f(x)
is O(g(x)) if there are constants C and k such that

|f(x)| ≤ C|g(x)|

whenever x > k. [This is read as “f (x) is big-oh of g(x).”]

Remark! Intuitively, the definition that f(x) is O(g(x)) says
that f(x) grows slower than some fixed multiple of g(x) as x grows
without bound.

The constants C and k in the definition of big-O notation are called
witnesses to the relationship f(x) is O(g(x)). To establish that f(x)
is O(g(x)) we need only one pair of witnesses to this relationship. That
is, to show that f(x) is O(g(x)), we need find only one pair of constants
C and k, the witnesses, such that |f(x)| ≤ C|g(x)| whenever x > k.

Note that when there is one pair of witnesses to the relationship
f(x) is O(g(x)), there are infinitely many pairs of witnesses. To see

242 CHAPTER 3. ALGORITHMS

this, note that if C and k are one pair of witnesses, then any pair C ′

and k′, where C < C ′ and k < k′, is also a pair of witnesses, because
|f(x)| ≤ C|g(x)| ≤ C ′|g(x)| whenever x > k′ > k.

THE HISTORY OF BIG-O NOTATION
Big-O notation has been used in mathematics for more than a cen-

tury. In computer science it is widely used in the analysis of algorithms,
as will be seen in Section 3.3. The German mathematician Paul Bach-
mann first introduced big-O notation in 1892 in an important book
on number theory. The big-O symbol is sometimes called a Landau
symbol after the German mathematician Edmund Landau, who used
this notation throughout his work. The use of big-O notation in com-
puter science was popularized by Donald Knuth, who also introduced
the big-Ω and big-Θ notations defined later in this section.

WORKING WITH THE DEFINITION OF BIG-O NO-
TATION

A useful approach for finding a pair of witnesses is to first select a
value of k for which the size of |f(x)| can be readily estimated when
x > k and to see whether we can use this estimate to find a value of
C for which |f(x)| ≤ C|g(x)| for x > k. This approach is illustrated in
Example 1.

�
EXAMPLE. 1

Show that f(x) = x2 + 2x+ 1 is O(x2).�� ��Solution: We observe that we can readily estimate the size of f(x) when
x > 1 because x < x2 and 1 < x2 when x > 1. It follows that

0 ≤ x2 + 2x+ 1 ≤ x2 + 2x2 + x2 = 4x2

whenever x > 1, as shown in Figure 3.4. Consequently, we can take C = 4 and
k = 1 as witnesses to show that f(x) is O(x2). That is, f(x) = x2 +2x+1 <
4x2 whenever x > 1. (Note that it is not necessary to use absolute values
here because all functions in these equalities are positive when x is positive.)
Alternatively, we can estimate the size of f(x) when x > 2. When x > 2, we
have 2x ≤ x2 and 1 ≤ x2. Consequently, if x > 2, we have

0 ≤ x2 + 2x+ 1 ≤ x2 + x2 + x2 = 3x2

3.2.2 Big-O Notation 243

. It follows that C = 3 and k = 2 are also witnesses to the relation f(x) is
O(x2).

Observe that in the relationship “f(x) is O(x2),” x2 can be replaced by
any function that has larger values than x2 for all x ≥ k for some positive
real number k. For example, f(x) is O(x3), f(x) is O(x2 + x+ 7), and so on.

It is also true that x2 is O(x2+2x+1), because x2 < x2+2x+1 whenever
x > 1. This means that C = 1 and k = 1 are witnesses to the relationship x2

is O(x2 + 2x+ 1).

218 3 / Algorithms

WORKING WITH THE DEFINITION OF BIG-O NOTATION A useful approach for find-

ing a pair of witnesses is to first select a value of k for which the size of |f (x)| can be readily

estimated when x > k and to see whether we can use this estimate to find a value of C for which

|f (x)| ≤ C|g(x)| for x > k. This approach is illustrated in Example 1.

EXAMPLE 1 Show that f (x) = x2 + 2x + 1 is O(x2).

Solution: We observe that we can readily estimate the size of f (x) when x > 1 because x < x2Extra
Examples and 1 < x2 when x > 1. It follows that

0 ≤ x2 + 2x + 1 ≤ x2 + 2x2 + x2 = 4x2

whenever x > 1, as shown in Figure 1. Consequently, we can take C = 4 and k = 1 as witnesses

to show that f (x) is O(x2). That is, f (x) = x2 + 2x + 1 < 4x2 whenever x > 1. (Note that it is not

necessary to use absolute values here because all functions in these equalities are positive when

x is positive.)

Alternatively, we can estimate the size of f (x) when x > 2. When x > 2, we have 2x ≤ x2

and 1 ≤ x2. Consequently, if x > 2, we have

0 ≤ x2 + 2x + 1 ≤ x2 + x2 + x2 = 3x2.

It follows that C = 3 and k = 2 are also witnesses to the relation f (x) is O(x2).

Observe that in the relationship “f (x) is O(x2),” x2 can be replaced by any function that has

larger values than x2 for all x ≥ k for some positive real number k. For example, f (x) is O(x3),

f (x) is O(x2 + x + 7), and so on.

It is also true that x2 is O(x2 + 2x + 1), because x2 < x2 + 2x + 1 whenever x > 1. This

means that C = 1 and k = 1 are witnesses to the relationship x2 is O(x2 + 2x + 1). ◂

Note that in Example 1 we have two functions, f (x) = x2 + 2x + 1 and g(x) = x2, such

that f (x) is O(g(x)) and g(x) is O(f (x))—the latter fact following from the inequality

x2 ≤ x2 + 2x + 1, which holds for all nonnegative real numbers x. We say that two functions

4x2 x2x2 + 2x + 1

1 2

4

3

2

1

The part of the graph of f (x) = x2 + 2x + 1

that satisfies f (x) < 4x2 is shown in color.

x2 + 2x + 1 < 4x2 for x > 1

FIGURE 1 The function x2 + 2x + 1 is O(x2).The part of the graph of f(x) = x2 + 2x+ 1 that satisfies f(x) < 4x2 is shown in
color.

Figure 3.4: The function x2 + 2x+ 1 is O(x2).

Note that in Example 1 we have two functions, f(x) = x2 + 2x+ 1
and g(x) = x2, such that f(x) is O(g(x)) and g(x) is O(f(x)) — the
latter fact following from the inequality x2 ≤ x2 + 2x+ 1, which holds
for all nonnegative real numbers x. We say that two functions f(x)
and g(x) that satisfy both of these big-O relationships are of the same
order. We will return to this notion later in this section.

Remark! The fact that f(x) is O(g(x)) is sometimes written
f(x) = O(g(x)). However, the equals sign in this notation does
not represent a genuine equality. Rather, this notation tells us
that an inequality holds relating the values of the functions f and
g for sufficiently large numbers in the domains of these functions.

244 CHAPTER 3. ALGORITHMS

However, it is acceptable to write f(x) ∈ O(g(x)) because O(g(x))
represents the set of functions that are O(g(x)).

When f(x) is O(g(x)), and h(x) is a function that has larger abso-
lute values than g(x) does for sufficiently large values of x, it follows
that f(x) is O(h(x)). In other words, the function g(x) in the relation-
ship f(x) is O(g(x)) can be replaced by a function with larger absolute
values. To see this, note that if

|f(x)| ≤ C|g(x)| if x > k,

and if |h(x)| > |g(x)| for all x > k, then

|f(x)| ≤ C|h(x)| if x > k.

Hence, f(x) is O(h(x)).
When big-O notation is used, the function g in the relationship

f(x) is O(g(x)) is often chosen to have the smallest growth rate of the
functions belonging to a set of reference functions, such as functions of
the form xn, where n is a positive real number.

In subsequent discussions, we will almost always deal with functions
that take on only positive values. All references to absolute values
can be dropped when working with big-O estimates for such functions.
Figure 3.5 illustrates the relationship f(x) is O(g(x)).

Example 2 illustrates how big-O notation is used to estimate the
growth of functions.

�
EXAMPLE. 2

Show that 7x2 is O(x3).�� ��Solution: Note that when x > 7, we have 7x2 < x3. (We can obtain this
inequality by multiplying both sides of x > 7 by x2.) Consequently, we can
take C = 1 and k = 7 as witnesses to establish the relationship 7x2 is O(x3).
Alternatively, when x > 1, we have 7x2 < 7x3, so that C = 7 and k = 1 are
also witnesses to the relationship 7x2 is O(x3).

3.2.2 Big-O Notation 245220 3 / Algorithms

f (x)

k

g(x)

Cg (x)

f (x) < Cg (x) for x > k

The part of the graph of f (x) that satisfies

f (x) < Cg (x) is shown in color.

FIGURE 2 The function f (x) is O(g(x)).

Example 2 illustrates how big-O notation is used to estimate the growth of functions.

EXAMPLE 2 Show that 7x2 is O(x3).

Solution: Note that when x > 7, we have 7x2 < x3. (We can obtain this inequality by multiplying

both sides of x > 7 by x2.) Consequently, we can take C = 1 and k = 7 as witnesses to establish

the relationship 7x2 is O(x3). Alternatively, when x > 1, we have 7x2 < 7x3, so that C = 7 and

k = 1 are also witnesses to the relationship 7x2 is O(x3). ◂

Courtesy of Stanford
University News Service

DONALD E. KNUTH (BORN 1938) Knuth grew up in Milwaukee, where his father taught bookkeeping at
a Lutheran high school and owned a small printing business. He was an excellent student, earning academic

Links

achievement awards. He applied his intelligence in unconventional ways, winning a contest when he was in the
eighth grade by finding over 4500 words that could be formed from the letters in “Ziegler’s Giant Bar.” This
won a television set for his school and a candy bar for everyone in his class.

Knuth had a difficult time choosing physics over music as his major at the Case Institute of Technology.
He then switched from physics to mathematics, and in 1960 he received his bachelor of science degree, si-
multaneously receiving a master of science degree by a special award of the faculty who considered his work
outstanding. At Case, he managed the basketball team and applied his talents by constructing a formula for
the value of each player. This novel approach was covered by Newsweek and by Walter Cronkite on the CBS
television network. Knuth began graduate work at the California Institute of Technology in 1960 and received

his Ph.D. there in 1963. During this time he worked as a consultant, writing compilers for different computers.
Knuth joined the staff of the California Institute of Technology in 1963, where he remained until 1968, when he took a job as a

full professor at Stanford University. He retired as Professor Emeritus in 1992 to concentrate on writing. He is especially interested
in updating and completing new volumes of his series The Art of Computer Programming, a work that has had a profound influence
on the development of computer science, which he began writing as a graduate student in 1962, focusing on compilers. In common
jargon, “Knuth,” referring to The Art of Computer Programming, has come to mean the reference that answers all questions about
such topics as data structures and algorithms.

Knuth is the founder of the modern study of computational complexity. He has made fundamental contributions to the subject of
compilers. His dissatisfaction with mathematics typography sparked him to invent the now widely used TeX and Metafont systems.
TeX has become a standard language for computer typography. Two of the many awards Knuth has received are the 1974 Turing
Award and the 1979 National Medal of Technology, awarded to him by President Carter.

Knuth has written for a wide range of professional journals in computer science and in mathematics. However, his first publi-
cation, in 1957, when he was a college freshman, was a parody of the metric system called “The Potrzebie Systems of Weights and
Measures,” which appeared in MAD Magazine and has been in reprint several times. He is a church organist, as his father was. He
is also a composer of music for the organ. Knuth believes that writing computer programs can be an aesthetic experience, much like
writing poetry or composing music.

Knuth pays $2.56 for the first person to find each error in his books and $0.32 for significant suggestions. If you send him
a letter with an error (you will need to use regular mail, because he has given up reading e-mail), he will eventually inform you
whether you were the first person to tell him about this error. Be prepared for a long wait, because he receives an overwhelming
amount of mail. (The author received a letter years after sending an error report to Knuth, noting that this report arrived several
months after the first report of this error.)

The part of the graph of f(x) that satisfies f(x) < Cg(x) is shown in color.

Figure 3.5: The function f(x) is O(g(x)).

Remark! In Example 2 we did not choose the smallest possible
power of x the reference function in the big-O estimate. Note that
7x2 is also big-O of x2 and x2 grows much slower than x3. In
fact, x2 would be the smallest possible power of x suitable as the
reference function in the big-O estimate.

Example 3 illustrates how to show that a big-O relationship does
not hold.

�
EXAMPLE. 3

Show that n2 is not O(n).�� ��Solution: To show that n2 is not O(n), we must show that no pair of
witnesses C and k exist such that n2 ≤ Cn whenever n > k. We will use a
proof by contradiction to show this.

Suppose that there are constants C and k for which n2 ≤ Cn whenever
n > k. Observe that when n > 0 we can divide both sides of the inequality
n2 ≤ Cn by n to obtain the equivalent inequality n ≤ C. However, no matter
what C and k are, the inequality n ≤ C cannot hold for all n with n > k.
In particular, once we set a value of k, we see that when n is larger than the
maximum of k and C, it is not true that n ≤ C even though n > k. This
contradiction shows that n2 is not O(n).

246 CHAPTER 3. ALGORITHMS

�
EXAMPLE. 4

Example 2 shows that 7x2 is O(x3). Is it also true that x3 is O(7x2)?�� ��Solution: To determine whether x3 is O(7x2), we need to determine whether
witnesses C and k exist, so that x3 ≤ C(7x2) whenever x > k. We will show
that no such witnesses exist using a proof by contradiction.

If C and k are witnesses, the inequality x3 ≤ C(7x2) holds for all x > k.
Observe that the inequality x3 ≤ C(7x2) is equivalent to the inequality
x ≤ 7C, which follows by dividing both sides by the positive quantity x2.
However, no matter what C is, it is not the case that x ≤ 7C for all x > k

no matter what k is, because x can be made arbitrarily large. It follows that
no witnesses C and k exist for this proposed big-O relationship. Hence, x3 is
not O(7x2).

3.2.3 Big-O Estimates for Some Important Functions

Polynomials can often be used to estimate the growth of functions.
Instead of analyzing the growth of polynomials each time they occur,
we would like a result that can always be used to estimate the growth of
a polynomial. Theorem 3.2.1 does this. It shows that the leading term
of a polynomial dominates its growth by asserting that a polynomial of
degree n or less is O(xn).

THEOREM 3.2.1

Let f(x) = anx
n+an−1x

n−1+. . .+a1x+a0, where a0, a1, . . . , an−1,
an are real numbers. Then f(x) is O(xn).

Proof: Using the triangle inequality, if x > 1 we have

|f(x)| = |anxn + an−1x
n−1 + . . .+ a1x+ a0|

≤ |an|xn + |an−1|xn−1 + . . .+ |a1|x+ |a0|
= xn(|an|+ |an−1|/x+ . . .+ |a1|/xn−1 + |a0|/xn)
≤ xn(|an|+ |an−1|+ . . .+ |a1|+ |a0|)

3.2.3 Big-O Estimates for Some Important Functions 247

This shows that
|f(x)| ≤ Cxn,

where C = |an|+|an−1|+. . .+|a0| whenever x > 1. Hence, the witnesses
C = |an|+ |an−1|+ . . .+ |a0| and k = 1 show that f(x) is O(xn).

We now give some examples involving functions that have the set
of positive integers as their domains.

�
EXAMPLE. 5

How can big-O notation be used to estimate the sum of the first n positive
integers?�� ��Solution: Because each of the integers in the sum of the first n positive
integers does not exceed n, it follows that

1 + 2 + . . .+ n ≤ n+ n+ . . .+ n = n2.

From this inequality it follows that 1+ 2+ 3+ . . .+ n is O(n2), taking C = 1

and k = 1 as witnesses. (In this example the domains of the functions in the
big-O relationship are the set of positive integers.)

In Example 6 big-O estimates will be developed for the factorial
function and its logarithm. These estimates will be important in the
analysis of the number of steps used in sorting procedures.

�
EXAMPLE. 6

Give big-O estimates for the factorial function and the logarithm of the fac-
torial function, where the factorial function f(n) = n! is defined by

n! = 1 · 2 · 3 · . . . · n

whenever n is a positive integer, and 0! = 1. For example,

1! = 1, 2! = 1 · 2 = 2, 3! = 1 · 2 · 3 = 6, 4! = 1 · 2 · 3 · 4 = 24.

Note that the function n! grows rapidly.
For instance, 20! = 2, 432, 902, 008, 176, 640, 000.

248 CHAPTER 3. ALGORITHMS
�� ��Solution: A big-O estimate for n! can be obtained by noting that each

term in the product does not exceed n. Hence,

n! = 1 · 2 · 3 · . . . · n
≤ n · n · n · . . . · n
= nn.

This inequality shows that n! is O(nn), taking C = 1 and k = 1 as witnesses.
Taking logarithms of both sides of the inequality established for n!, we obtain

log n! ≤ log nn = nlog n.

This implies that log n! is O(nlog n), again taking C = 1 and k = 1 as wit-
nesses.

�
EXAMPLE. 7

In next sections, we will show that n < 2n whenever n is a positive integer.
Show that this inequality implies that n is O(2n), and use this inequality to
show that logn is O(n).�� ��Solution: Using the inequality n < 2n, we quickly can conclude that n
is O(2n) by taking k = C = 1 as witnesses. Note that because the loga-
rithm function is increasing, taking logarithms (base 2) of both sides of this
inequality shows that

log n < n.

It follows that
log n is O(n).

(Again we take C = k = 1 as witnesses.)
If we have logarithms to a base b, where b is different from 2, we still have

log bn is O(n) because

logb n =
log n

log b
<

n

log b

whenever n is a positive integer. We take C = 1/log b and k = 1 as witnesses.

As mentioned before, big-O notation is used to estimate the number
of operations needed to solve a problem using a specified procedure or

3.2.3 Big-O Estimates for Some Important Functions 249

algorithm. The functions used in these estimates often include the
following:

1, log n, n, nlog n, n2, 2n, n!

Using calculus it can be shown that each function in the list is smaller
than the succeeding function, in the sense that the ratio of a function
and the succeeding function tends to zero as n grows without bound.
Figure 3.6 displays the graphs of these functions, using a scale for the
values of the functions that doubles for each successive marking on the
graph. That is, the vertical scale in this graph is logarithmic.

3.2 The Growth of Functions 223

EXAMPLE 7 In Section 5.1 , we will show that n < 2n whenever n is a positive integer. Show that this in-

equality implies that n is O(2n), and use this inequality to show that log n is O(n).

Solution: Using the inequality n < 2n, we quickly can conclude that n is O(2n) by taking k =
C = 1 as witnesses. Note that because the logarithm function is increasing, taking logarithms

(base 2) of both sides of this inequality shows that

log n < n.

It follows that

log n is O(n).

(Again we take C = k = 1 as witnesses.)

If we have logarithms to a base b, where b is different from 2, we still have logb n is O(n)

because

logb n =
log n
log b

<
n

log b

whenever n is a positive integer. We take C = 1∕ log b and k = 1 as witnesses. (We have used

Theorem 3 in Appendix 2 to see that logb n = log n∕ log b.) ◂

As mentioned before, big-O notation is used to estimate the number of operations needed to

solve a problem using a specified procedure or algorithm. The functions used in these estimates

often include the following:

1, log n, n, n log n, n2, 2n, n!

Using calculus it can be shown that each function in the list is smaller than the succeeding

function, in the sense that the ratio of a function and the succeeding function tends to zero as n
grows without bound. Figure 3 displays the graphs of these functions, using a scale for the values

of the functions that doubles for each successive marking on the graph. That is, the vertical scale

in this graph is logarithmic.

3

n!

2n

n2

n log n

n

log n

l

4 5 6 7 82

4096

2048

1024

512

256

128

64

32

16

8

4

2

1

FIGURE 3 A display of the growth of functions commonly used in big-O estimates.
Figure 3.6: A display of the growth of functions commonly used in big-
O estimates.

USEFUL BIG-O ESTIMATES INVOLVING LOGARITHMS,
POWERS, AND EXPONENTIAL FUNCTIONS

We now give some useful facts that help us determine whether big-O
relationships hold between pairs of functions when each of the functions
is a power of a logarithm, a power, or an exponential function of the
form bn where b > 1.

Theorem 3.2.1 shows that if f(n) is a polynomial of degree d or less,
then f(n) is O(nd). Applying this theorem, we see that if d > c > 1,
then nc is O(nd). We leave it to the reader to show that the reverse
of this relationship does not hold. Putting these facts together, we see

250 CHAPTER 3. ALGORITHMS

that if d > c > 1, then

nc is O(nd), but nd is not O(nc)

.
In Example 7 we showed that logb n is O(n) whenever b > 1. More

generally, whenever b > 1 and c and d are positive, we have

(logb n)
c is O(nd), but nd is not (O(logb n)

c).

This tells us that every positive power of the logarithm of n to the base
b, where b > 1, is big-O of every positive power of n, but the reverse
relationship never holds.

In Example 7, we also showed that n is O(2n). More generally,
whenever d is positive and b > 1, we have

nd is O(bn), but bn is not O(nd).

This tells us that every power of n is big-O of every exponential function
of n with a base that is greater than one, but the reverse relationship
never holds. Furthermore, when c > b > 1 we have

bn is O(cn), but cn is not O(bn).

This tells us that if we have two exponential functions with different
bases greater than one, one of these functions is big-O of the other if
and only if its base is smaller or equal.

Finally, we note that if c > 1, we have

cn is O(n!), but n! is not O(cn).

We can use the big-O estimates discussed here to help us order the
growth of different functions, as Example 8 illustrates.

�
EXAMPLE. 8

Arrange the functions f1(n) = 8
√
n, f2(n) = (log n)2, f3(n) = 2nlog n, f4(n) =

n!, f5(n) = (1.1)n, and f6(n) = n2 in a list so that each function is big-O of
the next function.

3.2.4 The Growth of Combinations of Functions 251
�� ��Solution: From the big-O estimates described in this subsection, we see

that f2(n) = (log n)2 is the slowest growing of these functions. (This follows
because log n grows slower than any positive power of n.) The next three
functions, in order, are f1(n) = 8

√
nn = f3(n) = 2nlog n, and f6(n) = n2.

(We know this because f1(n) = 8n1/2, f3(n) = 2nlog n is a function that
grows faster than n but slower than nc for every c > 1, and f6(n) = n2 is of
the form nc where c = 2.) The next function in the list is f5(n) = (1.1)n,
because it is an exponential function with base 41.1. Finally, f4(n) = n! is
the fastest growing function on the list, because f(n) = n! grows faster than
any exponential function of n.

3.2.4 The Growth of Combinations of Functions

Many algorithms are made up of two or more separate subproce-
dures. The number of steps used by a computer to solve a problem
with input of a specified size using such an algorithm is the sum of the
number of steps used by these subprocedures. To give a big-O estimate
for the number of steps needed, it is necessary to find big-O estimates
for the number of steps used by each subprocedure and then combine
these estimates.

Big-O estimates of combinations of functions can be provided if care
is taken when different big-O estimates are combined. In particular, it
is often necessary to estimate the growth of the sum and the product
of two functions. What can be said if big-O estimates for each of two
functions are known? To see what sort of estimates hold for the sum
and the product of two functions, suppose that f1(x) is O(g1(x)) and
f2(x) is O(g2(x)).

From the definition of big-O notation, there are constants C1, C2, k1,
and k2 such that

|f1(x)| ≤ C1|g1(x)|
when x > k1, and

|f2(x)| ≤ C2|g2(x)|
when x > k2. To estimate the sum of f1(x) and f2(x), note that

|(f1 + f2)(x)| = |f1(x) + f2(x)|
≤ |f1(x)|+ |f2(x)|

252 CHAPTER 3. ALGORITHMS

When x is greater than both k1 and k2, it follows from the inequalities
for |f1(x)| and |f2(x)| that

|f1(x)|+ |f2(x)| ≤ C1|g1(x)|+ C2|g2(x)|
≤ C1|g(x)|+ C2|g(x)|
= (C1 + C2)|g(x)|
= C|g(x)|,

where C = C1 + C2 and g(x) = max(|g1(x)|, |g2(x)|). [Here max(a, b)
denotes the maximum, or larger, of a and b.]

This inequality shows that |(f1+f2)(x)| ≤ C|g(x)| whenever x > k,
where k = max(k1, k2).

We state this useful result as Theorem 3.2.2.

THEOREM 3.2.2

Suppose that f1(x) is O(g1(x)) and that f2(x) is O(g2(x)). Then
(f1 + f2)(x) is O(g(x)), where g(x) = (max(|g1(x)|, |g2(x)|) for
all x.

We often have big-O estimates for f1 and f2 in terms of the same
function g. In this situation, Theorem 3.2.2 can be used to show that
(f1 + f2)(x) is also O(g(x)), because max(g(x), g(x)) = g(x). This
result is stated in Corollary 1.

COROLLARY 1 Suppose that f1(x) and f2(x) are both O(g(x)).
Then (f1 + f2)(x) is O(g(x)).

In a similar way big-O estimates can be derived for the product of
the functions f1 and f2.

When x is greater than max(k1, k2) it follows that

|(f1f2)(x)| = |f1(x)||f2(x)|
≤ C1|g1(x)|C2|g2(x)|
≤ C1C2|(g1g2)(x)|
≤ C|(g1g2)(x)|,

where C = C1C2. From this inequality, it follows that f1(x)f2(x) is
O(g1g2(x)), because there are constants C and k, namely, C = C1C2

and k = max(k1, k2), such that |(f1f2)(x)| ≤ C|g1(x)g2(x)| whenever
x > k. This result is stated in Theorem 3.2.3

3.2.4 The Growth of Combinations of Functions 253

THEOREM 3.2.3

Suppose that f1(x) is O(g1(x)) and f2(x) is O(g2(x)). Then (f1f2)(x)
is O(g1(x)g2(x)).

The goal in using big-O notation to estimate functions is to choose a
function g(x) as simple as possible, that grows relatively slowly so that
f(x) is O(g(x)). Examples 9 and 10 illustrate how to use Theorems
3.2.2 and Theorem 3.2.3 to do this. The type of analysis given in these
examples is often used in the analysis of the time used to solve problems
using computer programs.

�
EXAMPLE. 9

Give a big-O estimate for f(n) = 3n log(n!) + (n2 + 3) log n, where n is a
positive integer.�� ��Solution: First, the product 3n log(n!) will be estimated. From Example
6 we know that log (n!) is O(n log n). Using this estimate and the fact that
3n is O(n), Theorem 3.2.2 gives the estimate that 3n log(n!) is O(n2 log n).

Next, the product (n2+3) log n will be estimated. Because (n2+3) < 2n2

when n > 2, it follows that n2 + 3 is O(n2). Thus, from Theorem 3.2.3 it fol-
lows that (n2+3) log n is O(n2 log n). Using Theorem 3.2.3 to combine the two
big-O estimates for the products shows that f(n) = 3n log(n!)+(n2+3) log n

is O(n2 log n).

�
EXAMPLE. 10

Give a big-O estimate for f(x) = (x+ 1) log(x2 + 1) + 3x2.�� ��Solution: First, a big-O estimate for (x + 1) log(x2 + 1) will be found.
Note that (x+ 1) is O(x). Furthermore, x2 + 1 ≤ 2x2 when x > 1. Hence,

log(x2 + 1) ≤ log(2x2) = log 2 + log x2 = log 2 + 2 log x ≤ 3 log x,

if x > 2. This shows that log(x2 + 1) is O(log x).
From Theorem 3.2.3 it follows that (x + 1) log(x2 + 1) is O(x log x). Be-

cause 3x2 is O(x2), Theorem 3.2.2 tells us that f(x) is O(max(x log x, x2)).

254 CHAPTER 3. ALGORITHMS

Because x log x ≤ x2, for x > 1, it follows that f(x) is O(x2).

3.2.5 Big-Omega and Big-Theta Notation

Big-O notation is used extensively to describe the growth of func-
tions, but it has limitations. In particular, when f(x) is O(g(x)), we
have an upper bound, in terms of g(x), for the size of f(x) for large
values of x. However, big-O notation does not provide a lower bound
for the size of f(x) for large x. For this, we use big-Omega (big-Ω)
notation. When we want to give both an upper and a lower bound on
the size of a function f(x), relative to a reference function g(x), we use
big-Theta (big-Θ) notation. Both big-Omega and big-Theta nota-
tion were introduced by Donald Knuth in the 1970s. His motivation for
introducing these notations was the common misuse of big-O notation
when both an upper and a lower bound on the size of a function are
needed.

Definition 3.2.2 Let f and g be functions from the set of integers
or the set of real numbers to the set of real numbers. We say that f(x)
is Ω(g(x)) if there are constants C and k with C positive such that

|f(x)| ≥ C|g(x)|

whenever x > k. [This is read as “f(x) is big-Omega of g(x).”]

There is a strong connection between big-O and big-Omega nota-
tion. In particular, f(x) is Ω(g(x)) if and only if g(x) is O(f(x)). We
leave the verification of this fact as a straightforward exercise for the
reader.

�
EXAMPLE. 11

The function f(x) = 8x3 + 5x2 + 7 is Ω(g(x)), where g(x) is the function
g(x) = x3. This is easy to see because f(x) = 8x3 + 5x2 + 7 ≥ 8x3 for
all positive real numbers x. This is equivalent to saying that g(x) = x3 is
O(8x3 +5x2 +7), which can be established directly by turning the inequality

3.2.5 Big-Omega and Big-Theta Notation 255

around.

Often, it is important to know the order of growth of a function in
terms of some relatively simple reference function such as xn when n
is a positive integer or cx, where c > 1. Knowing the order of growth
requires that we have both an upper bound and a lower bound for
the size of the function. That is, given a function f(x), we want a
reference function g(x) such that f(x) is O(g(x)) and f(x) is Ω(g(x)).
Big-Theta notation, defined as follows, is used to express both of these
relationships, providing both an upper and a lower bound on the size
of a function.

Definition 3.2.3 Let f and g be functions from the set of integers
or the set of real numbers to the set of real numbers. We say that f(x) is
Θ(g(x)) if f(x) is O(g(x)) and f(x) is Ω(g(x)). When f(x) is Θ(g(x)),
we say that f is big-Theta of g(x), that f(x) is of order g(x), and that
f(x) and g(x) are of the same order.

When f(x) is Θ(g(x)), it is also the case that g(x) is Θ(f(x)). Also
note that f(x) is Θ(g(x)) if and only if f(x) is O(g(x)) and g(x) is
O(f(x)). Furthermore, note that f(x) is Θ(g(x)) if and only if there
are positive real numbers C1 and C2 and a positive real number k such
that

C1|g(x)| ≤ |f(x)| ≤ C2|g(x)|

whenever x > k. The existence of the constants C1, C2, and k tells us
that f(x) is Ω(g(x)) and that f(x) is O(g(x)), respectively.

Usually, when big-Theta notation is used, the function g(x) in
Ω(g(x)) is a relatively simple reference function, such as xn, cx, log x,
and so on, while f(x) can be relatively complicated.

�
EXAMPLE. 12

We showed (in Example 5) that the sum of the first n positive integers is
O(n2). Determine whether this sum is of order n2 without using the summa-
tion formula for this sum.�� ��Solution: Let f(n) = 1 + 2 + 3 + . . .+ n. Because we already know that
f(n) is O(n2), to show that f(n) is of order n2 we need to find a positive

256 CHAPTER 3. ALGORITHMS

constant C such that f(n) > Cn2 for sufficiently large integers n. To obtain a
lower bound for this sum, we can ignore the first half of the terms. Summing
only the terms greater than ⌈n/2⌉, we find that

1 + 2 + . . .+ n ≥ ⌈n/2⌉+ (⌈n/2⌉+ 1) + . . .+ n
≥ ⌈n/2⌉+ ⌈n/2⌉+ . . .+ ⌈n/2⌉
= (n− ⌈n/2⌉+ 1)⌈n/2⌉
≥ (n/2)(n/2)
= n2/4.

This shows that f(n) is Ω(n2). We conclude that f(n) is of order n2, or in
symbols, f(n) is Θ(n2).

�
EXAMPLE. 13

Show that 3x2 + 8xlog x is Θ(x2).�� ��Solution: Because 0 ≤ 8xlog x ≤ 8x2, it follows that 3x2 + 8xlog x ≤
11x2 for x > 1. Consequently, 3x2 + 8xlog x is O(x2). Clearly, x2 is
O(3x2 + 8xlog x). Consequently, 3x2 + 8xlog x is Θ(x2).

One useful fact is that the leading term of a polynomial determines
its order. For example, if f(x) = 3x5 + x4 + 17x3 + 2, then f(x) is of
order x5. This is stated in Theorem 3.2.4.

THEOREM 3.2.4

Let f(x) = anx
n+an−1x

n−1+ . . .+a1x+a0, where a0, a1, . . . , an
are real numbers with an ̸= 0. Then f(x) is of order xn.

�
EXAMPLE. 14

The polynomials 3x8 + 10x7 + 221x2 + 1444, x19 − 18x4 − 10,112, and x99 +

40, 001x98 + 100, 003x are of orders x8, x19, and x99, respectively.

Unfortunately, as Knuth observed, big-O notation is often used by
careless writers and speakers as if it had the same meaning as big-Theta
notation. Keep this in mind when you see big-O notation used. The

3.3. COMPLEXITY OF ALGORITHMS 257

recent trend has been to use big-Theta notation whenever both upper
and lower bounds on the size of a function are needed.

3.3 Complexity of Algorithms

3.3.1 Introduction

When does an algorithm provide a satisfactory solution to a prob-
lem? First, it must always produce the correct answer. Second, it
should be efficient. The efficiency of algorithms will be discussed in
this section.

How can the efficiency of an algorithm be analyzed? One measure
of efficiency is the time used by a computer to solve a problem using the
algorithm, when input values are of a specified size. A second measure
is the amount of computer memory required to implement the algorithm
when input values are of a specified size.

Questions such as these involve the computational complexity
of the algorithm. An analysis of the time required to solve a problem of
a particular size involves the time complexity of the algorithm. An
analysis of the computer memory required involves the space com-
plexity of the algorithm. Considerations of the time and space com-
plexity of an algorithm are essential when algorithms are implemented.
It is important to know whether an algorithm will produce an answer
in a microsecond, a minute, or a billion years. Likewise, the required
memory must be available to solve a problem, so that space complexity
must be taken into account.

Considerations of space complexity are tied in with the particular
data structures used to implement the algorithm. Because data struc-
tures are not dealt with in detail in this book, space complexity will
not be considered. We will restrict our attention to time complexity.

3.3.2 Time Complexity

The time complexity of an algorithm can be expressed in terms of
the number of operations used by the algorithm when the input has a
particular size. The operations used to measure time complexity can be

258 CHAPTER 3. ALGORITHMS

the comparison of integers, the addition of integers, the multiplication
of integers, the division of integers, or any other basic operation.

Time complexity is described in terms of the number of operations
required instead of actual computer time because of the difference in
time needed for different computers to perform basic operations. More-
over, it is quite complicated to break all operations down to the basic bit
operations that a computer uses. Furthermore, the fastest computers in
existence can perform basic bit operations (for instance, adding, multi-
plying, comparing, or exchanging two bits) in 10−11 second (10 picosec-
onds), but personal computers may require 10−8 second (10 nanosec-
onds), which is 1000 times as long, to do the same operations.

We illustrate how to analyze the time complexity of an algorithm
by considering Algorithm 1 of Section 3.1, which finds the maximum of
a finite set of integers.

�
EXAMPLE. 1

Describe the time complexity of Algorithm 1 of Section 3.1 for finding the
maximum element in a finite set of integers.�� ��Solution: The number of comparisons will be used as the measure of the
time complexity of the algorithm, because comparisons are the basic opera-
tions used.

To find the maximum element of a set with n elements, listed in an arbi-
trary order, the temporary maximum is first set equal to the initial term in
the list. Then, after a comparison i ≤ n has been done to determine that the
end of the list has not yet been reached, the temporary maximum and second
term are compared, updating the temporary maximum to the value of the
second term if it is larger. This procedure is continued, using two additional
comparisons for each term of the list—one i ≤ n, to determine that the end of
the list has not been reached and another max < ai, to determine whether to
update the temporary maximum. Because two comparisons are used for each
of the second through the nth elements and one more comparison is used to
exit the loop when i = n+ 1, exactly 2(n− 1) + 1 = 2n− 1 comparisons are
used whenever this algorithm is applied. Hence, the algorithm for finding the
maximum of a set of n elements has time complexity Θ(n), measured in terms
of the number of comparisons used. Note that for this algorithm the number
of comparisons is independent of particular input of n numbers.

3.3.2 Time Complexity 259

Next, we will analyze the time complexity of searching algorithms.

�
EXAMPLE. 2

Describe the time complexity of the linear search algorithm (specified as Al-
gortihm 2 in Section 3.1).�� ��Solution: The number of comparisons used by Algorithm 2 in Section 3.1
will be taken as the measure of the time complexity. At each step of the loop
in the algorithm, two comparisons are performed—one i ≤ n, to see whether
the end of the list has been reached and one x ≤ ai, to compare the element
x with a term of the list. Finally, one more comparison i ≤ n is made outside
the loop. Consequently, if x = ai, 2i + 1 comparisons are used. The most
comparisons, 2n+ 2, are required when the element is not in the list. In this
case, 2n comparisons are used to determine that x is not ai, for i = 1, 2, . . . , n,

an additional comparison is used to exit the loop, and one comparison is made
outside the loop. So when x is not in the list, a total of 2n + 2 comparisons
are used. Hence, a linear search requires Θ(n) comparisons in the worst case,
because 2n+ 2 is Θ(n).

WORST-CASE COMPLEXITY
The type of complexity analysis done in Example 2 is a worst-case

analysis. By the worst-case performance of an algorithm, we mean the
largest number of operations needed to solve the given problem using
this algorithm on input of specified size. Worst-case analysis tells us
how many operations an algorithm requires to guarantee that it will
produce a solution.

�
EXAMPLE. 3

Describe the time complexity of the binary search algorithm (specified as
Algorithm 3 in Section 3.1) in terms of the number of comparisons used (and
ignoring the time required to compute m = ⌊(i + j)/2⌋ in each iteration of
the loop in the algorithm).�� ��Solution: For simplicity, assume there are n = 2k elements in the list
a1, a2, . . . , an, where k is a nonnegative integer. Note that k = log n. (If

260 CHAPTER 3. ALGORITHMS

n, the number of elements in the list, is not a power of 2, the list can be
considered part of a larger list with 2k + 1 elements, where 2k < n < 2k + 1.
Here 2k + 1 is the smallest power of 2 larger than n.)

At each stage of the algorithm, i and j, the locations of the first term and
the last term of the restricted list at that stage, are compared to see whether
the restricted list has more than one term. If i < j, a comparison is done to
determine whether x is greater than the middle term of the restricted list.

At the first stage the search is restricted to a list with 2k−1 terms. So
far, two comparisons have been used. This procedure is continued, using two
comparisons at each stage to restrict the search to a list with half as many
terms. In other words, two comparisons are used at the first stage of the
algorithm when the list has 2k elements, two more when the search has been
reduced to a list with 2k−1 elements, two more when the search has been
reduced to a list with 2k−2 elements, and so on, until two comparisons are
used when the search has been reduced to a list with 21 = 2 elements. Finally,
when one term is left in the list, one comparison tells us that there are no
additional terms left, and one more comparison is used to determine if this
termis x.

Hence, at most 2k + 2 = 2log n+ 2 comparisons are required to perform
a binary search when the list being searched has 2k elements. (If n is not
a power of 2, the original list is expanded to a list with 2k+1 terms, where
k = ⌊log n⌋, and the search requires at most 2⌈log n⌉ + 2 comparisons.) It
follows that in the worst case, binary search requires O(log n) comparisons.

Note that in the worst case, 2log n + 2 comparisons are used by the
binary search. Hence, the binary search uses Θ(log n) comparisons in the
worst case, because 2log n + 2 = Θ(log n). From this analysis it follows
that in the worst case, the binary search algorithm is more efficient than the
linear search algorithm, because we know by Example 2 that the linear search
algorithm has Θ(n) worst-case time complexity.

AVERAGE-CASE COMPLEXITY
Another important type of complexity analysis, besides worst-case

analysis, is called average-case analysis. The average number of oper-
ations used to solve the problem over all possible inputs of a given size
is found in this type of analysis. Average-case time complexity analysis
is usually much more complicated than worst-case analysis. However,
the average-case analysis for the linear search algorithm can be done
without difficulty, as shown in Example 4.

3.3.2 Time Complexity 261

�
EXAMPLE. 4

Describe the average-case performance of the linear search algorithm in terms
of the average number of comparisons used, assuming that the integer x is in
the list and it is equally likely that x is in any position.�� ��Solution: By hypothesis, the integer x is one of the integers a1, a2, . . . , an
in the list. If x is the first term a1 of the list, three comparisons are needed,
one i ≤ n to determine whether the end of the list has been reached, one
x ̸= ai to compare x and the first term, and one i ≤ n outside the loop. If x
is the second term a2 of the list, two more comparisons are needed, so that a
total of five comparisons are used. In general, if x is the ith term of the list
ai, two comparisons will be used at each of the i steps of the loop, and one
outside the loop, so that a total of 2i+1 comparisons are needed. Hence, the
average number of comparisons used equals

3 + 5 + 7 + . . .+ (2n+ 1)

n
=

2(1 + 2 + 3 + . . .+ n) + n

n
.

Using the formula from line 2 of Table 2 in Section 2.4,

1 + 2 + 3 + . . .+ n =
n(n+ 1)

2
.

Hence, the average number of comparisons used by the linear search algorithm
(when x is known to be in the list) is

2⌊n(n+ 1)/2⌋
n

+ 1 = n+ 2,

which is Θ(n).

Remark! In the analysis in Example 4 we assumed that x is in
the list being searched. It is also possible to do an average-case
analysis of this algorithm when x may not be in the list.

Remark! Although we have counted the comparisons needed
to determine whether we have reached the end of a loop, these
comparisons are often not counted. From this point on we will

262 CHAPTER 3. ALGORITHMS

ignore such comparisons.

WORST-CASE COMPLEXITY OF TWO SORTING AL-
GORITHMS

We analyze the worst-case complexity of the bubble sort and the
insertion sort in Examples 5 and 6.

�
EXAMPLE. 5

What is the worst-case complexity of the bubble sort in terms of the number
of comparisons made?�� ��Solution: The bubble sort described before Example 4 in Section 3.1 sorts
a list by performing a sequence of passes through the list. During each pass the
bubble sort successively compares adjacent elements, interchanging them if
necessary. When the ith pass begins, the i−1 largest elements are guaranteed
to be in the correct positions. During this pass, n − i comparisons are used.
Consequently, the total number of comparisons used by the bubble sort to
order a list of n elements is

(n− 1) + (n− 2) + . . .+ 2 + 1 =
(n− 1)n

2

Note that the bubble sort always uses this many comparisons, because it con-
tinues even if the list becomes completely sorted at some intermediate step.
Consequently, the bubble sort uses (n − 1)n/2 comparisons, so it has Θ(n2)

worst-case complexity in terms of the number of comparisons used.

�
EXAMPLE. 6

What is the worst-case complexity of the insertion sort in terms of the number
of comparisons made?�� ��Solution: The insertion sort (described in Section 3.1) inserts the jth ele-
ment into the correct position among the first j−1 elements that have already
been put into the correct order. It does this by using a linear search tech-
nique, successively comparing the j th element with successive terms until a
term that is greater than or equal to it is found or it compares aj with itself
and stops because aj is not less than itself. Consequently, in the worst case, j
comparisons are required to insert the jth element into the correct position.

3.3.3 Complexity of Matrix Multiplication 263

Therefore, the total number of comparisons used by the insertion sort to sort
a list of n elements is

2 + 3 + . . .+ n =
n(n+ 1)

2
− 1,

Note that the insertion sort may use considerably fewer comparisons if the
smaller elements started out at the end of the list. We conclude that the
insertion sort has worst-case complexity Θ(n2).

In Examples 5 and 6 we showed that both the bubble sort and the
insertion sort have worst-case time complexity Θ(n2). However, the
most efficient sorting algorithms can sort n items in O(n log n) time.
From this point on, we will assume that sorting n items can be done in
O(n log n) time.

You can run animations found on many different websites that si-
multaneously run different sorting algorithms on the same lists. Doing
so will help you gain insights into the efficiency of different sorting algo-
rithms. Among the sorting algorithms that you can find are the bubble
sort, the insertion sort, the shell sort, the merge sort, and the quick sort.
Some of these animations allow you to test the relative performance of
these sorting algorithms on lists of randomly selected items, lists that
are nearly sorted, and lists that are in reversed order.

3.3.3 Complexity of Matrix Multiplication

The definition of the product of two matrices can be expressed as
an algorithm for computing the product of two matrices. Suppose that
C = [cij] is the m× n matrix that is the product of the m× k matrix
A = [aij] and the k × n matrix B = [bij]. The algorithm based on the
definition of the matrix product is expressed in Algorithm 1.

We can determine the complexity of this algorithm in terms of the
number of additions and multiplications used.

264 CHAPTER 3. ALGORITHMS

ALGORITHM 1
Matrix Multiplication.

procedure matrix multiplication(A, B: matrices)
for i := 1 to m

for j := 1 to n
cij := 0
for q := 1 to k

cij := cij + aiqbqj
return C {C= [cij] is the product of A and B}

�
EXAMPLE. 7

How many additions of integers and multiplications of integers are used by
Algorithm 1 to multiply two n× n matrices with integer entries?�� ��Solution: There are n2 entries in the product of A and B. To find each
entry requires a total of n multiplications and n− 1 additions. Hence, a total
of n3 multiplications and n2(n− 1) additions are used.

Surprisingly, there are more efficient algorithms for matrix multipli-
cation than that given in Algorithm 1. As Example 7 shows, multiplying
two n×n matrices directly from the definition requires O(n3) multipli-
cations and additions. Using other algorithms, two n× n matrices can
be multiplied using O(n

√
7) multiplications and additions.

We can also analyze the complexity of the algorithm we described
in Chapter 2 for computing the Boolean product of two matrices, which
we display as Algorithm 2.

The number of bit operations used to find the Boolean product of
two n× n matrices can be easily determined.

�
EXAMPLE. 8

How many bit operations are used to find A⊙B, where A and B are n× n
zero–one matrices?�� ��Solution: There are n2 entries in A⊙B. Using Algorithm 2, a total of n

3.3.3 Complexity of Matrix Multiplication 265

ORs and n ANDs are used to find an entry of A ⊙B. Hence, 2n bit opera-
tions are used to find each entry. Therefore, 2n3 bit operations are required
to compute A⊙B using Algorithm 2.

ALGORITHM 2
The Boolean Product of Zero–One Matrices.

procedure Boolean product of Zero–One Matrices (A, B:
zero–one matrices)
for i := 1 to m

for j := 1 to n
cij := 0
for q := 1 to k

cij := cij ∨ (aiq ∧ bqj)
return C {C= [cij] is the Boolean product of A and B}

MATRIX-CHAIN MULTIPLICATION
There is another important problem involving the complexity of the

multiplication of matrices. How should the matrix-chain A1A2 . . .An

be computed using the fewest multiplications of integers, where A1A2 . . .
An are m1×m2, m2×m3, . . . , mn×mn+1 matrices, respectively, and
each has integers as entries? Note that m1m2m3 multiplications of in-
tegers are performed to multiply an m1 ×m2 matrix and an m2 ×m3

matrix using Algorithm 1.
Example 9 illustrates this problem.

�
EXAMPLE. 9

In which order should the matrices A1, A2, and A3 — where A1 is 30× 20,
A2 is 20× 40, and A3 is 40× 10, all with integer entries—be multiplied to use
the least number of multiplications of integers?�� ��Solution: There are two possible ways to compute A1A2A3. These are
A1(A2A3) and (A1A2)A3.

If A2 and A3 are first multiplied, a total of 20·40·10 = 8000 multiplications
of integers are used to obtain the 20 × 10 matrix A2A3. Then, to multiply

266 CHAPTER 3. ALGORITHMS

A1 and A2A3 requires 30 · 20 · 10 = 6000 multiplications. Hence, a total of

8000 + 6000 = 14, 000

multiplications are used. On the other hand, if A1 and A2 are first multiplied,
then 30 · 20 · 40 = 24, 000 multiplications are used to obtain the 30 × 40
matrix A1A2. Then, to multiply A1A2 and A3 requires 30 · 40 · 10 = 12, 000
multiplications. Hence, a total of

24, 000 + 12, 000 = 36, 000

multiplications are used.
Clearly, the first method is more efficient.

3.3.4 Algorithmic Paradigms

In Section 3.1 we introduced the basic notion of an algorithm. We
provided examples of many different algorithms, including searching
and sorting algorithms. We also introduced the concept of a greedy
algorithm, giving examples of several problems that can be solved by
greedy algorithms. Greedy algorithms provide an example of an algo-
rithmic paradigm, that is, a general approach based on a particular
concept that can be used to construct algorithms for solving a variety
of problems.

Some of the algorithms we have already studied are based on an
algorithmic paradigm known as brute force, which we will describe in
this section. Algorithmic paradigms, studied later in this book, include
divide-and-conquer algorithms, dynamic programming, backtracking,
and probabilistic algorithms. There are many important algorithmic
paradigms besides those described in this book.

BRUTE-FORCE ALGORITHMS
Brute force is an important, and basic, algorithmic paradigm. In a

brute-force algorithm, a problem is solved in the most straightfor-
ward manner based on the statement of the problem and the definitions
of terms. Brute-force algorithms are designed to solve problems with-
out regard to the computing resources required. For example, in some
brute-force algorithms the solution to a problem is found by examining

3.3.4 Algorithmic Paradigms 267

every possible solution, looking for the best possible. In general, brute-
force algorithms are naive approaches for solving problems that do not
take advantage of any special structure of the problem or clever ideas.

Note that Algorithm 1 in Section 3.1 for finding the maximum num-
ber in a sequence is a brute-force algorithm because it examines each of
the n numbers in a sequence to find the maximum term. The algorithm
for finding the sum of n numbers by adding one additional number at
a time is also a brute-force algorithm, as is the algorithm for matrix
multiplication based on its definition (Algorithm 1). The bubble, inser-
tion, and selection sorts (described in Section 3.1 in Algorithms 4 and 5
are also considered to be brute-force algorithms; all three of these sort-
ing algorithms are straightforward approaches much less efficient than
other sorting algorithms such as the merge sort and the quick sort

Although brute-force algorithms are often inefficient, they are often
quite useful. A bruteforce algorithm may be able to solve practical
instances of problems, particularly when the input is not too large, even
if it is impractical to use this algorithm for larger inputs. Furthermore,
when designing new algorithms to solve a problem, the goal is often to
find a new algorithm that is more efficient than a brute-force algorithm.
One such problem of this type is described in Example 10.

�
EXAMPLE. 10

Construct a brute-force algorithm for finding the closest pair of points in a
set of n points in the plane and provide a worst-case big-O estimate for the
number of bit operations used by the algorithm.�� ��Solution: Suppose that we are given as input the points (x1, y1), (x2, y2), . . .,
(xn, yn). Recall that the distance between (xi, yi) and (xj , yj) is√
(xj − xi)2 + (yj − yi)2. A brute-force algorithm can find the closest pair of

these points by computing the distances between all pairs of the n points and
determining the smallest distance. (We can make one small simplification to
make the computation easier; we can compute the square of the distance be-
tween pairs of points to find the closest pair, rather than the distance between
these points. We can do this because the square of the distance between a
pair of points is smallest when the distance between these points is smallest.)

To estimate the number of operations used by the algorithm, first note
that there are n(n−1)/2 pairs of points ((xi, yi), (xj , yj)) that we loop through

268 CHAPTER 3. ALGORITHMS

(as the reader should verify). For each such pair we compute (xj − xi)
2 +

(yj − yi)
2, compare it with the current value of min, and if it is smaller than

min, replace the current value of min by this new value. It follows that this
algorithm uses Θ(n2) operations, in terms of arithmetic operations and com-
parisons.

ALGORITHM 3
Brute-Force Algorithm for Closest Pair of Points.

procedure closest-pair((x1, y1), (x2, y2), . . . , (xn, yn) : pairs of
real numbers)
min =∞
for i := 2 to n

for j := 1 to i− 1
if (xj − xi)

2 + (yj − yi)
2 < min then

min := (xj − xi)
2 + (yj − yi)

2

closest pair := ((xi, yi), (xj , yj))
return closest pair

3.3.5 Understanding the Complexity of Algorithms

Table 3.1 displays some common terminology used to describe the
time complexity of algorithms. For example, an algorithm that finds
the largest of the first 100 terms of a list of n elements by applying
Algorithm 1 to the sequence of the first 100 terms, where n is an in-
teger with n ≥ 100, has constant complexity because it uses 99
comparisons no matter what n is (as the reader can verify). The linear
search algorithm has linear (worst-case or average-case) complexity
and the binary search algorithm has logarithmic (worst-case) complex-
ity. Many important algorithms have n log n, or linearithmic (worst-
case) complexity, such as the merge sort. (The word linearithmic is a
combination of the words linear and logarithmic.)

An algorithm has polynomial complexity if it has complexity
Θ(nb), where b is an integer with b ≥ 1. For example, the bubble sort
algorithm is a polynomial-time algorithm because it uses Θ(n2) com-

3.3.5 Understanding the Complexity of Algorithms 269

Table 3.1: Commonly Used Terminology for the Complexity of Algo-
rithms.

Complexity Terminology

Θ(1) Constant complexity
Θ(log n) Logarithmic complexity
Θ(n) Linear complexity
Θ(n log n) Linearithmic complexity
Θ(nb) Polynomial complexity
Θ(bn), whereb > 1 Exponential complexity
Θ(n!) Factorial complexity

parisons in the worst case. An algorithm has exponential complexity
if it has time complexity Θ(bn), where b > 1. The algorithm that de-
termines whether a compound proposition in n variables is satisfiable
by checking all possible assignments of truth variables is an algorithm
with exponential complexity, because it uses Θ(2n) operations. Finally,
an algorithm has factorial complexity if it has Θ(n!) time complexity.
The algorithm that finds all orders that a traveling salesperson could
use to visit n cities has factorial complexity.

TRACTABILITY
A problem that is solvable using an algorithm with polynomial (or

better) worst-case complexity is called tractable, because the expec-
tation is that the algorithm will produce the solution to the problem
for reasonably sized input in a relatively short time. However, if the
polynomial in the big-Θ estimate has high degree (such as degree 100)
or if the coefficients are extremely large, the algorithm may take an ex-
tremely long time to solve the problem. Consequently, that a problem
can be solved using an algorithm with polynomial worst-case time com-
plexity is no guarantee that the problem can be solved in a reasonable
amount of time for even relatively small input values. Fortunately, in
practice, the degree and coefficients of polynomials in such estimates
are often small.

The situation is much worse for problems that cannot be solved

270 CHAPTER 3. ALGORITHMS

using an algorithm with worst-case polynomial time complexity. Such
problems are called intractable. Usually, but not always, an extremely
large amount of time is required to solve the problem for the worst cases
of even small input values. In practice, however, there are situations
where an algorithm with a certain worst-case time complexity may be
able to solve a problem much more quickly for most cases than for its
worst case. When we are willing to allow that some, perhaps small,
number of cases may not be solved in a reasonable amount of time,
the average-case time complexity is a better measure of how long an
algorithm takes to solve a problem. Many problems important in in-
dustry are thought to be intractable but can be practically solved for
essentially all sets of input that arise in daily life. Another way that in-
tractable problems are handled when they arise in practical applications
is that instead of looking for exact solutions of a problem, approximate
solutions are sought. It may be the case that fast algorithms exist for
finding such approximate solutions, perhaps even with a guarantee that
they do not differ by very much from an exact solution.

Some problems even exist for which it can be shown that no algo-
rithm exists for solving them. Such problems are called unsolvable (as
opposed to solvable problems that can be solved using an algorithm).
The first proof that there are unsolvable problems was provided by the
great English mathematician and computer scientist Alan Turing when
he showed that the halting problem is unsolvable. Recall that we proved
that the halting problem is unsolvable in Section 3.1.

P VERSUS NP
The study of the complexity of algorithms goes far beyond what

we can describe here. Note, however, that many solvable problems
are believed to have the property that no algorithm with polynomial
worst-case time complexity solves them, but that a solution, if known,
can be checked in polynomial time. Problems for which a solution
can be checked in polynomial time are said to belong to the class NP
(tractable problems are said to belong to class P). The abbreviation NP
stands for nondeterministic polynomial time. The satisfiability prob-
lem, discussed in Section 1.3, is an example of an NP problem—we can
quickly verify that an assignment of truth values to the variables of a

3.3.5 Understanding the Complexity of Algorithms 271

compound proposition makes it true, but no polynomial time algorithm
has been discovered for finding such an assignment of truth values.

There is also an important class of problems, called NP-complete
problems, with the property that if any of these problems can be
solved by a polynomial worst-case time algorithm, then all problems in
the class NP can be solved by polynomial worst-case time algorithms.
The satisfiability problem is also an example of an NP-complete prob-
lem. It is an NP problem and if a polynomial time algorithm for solv-
ing it were known, there would be polynomial time algorithms for all
problems known to be in this class of problems (and there are many
important problems in this class). This last statement follows from the
fact that every problem in NP can be reduced in polynomial time to
the satisfiability problem. Although more than 3000 NPcomplete prob-
lems are now known, the satisfiability problem was the first problem
shown to be NP-complete. The theorem that asserts this is known as
the Cook-Levin theorem after Stephen Cook and Leonid Levin, who
independently proved it in the early 1970s.

The P versus NP problem asks whether NP, the class of problems
for which it is possible to check solutions in polynomial time, equals
P, the class of tractable problems. If P ̸= NP , there would be some
problems that cannot be solved in polynomial time, but whose solutions
could be verified in polynomial time. The concept of NP-completeness
is helpful in research aimed at solving the P versus NP problem, because
NP-complete problems are the problems in NP considered most likely
not to be in P, as every problem in NP can be reduced to an NP-
complete problem in polynomial time. A large majority of theoretical
computer scientists believe that P ̸= NP , which would mean that no
NP-complete problem can be solved in polynomial time. One reason
for this belief is that despite extensive research, no one has succeeded
in showing that P = NP . In particular, no one has been able to find an
algorithm with worst-case polynomial time complexity that solves any
NP-complete problem. The P versus NP problem is one of the most
famous unsolved problems in the mathematical sciences (which include
theoretical computer science). It is one of the seven famous Millennium
Prize Problems, of which six remain unsolved. A prize of $1,000,000 is
offered by the Clay Mathematics Institute for its solution.

272 CHAPTER 3. ALGORITHMS

Table 3.2: The Computer Time Used by Algorithms.

Size Bit Operations Used

n log n n n log n n2 2n n!

10 3 · 10−11s 10−10s 3 · 10−10s 10−9s 10−8s 3 · 10−7s
102 7 · 10−11s 10−9s 7 · 10−9s 10−7s 4 · 1011yr ∗
103 1.0 · 10−10s 10−8s 1 · 10−7s 10−5s ∗ ∗
104 1.3 · 10−10s 10−7s 1 · 10−6s 10−3s ∗ ∗
105 1.7 · 10−10s 10−6s 2 · 10−5s 0.1s ∗ ∗
106 2 · 10−10s 10−5s 2 · 10−4s 10.2s ∗ ∗

PRACTICAL CONSIDERATIONS
Note that a big-Θ estimate of the time complexity of an algorithm

expresses how the time required to solve the problem increases as the
input grows in size. In practice, the best estimate (that is, with the
smallest reference function) that can be shown is used. However, big-Θ
estimates of time complexity cannot be directly translated into the ac-
tual amount of computer time used. One reason is that a big-Θ estimate
f(n) is Θ(g(n)), where f(n) is the time complexity of an algorithm and
g(n) is a reference function, means that C1g(n) ≤ f(n) ≤ C2g(n) when
n > k, where C1, C2, and k are constants. So without knowing the
constants C1, C2, and k in the inequality, this estimate cannot be used
to determine a lower bound and an upper bound on the number of op-
erations used in the worst case. As remarked before, the time required
for an operation depends on the type of operation and the computer
being used. Often, instead of a big-Θ estimate on the worst-case time
complexity of an algorithm, we have only a big-O estimate. Note that
a big-O estimate on the time complexity of an algorithm provides an
upper, but not a lower, bound on the worst-case time required for the
algorithm as a function of the input size. Nevertheless, for simplicity,
we will often use big-O estimates when describing the time complex-
ity of algorithms, with the understanding that big-Θ estimates would
provide more information.

Table 3.2 displays the time needed to solve problems of various

3.3.5 Understanding the Complexity of Algorithms 273

sizes with an algorithm using the indicated number n of bit operations,
assuming that each bit operation takes 10−11 seconds, a reasonable esti-
mate of the time required for a bit operation using the fastest computers
available in 2018. Times of more than 10100 years are indicated with an
asterisk. In the future, these times will decrease as faster computers are
developed. We can use the times shown in Table 3.2 to see whether it
is reasonable to expect a solution to a problem of a specified size using
an algorithm with known worst-case time complexity when we run this
algorithm on a modern computer. Note that we cannot determine the
exact time a computer uses to solve a problem with input of a particu-
lar size because of a myriad of issues involving computer hardware and
the particular software implementation of the algorithm.

It is important to have a reasonable estimate for how long it will take
a computer to solve a problem. For instance, if an algorithm requires
approximately 10 hours, it may be worthwhile to spend the computer
time (and money) required to solve this problem. But, if an algorithm
requires approximately 10 billion years to solve a problem, it would
be unreasonable to use resources to implement this algorithm. One of
the most interesting phenomena of modern technology is the tremen-
dous increase in the speed and memory space of computers. Another
important factor that decreases the time needed to solve problems on
computers is parallel processing, which is the technique of performing
sequences of operations simultaneously.

Efficient algorithms, including most algorithms with polynomial
time complexity, benefit most from significant technology improvements.
However, these technology improvements offer little help in overcoming
the complexity of algorithms of exponential or factorial time complexity.
Because of the increased speed of computation, increases in computer
memory, and the use of algorithms that take advantage of parallel pro-
cessing, many problems that were considered impossible to solve five
years ago are now routinely solved, and certainly five years from now
this statement will still be true. This is even true when the algorithms
used are intractable.

References

1. Rosen K. H. Discrete mathematics and its applications /
K. H. Rosen. — McGraw-Hill Education, 2018. — 942 p.

2. Raymond Smullyan, What Is the Name of This Book?: The Riddle
of Dracula and Other Logical Puzzles, Prentice- Hall, Englewood
Cliffs, NJ, 1978.

3. Kurgalin S. The discrete math workbook: a companion manual
using python / S. Kurgalin, S. Borzunov. — Springer Nature, 2020.
— 507 p.

4. Epp S. S. Discrete mathematics with applications, metric
edition / S. S. Epp. — Brooks/Cole, 2019. — 984 p.

5. Jenkyns T. Fundamentals of discrete math for computer science: a
problem-solving primer / T. Jenkyns, B. Stephenson. — Springer
International Publishing, 2018. — 512 p.

6. Rosen K. H. Student’s solutions guide for discrete mathematics
and its applications / K. H. Rosen. — McGraw-Hill Education,
2018. — 544 p.

274

Електронне навчальне видання

Дворниченко Алiна Василiвна,
Лисенко Олександр Володимирович

ДИСКРЕТНА МАТЕМАТИКА ТА ТЕОРIЯ АЛГОРИТМIВ
Конспект лекцiй

для студентiв спецiальностi 113 ”Прикладна математика”
денної форми навчання

У чотирьох частинах
Частина I

(Англiйською мовою)

Вiдповiдальний за випуск I. В. Коплик
Редактор А. В. Дворниченко

Комп’ютерне верстання А. В. Дворниченко

Формат 60x84/16. Ум. друк. арк. 15,98. Обл.-вид. арк. 17,08.

Видавець i виготовлювач
Сумський державний унiверситет,

вул. Римського-Корсакова, 2, м. Суми, 40007
Свiдоцтво суб’єкта видавничої справи ДК № 3062 вiд 17.12.2007.

